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Abstract

Explainable Artificial Intelligence (XAI) is at the forefront of Artificial Intelligence (AI)
research. As the development of AI has become increasingly complex with modern day
computational capabilities, the transparency of the AI models decreases. This promotes
the necessity of XAI, as it is illicit as per the General Data Protection Regulations
(GDPR) “right to an explanation” to not provide a person with an explanation given
a decision reached after algorithmic judgement. The latter is crucial in critical fields
such as Healthcare, Finance and Law. For this thesis, the Healthcare field and more
specifically Electronic Health Records are the main focus for the development and
application of XAI methods.

This thesis offers prospective approaches to enhance the explainability of Electronic
Health Records (EHRs). It presents three different perspectives that encompass the
Model, Data, and the User, aimed at elevating explainability. The model perspective
draws upon improvements to the local explainability of black-box AI methods. The data
perspective enables an improvement to the quality of the data provided for AI methods,
such that the XAI methods applied to the AI models account for a key property of
missingness. Finally, the user perspective provides an accessible form of explainability
by allowing less experienced users to have an interface to use both AI and XAI methods.

Thereby, this thesis provides new innovative approaches to improve the explanations
that are given for EHRs. This is verified through empirical and theoretical analysis
of a collection of introduced and existing methods. We propose a selection of XAI
methods that collectively build upon current leading literature in the field. Here we
propose the methods Polynomial Adaptive Local Explanations (PALE) for patient
specific explanations, both Counterfactual-Integrated Gradients (CF-IG) and Quantified
Uncertainty Counterfactual Explanations (QUCE) that utilise counterfactual thinking,
Batch-Integrated Gradients (Batch-IG) to address the temporal nature of EHR data
and Surrogate Set Imputation (SSI) that addresses missing value imputation. Finally,
we propose a tool called ExMed that utilises XAI methods and allows for the ease of
access for AI and XAI methods.
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1.1 Motivation

The idea of replicating biological processes within machines can be traced back to the
question posed by Alan Turing in 1950: “Can machines think?” [Tur50]. This query
delves into the idea of recreating processes such as “thinking” and other biological
interactions, implying a form of bio-mimicry such that a machine mimics or draws
inspiration from biological models.

The concept of the Artificial Neural Network (ANN) is rooted in the structure of
the brain. The biological brain is composed of neurons and synapses. In the realm
of Machine Learning (ML), an early attempt at replication was seen in Rosenblatt’s
perceptron, also known as the McCulloch-Pitts neuron. The perceptron was tailored for
supervised, linearly separable binary classification tasks. However, the computational
limitations required to utilise this approach hindered further progress in ANN research.
This scenario changed with the advent of Feed-Forward Neural Networks (FFNN), which
paved the way for the Multilayer Perceptron, this became a conceivable approach given
the improvement of computation. This advancement in the architecture incorporates
non-linear activations and multiple layers to the neural network. The concept of
back-propagation, introduced in [RHW86], along with learning techniques like gradient
descent (for further details see Appendix A), resonates with the earlier question,“Can
machines think?” One could argue that the notion of “thinking” is intrinsic to the
process of “learning” [Kad15].

While limitations were present with the inception of such methods, it was evident that
Machine Learning (ML) was a conceivable idea, although this was not necessarily in the
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form of ANNs initially, as a consequence of computational complexities and architectural
constraints at the time. Progressing from this point, in 1967, the computable k-Nearest
Neighbour (kNN) algorithm was introduced [CH67]. The term computable is emphasized
here, as the conceptualization of the nearest neighbor classification idea loosely dates
back to the “Book of Optics” (Ibn al-Haytham) [Pel14], which, as stated by [Pel14], is
believed to have been written in the 1030s.

Moving ahead, the 1990s witnessed the emergence of boosting models, where the
utilization of weak learners to create a more proficient learner was introduced. This
concept was outlined in the paper “The Strength of Weak Learnability” [Sch90], thus
laying the groundwork for contemporary ensemble and boosting methods like eXtreme
Gradient Boosting (XGBoost) [CG16].

As the computational capacity evolved into the 2000s, it became evident that
employing ANNs would be an viable approach for learning complex relationships and
thus increased model performance for higher dimensional and more complex tasks, as the
increase in computational capabilities facilitated the training of more intricate networks,
leading to an increase in model complexity. From 2006 overarching advancements in
AI lead to the popularisation of deep learning, this can be seen in [HOT06, Hin07] and
the introduction of Generative Adversarial Neural Networks in 2014 [GPAM+14]. For
further information on Machine/Deep Learning please see Appendix A.

1.1.1 An Increase in Complexity, a Decrease in Transparency

As the complexity of computers increased and the prominence of big data emerged,
the adoption of more intricate systems (such as Deep Neural Networks and ensemble
models) gained traction, arguable outperforming humans in numerous tasks, for example
outperforming radiologists in diagnostics [DK19]. Consequently, the concept of Machine
Learning (ML) stepping in to aid humans in domain-specific tasks gained substantial
appeal.

In line with this, the introduction of the General Data Protection Regulations
(GDPRs)“right to an explanation”, outlined the necessity for explainability [SP17].
As ML models evolve and grow in complexity, they often exhibit enhanced accuracy.
Consequently, this escalated complexity leading to an improved accuracy often hampers
the innate interpretability of the ML models. This has paved the way for the emergence
of a subset within Artificial Intelligence (AI) known as eXplainable Artificial Intelligence
(XAI). In layman’s terms, XAI can be regarded as a means to comprehend the underlying
workings of a machine learning model rather than delving into the intricacies of the
data. For the purpose of this thesis, it’s important to establish this clear demarcation.
Essentially, XAI serves as a method to unravel the “thought process” of the machine.
Thus, it endeavors to tackle the question:

“How can we make black-box models explainable?”

In this thesis, the above question is answered from a modelling, data and user perspective.
Explainability is commonly given in the form of feature-attribution, which aims to
answer the question:
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“How does each feature contribute towards a prediction?”

Feature-attribution is often considered throughout the body of this thesis, although
this is not the only form of explainability. Feature-attribution provides an intuitive
way to observe how a given prediction is obtained. This is achieved by analysing how
each feature of a predicted instance influences the given prediction. Therefore, enabling
transparency of an predicted outcome.

Producing transparent models is crucial in the field of medicine. It is clear, such a
critical field must deploy transparency if AI is to be used in any process (e.g. decision-
making, analytics). Therefore, this thesis first provides the reader with a comparison
of state-of-the-art XAI techniques for medical data. The comparison, provided in the
body of this thesis, was the first study (to the knowledge of the author) of this kind,
exploring EHR tabular data with state-of-the-art XAI methods. With the identified
dissonance from our comparison of XAI models, it elucidates open research opportunity
for the development of new XAI methods.

In Table 1.1, we provide an overview of papers with their associated research question
and XAI method(s). The set of publications provided in this table are accumulated
between January 2020 and June 2023. Here I provide a brief overview of XAI methods
used in recent healthcare research.

5



1. Thesis Introduction

T
a
b
le

1
.1
:
T
h
e
se
t
o
f
p
a
p
er
s
ex
p
lo
ri
n
g
h
ow

X
A
I
h
a
s
b
ee
n
u
se
d
in

m
ed
ic
in
e.

T
h
is

is
a
cc
o
m
p
a
n
ie
d
b
y
th
e
X
A
I
m
et
h
o
d
s
u
se
d
,

th
e
m
ed
ic
al

re
se
ar
ch

q
u
es
ti
on

p
ro
p
os
ed
,
th
e
ye
ar

of
p
u
b
li
ca
ti
on

an
d
th
e
ty
p
e
of

ex
p
la
n
at
io
n
m
et
h
o
d
.
H
er
e
w
e
ob

se
rv
e
a
w
id
e

ra
n
g
e
of

ap
p
li
ca
ti
on

s
of
te
n
u
ti
li
se

th
e
sa
m
e
se
t
of

X
A
I
m
et
h
o
d
s
w
it
h
L
IM

E
an

d
S
H
A
P

b
ei
n
g
co
m
m
on

in
ap

p
li
ca
ti
o
n
.

X
A
I
in

E
H
R

P
a
p
e
r

X
A
I
M

e
th

o
d
(s
)

R
e
se
a
rc
h

Q
u
e
st
io
n

Y
e
a
r

X
A
I
T
y
p
e

[D
F
B
+
21
]

S
H
A
P
,
L
IM

E
,
A
n
ch
or
s

M
or
ta
li
ty

p
re
d
ic
ti
o
n
fo
r
L
u
n
g
C
an

ce
r
p
a
ti
en
ts

2
0
2
1

M
o
d
el
-A

g
n
o
st
ic

[D
F
S
22
]

P
A
L
E
,
S
H
A
P
,
L
IM

E
,
L
og

R
eg

S
u
rv
iv
al

ti
m
e
p
re
d
ic
ti
on

fo
r
d
iff
er
en
t
co
h
o
rt
s
of

ca
n
ce
r
p
a
ti
en
ts

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic
,
M
o
d
el
-I
n
tr
in
si
c

[M
T
v
M
H

+
21
]

S
H
A
P

B
re
as
t
ca
n
ce
r
su
rv
iv
al

p
re
d
ic
ti
on

2
0
2
1

M
o
d
el
-A

g
n
o
st
ic

[K
E
D

+
21
]

S
H
A
P
,
L
IM

E
L
u
n
g
ca
n
ce
r
li
fe

ex
p
ec
ta
n
cy

an
d
C
O
V
ID

re
st
ri
ct
io
n
m
ea
su
re
s

2
0
2
1

M
o
d
el
-A

g
n
o
st
ic

[T
V
A

+
22
]

L
og

R
eg
,
E
B
M
,
S
H
A
P

C
O
V
ID

-1
9
d
ia
gn

o
si
s
th
ro
u
gh

b
lo
o
d
te
st

va
ri
ab

le
s

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic
,
M
o
d
el
-I
n
tr
in
si
c

[L
K
O

+
20
]

x
A
I-
E
W

S
P
re
d
ic
ti
n
g
ac
u
te

il
ln
es
s
fo
r
se
p
si
s,

a
cu
te

k
id
n
ey

in
ju
ry

a
n
d
a
cu
te

lu
n
g
in
ju
ry

2
0
2
0

M
o
d
el
-S
p
ec
ifi
c

[L
G
Z
+
21
]

A
tt
en
ti
on

Id
en
ti
fy

ch
ro
n
ic

co
u
g
h
p
a
ti
en
ts

2
0
2
1

M
o
d
el
-S
p
ec
ifi
c

[T
B
L
+
22
]

A
tt
en
ti
on

IC
D

C
la
ss
ifi
ca
ti
o
n

2
0
2
1

M
o
d
el
-S
p
ec
ifi
c

[C
F
B
+
21
]

M
C
E

U
n
su
p
er
v
is
ed

H
ea
rt

p
at
ie
n
t
cl
u
st
er
in
g

2
0
2
1

M
o
d
el
-S
p
ec
ifi
c

[C
L
E
+
21
]

S
H
A
P

F
or
ec
as
ti
n
g
ad

ve
rs
e
su
rg
ic
al

ev
en
ts

2
0
2
1

M
o
d
el
-A

g
n
o
st
ic

[N
C
C
+
21
]

S
H
A
P
,
L
og

R
eg

P
re
d
ic
ti
n
g
ad

ve
rs
e
ou

tc
om

es
o
f
C
O
V
ID

-1
9
p
at
ie
n
ts

2
0
2
1

M
o
d
el
-I
n
tr
in
si
c,

M
o
d
el

A
g
n
o
st
ic

[J
G
V
M

+
20
]

S
H
A
P
,
L
IM

E
B
re
as
t
ca
n
ce
r
su
rv
iv
al

p
re
d
ic
ti
on

2
0
2
0

M
o
d
el
-A

g
n
o
st
ic

[T
R
O
22
]

S
H
A
P

P
re
d
ic
ti
n
g
fa
ll
s
in

th
e
ol
d
er

p
op

u
la
ti
o
n

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic

[E
V
S
+
22
]

L
IM

E
P
re
d
ic
ti
n
g
of

m
a
jo
r
a
d
ve
rs
e
ca
rd
io
va
sc
u
la
r
ev
en
ts

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic

[R
T
V
A
22
]

T
R
E
P
A
N

S
u
rv
iv
ed

a
n
d
F
ai
le
d
K
id
n
ey

T
ra
n
sp
la
n
t
p
re
d
ic
ti
on

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic

[W
K
S
P
22
]

S
H
A
P

E
x
p
la
in
in
g
ea
rl
y
d
et
ec
ti
o
n
o
f
h
ea
lt
h
ch
an

ge
p
re
d
ic
ti
o
n
s

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic

[D
D
D
V
22
]

L
IM

E
,
S
H
A
P

IC
D

C
la
ss
ifi
ca
ti
o
n
fo
r
G
a
st
ro
in
te
st
in
al

D
is
ch
ar
ge

2
0
2
2

M
o
d
el
-A

g
n
o
st
ic

[W
G
G
P
23
]

D
ee
p
S
H
A
P

M
ed
ic
a
l
E
ve
n
t
fo
r
H
ea
rt

F
a
il
u
re

P
a
ti
en
ts

2
0
2
3

M
o
d
el
-S
p
ec
ifi
c

6



1.1. Motivation

Regarding the agglomeration of research papers are displayed in Table 1.1, we
follow by observing the number of publications per year, illustrated in Figure 1.1.
Similarly, the XAI methods used in application to EHRs are shown in Figure 1.1. It is
apparent that feature-attribution methods are most prominent in XAI for medicine in
recent years. Although, inherently interpretable methods such as Logistic Regression
are still seen, diversification in research papers is clear, as XAI methods are used in
parallel to inherently interpretable models. Therefore, this motivates the comparisons
of explanations presented in the body of this thesis.

1.1.2 Increasing Explainability for Electronic Health Records

Feature-attribution methods are a common form of explanation representation. Whilst
it is clear that explanations are valuable, there is a clear disagreement problem that we
highlight in Chapter 3. Therefore, we see aberrations in application, and due to the
field of XAI being recent, there is a lack of ground truth, and no clear formal properties
to adhere to, having only recently been explored and proposed. Thus it is clear, there
exists no definition for a correct explanation.

XAI gained large traction posterior to the proposal of Local Interpretable Model-
Agnostic Explanations (LIME) [RSG16]. LIME innovated the area of XAI with the idea
of black-box approximation, informally aiming to approximate the black-box decision
boundary with a simple local model. The authors of LIME use a linear regression
model as to approximate the decision boundary and extract coefficients to explain a
local instance with in a neighbourhood (see Chapter 2.2.1 for details). LIME poses
limitations of linearity with the local model [BHTL20] as the assumption of local
linearity reduces model accuracy. This, a similar issue as to what occurs globally
with standard linear regression, but on a smaller scale, which leads to the use of more
complex methods that are difficult to interpret. Therefore, this thesis introduces the
idea of Polynomial Adaptive Local Explanations (PALE), building upon the LIME
framework to construct adaptive polynomial models, in order to minimise error to best
fit each instance. Inherently, in the scope of medicine, one will achieve instance specific
explanations, that are more faithful to the black-box model (see Chapter 4).

A consequence of model-agnostic approaches is the reliance on decision boundary
approximation, this could exhibit biases in the XAI method itself, therefore looking at
model-specific methods may provide more reliable explanation, accentuating that bias is
more likely to originate from the model or data itself, as after all XAI is about explaining
the model, from hereinafter I build upon the Integrated Gradients (IG) framework to
produce explanations for specific data representations and clinical questions.

In application to healthcare, a commonly posed question is presented in the form of
counterfactual thinking. Often methods for causal inference such as the ATE is used to
determine interventions. Naturally, assessing causual effects is inherently limited as one
cannot evaluate a patient in two states simultaneously, thus A/B testing with control
groups is used to determine the ATEs of interventions. Unfortunately, the control
groups tend to not be large in participant size, and thus counterfactual explanations
can remove the need of large control groups at one time, and instead use existing

7



1. Thesis Introduction

Figure 1.1: Illustration of the years of publication and the XAI methods utilised for the
papers in Table 1.1.
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1.1. Motivation

knowledge of treatment outcomes from patient data eliminating the need for further
testing and evaluate the patient in two states given a different intervention. Similarly,
counterfactual explanations are not limited by discrete data and can instead modify
continuous values willingly. Feature-attribution is a common form of XAI but is not
often utilised with counterfactual XAI methods, instead counterfactuals are normally
presented in the form of counterfactual examples, but evaluating effects of different
elements through feature-attribution seems a promising approach and thus I propose
the Counterfactual-Integrated Gradients (CF-IG) method.

Transcending this, one can consider how both data can be represented in EHRs, and
what questions can be asked with respect to the data. Temporal data representation is
common in EHRs, but is often not addressed by existing methods [SSV21]. Often a
patient will have more than one visit to a healthcare provider during specific treatments
(e.g. cancer treatment), in doing so one may be interested to see how the treatment
has effected the outcome of the patient. Therefore, I build upon the IG framework
and introduce a new XAI method named Batch-IG to address such question. The
idea of Batch-Integrated Gradients is proposed and analysed empirically, where the
notion of time is introduced into the proposed explainable method (see Chapter 6 and
Appendix D). Naturally, this method utilises the concept of the line integral, but linear
interpolations can lead to out-of-distribution paths. Informally, this can make gradients
unreliable and the linear uniform interpolation path unlikely. Thus, the proposed
Batch-Integrated Gradients traverses more probable space, supported by a thorough
theoretical analysis and comparison against state-of-the-art explainers when measured
against properties (see Chapter 6).

To further extrapolate on the path-based explanation formulation, the paths utilised
in generating explanations can suffer from irregular gradients due to out-of-distribution
interpolation, to formally address this concern, I propose the Quantifiable (Path-Based)
Uncertainty Counterfactual Explanations (QUCE) method. The details of this appraoch
are described in Chapter 7.

Extending from the development of XAI from a modelling perspective is the consid-
eration of the data itself, a consequence of theoretical properties observed for feature-
attribution methods is the property of “missingness”. This is observed, for the state-
of-the-art methods LIME [RSG16], SHAP [LL17] and IG [STY17]. This is further
described in Chapter 8, where I propose a data oriented approach to respond to the
missingness property and the associated consequences on explainability.

Finally, to make XAI more accessible we introduce the tool ExMed [KED+21], this
in turn improves explainability from the point of view that an increased user base can
then access explanations for themselves with limited expertise in XAI.

Hereinafter, I propose that the aforementioned can be discretized into the following
taxonomy:

• Model Perspective: The focus of producing explanations from a given machine
learning model.

9



1. Thesis Introduction

• Data Perspective: The focus of increasing the explainability of machine learning
on models by improving the quality of data.

• User Perspective: The user-centric approach towards making explanations more
accessible.

This taxonomy is outlined in the body of this thesis as follows:

1. Enhancing Explainability a Model Perspective: Chapter 4, Chapter 5, Chapter 6
and Chapter 7.

2. Enhancing Explainability a Data Perspective: Chapter 8.

3. Enhancing Explainability a User Perspective: Chapter 9.

The aims and contributions of this thesis are summarised in Section 1.2.

1.2 Aims and Contributions

The thesis proposes a collection of new methods that build upon and utilise state-of-
the-art XAI approaches. Briefly summarising Section 1.1, this thesis aims to improve
the quality and diversity of explanations produced. It first provides a comparison of
state-of-the-art XAI approaches, where there is identification of a disagreement problem
with returned explanations, and thus through evaluating the architecture of the XAI
approaches there are identifiable limitations.

The contributions of this thesis are listed below. Contributions 1-4 and 7 are already
published, see Section 1.3.

1. A novel contribution, providing a variety of comparisons for explanations that
are given on Electronic Health Records. My contribution here illustrates the
disagreement of XAI methods in application to medical records. [See publications
1, 9, and poster presentation 10][Chapter 3 and Appendix G of this thesis]

2. A novel model-agnostic eXplainable Artificial Intelligence method. The Polynomial
Adaptive Local Explanations method introduced enhances the linear limitations of
a state-of-the-art method by proposing a polynomial expansion to the original linear
model to better approximate the black-box. The method allows for production
of explanations whilst increasing local accuracy. The method utilises instance
specificity by optimising for each instance independently as a novel method to
produce patient specific explanations. [See publication 2][Chapter 4]

3. A novel approach Counterfactual-Integrated Gradients is introduced for generating
counterfactual explanations, showcasing an improved performance for the proposed
method. Here we utilise the line integral formulation for both closer and more
consistent explanations. The explanation consistency and proximity are measured
against state-of-the-art counterfactual explainers. [See publication 3][Chapter 5]

10



1.3. List of Publications

Here I also released a public code repository available at:
https://github.com/jamie-duell/Counterfactual-Integrated_Gradients

4. A novel approach to explaining temporal data. The model is first conceptualised,
then further optimised and both theoretically and empirically analysed. This
approach holds more theoretic guarantees in temporal application than existing
state-of-the-art XAI methods. [See publications 4 and 5][Chapter 6 and Appendix
D]

5. A novel approach for generating counterfactual explanations and examples. The
method QUCE is work in progress for developing minimally uncertain path-
based explanations and counterfactual examples. [Chapter 7 and Appendix E]
This approach will be available posterior to the thesis submission at - https:
//github.com/jamie-duell/QUCE.

6. A novel approach for single and multiple value data imputation inspired by
eXplainable Artificial Intelligence methods, aiming to increase the fidelity of
imputations when compared against current state-of-the-art imputation methods.
This approach unifies the relationship between imputation and explainability to
account for the missingness property, whilst aiming to ensure that the imputation
method itself is interpretable.[Chapter 8 and Appendix F] The library is available
at: https://pypi.org/project/surrogate-set-imputer/

7. A novel tool to enable ease of accessibility for data exploration, machine learning
and XAI method applications. [See publication 8][Chapter 9] The tool is available
at - https://github.com/983046/ExMed.

1.3 List of Publications

Here we provide overview of published and submitted works that directly contribute to
this thesis. From publications 1-7 and 9 of the listed contributions I am the main author
and thus contributed to all the writing of the first draft manuscripts, experiments,
code, methods, theory and evaluations. Dr. Xiuyi Fan, Dr. Monika Seisenberger and
Dr. Hsuan Fu played a pivotal part in the proof reading and correcting erratum within the
manuscripts. Dr. Xiuyi Fan provided the concept of publication 1 with Prof. Shangming
Zhou having a large part in amending the writing for the introduction for the manuscript,
where this publication was my first exposure to the field of XAI and research publication
writing.

1. A Comparison of Explanations Given on Electronic Health Records
[DFB+21]
Jamie Duell, Xiuyi Fan, Bruce Burnett, Shangming Zhou. IEEE-EMBS Interna-
tional Conference on Biomedical and Health Informatics (IEEE BHI 2021, Full
Paper).
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1. Thesis Introduction

Here the main contributions of the manuscript is a comparison of XAI methods
for Lung Cancer patients, the XAI field was somewhat recently emerging at the
time of publication and thus state-of-the-art methods had yet been compared in
the medical context for tabular EHRs for Lung Cancer patients. Therefore, the
identification of the disagreement problem for XAI methods was crucial.

2. Towards Polynomial Adaptive Local Explanations for Healthcare Clas-
sifiers. [DFS22] Jamie Duell, Xiuyi Fan, Monika Seisenberger. International
Symposium on Methodologies for Intelligent Systems (ISMIS 2022, Full Paper).

This manuscript contributes to the improvement of accuracy of local linear sur-
rogate models as seen in LIME. Most of the manuscripts at the time of this
publication focused on the modifications of the LIME neighbourhood function.
Here, I instead look at extending the linear model whilst still being able to derive
explanations. The contributions of this publication are twofold:

• Provide a more accurate local explanation model by extending the LIME
method with local polynomial models.

• Adapt the polynomial models to each local neighbourhood such that we get
patient specific explanations with respect to a corresponding neighbourhood.

3. Counterfactual-Integrated Gradients: Counterfactual Feature Attribu-
tion for Medical Records [DSF23] Jamie Duell, Monika Seisenberger and
Xiuyi Fan, IEEE International Conference on Bioinformatics and Biomedicine
2023 Workshop on Machine Learning and Artificial Intelligence in Bioinformatics
and Medical Informatics (IEEE BIBM 2023, MABM Workshop Paper)

Here the contributions of the manuscript are threefold.

• In the application we proposed a simple Nearest Counterfactual Neighbour
algorithm and provide modifications to the integrated gradients framework to
utilise the counterfactual examples, this is an extrapolation on the effects of
changing the baseline and target and how one can re-frame research questions
from this approach. The explanation is extracted by stopping interpolations
at the decision boundary, providing both a counterfactual example and
counterfactual feature attribution explanation, this will naturally provide
counterfactual instances closer than any other generative method. The
code associated with this publication is provided at https://github.com/
jamie-duell/Counterfactual-Integrated_Gradients.

• On the theoretical side, we provided a theoretical analysis of property sat-
isfiability and the introduction of new properties for counterfactual feature
attribution methods. The benefit of doing so, is to pave the way for further
work in the thesis and provide a generalised formal evaluation to determine
the strength of such approach.

• In an empirical evaluation we provide evidence for the theoretical claims
with experimentation.
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4. Batch Integrated Gradients: Explanations for Temporal Electronic
Health Records [DFFS23] Jamie Duell, Xiuyi Fan, Hsuan Fu, Monika
Seisenberger. International Conference on Artificial Intelligence in Medicine
(AIME 2023, Short Paper)

This short paper contributed towards the (relatively) new interests of the academic
community of XAI focusing on temporal and time-series explainability, more
specifically dealing with irregular time intervals. This was introduced as a simple
modification of the integrated gradients method. The experiments aim to illustrate
to the medical community the usability of temporal explanations and to emphasise
the future direction of my own research.

5. A Formal Introduction to Batch Integrated-Gradients for Temporal
Explanations [DSZ+23] Jamie Duell, Xiuyi Fan, Tianlong Zhong, Hsuan
Fu, Monika Seisenberger. IEEE International Conference on Tools for Artificial
Intelligence (ICTAI 2023, Full Paper)

The contributions of this manuscript are threefold:

• The extension of the prior paper [DFFS23], here we show how one can modify
the temporal path, and show that various theoretical properties of XAI hold
for Batch-IG [DFFS23].

• The experimental work shows how properties are indeed satisfied and thus
supports the theoretical claims of the Batch-IG method.

• The method was experimented on two real world datasets illustrating expla-
nations that can be produced.

6. QUCE: The Minimisation and Quantification of Path-Based Uncertainty
for Generative Counterfactual Explanations [Work in Progress - To
be submitted in April to ECAI 2024] Jamie Duell, Monika Seisenberger,
Hsuan Fu and Xiuyi Fan.

Here the contributions of the manuscript are threefold:

• We proposed a new method that generates counterfactual examples that
quantify uncertainty.

• We developed a new way to minimise uncertainty for path-based methods to
produce more reliable explanations.

• We illustrated that the newly proposed method outperforms existing state-
of-the-art methods in minimising uncertainty.

7. Explaining Incomplete Electronic Health Records [Submitted to the
AI in Medicine Journal in November 2023] Jamie Duell, Xiuyi Fan and
Monika Seisenberger.

Here the contributions of the manuscript are threefold:

13



1. Thesis Introduction

• We proposed a set of properties that should trivially be satisfied by impu-
tation methods. Here we aim to unify the inherent relationship between
explainability and imputation. This relationship is evident across a broad
range of XAI methods that satisfy certain properties (in this manuscript we
focus on the property of missingness).

• We developed a new imputation method inspired by local surrogate prediction
models such as LIME, and provide details of implementation.

• The new method was evaluated for both property satisfiability (theoretically
and empirically) whilst similarly outperforming a number of state-of-the-art
imputation methods in controlled single-value and multiple-value imputation
experiments. The library for this method is provided at https://pypi.org/
project/surrogate-set-imputer/.

8. ExMed: An AI Tool for Experimenting Explainable AI Techniques
on Medical Data Analytics [KED+21] Marcin Kapcia, Hassan Eshkiki,
Jamie Duell, Xiuyi Fan, Shangming Zhou, Benjamin Mora. IEEE International
Conference on Tools for Artificial Intelligence (ICTAI 2021, Short Paper).

The key contributions of this manuscript are twofold:

• We introduce a comprehensive XAI toolkit (ExMed) designed for domain
experts, encompassing data analytics, data preprocessing, data visualization,
ML application, and XAI application.

• We demonstrate the utility of ExMed by applying the toolkit to two real
case studies: one focused on COVID and the other on lung cancer.

Personal Contribution: As a co-author I produced the initial code for the XAI
methods that were later used in the tool. I also provided the pre-processed data
for the cancer dataset used in the study. I wrote the first draft of the cancer case
study section and contributed corrections to the manuscript throughout.

The ExMed tool can be downloaded via: https://github.com/983046/ExMed.
Details on the usage are given in the form a small video tutorial.

9. A Comparison of Global Explanations Given on Electronic Health
Records [DFS23] Jamie Duell, Xiuyi Fan, and Monika Seisenberger 2023 In-
ternational Conference on Intelligent Autonomous Systems, Suwon, Korea (IAS-18
2023, Full Paper).

The contributions of this manuscript are threefold:

• We assess the quality of counterfactual instances using predictive models.

• We introduce metrics for comparing XAI methods.

• We employ these metrics to quantify the similarity of XAI methods.
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10. Evaluating XAI Explanations on Electronic Health Records [Poster
Presentation] Wei Feng Sim, Jamie Duell and Xiuyi Fan. International Con-
ference on AI in Medicine (AiM 2023).

The contributions of this manuscript are twofold:

• We present metrics for comparing XAI and counterfactual methods.

• We utilize these metrics to measure the similarity between XAI and counter-
factual methods.

Personal Contribution: As a co-author I designed the experiments and provided
changes to the final manuscript.

1.4 Conference/Workshop Talks

1. A Comparison of Explanations Given on Electronic Health Records
Jamie Duell, IEEE BHI Conference 2021, Athens, Greece.

2. On Explainable Artificial Intelligence for Medical Diagnostics and its
Potential Scope for Future Development.
Jamie Duell, British Colloquium on Theoretical Computer Science, Special session
on Explainable AI 2022, Swansea, Wales.

3. Towards Polynomial Adaptive Local Explanations for Healthcare Clas-
sifiers.
Jamie Duell, ISMIS 2022, Cosenza, Italy.

4. Rule-PSAT: Relaxing Rule Constraints in Probabilistic Assumption-
Based Argumentation [Fan22]
Jamie Duell, International Conference on Computational Models of Argument
2022, Cardiff, Wales [On behalf of Xiuyi Fan].

5. Enhancing the Explainability of Electronic Health Record Predictions
(Jamie Duell, Society for the Study of Artificial Intelligence and Simulation of
Behaviour Workshop on Explainability and Transparency in AI 2022, Swansea,
Wales.

6. Introduction of the Explainable Artificial Intelligence models using
Python: LIME from Scratch
Jamie Duell, 2023, Quebec, Canada.
Link: https://www.fsa.ulaval.ca/evenements/ateliers-ia-explicable-1/
Interactive Notebook: https://tinyurl.com/4vdh8cdp
GitHub Code: https://github.com/jamie-duell/XAI-Workshop

7. Towards Explainable Artificial Intelligence: Batch-Integrated Gradients
and Solutions to Missingness.
Jamie Duell, AIMLAC CDT AI Conference 2023, Swansea, Wales.
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8. Batch Integrated Gradients: Explanations for Temporal Electronic
Health Records.
Jamie Duell, AIME 2023, Portoroz, Slovenia.

9. A Formal Introduction to Batch Integrated-Gradients for Temporal
Explanations.
Jamie Duell, ICTAI 2023, Atlanta, United States.
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Chapter 2

Explainable Artificial Intelligence

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Feature Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Counterfactual Explanations . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Introduction

eXplainable Artificial Intelligence (XAI) aims to go beyond the black-box limitations
of Artificial Intelligence (AI) methods. Traction towards the field of XAI became
prominent upon the introduction of Local Interpretable Model-Agnostic Explanations
(LIME) [RSG16]. Figure 2.1, provides an illustration of the search-term prevalence of:
“Explainable AI” and “Explainable Artificial Intelligence” respectively. These insights
are extracted from Google Trends1. Here we observe that the XAI related search terms
increased greatly, posterior to the publication of the LIME paper in 2016, this began to
rise rapidly after the release of SHapley Additive exPlanations (SHAP) [LL17] in 2017.

In this chapter, I provide a taxonomy for XAI methods. This taxonomy offers
insights into the various ways that XAI methods can be categorized. Specifically, I
introduce the scope and model type of XAI methods. Such a taxonomy enables us to
address the following questions:

1. Model type - How is the model constructed? (see Section 2.1.1)

2. Scope - what does the explanation focus on? (see Section 2.1.2)

Following this, in sections 2.2 and 2.3 I provide a general overview of the XAI methods
that are utilised throughout the body of this thesis.

1https://trends.google.com/trends/
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2. Explainable Artificial Intelligence

Figure 2.1: Prevalence of the search terms “Explainable Artificial Intelligence” and
“Explainable AI”, given between the years 2013-2023. These results are extracted from
Google Trends. Empirically, there is evidence of an increase in the search terms post
2016.

2.1.1 XAI Model Type

XAI models can be disseminated into model type subclasses. Here, I consider three
forms of model types, these being: model-agnostic, model-specific and model-intrinsic
approaches, these can be defined as:

• Model-Agnostic methods provide an explanation for any black-box model f ,
and is thus able to explain predictions obtained by any model regardless of the
architecture.

• Model-Specific methods aim to select a given black-box model f and produce an
explanation catered to the model architecture of f . Therefore, this surrounds the
manipulation or extraction of explanations from specific AI architectures, such
that reasoning is derived w.r.t the model.

• Model-Intrinsic methods are inherently interpretable implying there is an
observable cause and effect given by a model f , examples include coefficients
(linear regression), odds-ratios (logistic regression) or rules (decision trees). An
analogous term often used for model-intrinsic methods is glass-box models (see
Appendix A for architecture details).
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2.2. Feature Attribution

Within the subset of XAI models, these different model types are designed to provide
explanations in various forms.

2.1.2 Scope

Upon consideration for the approaches of explainable methods, there is the premise of
scope, that describes the focus for explanations. In the form of feature-attribution, the
definitions for global and local explanations are given as:

1. Local Explanations are explanations that focus on an independent instance
with a dataset. This is often explaining the prediction for a single instance, for
example the LIME method [RSG16] focuses on explaining a single instance.

2. Global Explanations focus on an abstract view of explainability that generalises
the the entire model, for example, one could consider the SHAP method [LL17]
that agglomerates the local explanations for each instance within a dataset and
by taking the average, one can describe the expected outcome of a model whilst
considering all instances, or simply accumulating all local instances visually.

2.2 Feature Attribution

The feature attribution approach for XAI aims to evaluate, given an instance how each
feature contributes towards a given prediction. Feature attribution often illustrates this
by quantifying the importance of each feature, such that each features corresponding
importance magnitude reflects the importance of each feature.

2.2.1 Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-Agnostic Explanations (LIME) introduced in [RSG16], ex-
plores the approximation of black-box decision bounds with respect to a local instance.
Intuitively, the LIME method aims to produce a convoluted space around an instance
to explain. This convoluted space is the result of perturbations around the point to
explain. To obtain an explanation for a given instance locally, the neighbourhood bound
aims to restrict the influential features to those near the instance to explain. The use of
a simple model which is inherently interpretable is applied to this local neighbourhood,
then an explanation is extracted with respect to the point of interest (see Figure 2.2).
Formally, given a dataset X = ⟨x1, . . . ,xN ⟩ ∈ RN×J , LIME aims to explain a single
x ∈ X by producing a “local surrogate data set” Z such that Z ∼ N (x, σ2) is taken
from a Gaussian distribution or Z can also be taken from a uniform distribution, where
we obtain Z = ⟨z1, . . . zP ⟩ ∈ RP×J . Z contains a convoluted area of P perturbed
samples surrounding an instance to explain x. The LIME method is defined as:

LIME(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.1)
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Figure 2.2: Simple illustration for the intuition behind the LIME method to explain
the large red cross. Here, we let the circle define the neighbourhood. The background
colour depicts the black-box classifier. The dashed line illustrates the local linear model.
The colour saturation depicts the importance of each feature (bold has a stronger weight
associated). The black points illustrate instances that are outside of the weighted
neighbourhood.

here the loss function L is used to determine the fidelity of the local linear model g
from a set of interpretable models G, the fidelity of g is measured with respect to the
black-box model f . This is achieved by minimising the loss function, to which end
one obtains a model that is “locally faithful” when L(g, f, πx) = 0. The Ω term is a
regularization term that is used to penalise the coefficient vector of the linear model.
The loss function L is defined as:

L(g, f, πx) = πx(z)(f(z)− g(z))2. (2.2)

For tabular data, the weighted neighbourhood for LIME is given by πx = exp(− δ(x,z)2

λ2
),

where the kernel width λ2 = 0.75
√
J and distance function δ : RJ ×RJ → R. Informally,

the use of this weighting function to the linear equation states that; the data points
z, that are further away from x in the neighbourhood Z, are given less importance
(weighting) than those that are closer to x.

To minimise L(g, f), let f(z) = y and solve for β, where β here is the coefficients
(weights) for the linear model. Thus, in matrix form we have the solution of the normal
equation which is given by the following derivation:

L(g, f) = 1

P

∑
z∈Z

(f(z)− g(z))2 = (y−Zβ)2

=⇒ (y−Zβ)T (y−Zβ)
=⇒ ((y)T − (Zβ)T )(y−Zβ))
=⇒ (y)Ty− 2(Zβ)Ty+ (Zβ)TZβ
=⇒ yTy− 2ZTβTy︸ ︷︷ ︸

term 1

+ZTβTZβ︸ ︷︷ ︸
term 2
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2.2. Feature Attribution

Thus, given the expanded form, the derivative with respect to β is taken, namely looking
at term 1 and term 2. The loss is then set to zero with respect to the coefficients β:

∂L

∂β
= −2∂(Z

TβTy)

∂β
+
∂(ZTβTZβ)

∂β

=⇒ ∂L

∂β
= −2ZTy+ 2ZTZβ

=
∂L

∂β
= −2ZTy+ 2ZTZβ = 0

=⇒ ∂L

∂β
= ZTy+ ZTZβ = 0

therefore, we have the following equality:

ZTZβ = ZTy,

given (ZTZ) is invertible, multiplying both sides of the equation by (ZTZ)−1 gives:

β = (ZTZ)−1ZTy

Expanding on this derivation, one can include the weight (neighborhood) term, pro-
ducing the solution for the weighted normal equation for the coefficients of the local
neighbourhood of x:

β = (ZTπxZ)−1ZTπxy (2.3)

LIME incorporates the least absolute shrinkage and selection operator (LASSO) regu-
larization for returning up to k features, ordered by the magnitude of the coefficient
feature dimensions. Thus, Ω(g) can be represented as:

∑J
j=1 |βj |. In matrix form,

this is represented as the l1 norm, such that any lp norm can be represented as

||β||p =
(∑N

i=1 |βi|p
) 1

p

. Ordering the regularized coefficient vector by dimension mag-

nitude and restricting up to k returned features produces the LIME explanation. LIME
implementation2 can vary according to the problem domain.

Due to the arbitrary nature of the neighbourhood function in its definition, which
was primarily assigned due to the empirical performance in explanations, there have
been many expansions of LIME aiming to address concerns of the neighbourhood,
examples of this include, Deterministic-LIME (DLIME) [ZK21] and Stabilized-LIME
(S-LIME) [ZHW21]. The DLIME approach utilises hierarchical clustering and fits linear
models over the defined clusters. When a new sample is introduced, the cluster that
the nearest neighbour of the new sample is used the background dataset for the linear
model and associated explanation. S-LIME on the otherhand, provides a solution to
determine the number of perturbed samples that are required for a background set that
employs enough confidence for the linear model.

