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ABSTRACT Aquaculture provides a rich resource of high-quality protein; however, the 
production is challenged by emerging pathogens such as Vibrio crassostreae. While 
probiotic bacteria have been proposed as a sustainable solution to reduce pathogen 
load in aquaculture, their application requires a comprehensive assessment across the 
aquaculture food chain. The purpose of this study was to determine the antagonistic 
effect of the potential probiotic bacterium Phaeobacter piscinae against the emerging 
fish pathogen V. crassostreae in aquaculture feed algae that can be an entry point for 
pathogens in fish and shellfish aquaculture. P. piscinae strain S26 produces the antibac
terial compound tropodithietic acid (TDA). In a plate-based assay, P. piscinae S26 was 
equally to more effective than the well-studied Phaeobacter inhibens DSM17395 in its 
inhibition of the fish pathogens Vibrio anguillarum 90-11-286 and V. crassostreae DMC-1. 
When co-cultured with the microalgae Tetraselmis suecica and Isochrysis galbana, P. 
piscinae S26 reduced the maximum cell density of V. crassostreae DMC-1 by 2 log and 3–4 
log fold, respectively. A TDA-deficient mutant of P. piscinae S26 inhibited V. crassostreae 
DMC-1 to a lesser extent than the wild type, suggesting that the antagonistic effect 
involves TDA and other factors. TDA is the prime antagonistic agent of the inhibition 
of V. anguillarum 90-11-286. Comparative genomics of V. anguillarum 90-11-286 and 
V. crassostreae DMC-1 revealed that V. crassostreae DMC-1 carries a greater arsenal of 
antibiotic resistance genes potentially contributing to the reduced effect of TDA. In 
conclusion, P. piscinae S26 is a promising new candidate for inhibition of emerging 
pathogens such as V. crassostreae DMC-1 in algal feed systems and could contribute to a 
more sustainable aquaculture industry.

IMPORTANCE The globally important production of fish and shellfish in aquaculture is 
challenged by disease outbreaks caused by pathogens such as Vibrio crassostreae. These 
outbreaks not only lead to substantial economic loss and environmental damage, but 
treatment with antibiotics can also lead to antibiotic resistance affecting human health. 
Here, we evaluated the potential of probiotic bacteria, specifically the newly identified 
strain Phaeobacter piscinae S26, to counteract these threats in a sustainable manner. 
Through a systematic assessment of the antagonistic effect of P. piscinae S26 against 
V. crassostreae DMC-1, particularly within the context of algal feed systems, the study 
demonstrates the effectiveness of P. piscinae S26 as probiotic and thereby provides 
a strategic pathway for addressing disease outbreaks in aquaculture. This finding has 
the potential of significantly contributing to the long-term stability of the industry, 
highlighting the potential of probiotics as an efficient and environmentally conscious 
approach to safeguarding aquaculture productivity against the adverse impact of 
pathogens.
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A quaculture has for decades been a growing industry with 87.5 million tons of 
high-quality fish and shellfish protein being produced in 2020 (1). However, 

sustainable production is challenged by the spread of disease caused by fish patho
genic bacteria (2–4). Particularly, species of the Gram-negative gammaproteobacterial 
Vibrionaceae family are potent pathogens including Vibrio anguillarum, Vibrio harveyi, 
and Vibrio parahaemolyticus (5, 6). Also, Vibrio crassostreae belonging to the Vibrio 
splendidus group has been identified as an emerging pathogen having caused disease 
outbreaks and mortalities of several marine aquaculture organisms (7), such as European 
seabass (8), sea cucumbers (9), Pacific oysters (10–12), and Yesso scallops (13). In a 
challenge trial with blue mussel larvae, V. crassostreae killed 73% of challenged mussel 
larvae after 5 days (14). Pathogenic V. crassostreae strains have been isolated from 
diseased farmed turbot and European seabass in Norway (15), and from turbot larvae 
rearing units with high mortality in Norway and Spain (2, 16, 17). One of the well-stud
ied strains, V. crassostreae DMC-1 (previously V. splendidus), was isolated at commercial 
hatcheries in Galicia, Spain, from the gut of moribund turbot larvae (2, 17, 18). Fish 
larvae are a particularly vulnerable stage in the trophic levels of aquaculture because 
their immature immune system does not render vaccination an effective disease control 
strategy and they are exposed to fish pathogens via their live feed (19–21). Current 
treatments involve the usage of detergents and antibiotics, causing potential environ
mental harm and development and spread of antibiotic resistance; probiotic bacteria 
such as lactic acid bacteria, bacilli, and roseobacters have been proposed as an efficient, 
sustainable alternative (22–25).

