
Physics-informed neural networks for solving partial
differential equations.

Prakhar Sharma1*, Michelle Tindall1,2†and Perumal Nithiarasu1‡§

1 Zienkiewicz Institute for Modelling, Data and AI,
Faculty of Science and Engineering, Swansea University, Swansea, UK.
2 Culham Science Centre, United Kingdom Atomic Energy Authority,

Abingdon, OX14 3DB, UK.

Contents
1 Introduction 2

2 Physics-driven vs. Data-driven approaches 3

3 How PINNs are different from conventional numerical techniques? 4

4 The baseline PINN 5
4.1 Nature of solutions in PINNs . 7

5 Developments in the PINN frameworks 7
5.1 Sampling . 7
5.2 Imbalanced loss terms . 8
5.3 Activation function . 9
5.4 Spectral bias in the NN . 10

6 Applications of PINNs to Forward Problems 11
6.1 Parametric problems . 11
6.2 Complex geometry . 11
6.3 Transfer learning . 12

*https://orcid.org/0000-0002-7635-1857
†https://orcid.org/0000-0003-3034-9636
‡https://orcid.org/0000-0002-4901-2980
§Corresponding Author

1

https://orcid.org/0000-0002-7635-1857
https://orcid.org/0000-0003-3034-9636
https://orcid.org/0000-0002-4901-2980

7 Examples 12
7.1 1D Burgers equation . 12
7.2 1D Allen-Cahn equation . 14
7.3 Lid driven cavity . 15

8 Conclusions 18

Abstract
In recent years, Physics-Informed Neural Networks (PINNs) have gained popularity, across differ-
ent engineering disciplines, as an alternative to conventional numerical techniques for solving par-
tial differential equations (PDEs). PINNs are physics-based deep learning frameworks that seam-
lessly integrate the measurements and the PDE in a multitask loss function. In forward problems,
these measurements are initial (IC) and boundary conditions (BCs), whereas in the inverse prob-
lems they are sparse measurements such as temperature recorded by thermocouples. The scope of
PDEs applicable in PINNs could include integer-order PDEs, integro-differential equations, frac-
tional PDEs or even stochastic PDEs. This chapter presents a brief state-of-the-art overview of
PINNs for solving PDEs. Our discussion primarily focuses on solution to parametric problems,
approaches to tackle stiff-PDEs and problems involving complex geometries. The advantages and
disadvantages of several PINNs frameworks are also discussed.

Keywords : physics-informed neural networks, partial differential equation

1 Introduction
Conventional numerical techniques for solving PDEs have been a cornerstone in engineering de-
sign for years. However, their implementation poses challenges for a variety of problems. Some of
the common issues encountered include: mesh dependency of solutions, computational expense in
high-dimensional parametric solutions, stress concentration at sharp corners, challenges in achiev-
ing convergence and stability, and difficulties in generating adaptive meshes.

Conventional numerical techniques such as finite elements and finite volumes were primarily
developed for forward problems. They encounter significant challenges when solving inverse prob-
lems. The ill-conditioned nature of inverse problems, need to integrate noisy experimental data and
the existence of non-unique solutions makes these problems intractable for conventional numerical
techniques. This survey does not cover these challenges associated with inverse problems, instead
focuses on the advancements and applications of PINNs in forward problems.

Although early efforts were made to solve differential equations with neural networks, these
were constrained by the limitations of smaller-scale neural networks (NNs) and less efficient op-
timisers [1]−[4]. The recent advancement in existing algorithms and computing power have led to
significant achievements in the field [5]−[7].

Recently, Reference [8] introduced the groundbreaking concept of PINNs, a method to seam-
lessly integrate both data and PDE within a deep learning framework. They demonstrated its

2

Physics only Some physics No physics

No data Some data Big data

 Numerical solvers

 Neural networks
 PINNs

Physics-driven
approach

Hybrid
approach

Data-driven
approach

Figure 1: A broad classification of different approaches for solving physics problems.

capability to effectively solve both forward and inverse problems. Unlike conventional numerical
techniques, PINNs are inherently meshless, effectively addressing several aforementioned issues
such as mesh dependency and adaptive mesh generation. Additionally, by utilising information
from previously solved problems, one can accelerate the solution to newer problems through the
so called transfer learning method.

The PINNs are particularly noteworthy due to their ability to solve PDEs without the need of
additional ground truth, unlike standard training based approaches. This represents a significant
advantage over traditional NN-based PDE solvers, which typically requires a large number of
ground truth, such as simulation results, for model training.

2 Physics-driven vs. Data-driven approaches
There is a plethora of methodologies exists for tackling physics-based problems, leveraging both
conventional numerical solvers and machine learning (ML) models. Before the advent of PINNs,
the predominant approaches were either physics-driven or data-driven. As depicted in Figure 1,
physics-driven techniques such as conventional numerical solvers, are on the left, whereas purely
data-driven methods, including traditional supervised ML models, are on the right.

There are two distinct data-driven methods for enforcing the underlying physics: physics-
guided NN (PGNN) and physics-encoded NN (PENN). PGNNs follow a classical supervised
learning framework, constructing surrogate models from data derived from experiments and simu-
lations. These models typically necessitate extensive datasets to achieve generalisation [9, 10].