2I provide a working tutorial for the implementation of a simple variant of LIME from
scratch, where I mitigate LASSO for simplification of the model in: https://github.com/jamie-
duell/XAI-Workshop (resp. https://tinyurl.com/4vdh8cdp) as presented in Laval University (see
https://www.fsa.ulaval.ca/evenements/ateliers-ia-explicable-1/).
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2.2.2 SHapley Additive exPlanations

The SHapley Additive exPlanations (SHAP) method was introduced in [LL17]. Infor-
mally, the SHAP method aims to determine the marginal contribution for each feature
of an instance with respect to a prediction. From a game theoretic perspective, the
goal is to assess the individual contributions of each ’player’ in a game towards a given
‘reward’.

In the context of ML, we can consider the players to be features and the reward to
be a prediction. The contribution is calculated by considering all possible coalitions of
features and the subsequent attribution towards the prediction. SHAP is an additive
feature attribution method that utilises the game theoretic approach of Shapley values.
The attribution of a feature through the means of Shapley values is shown in Eq. 2.4

ϕj(f, xji ) =
∑
z⊆x

|z|!(J − |z| − 1)!

J !
[f(z)− f(z\j)], (2.4)

where z is taken over all possible subsets of x to attribute the difference in x with z
and without feature j (denoted as z\j). In reference to equation 2.1 the SHAP method
aims to construct a version of a local surrogate model that successfully recovers Shapley
values locally. A method designed to approximate Shapley values in a model-agnostic
manor is named: Kernel SHAP. Kernel SHAP modifies the regularization term Ω and
neighbourhood function πxi , reducing to the form:

Ω(g) = 0, (2.5)

πxi =
(J − 1)

( J !
|z|0!(J−|z|0)!)|z|0(J − |z|0)

, for 0 ≤ |z|0 ≤ J. (2.6)

Simple intuition for understanding Shapley Value and feature attribution can be
given under the assumption of independence, where independence can be simply defined
as:

Independence: Assuming two events A and B are independent, then the
probability of both events A and B happening are equal to the product of
independent probabilities for A and B. Thus,

P (A ∩B) = P (A) · P (B)

Shapley values can be accurately calculated from a linear model such that, given a
prediction for an instance f(x) = β0+β1x1+ . . .+βJxJ , then recovering Shapley values
for a feature j for the instance x ∈ X using model f , namely ϕj(f(x)), then attribution
can be directly calculated as:

ϕj(f(x)) = βxj − E[βjXj ] (2.7)
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Then, summing over all features j will return:

f(x)− E[f(X)] (2.8)

this is often not plausible and thus to determine attribution over a black-box model
f , then one can approximate the Shapley Value with the weighting kernel in equation
2.6. This weighting is applied to a linear model, that is fit over all coalitions of features
with and without each feature j.

To produce such coalitions, consider a mapping function λ ∈ {0, 1}J , let λ(xj) :
j(0 ≤ j ≤ J) produce a permuted set of z ⊆ x, where non-active features are randomly
sampled, then fitting a weighted linear model over all permuted samples provides an
approximation for Shapley values given any function f . Due to the formalisation of
SHAP following the game-theoretic framework for Shapley values, SHAP in theory
adheres to a selection of formal properties, these are given as:

• Efficiency The efficiency axiom asserts that the marginal contribution of indi-
vidual features are apportioned correctly to explain the model prediction. Thus
the sum of the Shapley values for all features reflects the difference between the
model’s prediction for a specific instance and its average prediction across all
instances.

• Symmetry The symmetry axiom states that two features that contribute the
same amount to a prediction are given equal feature attribution.

• Dummy The dummy axiom states that any feature that has zero influence over
the prediction must have a zero feature-attribution value.

• Additivity The additivity axiom states that the combined attribution of two
features, is equal to the sum of attribution of two features independently (analogous
to the assumption of independence).

2.2.3 Explainable Boosting Machine

The Explainable Boosting Machine (EBM) takes the form of a Generalised Additive
Model (GAM). First, the concept of a Generalised Linear Model (GLM) is explained,
to motivate the approach of the GAM framework. GLMs are developed such that,
we remove the Gaussian expectation from linear models and instead generalise to any
distribution from the exponential family. Thereby, consider a standard linear equation
given by:

y = XTβ

Where β = ⟨β1, . . . , βJ⟩ is the coefficient vector for J features. For a GLM the use
of a link function ζ, incorporates a relationship between the expected value of y, the
probability distribution within the exponential family for y, namely Ey and with the
linear solution, thus yielding:

ζ(Ey(y|x)) = xTβ
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This falls under the family of interpretable models, as naturally one can interpret the
model coefficients by applying a function that cancels out the link function ζ, the link
function is represented by ζ−1 (e.g. ζ = ln, ζ−1 = exp), by multiplying both sides of
the equation. Therefore, an explanation for an instance x, is given by:

Ey(y|x) = ζ−1(xTβ)

As previously stated, EBMs are inherently interpretable and are an extension of the
GAM, which is defined as:

ζ(Ey(y|x)) = β0 +

J∑
j=1

f j(xj).

The GAM framework relaxes the linear constraint, by allowing each feature xj ∈ x
to have an arbitrary function f j applied to it. The EBM extension allows for the
incorporation of pairwise terms, thus extending to:

ζ(Ey(y|x)) = β0 +
J∑
j=1

f j(xj) + f j,m(xj ,xm)

where, m ≠ j. Naturally, the function transformation f , interactions terms and spline-
like decomposition of features can decrease interpretability. Although this is true, due
to the linear composition of functions, one can still determine the importance of the
dependent variable.

2.2.4 Integrated Gradients

Informally, the Integrated Gradients (IG) [STY17] method presents an XAI approach
that accumulates gradients on a path from an all-zero instance baseline x′ and an
instance to explain x. The accumulation of gradients over a path from an all-zero
baseline acts as a neural state, where the importance of each feature is measured as it
is activated over small interpolations. For each feature of the gradient, the sign signifies
its positive or negative contribution to the model’s prediction for a given instance x,
while the magnitude reflects the degree of importance, thus explaining the instance
prediction.

Path-Integrated Gradients (Path-IG) represent a path as a function between instances
[STY17]. Formally, given a dataset X, the Path-IG method represented over the jth

(feature) dimension of an instance x = ⟨x1, . . . , xJ⟩ ∈ X, is given by a smooth function
ψ = ⟨ψ1, . . . , ψJ⟩ : [0, 1] → RJ defining a path in RJ , integrating over α maps to an
interpolated point α between a baseline and input, such that ψ(0) = x′ and the instance
of interest ψ(1) = x, thus Path-IG is represented as:

Path-IGψ
j (x) :=

∫ 1

α=0

∂F (ψ(α))

∂ψj(α)

∂ψj(α)

∂α
dα
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where F is a differentiable deep network F : RJ → R. The IG method adheres to one
unique path, namely a straight line path from an all-zero baseline x′ = ⟨01, . . . , 0J⟩ to
an input x. Thereby, IG is defined as:

IGj(x) := (xj − xj,′)
∫ 1

α=0

∂F (x′ + α(x− x′))

∂xj
dα, (2.9)

where xj,′ is the jth feature dimensions of the baseline x′. The Riemann approximation
IGR(·) for a computable implementation of IG is given by:

IGR
j (x;K) := (xj − xj,′)× 1

K

K∑
k=1

∂F (x′ + k
K × (x− x′))

∂xj
.

If we consider the average gradient of a path over the jth dimension to be given by
1
K

∑K
k=1

∂f(x′+ k
K
×(x−x′))

∂xj
, then the average gradient given over a path over all dimensions

j can be represented as ∇F . IG assumes the baseline point x′ to be a vector containing
all zeros. Therefore:

J∑
j=1

IGR
j (x;K) = (x− x′) · ∇F = ∇F · x.

Extrapolating to the non-zero vector case, it can be given that:

J∑
j=1

IGR
j (x;K) ≈ F (x)− F (x′)

then, we can see that:

∇F · x−∇F · x′ ≈ F (x)− F (x′)

Note, that as K approaches infinity in the approximation, we converge to:

J∑
j=1

IGR
j (x;K) = F (x)− F (x′).

While IG exhibits limitations in its application scope, it capitalizes on numerous formal
axioms to underpin its methodology. These axioms, which play a foundational role,
informally encompass:

• Completeness: The difference in prediction between the baseline and input
should be equal to the sum of feature attribution values.

• Sensitivity(a): For every input and baseline that differ in one feature and the
subsequent prediction is different, then feature attribution should only be given
to that one feature.
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Figure 2.3: Simple intuition of the Integrated Gradients method. Here a straight line
is given from the baseline x′ to the instance to explain x. Here, x = ⟨2, 2⟩ ∈ R2 and
x′ = ⟨0, 0⟩ ∈ R2.

• Sensitivity(b): If the neural network is not mathematically dependent on one
feature, the feature attribution assigned to that feature should be 0.

• Implementation Invariance: Two functionally equivalent neural networks
should produce the same feature attribution as an explanation.

• Linearity: Given a linear composition of two neural networks F1 and F2 that
is modelled by a third neural network with weights α and β such that: F3 =
αF1 + βF2, the assigned attribution should be the weighted sum of attributions
for F1 and F2 with the weights α and β.

The IG framework is thus positioned as a state-of-the-art method which has been
later expanded in a variety of works, for further details on the IG framework refer
to [STY17]. Examples of the expansion of IG include the Expected Gradients (EG)
[EJS+21] and Integrated Hessians (IH) [JSL21]. The EG method formulates an approach
to enhance the robustness of the IG method, here the EG method does not require a
defined baseline, and instead takes the expectation of IG over perturbed baselines taken
from the training data distribution D. The EG method is defined as:

EGj(x) =

∫
x′

(
(xj − xj′)×

∫ 1

a=0

∂F (x′ + α× (x− x′))

∂xj

)
pD(x

′)dα

Where the integral can be rewritten as an expectation, such that:

EGj(x) = E
x′∼D,α∼U(0,1)

[
(xj − xj′)× ∂F (x′ + α× (x− x′))

∂xj

]
.

The IH method extends IG, to consider the pairwise interaction effects between features.
Here the second order partial derivatives are considered with respect to two features j
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and k. The IH method when j = k is defined as:

IHj,k(x) = (xj − xj′)×
∫ 1

α=0

∫ 1

β=0

∂F (x′ + αβ × (x− x′))

∂xj
dαdβ+

(xj − xj′)2 ×
∫ 1

α=0

∫ 1

β=0
αβ

∂2F (x′ + αβ × (x− x′))

∂xj∂xk
dαdβ,

and where j ̸= k:

IHj,k(x) = (xj − xj,′)(xk − xk,′)×
∫ 1

α=0

∫ 1

β=0
αβ

∂2F (x′ + αβ × (x− x′))

∂xj∂xk
dαdβ.

Similar to EG, this can be rewritten as an expectation, namely Expected Hessians (EH).
The EH method for j = k is defined as:

EHj,k = E
αβ∼U(0,1)×U(0,1),x′∼D

[
(xj − xj′)× ∂F (x′ + αβ × (x− x′))

∂xj
+

(xj − xj′)2 × αβ∂
2F (x′ + αβ × (x− x′))

∂xj∂xk

]
,

and where j ̸= k, we have:

EHj,k = E
αβ∼U(0,1)×U(0,1),x′∼D

[
(xj − xj,′)(xk − xk,′)× αβ∂

2F (x′ + αβ × (x− x′))

∂xj∂xk

]
.

These alterations to the IG infrastructure enable for faster computation of IG, similarly,
providing more robustness to noise through the set of uniform baseline perturbations,
as well as providing more information by deriving the interaction effects between each
feature.

2.3 Counterfactual Explanations

Counterfactual explanations explore what changes can be made to an instance such that
the predicted outcome is altered. Here I briefly introduce the methods fromWachter et al.
[WMR18] and Diverse Counterfactual Explanations (DiCE) [MST20], whilst collectively
there exist other methods for counterfactual explanations [YLXH22, KTKA20, DCL+18],
the DiCE and Wachters algorithm exhibit the state of the art in application and provide
reference for the developed method in the body of this thesis (See Chapter 5).

2.3.1 Wachters Algorithm

To formulate the counterfactual method, one must construct a simple definition of a
classification problem. Thus, given a black-box method f , parameterised by a set of
weights β , namely fβ that minimises a loss function L, here the set of weights can be
penalised through a regularization technique Ω(·), for each data point x and associated
label y, a classifier can be defined as:

argmin
β

L(fβ(x), y) + Ω(β).
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Remark 2.1 For further details on regularization and loss functions see Appendix A.

The counterfactual method introduced in [WMR18] is given as:

argmin
x′

max
λ

λ(fβ(x
′), y′) + δ(x,x′), (2.10)

where the λ function aims to produce a target prediction y′, such that fβ(x) ̸= fβ(x
′)

and β is a fixed set of weights from a trained model. The terms ensure that the change
in x is minimal w.r.t the counterfactual variant x′.

2.3.2 Diverse Counterfactual Explanations

The Diverse Counterfactual Explanations (DiCE) method introduced in [MST20] pro-
vides further criterion for the formulation of a counterfactual given by equation 2.10.
This induces further constraints to ensure diversity in the generated counterfactuals.
The hyper-parameters (namely, λ1 and λ2) are used to weigh each part of the loss
function accordingly. Thus, DiCE is defined as:

DiCE(x) = argmin
xc,1,...,xc,b

1

b

b∑
i=1

L(f(xc,i), yi)

+
λ1

b
δ(xc,i,x)− λ2 dpp diversity(xc,1, . . . ,xc,b)

Here, b is the number of counterfactuals generated, δ(·, ·) is an arbitrary distance
function, and dpp diversity a parameter for subset selection with a diversity constraint,
enabling for a diverse set of counterfactual examples. This loss function is optimised
using gradient descent (see Appendix A).

2.4 Conclusion

This chapter provided an overview of the state-of-the-art XAI methods as of the time
of this thesis, thus establishing the required background knowledge on XAI methods
for the remaining body of this thesis (for a machine learning background please see
appendix A).
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Chapter 3

A Comparison of Model-Agnostic
Explanations Given on Electronic
Health Records
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3.1 Introduction

Medical and health sciences have seen a pursuit of interest for the use of Machine
Learning (ML) algorithms. The complex and high dimensional nature of medical
datasets present a big challenge to ML algorithms. This is particularly true when
clinicians and public health professionals want to be assured that AI solution should be
trustworthy. For the question of “what clinicians want?”, Tonekaboni et al. [TJMG19]
identified that merely having a highly accurate ML model is not sufficient to be adopted
by clinical staff. Due to the fragile nature of medical data, health data scientists need to
provide ML models with both good prediction performance and model interpretablility.
This is exactly the mission of eXplainable Artificial Intelligence (XAI) techniques for
real-world applications. In medical diagnosis, explainability/interpretablility is needed
to enhance robustness of an AI system and enable diagnostics to prevent bias, unfairness,
and discrimination, as well as to increase trust by all users in why and how decisions
are made.

The explainability of AI systems has been described as early as the 1980s [FS80,
Cla87]. As a research prototype developed for diagnosing bacteria infections of the
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bloodstream, MYCIN [FS80] demonstrated a potential of explaining which of its hand-
coded rules contributed to a diagnosis in a specific case [MLM04]. In 1990s and
2000s, researchers focused on interpretability of rule-based and logic-based inference
systems [LAT96, NK99, YWG98, ZG08, ZG09], or improvement of transparency of
shallow neural networks by generating meaningful rules from trained neural networks
[Fu94, BCR97, TAGD98]. For example, a framework of low-level interpretability and
high-level interpretability has been proposed for fuzzy logic inference systems [ZG08] to
build an AI system model with a good trade-off between system accuracy and model
interpretability. However, these XAI models have a common limitation, that is, they
lack of the capacity of dealing with big data or large datasets with high dimensionality.
In the age of big data, deep learning has become a popular AI technique since the 2010s
[YLH15] due to large processing capabilities of training with big data by utilising using
manycore architectures, allowing for parallel processing in high-performance computing
(HPC) to produce significant speedups. The victory of quiz show Jeopardy by IBM
Watson in February 2011 [Gab11] and ImageNet victory by a computer vision system in
October 2012 [AKH12] marked the start of a new AI wave to transform the industry and
society. Deep learning is a black box approach which tends to achieve high prediction
accuracy without consideration of model interpretablity and transparency. Until recently,
when XAI became an active research focus in computer science community due to
the advances of big data and various regulations of data protection in developing AI
systems, such as the GDPR and the EU AI Act1. For example, according to the GDPR,
citizens have the legal right to an explanation of decisions made by algorithms that may
affect them (see Article 22), and the EU AI act that requires traceability, transparency
and documentation for high-risk AI systems, to promote trustworthy AI solutions.
These policies highlight the pressing importance of transparency and interpretability in
algorithm design.

Current XAI research efforts focus on developing new approaches for explanations
of black-box models by achieving good explainability without sacrificing system per-
formance [LL17, RSG16, RSG18, DFS22]. One typical approach is the extraction of
post-hoc explanations. Other approaches are based on hybrid or neuro-symbolic systems,
advocating a tight integration between symbolic and non-symbolic knowledge, e.g., by
combining symbolic and statistical methods of reasoning. However, very few studies
have been done to utilize the XAI techniques to tackle medical diagnostics problems
and investigate how the explanations created by XAI techniques can provide insight
into medical diagnostics.

The objectives of this study are 1) to demonstrate the explainable visualization of XAI
for high-dimensional medical data; 2) to investigate the different model-agnostic methods
and the extraction of feature importance, providing commonalities and differentiation
amongst each; 3) to determine pros and cons of the XAI models to provide aid to human-
experts approaching high-dimensional data. Specifically, we aim to define importance
of features in high-dimensional medical data and extract interpretable knowledge that

1https://artificialintelligenceact.eu/the-act/;
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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acts as a subsidiary tertiary layer to aid medical experts in the decision making process.

3.2 Methods and Materials

We apply and compare three different model-agnostic techniques to obtain the influential
input features for each medical question, this work is an extension of previous work
carried out on a single case study [DFB+21], to validate the results of the initial
comparison across a range of medical problems. For the introduction of the model-
agnostic models - SHAP, LIME and Scoped Rules (Anchors) [RSG18], local explanations
will be provided for a single case-study for each medical problem, this will be used to
demonstrate each explainable method with its supported explanations.

3.2.1 Data Pre-processing and Case Study

This study used electronic health records from the Simulacrum [Pub], a synthetic dataset
developed by Health Data Insight CiC to mimic some of the data held securely by the
Public Health England’s National Cancer Registration and Analysis Service (NCRAS).
The Simulacrum data set consists of 1, 322, 100 synthetic patients allowing for model
development by researchers whilst maintaining patient confidentiality. Simulacrum data
reflects a high degree of accuracy of the properties found in NCRAS data set, allowing
for the development of transferable models from synthetic data sets to real-world data
sets.

The Simulacrum faithfully maintains the structural integrity of the NCRAS, including
its data structure and interconnections. Moreover, it upholds the statistical patterns
observed in NCRAS data, such as the distribution of various data features and the
correlations among them, with a claimed high level of accuracy. For instance, it
accurately reflects known statistical relationships within the NCRAS data, such as the
association between cancer site and gender. For instance, breast cancer is predominantly
observed in females, while lung cancer affects males and females roughly equally. These
statistical relationships are asserted to be inherent truths within the original NCRAS
dataset2.

The initial steps of using Simulacrum data set involves data pre-processing to allow
for the data to be used effectively in model development. We first created a master
table concatenating both Cancer Registration (AV) and Systemic Anti-Cancer Therapy
(SACT) tables with a total of 63 columns, the available tables with the associated number
of columns is illustrated in Table 3.1. This study aims to tackle medical diagnostics
problem in different scenarios by standard ML methods and an XAI framework. Three
supervised classification problems are identified for our cohort of lung cancer patients.

• Predicting the likelihood of reducing a lung-cancer patient’s drug dose. (Binary
Classification)

2https://digital.nhs.uk/ndrs/data/data-outputs/simulacrum-user-guide/
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Table 3.1: Overview of available Simulacrum data set tables with the corresponding
number of columns.

Table Name No. Associated Columns

sim av patient 6

sim av tumour 16

sim sact patient 2

sim sact tumour 5

sim sact cycle 6

sim sact drug detail 10

sim sact regimen 10

sim sact outcome 8

• Predicting the likelihood of mortality for a lung-cancer patient. (Binary Classifica-
tion)

• Predicting the survival time of a lung-cancer patient given conditional boundaries.
(Multi-class Classification)

During data pre-processing we identified cases of patients with logical inconsistencies,
such as: having a weight or height that is unrealistic for a human, cases where undergoing
a regimen after death or vital status being claimed as alive at such time. We treated
them as noise within the data and removed them. The dataset is then balanced to the
lower bounds class bias for each binary classification output. Here, we explore lung
cancer (LC) patients for mod dose reduction (MD) prediction, mortality prediction (DA
- Dead/Alive) and survival time (ST) prediction.

The set of input features from the Simulacrum data set is described in the Appendix
(Table C.1). The feature “vital status” identifies a patient being in either the “Dead”
or “Alive” state is used as the binary classification output for the LC-DA problem.
The feature of Mod Dose Reduction being “Yes” or “No” for a patient is used for the
binary classification output for the LC-MD problem. Then we propose the multi-class
classification problem of ‘Survival Time’: ‘less than 6 months’, ‘between 6 months to 1
year’ and ‘greater than 1 year’. There were 22,860 patients surviving greater than 1
year, 24,399 patients surviving between 6 months to 1 year, and 61,023 patients surviving
less than 6 months.

The Simulacrum data set contains many missing values for some features. The most
prominent null-value percentiles across the new data set are displayed in Table 3.2.
For comparisons, the patient instances for the the lung cancer survival time (LC-ST)
problem were limited to a single feature column with a null-value, with all instances > 1
null-value being removed. Conversely, the Lung-Cancer Deceased Alive (LC-DA) and
Lung-Cancer Mod Dose Reduction (LC-MD) problems were imputed with the mode,
given the missing data despite the number of feature values missing.
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Table 3.2: Status of Survival Time Feature Missing Values

Feature Name Approx. null-value Coverage (%)

ACE 44%
Regimen Outcome Description 25%

CNS 7%
Regimen Time Delay 5%

N Best 2%
... ...

3.2.2 Evaluation of Performance

To measure the performance of baseline models we use the metrics of precision, recall,
accuracy, specificity, F1 Score and the area under the receiver operating characteristic
(AUROC) curve plot. The above metrics can be described as:

Precision =
TP

TP + FP
, (3.1)

Accuracy =
TP + TN

TP + FP + FN + TN
, (3.2)

Sensitivity/Recall =
TP

TP + FN
, (3.3)

Specificity =
TN

TN + FP
, (3.4)

F1 Score = 2 · precision · recall
precision+ recall

. (3.5)

Sensitivity is a metric that correctly identifies the diseased (malignant) patients, whereas
specificity is a metric that accurately identifies healthy (benign) subjects. Since it is a
binary classification problem, 2 × 2 confusion matrix is computed, consisting of four
values, namely (i) True Positive − TP (Both actual and predicted class is malignant),
(ii) False Positive − FP (actual class is benign but predicted as malignant), (iii) False
Negative − FN (actual class is malignant but predicted as benign) and (iv) True Negative
− TN (Both actual and predicted class is benign). Based on these four confusion matrix
values, all the classification metrics are computed using equation Eqn. 3.1, Eqn. 3.2,
Eqn. 3.3, Eqn. 3.4 and Eqn. 3.5.

The ramifications of the false positives and false negatives carry distinct consequences.
False positives not only induce psychological distress in patients within medical environ-
ments but also lead to an unnecessary investment of time, resources, and procedures.
Conversely, false negatives may result in delayed or absent treatment opportunities
and forego potential early interventions, constituting a significant setback for patients.
Hence, it is imperative to minimize the occurrence of both false positive and false
negative rates.
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Table 3.3: Baseline performances for logistic regression, XGBoost an EBM tested on
each medical problem.

Dataset Precision (%) Recall(%) Accuracy(%) F1 Score(%)

Logistic Regression 68 68 68 68
LC-DA XGBoost 72 72 72 72

EBM 67 67 67 67

Logistic Regression 68 68 68 68
LC-MD XGBoost 76 72 73 74

EBM 64 62 62 63

Logistic Regression 94 93 93 93
LC-ST XGBoost 97 96 96 96

EBM 89 88 88 88

3.3 Results

Before running XAI methods, we first run a black-box classifier XGBoost to generate
predictions. We compare the performance of the black-box algorithm against glass-box
methods Explainable Boosting Machine (EBM) [NJKC19] and Logistic Regression. All
results are depicted in Table 3.3. Here we have Lung Cancer patients for morality
prediction (LC-DA), the reduction of drug dosage for Lung Cancer patients (LC-MD)
and Survival Time of Lung Cancer patients (LC-ST). The effectiveness of ML classifiers
is pivotal for the practicality of XAI. It is crucial to ensure well-balanced and ample
data availability, along with satisfactory performance from the ML model, to effectively
utilize explanations. Smaller datasets are prone to sample bias or high variance, thus
hindering the model’s ability to generalize effectively to a problem. Similarly, heavily
imbalanced classes may lead to under-representation and poor generalization. Moreover,
a subpar ML model will inevitably yield inadequate explanations, potentially resulting
in misinformation within the explanation. In such cases, the XAI method may attribute
importance to features erroneously, or with inherent bias since XAI methods aim to
explain the model.

The data set for the LC-DA problem contains 49,456 Lung Cancer patients, extracted
from the Simulacrum data set, with 48.94% deceased and 51.06% alive. The models
are trained on 70% of the given data and tested on remaining 30%. The data set for
the LC-MD problem contains 49,319 patient instances, with 27,752 patients having
their drug dose reduced and 21,567 not having their drug dose reduction, with 70% of
the data used for training and 30% for testing. The data set for the LC-ST problem
contains 2,260 patient instances with 80% used for training and 20% for testing the
model.

We compare this against the glass-box methods EBM and Logistic Regression.
Therefore, provided in bar charts are used to illustrate a comparison of base performance
metrics, these being precision, recall and accuracy of each applied baseline model, as
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shown in Figure 3.1. From Figure 3.1 and Table 3.3, it can be seen that the black-

Figure 3.1: Comparison of algorithm performance across each available data set, with
performance metrics for Logisitc Regression, XGBoost and the EBM method

box XGBoost algorithm is the best performing method across all the given diagnostic
tasks, so it can be used as the baseline algorithm for the extension of model-agnostic
solutions. We then present an overview of performance using an ROC (receiver operating
characteristic) curve and its AUC (area under curve). Figure 3.2 shows the AUROC
for LC-DA determining the best fit for the model with the accuracy of an AUC of
0.80 for both classes, naturally averaging to the fit, while the best fit for the model
for minimising False Positive and Maximising True positive is around 0.72. Figure 3.3
shows the AUROC for LC-MD determining the best fit for the model with the accuracy
of an AUC of 0.83 for both classes and the best fit for the model for minimising False
Positive and Maximising True positive is around 0.73. Similarly, Figure 3.4 shows the
AUROC for LC-ST determining the best fit for the model with the accuracy of an
AUC of 0.98 for survival < 6 Months, with 0.99 for ≥ 6 Months and < 1 Year and 1.00
for the 1 year class, while the best fit for the model for minimising False Positive and
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Maximising True positive is around 0.96. The micro-average and macro-average ROC
curves present two forms of evaluation, the micro-average aggregates contributions of
each class, giving an equal weight to each instance, whereas the macro-average treats
each class equally, presenting the average performance over all classes and thus can be
beneficial with data imbalance.

Figure 3.2: AUROC for LC-DA determining the best fit for the model.

Figure 3.3: The AUROC for LC-MD determining the best fit for the model.
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Figure 3.4: AUROC for LC-ST determining the best fit for the model.

3.4 Explanations

3.4.1 Global Explanations: Feature Importance

The SHAP, LIME and Scoped Rules approaches are used to generate feature importance
towards classification problems, where a comparative analysis is provided.

3.4.1.1 LC-DA Explanation

The feature importance towards Lung Cancer patients for the binary classification
of Dead or Alive (LC-DA) was generated by SHAP on testing data set, as shown in
Figure 3.5. The model was trained using XGBoost on a classification problem for Lung
Cancer patients. On the x-axis, the magnitude of the given data point distribute to
the level of importance for each instance, where 0 is indicative of zero importance. The
feature value is represented from low to high based on colour as shown on the right
vertical bar, this is is shown for each instance over all test data.

It can be seen that the top 3 most important features for the LC-DA problem are
M-Best, T-Best and N-Best.

3.4.1.2 LC-ST Global Explanation

Figure 3.6 shows the explanations provided for the multi-class classification LC-ST
problem, here we can observe a direct comparison of each features impact on a desired
class. The impacts of each feature’s positive and negative attribution towards the
desired classes can be seen in Figures 3.7, 3.8 and 3.9. These feature importance values
allow for the dissection of the models decision. Figure 3.7 reveals that “M Best”, “Age”
and “Weight” hold the largest impact towards the output class. Figure 3.8 shows that
“Weight”, “M Best” and “Height” have the most impact on survival in this range, while
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Figure 3.5: SHAP global explanation for the LC-DA problem, the x-axis provides a
weighting with positive SHAP values shifting towards survival and negative SHAP
values shifting towards deceased.

Figure 3.6: Direct comparison of feature attribution towards the output classes. From
the bar plot we can determine that “Weight” is the most important feature that
corresponds to longer survival, with “M Best” having the most impact for short term
survival
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Figure 3.7: SHAP global explanation for the LC-ST problem with feature attribution
measured against class[0] less than 6 months survival. From this we can observe that
the most influential features towards least survival are “M-Best”, “Age” and “Weight”.

Figure 3.8: SHAP global explanation for the LC-ST problem with feature attribution
measured against class[1] between 6 and 12 months survival From this we can observe
that the most influential features towards the longest survival time are “Weight”, “M-
Best” and “Height”.
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Figure 3.9: SHAP global explanation for the LC-ST problem with feature attribution
measured against class[2] greater than 12 months survival. From this we can observe
that the most influential features towards the survival bracket are “Age”, “Weight” and
“CReg Code”.

Figure 3.9 reveals that “Age”, “Weight” and “CReg Code” has the largest impact
towards greater than 12 months survival.

3.4.1.3 LC-MD Global Explanation

The global explanation for the LC-MD problem is illustrated in Figure 3.10, where the
SHAP values are generated regarding the positive or negative influence shift on the
model output based on the associative feature value.

3.4.2 Local Explanations

To conduct a quantitative comparison between the XAI algorithms, we further provided
some local (instance) explanations. The first case in Table 3.4 was extracted from the
binary LC-DA classification problem. The second case in Table 3.5 was taken from the
LC-ST multi-class classification problem where we predict the patient instance survival
time. The third case in Table 3.6 was taken from the LC-MD binary classification
problem.

3.4.2.1 LC-DA Local Explanations

Figures 3.11 and 3.12 present explanation visualisation from the LIME and SHAP
methods, respectively, for the patient instance given in Table 3.1. In addition, anchors
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Figure 3.10: SHAP global explanation for the LC-MD problem. We observe that the
top 3 most influential features are “Weight”, “Time Delay” and “Height” towards the
reduction of drug dose administration.

Table 3.4: A sample patient record in the Simulacrum data set for the LC-DA problem

Age 75 Grade G3

Sex Male Morph 8041

Weight 71.2 Cancer Plan Curative

Dose Administration 150 Outcome Treatment completed as prescribed

Drug Group Etoposide Administration Route Oral

Behaviour Malignant Regimen Time Delay No

T Best 4 Regimen Stopped Early No

N Best 3 Regimen Cisplatin + Gemcitabine

M Best 1 Clinical Trial 2

Cycle 1 Site C34

Height 1.57 CNS 99

Chemo Radiation No ACE 9

(M Best = 1b) give a conditional conjunction of cases, which identify that given certain
elements are true, then the prediction of “Dead” will be true with a coverage of 0.22
and precision value 0.96. In Figure 3.11, LIME provides an explanation with predicted
probability of Alive / Deceased, supported by each feature value and the corresponding
importance value to which each feature is weighted towards. This demonstrates that the
3 most important features contributing to a patient’s death are “M Best”, “Behaviour”
Behaviour of the tumour and “N Best”. Figure 3.12 depicts an explanation by SHAP
for a patient, where “M Best”, “N Best” and “Cycle” are considered the most influential
features towards the death of the patient. It is noted that all the three methods identify
“M-Best” as the most important feature for the classification (the value “1” meaning
that cancer has spread to other parts of the body), this provides an empirical ubiquity
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across the most important feature for the given patient instance.

Figure 3.11: An explanation generated by LIME for Alive / Deceased classificaiton.

Figure 3.12: An explanation generated by SHAP for a patient: The width of each
descriptive block and colour are indicative of the shift in probability to a given case.
The colors red and blue denote the direction of prediction shift towards the target
classes “Dead” and “Alive,” respectively.

Figure 3.13: Anchors give a conditional conjunction of cases, which identify that given
certain elements are true; then the prediction will suffice. We see the coverage of these
conditions also provided with a precision value > τ

3.4.2.2 LC-ST Local Explanations

We generated an explanation for a local LC-ST patient instance, to provide a demonstra-
tion of local explanations for a multi-class classification problem, from this we obtain an
explanation where the patient instance introduced in Table 3.5 is predicted to survive
between 6 months and 1 year with a high likelihood, and produce the corresponding
explanations in Figures 3.14, 3.15 and 3.16. We observe that for the local instance,
LIME, SHAP and Anchors share some identifiers towards the prediction less than 12
months with “Height” being shared as the most important feature for LIME and SHAP,
and “CNS” being the third most important feature for SHAP and LIME, similarly this
can be seen with “M Best” in the top 3 most important features for LIME and Anchors,
highlighting clear aberration in feature importance ordering, but still agreeing on some
features impact.
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Table 3.5: A sample patient record in the Simulacrum data set for the LC-ST problem

Age 54 Grade GX

Sex Male Morph 8140

Weight 87 Cancer Plan Non Curative

Dose Administration 8 Outcome Progressive disease during Chemotherapy

Behaviour Malignant Regimen Time Delay No

T Best 3 Regimen Stopped Early Yes

Ethnicity A CReg Code L0201

N Best 1 Performance 0

M Best 1 Clinical Trial 2

Cycle 1 Site C34

Height 1.88 CNS 99

Chemo Radiation No Laterality Right

Actual Survival (Days) 294 Drug Group Etoposide

Figure 3.14: Demonstration of a local LIME explanation for the LC-ST problem, We
observe that the three most important contributors to the prediction outcome for < 12
Months survival are “Height”, “M Best”, “CNS”.

Figure 3.15: Demonstration of a local SHAP explanation for the LC-ST problem. We
observe that the three most important instances contributing to the patients predicted
survival time are “Height”, “Performance” and “CNS”. From the output we observe a
shift towards the defined target class “> 6 Months and < 1 year”.

Figure 3.16: Demonstration of a local Anchors explanation for the LC-ST problem.
Demonstrating all the Anchors that contribute towards the prediction with the coverage
and precision. We can observe “Cycle Number”, “Height” and “M Best” as the first set
of anchors provided.
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3.4.2.3 LC-MD Local Explanations

Table 3.6: A sample patient record in the Simulacrum data set for the LC-MD problem

Age 64 Grade 4

Sex Male Morph 8046

Weight 61 Cancer Plan Curative

Dose Administration 10 Outcome Treatment completed as prescribed

Drug Group Pemetrexed Administration Route Intravenous

Behaviour Malignant Regimen Time Delay No

T Best 2a Regimen Stopped Early No

N Best 0 Regimen Carboplatin + Etoposide iv&po

M Best 0 Clinical Trial N

Cycle 5 Site C34

Height 1.6 CNS Y1

Chemo Radiation No ACE 9

We generated an explanation for a local LC-MD patient instance, to provide a
demonstration of local explanations for another instance of a binary classification
medical problem, where we obtain a local explanation using LIME, SHAP and Anchors.
From the given explanations we observe aberration in explanations returned.

Figure 3.17: Demonstration of a local LIME explanation for the LC-MD problem, from
this we can observe that the largest impact toward drug dose reduction being predicted
is the tumour “Behaviour” being malignant followed by “Time Delay” and “Age”.

Figure 3.18: Demonstration of a local SHAP explanation for the LC-MD problem.
We observe that “Regimen Stopped Early”, “Height” and “Weight” hold the greatest
influence towards drug dose reduction being necessary.
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Figure 3.19: Demonstration of a local Anchors explanation for the LC-MD problem.
From this, we can observe the anchors that the first returned anchors for drug dose
reduction are “Height”, “Morph” and the “Cancer Plan”.

3.5 Results

In this chapter, we examined explanations generated by different XAI methods as
a tertiary extension for medical diagnostics using electronic medical records. We
further presented the shared features by absolute value irrespective of positive or
negative attribution towards to the model result. This was evaluated for SHAP and
LIME, determining how the two models share a named feature ranking xk such that
SHAP (xk) = LIME(xk) for the kth ranking. We analyse this for k features, to
determine how many features share the same feature attribution rank. For each data set
we analyse k = 1, k = 2 and k = 3, this is evaluated over each data set independently
as shown in Figure 3.20. It is worth mentioning that for LIME, SHAP and Anchors, we
employed the default hyper-parameter configurations. However, Anchors was omitted
from our analysis since the algorithm may not always identify an anchor when τ is set to
0.95, thus this leading to scenarios where no explanation can be provided or only one or
two rules are provided. Consequently, the integrity of results for percentile comparison
would be compromised. Conversely, SHAP and LIME differ in calculation whilst giving
explanations across all instances and thus providing a more meaningful comparison.

We observe inconsistencies amongst the shared features, although there are a high
majority of shared features, such as the most important features as shown in the first
1000 instances in Figure 3.21 and for the 400 instances extracted from the LC-ST
problem in Figure 3.22. The most important feature is the same feature for a high
percentile of the designated population.

Given such information, we can also determine top priority features from the data
sets, though they may not be shared for each instance. It is desirable that the identified
important features align with domain knowledge representation. Therefore, we provided
a comparison across the Lung Cancer problem data sets. The first 1000 instances from
the LC-MD and LC-DA and 400 instances from the LC-ST test data were used to
extract the most important feature, where k = 1 for LIME and SHAP as well as the first
anchor extracted from Scoped Rules. The most influential features towards a patient
either [“Dead”, “Alive”], a survival time of [“Less than 6 months”, “Between 6 months
to 1 year”, “Greater than 1 year”] or reduced drug modification for the current regimen
[“Yes”, “No”] were identified.

Commonalities arise across the shared most important feature for each XAI applica-
tion. Shared importance ordering for features is less common across each model, this
differentiating across the data sets. For example, SHAP determines weight as the most
important feature in the LC-MD data set, conversely LIME having Time Delay as the
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Figure 3.20: Comparing the shared features across each problem using both SHAP and
LIME

most important feature. It is observed more balanced dissemination across the three
features for the SHAP model. Notably, LIME and Anchors determine the same set of
features as important displayed in Figure 3.21.

From Figure 3.21, we can observe the top 3 features for the LC-DA problem are
“TNM” staging being the most influential features to prediction for each XAI model. For
LC-MD problem, regimen “Time Delay”, “Weight” and “Height” are the three most
influential features for LIME and SHAP, whilst not being the condition for Anchors,
with SHAP sharing more of an even distribution of importance. Figure 3.22 reveals
that the top 3 most influential features are “M Best”, “T Best” and “Age” for LIME
and Anchors, whilst SHAP shares “M Best” and “Age” then followed by “Height”.
Figure 3.5 shows the top 3 most important features for the LC-DA problem are

M-Best, T-Best, and N-Best. This is a particularly interesting result as it confirms the
superiority of TNM based cancer stage classification [LAHYB15]. Cancer staging is
a critical step in the diagnosis process with multifarious objectives [LAHYB15], such
as helping identify treatment plans, providing indication of prognosis, showing the
evaluation of the results of treatment, and facilitating the exchange of information of
cancer development. The findings of these 3 top features are also consistent with another
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Figure 3.21: Most important feature returned or the first anchor (scoped rules) for the
first 1000 instances on the test data set for both LC-DA and LC-MD problems.