Members of the marine Gram-negative alphaproteobacterial Roseobacter group 
including Phaeobacter and Tritonibacter species have been investigated as potential 
fish probiotics. They are promising candidates for the reduction of fish pathogens in 
aquaculture (24, 26–28). They have repeatedly been isolated from aquaculture systems 
and thus occur naturally in this environment (29, 30). They efficiently antagonize fish 
pathogenic vibrios in direct challenge tests and also in the presence of aquaculture-rel
evant biological background such as algae, rotifers, crustaceans, fish eggs, and larvae 
(26–28, 31, 32). They have neutral or a positive effect on these eukaryotic hosts and 
a minor effect on the microbiome of the hosts (26, 32, 33). Several Phaeobacter and 
Tritonibacter species produce the potent antibacterial agent tropodithietic acid (TDA) 
(33), which has been linked to the antagonistic activity of Phaeobacter against Vibrio by 
comparing antibacterial activity to TDA-deficient mutants (34).

The most widely researched roseobacter probiotic candidate is the strain Phaeobacter 
inhibens DSM17395 (25); however, a novel promising probiotic candidate, Phaeobacter 
piscinae S26, was isolated from a Greek sea bass larval rearing unit and characterized 
as belonging to the new Phaeobacter species, P. piscinae (29, 35, 36). P. piscinae S26 
produced the highest concentration of TDA among the tested Phaeobacter strains, 
including P. inhibens DSM17395, and caused the highest survival of Artemia in Vibrio 
pathogen trials (27). The majority of fish probiotic studies have used the pathogen V. 
anguillarum as target organism; however, as outlined above, a range of other vibrios, 
especially V. crassostreae, are emerging as pathogens in marine larviculture. Using 
a plate-based assay, Hjelm et al. (18) screened for antagonistic bacteria against V. 
crassostreae DMC-1 and isolated the strain P. piscinae 27-4. During co-cultivation, P. 
piscinae 27-4 inhibited V. crassostreae DMC-1 by 3 log units, while in comparison, 
inhibition of V. anguillarum 90-11-287 was 6–7 log fold. Therefore, the purpose of this 
study was to assess the effect of the new probiotic candidate, P. piscinae S26, against 
the fish pathogenic strain, V. crassostreae DMC-1, as a future sustainable biocontrol 
alternative in aquaculture. We investigated this antagonism in the microalgal systems of 
Tetraselmis suecica and Isochrysis galbana, as possible targets for probiotic application as 
these algae are commonly used as live feed in aquaculture. Furthermore, the genome 
of V. crassostreae DMC-1 was analyzed to suggest possible genotypes for the observed 
inhibition by P. piscinae S26.
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RESULTS

Antagonistic activity of probiotic Phaeobacter against fish pathogenic vibrios

To analyze the antagonistic properties of the new probiotic candidate strain P. piscinae 
S26 wild type (WT) against the fish pathogens V. crassostreae DMC-1 and V. anguillarum 
90-11-286, its activity in plate-based assays was compared to its TDA-deficient mutant 
S26 ΔtdaB, and the probiotic candidate P. inhibens DSM17395 WT and its TDA-deficient 
mutant DSM17395 ΔtdaB::GmR (Table 1). Both cell-free supernatants and cell suspen
sions of P. piscinae S26 inhibited V. crassostreae DMC-1 (Fig. 1A) and V. anguillarum 
90-11-286 (Fig. 1B) in the plate-based assay as shown by halos in the bacterial lawn 
around the well or inoculum. Both cell-free supernatant and cell suspension of P. piscinae 
S26 produced inhibition zones of 17 and 19 mm in diameter, respectively, in V. crassos
treae DMC-1 lawn. In contrast, P. inhibens DSM17395 produced smaller (8 mm for cell 
suspension) and no inhibition (cell-free supernatant) on V. crassostreae DMC-1 lawn. The 
inhibition of V. anguillarum 90-11-286 by P. piscinae S26 and P. inhibens DSM17395 was 
similarly strong with the inhibition zones of cell-free supernatant and cell suspension 
of 23 and 21 mm for P. piscinae S26, and 21 and 20 mm for P. inhibens DSM17395, 
respectively. No inhibition zones, thus, no antibacterial effect was observed for the 
TDA-deficient mutants of the Phaeobacter strains or the media control.

Antagonistic activity of P. piscinae S26 against the fish pathogenic V. 
crassostreae DMC-1 in algal systems

Without addition of P. piscinae S26, V. crassostreae DMC-1 grew within 2 days from 5.2 ± 
0.7 to 6.2 log CFU/mL ± 0.1 in the I. galbana culture and remained at this cell concentra
tion until day 7 (Fig. 2A). Addition of both P. piscinae S26 WT and ΔtdaB inhibited the 
growth of V. crassostreae DMC-1 throughout the experiment, and the cell concentration 
remained around the inoculum concentration of 4.5 log CFU/mL (P < 0.0005 after day 0).