PENN-based models aim to directly encode underlying physical principles within the neural
network’s architecture, offering an advantage when the explicit form of the differential equations
are not well-defined. Among these, two notable approaches stand out: physics-encoded recurrent
convolutional NN (PERCNN) [11] and neural ordinary differential equations (NeuralODE) [12].

The PERCNN integrates the non-linear systems directly into the NN by replacing the traditional
activation function with a novel element-wise product operation. This modification allows the NN
to directly encode the dynamics of physical systems into its computational process, enabling it to
handle complex, non-linear behaviours more effectively than traditional NNs.

3

Table 1: Conventional numerical techniques vs PINNs
Conventional numerical

techniques
PINNs

Basis function Piecewise polynomial Neural network
Solution methodology Numerical approximation &

iterative methods
Optimisation problem

PDE embedding Discretised equations Loss function
Geometric representation Mesh Point cloud

In contrast, NeuralODE reimagines the structure of NNs to parallel the behaviour of ordinary
differential equations (ODEs) that can be solved using Euler’s method. By designing the NN’s
layers to represent discrete steps in solving an ODE, NeuralODE allows for the direct application
of numerical methods within the NN. This architecture creates a bridge between numerical analysis
and machine learning.

PINNs belong to the region between physics-driven and hybrid approach. This signifies that
PINNs are capable of solving PDEs without needing additional ground truth, but they can seam-
lessly integrate noisy experimental data which is a significant advantage over conventional numer-
ical solvers.

3 How PINNs are different from conventional numerical tech-
niques?

Conventional numerical techniques such as finite elements (FEM) and finite volumes (FVM) were
primarily developed for forward problems[13, 14, 15]. In these methods, the domain is discretised
into a mesh consisting of elements (in FEM) or control volumes (in FVM), with corners or bound-
aries defined by nodes. In FEM, each element uses a basis function, often described by a piecewise
polynomial function, to interpolate the solution within the element based on the nodal values of
the field variable. In contrast, FVM divides the domain into control volumes, and the solution is
directly approximated within these volumes.

The PINNs are NNs that model the forward problem as an optimisation problem. Instead of
discretising the PDE, PINNs formulate them as a part of the loss function. Traditional mesh-based
discretisation is replaced with a point cloud throughout the domain. The solution is then inferred
at these points once the network has been fitted to minimise the loss function. The key distinctions
between conventional numerical techniques and the PINNs are summarised in Table 1.

4

4 The baseline PINN
Consider a well-posed PDE problem as follows:

ut +Nx [u] = 0, x ∈ Ω, t ∈ [0,T]
u(x,0) = h(x) , x ∈ ∂Ω (1)
u(x, t) = g(x, t) , x ∈ ∂Ω, t ∈ [0,T]

where the first equation represents the PDE with a temporal derivative ut and a spatial derivative
operator Nx [u]. Here, u(x, t) is the dependent variable, where x and t denote the independent spatial
and temporal variables, respectively. The Ω and ∂Ω denotes the spatial domain and the boundary
of the problem. The function g(x) specifies the BCs and h(x,0) denotes the initial condition (IC)
at t = 0.

The inputs to a PINN for a 2D time dependent problem, are the spatio-temporal coordinates
denoted by x, y, z and t . Unlike the mesh generation in conventional numerical methods like FEM,
where the structure of the grid can significantly influence solution, the sampling of coordinates for
a PINN can be conducted in a more arbitrary manner. There are certain techniques to effectively
reduce the number of random points needed while still ensuring comprehensive domain coverage
as discussed in Section 5.1. These random points are then fed into the NN, as illustrated in Figure 2.
The baseline PINN employs a feed-forward NN (FNN), which comprises several fully connected
layers leading to the predicted output, represented by û [16].

Similar to traditional supervised ML techniques, in PINNs, the predicted output û plays a cru-
cial role in formulating the constraints, which are represented through a loss function [17]. Unlike
simpler models, PINNs require multiple loss functions to simultaneously satisfy the PDE, the BCs
and the IC, if the problem is transient. This approach results in a multitask loss function, com-
prising the total loss (L) and the individual loss terms (LPDE , LBC, LIC), which are defined as
follows:

L = λPDELPDE +λBCLBC +λICLIC (2)

LPDE =
1
Nr

Nr

∑
i=1
|ût (xi, ti)+Nx [û(xi, ti)]|2

LBC =
1

Nb

Nb

∑
i=1
|û(xi, ti)−g(xi, ti)|2 (3)

LIC =
1

N0

N0

∑
i=1
|û(xi,0)−h(xi)|2

In these equations, Nr, Nb and N0 represent the number of data points sampled to satisfy the
PDE, BCs, and IC, respectively, as mentioned in Equation 2. The coefficients λPDE , λBC and λIC

5

Neural network
Multitask loss

No

STOP

Yes

Backpropagation

Figure 2: The architecture of a PINN with two hidden layers for a 3D spatio-temporal forward
problem. Here the inputs are x,y,z and t, σ is the activated neuron and û is the predicted output or
the solution to the PDE.

are weighting factors in Equation 2, that help in achieving better convergence and accuracy in the
model. The PDE loss LPDE is the mean squared error (MSE) of the residual of the PDE. Similarly,
the BC loss LBC and the IC loss LIC are MSEs of the difference between û(x,y,z, t) and the known
BC and IC at their respective locations. Figure 2 illustrates the overall architecture of a PINN for
a 3D spatio-temporal problem.