Figure 3.22: Most important feature returned or the first anchor (scoped rules) for the
first 400 instances on the test data set for the LC-ST problem.
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data-derived cancer prognosis study [WJJ16] indicating that TNM stage remains the
most important prognostic features, while being followed by tumor histologic grade,
patient sex, age, and performance status. Conversely, note that our study shows that
age and cancer morphology are the following important features for predicting mortality
of lung cancer patients (Figure 3.5).

There is also differentiation when determining the influential features for predicting
minimal survival time where the most influential features are M-Best, age and weight
(Figure 3.7), alternatively in predicting the longest survival time (Figure 3.9), we see
age, weight and cancer registration code play an important role. Finally, the survival
range of 6 months to 1 year lists BMI features and M-Best as the most important
predictors for this class.

In the the LC-MD problem (Figure 3.10), we observe that weight is the most
influential feature, here we see a negative SHAP value given a medium to low feature
value and a positive SHAP value given a larger valued weight. This is then followed by
the most influential features being time delay, height and age. It is worth noting that the
drug dosage strategy is commonly influenced by weight [dPlZC+16], with intervention
occurring more often for obese patients [BL17].

This chapter explored the ubiquity of XAI models evaluated on unseen lung cancer
patients, this is carried out via a brute force approach that determines the most
important features returned by a model and the consistency with domain knowledge is
discussed. The kth ranking shows a disparity in the ordering of which features agree,
showing that the feature attribution methods determine different features as valuable
and important in making the prediction.

Nevertheless, the limitations of this study can be seen in both the theoretical
foundations and the limited number of explanation models used. One could further
look at shared attribution space and correlations between explanations as a means of
similarity (further comparisons are provided in appendix G as to reduce redundant
information, as the conclusion of disagreement is reinforced [DFS23]).

3.6 Conclusions

Determining feature priority from a local interpretation provides a sense of clarity for
non-domain experts by providing feature contribution to a given case and overall data
set. The ability to extract explanations of black-box model predictions is essential for
high-risk applications of machine learning; medical implementations being one example,
from such information of patterns across features and different explanation models we
can determine data set and supporting predictions fairness. Explanation locality allows
for new instances to be communicated to the domain-expert with reason. This tertiary
layer of knowledge could improve the rate of case deduction and support human-expert
reasoning. We observe a clear aberration in the feature attribution priority order
amongst the model-agnostic solutions across the three case studies presented, though
generally these methods still share an agreement of importance across the top three
features.
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This is valuable because it highlights the necessity of not depending solely on one XAI
model for explanations. This is critical because a singular approach might not excel for
every instance, given the early stage of XAI development, necessitating the consideration
of a range of methods. Employing a variety of XAI approaches could also reveal inherent
biases in models, particularly if there is a general consensus elucidated among different
methods regarding the important features identified through feature attribution methods.
It is possible for explanations generated by various methods to appear inconsistent or
unconvincing. Consideration of the impact of random perturbations is essential in such
scenarios. This approach can introduce out-of-distribution data, leading to misguided
explanations. Additionally, the influence of human-selected hyper-parameters should
not be underestimated. This aspect could potentially allow users of XAI methods to
adjust hyper-parameters to achieve results that align more closely with the narrative
they intend to convey.
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Chapter 4

Polynomial Adaptive Local
Explanations

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Comparative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Introduction

The use of eXplainable Artificial Intelligence (XAI) methods enables transparency
for black-box model predictions, thus supplementing a user’s ‘right for explanation’
elucidated in Europe’s General Data Protection Regulation (GDPR) [SP17]. As of
2016, there exist variations of XAI surrogate models that explore different approaches
to localised explanations, though the premise of XAI greatly predated the recent
influx [Frä20]. Perturbation methods have seen success and wide application in the
medical domain [DKW+21, PZZ+21, SKW+21, YRC+20], popular examples being
Local Interpretable Model-Agnostic Explanations (LIME) [RSG16], SHapley Additive
exPlanations (SHAP) [LL17] and Scoped Rules (Anchors) [RSG18], where SHAP
explores a feature summary through additive marginal contribution evaluation and
Anchors and LIME explore local surrogate models from a set of readily interpretable
models e.g. linear regression.

In this chapter, our primary objective is to provide local explanations for tabular
data, focusing on the context of Electronic Health Records (EHR). EHRs serve as a
crucial asset for both population-based health research and individual health analysis.
Within the realm of clinical care exploration, the significance of local explanations

57



4. Polynomial Adaptive Local Explanations

cannot be overstated, as they play a pivotal role in establishing trust [TJMG19]. For
instance, in the realm of individual health, explanations must inherently incorporate
patient-specific information to cater to the unique requirements of each case.

The landscape of individualized health care demands explanations that are tailored
to each patient’s context. As a response to this need, tools have emerged that leverage
existing eXplainable AI (XAI) methods in conjunction with data exploration and
analytic techniques [KED+21]. These tools are designed to enhance our understanding
and interpretation of complex health data, ensuring that insights gleaned are not only
accurate but also comprehensible and meaningful for both healthcare professionals and
patients.

In light of the lack of consistency observed across explanations [DFB+21], concerns
about their reliability have surfaced. In the pursuit of creating local explanations that
are not only lucid and effective but also tailored to each patient, we introduce the
Polynomial Adaptive Local Explanations (PALE) framework. This model is designed to
harmonize the optimization of both a black-box overarching model and the individual
local explanations. The primary focus of PALE centers on tabular data, aiming to
achieve a level of transparency in patient predictions within a localized context. It
accomplishes this by generating explanations that elucidate how each patient and feature
collectively influence the outcome. This is achieved through the construction of local
surrogate models that adapt to the nuances of each patient’s unique circumstances
through scaling polynomial degrees.

The objectives of this chapter are as follows:

1. Produce an end-to-end framework that optimises both the complex model and
the local model for each instance;

2. Produce explanations based on the derived scaling polynomial models to under-
stand uni-variate feature impact for local instances;

3. Compare local explanations and local explanation performance across the different
XAI methods.

4.2 Related Work

Exploration of local surrogate model explanations saw an effective rise posterior to
the efforts of LIME. LIME is a model-agnostic method with a primary focus on local
explanation where a local linear model is used on a perturbed set around the instance
xi. An explanation E for local point xi is defined as

E(xi) = argmin
g∈G
L(f, g, πxi) + Ω(g),

where we have a local linear model g from a set of interpretable models G, aiming
to minimise the error of the local linear model, where perturbations around instance xi
are subject to a neighbourhood π, where L measures the fidelity of the local model g
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with respect to the complex model f . The Ω term is used to reduce the complexity of
the local model g. Perturbations are created around the mean of the data set within
one standard deviation following a Gaussian or uniform distribution. See [RSG16] for
details.

There are various adaptations and extensions to the LIME framework, focused on
improving the reliability of the approach. The authors of Deterministic-LIME (DLIME)
[ZK21] extend the LIME framework by producing an adaptive neighbourhood using
k-nearest neighbours and hierarchical clustering in an attempt to provide consistent
explanations. In [ZHW21] the authors introduce Stabilized-LIME (S-LIME) which also
surrounds the improvement of perturbation points for better local explainability, stability
in the former DLIME and S-LIME are measured using the Jaccard similarity coefficient.
[PMT18] introduces local explanations and example-based local explanations, where
weighting is carried out using random forests for supervised neighbourhood selection.

In [BCN20] the authors propose a ensemble approach to LIME, namely LimeOut in
order to reduce the reliance of sensitive features, in order to achieve this the authors
replicate a similar idea to drop out techniques that are used in neural networks, aiming
to maintain model performance. [ZHH+21] introduces Bayesian LIME (BayLIME), in
efforts to obtain consistency in explanations and maintain model robustness through
integration of prior knowledge and the adaptation of Bayesian reasoning.

Extrapolating to local model fits, [SZLF19] introduces Tree-LIME, an approach that
replaces the local linear model of LIME with a decision tree based approach for local
interpretability. The authors of [BHTL20] draw more comparable intentions, as the
authors aimed to fit a quadratic model to extend the LIME local model, the intent
to analyse the performance improvement against the linear model. Therefore, the
development of this inspired the intent for creating a framework with instance specific
explainability to any polynomial degree that fits best for a given case. Feature attribution
methods have explored specific feature-types, where we see focus on continuous features,
enhancing the idea for the selective perturbation strategy [KLS+22].

4.3 Method

This section of the chapter introduces the PALE methodology, and is structured as
follows: Section 4.3.1 provides the details of the adaptive model within the PALE
framework, also the form of explanation provided. This chapter also illustrates that
an explanation can be produced for any instance. The PALE framework also ensures,
explanations are only provided such that, the local model has a degree of precision.
Section 4.4 provides a set of comparison metrics to compare the introduced PALE
method against state-of-the-art and inherently interpretable explanation methods.
Section 4.5 provides an example explanation, where the model performance is evaluated
in Section 4.5.1.
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4.3.1 PALE Framework

Informally, the PALE framework offers explanations tailored to each individual instance.
In the context of EHRs, this customization enables the adaptation of the model to the
unique features of each patient. To achieve this, the framework generates a perturbed
dataset for each instance, creating a convoluted neighborhood around that point. This
approach facilitates localized and interpretable insights into model predictions. By
introducing small changes to the original instance through perturbations, the framework
enables the evaluation of effects concerning minor alterations. Additionally, utilizing
a surrogate dataset and model enables a model-agnostic approach, allowing for its
application to any complex model.

We propose a end-to-end framework, constructed to optimise the complex model f
over all data X, therefore, f(X) denotes our black-box model, where we minimise the
residual loss Lf of the complex model. We optimise the local explainer loss for each ith

instance, where X = ⟨. . . ,xi, . . .⟩. We search for the optimal local models gm ∈ G, where
G is a set of polynomial models, for an instance in the local neighbourhood πxi . Local
model error is minimised through Lgm,i and weighted using the same neighbourhood
setting that is used in the LIME framework, where the optimal m polynomial degree
for each instance is obtained. The framework aims to produce local explanations over
classification problems, therefore we assume the complex model f to be some classifier.

4.3.1.1 Adaptive Model

Introducing PALE, the generated surrogate data set Zi is weighted by some neighbour-
hood function πxi , for an instance of interest xi. The surrogate set can be represented
by {z′,y} = Zi, where an instance z′s in the surrogate set is defined by z′s ∈ RJ , the
surrogate data is given by Zi ∈ RP×J and labels y ∈ {0, 1}P . We let f(z′s) for each
instance z′s be the labels of the surrogate set using the prediction probability as the
target for the fit model gm,i(Zi). The

We first aim to have a scaling polynomial fit for instance adaptation in order to both
provide better localised model performance as well as to provide insight into feature
attribution and the affect of feature alteration in the local domain. The framework is
composed of two loss functions:

• Lf (X; ·), the loss for the complex model,

• Lgm,i(Zi, f ;β) + λp(β), the loss for the polynomial explainer.

λp is a regularization method, λp(β) of our local model in the body of this chapter is
l2 regularization described in Appendix A, Lf is an arbitrary loss function depending on
the complex model selected. We employ Lgm,i to minimize loss, for this chapter we utilise
the Root Mean Squared Error (RMSE) to evaluate the localized model performance
within a surrogate set Zi in the neighborhood πxi . This determines the error in each
model to the mth degree polynomial for a prediction gm,i(z

′
s) pertaining to each instance

of the surrogate set, and the fidelity to the labels ys assigned by f(z′s). This procedure is
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performed individually for every instance xi, seeking the optimal m degree polynomial
for the optimal set of coefficients β′xi

, where

β′xi
= argmin

m
Lgm,i(Zi, f ;β) + λp(β)

4.3.1.2 Adaptive Local Explanations

To generate explanations we order
∂gm,i

∂xi
by absolute value, where the associative value

corresponds to the feature importance ranked by its value |∂gm,i

∂xi
| for each feature j to

gauge a descending order of feature importance. Generalising to a scaling polynomial
fit, we can observe the partial derivative for the mth polynomial degree, such that for
a single feature xj we observe the affect of change, where every other feature is kept

static x
/j
i , therefore:

gm,i(x
j +∆xj ,x

/j
i ) = gm,i(x

j ,x
/j
i ) + (∆xj) · ∂gm,i

∂xj
(xi,x

/j
i ),

as such we obtain a complete set of polynomial model partial derivative based expla-
nations over the given data set X. We refer to this set of polynomial explanations as
Ep(X), where each row corresponds to a instance x, and each column corresponds to
the features,

Ep(X) =


∂g1,m
∂x1

∂g1,m
∂x2

. . .
∂g1,m
∂xJ

∂g2,m
∂x1

∂g2,m
∂x2

. . .
∂g2,m
∂xJ

...
...

. . .
...

∂gN,m

∂x1
∂gN,m

∂x2
. . .

∂gN,m

∂xJ

 . (4.1)

We then use the Hadamard of product of this matrix with the corresponding instances
given by each row that are associated to the explanation to utilise the concept of
directional derivatives, then we have the PALE explanation over our data X, given by:

PALE(X) = Ep(X)⊙X =


∂g1,m
∂x1

x1
∂g1,m
∂x2

x2 . . .
∂g1,m
∂xJ

xJ

∂g2,m
∂x1

x1
∂g2,m
∂x2

x2 . . .
∂g2,m
∂xJ

xJ

...
...

. . .
...

∂gN,m

∂x1
x1

∂gN,m

∂x2
x2 . . .

∂gN,m

∂xJ
xJ

 . (4.2)

4.3.1.3 Precision

We introduce a form of local precision, this is a user defined level of precision which is
in the range [0,1]. The term τ , is a flexible user influenced term that binds whether an
instance explanation is returned, to a given precision of local fidelity where a returned
explanation given the value for τ = 1 would determine |(f(xi)− gm,i(xi))| = 0. This
meaning that the prediction of the local model g accurately represents the point of
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interest predicted from our complex model f , meaning gm,i(xi) = f(xi). This is
determined through a term given the complex and local model for an instance of interest
and a measure of precision τ , such that,

Precision(gm,i, f,xi; T , τ) = |(f(xi)− gm,i(xi))|,
s.t. Precision ≤ 1− τ.

We also allow the user to select a target value, T ∈ {0, 1} (1 by default in the binary
case), this will allow for the partial derivative of the local regression to be associated
with some user defined T for an explanation. If the local model does not meet the
precision requirements, the instance explanation will not be returned. Therefore, the
purpose of this in the applied case is to return only locally precise explanations.

4.4 Comparative Methods

To compare explanations returned by PALE, we evaluate the method against SHAP, a
linear model (LIME), and higher degree polynomials and logistic regression explanations.

4.4.1 Jaccard Index

We can explore the Jaccard similarity index for v features, in this body of work we
explore v = 5. The Jaccard index can be defined by

J(A,B) =
|A ∩B|
|A ∪B|

.

This provides a comparison of the returned sets of feature names between two XAI
methods.

4.4.2 Pearson Correlation Coefficient

We also compare the Pearson r correlation coefficient for the sets of explanations, given
the absolute values returned from the XAI methods. Where the Pearson r correlation
used in comparative XAI work [DFS23] is defined as:

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2
(4.3)

where:

• Xi and Yi are the individual data points in the two variables, and

• X̄ and Ȳ are the means of the two variables.
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4.4.3 Logistic Comparison

To compare PALE to a commonly used approach, we use Logistic Regression. Using
this, we provide explanations with respect to the odds ratios (OR), through uni-variate
logistic regression analysis on each feature in the perturbed set z′i. We introduce the
logistic model as the function ui, where ui is the local logistic regression model over
a surrogate set for instance xi. The localised model is a uni-variate model to explore
individual feature importance. To achieve this, we introduce a secondary surrogate set
Z ′ where, {z′,y′} = Z ′. A feature vector is denoted by z′,j ∈ RP×1 and associated label
is a binary case y′ ∈ {0, 1}P , therefore:

ui(z
′,j) = P (y′ | z′,j) = 1

1 + (exp(−(Ψj × z′,j)))
. (4.4)

We introduce a modified version of OR to center odds at the value 0 for ease of
interpretation, the logistic explanation El where Ψj is the returned log odds, can be
represented by:

El(xji ) = exp(Ψj)− 1. (4.5)

We can use the shift in odds ratio in either R+ or R− of non-absolute value explanations
for each feature j, of an instance. To assess the similarity between the explanation
derived and the odds ratio explanation, we apply the sign (sgn) function to the derivative
of the polynomial with respect to the returned El(xji ). We determine the ratio of shared
explanation shift LogCompare for any xj over J features as:

LogCompare(xi) =

{
1
J

∑J
j=1 1[xj ], if sgn

(
∂gi,m
∂xj

)
= sgn

(
El(xj)

)
,

0, otherwise.
(4.6)

4.5 Results

The data used in this chapter is derived from the Simulacrum dataset (see Chapter 3).
We extract a subset of lung cancer patients from the Simulacrum to demonstrate the
proposed method. We focus on binary classification problems for the demonstration of
this framework. The binary classes we aim to predict are < 6 Months and ≥ 6 Months
survival time.

We use an XGBoost model with a 70% train and 30% testing data split as our
complex model to demonstrate the explanatory model. The model performance is
evaluated using the binary cross-entropy loss function, obtaining the results presented
in Table 4.5.1.
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Class Precision (%) Recall (%) F1-Score (%)

< 6 Months

Lung Cancer: 97
Skin Cancer: 86
Breast Cancer: 96
Lymphoma: 98

Lung Cancer: 97
Skin Cancer: 89
Breast Cancer: 94
Lymphoma: 98

Lung Cancer: 97
Skin Cancer: 87
Breast Cancer: 95
Lymphoma: 98

≥ 6 Months

Lung Cancer: 98
Skin Cancer: 89
Breast Cancer: 96
Lymphoma: 98

Lung Cancer: 98
Skin Cancer: 86
Breast Cancer: 97
Lymphoma: 98

Lung Cancer: 98
Skin Cancer: 88
Breast Cancer: 97
Lymphoma: 98

4.5.1 Model Performance

Figure 4.1: RMSE measurements for a subset of 100 Simulacrum patient instances
across 4 datasets. We can observe how the increase in polynomial degree improves the
local model accuracy for most instances, but in some cases a simpler model will suffice.

In Figure 4.1 we present the performance of each model to the mth degree polynomial
across four datasets. We analyse the RMSE returned for the local model gm,i for 100
instances xi : i = {1, 2, ..., 100}. From this, we determine that an increase in polynomial
degree has significant impact on the local model performance over each surrogate set
Zi.
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4.5.2 Explanation Example

In this section, we consider a single patient to explain, exploring the following lung
cancer patient instance:

- Age 66, Sex 0, Morph 8140, Weight 85.90, Height 1.67, Dose Administration
8, Chemo Radiation 0.0, Regimen Outcome Description 0.0, Admin Route
1.0, Regimen Time Delay 0.0, Regimen Stopped Early 1.0, Cycle Number
1.0, Grade 1.0, Cancer Plan 0.0, Cancer Registration Code 301.0, T Best
4.0, N Best 2.0, M Best 0.0, Laterality 2.0, CNS 1.0, ACE 9.0, Performance
0.0, Clinical Trial 2.0.
Prediction: ≥ 6 Months,
Actual: ≥ 6 Months.

We explore how higher degree polynomial functions can inform feature attribution on a
local level. We use the partial derivative for the 2nd (Figure 4.2) and 3rd (Figure 4.3)
degree polynomials, to determine how each feature j interacts with the output for our
local model. Evaluating the explanations for the top 5 most important features, we

Figure 4.2: Derivation of the quadratic polynomial term - Simulacrum patient instance.
The explanation determines how an instantaneous increase in each feature value xi
influences the local polynomial function gm,i at the location of the instance, where we
have g2,i. Higher (resp. lower) values on the y-axis represent a large (resp. small)
feature importance value.

observe that the quadratic derivative in Figure 4.2 determines Weight, M Best and the
Regimen Outcome Description to have a high attribution in the local model. Conversely,
when observing the 3rd degree polynomial in Figure 4.3, we see Cancer Registration
Code followed by M Best and Regimen Outcome Description as the highest attribution
in the local model.

4.5.2.1 Similarity Measures

For the comparison of XAI models, we determine the Jaccard similarity index and
Pearson r correlation coefficient, between the explanations present by gm and the
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Figure 4.3: Derivation of the cubic polynomial term - Simulacrum patient instance.
The explanation determines how an instantaneous increase in each feature value xi
influences the local polynomial function gm,i at the location of the instance, where we
have g3,i. Higher (resp. lower) values on the y-axis represent a large (resp. small)
feature importance value.

explanation given by SHAP. Although the PALE framework extracts the ideal polynomial
degree and produces an explanation for each instance, we manually extract explanations
for each degree and compare the similarities amongst each degree polynomial and SHAP.
In Figure 4.4, it is evident that the highest Jaccard similarity is observed between the
third-degree polynomial fit and SHAP. Furthermore, our analysis of Figure 4.4 indicates
that, for the given instance, the third-degree polynomial exhibits a stronger correlation
with SHAP than lower-degree polynomials, as highlighted by the Pearson r correlation
coefficient between each XAI model.

We use LogCompare to the agreement between both the quadratic and cubic
explanations for the sign of feature attribution values, as opposed to absolute feature
importance values, so we can determine the amount of shared attribution between the
logistic model and local polynomial derivations. From this, we obtain LogCompare(xi) =
0.48 for the quadratic model explanation and LogCompare(xi) = 0.65 for the cubic
model explanation. Therefore, we observe in the given case, the cubic explanation has
a greater similarity in explanation with the logistic model than that of the quadratic
model.

4.6 Conclusion

We use a similar classification problem as seen in [DFB+21], [KLS+22], where under
similar predictions surrounding survival we see great influence from the likes of M
Best, Weight, amongst other features. Therefore, we observe the selection of important
features hold a degree of accuracy with clinical knowledge of cancer survival. The
contribution of this chapter is an end-to-end framework that optimizes both the local
and complex model to provide an explanation of how change to a feature will influence
the outcome of the model prediction in the local setting. We emphasise the need for
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Figure 4.4: A comparison of explanations given by the linear model, quadratic model,
cubic model and the SHAP model for a patient instance.

patient specificity, thus we produce an adaptive framework at the local level through
adaptive polynomials.

We identify that the uni-variate approach shows single feature interaction with the
local model, and although predictions are reliant on the kernel and localised feature
perturbations which can lead to explanation instability, with ongoing research being
focused in this area for the extension of LIME, we instead focus on improving the
interpretable local model by adapting explanations to each local instance to increase
local specificity. Extending upon this, the interpretable comparison with the logistic
regression model poses questions towards the disagreement of explanations, to further
analyse this, we will consider statistical significance against the explanations given.
We acknowledge the problem of potential polynomial overfitting despite regularization.
Further research will be carried out in order to approach the addressed issues and
expand upon the framework.
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Chapter 5

Counterfactual Integrated
Gradients
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5.1 Introduction

Explainable Artificial Intelligence (XAI) has been widely applied in medicine in recent
years [SP22]. Application areas of XAI vary from [PRMT20] for the early detection
of Parkinson’s disease, [DIKT19] for the diagnosis of Alzheimer’s disease, [DFFS23,
MUKK20, LSG+19] for variations of cancer and [WLW20, KED+21] for COVID. Whilst
causal effects have been long explored in simple models for medicine [Höf05], the XAI
field exemplifies the need for transparency in less interpretable models. In this chapter
we exemplify the counterfactual approach of explainability with an emphasis on model-
specific explanations. It is clear the approximation approach of PALE introduced in
the previous chapter is limited. While model-agnostic methods frequently approximate
decision boundaries, developing XAI techniques tailored for neural networks that
leverage the network architecture can be advantageous due to the capacity of being
able to approximate any continuous function. This assertion is rooted in the universal
approximation theorem [BG20, MP99], which subsequent research has supported by
demonstrating that ANNs can approximate any continuous function within a bounded
domain using a finite number of nodes, only two layers and sufficient choice of activation
function [MP99, LL20]. This elucidates the significant potential of ANNs. Similarly,
customizing approaches tailored to specific models minimizes potential errors of XAI
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bias and the possible imperfect approximation of decision boundaries inherent in model-
agnostic methods. Therefore, in this part of the thesis I redirect the attention to
designing model-specific approaches.

It follows that we can ascertain answers to specific questions by modelling XAI
approaches to answer the desired question. Hereinafter in this chapter we explore
the counterfactual perspective of XAI. Counterfactuals explore “what-if?” scenarios,
enabling the evaluation of causal effects in intervention studies. An example of this
is the Average Treatment Effect in medicine, where subsets of patients are assessed
with and without a specific treatment [NW23]. As it is practically impossible to
observe an individual both with and without an intervention, estimations are made by
analyzing cohorts that received the treatment and those that did not. Counterfactual
methods and their explanations play a crucial role in determining how changes to an
individual can alter predicted outcomes and identify the features that influence such
changes [GCHW23]. Consequently, counterfactual analysis allows us to explore a single
patient in multiple hypothetical states simultaneously. Importantly, the counterfactual
methodology is not limited to discrete changes; it can also be applied to analyze the
impact of continuous features.

The counterfactual explanation algorithm Diverse Counterfactual Explanations
(DiCE) [MST20] and Wachter et al. (Wachter) [WMR18], provide the generation of
counterfactuals for a given instance. These counterfactual algorithms can be used to
generate an explanation that aims to answer the question:

What changes can be made to an instance, in order to achieve the desired
output?

For a prediction instance, these methods provide an explanation using a similar instance
of the opposing class as a counterfactual example. The explanation can be example
based (it already exists in the data) or generative (constructed with the prediction
model). Generally speaking, counterfactual explanations are sample instances that are
similar in feature values to the prediction instance but different in prediction; so one
can observe what can be changed to obtain a different outcome.

Alternatively, feature-attribution methods provide another form of explanation this
is seen with state-of-the-art methods Local Interpretable Model-Agnostic Explana-
tions (LIME) [RSG16], SHapley Additive eXplanations (SHAP) [LL17] and Integrated
Gradients (IG) [STY17]. Therefore, utilising feature-attribution in the scope of coun-
terfactuals, will allow for the observation of what features when changed, positively or
negatively attribute towards the counterfactual class.

This chapter proposes Counterfactual Integrated-Gradients (CF-IG), a technique
utilizing the IG feature-attribution method. The integration of feature-attribution with
counterfactual examples enables the analysis of positive and negative causal relations
between the independent and dependent variable(s), combining the benefits of example-
based counterfactuals and feature-attribution techniques. Figure 5.1 illustrates the
proposed method. Generally speaking, we consider counterfactual examples to provide
insight as to how an instance should look to obtain an alternate outcome; and feature-
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Figure 5.1: Illustrative example of CF-IG. Given an input x, its linear interpolation
to its nearest counterfactual example x̂′

c in the dataset is shown. The explanation x̂c
produced by CF-IG is the point crossing the decision boundary (the dotted line) on
this interpolation. CF-IG also produces feature-attribution values for its explanations.

attribution in addendum to this can illustrate how each feature independently affected
the predicted outcome.

To establish the validity of CF-IG, we compare it against a list of theoretical
properties proposed in the literature, specifically focusing on [ABN22] and [VDH20],
as these are recent publications on the theoretical underpinnings of XAI. We also
compare CF-IG with existing counterfactual methods, namely DiCE and Wachter, and
demonstrate that CF-IG is the only method satisfying these theoretical properties.

The key contributions of this paper are to:

1. introduce a new counterfactual generation method, CF-IG, that also considers
feature attribution techniques;

2. demonstrate CF-IG satisfying many theoretical properties of XAI methods pro-
posed in the literature;

3. empirically evaluate CF-IG’s performance against existing counterfactual explana-
tion methods on Electronic Health Records (EHR) datasets.

The rest of this chapter is organised as follows: Section 5.2 provides a background
on the Integrated Gradients method. Section 5.3 introduces counterfactual explanations
and associated properties. Section 5.4 introduces the proposed approach and associative
metrics to illustrate the performance of the proposed approach. Section 5.5 evaluates
the proposed approach against the introduced metrics and the identified properties.
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5.2 Integrated Gradients

Integrated Gradients (IG) [STY17] is a model-specific XAI method aimed to produce
local feature attribution explanations. IG assumes that the black-box model is dif-
ferentiable e.g. Neural Networks. Access to differentiable models allows evaluation
of the associated gradients. The insight into the model via gradients can be used for
explanations. Therefore, consider an instance x, an explanation along the jth dimension
is defined by IG as:

Ej(x) = (xj − x′,j)×
∫ 1

α=0

∂F (x′ + α(x− x′))

∂xj
dα. (5.1)

Let F : RJ → R represent the differentiable function that produces the prediction
probability for the target class. We denote f as the classifier function that assigns the
class label to x. Specifically, if F yields a prediction probability such that F (x) ≥ τ :
τ ∈ [0, 1] for a class y′, then f(x) assigns the class y′, otherwise, it assigns class y. It
should be noted that throughout this chapter, τ is set to 0.5.

IG is inspired by path integrals, by taking the path of least action (straight line
interpolations) between an all zero baseline x′ of J features and the instance x. The
average gradients along the path represent the attribution at point x.

5.3 Counterfactual Explanations

In addition to feature-attribution methods such as IG, counterfactual explanation
methods such as DiCE [MST20], Wachter [WMR18] and others [LOHdR19, DCL+18],
are another subset of XAI methods. We can formulate these approaches as giving
explanations as follows:

Definition 5.1 (Counterfactual Explanation) Given a dataset X ∈ RN×J , an instance
x = ⟨x1, . . . , xJ⟩ ∈ X, and a black-box model f that predicts the class labels of instances.
A counterfactual explanation to an instance x is another instance xc ∈ RJ such that
f(x) ̸= f(xc).

In this work, we consider two types of counterfactual explanations, example-based
and generative counterfactual explanations, produced by their corresponding methods
respectively, defined as follows.

Definition 5.2 (Exampled-Based Counterfactual) Given a dataset X, an example-
based counterfactual method φ is a function that for x ∈ X, φ(x) is a counterfactual
explanation to x and φ(x) ∈ X.

Definition 5.3 (Generative Counterfactual) Given a dataset X, a generative counter-
factual method ϑ is a function that for x ∈ X, ϑ(x) is a counterfactual explanation to x
and ϑ(x) /∈ X.
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From counterfactual explanations, which are also instances, we can define counterfac-
tual feature attributions to capture the relative importance of features that distinguish
an instance and its counterfactual counterpart. In other words, counterfactual feature
attributions help us to answer the question

“if we were to turn an instance x to a different outcome, what are the
features we should focus on?”

We define counterfactual feature attribution as follows.

Definition 5.4 (Counterfactual Feature Attribution) A counterfactual feature attribu-
tion method is a function Φ : RJ × RJ → RJ that takes an instance x and one of its
counterfactual examples xc to return feature attribution values ⟨ϕ1, . . . , ϕJ⟩.

Theoretical analysis of XAI algorithms enables the assessment of property satisfiabil-
ity for XAI methods, with desired properties providing guidelines for the development
of such methods. Properties we will study in this work are implementation invariance
[STY17], relevance, representativeness, and success [ABN22]. They are informally
introduced as follows:

1. Implementation Invariance. For functionally equivalent XAI methods, the expla-
nation returned is the same.

2. Relevance. Explanations should be possible on unseen instances.

3. Representativeness. Prediction probabilities of the black-box model should be
reproducible by the explainer.

4. Success. An explanation is returned for every instance.

In addition, under the same pretense as the representativeness property, we propose
the counterfactual representativeness (CR) property, which states that for an instance x
and its counterfactual x′

c must be reproducable by a counterfactual feature attribution
method. Formally,

Property 1 (Counterfactual Representativeness). Given a black-box function F that
assigns a prediction probabilities, an instance x, a counterfactual example x′

c, a counter-
factual feature-attribution method Φ has counterfactual representativeness, if and only
if

|F (x)− F (x′
c)| = |

J∑
j=1

ϕj(x,x′
c)|. (5.2)

Intuitively, Φ has counterfactual representativeness when the sum of all of its feature
attributions is the difference between prediction probabilities of the instance and its
counterfactual explanation.

Next, we introduce the concept of counterfactual monotonicity (CM) as another
desirable property as follows.
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Property 2 (Counterfactual Monotonicity). Given a black-box function F , an instance
x, and two counterfactual instances x′

c,1 and x′
c,2. A counterfactual feature-attribution

method Φ is counterfactually monotonic

if |F (x)− F (x′
c,1)| ≤ |F (x)− F (x′

c,2)|,

then |
J∑
j=1

ϕj(x,x′
c,1)| ≤ |

J∑
j=1

ϕj(x,x′
c,2)|.

In essence, a counterfactual feature attribution method is CM if, for two counterfactual
explanations xc,1 and xc,2 of the same instance x, the difference in prediction probability
between F (xc,1) and F (x) is closer than or equal to the difference between F (xc,2) and
F (x), then the total attribution associated with transitioning to counterfactual xc,1
must be less than or equal to the attribution assigned to xc,2. It is easy to see that
counterfactual representativeness implies counterfactual monotonicity.

5.4 Method

5.4.1 Approach

With example-based counterfactual methods and IG, our CF-IG method employs a
technique that involves observing the path integral concerning counterfactual examples,
generating both generative counterfactual explanation as well as counterfactual feature
attribution explanation. This process involves a series of iterative linear interpolations
until the decision boundary for the desired class is crossed. The instance that barely
crossed the decision boundary is the generative counterfactual explanation, whereas the
extrapolation of the gradient toward the counterfactual class is the feature attribution
explanation. By utilizing the path integral approach, we ensure that the property of
implementation invariance is maintained for functionally equivalent neural networks,
when the same set of hyper-parameters is employed.

Intuitively, we want an instance x ∈ X and its counterfactual explanation x′
c to

be “close”. To this end, we let all example-based counterfactual explanation be the set
C = {xc ∈ X|f(xc) ̸= f(x)} and define nearest counterfactual neighbour (NCFN) as:

x′
c = argmin

xc∈C
δ(x,xc), (5.3)

where δ is an arbitrary distance function between two instances.

From NCFN, we can compute generative counterfactual explanations that are closer
to the decision boundary. Formally,

Definition 5.5 Given a model f , for an instance x with its NCFN x′
c, let γ be the line

defined by x and x′
c. The generative counterfactual example of x is

x̂c = argmin
xc∈γ,f(xc )̸=f(x)

δ(x,xc). (5.4)

74



5.4. Method

Intuitively, x̂c is the point on γ that barely crosses the decision boundary. It is clear
that x̂c is a counterfactual explanation to x. To obtain a feature attribution explanation
from x̂c, we simply revise IG as follows:

Ej(x, x̂c) = (x̂jc − xj)×
∫ 1

α=0

∂F (x+ α(x̂c − x))

∂xj
dα. (5.5)

This is calculated with the Riemann integration with a hyper-parameter K for the jth

dimension, with

ECFj (x, x̂c;K) = (x̂jc − xj)×
M∑
k=1

∂F (x+ k
K × (x̂c − x))

∂xj
× 1

K
,

approximating Ej(x, x̂c), for each feature (dimension) j in both x and x̂c.

In short, CF-IG produces an counterfactual feature attribution explanation by
integrating with respect to the partial derivative over linear interpolations between the
instance and its generative counterfactual instance. The interpolation stops when the
prediction changes (when the decision boundry is reached). We let the counterfactual
feature attribution ΦCF-IG be a vector of all attributions ECFj (·; ·), such that

ΦCF-IG(x, x̂c) = ⟨ECF1 (x1, x̂1c ;K), . . . , ECFJ (xJ , x̂Jc ;K)⟩. (5.6)

The complete counterfactual feature attribution explanation for all features is such that

ECF (x, x̂c;K) =
J∑
j=1

ECFj (xj , x̂jc;K). (5.7)

Thanks to the Riemann integration, the following property holds with respect to
ECF (x, x̂c;K).

Proposition 1. limM→∞ECF (x, x̂c;K) = τ − F (x).

Proof. For a straight line path γ between x and x′
c, we let [x,x′

c] be the interval
that the path γ traverses. A function ψ maps points in this interval to some α with
ψ(α) = ⟨x1(α), . . . , xJ(α)⟩. Thus integrating with respect to a change in α over x to x′

c

will represent a straight line interpolation from x to x′
c at each point α along γ.∫

γ
∇F · dψ =

∫ x′
c

x
∇F (ψ(α)) · ψ′(α)dα

=

∫ x′
c

x

d

dα
F (ψ(α))dα

= F (ψ(x′
c))− F (ψ(x))

= F (x′
c)− F (x),
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where ∇F is the gradient of F , ψ′ is the first derivative of ψ at α. Since x̂c is at the
decision boundary, we know F (x̂c) = τ . Considering the point x̂c exists on the path γ
from x to x′

c, then following rules of additivity for integrals we have:

∫ x̂c

x

d

dα
F (ψ(α))dα+

∫ x′
c

x̂c

d

dα
F (ψ(α))dα

=

∫ x′
c

x

d

dα
F (ψ(α))dα

rearranging the equation, we can solve for the intermediary point that occurs at τ ,
giving an explanation as K approaches infinity:

ECF (x, x̂c;K) =∫ x′
c

x

d

dα
F (ψ(α))dα−

∫ x′
c

x̂c

d

dα
F (ψ(α))dα

=

∫ x̂c

x

d

dα
F (ψ(α))dα

= τ − F (x)

Therefore, it is easy to see that as K approaches infinity, we have ECF (x, x̂c;K) =
τ − F (x)

5.4.2 Utilising Other Counterfactual Generative Methods

Up to this point, we have introduced an approach for CF-IG to generate counterfactual
explanations by leveraging example-based counterfactual explanations through NCFN.
Alternatively, it is possible to employ other counterfactual methods ϑ to create counter-
factual explanations and then apply CF-IG to them. We demonstrate that CF-IG will
generate counterfactual explanations that are either equidistant from or closer to the
original instance x compared to explanations produced solely by ϑ. Additionally, given
that certain counterfactual explanation methods might not inherently offer feature im-
portance, our CF-IG method can consistently generate feature attribution explanations
for these instances.

Proposition 2. The path from x to x̂c produced by CF-IG is shorter than or equal to
the length of the path from x to the NCFN point x′

c.

Proof. This is trivially true as the path connecting x, x̂c and x′
c is a straight line; and

x̂c is between the other two points.

We can generalize Proposition 2 to show that for a counterfactual explanation x′
c

found by any method, CF-IG finds x̂c such that Φ(x, x̂c) ≤ Φ(x,x′
c), formally:

Proposition 3. For an instance x and its counterfactual explanation, it holds that

lim
M→∞

x′
c, E

CF (x, x̂c;K) ≤ ECF (x,x′
c;K). (5.8)
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Proof. Direct from proposition 1, as:∫ x′
c

x
∇F (ψ(α)) · ψ′(α)dα = F (x′

c)− F (x)

and: ∫ x̂c

x
∇F (ψ(α)) · ψ′(α)dα = τ − F (x)

since τ ≤ F (x′
c), as M approaches infinity it is clear that:∫ x̂c

x
∇F (ψ(α)) · ψ′(α)dα ≤

∫ x′
c

x
∇F (ψ(α)) · ψ′(α)dα

=⇒ τ − F (x) ≤ F (x′
c)− F (x)

=⇒ ECF (x, x̂c;K) ≤ ECF (x,x′
c;K)

Therefore, the attribution and prediction probability of a point produced by CF-IG, is
closer to the origin x and the associated attribution and prediction probability.

Remark 5.6 Explanations given by CF-IG are bi-directional as a path γ is invertible:∫
−γ
∇F · dψ = −

∫
γ
∇F · dψ.

Therefore, we can similarly interpret the explanations from both directions, going from
a factual class to a counterfactual class as well as going from a counterfactual class to a
factual class.

5.4.3 Evaluation

In order to evaluate the performance of CF-IG, we propose metrics that measure against
the listed properties. To determine the satisfiability of the implementation invariance
property, a metric for the consistency of explanations over a set number of R runs is
proposed. We let consistency be measured using the Root Mean Squared Error (RMSE)
from the first generated explanation:

RMSE(Φ,xi, x̂
i
c);R) =

√∑R−1
r=1 (Φ

0(xi, x̂ic)− Φr(xi, x̂ic))
2

R− 1
.