A similar effect of P. piscinae S26 against V. crassostreae DMC-1 was observed in the T. 
suecica culture. Without addition of P. piscinae S26, V. crassostreae DMC-1 grew within 2 
days from 4.4 ± 0.04 to 6.4 ± 0.03 log CFU/mL in the T. suecica culture and decreased to 
5.1 ± 0.5 log CFU/mL on day 8 (Fig. 2B). Both P. piscinae S26 WT and ΔtdaB inhibited the 
growth of V. crassostreae DMC-1 throughout the experiment (P < 0.05 after day 0, except 
V. crassostreae DMC-1 monoculture vs V. crassostreae DMC-1/WT co-culture on day 5 [P = 
0.07]); however, V. crassostreae DMC-1 was still able to grow from 4.4 ± 0.03 and 4.4 ± 0.1 
to 5.4 ± 0.1 and 5.5 ± 0.03 log CFU/mL in the first 2 days followed by a decline to 1.3 ± 
0.3 and 2.4 ± 0.4 log CFU/mL on day 8 for P. piscinae S26 WT and ΔtdaB, respectively (Fig. 
2B). The inhibition by P. piscinae S26 ΔtdaB was slightly lower in comparison to the WT (P 
= 0.04 on day 8).

P. piscinae S26 WT and ΔtdaB grew in the presence of V. crassostreae DMC-1 in the I. 
galbana culture from 6.5 ± 0.1 log CFU/mL to 7.5 ± 0.3 log CFU/mL in 7 days (Fig. 3A). 
The growth of ΔtdaB was delayed as indicated by significantly lower cell concentration of 
ΔtdaB in comparison to the WT on day 4 (P = 0.003).

In the T. suecica culture, both P. piscinae S26 WT and ΔtdaB grew in the presence of 
V. crassostreae DMC-1 from 6.1 ± 0.1 and 6.3 ± 0.2 log CFU/mL to 7.2 ± 0.1 and 7.2 ± 
0.1 log CFU/mL within 1 day followed by a decline to 6.7 ± 0.1 and 6.5 ± 0.04 log CFU/mL, 
respectively, on day 8 (Fig. 3B).

TABLE 1 Bacterial strains used in this study

Species Strain Genotype Reference

P. piscinae S26 Wild type (WT) (29)

P. piscinae S26 ΔtdaB (36)

P. inhibens DSM17395 Wild type (WT) (37, 38)

P. inhibens DSM17395 ΔtdaB::GmR (39)

V. crassostreae (formerly V. splendidus) DMC-1 Wild type (2)

V. anguillarum 90–11-286 Wild type (40)
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The growth of the microalgae was generally not affected by the presence of the 
bacteria. I. galbana and T. suecica grew from 5.1 to 6.8 log cells/mL over 7 days and from 
4.5 to 6.0 log cells/mL over 8 days (P > 0.05, except I. galbana axenic control vs P. piscinae 
S26 WT + V. crassostreae DMC-1 co-culture on day 2, P = 0.02) (Fig. 4).

Genomic analysis of V. crassostreae DMC-1

Although the growth of V. crassostreae DMC-1 was reduced by 2 log fold in the I. galbana 
and 1 log fold in the T. suecica system by P. piscinae S26, the inhibitory effect was less 
pronounced as previously observed for inhibition of V. anguillarum by P. inhibens DSM 
17395 in algal system (25–27, 31, 32, 41). To investigate if V. crassostreae DMC-1 has 
the genetic potential to evade inhibition by Phaeobacter and/or TDA, we sequenced the 

FIG 1 Plate-based antagonistic assay of cell-free supernatants and cell suspensions of probiotic P. piscinae S26 and P. inhibens DSM17395 and their TDA-deficient 

mutants ΔtdaB against the pathogenic vibrios (A) V. crassostreae DMC-1 and (B) V. anguillarum 90–11-286. Sterile MB was used as negative control.
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genome of V. crassostreae DMC-1 and compared it against the genome of V. anguilla
rum 90-11-286. Phylogenetically, the strains are not closely related within the Vibrio 
genus sharing an average nucleotide identity (ANI) of 73%. Genes that contribute to 
virulence and possible resistance include those encoding biosynthetic gene clusters, 
virulence factors, or resistance genes: using antiSMASH analysis, the genome of V. 
crassostreae DMC-1 encodes four predicted biosynthetic gene clusters (BGCs) (classified 
as heterocyst glycolipid synthase-like PKS [with 26% similarity to eicoseicosapentaenoic 
acid], arylpolyene [with 85% similarity to APEVf], betalactone, and a siderophore [with 
54% similarity to vibrioferrin]), while the genome of V. anguillarum 90-11-286 enco
des six predicted BGCs (betalactone, homoserine lactone, ectoine [with 83% similar
ity], NRPS-PKS [with 100% similarity to piscibactin], arylpolyene [with 95% similarity 
to APEVf], and an NRPS [with 100% similarity to vanchrobactin]) (Table 2). The tool 
ARTS detected similar genes associated with resistance in both genomes, including 
those encoding ABC transporter efflux pumps, MexH, MexW-MexI, glyceraldehyde 

FIG 2 Growth of V. crassostreae DMC-1 measured as colony-forming units per milliliter over time in days in co-culture with P. piscinae S26 WT and ΔtdaB in (A) I. 

galbana and (B) T. suecica cultures. Condition: ● P. piscinae S26 WT + V. crassostreae DMC-1, ▲ P. piscinae S26 ΔtdaB + V. crassostreae DMC-1, ■ V. crassostreae 