In the baseline PINN framework, gradient-based optimisers are employed to minimise the total
loss L , by adjusting the weights of the NN during the training process [18]. Among these opti-
misers, Adam (Adaptive Moment Estimation) and L-BFGS (Limited memory Broyden- Fletcher-
Goldfarb- Shanno) are frequently utilised due to their efficiency in handling large-scale optimisa-
tion problems.

Both Adam and L-BFGS bring distinct advantages to the training process of PINNs. Adam’s
adaptive learning mechanism can lead to faster convergence, especially in the early stages of train-
ing. Whereas, L-BFGS is often preferred in the later stages of training when fine-tuning around
minima is required, as it can provide more accurate updates by approximating second-order curva-

6

ture information.
Given that the problem is well-posed, there exists a unique solution [19]. The enforcement

of the loss terms LPDE , LBC, LIC within the PINN framework contributes to maintaining the
well-posedness of the problem, thereby facilitating the convergence towards a unique solution.

4.1 Nature of solutions in PINNs
The PINNs were originally developed as solvers for PDEs. In conventional applications, once a
PDE is solved within the specified domain with prescribed BCs and IC, further inference on new
spatio-temporal locations is typically unnecessary. However, by incorporating validation dataset,
PINNs can be generalised to interpolate or extrapolate the field variables at new spatio-temporal
locations. This predictive capacity aligns with the conventional ML techniques, where the avail-
ability of ground truth enables the model to learn and make accurate predictions on new spatio-
temporal locations. It is important to note that this generalisation approach deviates from the
traditional use-case of PDE solvers, which don’t rely on ground truth data.

5 Developments in the PINN frameworks
The PINNs have rapidly evolved, with significant advancements in each of their core components
such as sampling strategy, network architecture, activation function etc. These enhancements not
only improved the accuracy and efficiency of PINNs but also contribute to the broader field of
ML. This section will briefly discuss these developments, highlighting how they address previous
limitations of the PINNs.

5.1 Sampling
Sampling plays a crucial role in the training of PINNs, just as it does in other ML techniques. For
the PINNs, this involves generating a point cloud within the domain of interest, which serves as
the training data. Various strategies can be employed to sample these points effectively.

A common practice in PINNs is to employ low-discrepancy quasi-random sequences. These
sequences are advantageous as they require fewer points than uniformly distributed random points
to achieve a comparable level of domain coverage. Essentially, these sequence “spread out” the
points in such a way that they are evenly distributed across all the dimensions. Figure 3 demon-
strates the distribution of 10 points within a unit square for various sampling methods, including
random, grid, Latin hypercube sampling (LHS), Sobol, Halton, and Hammersley sequence. The
random sampling shows no pattern, which can lead to clustering and gaps. The grid pattern, does
not randomise the locations, which may not capture the local variations in the solution. In contrast,
quasi-random sequences like the Sobol, Halton, and Hammersley methods provide a more uniform
distribution without clustering, which is beneficial for capturing the local variations in the solution
[20, 21].

Importance sampling can be seen as substitute of adaptive mesh refinement in PINNs. Rather
than using the same sampled points in each training iteration, the points are drawn from a distribu-

7

Random Grid LHS

Halton Hammersly Sobol

Figure 3: The comparison of various sampling methods.

tion that is proportional to the total loss, L . Consequently, regions with higher pointwise total loss
are sampled more densely, thereby focusing areas where the model needs the most improvement
[22, 23, 24].

Figure 4 illustrates the evolution of sampling strategies in a 1D feature space, x, ranging from 0
to 1. Initially, 1000 sample points are distributed uniformly across the feature space using LHS, as
depicted by the evenly spaced histogram in blue in the top plot. As the training progresses, samples
are drawn from a distribution that aligns with the total loss L . This distribution, represented by
the histogram in orange, is concentrated around regions where the pointwise total loss L , shown
in the bottom plot, is higher. By dynamically adjusting the sampling density in accordance with
the pointwise total loss L , the PINN effectively focuses on learning complex dynamics within the
feature space.

5.2 Imbalanced loss terms
The individual loss terms in a PINN can exhibit significant differences in magnitude, leading to
imbalanced contributions to the total loss. For instance, the LPDE , which often includes higher-
order derivatives, might be substantially lower than the LBC. This disparity can result in the PINN
predominantly learning to satisfy the BCs while ignoring the PDE. Such an imbalance can yield
erroneous behaviour, as the problem effectively becomes ill-posed.

A predominant approach to address this issue is the introduction of balancing coefficients for
each loss term. These coefficients denoted as λPDE , λBC and λIC are multiplied with the respective
terms in the total loss function (Equation 2). By adjusting these coefficients, the relative magnitude
of respective loss terms can be balanced [25].