Here, Φ is a counterfactual feature attribution method. We let Φ0 be the initial
run of R total runs, and Φr be the rth iteration of ⟨Φ1, . . . ,ΦR−1⟩ iterations, here
we let ith counterfactual example x̂ic be found through equation 5.4 with respect
to its corresponding xi instance. We can then deduce across N instances, where
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X = ⟨x1, . . . ,xi, . . . ,xN ⟩ the consistency of the counterfactual feature attribution
method, such that:

consistency =
1

N

N∑
i=1

RMSE(Φ,xi, x̂
i
c;R)

Similarly, we consider two variants of proximity measures for counterfactual exam-
ples that are produced by different counterfactual methods, namely: proximityl2 and
proximitycosine. Here, proximityl2 uses the Euclidean distance metric to compare sam-
ples and proximitycosine uses cosine distance. The l2 distance (distl2) between two
vectors x and y is the Euclidean distance given by:

distl2(x,y) =

√√√√ J∑
j=1

(xj − yj)2.

Therefore, we define proximityl2(X,Y ) over two sets X and Y , each containing N
instances as:

proximityl2(X,Y ) =
1

N

N∑
i=1

distl2(xi,yi).

The cosine distance (CS) between two vectors x and y is:

CS(x,y) = 1− x · y
||x||2||y||2

;

We define proximitycosine(X,Y ) over two sets X and Y as:

proximitycosine(X,Y ) =
1

N

N∑
i=1

CS(xi,yi).

5.5 Results

5.5.1 Property Satisfiability

Property satisfiability explicates the underlying theoretical guarantees of a given method,
therefore we evaluate the satisfiaibility of CF-IG, DiCE and Wachter.

5.5.1.1 CF-IG

The property satisfiability of CF-IG is shown in Table 5.1.

Corollary 5.7 Counterfactual feature attribution explanations produced by CF-IG
satisfy counterfactual representativeness.
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Proof. As a direct consequence of proposition 1 counterfactual representativeness holds
for CF-IG.

Corollary 5.8 Feature attribution assigned by CF-IG satisfies representativeness.

Proof. Given Proposition 1 and the definition of the CF-IG method given in equation 5.5.
By expanding and evaluating each part of the equation that defines CF-IG separately,
we have:

J∑
j=1

ECFj (x, x̂c;K) =

J∑
j=1

x̂jc ×
K∑
k=1

∂F (x+ k
K × (x̂c − x))

∂xj
× 1

K︸ ︷︷ ︸
F (x̂c)

−
J∑
j=1

xj ×
K∑
k=1

∂F (x+ k
K × (x̂c − x))

∂xj
× 1

K︸ ︷︷ ︸
F (x)

.

therefore, F (x) and F (x̂c) are reproducible and representativeness (analogous to the
efficiency axiom in [LL17]) of both the origin instance x and x̂c hold.

Corollary 5.9 CF-IG satisfies counterfactual monotonicity.

Proof. Direct from proposition 3, it is clear that counterfactual monotonicity is satisfied.

Proposition 4. If there are two non-empty classes than an explanation given by CF-IG
will be a success and have relevance.

Proof. Given an instance exists in both classes a NCFN will always be found from
equation 5.3, thus an explanation can always be generated through using an instance
produced by equation 5.4 as an input to equation 5.5. As we can return an explanation
E(x, x̂c) in the form of counterfactual feature attribution an explanation will be a
success and maintain relevance.

5.5.1.2 DiCE

Table 5.1 shows that DiCE does not satisfy success, this is due to restrictions on
producing on valid counterfactual examples, if permutations do not cross the deci-
sion bound, then a counterfactual will not be returned. Similarly, DiCE does not
reproduce prediction probabilities of the black-box model, therefore does not satisfy
representativeness or counterfactual representativeness. From empirical evidence in
Section 5.5.2, DiCE does not provide consistent explanations and thus DiCE does not
satisfy Implementation Invariance. On the other hand, DiCE does provide a diverse
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Table 5.1: Comparison of the property satisfiability of counterfactual methods. Here
‘✓’ indicates the property is satisifed, ‘✗’ indicates the property is not satisifed and ‘-’
indicates that the property is not applicable or cannot directly be evaluated by the
method.

Property Imp. Invar. Relev. Rep. Success CM CR

NCFN ✓ ✓ - ✓ - -
DiCE ✗ ✓ ✗ ✗ - ✗

Wachter ✗ ✓ - ✗ - -
CF-IG ✓ ✓ ✓ ✓ ✓ ✓

DiCE+CF-IG ✗ ✓ ✓ ✗ ✓ ✓

Wachter+CF-IG ✗ ✓ ✓ ✗ ✓ ✓

set of counterfactual examples and is useful in producing a diverse set of observable
examples. Simiarly, DiCE also is capable of producing explanations on unseen instances
and therefore satisfies relevance.

5.5.1.3 Wachter

The Wachter method is a generative counterfactual method that produces counterfactual
examples. The counterfactual examples that are produced by Wachter are inconsistent as
shown in Tables 5.3 and 5.4 thus empirically does not satisfy implementation invariance.
It is also not guaranteed that Wachter generates a counterfactual example and therefore
does not satisfy success. It is possible to generate counterfactual examples on unseen
instances meaning that relevance holds.

5.5.1.4 CF-IG+Wachter & CF-IG+DiCE

Here we evaluate the property satisfiability of CF-IG when combined with counterfactual
examples that are generated by Wachter and DiCE.

Corollary 5.10 CF-IG with the addendum of a generative counterfactual example will
satisfy relevance, representativeness, counterfactual representativeness and counterfac-
tual monotonicity.

Proof. Replacing the counterfactual example generated by NCFN, namely x′
c, by us-

ing a counterfactual example that is generated using any generative counterfactual
method as an input to equation 5.5, will inherently satisfy relevance, representativeness,
counterfactual representativeness and counterfactual monotonicity. This is not true for
implementation invariance or success as the generated counterfactuals are not the same
on each run as evident from Tables 5.2, 5.3 and 5.4, also there is no guarantee that
Wachter or DiCE return a counterfactual for a given instance x.
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Table 5.2: Comparison of the consistency given across a collection of counterfactual
methods that produce attribution/importance values. We observe that the CF-IG
method produces consistent explanations given N = 100 and R = 10.

Consistency Skin Breast Rectal Lymphoma

DiCE 0.25 0.18 0.21 0.23
CF-IG 0 0 0 0

DiCE+CF-IG 1.59e-08 0.001 0.001 0.017
Wachter+CF-IG 0.0002 8.22e-05 0.0001 0.0003

5.5.2 Experiment

The experiments in this chapter use data derived from the Simulacrum1 (introduced
in Chapter 3). We isolate cohorts of patients based on their ICD-10 code, to generate
datasets where patients are separated into the binary sets ≥ 6 months and < 6 months
survival. This allows us to pose the question:

Given a set of patient features, which features influence the change in the
prediction?

Thus to evaluate consistency when evaluating the aforementioned question, the
explanations are produced over a subset of 100 cancer patients (of a total 1750), for
10 iterations across 4 datasets (see Table 5.2). Here, we only consider DiCE, CF-IG,
Wachter+CF-IG and DiCE+CF-IG as these methods produce feature-attribution values.

Extrapolating on this, we explore the addendum of CF-IG that utilises generative
counterfactual examples. Here we only consider DiCE and Wachter due to the algorithm
accessibility for PyTorch and tabular data. Conceptually from proposition 3, CF-IG will
produce counterfactuals closer or equal to the distance of any counterfactual example
method.

The term Proximity that has been used in work surrounding counterfactual exam-
ples [VDH20]. In this work, we consider proximity to be the average distance from
each input sample to each of their corresponding counterfactual examples to be a
measure of proximity, a quantifiable metric. We measure counterfactual examples using
proximitycosine and proximityl2 (see Tables 5.3 and 5.4), we note that the instances that
are compared have been normalised for proximityl2 as this is not scale invariant. Here,
we observe when the CF-IG method is used in concatenation with DiCE and Wachter,
the interpolated example from CF-IG is closer than DiCE and Wachter independently.

Note that the larger aberration in consistency of the DiCE method is due to how
feature-importance is assigned. DiCE can often produce importance values of 1 across
multiple instances, and it is common that CF-IG produces feature-importance values
<< 1 per feature. Similarly, DiCE promotes diversity, where further information is
given in [MST20].

1https://simulacrum.healthdatainsight.org.uk/
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Table 5.3: Comparison of the proximity between original and counterfactual instances
using the cosine distance between vectors. This is experimented over 100 instances on
each dataset.

Proximitycosine Skin Breast Rectal Lymph

NCFN 0.00030 0.001 0.001 0.009
DiCE 0.00239 1.21e-06 2.12e-06 0.0002

Wachter 0.00020 0.0001 0.003 7.95e-05
CF-IG 0.00028 0.0007 0.0012 0.009

DiCE+CF-IG 0.00027 5.78e-08 1.81e-06 6.07e-05
Wachter+CF-IG 0.0001 1.55e-05 0.00027 1.75e-05

Table 5.4: Comparison of the proximity between original and counterfactual instances
using l2 distance. This is experimented over 100 instances on each dataset.

Proximityl2 Skin Breast Rectal Lymph

NCFN 0.00247 0.005 0.0051 0.0135
DiCE 0.00241 0.0007 0.0002 0.002

Wachter 0.0020 0.003 0.008 0.0012
CF-IG 0.00239 0.004 0.0050 0.0134

DiCE+CF-IG 0.0023 0.0005 0.0001 0.0011
Wachter+CF-IG 0.0017 0.002 0.002 0.0005

5.5.3 Explanations

In this section, we demonstrate explanations generated by our methods and propose a
straightforward interactive form of counterfactual feature attribution visualization. We
implement the standard feature attribution visualization technique, employing positive
and negative (green and red) bar plots to represent the corresponding positive and
negative feature attribution values (similar to [LL17, RSG16]). Furthermore, to depict
the counterfactual, we augment each feature name on the y-axis with the respective
change required to achieve the counterfactual explanation. By hovering over each
attribution bar, one can access the original feature value and the new feature value for
the instance’s counterfactual, along with the specific attribution value.

It is important to note that the attribution aligns with the counterfactual class;
however, as mentioned earlier, inverting the explanation values provides attribution
towards the original class. To enhance clarity, we present original and counterfactual
feature values solely for the features that were altered, as shown in the associated tables.
We note that counterfactual feature values produced by CF-IG are continuous, thus
post-processing for discrete features may be necessary.

While we demonstrate this method using examples where the counterfactual is
determined using the NCFN technique, it is essential to recognize that explanations
can also be generated in conjunction with counterfactual examples produced by DiCE,
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Wachter, or any other counterfactual example generator. In our experimental setup, we
establish the decision boundary for the desired class at a prediction probability of 0.5.

In Table 5.5 we consider both the factual and counterfactual breast cancer patient
instances. The explanations generated by CF-IG, CF-IG+Wachter and CF-IG+DiCE
are given in Figures 5.2,5.3 and 5.4.

Table 5.5: Encoded breast cancer patients for counterfactual explanations given on for a
patient instance. Here for clarity ‘≈’ implies an infinitesimally small change to a feature
value. Here we observe pairs of each explainer (separated with a double line) without
(resp. with) the addendum of CF-IG, the closest distance to the origin instance for the
pairs is in bold. For each pair we observe that CF-IG produces values that are closer
to the original instance. Here we evaluate the normalised instances and corresponding
Euclidean distance.

Features Instance NCFN CF-IG DiCE CF-IG+DiCE Wachter CF-IG+Wachter

Age 78 78 78 78 78 55.58 59.65
Sex 0 0 0 1 ≈ 0 0 0

Morph 6 6 6 6 6 1 2
Weight 84 52.6 57.38 84 84 69.04 71.75
Height 1.67 1.7 1.69 1.67 1.67 ≈1.67 1.67

Dose Admin. 600 1800 1617 269.39 493.46 193.92 267.59
Outcome 0 6 5 0 0 0 0

Admin Route 5 3 3.30 5 5 1.85 2.42
Time Delay 3 3 3 3 3 1.65 1.89

Stopped Early 1 1 1 1 1 0.93 0.95
Cycle 1 3 2.69 1 1 ≈1 ≈ 1
Grade 2 2 2 2 2 1.68 1.74

Cancer Plan 0 1 0.84 0 0 0 0
Ethnicity 7 0 ≈ 1 7 7 1.65 2.73

Creg Code 6 5 5.1 6 6 1.37 2.21
T Best 4 6 5.69 4 4 1.50 1.96
CNS 4 4 4 4 4 1.5 2.29
ACE 4 2 2.3 4 4 3 3.22

Performance 1 1 1 1 1 ≈ 1 ≈ 1
Clinical Trial 4 1 1.45 4 4 3.95 ≈ 4

Normalized Distance 0 1.64 1.39 1.01 0.05 1.41 1.11

5.6 Conclusion

In conclusion, the CF-IG approach introduced in this chapter provides a robust and
principled framework that upholds essential XAI principles while addressing the intricate
demands of counterfactual explanations within the context of causal analysis. While
path-based methodologies serve as strong theoretical foundations [FZTN22], their
pragmatic implementation within feature spaces often presents challenges. Notably,
CF-IG consistently delivers implementation-invariant explanations that provide insights
into underlying black-box models.

The relevance of counterfactual explanations in medical applications cannot be
understated. The ability to explore ”what-if” scenarios, particularly by modifying
features for individual patients, holds profound potential. Consider the impact of
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Figure 5.2: Illustrative explanation example of the CF-IG method, highlighting the bar
interaction features of the explainer. Here the counterfactual method is applied to a
breast cancer patient example. In this explanation we inspect the features: T Best,
Dose Administration and Weight. Here we also observe the magnitude of the Clinical
Trial attribution by value.

Figure 5.3: Illustrative explanation example of the CF-IG +Wachter method, highlight-
ing the bar interaction features of the explainer. Here the counterfactual method is
applied to a breast cancer patient example. In this explanation we inspect the features:
T Best, Dose Administration and Weight. Here we also observe the magnitude of the
Ethnicity attribution by value.
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Figure 5.4: Illustrative explanation example of the CF-IG + DiCE method, highlighting
the important features identified by the explainer in changing the outcome. Here the
counterfactual method is applied to a breast cancer patient example.

optimizing treatment plans based on counterfactual insights, facilitating personalized
interventions that account for a patient’s unique attributes and constraints.

In this pursuit, the CF-IG method stands as a promising contribution to advancing
XAI in medical domains. With its solid theoretical foundation and empirical validation,
CF-IG represents a pathway to more transparent and effective decision-making processes
in healthcare. Through the integration of AI-driven insights with the intricacies of
patient-centered care, CF-IG offers a glimpse into the future of healthcare, where
innovation aligns harmoniously with practicality.
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Chapter 6

Formalising Batch-Integrated
Gradients for Temporal
Explanations
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6.1 Introduction

In this chapter we formally expand on the previous with modifications to both better
define the Batch-IG approach and produce a further analysis of the method. Theoretical
analysis of Integrated Gradients (IG) [STY17] has shown that IG calculates attribution
in a game theoretic manor, this accounts for continuity by integrating between points.
This has been compared (and proven to be equivalent in many cases) to state-of-the-art
SHapley Additive exPlanation (SHAP) [LL17] values when calculating SHAP value
attribution against a baseline, namely Baseline Shapley (BShap) [SN20] in [FZTN22].
However, whilst both methods are theoretically sound, the IG method is an extension on
the discrete SHAP values to a continuous domain. Therefore, in this work we consider
the adaptation of path integral methods as to utilise the continuity of data and inherit
smooth explanations, whilst subsequently adhering to the game theoretic properties
identified in the SHAP method [LL17].
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Constructing XAI methods with respect to the temporal nature of data has often
been overlooked [SSV21], despite that there are many problems of a temporal nature.
Whilst methods such as SHAP have been applied to temporal data [DP21, VABH22],
each instance is treated as independent and does not take into account relationships
corresponding to time. In a non-technical short paper [DFFS23], the authors utilise
the continuity of IG and conceptually introduce the idea of Batch-Integrated Gradients
(Batch-IG) method to produce explanations for temporal data. In this chapter we con-
tribute a formal introduction, comparison and evaluation of the method when measured
against state-of-the-art explainers and properties of explainability in a temporal setting.

The Out of Distribution (OoD) problem is a clear concern when dealing with linear
interpolations between points [PSK22]. Because the baseline for IG contains a vector of
all-zeros there is no guarantee that the path is in-distribution. Therefore, in our new
approach the idea is to maximise in-distribution interpolations. We propose an extension
to this method to redirect paths generated by path integrated gradient methods. Taking
the temporal aspect into account gives further insight into the importance of features.

Although, time-series explainability has been explored [CVDS21], local temporal
explanations are often not, although they are often preferred in a medical setting
[TJMG19]. Thus, the Batch-IG method enables us to answer the question “how does
the change of features over a time period alter the prediction?”, which to our knowledge
has not been explored outside of this method.

The nature of evaluating XAI methods and determining the performance of path
based methods is difficult since there is no ground truth to access. To combat this, we
propose a set of temporal properties and metrics, to evaluate temporal explainability by
constructing controlled experiments for property satisfiability under temporal constraints.
We similarly devise a controlled experiment for path evaluations under known data
structure and a metric for determining path quality on real-world datasets to determine
the quality of interpolations.

The objectives of this chapter are to:

1. introduce properties for temporal explainable AI methods;

2. introduce mathematical foundations and provide a formal evaluation of the
Batch-IG method;

3. evaluate the proposed method with other state-of-the-art XAI methods to identify
property satisfiability and against known and introduced axiomatic properties;

4. provide controlled experiments to quantitatively analyse the performance of path
based methods and produce example explanations on temporal data;

5. evaluate Batch-IG on two real-world case studies.

The rest of this chapter is organised as follows: In Section 6.2, we provide a formal
introduction to the Batch-Integrated Gradients method for temporal data. Section 6.3
analyses existing properties for XAI and introduces new properties for temporal data.
Section 6.4 provides a formal evaluation of path based methods and discusses how
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Figure 6.1: Illustrative example of Batch-IG. Given an input at time point xt, Interval-
IG is demonstrated between time points, and the path for accumulated gradients over
linear interpolations is shown to the destination time point xt+2. Here we show how
Batch-IG would traverse through a cluster to minimise out-of-distribution interpolations.
Batch-IG also produces feature-attribution values for its explanations.

they conform with the introduced and existing properties. In Section 6.5, we introduce
controlled experiments to both, determine the validity of the paths generated by path
based methods and measure the faithfulness of XAI methods. Then in Section 6.6, we
apply our method to real world education and a public health scenario. The purpose of
this chapter is to formally introduce and evaluate the Batch-IG method.

6.2 Method: Batch-Integrated Gradients

To construct the proposed Batch-IG method, we formulate the framework with three
steps, (1) cluster the data such that there exists at least one centroid, (2) search for an
optimal path utilising the cluster centroids (if necessary), (3) generate an explanation
along a path between time points. This, in the unique setting will utilise clusters if
path traversal is greatly out of distribution, in the general case, step 2 will be omitted.
Thus, we only consider the direct path between time points.

Given a dataset X = ⟨x, b, y⟩, where x is an instance, y is the output prediction
probability for x and b is an index that refers to an instances assigned time batch χb.
Informally, each instance indexed with the same value of b will belong to the same
time-batch χb ⊆ X. Time points are represented as xt ∈ χb, where t ∈ [1 : T ]. The
notation [z1 : z2] for brevity denotes a set of sequential natural numbers from z1 to z2,
such that z1 < z2.
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Interval-IGj(xt,xt+1) :=


(xjt+1 − x

j
t )×

∫ 1
α=0

∂F (xt+α×(ω̂i−xt))
∂xj

+ ∂F (ω̂i+α×(xt+1−ω̂i))

∂ω̂j
i

dα,

if there exists a ω̂i;

(xjt+1 − x
j
t )×

∫ 1
α=0

∂F (xt+α×(xt+1−xt))
∂xj

dα,

otherwise.

(6.2)

We consider a path that either traverses through the cluster centroid nearest to
the proceeding time point xt+1, or a path to traverse direct between time points xt
and xt+1. Therefore, we consider a set of clusters C to be given by an arbitrary cluster
algorithm (e.g. k-means) C(·) on a instances of a dataset x ∈ X, where each cluster
contains a unique cluster centroid. We let Ci ∈ C refer to a single cluster of instances.
We let ωi ∈ Ci be the cluster centroid of Ci. We let a set of centroids be denoted Ω,
where Ω = ⟨ω1, . . . , ωc⟩.

Definition 6.1 (δ-distance) The δ-distance is a function δ(·, ·) that takes two vectors a
and b and quantifies the distance between both vectors given any distance measurement,
such that:

δ(·, ·) : a× b→ R. (6.1)

From this, we need a centroid ωi ∈ Ω that can be associated with given time points
xt (xt+1 resp.), using δ we look for a ωi that conditionally satisfies the following:

ω̂i = argmin
ωi∈Ω

δ(ωi,xt+1) : δ(ωi,xt) ≤ δ(xt+1,xt) ∧ δ(ωi,xt+1) ≤ δ(xt+1,xt)

here we let δ be the Euclidean distance in this body of work. Informally, we want
to find the nearest cluster centroid that is closest to the target time point xt+1. The
conditional addendum to equation 6.3 informally states that traversing the centroid
does not yield too much of a detour from xt to xt+1, whilst aiming to be close to xt+1.

Remark 6.2 If, there are no points that satisfy the condition given in equation 6.3, we
instead obtain a direct path from xt to xt+1.

We first introduce Interval-IG in equation 6.2 that subsequently produces an ex-
planation over the jth (feature) dimension of a time interval given by two time points
xt+1 and xt. Interval-IG serves as a fundamental component in the construction of
Batch-IG, providing a single path between two time points. This characteristic allows
Interval-IG to offer explanations specifically between two time points. In the context of
a time batch χb, Interval-IG generates at least T − 1 paths and up to 2(T − 1) paths.
The capability of Interval-IG to analyse attribution between two time points makes it
particularly advantageous in scenarios where such analysis is desired.
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Table 6.1: Qualitative evaluation of properties that are satisfied by Batch-IG, DeepSHAP,
SHAP, LIME and Gradient × Input when considering the temporal nature of data.
Namely, for calculation of attribution for all methods besides Batch-IG, we take the
difference in attribution between t+ 1 and t and determine whether the properties still
hold.

Property Batch-IG DeepSHAP SHAP LIME Gradient × Input IG

Time Completeness ✓ ✓ ✓ ✗ ✗ ✓

Time Sensitivity ✓ ✗ ✗ ✗ ✗ ✗

Relevance ✓ ✓ ✓ ✓ ✓ ✓

Representivity ✓ ✓ ✓ ✗ ✗ ✓

Irreducability ✓ ✗ ✗ ✗ ✗ ✗

Explainability ✓ ✓ ✓ ✓ ✓ ✓

Success ✓ ✓ ✓ ✓ ✓ ✓

Extending upon this definition, the Batch-IG method over the jth(feature) dimension
of a time-batch χb ⊆ X is defined:

Batch-IGj(χb) :=
T−1∑
t=1

Interval-IGj(xt,xt+1) (6.3)

Here T is the number of instances in χb. The explanation vector is written as
ΦBatch-IG = ⟨Batch-IG1(χb), . . . ,Batch-IGJ(χb)⟩.

6.3 Properties for Explainability

The implementation of Batch-IG utilise two important properties in its explanations:
Time Completeness (TC) and Time Sensitivity (TS). Roughly speaking, TC states that:
given a batch, the change to predictions between its initial and the next point can
be completely explained by Batch-IG explanations, such that the sum of attributions
between two points is equal to the difference prediction probability of the two points; TS
states that for features that are not changed in a batch, their corresponding Batch-IG
explanations are zero valued.

This is important as independence is assumed, the features that do not change over
time should have no attribution (see Section 6.5), and similarly, the attribution should
represent the change in the model between two points. Therefore, we formally introduce
TC as follows:

Property 3 (Time Completeness). Given a black-box function f , such that J is the
number of features, and a explanation method ϕj : R→ R for each feature j, then an
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explainer is time complete with respect to a black-box function if:

f(xt+1)− f(xt) =
J∑
j=1

ϕj(xt+1)−
J∑
j=1

ϕj(xt).

The second property, TS, can be established as follows:

Property 4 (Time Sensitivity). Only features that are dynamic can have a non-zero
attribution. Thereby, for attribution along the jth dimension where j is dynamic, we
have ϕj(xt+1)− ϕj(xt) ̸= 0 for all j that are dynamic and our function mathematically
depends on.

TS allows us to conceptualise dynamic and static features in this work, with a
similar notion to uncontrollable and controllable features seen in the Controllable fActor
Feature Attribution (CAFA) method [KLS+22] and actionability seen in counterfactual
methods [VDH20, PSSR+20].

In the case of time, where we are dealing with the same object in a different state,
we introduce dynamic (F d) and static (F s) features, similar to that introduced by the
authors of [KLS+22], such that F d ∩ F s = {}, we refer to

F d = {xj |xjt ̸= xjt+1 ∈ χb}
(resp. F s = {xj |xjt = xjt+1 ∈ χb}),

such that, if the feature value xjt at one time point is not equal to the feature value of
xjt+1 at the next time point, then we can consider this feature dynamic (resp. static).

Properties for explainability introduced in [ABN22] allude towards a framework for
certain properties that describe desirable XAI methods in the classification landscape.
We give a non-formal introduction to the desired properties that we explore in this
work:

1. Success: An explanation is considered a success, if the explainer produces an
explanation for every instance.

2. Explainability: An explainer should provide informative explanations, and there-
fore an all-zero explanation is not recommended.

3. Irreducability: Irreducability states that an explanation should not contain irrele-
vant information.

4. Representivity: Representivity states that prediction probabilities should be
reproducible by the explainer.

5. Relevance: Relevance indicates that explanations should be possible on unseen
instances.
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6.4 Formal Evaluation

We provide a formal evaluation, to determine property satisfiability of Batch-IG when
considering the temporal aspect of the data.

Proposition 5. Interval-IG returns the difference in prediction probabilities between
two time points xt and xt+1.

Proof. Consider two points along a path γ on a closed interval [xt,xt+1], where
F (xt)(resp. F (xt+1)) represents a function f applied to x at two time points xt and a
proceedings xt+1. Let ψ represent a path γ as a function at α on a path traversing the
interval [xt,xt+1] where ψ(α) = ⟨x1(α), . . . , xJ(α)⟩, we have∫

γ
∇F · dψ = F (xt+1)− F (xt)

as ∫
γ
∇F · dψ =

∫ xt+1

xt

∇F (ψ(α)) · ψ′(α)dα

=

∫ xt+1

xt

(
∂F

∂x1
dx1

dα
+ . . .+

∂F

∂xJ
dxJ

dα

)
dα

=

∫ xt+1

xt

d

dα
F (ψ(α))dα

= F (ψ(xt+1))− F (ψ(xt))
= F (xt+1)− F (xt).

Proposition 6. Any path given by Interval-IG through a cluster centroid from equation
6.3, namely ω̂i between two time points, will equal the difference in prediction probability
of the two time points xt and xt+1.

Proof. Considering a path γ and associated path function ψ specifying a path between
points xt, ω̂i and xt+1, from the additive property for integrals we have:∫ ω̂i

xt

d

dα
F (ψ(α))dα+

∫ xt+1

ω̂i

d

dα
F (ψ(α))dα

=

∫ xt+1

xt

d

dα
F (ψ(α))dα

= F (xt+1)− F (xt)

93



6. Formalising Batch-Integrated Gradients for Temporal Explanations

It follows that Batch-IG returns the prediction probability that is equal to the
difference in prediction probability between the first time point x1 and final time point
xN in a batch χb. Direct from proposition 6 it is easy to see that, the integral can be
generalised over a time batch χb containing T time points, such that:∫ xT

x1

d

dα
F (ψ(α))dα = F (xT )− F (x1) (6.4)

It follows that the Batch-IG method can return the prediction probability at time
points independently. From the definition of Interval-IG given in equation 6.2, since
Interval-IG always arrives at xt+1. Simply distributing the difference (xjt+1 − x

j
t ) out

and summing over the j (feature) dimensions gives:

J∑
j=1

xjt+1 ×
∫ 1

α=0

∂F (xt + α× (xt+1 − xt))

∂xj
dα︸ ︷︷ ︸

F (xt+1)

.

and

J∑
j=1

xjt ×
∫ 1

α=0

∂F (xt + α× (xt+1 − xt))

∂xj
dα︸ ︷︷ ︸

F (xt)

respectively. This can be carried out for all N time points within a time batch. Thus,
the Representivity property is satisfied. The information retained by path would
in turn satisfy the Explainability property in that any instances that differ in both
features and prediction probability do not return an empty explanation.

Notably, the integral towards any intermediate point ω̂i has a path length less than
or equal to the path length between an initial time xt and the final point in time xt+1,
as from equation 6.3, it is known that a path length for two points xt and xt+1 can be
given by:

δ(xt,xt+1) = ||ψ′(α)||dα

=

∫ xt+1

xt

√(
dx1

dα

)2

+ . . .+

(
dxJ

dα

)2

dα.
(6.5)

Under equation 6.3 the following Euclidean distance inequality holds for a intermediate
point ω̂i, where:

ω̂i : ||ωi − xt||2 ≤ ||xt+1 − xt||2 ∧ ||ωi − xt+1||2 ≤ ||xt+1 − xt||2

Then, by substituting in any point that satisfies the requirements of ω̂i into equation
6.5, we have:

δ(ω̂i,xt+1) ≤ δ(xt,xt+1) ∧ δ(ω̂i,xt) ≤ δ(xt,xt+1).

94



6.4. Formal Evaluation

6.4.1 Computable Property Satisfiability

TC holds for Batch-IG explanations as follows. To satisfy TC, we must show that
this holds for Interval-IG, as this then generalises to Batch-IG, thus we must first
approximate the integral with a Riemann sum of Interval-IGj , for simplicity we show
this for the straight line path between time points and therefore Interval-IGR

j is defined:

Interval-IGR
j (xt,xt+1) := (xjt+1 − x

j
t )×

1

K

K∑
k=1

∂F (xt +
k
K × (xt+1 − xt))

∂xj
. (6.6)

Extrapolating from equation 6.6 and simplifying to a straight line between time points

we let θjK = 1
K

∑K
k=1

∂F (xt+
k
K
×(xt+1−xt))

∂xj
, we have the straight line path integral ap-

proximation of Batch-IG over the jth feature dimension and by utilising the concept of
directional derivatives, as K approaches infinity, we have:(

F (xt+1)− F (xt)
)
−
( J∑
j=1

θjKx
j
t+1 −

J∑
j=1

θjKx
j
t

)
= 0. (6.7)

as shown by proposition 6, it is clear this holds given any intermediary points. To
obtain a computable solution, one can obtain a minimal value of K, given a positive
real number τ close or equal to 0 as a hyper-parameter with the following steps. Firstly,
we define a precision parameterised on K, ∆P (·;K), as

∆P (f, χb;K) =

N−1∑
t=1

((
|F (xt+1)− F (xt)|

)
−
(
|
J∑
j=1

θjKx
j
t+1 −

J∑
j=1

θjKx
j
t |
))

. (6.8)

Then, we can find a minimum value for K namely K̂, that satisfies

K̂ = argmin
K

∆P (F, χb;K) : ∆P (·) ≤ τ.

With K̂ substituting K in Equation 6.7, we have

T−1∑
t=1

(∣∣ J∑
j=1

θj
K̂
xjt+1 −

J∑
j=1

θj
K̂
xjt
∣∣) ≤ N−1∑

t=1

((
|F (xt+1)− F (xt)

∣∣) + τ

)
. (6.9)

Next, we show how TS holds for Batch-IG for all features that are unchanged along the
jth dimension. Dynamic and static features will be inherently defined by Interval-IGR

j

for each j, as the weights along the jth dimension equal 0 where xjt+1 = xjt , therefore:

0× 1

K

K∑
k=1

∂F (xt +
k
K × (xt+1 − xt))

∂xj
=⇒ Interval-IGR

j (F
s
xjt ,x

j
t+1

) = 0. (6.10)

Thus, it follows that any two adjacent time points of Batch-IG satisfies the time
sensitivity property. Satisfying time sensitivity implies that there is no requirement
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for human input, as the method will differentiate dynamic from static features and
instead rely on the data within a time batch. Refer to Table 6.1 for each XAI methods
adherence to the aforementioned time-oriented properties. Following this, it is clear
that for any property that holds for path methods hold constrained to some degree of
τ , or are otherwise intrinsically enforced (see equation 6.10).

6.5 Controlled Experiments

In this section, we evaluate the performance of different XAI methods by, (1) measuring
the faithfulness corresponding to a generated synthetic dataset, to determine attribution
recovery over time points, and, (2) provide a comparison of path based methods by
evaluating the ease of fitting the assigned paths to the data.

6.5.1 Faithfulness

We generate a simple synthetic data set where the importance of features are known.
Therefore, we define the input data set to be a RD×2 matrix of instances, where
D = 50, 000 and a label for an instance at time point t is given by

pt = 2 sin(x1t ) + 4 sin(x2t ).

Considering an instance given at time-point t and t+1 respectively, keeping the subscript
notation for time points, we have the time batch χb containing xt = ⟨4t, 2t⟩ and
xt+1 = ⟨4t+1, 1t+1⟩. Generating the true labels we have pt ≈ 2.1235 and pt+1 ≈ 1.8522,
the change in value equates to ∆pt ≈ −0.2713, therefore the difference in attribution is
given by the difference in the second term of the equation at both time points, namely
∆pt = 4 sin(1)− 4 sin(2), as the first term is the same.

We compare Batch-IG to DeepSHAP, SHAP, LIME, Gradients × Input and IG in
the controlled setting to determine if the returned attribution recovers the difference in
prediction whilst correctly assigning attribution from our example (see Table 6.2). We
observe that Batch-IG indeed identifies feature change impact most accurately, exceeding
all other methods. Thus, we show that empirically only Batch-IG implementations
satisfy irreducability over time. We provide a table of property satisfiability in
Table 6.1.

6.5.2 Comparison of Path Based Methods

To compare the quality of given paths, we use the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) to analyse the model performance given the
different paths that are generated by the path based methods: IG and Batch-IG. This
will allow us to see how well the attributed paths can fit to the given data. The use of
a Gaussian Mixture Model (GMM) enables the analysis of AIC and BIC, and to see
how well a generated path can conform to the cluster densities and be able to fit in
distribution with a degree of confidence.

96



6.5. Controlled Experiments

Table 6.2: We demonstrate attribution recovery for an instance, such that we know the
ground truth. Therefore, the difference in predictions should be fully recovered by the
attribution given to x2. We take the difference in attribution between t+ 1 and t for
example Φ(x2) = Φ(x2t+1)− Φ(x2t ).

XAI Method (Model) f(xt+1) - f(xt) Φ(x1) Φ(x2)

DeepSHAP (ANN) -0.2737 0.0008 -0.2744

Batch-IG (ANN) -0.2737 0 -0.2737

LIME (XGBoost) -0.2705 0.0835 0.1352

SHAP (XGBoost) -0.2705 0.0002 -0.2708

Gradient × Input (ANN) -0.2737 -0.0002 1.8969

IG (ANN) -0.2737 0.0049 -0.2783

Table 6.3: Table containing the BIC and AIC scores for different path based methods.
From this we observe that the lowest AIC and BIC in the given synthetic datasets is
given by Batch-IG, indicating superior performance in the given cases (note: the step
sizes for each model equate to the same with respect to the Riemann approximations
across the entire path.)

BIC AIC

Generated set 1
IG: 9054.83

Batch-IG: 8615.70
IG: 8964.50

Batch-IG: 8525.37

Generated set 2
IG: 8786.99

Batch-IG: 8663
IG: 8696.67

Batch-IG: 8572.67

Generated set 3
IG:8867.69

Batch-IG: 8745.42
IG:8777.37

Batch-IG: 8655.09

To construct this experiment, we generate 3 clusters with known labels {0, 1, 2}.
Each generated dataset contains 2000 instances with 2 independent feature dimensions,
with a cluster standard deviation of 0.6. Whereby, there exists a cluster between the
starting points xt and end point xt+1. Thus, we can utilise the optimised variant in the
unique case.

Upon generating the clusters, we fit a neural network to the data, posterior to this
we can then generate our path integrals between points. To test this, we select a target
point xt+1 (i.e. the point to explain) to be the centroid of one cluster. We then use our
prior time point xt (for Batch-IG) to be the furthest cluster centroid, and the all zeros
baseline is used for IG. The GMM fit enables us to extract AIC and BIC values (the
lower the better) seen in Table 6.3.
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Table 6.4: The student example corresponding to the generated explanations given in
Figure 6.2.

Week Diff. Sol. Dec. Needs Active Insp. Alert Surp. Cur. Conf. Anx. Joy.

Week 1 1 3 6 7 7 4 4 4 3 4 3 1 3

Week 2 2 6 5 5 5 4 5 5 5 5 5 4 4

Week 4 4 1 7 7 7 5 5 5 4 5 3 2 4

6.6 Applications

To demonstrate applications of Batch-IG, we introduce two datasets, namely: Education
Data used in [ZLF+23] and COVID data used in [KED+21]. We observe that the
education research does not include student based analysis with respect to week traversal,
and similarly, the latter is restricted to explaining a single time point with current
XAI methods. Thereby, we omit the limitations by producing temporal explanations
for further analysis for given samples. We then provide an evaluation of the Batch-IG
generated paths against IG.

6.6.1 Education Data

The education data contains 8 weeks of anonymized student records over a single module.
From this, we consider the multiclass classification problem:

Given a set of 17 independent variables, what factors contribute to a change
in students determination over given weeks?

Whereby, the dependent variable follows a 5-point Likert scale (0 = not at all, 5
= extremely). Explainers such as SHAP would give us an independent explanation
corresponding to each week, as opposed to traversing explanations corresponding to
weekly time points. Similarly, for details corresponding to the Likert scale with respect
to independent variables, see [ZLF+23].

The dataset is split into a training set containing all weeks ≤ 4 (179 instances), and
the respective testing dataset contains weeks > 4 (99 instances), where a simple neural
network has been fit over the multi-class classification problem.

Upon this, we can consider the following example: “Given a student that has attended
the first 3 weeks, and naturally became more determined (determined with a Likert score
of 4 on week 1 to 5 on week 2 and 4), which factors lead to this student being more
determined?”.

For demonstration, we consider a student over 4 weeks (see Table 6.4). We generate
the following explanations given in Figure 6.2. One example we can infer from the given
explanation is that the increase in anxiety between weeks 1 and 2, lead to a decrease in
determination, whereas, from weeks 2 to 4, there’s a decrease in anxiety leading to an
increase in determination and increase in activity between weeks 2 to 4 increased how
determined the student was. Similarly, an increase in inspiration in weeks 1 to 2 had
the most impact during those weeks in the student being more determined.
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Figure 6.2: Attribution over time transitions, between weeks 1, 2 and 4 for a student for
predicting the how determined they are, where the accumulated average gradients per
time-interval are associated with Likert value 5 for determined (extremely determined.).

6.6.2 COVID Data

The COVID dataset used in [KED+21] is collated via the Public Health England
website1, we omit details regarding the curation of the dataset as this can be found in
[KED+21]. From this we consider the binary classification problem:

Given a set of 18 independent control measures and the temperature and hu-
midity on a day, given any region can we determine which factors contributed
to an increased rate of infection?

Here each temporal data point corresponds to a day τ , at time t. The independent
variables for example “School Closure = 0” indicates that there has been no control
measures implemented as of yet, respectively “School Closure = 1” indicates the first
0-5 days that the subsequent control measure has been placed by each increment of

1https://www.gov.uk/government/organisations/public-health-england
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1 corresponds to a 5 day period. The binary classification problem is regarding an
increase in rate of infection Rt ≥ 1 = 1 or a decreased rate of infection Rt < 1 = 0.