DMC-1. N = 4 for I. galbana, N = 3 for T. suecica.
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3-phosphate dehydrogenase, HSP90, aspartate/ornithine carbamoyltransferase, DNA 
gyrase B, proteasome, biotin/lipoyl attachment domain, DNA topoisomerase IV, carboxyl 
transferase, RpoB, and DnaN (Table 2). Additionally, the genome of V. crassostreae DMC-1 
carried genes associated with carbenicillin-hydrolyzing betalactamase, chlorampheni
col acetyltransferase, MexE, the major facilitator superfamily efflux pump, quinolone 
resistance, and the resistance-nodulation-division superfamily efflux pump. Analyses 
with ResFinder and RGI identified resistance mechanisms against tetracycline, sulfona
mide, and quinolone as well as two multidrug efflux complexes (AdeFGH and MdtEF) 
in the genome of V. crassostreae DMC-1, while no dedicated antibiotic resistance gene, 
but one multidrug efflux complex (MdtEF), was found in V. anguillarum 90-11-286. Three 
genes, tdaR1-3, have been linked to TDA resistance in the producer P. inhibens (42); 
however, these genes do not have any homologues in the genomes of V. crassostreae 
DMC-1 and V. anguillarum 90-11-286. However, tdaR3 encodes for gamma-glutamylcy

FIG 3 Growth of P. piscinae S26 WT and ΔtdaB measured as colony-forming units per milliliter over time in days in co-culture with V. crassostreae DMC-1 in (A) I. 

galbana and (B) T. suecica cultures. Condition: ● P. piscinae S26 WT + V. crassostreae DMC-1, ▲ P. piscinae S26 ΔtdaB + V. crassostreae DMC-1. N = 4 for I. galbana, N 

= 3 for T. suecica.
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clotransferase activity, which is also predicted to be produced by YtfP encoded in the 
genomes of V. crassostreae DMC-1 and V. anguillarum 90-11-286.

Finally, as TDA does not appear to be the main driver of V. crassostreae DMC-1 
inhibition in algal systems in contrast to the agar-based assay, potential metabolic 
competition between Vibrio and Phaeobacter was analyzed. V. crassostreae DMC-1 and 
P. piscinae S26 have unique genomic profiles for the degradation, utilization, and 
assimilation of—among others—amino acids, aromatic compounds, carbohydrates, 
and inorganic nutrients (Table 3). P. piscinae S26 has overall 19 unique full metabolic 
pathways for degradation, while V. crassostreae DMC-1 has only 10. This includes 
three unique pathways for the degradation of the aromatic compounds anthranilate, 
methyl salicylate, and salicylate in the P. piscinae S26’s genome. Also, P. piscinae 
S26 has the unique genetic potential to degrade the sulfur-containing organic com
pounds dimethylsulfoniopropionate, methanesulfonate, and methyl thiopropionate. 
Furthermore, a major nutrient source for heterotrophic bacteria in algal systems are 

FIG 4 Average and standard deviation of concentration of algal cells per milliliter in Phaeobacter-Vibrio antagonistic assay for (A) I. galbana and (B) T. suecica. 

Condition: ● P. piscinae S26 WT + V. crassostreae DMC-1, ▲ P. piscinae S26 ΔtdaB + V. crassostreae DMC-1, ■ V. crassostreae DMC-1, ♦ axenic. N = 4 for I. galbana, N 

= 3 for T. suecica.
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carbohydrate exudates. Using a genomic analysis for carbohydrate-active enzymes 
(CAZymes) with dbCAN3, P. piscinae S26’s genome harbors a total of 69 CAZymes 
including 21 glycoside hydrolases (GHs) and 42 glycosyl transferases (GTs). V. crassostreae 
DMC-1 has the potential to produce 79 CAZymes including 46 GHs and 24 GTs.

DISCUSSION

With fish pathogens such as vibrios causing significant economic loss to aquaculture 
systems and the need to prevent antibiotic usage, probiotic bacteria could represent 
a sustainable solution. For a safe application of such strains, we need to identify the 
specificity of their activity and test their efficiency in aquaculture-related systems. In this 
study, we found that the strain P. piscinae S26 is a promising candidate for probiotic 
application due to its antagonism against vibrios. This effect might even be more 
pronounced than for the previously tested strain P. inhibens DSM17395 as indicated 

TABLE 2 Secondary metabolite gene clusters and antibiotic resistance markers in the genomes of V. crassostreae DMC-1 and V. anguillarum 90–11-286 predicted 
by antiSMASH (43), ARTS (44), ResFinder (45), RGI, and CARD (46). Presence of antibiotic resistance hits indicated with a '+', absence with a '-'.