Efforts to automatically adjust these coefficients have led to notable developments, such as self-

8

0

20

40

Co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

Lo
ss

LHS Samples Importance Samples Pointwise loss

Figure 4: The comparison of initial and importance sampling strategies in a 1D feature space x.
The top histogram shows initial samples obtained via LHS, and the target distribution of samples
derived from importance sampling. The bottom plot shows the pointwise total loss L across the
1D feature space x, highlighting regions of higher loss where more points are sampled.

adaptive PINNs [26] and the self-adaptive weight PINN [27] and the implementation of algorithms
like learning rate annealing [28] and neural tangent kernel [29].

5.3 Activation function
An activation function, denoted as σ , imparts nonlinearity to a NN enabling it to learn complex
input-output relationships. Selection of a suitable activation function can affect the convergence.
The choice of an appropriate activation function is crucial for convergence in PINNs, as they
require smooth activation functions to compute higher-order derivatives present in PDEs. Thus,
activation functions with discontinuities, such as the rectified linear unit (ReLU), exponential linear
unit (ELU), or scaled exponential linear units (SELU), should generally be avoided [30].

Mathematically, a NN is a function, where the linear combination of network’s weights w and
previous layer’s input is passed through the activation function σ which serves as the input to the
next layer (Equation 4). Reference [31] proposed the concept of a global adaptive activation func-
tion (GAAF), where a trainable parameter A is also passed through the activation function (Equa-
tion 5). This parameter, acting as the slope of the activation function, allows for more sophisticated
feature transformations between the hidden layers. Later, Reference [32], developed the layer-wise
locally adaptive activation functions (L-LAAF), incorporating a distinct trainable parameter, de-
noted as A(2), in each hidden layer (Equation 6). This layer-specific adaptability further enhances
the NN’s capacity to capture complex behaviours. The standard, GAAF and L-LAAF structures
are given as,

9

0 1 2 3 4
Magnitude Spectrum 1e6

101

103

105

107

Co
un

t

Figure 5: Histogram of the magnitude spectrum obtained from the Fourier transform of 2D spatial
data, indicating a the presence of high-frequency components due to discontinuities.

û = w(3)
σ

(
w(2)

σ

(
w(1)X

))
(4)

û = w(3)
σ

(
Aw(2)

σ

(
Aw(1)X

))
(5)

and û = w(3)
σ

(
A(2)w(2)

σ

(
A(1)w(1)X

))
. (6)

5.4 Spectral bias in the NN
Spectral bias is a learning bias of NNs towards low-frequency functions. This is a challenge when
dealing with high-frequency functions that represent sharp variations, especially in solutions within
low-dimensional domains. In Figure 5, we present a histogram of the magnitude spectrum de-
rived from a Fourier transform of 2D spatial data exhibiting discontinuities. While the distribution
mostly consists of low-frequency components, there are a few high-frequency attributable to the
discontinuities. These high-frequency components pose a challenge for traditional FNN architec-
tures, potentially leading to non-convergence issues during training.

Reference [33] proposed the Fourier NN, an approach that employs input encoding to project
data from low-dimensional domains into a higher-dimensional Fourier space using a frequency
matrix. Equation 7 shows the high-dimensional training dataset, mitigating the effects of spectral
bias. [

sin(2π f X)
cos(2π f X)

]T

X (7)

where f is trainable frequency matrix and X is the the data in low dimensional domains. Sim-
ilar input encodings have been utilised in modified Fourier network [29], sinusoidal representation
networks (SiReNs)[34] and the deep Galerkin method (DGM) network [35]. A comprehensive sur-
vey by Sharma et. al. [36] discusses solutions to discontinuous problems with PINNs, detailing
these architectures among others.

10

Figure 6: Schematic representation of the training dataset with varying parameter k.

6 Applications of PINNs to Forward Problems
In this section, we will briefly discuss the application of PINNs to forward problems. We highlight
scenarios where PINNs offer solutions to challenges commonly faced by conventional numerical
methods, such as handling parametric problems, complex geometries, and transfer learning.

6.1 Parametric problems
The PINNs can be easily extended to solve the problem over a range of parameters, by including
them as additional features in the training dataset. These parameters can encompass BCs, IC,
coefficients of the PDE and even the geometry of the domain. Consider a training dataset where
X represents the input features [x,y, t], for a 2D time-dependent problem, alongside a range of
parameters ki, where i ranges from 1 to n. To learn the parametric solutions, the PINN’s training
dataset is constructed by concatenating the X with each instance of ki as shown in Figure 6[37].

Recently, Reference [38] proposed physics-informed deep operator network (PIDeepONets),
an operator learning architecture to solve parametric problems. Similar to PINNs, PIDeepONets
only require the PDE, IC and BCs. While a discussion on PIDeepONets is beyond the scope of
this chapter, those interested can refer to a survey in Reference [39].

6.2 Complex geometry
Reference [40] proposed a so called conservative PINN, a space decomposition for the PINNs.
This is similar to the concept of elements in FEM, where each element has its own trail function.
However, the domain can be decomposed in any arbitrary way without needing any special algo-

11

rithm as opposed to FEM. Specifically, two additional loss terms were introduced to account for
the mismatch in the LPDE and û at the interface of two neighbouring sub-domains. XPINNs fur-
ther advanced this by handling space-time domain decomposition (DD) for any irregular geometry
[41]. The XPINNs were able to handle problems with sharp gradient over complicated geometry,
at the cost of longer training time. Parallel PINNs addressed this by introducing efficient paral-
lel algorithms [42]. The work in Reference [43] developed theoretical insights on the convergence
and generalisation properties of PINNs, enabling accurate modelling of discontinuities, like shock-
waves, with prior knowledge of their locations.