Consider a time-batch corresponding to a single region “East Midlands”. For a
simple example we form an analysis of two days in the East Midlands, whereby the
rate of infection (Rt) for both days is class 1 (Rt ≥ 1), but the prediction probability
towards class 1 increased over the day transition (see Table 6.5). We use our introduced
method to identify which factors had positive or negative influence between control
measures and the weather, over the day transition.

We provide illustrative explanations as an example in Figure 6.3. In this transition
between days, we can see many new control measures transitioning to 1, the first day
of the first week of implementation. What we can observe is that the implementation
of cafe and restaurants control measure has the largest influence towards the class 0
(Rt < 1), meaning that this feature had the most influence in decreasing infection rate,
inline with findings seen in [KED+21].

Figure 6.3: Attribution over time transitions, between the days 12 and 13, whereby
most features had transitioned into the next period of time that the control measures
had been in place.

6.6.3 Performance

We evaluate the root mean squared error (RMSE) of the difference in prediction
probabilities assigned to a generated path and the probabilities in predicting the
generated path with a separate independently trained network. More formally, we
let F 0(ψ(α)) generate prediction probabilities at a point α towards a target class,
and let F l(ψ(α)) be a separate l(0 ≤ l ≤ L) network that generates prediction
probabilities. Therefore, we have a collection of L networks, ⟨F 1, . . . , FL⟩, here
L = 5, that generate probabilities for each time point along a given path ψ where
f 0 generates the target probabilities over 0 ≤ α ≤ T time points. Thereby, our
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Table 6.5: The public health COVID data corresponding to the explanations given
Figure 6.3.

Temperature Humidity Meeting Friends/Family (Indoor) High

Day 12 4.38 73.29 0

Day 13 5.4 67.12 1

Meeting Friends/Family (Indoor) Mod Meeting Friends/Family (Outdoor) High Meeting Friends/Family (Outdoor) Mod

Day 12 0 0 0

Day 13 1 1 1

Domestic Travel High Domestic Travel Mod International Travel High

Day 12 0 0 0

Day 13 1 1 1

International Travel Mod Cafes and Restaurants High Cafes and Restaurants Mod

Day 12 0 0 0

Day 13 1 1 1

Pubs and Bars High Pubs and Bars Mod Sports and Leisure High

Day 12 0 0 0

Day 13 1 1 1

Sports and Leisure Mod Hospitals/ Care and Nursing Home Visits High Hospitals/ Care and Nursing Home Visits Mod

Day 12 0 0 0

Day 13 1 1 1

Table 6.6: RMSE comparing Batch-IG against the IG path over 5 functionally equivalent
Neural Networks for predicting the path interpolation values on the Education dataset.

RMSE l=1 l=2 l=3 l=4 l=5

Batch-IG 1.0678 0.2588 0.1524 0.2141 0.0742

IG 1.5464 1.0257 0.4863 0.6990 0.5747

Table 6.7: RMSE comparing Batch-IG against the IG path over 5 functionally equivalent
Neural Networks for predicting the path interpolation values on the COVID dataset.

RMSE l=1 l=2 l=3 l=4 l=5

Batch-IG 0.0827 0.4328 0.3072 0.0731 0.3202

IG 0.2431 0.6192 0.5680 0.2027 0.4138

RMSE metric is defined as:

RMSE(F 0, F l|ψ) =
√∑n

α=1 F
0(ψ(α))− F l(ψ(α))2

T

We can observe that Batch-IG had a lower RMSE over all network evaluations
across both datasets for the generated paths.

6.7 Conclusion

In this chapter, we formally introduced and evaluated Batch-IG, as an extension
to minimise the OoD problem seen with linear interpolations with a temporally
influenced baseline instance when compared to the IG method. We enabled the
ability for temporal explanations and provided an analysis against state-of-the-art
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methods on both controlled and real data. We extrapolated an analysis to property
satisfiability through theoretical and empirical analysis. We finally provided real
world case study explanations produced by our method. Our comparison shows
that the paths produced by our method out-performed IG in the given cases.
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Chapter 7

The Minimisation and
Quantification of Path-Based
Uncertainty for Generative
Counterfactual Explanations
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7.1 Introduction

Given the prevalence of big data and increased computability, the application of
Deep Neural Network (DNN) methods are a commonality. However, the intricacies
and depth of DNN architectures lead to results that lack inherent interpretability.
In pivotal domains such as healthcare and finance, interpretability is crucial and
thus the application of eXplainable Artificial Intelligence (XAI) to extract valuable
insights from the DNN models is widespread [BMP23, CMR+23].

The Path-Integrated Gradients (Path-IG) [STY17] formulation presents ax-
iomatic properties that are upheld solely by path-based explanation methods. The
Out-of-Distribution (OoD) problem is prevalent in the application of path-based
explanation methods [DSZ+23]; here the intuition is that traveling along a straight
line path can incur irregular gradients and thus provide noisy attribution values
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[KVA+21]. Another known limitation of many Integrated Gradient (IG) [STY17]
based approaches is the selection of a baseline reference; thus the Adversarial
Gradient Integration (AGI) [PLZ21] method relaxes this constraint by generating
baselines in adversarial classes. We note that AGI utilizes the path-based approach
for generating counterfactual examples, and for this reason will be a primary
baseline for our proposed method throughout this paper.

Counterfactual explanations [Gui22] are often presented in the form of coun-
terfactual examples [WMR18, KMMTS21]; here the goal is to provide a coun-
terfactual example belonging to an alternative class with respect to a reference
example. Counterfactual approaches aim to answer the question:

“Given an instance, what changes can be made to change the outcome
for that instance?”

Naturally, this allows for empirical observation as to which changes could provide
an alternative outcome. The argument for using counterfactual methods is often
developed from a causal lens [Höf05, PGS+20]. It follows that to better evaluate
this causal relationship, a promising avenue is to unify feature attribution with
counterfactual examples, as demonstrated by the Diverse Counterfactual Explana-
tions (DiCE) [KMMTS21] method. Naturally, given quantitative approaches to
feature attribution calculation such as these, ideally feature attribution methods
should adhere to desirable axioms across XAI literature [STY17, ABN22]. Thus,
we aim to utilize state-of-the-art feature attribution assignment as to satisfy key
axioms in our model development. Another concern with production of coun-
terfactual examples is the production of realistic paths to successfully create a
counterfactual example; therefore we shall be exploring uncertainty.

Uncertainty quantification is not often considered when producing explanations,
although some approaches have explored this. Examples include [SHSL21] where
post-hoc model-agnostic approaches such as Local Interpretable Model-Agnostic
Explanations (LIME) [RSG16] and kernel SHapley Additive exPlanations (SHAP)
[LL17] are adapted into a Bayesian framework to model the uncertainty of the
explanations produced. Since path-based methods are implementation invariant
with respect to the model, the explanations will be consistent and thus there
will be no variance in the explanations produced. In this way uncertainty quan-
tification in the form of repeated runs of the XAI algorithm as elucidated in
[MCR+23], while applicable to post-hoc approximation XAI methods, will not
suffice for implementation-invariant models. Autoencoder-based frameworks have
also been used to measure uncertainty for both machine learning predictions
and explanations [ABA+21], with integration of uncertainty seen in the produc-
tion of counterfactual examples [MGM+22, GFBG21]. Inherently, autoencoder
approaches provide a more suitable basis for attribution settings by evaluating
uncertainty in explanations with respect to the uncertainty inherent in the data.
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The standard autoencoder approach evaluates the reconstruction error, which is
often utilized in work surrounding anomaly detection [TMG23, AFF23]; instead,
we explore the use of a variational autoencoder (VAE) for variational inference,
and thus investigate counterfactuals generated with respect to our approximation
of the true data distribution.

To address the above constraints, we propose the Quantified Uncertainty
(Path-Based) Counterfactual Explanations (QUCE) method. The focus of the
proposed method is three-fold. We aim to

• minimize uncertainty and thus maximize the extent to which the generated
paths and counterfactual examples are within distribution;

• relax the straight-line path constraints of Integrated Gradients;

• provide uncertainty quantification for counterfactual paths and counterfac-
tual feature attribution.

In this chapter, we focus on the minimization of uncertain paths for counterfactual
generation with quantifiable uncertainty measures on the generated counterfactual.
QUCE’s learning process relaxes IG’s straight-line path restrictions as part of the
generative process. This instead allows us to answer the question:

“Given an instance, what is a realistic path we can obtain to change
the outcome of that instance, and how certain is it?”

Intuitively, it is unclear in many scenarios if one single best path toward an
alternative outcome exists; for example a patient’s treatment path may be unclear
[BSKM16], or there may be many viable paths to achieve the same outcome
[BSSG20]. Therefore, QUCE utilises both a single and multiple-paths approach, so
we can observe a generalized explanation over all paths for an instance in obtaining
a desired class and likewise inspect many example paths. From the multiple-paths
approach, we are able to gauge a general approximation over many piecewise linear
paths of the most important features in obtaining a desired counterfactual outcome,
each path independently aiming to minimize the uncertainty in its generative
process and thus provide greater in-distribution interpolation. Similarly, we present
the optimisation over the key metrics – proximity [Gui22], validity [Gui22] and
uncertainty [Sag22]. We provide an overview of some generative counterfactual
methods and evaluate which account for the aforementioned metrics in Table 7.2.
We provide a simple illustrated example in Figure 7.1.

7.2 Axioms for Path-Based Explainers

Here we informally introduce axioms used in XAI literature. In the seminal work
of [STY17], the authors introduce a set of axioms which play a foundational role
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Figure 7.1: A simple illustration demonstrating QUCE generated examples and associ-
ated paths. It illustrates paths and counterfactual examples weighted towards being in
distribution. The dotted line is the straight line IG path towards the QUCE generated
examples. The bold line is the QUCE generated path. The grey point is an example of
an instance generated on proximity and opposing class alone.

Table 7.1: An overview of generative counterfactual methods and their consideration of
key metrics. Here we observe of the three metrics QUCE is the method that accounts
for all three.

Properties Proximity Validity Uncertainty

QUCE ✓ ✓ ✓

DiCE ✓ ✓ ✗

AGI ✓ ✓ ✗

for the development of path-based feature attribution methods. Informally, these
encompass:

• Completeness: The difference in prediction between the baseline and input
should be equal to the sum of feature attribution values.

• Sensitivity(a): For every input and baseline that differ in one feature and
for which the subsequent prediction is different, feature attribution should
only be given to that one feature.

• Sensitivity(b): If the neural network is not mathematically dependent on
one feature, the feature attribution assigned to that feature should be 0.
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• Implementation Invariance: Two functionally equivalent neural networks
should produce the same feature attribution as an explanation.

The above axiomatic guarantees are for path-based explainers and for this reason
we utilise the path-based formulation in this chapter.

7.3 Proposed Model: QUCE

7.3.1 Generating Counterfactuals with QUCE

To generate counterfactuals we propose a three-part objective function with a
composite weighting vector Λ = ⟨λ1, λ2, λ3⟩, where each λ ∈ Λ is an independent
tolerance (weight) used to determine the influence of each part of the joint objective
function presented in equation 7.1. By minimizing the objective function, we
obtain the generated counterfactual xc. Informally, our objective function is
composed of three parts:

• Lpr, for the maximization of the probability towards the desired class;

• Lδ, to minimize the distance between the instance and a generated counter-
factual;

• Lϵ, to minimize the uncertainty of both the generated paths and generated
counterfactual examples.

Combining these terms with our weighting vector, we have

G(x) = argmin
xc

λ1Lpr + λ2Lδ + λ3Lϵ. (7.1)

Having constructed our generative objective function, we provide further notation
to illustrate the learning process. First, we consider an iterative learning process
such as gradient descent on x to produce a path from x to a generated xc. Thus,
we aim to minimize the developed function G(x) through the gradient descent
approach (variants include, e.g., SGD and ADAM). We initially let xc = x; xc is
updated via

xc ⇐ x∆i
,

∆i = φ∇xc(G(x)),
x∆i

= x−∆i.

Let x be updated on a loop over i(0 ≤ i ≤ n) iterations; when i = n we let have
our xc indicating our generated point. Here φ represents the “learning rate,” a
small positive multiplier value φ ∈ [0, 1] : φ << 1. We store each update on xc as
a vector x∆ = ⟨x∆0 , . . . ,x∆n⟩.
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7.3.2 Finding Counterfactuals

7.3.2.1 Valid Counterfactuals

A key concept in finding counterfactual examples is ensuring that the counter-
factual is indeed valid, and thus we aim to produce counterfactual examples
that belong to a counterfactual class. Thus, given a target counterfactual class
T ∈ {0, 1}, probabilistic function F : RJ → [0, 1] and probabilistic decision
threshold τ ∈ [0, 1] we aim to find an instance xc that satisfies

F (T |xc) ≥ τ. (7.2)

Here τ is a probability threshold for the target class T . Thus, we need a generator
G that satisfies the condition in equation 7.2. To achieve this, we can maximize
the likelihood of an instance belonging to a class T . The maximum log likelihood
criterion is defined as:

Lpr =
[
log[F (T |xc)]

]
such that, we only accept counterfactuals where F (·|·) ≥ τ . For optimisation
we can rewrite this as a minimization problem, instead minimizing the negative
log-likelihood:

Lpr =
[
− log[F (T |xc)]

]
.

This constitutes the constrained optimisation problem with respect to some target
class T .

7.3.2.2 Proximity for Counterfactuals

Given an instance, in the production of counterfactual examples we often aim to
find a counterfactual example that is “similar” in feature space to the instance.
This is often termed proximity.

In this work, we use the l2 norm as the proposed model focuses on producing
counterfactuals from continuous features, defining proximity as follows:

Definition 7.1 (Proximity) Given an instance x and its counterfactual example
xc, the proximity between the two instances is given by

Lδ =
[
1

2
||xc − x||2

]
. (7.3)
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7.3.2.3 Minimally Uncertain Counterfactuals

To maximize the certainty of counterfactual examples, we examine their complement–
namely, the uncertainty associated with a counterfactual example. To explore this,
we establish the concept of counterfactual uncertainty. Informally, we consider
uncertainty to be the Evidence Lower Bound (ELBO) as measured by a Variational
Autoencoder (VAE) framework. The objective function ELBO is comprised of two
components, namely the Kullbeck–Leibler (KL) divergence and a reconstruction
loss. This is defined as the following:

VAELoss(x) = Eqθ [log qθ(z|x)− log pψ(z)]−Eqθ log pψ(x|z)

where p and q are probability distributions and z is the latent representation of x.
The aim is to find a θ that successfully models the true training data distribution
ψ, and thereby satisfying the following minimization problem:

{θ∗, ψ∗} = argmin
θ,ψ

VAELoss(x) (7.4)

Intuitively, ELBO aims to produce a p and q that are as close as possible while
simultaneously optimizing the mapping of z back to its original representation x,
through learning to model the distributions with the parameters θ and ψ. Thus it
suffices to say that if the reconstructing loss is minimized, the decoded z should
successfully map back to x. Posterior to the pre-trained VAE, we now have a
fixed representation shaping our p and q distributions with our parameters θ∗ and
ψ∗ and thus we can provide counterfactual uncertainty as:

Definition 7.2 (Counterfactual Uncertainty) Following equation 7.4, we simply
take the loss without minimization to be the counterfactual uncertainty, thus
given our fixed parameters θ∗ and ψ∗, we have

Lϵ = Eqθ∗ [log qθ∗(z|xc)− log pψ∗(z)]−Eqθ∗ log pψ∗(xc|z).

7.3.3 Uncertainty in Counterfactual Explanations

Definition 7.2 allows for the evaluation of new generated instances with a measure
of how “good” the fit of the new instance is with respect to the training data
distribution, and similarly how well a path fits into the data distribution.

From definition 7.2 we have a quantifiable measure of uncertainty for the
generated counterfactual xc. Expressing this in vector form as a difference, which
is needed for modifying and updating our generated xc to adjust for underlying
uncertainty, we define Feature-wise Counterfactual Uncertainty by simply looking
at the reconstruction error, defined for simplicity as follows:
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Definition 7.3 (Feature-wise Counterfactual Uncertainty) Given counterfactual
uncertainty, we can rewrite a reconstruction error equivalent at a feature level by
calculating a vector of differences ϵd such that

ϵd = ⟨|d1|, . . . , |dJ |⟩ : ⟨d1, . . . , dJ⟩ = d; (7.5)

where d = xc − x̂c. (7.6)

With this representation, we can then successfully update xc by both adding
and subtracting this vector of feature-wise counterfactual uncertainty as given by
the reconstruction error, and thus we can calculate Counterfactual Explanation
Uncertainty.

Definition 7.4 (Counterfactual Explanation Uncertainty) Given a CFA ΦCF

and the feature-wise counterfactual uncertainty ϵd, the counterfactual explanation
uncertainty is given by

Φϵd
CF = ΦCF (xc ± ϵd|x). (7.7)

7.3.4 Path Explanations

The Path-Integrated Gradients [STY17, PLZ21, KVA+21, YWB23] formulation
is the only approach to our knowledge within the landscape of feature attribution
methods that satisfies all the feature attribution axioms in Section 7.2. Therefore
we adopt the path integral formulation and relax the straight-line constraint seen
in IG. To achieve this, recall the set of learned updates on x, namely x∆. It follows
that we can produce explanations over x∆ with respect to a neural network F .

Formally, let the function F be a continuously differentiable function, the
QUCE explanation takes the path integral formulation such that given a smooth
function ψ = ⟨ψ1, . . . , ψJ⟩ : [0, 1] → RJ defining a path in RJ , where ψ(α) is a
point along a path at α ∈ [0, 1] with ψ(0) = x∆0 and ψ(1) = x∆n , the single-path
QUCE explainer is defined as

ΦQUCE(x
∆) := (x∆n − x∆0)×

(∫ x∆n

x∆0

∇F (ψ(α)) · ψ′(α)dα

)
. (7.8)

It follows that explanation uncertainty with respect to a single generated counter-
factual xc is given as

Φ±ϵd
QUCE(xc) := ((xc ± ϵd)− xc)×

(∫ xc±ϵd

xc

∇F (ψ(α)) · ψ′(α)dα

)
. (7.9)

We present the QUCE framework in algorithm 1. We now show through the proof
of proposition 7 that the QUCE explanations are easily computed.
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Figure 7.2: Here we illustrate two explanations produced on the Wisconsin Breast Cancer
Dataset given by the proposed QUCE method. We observe how each feature influenced
the change in the prediction in attempting to generate a counterfactual example. We
see the left explanation has almost no uncertainty in generated explanation, whereas the
right image demonstrates a large degree of uncertainty in the generated counterfactual
explanation.
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Proposition 7. The QUCE explainer has a computable Riemann approximation
solution for each feature.

Proof. Proof provided in the supplementary material.

Both attributed values from equation 7.9 illustrate uncertainty in feature
attribution values given by the QUCE explainer. In proposition 8 and its associated
proof we show the implications of weighting uncertainty.

Definition 7.5 (λ-tolerance) An increase in λ-tolerance refers to the reduction of
any component λ of Λ. Likewise, a decrease in λ-tolerance refers to the increase
of any component λ of Λ.

Naturally, as the weight for uncertainty decreases, we lean towards an increased
tolerance of the effects of uncertainty in our explanations. The reasoning behind
this is that we may sometimes accept a higher degree of uncertainty, depending
on the purpose of generating counterfactuals and the volatility of the task.

Proposition 8. Increasing the λ-tolerance of uncertainty provides a more flexible
search space for possible paths to a generative counterfactual example.

Proof. This is trivial subject to λ3 approaching zero. Proof provided in the
supplementary material.

Due to the stochastic nature of our model under nondeterministic variants
of gradient descent (e.g. optimization with stochastic gradient descent [SG71]),
and with potentially multiple minima (e.g. we may have two points equally
“close” to the decision bound with different values), we consider a set of generated
counterfactual examples to be given as C = ⟨xc,1, . . . ,xc,b⟩, where b is the number
of generated counterfactual examples over some set x. Given C, we can accumulate
attribution over many counterfactuals by avoiding the specification of xc; our
lower limit is implicitly assumed to be our instance to explain x, so that we have

ΦexQUCE(x) :=

∫
xc

(
ΦQUCE(x

∆)

)
pC(xc)dxc (7.10)

where we integrate over pC the distribution of C for all xc ∈ C and we can instead
rewrite the integral as an expectation as follows:

ΦexQUCE(x) := E
xc∼C,α∼U(0,1)

[
ΦQUCE(x

∆)

]
. (7.11)

Here we let α ∼ U(0, 1) indicate interpolation over α for m counterfactual steps
in the generator function. Informally, we get the expectation of the gradients over
the piecewise linear path between counterfactual steps of the generator. We take
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a similar approach to the Expected Gradients [EJS+21] formulation, except that
instead of sampling from a background set of baselines, we sample from a set of
generative counterfactual examples. We make two arguments as to why we use
this approach:

• In explaining a counterfactual outcome, we do not know the specific path
taken and thus we can average over many paths.

• We can invert the path to explain x and therefore we can have many
generative baselines. This relaxes the specified baseline of many existing
path-based explanation methods.

To further extend on the axiomatic guarantees of path-based explainers, we show
via proposition 9 that completeness holds when working with the many-paths
approach for expected values.

Proposition 9. Given the function ΦexQUCE(x), the expected difference in

prediction probabilities between generated counterfactuals in the set C with respect
to the prediction probability given by F (x), the following equality holds:

E
xc∼C,α∼U(0,1)

[
ΦQUCE(x

∆)

]
(7.12)

= E
xc∼C

[
F (xc)− F (x)

]
(7.13)

Proof. This is a direct consequence of the completeness axiom; the proof is
provided in the supplementary material.

It follows that the expected value approach is equally computable and is a
direct extension of proposition 8. We illustrate this in corollary 7.6’s simple proof.

Corollary 7.6 The expected QUCE variant has a computable Riemann approxi-
mation solution for each feature.

Proof. This follows from proposition 7; the proof is provided in the supplementary
material.

Going further, we demonstrate monotonic relationships for generated counter-
factual instances that are given by the multiple paths approach. This is a further
consequence of the completeness axiom and is expressed in corollary 7.7.
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Corollary 7.7 Given two sets of counterfactual examples C1 and C2 for an
instance x,

if E
xc∼C1

[
F (xc)− F (x)

]
≤ E

xc∼C2

[
F (xc)− F (x)

]
,

then E
xc∼C1

[
ΦexQUCE(x)

]
≤ E

xc∼C2

[
ΦexQUCE(x)

]
.

Proof. This is a direct consequence of proposition 9 and the completeness axiom.

Given we can compute many-paths explanations, it follows that we can also
take the expected gradients for the explanation uncertainty computed by QUCE
along each path, such that

Φ±ϵd
exQUCE(xc) := E

xc∼C,α∼U(0,1)

[
Φ±ϵd
QUCE(xc)

]
. (7.14)

Algorithm 1 Quantified Uncertainty Counterfactual Explanations (QUCE)

X is a dataset, F is a deep network, VAELoss(·) is a pretrained VAE on X, G(·)
is the joint objective function for QUCE, T is the target class, τ is a probability
threshold towards target class, K is the number of Riemann steps, n is the number
of gradient descent updates, φ is a learning rate.
i=1
x∆ = []
procedure QUCE(x)

pass the instance x into the function G
initialise an instance xc = x
while i ≤ n do

update xc with xc − φ∇xc(G(x))
append updated xc to x∆

increment i
end while
if F (T |xc) ≥ τ then

pass the output xc into VAELoss and return ϵd
take the K-step Riemann integral approximation over x∆

take the K-step Riemann integral approximation between xc and xc ± ϵd
return xc, explanation vector, two uncertainty explanation vectors for xc ± ϵ

end if
end procedure
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7.4 Experimental Setup

7.4.1 Datasets

7.4.1.1 The Simulacrum

The Simulacrum1 is a synthetic dataset used in this study, the Simulacrum is a
large dataset developed by Health Data Insight CiC and derived from anonymous
cancer data provided by the National Disease Registration Service, NHS England.
We produce five subsets of patient records based on ICD-10 codes corresponding
to lung cancer, breast cancer, skin cancer, lymphoma and rectal cancer. These
datasets are organised as survival time classification problems, where patients are
predicted a survival time of either at least 6 months or less than 6 months.

7.4.1.2 COVID Rate of Infection

The COVID rate of infection dataset contains details on control measures, tem-
perature, humidity and the daily rate of infection for different regions of the UK.
Details on data collection are provided in [KED+21]. This dataset is a binary
classification task identifying an increased rate of infection against a non-increased
rate of infection.

7.4.1.3 Wisconsin Breast Cancer

The Wisconsin Breast Cancer (W-BC) [WS95] dataset, provided in the scikit-learn
library2, is a binary classification dataset that classifies malginant and benign
tumours given a set of independent features from breast mass measurements.

7.4.2 Baseline Methods

For comparison, we consider a selection of methods that aim to generate counter-
factual examples and also a collection of path-based explainers.

7.4.2.1 Diverse Counterfactual Explanations

DiCE, a counterfactual generator, provides feature attribution values for an
instance with respect to its counterfactual examples. We use the DiCE method as
a comparison for generating counterfactual examples, as DiCE is not a path-based
explainer, we can only compare the generated counterfactuals.

1https://simulacrum.healthdatainsight.org.uk/
2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_

cancer.html
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7.4.2.2 Integrated Gradients

The IG feature attribution method produces explanations for instances in a given
dataset. To achieve this, the approach is to integrate over the gradients of a
straight-line path from an all-zero baseline vector to the instance to be explained.
We modify this in our experiments so that our baseline becomes the instance to
be explained, while the target instance is the counterfactual generated by QUCE,
so we can evaluate the straight path solution against the QUCE-generated path.

7.4.2.3 Adversarial Gradient Integration

The Adversarial Gradient Integration (AGI) [PLZ21] approach provides an alter-
native form of feature attribution that also produces generative counterfactual
examples. The AGI method is the only path-based generative counterfactual
method currently available to our knowledge and thus forms the primary focus of
our comparison. We use the Individual AGI algorithm presented in their paper.

7.5 Quantitative Evaluation

To evaluate the implementation of generative counterfactual examples, we propose
using the VAE loss to determine how well the counterfactual examples fit to the
underlying data distribution.

7.5.1 Path-Based Uncertainty Comparison

Table 7.2: Comparison of the average path uncertainty on the generated counterfactual
instances. This is experimented over 100 instances from the training and testing sets of
each dataset. Here we have 1000 steps (path interpolation instances) for the Riemann
approximation of every path-based approach, thus effectively 100×1000 instances. Here
the lower value the better. The proposed QUCE method shows superior performance
on average when comparing counterfactual path-based approaches.

Path Lϵ Lung Breast Skin Lymph Rectal COVID W-BC

Train

QUCE 0.92±0.32 0.82±0.26 0.94±0.41 0.74±0.06 0.86±0.28 1.36±0.15 0.82±0.16
IG-QUCE 0.95±0.32 0.84±0.27 0.96±0.41 0.76±0.06 0.86±0.29 1.39±0.11 0.84±0.20

AGI 1.94±1.86 1.49±0.95 1.80±1.47 0.92±0.28 2.19±2.23 2.01±0.15 0.93±0.36

Test

QUCE 0.82±0.34 0.91±0.28 0.82±0.31 0.69±0.19 0.80±0.29 0.61±0.07 0.83±0.29
IG-QUCE 0.83±0.33 0.91±0.28 0.82±0.31 0.70±0.19 0.79±0.29 0.67±0.05 0.85±0.33

AGI 1.22±1.16 1.83±0.97 1.34±1.20 0.89±0.28 1.57±1.35 0.82±0.11 0.96±0.55

To evaluate the QUCE method, we provide a comparison of uncertainty along
a path. To do this, we use a pre-trained VAE, feeding all generated instances
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along any path into the VAE to determine the reconstruction error for all given
instances along a path. The intuition behind this is that a smaller reconstruction
error is associated with a path that better follows the data distribution and is
therefore more “realistic”.

In Table 7.2 we evaluate the path uncertainty across 100 instances from both
the training and test data. From this, we observe that the QUCE method provides
paths that better follow the data distribution when compared against both IG
and AGI on average. Here we reiterate that IG is used with the generated QUCE
instance, which already aims to minimize VAE loss, and is therefore used to show
the minor differences in relaxing the straight-line path requirements, although
this may not always be necessary.

7.5.2 Counterfactual Uncertainty

Table 7.3: Comparison of the average reconstruction error between original instances
and their generated counterfactual examples. This is experimented over 100 instances
on each dataset. Here we observe that the proposed QUCE method performs best across
all datasets.

Counterfactual Lϵ Lung Breast Skin Lymph Rectal COVID W-BC

Train

QUCE 1.01 0.78 0.97 0.71 0.85 1.25 0.93
DiCE 1.97 1.02 1.48 1.10 1.27 1.57 3.63
AGI 2.93 2.07 2.61 1.01 3.48 2.40 1.22

Test

QUCE 0.93 0.91 0.86 0.67 0.83 0.76 1.08
DiCE 1.95 1.09 1.33 1.18 1.22 0.92 3.00
AGI 1.68 2.75 1.87 1.02 2.38 0.84 1.41

We use counterfactual uncertainty as a measure to evaluate generative coun-
terfactual examples given by the QUCE method. This is a simple measure of the
average reconstruction error across the generative counterfactual examples across
each instance in a dataset. We measure this against the DiCE and AGI methods,
as both provide counterfactual examples in their generative process.

In Table 7.3 we present the counterfactual uncertainty over 100 instances from
both the training and test datasets over each of the datasets. Here, we observe
that QUCE provides a lower value with respect to uncertainty measurements
compared to both the DiCE and AGI methods, implying that the instances
generated by QUCE better follow the data distribution and can thus be thought
of as more likely, subject to the dataset. Further experiments on the deletion
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game seen in [YAWM23, AJ23], reconstruction error and a theoretical evaluation
against further explainability axioms presented in [ABN22] are provided in the
supplementary material.

7.6 Conclusion

In this chapter, we provide a novel approach that combines generative counterfac-
tual methods and path-based explainers, minimizing uncertainty along generated
paths and for generated counterfactual examples. We provide an analysis of the
proposed QUCE method on path uncertainty, generative counterfactual example
uncertainty, and proximity. Our approach provides paths that are less uncertain
in their interpolations, so that more reliable gradients and explanations can be
extracted. Similarly, we provide a clear explanation of uncertainty, including when
and where it exists, as seen in the example explanations provided in Figure 7.2.
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Chapter 8

Explaining Incomplete Data
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8.1 Introduction

The importance of eXplainable Artificial Intelligence (XAI) has surged since
the GDPR’s “right to an explanation” mandate [SP17], compelling the need for
explanations in inherently opaque AI models. This necessity significantly impacts
the medical domain, resulting in widespread applications of XAI in medicine
[TG21, ZWL22, DFB+21].

Feature attribution represents a collection of common techniques in XAI, with
a variety of approaches found in the literature [ZHH+21, KLS+22]. These methods
seek to explain predictions by quantifying the influence of individual features.
Common strategies for feature attribution include leveraging interpretable models
within local contexts [RS22, RSG16, LL17, ZK21, PMT18] and utilizing gradient-
based methods [SCD+17, STY17, DFS22, DFFS23].

In the seminal work by Lundberg et al. [LL17], a pivotal paper in the field of
feature attribution, the authors emphasize the “missingness property” shared
by many attribution methods. Essentially, if a feature in a prediction instance
lacks a value, it is assigned negligible (zero) importance in the explanation. While
this property is generally desirable, leading state-of-the-art methods like Local
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8. Explaining Incomplete Data

Interpretable Model-Agnostic Explanations (LIME) [RSG16], SHapley Additive
exPlanations (SHAP) [LL17], and others [SGK17, BBM+15, ŠK14] adhere to it,
it can be problematic when dealing with data containing missing values.

Consider a prediction instance where a feature is missing a value; according to
the missingness property, this feature receives no attribution. This deficiency can
substantially impact both the prediction and the explanation, posing challenges
in providing a realistic explanation and corresponding prediction. Furthermore,
the prevalence of incomplete data in Electronic Health Records (EHR) is a well-
documented issue [WCNK13, HAD21]. Handling missing feature values is an
ongoing and pervasive research challenge. In the literature, various imputation
methods have been proposed [HC20], aiming to fill in missing data and construct
complete datasets. A natural consequence of poor imputation is the chance of
producing a counterfactual patient state or invoking bias, thus leading to erroneous
conclusions.

For instance the k-Nearest Neighbour (kNN) imputation [JAB21] shows a con-
sistently good performance on a collection of numeric regression and classification
datasets. The Multivariate Imputation by Chained Equations (MICE) imputation
method has seen applications in several medical research [HSP+19, RLS15], with
both kNN and MICE being used simultaneously in various studies [LLY+23].

Similarly, other popular methods include Generative Adversarial Imputation
Nets (GAIN) [DFsY+21] a method that utilises Generative Adversarial Networks
(GAN) [GPAM+14], SoftImpute [MHT10] a method utilising soft-thresholded
singular value decomposition and MissForest [SB11] a method that utilises the
random forest method. Across the recent works of [JCL+22, DFsY+21], it is
observed that MiCE, MissForest, GAIN and SoftImpute exhibit a competitive
state-of-the-art performance.

However, existing feature imputation algorithms are far from perfect. Consider
a patient instance taken from the SEER breast cancer dataset [TEN19] 1 as shown
in Table 8.1. Suppose that Feature 7, “Tumor Size” is missing in the dataset.
Different imputation methods will give different estimation to the missing value,
which will result in different explanations, as summarised in Table 8.2. Note
that Surrogate Set Imputer (SSI) is the imputation method introduced in this
work. We see that the SSI method produces imputed values that are closest to
the ground truth, which in turn gives better explanations. In light of the recent
prominence of state-of-the-art XAI methods emphasizing the importance of local
surrogate models, we extend this concept to the development of a novel imputation
technique. We leverage “local neighborhood” information, as to generate locally
faithful imputations. We use a simple model as to enhance the interpretability of
our results. Subsequently, we assess the quality of these imputations by comparing

1The SEER dataset at https://ieee-dataport.org/open-access/seer-breast-cancer-data is
a classification dataset containing 11 numerical attributes.
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8.1. Introduction

Feature Feature Feature SHAP
Index Name Value Explanation

1 Age 57 -1.74
2 T STAGE 0 -0.12
3 N STAGE 0 0.45
4 6TH STAGE 0 1.37
5 GRADE 1 -2.45
6 A STAGE 1 0.14

7 TUMOR SIZE Missing 0

8 ESTROGEN STAT. 0 -3.33
9 PROGESTERONE 0 1.55
10 REGIONAL NODE E. 22 0.94
11 REGIONAL NODE P. 1 1.35

Prediction: 81 Months Survival Time

Table 8.1: A patient instance taken from the SEER breast cancer dataset. For illustration,
we will consider Feature 7, Tumor Size to be missing in our comparison of imputation
algorithms. Such missingness yields 0 feature attribution explanation.

Imputation Imputed SHAP
Method Value Explanation

SSI 10.78 9.22
Iterative 34.21 -5.87
kNN 21 0.80
GAIN 23.29 0.12

SoftImpute 25.48 3.43
MissForest 18.30 5.14

Ground Truth 12 11.76

Table 8.2: Imputation results from different methods. The ground truth is Feature 7,
Tumor Size with a feature value of 12. The SSI method produces the closest imputed
value of 10.78. Similarly, the SSI method yields an explanation that is closest to the
one computed with the feature value ground truth.
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them to ground truth data. In our pursuit of creating imputations for missing
data, we identify specific properties that must be satisfied to achieve improved
explainability.

This study makes several contributions:

1. We introduce a set of properties that connect explanations and imputa-
tions, providing a comprehensive framework for explaining predictions with
incomplete data.

2. We present an innovative method for feature imputation, designed to address
the challenges of missing data and interpretability.

3. We propose metrics for evaluating both explanations and imputations, al-
lowing for a thorough assessment of their performance.

The rest of this chapter is structured as follows. Section 8.2 provides back-
ground information on feature attribution methods and introduces one popular
imputation technique. In Section 8.3, we define a set of desirable properties that
imputation methods should adhere to, especially concerning feature attribution.
Section 8.4 outlines the details of our proposed imputation method. Section 8.5
examines theoretical properties of the our method. To assess the performance
of these methods and their impact on feature attribution, Section 8.6 presents
a comprehensive collection of experiments, including both existing and newly
proposed evaluation metrics.

8.2 Background

In the realm of managing EHRs and deciphering intricate medical data, under-
standing the significance of individual features within predictive models through a
concept known as feature attribution is paramount. Feature attribution techniques
shed light on the contribution of each feature to the overall predictive power of a
model, aiding the interpretation of complex machine learning algorithms.

Simultaneously, MICE, an imputation method introduced in [ASFL11], is a
popular method for addressing missing data within EHRs. MICE employs a series
of regression-based steps to impute missing feature values, making it effective for
data recovery and analysis in the medical field. More recently GAIN [DFsY+21]
takes advantage of the GAN approach that has been popularised in the last decade,
with ever increasing computation the capacity to perform well on big data has
increased for such deep models.

To extrapolate, in this section we briefly introduce feature attribution and
imputation methods.
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8.2. Background

Figure 8.1: The framework of the Surrogate Set Imputer method. Green arrows represent
returned outputs; Red arrows represent an iterative process; and the Blue represent
transitions in the pipeline once the Green-Red iterative processes are completed.

8.2.1 Feature Attribution Methods

When dealing with a probabilistic classifier or regressor f for any instance x =
⟨x1, . . . , xJ⟩, we obtain a prediction probability for a given predicted class or
regression value, represented as f : RJ → R, where f(x) signifies the probability
that x belongs to a specific class or produces a regression value. With the use of
an explainable method Φ, we can generate explanations for an instance x, where
Φ : RJ → R

J . In other words, one has Φ(x) = ⟨ϕ1, . . . , ϕJ⟩, which each ϕj is a
corresponding attribution value of a feature xj in x.

The process of attributing features when predicting a single instance is com-
monly known as “local” explanations, while the mean additive attribution across
all instances is referred to as “global” explanations. One notable feature attri-
bution method for explainable artificial intelligence (XAI) is Shapley Additive
Explanations (SHAP) [LL17], which draws inspiration from game theoretic Shap-
ley Values. We will not delve into further introduction here as SHAP has been
continuously cited and introduced in XAI literature.

Local Interpretable Model-Agnostic Explanations (LIME) is another method
that focuses on providing local explanations. LIME generates explanations by
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creating a surrogate dataset through perturbations and then applying weighted
linear regression with a modified k-lasso regularization over the surrogate set to
produce explanations. Similar to SHAP, we omit further introduction, as it is
well-documented in XAI literature; for more details, refer to [RSG16].

Later in our discussion, we will refer to the “missingness” property that feature
attribution methods adhere to. As current state-of-the-art research suggests
[BDGP22], additive feature attribution methods like LIME and SHAP, among
others [SGK17, BBM+15, ŠK14], conform to this missingness property.

8.2.2 Iterative Feature Imputation Method

Multivariate Imputation by Chained Equations (MICE) is a very popular method
used for Electronic Health Record (EHR) imputation. MICE [VBGO11] was
introduced in [ASFL11], where the algorithm’s details can be found. The MICE
imputation method considers multiple possibilities for the missing feature by
employing multiple regression models. As stated in [ASFL11], there are six steps
to the MICE method, and we provide an overview of each step.

1. Fill all missing feature values with a designated value, such as the mean.

2. Set the placeholder for one feature back to missing.

3. Regress the observed values given in step 2 for the feature on all other features
within the imputation model, treating all other features as independent
variables.

4. Replace the missing feature values with the predicted values.

5. Repeat steps 2 and 4 for each feature missing a value; this constitutes one
iteration of the process. Once all feature values have been imputed,

6. Repeat steps 2 and 4 for a specified number of iterations.

Given a flawed instance xd with a missing feature value, with MICE, we can
obtain a recovered version of the instance xr, which includes the imputed feature
value. When this process is iterated for each instance and feature value in the set,
we can obtain a recovered set Xr, where xr ∈ Xr. MICE is used as one of our
comparison baselines in this work.