V. crassostreae DMC-1 V. anguillarum 

90–11-286

Secondary metabolite hits

  Heterocyst glycolipid synthase-like PKS 1 26% similarity to eicoseicosapen

taenoic acid

0

  Betalactone 1 1

  Homoserine lactone 0 1

  Ectoine 0 1 83% similarity to ectoine

  NRPS-PKS 0 1 100% similarity to piscibactin

  Arylpolyene 1 85% similarity to APEVf 1 95% similarity to APEVf

  NRPS 1 54% similarity to vibrioferrin 1 100% similarity to vanchrobac

tin

Antibiotic resistance hits

  ABC transporter efflux pumps + +

  Efflux pump membrane transporter MexH + +

  Multidrug efflux RND transporter permease MexW-MexI + +

  Glyceraldehyde 3-phosphate dehydrogenase + +

  HSP90 + +

  Aspartate/ornithine carbamoyltransferase + +

  Aspartate/ornithine carbamoyltransferase + +

  DNA gyrase B + +

  Proteasome + +

  Biotin/lipoyl attachment domain + +

  DNA topoisomerase IV + +

  Carboxyl transferase + +

  DNA-directed RNA polymerase subunit beta RpoB + +

  Beta sliding clamp DnaN + +

  Multidrug efflux complex, MdtEF + +

  Carbenicillin-hydrolysing betalactamase + −

  Chloramphenicol acetyltransferase + −

  MexE family multidrug efflux RND transporter

periplasmic adaptor subunit

+ −

  Major facilitator superfamily efflux pump + −

  Quinolone resistance + −

  Resistance-nodulation-division superfamily efflux pump + −

  Tetracycline + −

  Sulfonamide + −

  Quinolone + −

  Multidrug efflux complex, AdeFGH + −
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TABLE 3 Metabolic profiles for degradation, utilization, and assimilation encoded in the genomes of P. piscinae S26 and V. crassostreae DMC-1 analyzed with 
MicroScope (47)a

Super pathway Pathway P. piscinae S26 V. crassostreae DMC-1

Amino acid degradation 2-ketoglutarate dehydrogenase complex 1 1

Alanine degradation I 0.5 1

Alanine degradation II (to D-lactate) 0.33 1

Alanine degradation IV 1 1

Arginine degradation III (arginine decarboxylase/agmatinase pathway) 0.5 1

Arginine degradation V (arginine deiminase pathway) 0.33 1

Arginine degradation VII (arginase 3 pathway) 1 0

Asparagine degradation I 1 1

Aspartate degradation II 1 1

Citrulline degradation 0.5 1

D-serine degradation 0 1

Glutamate degradation I 1 1

Glutamate degradation II 0.5 1

Glutamate degradation X 1 0

Glutamine degradation I 1 1

Glutamine degradation II 1 1

Glycine cleavage complex 1 1

Histidine degradation I 0.75 1

Histidine degradation II 1 0.6

L-cysteine degradation II 0 1

L-cysteine degradation III 0.5 1

L-serine degradation 1 1

Methionine degradation II 1 0

Ornithine degradation I (proline biosynthesis) 1 0

Proline degradation 1 1

Taurine degradation I 1 0

Taurine degradation IV 0 1

Threonine degradation I 0.25 1

Threonine degradation II 1 1

Threonine degradation IV 1 1

Tryptophan degradation I (via anthranilate) 1 0

Tryptophan degradation II (via pyruvate) 0 1

Aromatic compound degradation Anthranilate degradation II (aerobic) 1 0

Methyl salicylate degradation 1 0

Phenylacetate degradation I (aerobic) 1 0.33

Protocatechuate degradation II (ortho-cleavage pathway) 1 0.25

Salicylate degradation I 1 0

C1 compound utilization and 

assimilation

CO2 fixation into oxaloacetate (anapleurotic) 0.5 1

Formaldehyde oxidation II (glutathione-dependent) 1 1

Formaldehyde oxidation IV (thiol-independent) 1 0

Formaldehyde oxidation V (tetrahydrofolate pathway) 1 1

Formate oxidation to CO2 1 1

Carbohydrate degradation Acetoin degradation 0.5 1

Chitin degradation II 0.4 1

Chitobiose degradation 0 1

D-mannose degradation 1 1

Fructose degradation 0 1

Lactose degradation III 1 1

Melibiose degradation 1 1

Ribose degradation 0.5 1

(Continued on next page)
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by larger inhibition zones in a plate-based inhibition assay. Indeed, Grotkjaer et al. (29) 
found P. piscinae S26 to produce higher concentrations of TDA than P. inhibens 
DSM17395, which could drive at least some of this anti-vibrio activity.

Vibrios, even within a species, may represent various levels of virulence to aquacul
ture organisms and carry a high genetic diversity (3, 48, 49). Similarly, vibrios have a 
varying level of sensitivity to the probiotic Phaeobacter and its bioactive compound 
TDA (25). This was also confirmed for P. piscinae S26 that inhibits both V. anguillarum 
90-11-286 and V. crassostreae DMC-1; however, the latter to a lesser extent. For both 

TABLE 3 Metabolic profiles for degradation, utilization, and assimilation encoded in the genomes of P. piscinae S26 and V. crassostreae DMC-1 analyzed with 
MicroScope (47)a (Continued)