6.3 Transfer learning
Transfer learning stands out as a key advantage of PINNs when compared to conventional numer-
ical methods. It allows the utilisation of a model trained on one problem, referred to as the base
task, to solve similar problem, known as target task. The base task is generally a simpler problem,
which may differ from the target task in terms of the geometry, BC or PDE. By utilising a PINN
trained on the base task, we can approach more complicated target task, leveraging the pre-trained
model, and avoid the lengthy and computationally intensive training from scratch [44, 45].

Figure 7, illustrates transfer learning of a pre-trained model to solve the target task with a
different geometry and BCs denoted by ”*”. We refer the reader to comprehensive overview of
transfer learning with PINNs presented in Reference [46].

7 Examples
We present three test cases: 1D burgers equation, Allen-Cahn equation and Lid driven cavity to
showcase the capability of various tools that we have discussed so far. In both the test cases, we
used Adam optimiser, with Xavier normal weight initialisation and hyperbolic tangent activation
function. We sampled the initial set of collocation points with Sobol sequence in both the test
cases.

7.1 1D Burgers equation
The 1D Burgers equation is a time-dependent problem with details given in Equation 8.

ut +uux− (0.01/π)uxx = 0, x ∈ [−1,1], t ∈ [0,1],
u(0,x) =−sin(πx), (8)

u(t,−1) = u(t,1) = 0

The Burgers equation is a second-order non-linear convection-diffusion problem with an an-
alytical solution available in Reference [47]. The presence of a non-linear convection term uux
exhibits a discontinuity over time.

12

Pre-trained
PINN

Base task

PINN

Target task

Figure 7: Transfer learning from a base task to a target task with different geometry and BC,
indicated by ’*’.

13

0.0 0.2 0.4 0.6 0.8
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

x

Predicted solution

0.0 0.2 0.4 0.6 0.8
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

x

Absolute pointwise error

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

0.0
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
0.5

Figure 8: Baseline PINN predicted solution of 1D Burgers equation is shown on the top and
absolute pointwise error between the analytical solution and PINN predicted solution is shown on
the bottom.

We employed a FNN architecture, i.e., a baseline PINN, and trained the model for 10k itera-
tions. Figure 8, shows the PINN predicted solution and the absolute pointwise error between the
analytical solution and PINN predicted solution.

The observed discontinuity in the solution may be attributed to the spectral bias inherent to
FNNs, which we have previously discussed. Thus, the network is not able to capture the dis-
continuity as shown in Figure 8. This limitation is reflected in the computed relative L2 error of
5.17%.

7.2 1D Allen-Cahn equation
The Allen-Cahn equation is used to model the process of phase separation and is characterised
by a diffusion term and a non-linear reaction term that drives the system towards minimising its
free energy, often resulting in the creation of interfaces between phases over time. Consider the
Allen–Cahn equation along with periodic BC (Equation 9).

ut−0.0001uxx +5u3−5u = 0, x ∈ [−1,1], t ∈ [0,1],

u(0,x) = x2 cos(πx), (9)
u(t,−1) = u(t,1),

ux(t,−1) = ux(t,1)

The ground truth was generated using spectral Fourier discretisation and fourth-order explicit
Runge–Kutta time integrator. The solution u(x, t) evolves over time due to the combined effects of

14

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

x

Predicted solution

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

x

Absolute pointwise error

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

0.0
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
0.5

Figure 9: Baseline PINN predicted solution of 1D Allen-Cahn equation is shown on the top and
absolute pointwise error between the analytical solution and PINN predicted solution is shown on
the bottom.

diffusion and reaction. The diffusion term −0.0001uxx tends to smooth out variations in u, while
the cubic non-linear reaction term u3−5u can create multiple stable states over time.

The initial condition u(0,x) = x2 cos(πx) is smooth and contains no discontinuities. However,
as time progresses, the solution develops sharp transitions between the phases due to the non-linear
dynamics, which resembles a stiffness in the numerical solution.

Similar to the 1D Burgers equation the baseline PINN couldn’t capture the regions with stiff
solution, as shown in Figure 9, leading to a relative L2 error of 1.32%. However, with the appli-
cation of Fourier NN the PINN was able to accurately capture the stiff regions in the solution, as
shown in Figure 10, thus reducing the relative L2 error to 0.06%. This example underscores how
employing a high-dimensional training dataset can effectively mitigate the spectral bias.

7.3 Lid driven cavity
The lid-driven cavity is a well-known benchmark problem in computational fluid dynamics. It
consists of a square cavity with of three rigid walls having no-slip conditions and the top lid moving
with a tangential unit velocity u = 1. The lower left corner of the domain has a reference pressure
p of 0 as shown in Figure 11.

The Lid driven cavity uses the 2D steady-state incompressible Navier-Stokes equations to
model fluid flow, as detailed in Equation 10.