8.2.3 Generative Feature Imputation Method

The Generative Adversarial Imputation Nets (GAIN) [DFsY+21] approach, in-
formally the GAIN archiecture follows that of a GAN, such that there are two
components, a generator G and discriminator D. The component G in the GAIN
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architecture is a generator, the generator observes components of a true data
vector and imputes synthetic data for the corresponding missing values from what
is observed. It follows that the component D takes the completed vector and
disseminates between what is imputed and what is not, here D is given “hints” on
what may be imputed, such that G is forced to learn and fool D, thus completing
the imputation process. The “hints” are given in the form of a hint matrix, which
can be seen as a mask over a subset of values to impute.

8.3 Nominative Properties of Imputation and
Explanation Methods

The robustness of imputed instances and their associated explanations is a crucial
aspect in the field of data analysis and interpretability. It revolves around the
idea that when we replace missing or defective data with imputed values, the
explanations derived from these imputed instances should ideally align with those
obtained from the original, complete data. This alignment ensures that the insights
and conclusions drawn from the imputed data remain reliable and consistent with
the overall understanding of the dataset.

To assess the robustness of imputation methods, we begin by examining certain
fundamental properties that should be upheld by any feature attribution and
imputation techniques. These properties serve as a baseline for evaluating the
performance and reliability of such methods. Furthermore, we introduce specific
metrics designed to quantify and assess the quality of both the explanations
provided by these techniques and the imputations they generate. This compre-
hensive evaluation framework allows us to gauge the effectiveness of imputation
methods in maintaining the integrity and consistency of the data and its associated
interpretations.

Let x be an instance. If any feature value in x is missing, then we write x as
xd, to denote that this is a defected instance. For performance evaluation, we
assume there is an oracle that gives us x which contains the true values for the
missing values of xd. For a measurable representation, we assume all missing
values to be zero and all complete values to be non-zero.

Definition 8.1 (Instance defect) Given a defected instance xd and an oracle
instance x, instance defect (IDx) is

IDx = ||x||0 − ||xd||0. (8.1)

Instance defect is the amount of missingness that exists for an instance x.
To address instance defects, we explore various imputation methods to fill in

the missing values. Let’s consider an imputation method λ, where xr = λ(xd).
When applied to a defected instance using this method, we obtain the recovered
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sample xr, which now includes imputed feature values. This process demonstrates
the potential for imputation to reduce instance defects.

Property 5 (Imputation Gain). For a given oracle instance x and its correspond-
ing recovered instance xr, we can express the relationship as follows:

||x||0 − ||xr||0 ≤ IDx. (8.2)

The concept of imputation gain asserts that the imputation process should
not exacerbate the defects in any instance x. Consider an original instance x such
that ||x||0 = |x|, where | · | represents the cardinality of a vector or the absolute
value for a single value, and || · ||0 denotes the l0 norm of a vector, which is
essentially the count of non-zero terms. Now, suppose we have a defected instance
xd such that ||xd||0 ≤ ||x||0. When we generate a recovered sample xr through
imputation, we expect an imputation gain, specifically ||x||0−||xr||0 ≤ IDx. This
conclusion assures us that imputation will not worsen instance defects and, in
fact, demonstrates an imputation gain.

In the context of one-to-one imputation for two defected instances, we can
establish the property of imputation monotonicity as follows.

Property 6 (Imputation Monotonicity). Given an oracle instance x and two
defected instances with their respective recovered instances, we have the following
relationship:

if ∥x∥0 − ∥xd1∥0 ≤ ∥x∥0 − ∥xd2∥0,
then ∥x∥0 − ∥xr1∥0 ≤ ∥x∥0 − ∥xr2∥0.

Imputation monotonicity implies that in the case where one defected instance
xd1 with respect to the oracle instance x has fewer defects than xd2, the corresponding
recovered instance xr1 will have fewer or an equal number of defects compared to
xr2.

Now, let’s introduce the concept of Explanation Defect and Explanation Gain:

Definition 8.2 (Explanation Defect) Given a complete instance x, a defected
instance xd, and a feature attribution method Φ, where Φ : x→ R

J for J features,
the explanation defect (EDx) is defined as:

EDx = ∥Φ(x)∥0 − ∥Φ(xd)∥0. (8.3)

Property 7 (Explanation Gain). Given a feature attribution method Φ, the
explanation gain is defined as the difference between the l0 norm of the explanation
of a complete instance and the l0 norm of the explanation of a recovered instance:

∥Φ(x)∥0 − ∥Φ(xr)∥0 ≤ EDx. (8.4)
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For a feature attribution method Φ adhering to the missingness property
introduced in [LL17], consider an explanation of a complete instance, where the l0
norm of Φ(x) equals the cardinality of the vector, i.e., ∥Φ(x)∥0 = |x|. Now, if we
have an explanation for a defected instance, such that ∥Φ(xd)∥0 < ∥Φ(x)∥0, then
the explanation gain can be defined as ∥Φ(x)∥0−∥Φ(xd)∥0 ≥ 1. Consequently, for
an explanation of an imputed instance Φ(xr) obtained through any imputation
method λ, the explanation gain is bounded by EDx.

Finally, let’s introduce Explanation Monotonicity:

Property 8 (Explanation Monotonicity). Given any instance x, two defected
instances, and a feature attribution method Φ, we have the following relationship:

if ∥Φ(x)∥0 − ∥Φ(xd1)∥0 ≤ ∥Φ(x)∥0 − ∥Φ(xd2)∥0,
then ∥Φ(x)∥0 − ∥Φ(xr1)∥0 ≤ ∥Φ(x)∥0 − ∥Φ(xr2)∥0.

Explanation Monotonicity states that if one defected instance has fewer defects
in its explanation compared to another defected instance, then the corresponding
recovered instance’s explanation will also have fewer or an equal number of defects
compared to the other recovered instance.

Property 9 (Recovery). Given an imputation method λ, a defected instance xd,
and an oracle instance x, the property of recovery states:

λ(xd) = x.

Property 10 (Explanation Recovery). Suppose we have a feature attribution
method represented as Φ, a recovered instance xr, and an oracle instance x.
Explanation recovery dictates that when we apply the feature attribution method Φ
to the recovered instance xr, we should obtain an explanation that is identical to
that of the oracle instance x:

Φ(xr) = Φ(x).

The existence of these properties is pivotal as they serve as indicators of the
reliability and accuracy of imputation and feature attribution methods. When
these properties hold true, they ensure that the imputation method effectively
addresses the instance defect without introducing additional errors. Furthermore,
they signify that less imputation is required when an instance has fewer defects.

Similarly, the properties indicate that the explanation provided for a defected
instance contains fewer features with attribution than any recovered instance from
an imputation method. Consequently, both the values of instance features and
the explanations for those features increase when xd is successfully recovered. In
essence, these properties establish that imputation methods should be able to
faithfully and consistently recover and explain defected instances, thus ensuring
data integrity and interpretability in various applications.
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8.4 Imputation Method

Given a dataset X with N instances and J features, let x be an instance in
X, then considering some defected instance xd, through an imputation method
on a defected instance λ(xd) we obtain a recovered sample xr. To impute the
defected instance xd, we obtain the k-Nearest Complete Neighbours (k-NCN) of
xd by evaluating each complete instance xc ∈ X where k is the number of nearest
complete neighbours that are utilised. Upon evaluating k-NCN, we produce a
local surrogate model by taking the union over all surrogate sets with respect to
k-NCN, we use this union of local surrogate sets to predict the missing feature
value as a form of feature imputation that is inherently interpretable. Formally,
we introduce our Surrogate Set Imputer (SSI) method as follows.

Given a dataset X, we let Xc = {x ∈ X|x is complete}. To do feature
imputation on a defected instance xd ∈ X, we first find a set of k nearest complete
neighbours Ns = ⟨x1

s, . . . ,x
k
s⟩ such that

• Ns ⊆ Xc, and

• for any x′ ∈ Xc \Ns and xis ∈ Ns, it holds that

δ(xd,x′) ≥ δ(xd,xis).
2

From each xis ∈ Ns, we further construct a surrogate set Zxi
s
= ⟨z1, . . . , zN⟩ with

a multivariate Gaussian distribution

Zxi
s
∼ N (xis,Σ),

where Σ is the covariance matrix for X. Subsequently, we produce a combined
surrogate set Kxd with:

Kxd =
k⋃
i=1

Zxi
s
. (8.5)

Then, let j be the feature that is missing in xd. We train a predictor g to
predict the missing feature using Kxd . In other words, let hj be the values in Kxd

for feature j and R be the remaining values, for each r ∈ R, we construct g such
that g(r) = h.

To conform to the locality of feature imputation, we further employ a set of
weights τxd . We ensure that data points closer to xd having a greater influence as
the weights decay when data points moving away from xd. This is defined as

τxd = e−δ(x
d,r)2/σ2

(8.6)

2The function δ calculates the distance between instances as given in Algorithm 2.
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with σ = 0.75
√
N the kernel width. Details of this weighting can be found in

[RSG16].
To fit a linear model over our data R and labels hj, we minimise the sum of

squares error for the coefficients β = ⟨β1, . . . , βJ⟩ with:

L(β) = (hj −Rβ)T τxd(hj −Rβ) (8.7)

and solve for coefficients β to approximate the weighted sum of squares error set
to zero, we have:

β = (RT τxdR)−1RT τxdhj, (8.8)

which is used to produce a set of predicted values for the known values hj . Finally,
the prediction is given by:

ĥ = Rβ. (8.9)

We note that this formulation implies we focus on the imputation of continuous
features. We summarise the entire process in Algorithm 2.

Algorithm 2 Surrogate Set Imputer (SSI)

xd is a defected instance, k is the number of nearest complete neighbours
i = 1
Kxd = []
procedure SSI(xd)

set each missing feature value to the feature mean
for each missing feature index in xd do

while i ≤ k neighbours do
xsi ← ith nearest complete neighbour of xd

generate Zi from N (xsi ,Σ)
append Zi to Kxd

increment i
end while
fit weighted linear regression over Kxd

predict the missing feature
end for

return recovered instance xr

end procedure

8.4.1 Multiple Value Imputation

In the case of multiple missing values, we introduce a multiple value imputation
variant of SSI. For this, imputation is carried out in an iterative process such
that one missing value is imputed at a time using Algorithm 2. We present
experimental results for datasets with multiple missing values in Section 8.6 and
the Appendix.
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8.4.2 Interpreting Imputed Values

One chief advantage of predicting the missing value with a linear model as
described with Equations 8.7 to 8.9 is that they allow a direct computation of
feature attributions for the imputed values. Namely, one can calculate the linear
SHAP values. In general, SHAP values take the following additive form:

f(x) = ϕ0 +
J∑
j=1

ϕjxj (8.10)

Here ϕ0 is the attribution such that no features are present and ϕj is the attribution
calculated for feature j of an instance x. In the linear formulation shown in [ŠK14],
we see that linear SHAP values are directly computed from β as:

ϕj = βj(xj − E[Xj]), (8.11)

where βj is the linear coefficients for the jth feature of β. Thus in the context of
our surrogate set, one can write the attribution towards an imputed feature to be
given as

ϕj = βj(xd,j − E[Rj]). (8.12)

Here E[Rj] corresponds to the expected value of the jth feature for the set R,
corresponding to the defected instance feature xd,j that we are explaining when
imputing.

Note that due to the SHAP value formulation, the SSI imputation method and
associated attribution values adhere to the set of key game theoretic properties as
given by the SHAP method.

8.5 Evaluation

In evaluating the proposed SSI imputation method, we first show how SSI satisfies
the proposed properties 5-8 as follows.

Proposition 10. Any instance with a missing value can successfully be imputed
by SSI.

Proof. As a direct consequence from the SSI algorithm, there will always exist a
surrogate set R and labels hj, since:

β = (RT τxdR)−1RT τxdhj,

we can access β · xd thus an imputation is always accessible. It is clear that an
imputed value can be provided for any instance, under the assumption that there
exists at least one instance that is complete xc ∈ X.

132



8.6. Experiment Results

Proposition 11. The SSI imputation method satisfies properties 5 and 6.

Proof. Consider an oracle instance x ∈ RJ , where ||x||0 = J and J ∈ N and
a defected instance where ||xd||0 = (J − 1) then the instance defect given by
Definition 8.1 is

IDx = J − (J − 1) = 1.

Given an imputation method λ that provides a value for any missing instance, we
have ||xr||0 = J . Thus ||x||0−||xr||0 = (J−J) = 0 ≤ IDx. Extrapolating on this,
we show this holds given any integer κ(1 ≤ κ < J), such that a defected instance
||xd||0 = (J−κ) then the instance defect is given as IDxd = J− (J−κ). Since SSI
can provide imputations for any missing values we have ||xr||0 = J , and therefore
it is clear that ||x||0−||xr||0 = (J−J) where (J−J) ≤ J− (J−κ) =⇒ 0 ≤ IDx.
Both Properties 5 and 6 hold.

Proposition 12. The SSI method satisfies Properties 7 and 8.

Proof. Direct from Proposition 10 and 11, it is trivial that properties 5 and 6 are
directly satisfied.

8.6 Experiment Results

To evaluate the introduced imputation method empirically, we consider a collection
of EHRs that are publicly available and evaluate SSI on them, in comparison with
existing methods in the literature.

8.6.1 Datasets

The datasets used for the experimental study are summarised in Table 8.3. The
rest of this section introduces each of the datasets with running examples of the
imputation method and associated explanations.

8.6.1.1 The Simulacrum

The Simulacrum, a synthetic dataset developed by Health Data Insight CiC derived
from anonymous cancer data provided by the National Cancer Registration and
Analysis Service, which is part of Public Health England3, provides data used in
this study.

We extract five datasets from the Simulacrum. We isolate a classification
problem of survival time and determine the patient cohorts using the lung cancer
ICD-10 code “C34” malignant neoplasm of bronchia and lung, breast cancer ICD-
10 code “C50” Malignant neoplasm of breast., lymphoma cancer ICD-10 code

3https://simulacrum.healthdatainsight.org.uk/
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Table 8.3: An overview of each dataset.

Dataset Instances Features Type

Simulacrum Breast Cancer 1750 23 Classification

Simulacrum Lung Cancer 1750 23 Classification

Simulacrum Rectal Cancer 1750 23 Classification

Simulacrum Lymphoma Cancer 1750 23 Classification

Simulacrum Skin Cancer 1750 23 Classification

Wisconsin Breast Cancer 569 30 Classification

SEER Breast Cancer 4024 11 Classification

Diabetes 422 10 Regression

“C83” Non-follicular lymphoma., skin cancer “C44 and C90” malignant neoplasm
of the sebaceous glands / sweat glands and multiple myeloma and malignant plasma
cell neoplasms, and rectal cancer “C20” Malignant neoplasm of rectum., from
within the Simulacrum dataset. Each dataset contains a subsample patient cohort,
containing 1750 patients. Table 8.4 summarises the cancer code used in identifying
patients in Simulacrum.

Table 8.4: ICD-10 codes that form the associated datasets of the Simulacrum.

ICD-10 Dataset

C34 SLC

C50 SBC

C84 SLyC

C44 & C90 SSC

C20 SRC

For each dataset, we use the eXtreme Gradient Boosting (XGBoost) [CG16], in
predicting a patient’s six-month mortality. Consider a single patient for whom we
have access to the true values denoted as x. We randomly remove a feature value,
resulting in a defective instance xd. We then evaluate several imputation methods:
SSI, MICE, GAIN, SoftImpute, MissForest and kNN [BS16] with such defective
instances. Each of these methods generates a recovered sample denoted as xr. In
other words, for each method λ ∈ {SSI, MICE, GAIN, SoftImpute, MissForest, kNN},
λ(xd) produces the imputed instance. Note that, for MICE, we use the iterative
imputer (Iterative) implementation introduced in scikit-learn.4 and for the DICE,
SoftImpute and MissForest methods we make use of the HyperImpute library

4https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.

html
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[JCL+22]. We start by comparing single value imputations against the ground
truth, with some results shown in Table 8.5.

Table 8.5: Example of the imputed values when compared to the ground truth for each
imputation method applied to a single instance from each of the datasets. Values closer
to the ground truth are better.

Imputation Ground Truth SSI Iterative kNN GAIN SoftImpute MissForest

Patient (SLC) 68 67.78 73.75 67.70 70.21 70.59 73.27
Patient (SBC) 88.70 75.10 70.53 73.83 69.88 68.43 71.07
Patient (SLyC) 73 74.58 69.43 77 70.32 50.27 71.32
Patient (SSC) 73 73.37 71.73 69.33 70.58 74 70.30
Patient (SRC) 59.10 63.81 69.45 69.14 54.20 71.90 68.09
Patient (W-BC) 101.70 101.71 104.58 103.46 98.34 102.60 100.55
Patient (Diabetes) -0.06 -0.06 -0.01 -0.05 -0.05 -0.06 -0.03
Patient (SEER-BC) 12 10.78 34.21 21 23.29 25.48 18.30

Empirically, we observe close imputations to the ground truth for selected
instances in Table 8.5. Additionally, we notice the variance in imputed values,
which arises from the random distribution within local neighborhoods for k-NCN.
As a result, the local observations are dependent on the random seed. Similarly,
we can also examine the SHAP values for local instances and their proximity to
the ground truth in Table 8.6. We observe that closer value imputation mostly
results in a closer explanation to the ground truth.

Table 8.6: Example of SHAP values returned by the SHAP method comparing each
imputation method against the ground truth on a patient instance from each of the
datasets. Values closer to the ground truth are better.

Imputation Ground Truth SSI Iterative kNN GAIN SoftImpute MissForest

Patient (SLC) -0.56 -0.52 -0.16 -0.52 -0.09 -0.08 0.22
Patient (SBC) -0.29 -0.31 -0.09 -0.45 0.05 ≈ 0 -0.21
Patient (SLyC) 0.37 0.56 -1.73 -0.99 -2.08 0.43 -1.89
Patient (SSC) 0.09 0.09 1.98 0.95 1.03 -1.13 1.07
Patient (SRC) -1.26 -0.54 0.55 0.61 0.61 0.47 0.84
Patient (W-BC) 1.35 1.35 0.71 0.71 1.38 0.71 1.38
Patient (Diabetes) -33.01 -36.20 -17.84 -36.22 -36.22 -36.20 -29.13
Patient (SEER-BC) 11.76 9.22 -5.87 0.80 0.12 3.43 5.14

8.6.1.2 Scikit-learn Datasets

In addition to the Simulacrum, we also conducted experiments on two scikit-learn
datasets: the Wisconsin Breast Cancer dataset5, which contains 569 instances,

5sklearn.datasets.load_breast_cancer.html
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and the Diabetes dataset6, which contains 422 instances. These datasets represent
a classification problem and a regression problem, respectively. The breast cancer
dataset includes a dependent feature used to predict whether a tumor is malignant
or benign based on a set of independent tumor measurements. The diabetes
dataset contains a dependent regression target feature used to determine the
progression of diabetes after one year. We provide two imputed examples along
with their associated explanations in Table 8.5 and Table 8.6, respectively. We see
that the results are similar to the ones found with the Simulacrum dataset in that
our approach (SSI) gives the best results than baseline methods for imputation
and nearly the best for explanations.

8.6.1.3 SEER Breast Cancer

Lastly, we also adopt the SEER Breast Cancer dataset from the IEEE dataport
made publically available in [TEN19]. The dataset contains a cohort of 4024
female breast cancer patients. The dependent feature of this dataset is the
survival months of a patient, where the independent feature are a patient and
tumour characteristics. We provide an imputed patient example and associated
explanations given in Tables 8.5 and 8.6, respectively. Again, we see that the
proposed SSI method works better than all other approaches for both imputation
and explanation.

8.6.2 Performance Evaluation

To perform a systematic evaluation, we propose two metrics to evaluate the
satisfiability of Properties 5 and 6, respectively. Consider a complete dataset X,
which is a dataset without any missing value. To evaluate we iterate over each
instance and drop each value for a single feature, then we replace the missing
feature with the recovered values from imputation methods, thus producing the
recovered data set Xr.

We determine the average difference in imputation (∆I), over the imputed
feature j for an imputation method of a single instance with

∆I(X,Xr) =

√
1

|Xr|
∑
x∈X

(xj − xr,j)2. (8.13)

Intuitively, ∆I is the Root-Mean-Square Error (RMSE) defined with respect to
the recovered dataset Xr. It assesses imputation error over partially recovered
instances in Xr, with a specific focus on the imputed features. Similar to RMSE,
a smaller error indicates better imputation performance.

6sklearn.datasets.load_diabetes.html
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Following this, we introduce the concept of explanations being faithful. Let
us consider an explanation vector for a feature j cross the entire dataset X.
We denote this as ej = ⟨ϕj1, . . . , ϕ

j
i , . . . , ϕ

j
N⟩ for N instances. In other words, ej

denotes the explanation for a feature j in X. Note that X is the “oracle” dataset
containing complete instances. Then, we consider the recovered dataset Xr. We
denote the explanation vector for a feature j on Xr with e′j.

From ej and ej, we can then evaluate the “Explanation Faithfulness (EF)”
of the explanations for any feature j against the explanations computed on the
“oracle” as:

EF(ej, e
′
j) =

ej · e′j
||ej||||e′j||

(8.14)

Intuitively, EF represents the cosine similarity calculated across all explanations
generated from imputed features. This metric serves as a means to gauge the
similarity between explanations computed on the complete (oracle) instance and
those generated for the recovered instance. When assessing explanations, it is
arguably more significant to evaluate the alignment of each feature’s contribution
in a feature attribution explanation, i.e., whether it supports or undermines
the prediction, rather than merely calculating the absolute distance between
explanations. The introduction of such metrics enables us to evaluate the quality
of imputation methods from various perspectives.

To evaluate the imputation strategy, we explore each oracle x and the associated
recovered imputed instance xr, by masking the true feature value giving xd and
comparing the imputation against the ground truth using the proposed metrics.
Here, we can empirically observe closer satisfiability of Properties 5 and 6 through
our proposed methods when compared against kNN, mean and iterative (MICE)
imputation.

Table 8.7: Performance of imputation methods returned for the defected instances xd,
for each instance averaged over in their respective datasets. These compared using
oracle instances x and the recovered instance xr. Here we observe the top 3 methods in
the datasets ordered from best performing (1) to third best (3). The lower the value
the better.

∆I SSI Iterative kNN GAIN SoftImpute MissForest

SSC 113.30 (1) 115.38 (3) 138.63 127.37 126.88 113.68 (2)
SLC 156.63 (1) 172.37 198.90 170.26 (3) 170.99 162.40 (2)
SBC 107.70 (3) 108.18 150.66 117.06 107.15 (2) 105.79 (1)
SRC 105.17 (2) 116.41 103.74 (1) 122.49 115.22 108.82 (3)
SLyC 7.15 (1) 9.52 8.39 (2) 15.23 11 8.81 (3)
W-BC 113.69 (1) 438.31 115.85 (2) 144.60 511.10 143.55 (3)
Diabetes 0.31 (1) 0.79 0.83 0.75 0.68 (3) 0.64 (2)
SEER-BC 3.60 (1) 140.78 (3) 166.77 179.71 241.02 112.08 (2)
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Table 8.8: Explanation faithfulness of the imputation methods across the complete
instances and recovered instances, for every instance averaged over in their respective
datasets. Here we observe the top 3 methods in the datasets ordered from best performing
(1) to third best (3). The higher the value the better.

EF(e, e′) SSI Iterative kNN GAIN SoftImpute MissForest

SSC 0.77 (3) 0.72 0.81 (2) 0.73 0.82 (1) 0.72
SLC 0.83 (2) 0.74 0.85 (1) 0.79 0.82 (3) 0.79
SBC 0.88 (2) 0.90 (1) 0.85 0.86 0.84 0.87 (3)
SRC 0.89 (2) 0.87 0.92 (1) 0.87 0.88 (3) 0.88 (3)
SLyC 0.87 (2) 0.82 0.89 (1) 0.82 0.84 (3) 0.82

W-BC 0.99 (1) 0.93 0.98 (2) 0.98 (2) 0.96 (3) 0.98 (2)
Diabetes 0.95 (1) 0.77 0.73 0.80 0.82 (3) 0.83 (2)

SEER-BC 0.99 (1) 0.54 0.60 (3) 0.64 (2) 0.58 0.60 (3)

In this set of experiments, we observe on each dataset how close the imputed
feature value is to the ground truth, and similarly how close the explanation is
to the ground truth. The performance metrics in this section suggest that our
proposed SSI method produces the lowest error on average, with closer property
satisfiability on both Properties 9 and 10.

8.6.3 Multiple Value Imputation

To represent the performance over multiple value imputation, we conduct experi-
ments on instances with different number of missing values. Namely, we evaluate
imputation quality as the defect ||xd||0 goes to ||xd||0 = |x| − 1 in discrete steps
from 1. We determine the accuracy of the imputation with respect to the ground
truth by evaluating the ∆I and EF metrics for multiple value imputation. For
the benefit of computation, we evaluate over 100 randomly selected instances
when imputing all continuous features in the respective datasets, from this we can
easily compare the imputed values against the ground truth. To achieve this, we
increase the number of missing features for each instance randomly and evaluate
the ∆I and EF metrics. Generally speaking we observe that the proposed SSI
approach tackles the multiple value imputation problem better than both kNN
and MICE imputation methods. For illustration we provide an example on the
W-BC dataset as every feature is continuous, this can be seen in Figures 8.2 and
8.3, where other results are omitted to Figure F.1 and F.1 in the Appendix.

8.6.4 Imputation Runtime

The runtime experiments are evaluated with the following hardware: Intel(R)
Core(TM) i7-8565U CPU at 1.80GHz, 16 Gigabyte RAM and an NVIDIA GeForce
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Figure 8.2: The mean ∆I for the SSI, kNN, MICE, GAIN, SoftImpute and MissForest
imputation methods on the W-BC dataset as the number of missing features is increased
randomly for each instance. Here we observe a lower average error for the SSI method.

Figure 8.3: The mean EF for the SSI, kNN, MICE, GAIN, SoftImpute and MissForest
imputation methods on the W-BC as the number of missing features is increased
randomly for each instance. Here we observe more similar explanations produced using
SSI when compared to the ground truth.
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MX250 GPU. Here we take the average runtime of the imputation methods in
seconds, where we take the average runtime for imputing each number of missing
features over 100 instances. In Table 8.9 we observe the best runtime across the
SSI, kNN and MICE imputation methods.

Table 8.9: We evaluate the runtime of the imputation algorithms evaluated in this work.
Here we observe that SSI, MiCE and kNN imputation methods have the quickest run
times when compared to GAIN, SoftImpute and MissForest.

Mean Runtime (seconds) SSI Iterative kNN GAIN SoftImpute MissForest

SSC 0.31±0.02 0.31±0.02 0.25±0.01 12.76±0.29 23.11±18.03 13.22±0.98
SLC 0.24±0.02 0.26±0.008 0.20±0.01 13.29±0.65 13.43±0.20 15.10±2.78
SBC 0.23±0.03 0.24±0.02 0.18±0.01 13.21±0.62 17.37±12.48 12.43±1.73
SRC 0.32±0.03 0.31±0.02 0.25±0.01 13.67±0.22 13.91±0.19 14.37±1.36
SLyC 0.32±0.03 0.22±0.02 0.17±0.008 13.41±0.16 14.58±0.69 14.64±2.59
W-BC 0.03±0.006 0.09±0.03 0.01±0.003 14.13±0.37 10.99±8.31 13.12±2.00
Diabetes 0.01±0.004 0.57±0.09 0.44±0.04 9.00±0.27 6.55±4.96 12.41±3.11
SEER-BC 1.57±0.11 1.11±0.13 1.03±0.06 9.61±0.17 12.15±0.48 16.35±2.93

8.6.5 Attribution for Imputed Values

For imputation interpretability, one can utilise the SSI method due to the inherent
interpretability of the linear model that is used for imputation. Thus we can
observe how each feature attributed towards the imputed prediction. In this
section, we provide an example of imputation attribution for single instance (see
Figure 8.4). Here we generate an interactive graph where one can view the feature
values, and the associated attribution with respect to a target feature (feature to
impute) and the imputed value.

8.7 Conclusion

In this chapter, we tackled the challenge of enhancing the explainability of data
with missing values, particularly in the context of EHRs. This is motivated by
addressing the “missingness property” of existing feature attribution algorithms
in XAI, as which assign 0 attribution to the feature with a missing value, thus
rendering feature attribution algorithm less effective when dealing with incomplete
data containing missing values.

To address this issue, we introduced a novel feature imputation technique,
Surrogate Set Imputer (SSI), inspired by local feature attribution methods. Our
approach utilizes local surrogate models and synthetic samples in the vicinity of
missing values to impute them more accurately. This technique is shown to be
effective on eight different datasets we have experimented.
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Figure 8.4: An example explanation for imputation given for an instance taken from the
the Wisconsin Breast Cancer dataset, providing the imputed feature values, attribution
values and magnitude of importance.

We also introduced a set of properties that connect explanations and impu-
tations, providing a comprehensive framework for explaining predictions with
incomplete data. Namely, for both feature value recovery and explanation at-
tribution, (1) imputation should recover information and not causing damage;
(2) information recovery with imputation should be monotonic; and (3) the ul-
timate goal of imputation is to recover the complete instance. These properties
serve as guidelines for achieving improved explainability in the presence of miss-
ing data. Moreover, we have proposed two metrics for evaluating imputations
and explanations on incomplete data, enabling a thorough assessment of their
performance.

We believe that our work paves the way for more accurate and informative
explanations in AI models, especially in domains like healthcare, where data
incompleteness is a common issue. As AI models continue to play a critical role
in decision-making, it is essential to ensure that their predictions are not only
accurate but also transparent and interpretable. Our research contributes to
achieving this goal by improving the explainability of AI models in the presence
of missing data.
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Chapter 9

ExMed: An AI Tool for
Experimenting Explainable AI
Techniques on Medical Data
Analytics
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9.1 Introduction

Explainable AI (XAI) has drawn tremendous attention in the recent years [Mil19].
XAI systems not only aim to make intelligent decisions or accurate predictions,
but also provide an insight into the process of AI decison making [AB18]. A goal of
enabling explainability in AI systems “is to ensure algorithmic predictions and any
input data triggering those predictions can be explained” [CPC19]. In the context
of Machine Learning (ML), XAI focuses on developing human-understandable
prediction models producing explanations, along with predictions and model
agnostic techniques that generate explanations to existing ML models. However,
current XAI software implementations are scattered accross multiple libraries
written in different programming languages and predominately intended for data
science developers rather than domain experts.
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In this paper, we present , a self-contained XAI toolkit for domain experts.
ExMed performs XAI analysis for prediction models. With its simple user interface,
it supports both global explanations presenting patterns of the entire dataset and
instance explanations that are local to individual predictions, for both classification
and regression tasks. Although various XAI techniques have been proposed in
recent years – e.g., a good overview of these techniques is presented in [Mol19] – we
focus on feature attribution explanation techniques [LL17] due to the transparency
of their explanations, their computational effectiveness and general popularity.

To better illustrate the work, we present two real world case studies that
demonstrates ExMeds functionalities. In case study I, a COVID-19 transmission
study reveals how different COVID-19 control measures were used and impacted
the virus transmission rates. In case study II, we examine lung cancer patient
life expectancy using the Simulacrum dataset.1 Through the two case studies,
we illustrate how ExMed can be used for making predictions and generating
explanations.

9.2 Related Work

The use of Machine Learning (ML) has become more prominent in several areas
of healthcare, such as diabetes, arthritis, cancer [LHZL20, BPSK17, AMMN16],
with varying input formats ranging from tabular data in stored in relational
databases to large scale image datasets [SZX+20]. Stemming from the involvement
of data sensitivity in the medical domain is the necessity of gaining human
trust towards ML application [TJMG19]. Thus, we see a recent surge in the
production of interpretable results using state-of-the-art models such as Local
Interpretable Model-Agnostic (LIME) [RSG16] and SHapley Additive exPlanations
(SHAP) [LL17] to supplement the outputs provided by black-box algorithms, with
much work showing the intent of XAI expansion through new prediction model
architectures [dPM+21, MQS+20].

A few open-source applications have been created to ease the application of
AI to datasets, e.g., [SACF+12, HFH+09, HEH21, Mei12]. Much data in biology
is stored as images and Fiji [SACF+12] is an example of an open-source tool
designed from biological-image analyses that aims to prototype algorithms for
image-processing.

MOA [HEH21] is a free software that focuses on data streams and makes
predictions on the fly. This platform offers a variety of AI algorithms for data
stream analysis, as well as the ability to develop test models and apply them to
input data. MOA may also visualise clusters and highlight outliers. The WEKA
[HEH21] workbench contains multiple machine learning frameworks to support

1https://simulacrum.healthdatainsight.org.uk/
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Figure 9.1: ExMed Workflow. ExMed provides the user with a sequence of simple
actions, including loading, merging and editing data, and creating prediction as well as
explanation models. Various visualisation techniques are supported in several stages of
this pipeline.

various analyses via a gui. WEKA allows for quick access to the information
included in the datasets, as well as the selection of specific areas of interest. WEKA,
on the other hand, does not support both dataset merging and concatenation,
which is frequently necessary when introducing new medical data. Lightside
Researcher’s Benchmark [unk20] is another freely available tool, which combines
machine learning and feature extraction within a graphical user interface. This
software includes tools for preparing data, building and training a model, and
doing data analytics. However, there is no visualisation component.

ExMed contrasts with these applications by including several data preparation
tools for the majority of medical datasets. Another unique feature is the inclusion
of XAI techniques combined with a wide variety of Visualization techniques.

9.3 ExMed Workflow

When sending medical data to an ML model, human errors and noise can reduce
the quality of the results. Moreover, as one of the leading challenges in medical
data analysis is to aggregate data from multiple data sources for performing joint
analysis [DRA+20], it is crucial for medical data analytic platforms to support
the pre-processing stage. Our new application ExMed addresses both challenges
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and makes the integration of data pre-processing tools easier in order to minimise
error and increase the baseline performance of the ML model.

ExMeds main functionalities, architecture and selected interface illustrations
are shown in Fig. 9.1. ExMed implements a wide set of tools to load, process,
predict, interpret and explain data. Its backend design is modular and designed to
accept future extensions. Most common data files are accepted (e.g. Excel, CSV,
or SAS, and XPT files). Input data can be combined through classic database
join operators, whether or not a common key exists, to give users the potential to
create larger datasets rapidly. Cells, rows, columns and data types can be edited
by the user directly within ExMed, allowing greater freedom for data manipulation
and quality checks. Data validation is supported by various visualisation tools
included with the interface.

The ML models used include SVM, Random Forests, MLP Regression and
XGBoost. Optional dimensionality reduction is done using Principal Component
Analysis (PCA). Results of the PCA can be visualised in 2D or 3D from the
two or three largest eigen vectors respectively. To interpret data, individual
models have their own functions to offer specific explanations. SHAP dot plots,
SHAP bar plots, SHAP dependence plots and LIME plots can be used for this
purpose. LIME and SHAP adhere to ML local interpretability requirements for
patient instances; expressed as a necessity from clinicians [TJMG19], whilst also
producing global explanations. To invoke trust, we provide explanations from
both LIME and SHAP as both models see a lack of ubiquity in feature priority,
but may still provide valuable insight into the data as these methods still often
see the same trend in feature attribution [DFB+21].

9.4 Case Study I: COVID-19 Control Measures

Here, we show how ExMed can be used to investigate relative effectiveness of
COVID control measures used in the UK. From Public Health England 2, we collect
daily infection numbers reported across the nine regions of England as well as
and the other three nations in the UK. Non-pharmaceutical control measure data
were collected based on UK’s COVID policies as summarised in Table 9.1. Data
is collected from various sources including Wikipedia and major news agencies
such as BBC. Control Measures are coded based on the level of severity (“High”,
“Moderate” or “Low”) for all control measures excluding Non-essential shops
and School closures, which are coded as binary choices (“Open” and “Closed”).
Temperature and humidity data are obtained from the weather website Raspisaniye
Pogodi Ltd3 were also included. A total of 4,257 data points that were collected
between Feb. 2020 and Feb. 2021.

2https://www.gov.uk/government/organisations/public-health-england
3https://rp5.ru/Weather_in_the_world

148

https://www.gov.uk/government/organisations/public-health-england
https://rp5.ru/Weather_in_the_world


9.4. Case Study I: COVID-19 Control Measures

Table 9.1: Non-pharmaceutical COVID Control Measures.

Control Measures Type

Meeting Friends / Family (Indoor) Categorical
Meeting Friends / Family (Outdoor) Categorical

Domestic Travel Control Categorical
International Travel Control Categorical

Cafes and Restaurants Control Categorical
Pubs and Bars Control Categorical

Sports and Leisure Closure Categorical
Hospitals / Care and Nursing Home Visits Categorical

Non-Essential Shops Closure Binary
School Closure Binary

We study the effectiveness of control measures by observing their impacts
to the virus transmission rate Rt. From daily infection numbers, we estimate
Rt using the method reported in [FMG+20, WLB+20]. Rt is one of the most
important quantities used to measure the epidemic spread. If Rt > 1 , then the
epidemic is expanding at time t, whereas if Rt < 1, then it is shrinking at time t.
A serial interval distribution, which is a Gamma distribution g(τ) with mean 7
and standard deviation 4.5, is used to model the time between a person getting
infected and he/she subsequently infecting another person on day τ . The number
of new infections ct on a day t is computed as:

ct = Rt

t−1∑
τ=0

cτgt−τ =⇒ Rt =
ct∑t−1

τ=0 cτgt−τ
(9.1)

where cτ is the number of new infections on day τ and gs defined as:

g1 =

∫ 1.5

τ=0

g(τ)dτ, gs =

∫ s+0.5

τ=s−0.5

g(τ)dτ for s ≥ 2, (9.2)

For x = t and τ , cx is the difference between the confirmed case on day x and
the confirmed case on day x− 1, which is available from the dataset directly.

Using this data, we pose a simple classification question:

Given the infection number and control measures implemented on a
day t, can we predict Rt ≥ 1?

As control measures take time to affect the infection rate, we expand the dataset to
include the duration of control measure implementations for all control measures.
For example, “Meeting Indoors (High) = 2” means that “it is the second week
that meeting indoors has been banned completely”. Similarly, “International Travel
(Low) = 0” means that “there is no restriction implemented on international
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Figure 9.2: Example of an Explanation computed with SHAP and LIME. For this
instance, both explainers consider top measures contributing to this prediction being
Domestic Travel, Cafes and Restaurants Closure and Pubs and Bars Closure.

travel”. We also drop instances before March 15, 2020 across all 12 regions and
nations in our dataset due to the low number of infections.4 In this way, we form
a data file with 18 features and 3,937 instances with 1,550 positive ones.

Table 9.2: Prediction performance on the COVID dataset with four different classifiers.

Classifier MLP Random Forest SVM XGBoost

Precision 0.87 0.90 0.87 0.87
Recall 0.79 0.84 0.78 0.79
F1-score 0.83 0.87 0.83 0.84

The classification results are summarised in Table 9.4. We observe that all
four classifiers are able to achieve good performance on this dataset with a 70/30
training/testing split. As an illustration, for a prediction query instance such
that:

4As can be seen from Equation 9.1, when cx is small, Rt can flatten in a unrealistically large range
and generate noises in the dataset.
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Figure 9.3: Global explanations generated using SHAP on our COVID dataset for the
prediction whether Rt ≥ 1. We see that closing down cafes and restaurants as well as
pubs and bars are the most effective control measures. When their feature values are
high (red), they have a strong negative impact to the prediction; whereas when their
feature values are low (blue), they have strong positive impact to the prediction.