Super pathway Pathway P. piscinae S26 V. crassostreae DMC-1

Xylose degradation I 1 0

Carboxylate degradation 2-methylcitrate cycle II 0.17 1

Acetate conversion to acetyl-CoA 1 1

Acetate formation from acetyl-CoA I 1 1

Acetyl-CoA biosynthesis I (pyruvate dehydrogenase complex) 1 1

D-gluconate degradation 0 1

Glutaryl-CoA degradation 1 0.6

Glycolate and glyoxylate degradation II 1 0.5

Methylmalonyl pathway 1 0

Fatty acid and lipid degradation Acetoacetate degradation (to acetyl CoA) 1 0.5

Fatty acid beta-oxidation I 0.86 1

Inorganic nutrient metabolism 2-aminoethylphosphonate degradation I 0.33 1

Dimethylsulfoniopropionate degradation I (cleavage) 1 0

Methanesulfonate degradation 1 0

Methyl thiopropionate degradation I (cleavage) 1 0

Sulfate activation for sulfonation 0.5 1

Sulfate reduction I (assimilatory) 0.75 1

Sulfite oxidation I (sulfite oxidoreductase) 1 0

Sulfoacetaldehyde degradation I 1 1

Tetrathionate reduction I (to thiosulfate) 0 1

Thiosulfate disproportionation III (rhodanese) 1 1

Thiosulfate oxidation I (to tetrathionate) 0 1

Two-component alkanesulfonate monooxygenase 1 0.5

Nucleoside and nucleotide 

degradation

S-methyl-5-thioadenosine degradation II 1 0

Adenosine nucleotides degradation II 1 1

Guanosine nucleotides degradation II 1 0.75

Guanosine nucleotides degradation III 1 1

Pseudouridine degradation 1 0

Purine deoxyribonucleosides degradation 0.86 1

Purine ribonucleosides degradation to ribose-1-phosphate 1 0.83

Pyrimidine deoxyribonucleosides degradation 0.83 1

Pyrimidine ribonucleosides degradation I 0.67 1

Pyrimidine ribonucleosides degradation II 1 0.5

Urate biosynthesis/inosine 5'-phosphate degradation 1 0.75

Secondary metabolite degradation 1,6-anhydro-N-acetylmuramic acid recycling 1 1

N-acetylglucosamine degradation I 0.5 1

N-acetylglucosamine degradation II 0.33 1

D-galactonate degradation 1 0.67

DIMBOA-glucoside degradation 1 1

Mannitol degradation I 0 1

Sorbitol degradation I 1 0
aCompleteness of pathway indicated in the range of 0 to 1. Major differences between the strains and the corresponding pathways are highlighted in bold.

Full-Length Text Applied and Environmental Microbiology

March 2024  Volume 90  Issue 3 10.1128/aem.01439-2310

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
24

 J
ul

y 
20

24
 b

y 
86

.1
80

.2
29

.2
42

.

https://doi.org/10.1128/aem.01439-23


targets, the activity can be attributed to the production of TDA, as no activity was 
observed for the TDA-deficient P. piscinae S26 mutants in a plate-based assay. Similarly, 
Hjelm et al. (18) demonstrated that the inhibitory effect of the TDA-producing strain P. 
piscinae 27-4 against V. anguillarum 90-11-287 was stronger over time than against V. 
crassostreae DMC-1 with a 6-log reduction in comparison to a 1-log-fold reduction after 6 
days of co-cultivation.

When testing the efficacy of P. piscinae S26 to inhibit V. crassostreae DMC-1 in 
aquaculture-relevant algal cultures, V. crassostreae DMC-1 was reduced by 2 log and 
3–4 log fold in I. galbana and T. suecica cultures, respectively. When Grotkjaer et al. (27) 
tested the activity of P. inhibens DSM17395 against V. anguillarum NB10 in xenic cultures 
of the algae Dunaliella tertiolecta and T. suecica, the reduction of vibrio was 3 log fold 
for both systems. Even more pronounced was the effect of P. inhibens DSM17395 against 
NB10 in a previous study in axenic cultures of T. suecica and Nannochloropsis oculata, 
which demonstrated a 3-log-fold reduction to complete elimination of the pathogen 
(26). The authors also observed that NB10 differed in its capability of inhabiting the two 
different algal systems. Although NB10 colonized T. suecica cells, it could only persist in 
dense cultures and disappeared from less dense cultures of N. oculata. We observed in 
our experiments that V. crassostreae DMC-1 would grow to a cell concentration of 6 log 
CFU/mL; however, although it could maintain this cell concentration in the I. galbana 
culture, the concentration reduced over time in the T. suecica culture.