15

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

x

Predicted solution

0.0 0.2 0.4 0.6 0.8 1.0
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

x

Absolute pointwise error

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1

Figure 10: Fourier NN predicted solution of 1D Allen-Cahn equation is shown on the top and
absolute pointwise error between the analytical solution and PINN predicted solution is shown on
the bottom side.

No slip
walls

Figure 11: Geometry of the lid-driven cavity problem.

∂u
∂x

+
∂v
∂y

= 0

u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+ν

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
(10)

u
∂v
∂x

+ v
∂v
∂y

=−∂ p
∂y

+ν

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
where u and v are velocities in x and y direction, p is the pressure, ν is the kinematic viscosity

16

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

v

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

-0.1
0.0
0.1
0.3
0.4
0.5
0.7
0.8
0.9

-0.5
-0.4
-0.3
-0.2
-0.2
-0.1
0.0
0.1
0.2
0.2

-0.5
-0.4
-0.2
0.0
0.2
0.4
0.5
0.7
0.9
1.1

Figure 12: Numerical solution for the lid-driven cavity problem, obtained using the SIMPLE algo-
rithm, showcasing the velocity field and pressure distribution.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

v

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

-0.1
0.0
0.1
0.2
0.4
0.5
0.6
0.7
0.8
1.0

-0.4
-0.4
-0.3
-0.2
-0.1
-0.1
0.0
0.1
0.1
0.2

-0.1
-0.1
0.0
0.1
0.1
0.2
0.2
0.3
0.4
0.4

Figure 13: Baseline PINN predicted solution of the lid-driven cavity.

and ρ is the density of the fluid. Focusing on a Reynolds number of 100 to simulate laminar flow
conditions, we set ρ = 1 and ν = 0.01. The numerical solution was acquired through the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equation) algorithm [48], and Figure 12 shows this
solution.

The conflicting BCs on top left and top right corners result in sharp discontinuities. Similar to
the Burgers equation, the baseline PINN struggles to accurately capture these discontinuities due
to spectral bias. This limitation is shown in Figure 13.

To mitigate the issue of spectral bias, we employed the Deep Galerkin Method (DGM) architec-
ture [35], coupled with self-adaptive PINN’s weight balancing algorithm, L-LAAF and importance
sampling. This approach resulted in a reduction of the relative L2 error by nearly 50% compared
to the baseline PINN, as shown in Table 2. Figure 14, showcases the solution predicted by DGM,
highlighting the improved accuracy.

Following the DGM-based model, we integrated it with the XPINN framework, dividing the
domain into three equally spaced sub-domains along the x-direction. This division resulted in three
times reduction in the relative L2 error compared to the DGM-based model, as detailed in Table 2.
This shows the effectiveness of domain decomposition technique while solving problem involving
discontinuities.

17

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

v

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

-0.1
0.0
0.1
0.3
0.4
0.5
0.7
0.8
0.9

-0.4
-0.4
-0.3
-0.2
-0.1
-0.1
0.0
0.1
0.1
0.2

-0.5
-0.4
-0.2
0.0
0.2
0.4
0.5
0.7
0.9

Figure 14: DGM predicted solution of the lid-driven cavity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

v

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

-0.1
0.0
0.1
0.2
0.4
0.5
0.6
0.7
0.8
1.0

-0.4
-0.4
-0.3
-0.2
-0.1
-0.1
0.0
0.1
0.1
0.2

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Figure 15: DGM predicted solution of the lid-driven cavity with three sub-domains equally spaced
along the x-direction.

8 Conclusions
Physics-informed neural networks have emerged as a powerful framework for solving problems
involving PDEs. By seamlessly integrating physical laws into deep learning model, they allow ex-
ploring a wide range of scientific and engineering challenges. This chapter has provided a compre-
hensive overview of PINNs, covering the core components, advancements in sampling strategies,
multitask loss function challenges, adaptive activation functions, and the issues with spectral bias,
enhanced accuracy and efficiency of PINNs. Notably, PINNs offer significant advantages over
traditional numerical techniques, enabling:

• The application of transfer learning to leverage insights from solved problems on new and
similar challenges.

• Efficiently addressing high-dimensional parametric problems.

Table 2: Relative L2 error (in %) for Lid driven cavity
u v p

Baseline PINN 47.7 26.3 80.4
DGM architecture 26.8 18.3 41.3

DGM with 3 sub-domain 8.6 9.7 12.6

18

• Simplified domain decomposition for stiff problems, avoiding complex algorithms required
for mesh generation.

We solved the 1D Burgers equation, 1D Allen-Cahn equation and the lid-driven cavity problem
to showcase the various improvements over the baseline PINN that allowed for effective handling
of discontinuities. These improvements mark PINNs as a powerful tool for efficiently solving
complex problems. As we enhance PINNs further, we believe their full potential is yet to be
realised, promising more innovative solutions in the future.

Acknowledgements
This work is part-funded by the United Kingdom Atomic Energy Authority (UKAEA) and the En-
gineering and Physical Sciences Research Council (EPSRC) under the Grant Agreement Numbers
EP/W006839/1, EP/T517987/1 and EP/R012091/1. We acknowledge the support of Supercomput-
ing Wales and AccelerateAI projects, which is part-funded by the European Regional Development
Fund (ERDF) via the Welsh Government for giving us access to NVIDIA A100 40GB GPUs for
batch training. We also acknowledge the support of NVIDIA academic hardware grant for donating
us NVIDIA RTX A5000 24GB for local testing.