• All control measures (Table 9.1) except International Travel (IT) and Hospital
/ Care and Nursing Home Visits (HCNHV) are used for more than 35 days
at the level High;

• IT has been implemented for more than 35 days at the level Moderate; and

• HCNHV implemented for 20-25 days at the level High.

Our Random Forest prediction model predicts correctly that Rt<1, with SHAP
and LIME (Fig. 9.2) producing similar explanations for the instance. In addition
to local explanations, ExMed can also use SHAP to compute global explanations
for the entire dataset - describing the “trend” of all instances - as illustrated in
Fig. 9.3, where the most influential control measures for the predictions are Cafes
and Restaurants Control and Pubs and Bars Control.
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Table 9.3: Each patient is described with 20 features.

Feature Value Feature Value

ACE 2.0 T Best 0.0
Sex M M Best 3.0
CNS 9.0 N Best 4.0
Age 68 Cycle Number 0.0
Grade 0.0 Ethnicity 1.0
Height 1.6 Cancer Plan 1.0
Weight 75.6 CReg Code 4.0
Morph 8041.0 Chemo Radiation N
Laterality 901.0 Regimen Time Delay N
Performance 1.0 Regimen Stopped Early N

9.5 Case Study II: Lung Cancer Life Expectancy

Our second case study investigates the application of XAI to electronic patient
records for cancer research instead of using public health epidemiology data in
order to emphasise the transferability provided by ExMed. We use artificial
data from the synthetic Simulacrum5 dataset that was developed by Health Data
Insight CiC and derived from anonymous cancer data provided by the National
Cancer Registration and Analysis Service6 (part of Public Health England). This
dataset contains 1,322,100 cancer patient instances.

We first isolate a cohort of interest, opting for lung cancer patients as they
represent a large portion of cancer-based deaths [SFS+21]. Therefore, we pose
the following multi-class classification medical question:

Given a set of features for a patient, what will be the predicted survival
time for the patient? Under six months, six to twelve months, or more
than twelve months?

To study this, we first identified the subset of lung cancer patients in the dataset
from the ICD-10 code “C34” Malignant neoplasm of bronchus and lung and a
deceased status, which includes 108,282 patients in total. We removed records
from the original dataset with obvious errors and included only patients with a
vital status date posterior to the diagnosis date.

A major challenge in medical data analytics, as exemplified in the Simulacrum
one, is missing or incomplete patient records. This results in a large number
of “null” entries in the dataset. To address this, we identify a smaller cohort of
patients such that each patient contains 20 features, with each patient instance

5https://simulacrum.healthdatainsight.org.uk/
6http://www.ncin.org.uk/

152

https://simulacrum.healthdatainsight.org.uk/
http://www.ncin.org.uk/


9.5. Case Study II: Lung Cancer Life Expectancy

only able to contain a maximum of one “null” value. This explicit filtering isolates
a balanced cohort of 2,260 patients.

Table 9.4: Predictions for the Lung Cancer dataset.

Classifier MLP Random Forest SVM XGBoost

Precision 0.86 0.90 0.77 0.69
Recall 0.76 0.90 0.98 0.66
F1-score 0.81 0.90 0.86 0.67

We first provide a local explanation example using both SHAP and LIME for
a patient instance as shown in Table 9.3. We observe that both explainers give
similar explanations as shown in Fig 9.4. Using the entire dataset, we produce
a global explanation determining feature importance towards each output class
in Fig 9.5. We then provide granularity to feature value importance towards a
target class with Fig 9.6. We interpret these results as:

Cancer grades, BMI, age, patient performance and the absence of
distant metastatic spread are key indicators for estimating patients
survival time.

Figure 9.4: Local explanation on the Lung Cancer life expectancy data set for a patient
instance. We see that the most impactful features amongst SHAP and LIME are
ubiquitous: “Grade” How the cancer cells act; the higher the grade the less normality
the cell resembles and it may act more aggressive and “M Best” Presence or Absence of
Distant Metastatic Spread, followed by a disagreement on age attribution.
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Figure 9.5: The largest impact towards the survival boundaries greater than 1 year and
less than 6 months is the cancer grade. It has a direct impact on the longest and least
time survival. Height, weight and patient age are also significant factors.

9.6 Conclusion

We have presented ExMed, a self-contained software package that enables Explain-
able AI data analysis for medical domain experts without the need for explicit
programming. It can both concatenates the flexibility of medical sub-domain
transferability and obtain an essence of trust through explainability using XAI
methods. ExMed accepts multiple data input types and supports several standard
pre-processing operations. It employs a number of different prediction models and
visualisation techniques, while implementing two popular feature attribution XAI
algorithms.

Through ExMed, we studied the effectiveness of COVID control measures in
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Figure 9.6: Global explanation measuring feature attribution against the class Survival
time of less than 6 months, where we see the cancer grade of higher value - indicative
of cell abnormality and aggressiveness, followed by “M Best” ,“weight” and “height”
determinants of body mass index (BMI) and “age”.

the UK using data from March 2020 to January 2021 and the life expectancy of
lung cancer patients using the Simulacrum dataset. We observed that closing down
cafes and restaurants as well as pubs and bars had the most impact in reducing
the virus transmission rate. From the cancer case study, we saw that cancer
grades, BMI, age and M Best variables are amongst the most influential factors
for survival. In the future, we plan to (1) experiment ExMed with healthcare
professionals and conduct user studies to evaluate effectiveness of various XAI
approaches; (2) further expand the functionality of ExMed and explore features
such as parameter tuning; (3) incorporate additional missing value imputation
techniques such as MICE [BBGOR06] and SICE [KH20]; and (4) introducing
additional XAI techniques such as Anchors[RSG18] in ExMed.
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Chapter 10

Summary
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10.1 Conclusion

This thesis provided an increase in transparency for black-box models, and
sufficiently provided an increase in explainability from three perspectives: Model,
Data and User. Thus emphasising that explainability can be approached from
different directions. Here the:

• Model perspective provided many solutions to increase interpretability by
either approximating the black-box model or utilise the infrastructure of the
black-box. Here, adaptive local explanations, counterfactual explanations
and irregular temporal explanations are explored and new methods PALE,
CF-IG, Batch-IG and QUCE were introduced.

• Data perspective focused on building a clear relationship between imputation
and explainability, drawing upon theoretical relationships and providing a
new imputation method SSI that better adhere to the univariate distribution
of feature values.

• User perspective introduces a tool: ExMed, that allows users to have an
ease of access experimental tool to explore data, apply machine learning
techniques and apply XAI techniques (LIME and SHAP specifically).

To briefly summarise the contributions of this thesis, I provided an early
evaluation and identification of the disagreement problem for XAI methods in
healthcare. Then I followed this with the introduction of a model-agnostic method
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aiming to improve the accuracy of the LIME method and subsequently introduce an
“adaptive” functionality to the explanations, where each patient has an optimised
model to the best performing degree polynomial. The increase in accuracy in the
model-agnostic LIME saw an increase in agreement with SHAP (TreeSHAP, thus
not a model-agnostic method) on the patient sample, but the key contributions of
this paper were instead the idea of local adaptive explanations and the increase
in model-agnostic XAI accuracy.

Following this, I identified that whilst models such as LIME, SHAP and PALE
provide explanations of attribution to a single instance, this does not conform
to commonly used forms of evaluating effects. Thus it seems natural to utilise
the causal effects of intervention, this often takes the form of counterfactual
explanations in XAI (as opposed to A/B testing and evaluating the ATE). Here,
I identified a clear gap where feature-attribution and a variety of generative
counterfactual methods could be unified, and similarly evaluated and determined
a set of desirable properties that hold with respect to the introduced method,
namely Counterfactual Integrated-Gradients (CF-IG) which is a clear modification
of the original IG method as to utilise the theoretic guarantees and expand the
methods capabilities to an alternative XAI domain of counterfactuals. Similarly,
from CF-IG there is a linear path constraint that is relaxed with the introduction
of Quantified Uncertainty Counterfactual Explanations (QUCE), this approach
enables for both the minimisation and the quantification of uncertainty along
generated paths to provide generative counterfactual examples, where both the
gradients and the generated instance are more reliable.

Extending upon this, with the knowledge of theoretic guarantees of IG, this
method seemed natural to utilise and adapt further, and thus lead to another
modification where I introduced “Batch Integrated-Gradients”, this method along
with its formal introduction, aims to provide a new form of feature attribution for
Electronic Health Records that are often presented temporally. Thus this chapter
brings to light how certain changes of feature dimensions between time points,
influence the change in prediction probability.

Exploring further, I identify a link between data imputation and explainability,
this is heavily influenced by the missingness property identified in the SHAP
properties. The implication of missing data would imply zero-value feature
attribution and an altered prediction, this is consequential in domains such as
healthcare where data is vital. Thus, it seemed necessary to bridge a gap between
the fields of XAI and data imputation and to provide more accurate imputation
methods is vital to the success of explainers. To this end I propose the Surrogate
Set Imputer (SSI) method, that not only provides more accurate imputation,
but also is inherently interpretable as it takes the form of a linear model with
Shapley values that can be extracted directly, therefore promoting transparency
of imputation and bridging an important relationship.
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The accessibility of ML and XAI tends towards those with experience and
exposure in the respective fields. To facilitate the usability for domain experts,
we provide a simple tool (ExMed) for data exploration, visualisation and more
critically the application ML and XAI for wider audiences. The implication of
presenting such tool, is the greater ease of access with simple drop down menus
and selection tools to apply complex methods in both ML and XAI. For example,
such tool can aid in quicker patient predictions and population health analytics
without the need to outsourcing to ML experts.

Therefore, to conclude; this thesis provides a novel comparative approach at the
time of publication in the medical domain, followed by a set of newly introduced
methods to improve explainability of medical records. These methods show how
one can consider many aspects of explainability, ranging from model-agnostic
(PALE), to the first (to my knowledge) exploration of path based methods for
temporal explainability (Batch-IG), to counterfactuals instances and explanations
generated through paths (Counterfactual-IG), and the minimisation of uncertainty
over generated counterfactual paths (QUCE), also how one can indirectly increase
explainability through the likes of imputation (SSI) and finally and how one
can improve user-centric explainability through accessible tools (ExMed) for
explainability, that do not rely on expertise in XAI, thus facilitating domain
experts with a readily available tool to analyse data.

10.2 Future Work

There are many avenues to explore posterior to the completion of this thesis. To
reflect on the body of this thesis, this section contains suggestions for future work,
this is sequential to the occurrence of each part and respective chapter within the
thesis.

10.2.1 Comparative Methods

The comparative methods introduced in this work provide little knowledge on
the quality of explanations given by state-of-the-art XAI methods. Instead, this
chapter focused on comparing the explanations returned by each method, thereby
expanding the pool of XAI methods used in the comparison would provide further
insight. For future work, considerations of independent XAI method performance
will also be considered, evaluating the sensitivity and effects of hyper-parameters on
methods, as well as other considerations such as the robustness of the explanations
produced.

Thus, one could consider an evaluating of ϵ-Lipschitz continuity of explanations
with respect to the input and a minor perturbation. Formally, given an instance
x, and a small perturbation ∆x = α · x, for some α ∈ [0, 1]. Then, given a
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small perturbation to the input, an explainer Φ can be considered robust, if the
explanation provided similarly only changes by a small amount. Therefore one
could compute:

ϵ =
||Φ(x)− Φ(x+∆x)||
||x− (x+∆x)||

(10.1)

Following this, the explanations provided by different XAI methods can be further
matched against domain knowledge through user-studies, or through the access
to the ground truth explanations of real world data.

10.2.2 Enhancing Explainability a Model Perspective

Deeper insights of the PALE method can be extrapolated, this by exploring the
property satisfiability of the method through theoretical analysis. Similarly, further
research into adapting the neighbourhoods, that are generated with respect to
the instance can be explored, to better define the perturbation space and improve
the quality of explanation. The PALE framework could enhance its effectiveness
by incorporating a technique to determine the optimal m degree polynomial fit,
ensuring it balances between avoiding overfitting and achieving high accuracy
within the local neighborhood. As the polynomial degrees increased, the PALE
method demonstrated a substantial improvement in performance compared to
the LIME method,suggesting a promising avenue for further experimentation and
research.

To extrapolation further on the CF-IG method, a crucial aspect for future work
involves considering counterfactual explanations as feasible tools for understanding
”what-if” questions. It is imperative that we focus on modifiable features that
are reasonable for a given patient. For instance, certain aspects, such as the dose
of a drug, may not be modifiable at certain stages of a patient’s treatment. In
such cases, we need to carefully control the alteration of such features, similar
to the idea of controllable and uncontrollable factors proposed in [KLS+22] to
ensure the realism and practicality of counterfactual explanations. Similarly, the
method only excels in continuous settings, further exploration is needed to adhere
to categorical feature values, one could consider the step size being discrete for
categorical values.

The Batch-IG method introduced in the body of this thesis encapsulates
a line-integral formulation of explainability. For expansion of the Batch-IG
approach, one can consider the path integral formulation that considers an larger
number of paths, to instead consider a bounded number of paths that are probable
for instance transitions between time steps. Here one approach would be to
follow a similar notion to the QUCE extension for counterfactual explanations,
such that explanations can be produced along the paths that aim to minimise
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uncertainty. For QUCE we will aim to relax the assumption that all feature
values are continuous to provide more realistic and reliable generated examples.
Exploration of optimal parameters in the QUCE framework is currently a manual
process. Automating this approach would provide greater flexibility and ease of
application upon distributing the method to end users.

Following this, one can refer to the Expected Gradients and Integrated Hessian
formulations introduced in section 2, these formulations can easily be translated
to the CF-IG, Batch-IG and QUCE methods.

10.2.3 Enhancing Explainability a Data Perspective

The SSI method introduced in the body of this thesis are both limited to uni-
variate feature imputation, such that only the uni-variate distribution is considered
and thus all features are assumed to be independent. Naturally, this is the ideal
case for imputation, but in many cases linear and non-linear correlations must be
considered when providing imputation. Such considerations can also be utilised
when approaching multiple value imputation. Further properties that unify the
idea of imputation and explanations can also be proposed, to help aid the design of
new methods. In fact, it will be a likely approach to use the learning mechanisms
of the proposed QUCE method to achieve this.

One possible approach for data imputation involves evaluating ’what-if’ sce-
narios, where different values are imputed for missing instances. This allows for
the analysis of hypothetical scenarios, facilitating the drawing of inferences. For
instance, considering an instance with a missing feature, evaluating it in various
states enables us to understand the effects of introducing that feature for that
specific instance. This exploration naturally leads to a set of counterfactuals,
and the calculation of permutation feature attribution scores. An actionable
set of plausible counterfactuals could be valuable for domain experts in feature
imputation tasks, advocating for a more human-in-the-loop approach. Looking
ahead, future research could delve deeper into the connection between imputation,
counterfactuals, and feature attribution to bridge existing gaps and advance
knowledge in this area.

For the extension of SSI in future work, we aim to enhance the usability
of our approach by investigating two key aspects. First, we plan to explore
methods that optimize the selection of k, the number of neighbors used to form
the surrogate set, with the goal of improving accuracy of the imputation. Secondly,
we intend to address the challenge of determining the best order for imputing
features in instances with multiple missing values, with the aim of further refining
our approach and making it more effective in handling complex data scenarios.
These future developments are expected to contribute significantly to the practical
applicability and robustness of our approach in real-world applications.
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For the developed SSI library, greater accessibility is needed, which can be
facilitated by creating working tutorials, installation guides, and functionality
guidelines. These resources are planned for development upon acceptance of
the initial manuscript. This will inevitably lead to another publication in a
software-oriented journal and/or conference.

10.2.4 Enhancing Explainability a User Perspective

We introduced a tool called ExMed. Although this marks a promising start for
an accessible tool that includes XAI methods, it is inherently limited by the
selection of XAI methods that were selected during its development. At the
time of development, LIME and SHAP were the most widely applied methods.
Therefore, enhancing the tool’s utility and relevance by incorporating a wider
range of introduced XAI methods would be advantageous. An initial step would
be to integrate the proposed XAI methods from this thesis (PALE, CF-IG, Batch-
IG, QUCE) for explanations. Additionally, including the proposed SSI method
for data imputation would further augment the accessibility of the developed
methods.

Extending upon this, another area to explore would be the involvement of
the user in the explanation process. Consider explanations that, when evidently
incorrect, the user could reinforce the explainer with a “more correct” explanation.
To achieve this, one would need an explainer that learns continuously from new
information.

10.2.5 Future Areas

Diversifying from the works explored in the chapters of this thesis, here further
ideas are briefly explained to introduce a further body of focus. Diversifying from
the previously introduced model of Batch-IG, allows for further opportunities
in explanations catered towards temporal and time-series data. Hereinafter, the
exploration of Neural Ordinary Different Equations [CRBD18] and Liquid Time-
Constant Neural Networks [HLA+21] seem ideal avenues to explore, this primarily
due to the continuous architecture. Given such architectures, the thought of how
to extract explanations from such architecture (possibly real-time) would be a
promising direction.

Throughout the body of this thesis there is an underlying assumption than
one should be able to access a single ground truth. But it suffices to say that, this
may not be optimal or even correct. Often when explaining different perspectives
in real life, people may disagree with one another or shed light by providing
different perspectives. It is not clear to me yet what an explanation should fully
encapsulate, which angle should one approach an explanation and how should
something be explained.
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Should an explanation be given in such way a human would explain something?,
or should a machine explanation be formed in a different way?. To me, the latter
seems more reasonable if the trend of application specific AI continues, where
the questions posed by a user can simply be “explained” through visualisation,
quantified or by some other means e.g. given a prediction task, we wish to know
what the model deems to be important, we can use feature attribution and see
the result.

Aside from the focal point of this thesis given in the form of feature attribution,
there are various works in other sub-fields that can be used to produce explanations
such as argumentation theory [FT15, YPT23, PYT23] that follow in the prospects
of human reasoning, thus it is clear there is not a conclusive way to produce
explanations yet, nor any clear definition of what an explanation should entail,
but indeed all are approaches are interesting.
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Appendix A

Machine Learning

This chapter gives a brief overview of the Machine Learning methods used through-
out the parts of this thesis. This does not provide a deep understanding of each
method for the reader, instead provides a brief overview to supplement the rest of
the thesis. The notation in this chapter does not follow convention and is indepen-
dently defined here, as the background information and supporting notation is not
reused throughout. Hereby, this chapter introduces: Linear Regression, Logistic
Regression, k-Nearest Neighbour, eXtreme Gradient Boosting and Artificial Neural
Networks. Following this, this chapter provides introductory formal explanations
to further elements of Machine Learning (e.g. metrics, regularization techniques
and loss functions) that are used throughout this thesis.

A.1 Linear Regression

First and foremost, we consider the linear regression method, linear regression
can be represented with the simple equation,

y = mx+ b

where, m is the slope, (x, y) are the variables and b is the y-intercept. Often, by
evaluating m one can determine dy

dx
, such that we obtain a interpretable solution

for x.
Unfortunately, manually solving for β in the case of high-dimensional data

becomes a task that cannot easily be computed by hand, as such we consider a
Machine Learning approach for solving for ⟨β1, . . . βJ⟩. For ease of representation,
for the multivariate case, there exists a vector of coefficients β̂ and matrix of
instances X for a vector of outputs y. Therefore, this is represented as

y = β̂X + ϵ

where:
y = β1x1 + . . .+ βJxJ + ϵi
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Figure A.4: Solving for β through the normal equation, with β = (XTX)−1XT y and
β ± 1. Here, it is shown that the best fit is given by the normal equation β.

One approach of solving for coefficients β̂ is through the Ordinary Least Squares
(OLS) and obtaining coefficient estimates from the normal equation.

β̂ = (XTX)−1XTy

Consequently, the linear approach assumes a linear relationship between indepen-
dent features and the dependent feature. Therefore, although highly interpretable,
the approach is good for simple problems with a continuous dependent variable,
that is linearly associated with the independent variable(s). The effects of solving
for β̂ = β in the 1-Dimensions case, are shown in Figure A.4.

A.2 Logistic Regression

Extending upon linear regression towards a discrete setting, where a dependent
variable y ∈ {0, 1} follows a Bernoulli distribution is logistic regression. One can
consider the linear equation:

y = β1x1, . . . , βJxJ .

To transform the linear equation to a discrete setting, one can utilise the sigmoid
function ρ : R→ (0, 1), where:

ρ(y) =
1

1 + e−(β1x1+...+βJxJ )
.
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Figure A.5: Extrapolated from the linear regression example in Figure A.1, by applying
the Sigmoid function to the solution of βX. The previous values of y in linear regression
have been transformed such that, a value 1 is assigned if y ≥ 1

N

∑
y∈y y and 0 otherwise.

Here, N is the number of samples in both X and y respectively.

Extrapolating from this, the log-odds can be obtained through applying the logit
link function, which is the inverse of the sigmoid function ρ−1. The respective
odds ratios can be extracted by applying the exponential function to ρ−1, yielding
the equation:

exp(ρ−1(y)) = e(β
1x1+...+βJxJ )

Therefore, although highly interpretable, the approach is good for simple problems
with a discrete dependent variable, that is linearly associated with the independent
variable(s).

A.3 k-Nearest Neighbour

The k-Nearest Neighbour (kNN) algorithm is a simple concept. Consider the
Euclidean distance metrics (see section A.6.2). Here, the distance metric will be
simply defined as the function δ(·, ·) between two arbitrary vectors. Consider a
labelled set of pairs of N pairs, when y is the label and x′ is the instance, such
that: {x′, y}N . Then, given a new instance x with unknown label y, the closest k
neighbours are found, by finding an instance that satisfies the following:

argmin
x′

δ(x,x′)

Here δ is an arbitrary distance metric, this is solved for k instances of x′. Then
given the set of k instances of x′, the associated labels of the majority class are
assigned to the new instance x. This is illustrated in Figure A.9 for different
values of k.
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Figure A.9: Examples of the kNN algorithm applied to k = {1, 3, 5}. Here, consider
two classes, one containing black points, the other containing grey. A new data point
in red is added, and then assigned to the appropriate class. Here, when k = 1 the red
point is assigned to the black class. When k = 3, the red point is assigned to the grey
class. When k = 5, the red point is assigned to the black class.

A.4 eXtreme Gradient Boosting

The eXtreme Gradient Boosting (XGBoost) [CG16] method is a tree boosting
method, that is an ensemble of trees. Gradient boosting tree ensemble methods
aim to optimise the following equation:

L(t) = l(y, ŷ(t−1) + ft(x)) + Ω(ft)

Here, l is a convex differentiable loss function, y is the true value and ŷ is the
predicted value. The value of t represents the tth iteration. The best performing
model of ft is added greedily, where Ω penalises the complexity of the model.

A.5 Artificial Neural Networks

The ANN architecture can take many forms in ML research: Recurrent Neural Net-
works [RHW86], Convolutional Neural Networks [ON15], Liquid Neural Networks
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Figure A.10: Demonstrative diagram for the example Neural Network given in section
A.5.

[HLA+21], Autoencoder [Bal12], to standard Artificial Neural Networks [Ros58].
For the scope of this thesis, the standard neural network architecture is given.
The construct of a simple neural network follows a collection of linear functions
with an activation function λ. For an example of activations, one can refer to
the Sigmoid activation of the linear equation given in section A.2. Defining a
simple neural network with 7 parameters β̂ = ⟨ϕ0, ϕ1, ϕ2β1,0, β1,1, β2,0, β2,1⟩, then
the network can be represented as:

f(x, β̂) = ϕ0 + ϕ1λ[β1,0 + β1,1x] + ϕ2λ[β2,0 + β2,1x]

To simply the equation, one can combine activation of the linear equations,
into a single representation of the hidden units, such that:

h1 = λ[β1,0 + β1,1x]

h2 = λ[β2,0 + β2,1x]

Therefore, a simple neural network can be represented as:

y = f(x, β̂) = ϕ0 + ϕ1h1 + ϕ2h2

A diagrammatic representation is given figure A.10.
It is clear one can produce a piece-wise linear function, this associative to

the universal approximation theory. This informally states; giving the correct
set of weights to a feed-forward neural network can approximate any function
[Pin99]. To produce a good fit for the neural network, the parameters of the
model need to be tuned. Therefore, back-propagation is fundamental to learning
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within neural networks. Whilst, there is the introduction of more recent learning
algorithms such as the Forward-Forward Algorithm [Hin22], back-propagation has
been fundamental for all forms of neural networks. The parametric update process
in back-propagation is known as gradient descent (and corresponding variants).
Details of gradient descent are seen in section A.6.3.

A.6 Supplementary Mathematics for ML

This section serves as a further formal introduction to foundational concepts that
are used within ML. Therefore, this section is organised as follows: Section A.6.1
provides a formal intuition into the structure of loss functions for ML methods.
Section A.6.2 provides a formal background of measurements that are used in ML
with different application purposes. Section A.6.3 provides simple mathematical
intuition into the gradient descent algorithm used for training ML models.

A.6.1 Loss Functions

By convention, in Machine Learning it is common to setup an optimization
problem, as to find the minimum of a function. The natural formulations for
Machine Learning problem often fall under one of the three categories in supervised
learning: Regression, Binary Classification and Multi-class Classification.

Machine Learning problems, can be framed as finding the conditional proba-
bility of an output y, given an input x. As to obtain an accurate prediction of y,
one can formulate the idea of maximising the likelihood of finding the output
y ∈ y, given an input x. The conditional probability can be formulated as:

Pr(y|x).

Constructing a loss function L aims to maximise the probability that y does
in fact belong to x. Whilst, posing this question, considerations as to how to
maximise the probability given a set of inputs x ∈ X and outputs y arise.

Machine Learning of takes an approach where a set of parameters θ are to
be tuned, for this we refer to the formulation of linear regression and logistic
regression in section A.1 and A.2 respectively. Each each case, we have a set
of coefficients β̂. Therefore, given a function that takes an instance and set of
parameters f(x, β̂), one can set up a parametric distribution in the form:

Pr(y|θ),

where the network f(x, β̂) aims to find θ, where θ shapes the distribution of x.
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Therefore maximum likelihood criterion is defined as:

β̂ = argmax
β̂

[ ∏
x∈X,y∈y

Pr(y|x)
]

= argmax
β̂

[ ∏
x∈X,y∈y

Pr(y|θ)
]

= argmax
β̂

[ ∏
x∈X,y∈y

Pr(y|f(x, β̂))
]
.

This, indicates an assumption of independence, which is later given in Chapter 2.
By convention, the products are better represented in log-form, thus the maximum
log likelihood is often considered, recalling that:

loga(cd) = loga(c) + loga(d)

one can arrive at the following summation to compute the maximum log-likelihood:

β̂ = argmax
β̂

[ ∑
x∈X,y∈y

log[Pr(y|f(x, β̂))]
]
.

As previously stated, Machine Learning algorithms often construct a loss L, as
an minimisation problem. Therefore, one can instead consider minimising the
negative log-likelihood:

β̂ = argmin
β̂

[
−

∑
x∈X,y∈y

log[Pr(y|f(x, β̂))]
]
,

formulating our loss function L, parameterised by β̂, which can be rewritten as:

β̂ = argmin
β̂

[
L[β̂]

]
.

As to satisfy the criterion of the loss function L, the formulation of the loss
function as to satisfy the problem type are given as follows:

• Regression: takes the form, to solve the least squares loss function:

L =
∑

x∈X,y∈y

(y − f(x, β̂))2

this is an extrapolation of solving for β̂. For example, in the case of the
univariate Gaussian distribution assumption, all terms that do not depend
on β̂ are mitigated:

β̂ = argmin
β̂

[
−

∑
x∈X,y∈y

log

[
1√
2πσ2

− (y − f(x, β̂))2

2σ2

]]
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here, σ2 represents the variance of the Gaussian distribution (see Appendix
B for the parametric effects on the Gaussian Distribution).

• Binary Classification: aims to solve the binary cross-entropy function for
the training data, given by:

L =
∑

x∈X,y∈y

−(1− y) log
[
1− sig[f(x, β̂)]

]
− y log

[
sig[f(x, β̂)]

]

intuitively, the sigmoid function is used to predict the Bernoulli distribution
parameter κ for a discrete y ∈ {0, 1}. Thus, when given a probability
threshold to assign a prediction to a class τ (often τ = 0.5), class assignment
is given, such that:

y =

{
1, if κ > τ

0, otherwise.

• Multi-class Classification: takes the form, to solve the cross-entropy loss
function is defined as:

L = −
∑

x∈X,y∈y

log

[
softmaxy

[
f(x, β̂)

]]

where:

softmaxc
[
z
]
=

exp[zc]∑
c∈c exp[zc]

here, z represents an arbitrary input vector and c contains each possible
output, and c ∈ c represents a single output.

Note that, the term cross-entropy is used in this section. Cross-entropy is func-
tionally equivalent to minimising the negative log-likelihood. Informally, the
cross-entropy loss can be thought of as, the difference in the distribution between
the empirical data and observed data. Thus, to minimise the loss (maximise
the likelihood), one would need to better map the observed data to follow the
distribution of the empirical.

Kullback-Leibler (KL) divergence is a measurement of divergence between two
probability distributions. Consider a true distribution p(·), and approximation of
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the true distribution q(·). KL divergence is defined as:

KL(p||q) =
∫ ∞

−∞
p(y) log

[
p(y)

]
dy −

∫ ∞

−∞
q(y) log

[
q(y)

]
dy

=

∫ ∞

−∞
p(y) log

[
p(y)

q(y)

]
dy

= Ey∼p(y)
[
log

[
p(y)

q(y)

]]
Therefore, if we consider an estimation of the distribution in the ML setting
parameterised by β̂, and given the observed θ, this can be rewritten as:

KL(Pr(y|θ)||Pr(y|β̂)) = Ey∼Pr(y|θ)

[
log

[
Pr(y|θ)
Pr(y|β̂)

]]
= Ey∼Pr(y|θ)

[
log

[
Pr(y|θ)

]
− log

[
Pr(y|β̂)

]]
as to minimise the divergence, with respect to β̂, consider the ML function f and
data x, the equation can be reduced to terms only including β̂. Giving:

β̂ = argmin
β̂

Ey∼Pr(y|θ)

[
− log

[
Pr(y|f(x, β̂))

]]
= argmin

β̂

[
− 1

N

∑
x∈X,y∈y

log

[
Pr(y|f(x, β̂))

]]
The minima can be found regardless of the scaling term 1

N
, the equation can be

reduced to the form:

β̂ = argmin
β̂

[
−

∑
x∈X,y∈y

log

[
Pr(y|f(x, β̂))

]]
Thus, functionally equivalent to minimising the negative log-likelihood. Further
details on the background of ML that supplement the understanding presented in
this thesis can be found in [GBC16, Pri23].

A.6.2 Distance Metrics, Norms & Regularization

Consider a vector x = ⟨x1, . . . , xJ⟩, 0 < j ≤ J , we provide descriptions of each
norm:

• l0 norm = ||x||0. The l0 norm represents the cardinality of non-zero elements
of a vector. More formally, let:

||x||0 =
J∑
j=1

1[xj ̸=0].
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• l1 norm = ||x||1. The l1 norm is given by the sum of absolute values of a
vector, thus represented as:

||x||1 =
∑
j∈J

|xj|.

• l2 norm = ||x||2. The l2 norm of a vector, is also known as the Euclidean
norm, here:

||x||2 =
√∑

j∈J

|xj|2.

This section briefly covers commonly used regularization techniques for Machine
Learning. The common forms of regularization are l1 and l2 regularization. There-
fore, consider a regularization function applied to the coefficients β̂, represented
Ω(β̂). The regularization parameter extends a loss function L by constraining
weights. For example, consider the least squares equation:

L =
∑

x∈X,y∈y

(y − f(x, β̂))2

The regularization function peanalises the weights. Therefore, the loss function
can be rewritten as:

L =
∑

x∈X,y∈y

(y − f(x, β̂))2 + λΩ(β̂)

Where λ is a weighting parameter. Introducing the l1 and l2 regularization
methods, they are given as:

• l1 Regularization: is given as the sum of absolute values of β ∈ β̂. Thereby,
shrinking obsolete coefficients to zero. Therefore:

Ω(β̂) = ||β̂||1 =
∑
β∈β̂

|β|

• l2 Regularization is given as a the sum of squared coefficients. Thereby,
shrinking coefficients evenly. Therefore:

Ω(β̂) = ||β̂||2 =
∑
β∈β̂

β2
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A.6.3 Gradient Descent

Given a formal introduction to Machine Learning methods in this chapter, one way
of solving for the optimal parameters β̂ is through the gradient descent method.
As the scope of this thesis resides less around optimisation techniques for learners,
this section is limited to only introducing the gradient descent algorithm.

Gradient descent is an algorithm used in ML, aiming to minimise a (often)
loss function L. Informally, gradient descent aims to find the optimal value for
parametric terms in a neural network (weights and biases). Thus, consider a set
of weights β̂ = ⟨β1, . . . βJ⟩. Using the effect of the weights on the loss, which can
be calculated via the partial derivatives of L with respect to β̂:

∇L = ⟨ ∂L
∂β1

, . . . ,
∂L
∂βJ
⟩

Ideally, through the gradient descent process, one will find ∇L(β̂) ≈ 0. Intuitively,
if the loss is non-zero, the function L decreases in the direction of the negative
gradient. Thus, ∇L(β̂) ≥ ∇L(β̂new). Here, ˆβnew is given by:

β̂new = β̂ − α(∇L(β̂))

where α is a learning rate.

Example A.1 Consider a simple function to minimise f , such that:

f(x) = 3x2 + 2x+ 1.

Here, for practicality only terms including x are considered, as constants not
including x will be mitigated in the differentiation (with respect to x) process, thus
ignoring the term, it is easy to see that:

f(x+∆x) = 3(x+∆x)2 + 2(x+∆x)

= 3(x+∆x)(x+∆x) + 2(x+∆x)

= 3(x2 + 2x∆x+∆x2) + 2x+ 2∆x

= 3x2 + 6x∆x+ 3∆x2 + 2x+ 2∆x

Thus, recall derivations from first principles, where:

df

dx
= lim

∆x→0

f(x+∆x)− f(x)
∆x
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then:

df

dx
= lim

∆x→0

(3x2 + 6x∆x+ 3∆x2 + 2x+ 2∆x)− (3x2 + 2x)

∆x

=⇒ lim
∆x→0

6x∆x+ 3∆x2 + 2∆x

∆x

=⇒ lim
∆x→0

∆x(6x+ 3∆x+ 2)

∆x
=⇒ lim

∆x→0
6x+ 3∆x+ 2

= 6x+ 2

Therefore,
df

dx
= 6x+ 2.

Initialising x with the value 5 gives:

f(5) = 3 ∗ 52 + 2 ∗ 5 + 1 = 86

Therefore, it is necessary to update the value of 5. Thus, to find a value that
satisfies the function minima, where the gradient tends towards 0, x is updated
via:

xnew = x− α(6x+ 2).

Let the learning rate α = 0.1, over 10 iterations as illustrated by the example
in Figure A.11. Thus, numerically working through each iteration in the given
example, we have:

xnew = 5

= 5− 0.1(6 ∗ 5 + 2) = 1.8

= 1.8− 0.1(6 ∗ 1.8 + 2) = 0.52

= 0.52− 0.1(6 ∗ 0.52 + 2) = 0.008

= 0.008− 0.1(6 ∗ 0.008 + 2) = −0.1968
= −0.1968− 0.1(6 ∗ −0.1968 + 2) = −0.27872
= −0.27872− 0.1(6 ∗ −0.27872 + 2) = −0.311488
= −0.311488− 0.1(6 ∗ −0.311488 + 2) = −0.3245952
= −0.3245952− 0.1(6 ∗ −0.3245952 + 2) = −0.32983808
= −0.32983808− 0.1(6 ∗ −0.32983808 + 2) = −0.331935232
= −0.331935232− 0.1(6 ∗ −0.331935232 + 2) = −0.3327740928

xnew = −0.3327740928
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Figure A.11: Simple example of gradient descent on a one dimensional value. Here, our
value is initialised at 5. x is then updated through the gradient descent process, with a
learning rate of α = 0.1 and 10 step iteration process. Here, each red point illustrates a
step location of the function with respect to each updated x. Here, we see convergence
from example A.1 to the value f(x) ≈ 0.0022

Then, plugging the new value xnew into the original function f :

f(−0.3327740928) = 3 ∗ −0.33277409282 + 2 ∗ −0.3327740928 + 1 ≈ 0.0022

Thus, concluding a simple arithmetic example of gradient descent. ■
Of course, this idea can fundamentally be extrapolated to J dimensions. In

figure A.12 another simple example is found in 3 dimensions, with a 2 dimensional
input vector.

179



A. Machine Learning

Figure A.12: Simple example of gradient descent on a two dimensional input. Here,
our inputs are initialised at x = 5 and y = 3, where z = f(x, y). x and y are then
updated through the gradient descent process, with a learning rate of α = 0.1 and 20
step iteration process. Here, each red point illustrates a step location of the function
with respect to each update.

180



Appendix B

Parametric effects on the
Gaussian Distribution

Reconsider the following solution for β̂:

β̂ = argmin
β̂

[
−

∑
x∈X,y∈y

log

[
1√
2πσ2

− (y − f(x, β̂))2

2σ2

]]
(B.1)

This is derived as a solution given the probability density function (PDF), for a
Gaussian distribution, which is given by:

Pr(y|µ, σ2) =
1√
2πσ2

exp

[
− (y − µ)2

2σ2

]
here, σ2 is the variance and µ is the mean of the distribution. Thus, by plugging
this into the maximum negative log-likelihood equation, we arrive at equation
B.1. In this section, we provide a set of plots in Figure B.3, showing the effects of
µ and σ2 on the distribution:

Figure B.3: Collection of plots illustrating the effects of µ and σ2 on the distribution.
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Simulacrum Data
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Appendix D

Conceptualising Batch-Integrated
Gradients for Temporal EHR
Explanations

D.1 Introduction

Due to modern computation capabilities, black-box models in recent Artificial
Intelligence (AI) literature often take the form of Deep Neural Networks (DNNs),
the complexity of such methods enable an increase in accuracy. At the same
time, the increase in accuracy is usually associated with a decrease in model
interpretability. Explainable Artificial Intelligence (XAI) is a common approach
for increasing the transparency of black-box AI methods, XAI encompasses an
increase in importance as desire to use accurate predictive models is inherited
within high-risk domains. Feature-attribution is a commonly used method for
XAI, where the aim is to determine how each feature influences the prediction of
an instance, the landmark papers for this are introduced by the authors in [LL17]
and [RSG16].

Extrapolating from Chapters 4 and 5, where the focus was on both counter-
factual model-specific explanations and model-agnostic explanations for approx-
imating the decision boundary, where the intent is to explain a single instance
prediction, instead the temporal dynamic is explored, as despite recent success
in XAI methods in developing feature attribution explainers such as SHapley
Additive exPlanations (SHAP) [LL17], Local Interpretable Model-Agnostic Expla-
nations (LIME) [RSG16] and Integrated Gradients [STY17], the temporal nature
of data is often neglected when developing XAI methods for tabular data [SSV21].
Whilst there does exist the application of existing XAI methods to temporal data
(e.g., [VABH22, SSV21, DP21]), to our knowledge, there is no local explanation
method is designed to focus on the temporal nature of the data and the associated
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change in prediction across instances. Hereinafter, we propose the adaptation
of the Integrated Gradients (IG) method [STY17] to adhere to temporal data.
Following this, we propose properties inherent from IG that conform to ideal
properties for temporal data. Comparing with existing approaches to XAI, our
method deviates away from instance based attribution and instead determines at-
tribution with respect to the change in prediction value (probability) for regression
(classification).

The occurrence of temporal data can be seen often in healthcare [SSV21].
Healthcare data is often stored in the form of Electronic Health Records (EHR)
and an explanation is necessary when providing black-box predictions. Therefore,
we consider an EHR case to demonstrate the proposed approach to produce
explanations and provide a comparison against current state-of-the-art XAI
methods when explaining temporal data.