Interestingly, both P. piscinae S26 and its TDA-deficient mutant inhibited the growth 
of V. crassostreae DMC-1 in both algal systems; however, less so for the mutant in the 
T. suecica culture. Although in direct challenge the inhibitory activity of Phaeobacter 
could be attributed to the production of TDA, previous work also demonstrated that in 
aquaculture-relevant systems, TDA is driving the antagonism, but does not fully explain 
the phenomenon (26). To obtain indications why V. crassostreae DMC-1 appears to be 
less affected by P. piscinae S26 than V. anguillarum 90-11-286 and why TDA is not 
the main driver of the antagonistic effect, we analyzed the Vibrio genomes. Although 
both strains are assigned to the genus Vibrio, they are not closely related and could 
accordingly have distinct differences in their metabolism, meaning that their overall 
fitness would be different in algal cultures. They carry a similar biosynthetic potential; 
however, our analyses demonstrate that V. crassostreae DMC-1 carries a larger arsenal of 
resistance genes in its genome, highlighting the need to further study this Vibrio species. 
Although the resistance mechanism to TDA has not been fully elucidated (42), gamma-
glutamylcyclotransferase activity has been predicted to be involved in Phaeobacter’s 
native resistance. This activity is encoded within both genomes of V. crassostreae DMC-1 
and V. anguillarum 90-11-286 and cannot therefore explain the reduced susceptibility of 
V. crassostreae DMC-1. However, Phaeobacter builds its native resistance by counteracting 
the TDA-induced proton influx with proton efflux, and our findings demonstrate that V. 
crassostreae DMC-1 has the greater ability to combat the effect of antibiotics, particularly 
due to any increased number of efflux pumps in comparison to V. anguillarum 90-11-286. 
Also, the complex metabolic interactions between the algae and the bacteria could 
lead to P. piscinae S26 outcompeting V. crassostreae DMC-1 for nutritional resources. 
The P. piscinae S26 genome carries a greater set of unique degradation, utilization, and 
assimilation pathways than V. crassostreae DMC-1, which would equip P. piscinae S26 
with a broader adaptability to environmental nutrient sources, including those provided 
by microalgae. A high metabolic versatility is a generally accepted characteristic of 
bacteria of the Roseobacter group (50, 51). Specifically, P. piscinae S26 has the unique 
genetic potential to degrade the aromatic compounds anthranilate, methyl salicylate, 
and salicylate, which are involved in defense mechanisms and signaling in plants (52–
54); however, less is known about the production and the role of these compounds by 
microalgae. Furthermore, Phaeobacter is well known for metabolizing dimethylsulfonio
propionate, a sulfur source produced by microalgae (55, 56), and an ability that was not 
found for V. crassostreae DMC-1. Additional genomic analysis identified that P. piscinae 
S26 and V. crassostreae DMC-1 harbor about a similar number of CAZymes; however, 
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the Phaeobacter genome encodes twofold more GTs than GHs, while it is the other 
way around for V. crassostreae DMC-1. A diverse set of GTs could allow Phaeobacter 
to target a wide range of carbohydrates produced by the microalgae and could be 
important for its adaptation to this specific environment. Furthermore, the production 
of unknown antibacterial compounds by Phaeobacter could inhibit the growth of V. 
crassostreae DMC-1 (57–61). For instance, the algal compound dimethylsulfoniopropio
nate has some protective effect against TDA, which has previously been speculated to 
act as a protectant for eukaryotic hosts (62, 63). It is possible that similar effects are 
present in the systems studied here, but this remains a speculation and would need 
further investigation in future studies.

In conclusion, the potential of probiotic bacteria to address the economic losses 
caused by fish pathogens such as vibrios in aquaculture systems and the environmental 
burden of antibiotic and disinfectant usage holds significant promise for sustainable 
solutions. This study underscores the importance of specificity and efficacy testing for 
safe and effective application of probiotic strains. The strain P. piscinae S26 emerges 
as a strong contender for probiotic use due to its robust antagonistic activity against 
vibrios, potentially surpassing previously tested strains. Vibrios exhibit diverse levels 
of virulence and sensitivity to probiotics, which can be influenced by factors such as 
genetic diversity and metabolic interactions. The role of TDA as a primary driver of the 
antagonistic effects against vibrios is established, yet the interplay of other factors, such 
as resistance genes within Vibrio genomes and metabolic competition, demands further 
investigation. Future studies should investigate the intricate mechanisms underlying 
these interactions, shedding light on the effectiveness and limitations of probiotics in 
aquaculture settings, including the effect on algal products such as fatty acid composi
tion. This will allow the development of tailored solutions capitalizing on the strengths of 
probiotics while navigating the complexities of aquatic ecosystems.

MATERIALS AND METHODS

Bacterial and algal strains and culturing conditions

The bacterial strains P. piscinae S26 wild type (WT) (29) and TDA-deficient, scarless 
mutant ΔtdaB (36), P. inhibens DSM17395 WT (37, 38) and TDA-deficient, insertion mutant 
ΔtdaB::GmR (39) were grown on Marine Agar (MA; Difco2216 BD) at 25°C or in Marine 
Broth (MB; Difco2216 BD) at 25°C and 200 rpm (Table 1). V. crassostreae (formerly V. 
splendidus) DMC-1 (2) and V. anguillarum 90-11-286 (40) were grown on MA or Tryptone 
Soy Agar (TSA; Sigma-Aldrich) at 25°C or in MB at 25°C and 200 rpm.

Axenic I. galbana CCMP 1323 and T. suecica CCMP 906 were obtained from the 
Bigelow National Center for Marine Algae and Microbiota (NCMA) and were cultivated in 
3% instant ocean (IO; Instant Ocean sea salts; Aquarium Systems, Inc.) with f/2 without 
silicate (f/2 – Si; NCMA [64]) at 18°C and constant light at ~50 μE m−2 s−1. Pre-cultures 
were plated on TSA and MA before each experiment to confirm their axenic status.