Statements and Declarations

References
[1] Hyuk Lee and In Seok Kang. Neural algorithm for solving differential equations. J. Comput.

Phys., 91(1):110–131, November 1990.

[2] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Trans. Neural Netw., 9(5):987–1000, September 1998.
Conference Name: IEEE Transactions on Neural Networks.

[3] I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary
value problems with irregular boundaries. IEEE Trans. Neural Netw., 11(5):1041–1049,
September 2000. Conference Name: IEEE Transactions on Neural Networks.

[4] A. Malek and R. Shekari Beidokhti. Numerical solution for high order differential equations
using a hybrid neural network—Optimization method. Appl. Math. Comput., 183(1):260–
271, December 2006.

[5] Keith Rudd and Silvia Ferrari. A constrained integration (CINT) approach to solving partial
differential equations using artificial neural networks. Neurocomputing, 155:277–285, May
2015.

19

[6] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical Gaussian Processes
for Time-Dependent and Nonlinear Partial Differential Equations. SIAM J. Sci. Comput.,
January 2018. Publisher: Society for Industrial and Applied Mathematics.

[7] Maziar Raissi, Zhicheng Wang, Michael S. Triantafyllou, and George Em Karniadakis. Deep
learning of vortex-induced vibrations. J. Fluid Mech., 861:119–137, February 2019. Pub-
lisher: Cambridge University Press.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys., 378:686–707, February 2019.

[9] Haakon Robinson, Suraj Pawar, Adil Rasheed, and Omer San. Physics guided neural net-
works for modelling of non-linear dynamics. Neural Networks, 154:333–345, 2022.

[10] Kristinn Andersen, George E Cook, Gabor Karsai, and Kumar Ramaswamy. Artificial neu-
ral networks applied to arc welding process modeling and control. IEEE Transactions on
industry applications, 26(5):824–830, 1990.

[11] Chengping Rao, Hao Sun, and Yang Liu. Hard encoding of physics for learning spatiotem-
poral dynamics. arXiv preprint arXiv:2105.00557, 2021.

[12] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[13] O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid
Dynamics. Elsevier, Oxford, 7th edition, 2013.

[14] P. Nithiarasu, R.W. Lewis, and K.N. Seetharamu. Fundamentals of the finite element method
for heat and mass transfer. Wiley, 2015.

[15] C. Hirsch. Numerical Computation of Internal and External Flows, volume 1. John Wiley &
Sons, New York, 1992.

[16] Yuntian Chen, Dou Huang, Dongxiao Zhang, Junsheng Zeng, Nanzhe Wang, Haoran Zhang,
and Jinyue Yan. Theory-guided hard constraint projection (HCP): A knowledge-based data-
driven scientific machine learning method. J. Comput. Phys., 445:110624, November 2021.

[17] Giorgio Gnecco, Marco Gori, Stefano Melacci, and Marcello Sanguineti. Learning with Hard
Constraints. In Valeri Mladenov, Petia Koprinkova-Hristova, Günther Palm, Alessandro E. P.
Villa, Bruno Appollini, and Nikola Kasabov, editors, Artificial Neural Networks and Ma-
chine Learning – ICANN 2013, Lecture Notes in Computer Science, pages 146–153, Berlin,
Heidelberg, 2013. springer.

[18] Ange Tato and Roger Nkambou. IMPROVING ADAM OPTIMIZER. page 4, 2018.

20

[19] Persi Diaconis and Mehrdad Shahshahani. On Nonlinear Functions of Linear Combinations.
SIAM J. Sci. Stat. Comput., 5(1):175–191, March 1984. Publisher: Society for Industrial and
Applied Mathematics.

[20] William J. Morokoff and Russel E. Caflisch. Quasi-Monte Carlo Integration. J. Comput.
Phys., 122(2):218–230, December 1995.

[21] C. Bard and J.C. Dorelli. Neural Network Reconstruction of Plasma Space-Time. Front.
Astron. Space Sci., 8, 2021.

[22] Christian P. Robert and George Casella. Monte Carlo Integration. In Christian P. Robert and
George Casella, editors, Monte Carlo Statistical Methods, Springer Texts in Statistics, pages
71–138. springer, New York, NY, 1999.

[23] Luca Martino, Vı́ctor Elvira, and Francisco Louzada. Effective sample size for importance
sampling based on discrepancy measures. Signal Process., 131:386–401, February 2017.

[24] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Ef-
ficient training of physics-informed neural networks via importance sam-
pling. Comput.-Aided Civ. Infrastruct. Eng., 36(8):962–977, 2021. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12685.

[25] Colby L. Zhao. Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics
Informed Neural Networks. Comm. Comput. Phys., 29(3), July 2020.

[26] Levi McClenny and Ulisses Braga-Neto. Self-Adaptive Physics-Informed Neural Networks
using a Soft Attention Mechanism. Technical Report 68, AAAI-MLPS, February 2019.