Consider a breast cancer patient in the Simulacrum dataset1:

Age: 78, Sex: Female, Site: 0, Morph: 8500, Weight: 84, Height:
1.67, Dose Administration: 600 → 300 → 450 → 50, Chemo
Radiation: No, Regimen Outcome Description: N/A, Admin Route:
Subcutaneous→ Subcutaneous→ Intravenous→ Oral, Regimen
Time Delay: No, Regimen Stopped Early: No, Cycle Number: 1
→ 3 → 3 → 5, Cancer Plan: 2, Ethnicity: J, Behaviour: Malignant,
Grade: G3, CReg Code: L1201, T Best: 2, N Best: 0, M Best: 0,
Laterality: Left, CNS: Y1, ACE: 9, Performance: 1, Clinical Trial: Yes

There are four records of this patient, representing the sequences of treatments
the patient has received. From these records, we observe that three features of
this patient has gone through the following changes: drug dose administration
(from 600 to 50), cycle number (from 1 to 5) and drug administration route
(from subcutaneous to oral), while other features have remain unchanged. In the
context of XAI, we pose the question:

How does each of these changing features affect the patient’s survival?

Answering such a question is critical for medical decision making [AB+20]. Yet,
existing feature attribution algorithms in XAI [LOS+22] cannot directly answer
this question, as they treat each record as an independent instance and do not
consider temporal changes. In other words, state-of-the-art XAI explainers such
as the SHAP and LIME would consider the above as four separate patients and

1https://simulacrum.healthdatainsight.org.uk/ - The Simulacrum is a synthetic dataset developed
by Health Data Insight CiC derived from anonymous cancer data provided by the National Cancer
Registration and Analysis Service, which is part of Public Health England.
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provide attribution values to all features, instead of only analyzing the changing
ones.

The rest of this chapter is organised as follows, we provide a background of
the method which our model adopts. We then introduce a representation of
temporal data and the details of the constructed method. In doing so, we identify
properties that should be satisfied with regards to XAI methods in a temporal
domain and compare this to current state-of-the-art explainer DeepSHAP [LL17].
Finally, we provide a controlled experiment with a working example providing
empirical evidence of property satisfiability and a comparison of performance
when recovering feature-attribution against a known ground truth for temporal
data for both LIME and SHAP.

D.2 Method

We introduce Batch-IG as an extension to IG for temporal explainability over
batches of time-based data, such that we explain a collection of sequential instances
and determine the attribution with respect to each point within the time batch.
We represent a time batch as a matrix χ ∈ RT×J . Given a time batch contains T
time points, where each time point is a vector, then χ = ⟨x1, . . . ,xt, . . ., xT ⟩.

Analysing the behaviour of the black-box model between time points helps
to determine the behaviour of the model with respect to data of a temporal
nature, so we analyse where between time points that a feature had the greatest
change in importance. The insight provided into the change in partial derivatives
with respect to time intervals could lead to deeper insight to which point the
partial derivative had greater importance in changing in prediction. We introduce
Batch-IG, by overriding the baseline with an iterative function using the prior
time-step t as the baseline, and following step t+ 1 as the target, therefore we
have

Batch-IG(χ) :=
T−1∑
t=1

J∑
j=1

(
(xjt+1 − x

j
t)×

∫ 1

α=0

∂F (xt + α× (xt+1 − xt))

∂xj
dα

)
.

This can then be computed through the Riemann approximation method, namely:

Batch-IGR(χ) :=
T−1∑
t=1

J∑
j=1

(
(xjt+1 − x

j
t)×

M∑
k=1

∂F (xt +
k
K
× (xt+1 − xt))

∂xj
× 1

M

)
where (xt +

k
K
× (xt+1 − xt)) takes an initial point in time for an instance xt,

and integrates with respect to xjt ∈ xt for all j over k
K

steps, where k
K
∈ [0, 1]

and 0 < k ≤ K to approximate the path integral between xt+1 and xt such that,
sub-intervals have equal lengths between both points. Therefore, a larger value of
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K will allow for a more accurate approximation of Batch-IG between points xt+1

and xt.

D.3 Results

We present three sets of experiments in this section. Starting from an in-depth
discussion on the Example shown in the Introduction, we first illustrate the
steps involved in computing Batch-IG and outcomes of this case study. Then, we
compare Batch-IG results with explanations found by DeepSHAP and demonstrate
that both approaches produce distinctive explanations. Lastly, after witnessing
differences between Batch-IG and DeepSHAP, we construct some controlled
experiments with known “ground truth” to explanations and evaluate Batch-IG
against several other state-of-the-art explainers.

D.3.0.1 Example Explanation

From the Simulacrum dataset, we isolate a cohort of patients with the ICD-10 code
“C50” Malignant neoplasm of breast. We group patients by their patient unique
identifiers, and within these groups we order the patients by cycle number to
maintain temporally organised patient data as a means for generating explanation
examples. We want to obtain explanations of the form, “given features that
change during the course of patient treatment, how do the changes effect the
survival prediction probability?”. Standard feature-attribution methods such as
SHapley Additive exPlanations (SHAP) [LL17] and Local Interpretable Model-
Agnostic Explanations (LIME) [RSG16] gives explanations of the form, “given
an instance, which features attributed towards the prediction probability?”, yet,
this is potentially problematic, as when we observe temporal data groups of
data belonging to the same patient should not be viewed independently. For
example, let us consider a temporal batch of instances of the same patient where
the alterations at {t0, t1, t2, t3} then we have the patient instance state transitions:

Dose Administration: 600 → 300 → 450 → 50,

Admin Route: Subcutaneous → Subcutaneous → Intravenous → Oral,

Cycle Number: 1 → 3 → 3 → 5.

The following predictions given at each time interval:

t0 = 94.49%, t1 = 95.87%, t2 = 95.92%, t3=93.82% towards the class
≥ 6 Months survival.

Therefore, upon generating explanation with respect to the introduced patient
cycle, we see that the dose administration feature is the only attributed feature
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under all 3 transitions, such that t0 : 600 → t1 : 300 → t2 : 450 → t3 : 50,
whereas the cycle number between the time intervals t1 → t2 does not change,
the attribution given for the cycle number feature is only evident in figures D.1
and D.3.

In Figures D.1, D.2 and D.3 we see the attribution of the controllable features
F d for a breast cancer patient through a set of 3 recorded cycles, with two instances
under the same cycle, such that Cycle Number = {1,3,3,5}, such that the set of
controllable features are given by

F d = {“Dose Administration”, “Cycle Number”, “Admin Route”}.

Observing each sub-figure, we determine that the most influential feature in
altering predictions between time points is given by the adjustment to the drug
dose administration for the patient.

The explanations highlights that the cycle number in the earlier cycles attribute
towards a probability of longer survival, whereas in the final recorded cycle,
the later cycle numbers attribute towards a shorter survival. Similarly, drug
administration has positive influence over longer survival earlier in the cycle and
negative influence in the final recorded cycle.

Figure D.1: Feature attribution for the features from time interval t0→ t1. We observe
the dose administration had positive attribution towards the class ≥ 6 Months and the
cycle number transition from 1→ 3 had negative attribution towards the ≥ 6 Months
class.

Furthermore, by evaluating attributions for time-intervals, we can then further
explore the influential sub-intervals between two time points. From this, we can
gauge between two time points, at which point the attribution becomes influential.
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Figure D.2: Feature attribution for the features from time interval t1→ t2. We observe
the dose administration had positive attribution towards the class ≥ 6 Months. This
time interval was observed during the drug cycle 3, where there exists only change to
the drug administration.

Figure D.3: Feature attribution for the features from time interval t2→ t3. We observe
the dose administration had negative attribution towards the class ≥ 6 Months and
the cycle number transition from 3 → 5 also had negative attribution towards the
≥ 6 Months class.
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For example, let us consider an evaluation of dose administration (see Figures
D.4, D.5 and D.6).

By observing the respective gradients within time intervals, we can see that
the gradual decrease in dose administration began to have effects in the earlier
part of the reduction in the first time interval (Figure D.4). Then the modification
towards the latter part of t1→ t2 had great attribution as the dose administration
increased back to 450. Finally, the decrease to 50 towards the end of t2→ t3 had
the greatest negative influence w.r.t the prediction ≥ 6 Months this when paired
with the total attribution given for time intervals.

Figure D.4: Evaluation of the partial derivative of the prediction w.r.t the change in
drug dose administration between time intervals t0→ t1.

D.3.0.2 XAI Comparison

We compare explanations returned by Batch-IGR and DeepSHAP, by evaluating
the average Pearson r correlation coefficient of returned explanation vectors over
the first 100 instances over 5 datasets, where the DeepSHAP approximation
background set uses the whole training dataset and Batch-IGR uses M=5000
steps for the Riemann approximation.

As DeepSHAP only produces feature attribution explanations for individual
instances without considering the temporal aspect within our EHR data, we
manually take the difference between two instances at each adjacent time intervals
and consider that as the impact of changes. We observe that there’s a moderate
to high average correlation between explanations returned by Batch-IGR and
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Figure D.5: Evaluation of the partial derivative of the prediction w.r.t the change in
drug dose administration between time intervals t1→ t2.

DeepSHAP across the majority of datasets with a relatively large standard
deviation.

Table D.1: Comparison of explanations returned by SHAP and Batch-IGR

Dataset Average Correlation Correlation Std. Correlation Var.

Breast Cancer 0.52 0.22 0.05

Lung Cancer 0.71 0.30 0.09

Rectal Cancer 0.44 0.24 0.06

Lymphoma Cancer 0.67 0.27 0.07

Skin Cancer 0.46 0.27 0.07

D.3.0.3 Controlled Experiment

We generate a simple synthetic data set where the importance of features are
known. Therefore, we define the input data set to be a RD×2 matrix of instances,
where D = 50, 000 and a label for an instance at time point t is given by:

pt = 2 sin(x1t ) + 4 sin(x2t ).

Considering an instance given at time-point t and t+ 1 respectively, keeping the
subscript notation for time points, we have the time batch χi containing xt =
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Figure D.6: Evaluation of the partial derivative of the prediction w.r.t the change in
drug dose administration between time intervals t2→ t3.

⟨2t, 8t⟩ and xt+1 = ⟨2t+1, 7t+1⟩. Generating the true labels we have pt ≈ 5.776028
and pt+1 ≈ 4.446541, the change in value equates to ∆pt ≈ −1.329487, therefore
the difference in attribution is given by the difference in the second term of the
equation at both time points, namely ∆pt = 4 sin(7)− 4 sin(8), as the first term
is the same. The predicted values are pt = 5.7793 and pt+1 = 4.4459 where
∆pt = −1.3334. where ∆pt is given by a change in x2.

We compare Batch-IG to DeepSHAP, SHAP and LIME in this setting to
determine if the returned attribution recovers the difference in prediction whilst
correctly assigning attribution from our example (see Table D.2). We observe
that Batch-IG indeed identifies feature change impact most accurately, exceeding
all other methods.

D.4 Conclusion

In this chapter, we identify a gap in current literature surrounding XAI for
temporal data. To combat this, we introduce Batch-IG as a modification to the IG
framework to consider time and both dynamic and static features. We provide an
empirical comparison between Batch-IG, SHAP, DeepSHAP and LIME. Similarly,
we provide a quantitative comparison on a controlled example comparing the same
methods. From this, we determine that Batch-IG preserves the true attribution
from the controlled example.

Limitations of the proposed approach are the requirement of knowledge (e.g.
the temporal data needs to be linked via an identifier) with respect to temporal
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Table D.2: We demonstrate attribution recovery for an instance, such that we know the
ground truth. Therefore, the difference in predictions should be fully recovered by the
attribution given to x2. As in the previous example, for calculation of attribution for
all methods besides Batch-IG, we take the difference in attribution between t+ 1 and t
for example Φ(x2) = Φ(x2t+1)− Φ(x2t ).

XAI Method (Model) f(xt+1) - f(xt) Φ(x1) Φ(x2)

DeepSHAP (ANN) -1.3334 -0.00016 -1.3332

Batch-IG (ANN) -1.3334 0 -1.3334

LIME (XGBoost) -1.3298 -0.005 -1.632

SHAP(XGBoost) -1.3298 -0.002 -1.3278

sequences within the data. The model specificity of such approach limits the ML
models that can be applied in order to use the Batch-IG framework. Similarly,
as with other current methods, Batch-IG also assumes independence between
features.
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Appendix E

QUCE Supplementary Material

E.1 Computing QUCE Explanations

Proposition 1. The QUCE explainer has a computable Riemann approximation
solution for each feature.

Proof. Given an instance x that is the origin of our instance for our counterfactual
explanation, we consider the x∆ steps produced by our learning process. In order
to compute QUCE for feature explanations, we deconstruct the definition to
focus on a single step of QUCE. This can be directly extracted from the additive
property of integrals. Recall the definition:

ΦQUCE(x
∆) := (x∆n − x∆0)×

(∫ x∆n

x∆0

∇F (ψ(α)) · ψ′(α)dα

)
.

Expanding this, we obtain

ΦQUCE(x
∆) :=(

(x∆1 − x∆0)×
(∫ x∆1

x∆0

∇F (ψ(α)) · ψ′(α)dα

))
+ . . .+

(
(x∆n − x∆n−1)×

(∫ x∆n

x∆n−1

∇F (ψ(α)) · ψ′(α)dα

))
.

Rewriting in terms of partial derivatives we get,

ΦQUCE(x
∆) :=

J∑
j=1

(∫ x∆1

x∆0

∂F (ψ(α))

∂ψj(α)

∂ψj(α)

∂α
dα

)

+ . . .+
J∑
j=1

(∫ x∆n

x∆n−1

∂F (ψ(α))

∂ψj(α)

∂ψj(α)

∂α
dα

)
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where ψj is along a single feature dimension of a path ψ. With this decomposition,
we can further extrapolate by defining each step in x∆ as a piecewise linear path,
such that

ΦQUCE(x
∆) :=

J∑
j=1

(
(xj∆1

− xj∆0
)×

∫ 1

α=0

∂F (x∆0 + α(x∆1 − x∆0))

∂xj
dα

)
+ . . .+(
(xj∆n

− xj∆n−1
)×

∫ 1

α=0

∂F (x∆n−1 + α(x∆n − x∆n−1))

∂xj
dα

)
and rewriting for a single feature j, we simply remove the summation and define
the explanation over x∆,j:

ΦQUCE(x
∆,j) :=(

(xj∆1
− xj∆0

)×
∫ 1

α=0

∂F (x∆0 + α(x∆1 − x∆0))

∂xj
dα

)
+ . . .+(
(xj∆n

− xj∆n−1
)×

∫ 1

α=0

∂F (x∆n−1 + α(x∆n − x∆n−1))

∂xj
dα

)
.

We can then rewrite this as a computable Riemann approximation for K steps, as

ΦQUCER(x∆,j) :=(
(xj∆1

− xj∆0
)× 1

K

K∑
k=1

∂F (x∆0 +
k
K
(x∆1 − x∆0))

∂xj

)
+ . . .+(
(xj∆n

− xj∆n−1
)× 1

K

K∑
k=1

∂F (x∆n−1 +
k
K
(x∆n − x∆n−1))

∂xj

)
which yields a computable explanation over the jth dimension of an instance x
along a piecewise linear path. This can simply be executed across all features
j.

The Riemann approximation is the algorithm for computing explanations that
we use in our implementation carried out on each dimension j, which returns
a vector containing the overall attribution over piecewise linear path integral
formulation. It follows that the expected gradients variant can be easily computed
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by averaging explanations over each counterfactual example in the set C.

Corollary 1. The expected QUCE variant has a Riemann approximation solution
for each feature.

Proof. Given a set of k counterfactual examples in the set C, we can simply com-
pute the expected attribution over the jth feature of each generative counterfactual
example as

ΦexQUCER(x∆,j) =
1

k

∑
xc∈C

ΦQUCER(x∆,j).

E.2 Proof of Proposition 2

Proposition 2.Increasing the λ-tolerance of uncertainty provides a more flexible
search space for possible paths to a generative counterfactual example.

Proof. Recall the objective function in equation 7.1. For simplicity we let λ1 = 0,
0 < λ2 ≤ 1 and 0 ≤ λ3 ≤ 1, such that

G(x) = λ2Lδ + λ3Lϵ

=
λ2
2
||xc − x||2+

λ3(Eqθ∗ [log qqθ∗ (z|xc)− log pψ∗(z)]−Eqθ∗ log pψ∗(xc|z)).

Trivially, as λ3 decreases toward zero (we accept more uncertainty), the freedom
in the distance function increases, as it not constrained by uncertainty, since

lim
λ3→0+

(
λ2
2
||xc − x||2+

λ3(Eqθ∗ [log qqθ∗ (z|xc)− log pψ∗(z)]−Eqθ∗ log pψ∗(xc|z)))

=
λ2
2
||xc − x||2.

Here the eigenvalues of the Hessian are given by λ2 and since λ2 > 0, the Hessian
is positive definite and thus the search space is convex, implying the global minima
are conditioned on Lδ when uncertainty Lϵ is relaxed.
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E.3 Proof of Proposition 3

Proposition 3. Given the function ΦexQUCE(x), the expected difference in

prediction probabilities between generated counterfactuals in the set C with respect
to the prediction probability given by F (x), the following equality holds:

E
xc∼C,α∼U(0,1)

[
ΦQUCE(x

∆)

]
(E.1)

= E
xc∼C

[
F (xc)− F (x)

]
. (E.2)

Proof. Due to the completeness axiom the following holds true:

F (x∆n)− F (x∆0) = (E.3)

(x∆n − x∆0)×
(∫ x∆n

x∆0

∇F (ψ(α)) · ψ′(α)dα

)
(E.4)

and extending this via x∆n = xc and x∆0 = x respectively, and thus we have

F (xc)− F (x)
while rearranging the RHS of equation E.4 we have

xc ×
(∫ xc

x

∇F (ψ(α)) · ψ′(α)dα

)
︸ ︷︷ ︸

F (xc)

(E.5)

− x×
(∫ xc

x

∇F (ψ(α)) · ψ′(α)dα

)
︸ ︷︷ ︸

F (x)

(E.6)

which follows by relaxing a strict definition of xc, where we instead use a set of
generated counterfactuals in the set C. Our proposed approach takes the integral
over xc with respect to a change in the set C, yielding∫

xc

(
xc ×

( ∫ xc

x

∇F (ψ(α)) · ψ′(α)
)
dα

)
pC(xc)dxc (E.7)

= E
xc∼C,α∼U(0,1)

[
xc ×∇F (ψ(α)) · ψ′(α)

]
(E.8)

= E
xc∼C

[
F (xc)

]
(E.9)

for equation E.5 and F (x) for equation E.6. and since F (x) is a constant, namely

E
xc∼C

[
F (xc)

]
− F (x) = E

xc∼C

[
F (xc)− F (x)

]
, (E.10)

equations E.1 and E.2 are equivalent.
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E.4 Counterfactual Reconstruction Error

In addition to evaluating the VAE loss, we also analyze the average reconstruction
error per instance across all 100 instances on both the training and test datasets.
This highlights the closeness of the reconstructed sample against the ground truth
counterfactual generated by different methods. In Table E.1 we observe that our
proposed QUCE method provides better reproduced counterfactuals through the
VAE than either the DiCE or AGI methods.

Table E.1: Comparison of the average sum of feature-wise reconstruction error between
original instances and their generated counterfactual examples. This is experimented
on 100 instances for each dataset. Here we observe that the QUCE method performs
best in generating counterfactuals with minimal uncertainty across all datasets.

CF Proximity Lung Breast Skin Lymph Rectal COVID W-BC

Train

QUCE 0.95 0.73 0.90 0.66 0.78 1.16 0.73
DiCE 1.80 0.95 1.33 1.01 1.18 1.38 1.04
AGI 2.55 1.89 2.25 0.91 2.91 2.19 0.80

Test

QUCE 0.88 0.85 0.80 0.63 0.78 0.57 0.76
DiCE 1.81 0.95 1.32 0.99 1.18 1.38 1.04
AGI 1.53 2.41 1.66 0.92 2.08 0.79 0.81

E.5 QUCE Evaluated against Further Properties of
Explainability

In the work of [ABN22] the authors present a desirable set of axiomatic foundations
for XAI methods. As a brief informal overview, we consider the following proposed
axioms:

• Success: The explainer method should be able to produce explanations for
any instance.

• Explainability: An explanation method should provide informative expla-
nations. An empty explanation here is not recommended.

• Irreducability: An explanation should not contain irrelevant information.

• Representativity: An explanation should be possible on unseen instances.

• Relevance: Information should only be included if it impacts the prediction.
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We evaluate QUCE against these properties as interpreted with respect to our
model design. We show that it is inherently straightforward to prove that our
proposed QUCE method satisfies these desirable axioms.

Proposition 13. The QUCE method can always provide an explanation satisfying
the success axiom.

Proof. Whilst a counterfactual may not always be valid, as a direct implication of
the generative learning process QUCE will achieve an explanation.

Corollary E.1 The QUCE method satisifies the Explainability axiom.

Proof. Assuming that different instances generated by QUCE do not have the
same prediction probability with respect to the target class, it follows immediately
from proposition 3 that explainability holds.

Corollary E.2 The QUCE method satisfies the Irreducability axiom.

Proof. Here, we characterize irrelevance under our own interpretation: since a
feature that does not change does not affect the predicted outcome, it should be
assigned zero attribution. Then directly from the definition of QUCE it is clear
that irreducability holds, as the gradients are multiplied by a zero-value scalar for
the same valued features.

Proposition 14. The QUCE method satisfies the Representativity axiom.

Proof. It is easy to see that any instance with the same dimensionality of the
instances from a training dataset can utilize the QUCE approach.

Corollary E.3 The QUCE method satisfies the relevance axiom.

Proof. Relevance holds as a direct implication of irreducability as seen in corollary
E.2 and the fact that gradients are traced over the change in the predictions along
paths, thereby guaranteeing model-specific relevance.

E.6 Experimental Setup

For the experiments presented in this paper, the details of hyper-parameters
and experimental setup are found in the notebook file at: https://github.com/
jamie-duell/QUCE. For the comparative experiments in this paper we set up
QUCE with single-path solutions using the Adam optimizer. The empirical
intuition for using Adam for a single-path approach is as follows: as the loss
is minimized and points along the path become more reliable there will be an
increase in the frequency of points as we approach the solution; thus averaging
the gradient along such paths become more reliable. Similarly the approach
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is deterministic, therefore does not require multiple paths as with alternative
optimizers.

E.7 Deletion Experiments

To compare counterfactual feature attribution methods we evaluate the deletion
score, a common metric used for evaluating feature attribution methods for
identifying important features. The deletion score is used in various studies
[YAWM23, AJ23]; here, a lower value indicates better performance. In Table E.2
we observe that the QUCE method performs better on average than both DiCE
and AGI for counterfactual feature attribution performance.

Table E.2: Comparison of the deletion scores for counterfactual generative methods
that provide feature attribution values. This is experimented over 100 instances on each
dataset. Here the lower the value the better. We observe that the proposed QUCE
method performs best across a larger fraction of datasets.

Deletion Lung Breast Skin Lymph Rectal COVID W-BC

QUCE 0.556 0.689 0.656 0.611 0.669 0.699 0.632
DiCE 0.561 0.688 0.649 0.619 0.669 0.710 0.637
AGI 0.559 0.683 0.659 0.607 0.670 0.728 0.648
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F. Multiple Value Imputation Experiments

Figure F.1: Here we have the random imputation experiments on the ∆I metrics for
(from left to right): SBC, SLC, SLyC, SRC, SSC, Diabetes and SEER datasets. Here
we observe a competitive performance displayed with the proposed SSI method.204



Figure F.2: Here we have the random imputation experiments for EF on the datasets
(from left to right): SBC, SLC, SLyC, SRC, SSC, Diabetes and SEER. Here we observe
aberration in performance with all methods, with a competitive performance displayed
by the proposed SSI method. 205





Appendix G

Further Comparisons of
Explanations on EHRs

G.1 Introduction

There is a significant demand for Explainable Artificial Intelligence (XAI) in
medical machine learning, driven by the need for transparency, trust, and ethical
deployment [ADG+21]. In the medical domain, where decisions can have life-
or-death consequences, understanding the underlying factors behind machine
learning predictions is crucial. Explainability enables healthcare professionals to
comprehend the causal relationships between treatments and outcomes, facilitating
informed decision-making.

Interpreting predictive models in the context of complex medical data, such
as Electronic Health Records (EHRs), poses challenges. EHRs contain diverse
patient information, making it difficult to extract actionable insights solely from
black-box models. Feature attribution methods [LL17, RSG16] play a pivotal role
in addressing this challenge by determining the importance of different features
in the decision-making process of predictive models. By identifying influential
features, clinicians gain valuable insights into the factors driving predictions,
enabling them to make informed decisions about patient care.

Incorporating XAI techniques in medical machine learning not only enhances
model transparency and trust but also upholds ethical standards. It empow-
ers healthcare providers to explain treatment decisions to patients, promoting
transparency and patient-centered care. XAI bridges the gap between complex
machine learning algorithms and the need for comprehensible and justifiable
decision-making in medicine, ultimately improving patient outcomes and ensuring
responsible deployment of AI technologies in healthcare.

In recent years, there has been a surge in the development of feature attribution
methods, leading to the need for comparative approaches to evaluate XAI models.
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In their work, [DFB+21] presents a comparison of the most significant features
identified by various XAI methods. Similarly, [NSBL21] conducts comparisons
of explanations and employs the Kendall τ ranking to assess the consistency of
these explanations. These studies highlight the lack of consensus or ubiquity in
explanations provided by state-of-the-art XAI methods such as Local Interpretable
Model-Agnostic Explanations (LIME) [RSG16] and SHapley Additive exPlanations
(SHAP) [LL17].

The need for comparative analysis arises from the observation that different
XAI methods may yield divergent explanations for the same model and data.
These discrepancies raise questions about the reliability and robustness of XAI
methods in providing consistent and reliable insights. The comparative evaluations
conducted in [DFB+21], [NSBL21] and [YFL21] shed light on the variations in
the identified important features and the consistency of explanations generated
by different XAI techniques.

Counterfactual methods, such as Diverse Counterfactual Explanations (DiCE)
[MST20], also incorporate feature attribution. In a comparative analysis conducted
in [KMMTS21], correlations between LIME, SHAP, and DiCE were examined.
The study revealed a weak correlation between SHAP and LIME across a large
number of features, while the strongest correlation was observed between DiCE
and LIME.

In terms of stability of important features, LIME has been shown to outperform
SHAP [MC21]. Conversely, SHAP exhibits better performance under certain
conditions due to its adherence to game theoretic principles [GG21]. In the
work [KMMTS21], the authors acknowledge these differences and emphasize the
importance of not relying solely on a single method. They highlight that as the
dimensionality of a problem increases, inconsistencies become more apparent when
applying these methods to 20 or more features, despite the presence of a high
positive correlation in the explanations. These findings raise concerns regarding
the plausibility and faithfulness of explanations.

The dissimilarity in XAI explanations identified by these studies underscores
the need for cautious interpretation and consideration of multiple XAI methods.
While each method offers unique insights and strengths, their discrepancies suggest
the existence of limitations and challenges in achieving consistent and reliable
explanations. Further research is essential to address these concerns and develop
robust evaluation frameworks for XAI methods to enhance the interpretability
and trustworthiness of AI systems.

Building upon this understanding, we propose an approach for comparison
by leveraging the model-agnostic explanation methods, LIME and SHAP, to
analyze the counterfactual data generated using DiCE. Our primary objective
is to introduce additional metrics for comparison, considering that different
explanation methods yield diverse representations of explanations. We also aim
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to investigate the predictive capability of a model trained on factual data when
applied to counterfactual data. This analysis is crucial in assessing the validity of
the generated counterfactuals, as it plays a pivotal role in understanding causal
effects.

Here, we have the following objectives:

• Determine the quality of counterfactual instances produced through predic-
tive models;

• Propose metrics for the comparison of XAI methods;

• Compare the explanations given by XAI methods.

By addressing these objectives, we aim to enhance our understanding of XAI
methods and their applicability in analyzing counterfactual data. This research
contributes to the development of robust evaluation frameworks for XAI techniques,
fostering greater transparency, interpretability, and trustworthiness in AI-driven
decision-making processes.

G.2 Background

We focus on state-of-the-art deployable XAI methods LIME, SHAP and a genera-
tive counterfactual method DiCE. To ease representation, we introduce local and
global explanations replicating the notation introduced in [AdF22].

XAI methods can be described such that given a black-box model f trained
on a data set X = ⟨x1, . . . ,xN⟩. A feature attribution algorithm produces
a local explanation for an instance xi, where xi ∈ RJ has an associated
explanation vector ei ∈ RJ , such that ei = (e1, . . . , eJ), where ej and j(1 ≤ j ≤ J)
represents the feature explanation for the ith instance. A global explanation is
an explanation over a dataset, where an associated global explanation vector is
given by E ∈ RJ .

DiCE is a counterfactual data generative method. For each xi ∈ X, DiCE(xi) =
ci such that ci ∈ RJ and ci is “close” to xi, f(ci) ̸= f(xi). ci is referred to the
counterfactual of zi

1.

G.3 Method

Counterfactual explanations provide a valuable approach for conducting ”what-if”
analyses in the medical field. These explanations involve creating hypothetical

1DiCE can create up to p explanations such that, a set of counterfactual instances {c1, . . . , cp}, can
be generated that differs in prediction for an instance xi.
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scenarios where closely related patients undergo different treatments or interven-
tions, allowing us to observe the corresponding predictions for those patients. In
many cases, the effects of treatments can vary significantly among individuals,
making it challenging to establish clear causality by solely examining existing
instances.

To address this challenge, it becomes crucial to shift our focus to the patients
themselves and consider how altering specific aspects of an individual’s profile
would impact the prediction. By generating counterfactual instances, we can
explore personalized treatment effects and understand how changes to a patient’s
characteristics or interventions would influence their predicted outcomes. This
patient-centric approach enables a more fine-grained and specific analysis, ac-
counting for the stochastic nature of treatment effects that can differ from one
patient to another.

In essence, counterfactual explanations provide a powerful tool to investigate
causal relationships and assess the potential effects of different interventions on
individual patients. By generating and analyzing counterfactual instances, we can
gain valuable insights into personalized treatment effects, enabling more informed
and targeted decision-making in the medical field.

Formally, a counterfactual generative method over a data set X is Ψ(X) :
RN×J → RM×J . Ψ(X) retains the features of X, but the number of instances
may differ between Ψ(X) and X. As such, we produce a counterfactual set C,
where C = Ψ(X). Specially, we define

C = {DiCE(xi)|xi is an instance in X}.

The use of global explanations can help identify trends at a population level in
EHR [HFL+21, KLS+22], given that EHRs containing a large population, the
associated important features can be hard to determine when making predictions,
as such, global explanations can help identify trends.

To produce a global explanations we take the mean absolute sum of ex-
planations over all instances. Namely, given a feature attribution method
F ∈ {LIME, SHAP}, we let the global explanation with respect to a dataset
Z be:

EF (Z) = 1

b

b∑
i=1

|F (zi)|. (G.1)

Note that Z can be either factual X or counterfactual C. Also, we take the
absolute value on F to generalise importance by rank.

In this work we compare explanations using the Pearson r correlation coefficient,
Jaccard Similarity Index and Attribution Space, introduced as follows.
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G.3.1 Correlation of Attribution

The Pearson correlation coefficient, denoted as r, measures the linear relationship
between two variables. It is calculated as the covariance of the two variables
divided by the product of their standard deviations. The formula for the Pearson
r correlation is:

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2
(G.2)

where:

• Xi and Yi are the individual data points in the two variables, and

• X̄ and Ȳ are the means of the two variables.

G.3.2 Jaccard Similarity Index

We introduce the Jaccard similarity index as a means of comparing the most
important features returned by two feature attribution methods F1 and F2. Let
S1 and S2 be the top v features from global explanations EF1(Z) and EF2(Z)
respectively, the Jaccard Similarity Index is

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

. (G.3)

G.3.3 Attribution Space

We propose a metric of attribution space for comparison, which compares the
positive or negative attribution assigned by each feature in a pairwise form, given
two XAI methods. Therefore, we generate the global attribution without absolute
values, such that,

E ′F (Z) = 1

b

b∑
i=1

F (zi). (G.4)

From this, we can identify the proportion of shared agreement in the attribution
space towards a given class. We consider the attribution space as shared if the
explanation is in the same positive, negative or null space, over the number of
features b. We can determine if the respective sign2 is shared. In other words, we

2The sgn function represents the sign returned. In this work we consider the sgn function to be
defined by

sgn(x) =


1, if x > 0

0, if x = 0

−1, otherwise.
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can represent a comparison of attribution space as:

AttributionSpace(Z1, Z2) =
1

J

J∑
j=1

1[sgn(E ′F (Z1))=sgn(E ′F (Z2))].

G.4 Dataset and Prediction Result

The objective of this chapter is twofold: to assess the performance of a counterfac-
tual generator through predictive analysis and to provide feature attribution-based
explanations for both counterfactual and original data, comparing them with
counterfactual explanations. To conduct this study, we utilize the Simulacrum
synthetic data set3, which serves as a representation of the National Cancer
Registration and Analysis Service (NCRAS) data set4. The data set pertains to
a binary medical classification problem focused on lung cancer. Specifically, we
conduct our experiments based on answering a binary classification problem:

Given a set of features for a lung cancer patient, whether the patient
will survive longer than 6 months?

The patients in the data set are divided into two classes: those who survive
less than 6 months and those who survive longer than 6 months. Each instance is
described by 26 features. To generate counterfactual instances, we employ the
Diverse Counterfactual Explanations (DiCE) method. For the classification task,
we utilize the eXtreme Gradient Boosting (XGBoost) algorithm. The optimal
parameters for XGBoost are determined through 10-fold cross-validation.

In our study, we use the factual data set as the training data and the counter-
factual data set as the test data. This combined data set consists of a total of
4,385 instances, with a split ratio of approximately 57% for training and 43% for
testing. By examining the predictive performance of a model trained on true data
when applied to new counterfactual instances, we can evaluate the generalization
capability of the model to unseen scenarios.

To assess the performance of the model on the counterfactual test set, we
employ various performance metrics. The results of these metrics are presented
in Table G.1, which provides insights into the accuracy and effectiveness of the
model in predicting outcomes for the counterfactual instances.

By analyzing the performance metrics on the counterfactual test set, we gain
valuable insights into the model’s ability to handle new and altered scenarios.
These findings shed light on the model’s robustness and its capacity to make
accurate predictions in the context of counterfactual data, contributing to our
understanding of the model’s reliability and applicability in real-world scenarios.

3https://simulacrum.healthdatainsight.org.uk/
4http://www.ncin.org.uk/about ncin/
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Table G.1: XGBoost performance metrics where we use NonCF for training and CF for
testing

Survival Time Precision (%) Recall(%) F1 Score(%)

< 6 Months 83 86 84
> 6 Months 82 78 80

Accuracy (%) 82.4

G.5 Explanation Results

We generate global explanations over the factual and counterfactual data sets
for LIME shown in Figure G.1 and SHAP shown in Figure G.2. From this, we
can observe that for LIME, “M Best”, being the presence or absence of distant
metastatic spread and “Weight” in the given order, are the most important features
when predicting survival time across both the factual and counterfactual datasets.
Conversely, for SHAP, “Weight” and “M Best” in the given order, are the most
important features in predicting survival time.

We use ELIME(X) for the factual LIME set (LIME-NonCF) and ELIME(C)

for the counterfactual set (LIME-CF). Similarly, we refer to SHAP as ESHAP(Z),
with explanations for sets SHAP-NonCF and SHAP-CF respectively.

Figure G.1: Global explanation for LIME across the factual (NonCF) and counterfactual
(CF) data set. From this, we can observe that across both factual and counterfactual
datasets, “M Best” is the most import feature. We observe a strong similarity in feature
attribution towards predictions.
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Figure G.2: Global explanation for SHAP across the factual (NonCF) and counterfactual
(CF) data set. From this, we can observe that across both factual and counterfactual
datasets, there’s a similarity in feature attribution towards predictions, with the most
importance on the feature “Weight”.

G.5.1 Correlation

We compare the global explanations, to determine the overall r correlation for
the attribution methods LIME and SHAP across both factual and counterfactual
datasets, this illustrated in Figure G.3. We observe, the correlation range between

Figure G.3: Demonstrating the pearson correlation between the global explanations
from SHAP and LIME.

explanations exists such that 0.29 ≤ r ≤ 1, where SHAP across both sets ranges
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from 0.79 ≤ r ≤ 1 and LIME has a correlation of r = 1 when compared with itself
across both sets, indicating SHAP has greater change in explanation when intro-
duced to the counterfactual set. Conversely, SHAP and LIME explanations when
compared have a correlation of 0.29 ≤ r ≤ 0.67, where the greatest correlations
exists between explanations of LIME and SHAP on the factual set, and between
SHAP on the factual set, with LIME on the counterfactual set.

G.5.2 Jaccard Similarity

In this chapter we explore v = 5, which will determine the number of shared
features within a set of 5 most important features from the feature attribution
methods. From Table G.2, we can determine the Jaccard similarity between LIME
and SHAP across both the factual and counterfactual datasets. We observe, LIME
consistently determines the same features as important across both sets, whereas
SHAP holds 67% similarity when compared across both sets. There exists little
similarity between LIME and SHAP.

Table G.2: Jaccard Index v = 5

Dataset-Method NonCF-SHAP NonCF-LIME CF-SHAP CF-LIME

NonCF-SHAP 1 0.25 0.67 0.25
NonCF-LIME 1 0.25 1
CF-SHAP 1 0.25
CF-LIME 1

G.5.3 Shared Attribution

From Table G.3 we determine the shared attribution space of the LIME and
SHAP methods, as they provide a sign in either positive and negative space with
respect to the attribution towards a prediction. From this we determine that
LIME across both factual and counterfactual sets holds the greatest simialrity
in attribution space, followed by SHAP across both sets. Between SHAP and
LIME we see a greater agreement of 50% on the counterfactual generated set, as
opposed to 46% on the factual sets.

Table G.3: Shared Attribution

Dataset-Method NonCF-SHAP NonCF-LIME CF-SHAP CF-LIME

NonCF-SHAP 1 0.46 0.77 0.5
NonCF-LIME 1 0.38 0.88
CF-SHAP 1 0.5
CF-LIME 1

215



G. Further Comparisons of Explanations on EHRs

G.6 Conclusion

In this study, we have conducted a comprehensive comparison of feature attribution
methods, namely LIME and SHAP, in the context of counterfactual and factual
data sets. We have introduced a novel pairwise comparative method called
Attribution Space, which allows us to examine the direction of feature importance
in positive or negative space.

Our findings emphasize the varying similarities and observations among differ-
ent XAI methods when applied to different data conditions, specifically factual
and counterfactual data. We have observed that SHAP exhibits a greater degree
of change when presented with data sets that deviate from the factual data,
while LIME demonstrates more consistency within itself. Moreover, we have
noticed limited agreement between LIME and SHAP across all comparison met-
rics when analyzing Electronic Health Records (EHRs). Therefore, it is evident
that employing a combination of XAI methods can provide more comprehensive
insights.

The lack of consistency in explanations underscores the importance of using
multiple XAI methods and carefully evaluating the explanations in the context of
EHRs. While certain explanations may exhibit similarity in terms of top features
or correlation, it is crucial to interpret these findings cautiously. These consistent
explanations may indicate a higher likelihood of feature importance, providing
valuable insights into the predictive models.

Moving forward, there are several avenues for future research. First, it would
be beneficial to explore additional XAI methods and compare their performance
and consistency in explaining EHRs. Furthermore, investigating the impact of
different similarity metrics and evaluation techniques on explanation consistency
could provide a deeper understanding of the interpretability of XAI methods.
Additionally, considering real-world medical scenarios and evaluating the practical
implications of XAI methods in decision-making processes would be valuable. By
addressing these areas, we can further enhance the reliability, transparency, and
trustworthiness of AI-driven systems in the medical field.
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