Antagonistic activity of probiotic Phaeobacter against fish pathogenic vibrios

The antibacterial activity of P. piscinae S26 WT and ΔtdaB and P. inhibens DSM17395 WT 
and ΔtdaB::GmR against V. crassostreae DMC-1 and V. anguillarum 90-11-286 was tested 
using an agar-based assay (65). For preparation of V. crassostreae DMC-1 embedded agar 
plates (0.1% final concentration of overnight culture), the Petri dishes were placed on ice 
when pouring the plates as V. crassostreae DMC-1 was very sensitive to the temperature 
of the agar. Bacterial strains were grown overnight in MB at 25°C and 200 rpm, and either 
10 µL of probiotic strain was spotted on top of the Vibrio agar or 50 µL of sterile-filtered 
supernatant was suspended into wells punched into the Vibrio agar. Inhibition zones 
were measured after overnight incubation at 25°C.
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Antagonistic activity of P. piscinae S26 against the fish pathogenic V. 
crassostreae DMC-1 in algal systems

To determine the probiotic effect of P. piscinae S26 and its TDA-deficient mutant ΔtdaB 
against V. crassostreae DMC-1 in algal cultures, four treatments were tested in the algal 
systems: (i) P. piscinae S26 WT + V. crassostreae DMC-1, (ii) P. piscinae S26 ΔtdaB + V. 
crassostreae DMC-1, (iii) V. crassostreae DMC-1, and (iv) axenic algae. Cultures were set 
up in biological triplicates with T. suecica or quadruplicates with I. galbana, resulting 
in 28 cultures in total with each culture having a volume of 50 mL prepared in a 
250-mL Erlenmeyer flask. The estimated starting concentration of the algae was 105 

algal cells/mL in 3% IO + f/2 – Si medium. V. crassostreae DMC-1 was added to the 
algal cultures at 0.1% of an overnight culture to an estimated starting concentration 
of 104 Vibrio cells/mL. Either 1% of P. piscinae S26 WT or ΔtdaB was added to an 
estimated starting concentration of 106 Phaeobacter cells/mL. All cultures were incubated 
at 18°C and constant light at ~50 μE m−2 s−1, and algal and bacterial concentrations 
were determined on days 0, 1, 2, 5, and 8 (T. suecica) and 0, 2, 4, and 7 (I. galbana). 
Bacterial colony forming units were determined after 10-fold serial dilution in 3% IO and 
plating on TSA (Vibrio CFU) and MA (Phaeobacter CFU). Plates were incubated overnight 
or for 2–3 days at 25°C, respectively, before counting. For algal cell counts, samples 
were fixed with 1% formaldehyde and were stored at 4°C until flow cytometry on a 
Miltenyi MACSQuant VYB. Statistical analysis was performed with an unpaired, two-tailed 
Student’s t-test.

Genomic analysis of V. crassostreae DMC-1

Genomic DNA was extracted from 1 mL of an overnight culture of V. crassostreae DMC-1 
in MB using the NucleoSpin tissue kit (740952; Macherey-Nagel). DNA (114 ng/µL) was 
submitted to Novogene (UK) for 150 bp paired-end sequencing on a NovaSeq Illumina 
platform. Additionally, long reads were produced on a R9 flow cell using the MinION 
sequencer (Oxford Nanopore Technologies). Adapters of short reads were removed using 
AdapterRemoval, and ends were trimmed using fastp. The long reads were trimmed 
using porechop and were filtered using filtlong. Finally, the short and long reads were 
assembled using unicycler v0.4.7. The assembly was submitted to NCBI for annotation 
using the Prokaryotic Genome Annotation Pipeline (PGAP). The genome sequence has 
been deposited at NCBI under the accession number JAMHIT000000000. BLAST-based 
average nucleotide identity (ANIb) to V. anguillarum 90-11-286 (Genbank acc. no. 
GCF_001660505.2) was performed with JSpeciesWS (66). Functional traits encoded in 
the genomes of V. crassostreae DMC-1 and V. anguillarum 90-11-286 were identified using 
antiSMASH 7.0.0 (43), ARTS (44), and ResFinder 4.1 (database version 2022-05-10) (with 
default settings of 90% identity threshold and 60% minimum length) (45). Antibiotic 
resistance genes were predicted with RGI version 5.0.0 and CARD version 3.0.2 (46) on 
the Genoscope platform (47). Metabolic profiles of the V. crassostreae DMC-1 and P. 
piscinae S26 genomes for degradation, utilization, and assimilation were evaluated with 
the Metabolic Profile Tool using MicroCyc pathways (67) on the MicroScope platform 
(47), considering only pathways with a completion level of ≥1. Genomic profiles for 
carbohydrate degradation of V. crassostreae DMC-1 and P. piscinae S26 (Genbank acc. 
no. GCF_000826835.1) were analyzed using dbCAN3 (68) with HMMER- and DIAMOND-
based searches. Hits were considered for comparison if recognized by both searches.
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