[27] Shuyan Shi, Ding Liu, and Zhongdan Zhao. Non-Fourier Heat Conduction based on Self-
Adaptive Weight Physics-Informed Neural Networks. In 2021 40th Chin. Control Conf.
(CCC), pages 8451–8456, July 2021. ISSN: 1934-1768.

[28] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow
Pathologies in Physics-Informed Neural Networks. SIAM J. Sci. Comput., 43(5):A3055–
A3081, January 2021. Publisher: Society for Industrial and Applied Mathematics.

[29] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural
tangent kernel perspective. J. Comput. Phys., 449:110768, January 2022.

[30] Prakhar Sharma, Llion Evans, Michelle Tindall, and Perumal Nithiarasu. Hyperparame-
ter selection for physics-informed neural networks (pinns)–application to discontinuous heat
conduction problems. Numerical Heat Transfer, Part B: Fundamentals, pages 1–15, 2023.

[31] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation func-
tions accelerate convergence in deep and physics-informed neural networks. J. Comput.
Phys., 404:109136, March 2020.

21

[32] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation
functions with slope recovery for deep and physics-informed neural networks. Proceedings
of the Royal Society A, 476(2239):20200334, 2020.

[33] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier Features Let
Networks Learn High Frequency Functions in Low Dimensional Domains. In Adv. Neural
Inf. Process. Syst., volume 33, pages 7537–7547. Curran Assoc., Inc., 2020.

[34] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein.
Implicit Neural Representations with Periodic Activation Functions. In Adv. Neural Inf. Pro-
cess. Syst., volume 33, pages 7462–7473. Curran Assoc., Inc., 2020.

[35] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving
partial differential equations. J. Comput. Phys., 375:1339–1364, December 2018.

[36] Prakhar Sharma, Llion Evans, Michelle Tindall, and Perumal Nithiarasu. Stiff-PDEs and
Physics-Informed Neural Networks. Arch. Comput. Methods Eng., February 2023.

[37] Enrico Schiassi, Carl Leake, Mario De Florio, Hunter Johnston, Roberto Furfaro, and Daniele
Mortari. Extreme Theory of Functional Connections: A Physics-Informed Neural Network
Method for Solving Parametric Differential Equations. Technical Report arXiv:2005.10632,
arXiv, May 2020. arXiv:2005.10632 [physics, stat] type: article.

[38] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of
parametric partial differential equations with physics-informed DeepONets. Sci. Adv.,
7(40):eabi8605, September 2021. Publisher: American Association for the Advancement
of Science.

[39] Seid Koric and Diab W Abueidda. Data-driven and physics-informed deep learning operators
for solution of heat conduction equation with parametric heat source. International Journal
of Heat and Mass Transfer, 203:123809, 2023.

[40] Ameya D. Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-
informed neural networks on discrete domains for conservation laws: Applications to forward
and inverse problems. Comput. Methods Appl. Mech. Eng., 365:113028, June 2020.

[41] Ameya D. Jagtap and George Em Karniadakis. Extended physics-informed neural networks
(xpinns): A generalized space-time domain decomposition based deep learning framework
for nonlinear partial differential equations. Communications in Computational Physics,
28(5):2002–2041, 2020.

[42] Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. Parallel physics-informed
neural networks via domain decomposition. Journal of Computational Physics, 447:110683,
2021.

22

[43] Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji Kawaguchi. When
Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization?
arXiv:2109.09444 [cs, math, stat], December 2021. arXiv: 2109.09444.

[44] Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A
physics-informed deep learning framework for inversion and surrogate modeling in solid
mechanics. Comput. Methods Appl. Mech. Eng., 379:113741, June 2021.

[45] Chen Xu, Ba Trung Cao, Yong Yuan, and Günther Meschke. Transfer learning based
physics-informed neural networks for solving inverse problems in tunneling. Technical Re-
port arXiv:2205.07731, arXiv, May 2022. arXiv:2205.07731 [cs] type: article.

[46] Konstantinos Prantikos, Stylianos Chatzidakis, Lefteri H Tsoukalas, and Alexander Heifetz.
Physics-informed neural network with transfer learning (tl-pinn) based on domain similarity
measure for prediction of nuclear reactor transients. Scientific Reports, 13(1):16840, 2023.

[47] Mayur P. Bonkile, Ashish Awasthi, C. Lakshmi, Vijitha Mukundan, and V. S. Aswin. A
systematic literature review of Burgers’ equation with recent advances. Pramana - J Phys,
90(6):69, April 2018.

[48] Timothy Francis Miller. Application of multilevel methods to a semi-implicit pressure-linked
algorithm. The Pennsylvania State University, 1987.

23

	Introduction
	Physics-driven vs. Data-driven approaches
	How PINNs are different from conventional numerical techniques?
	The baseline PINN
	Nature of solutions in PINNs

	Developments in the PINN frameworks
	Sampling
	Imbalanced loss terms
	Activation function
	Spectral bias in the NN

	Applications of PINNs to Forward Problems
	Parametric problems
	Complex geometry
	Transfer learning

	Examples
	1D Burgers equation
	1D Allen-Cahn equation
	Lid driven cavity

	Conclusions

