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Abstract
During steel galvanisation, immersing steel strip into molten zinc forms a protective coating. Uniform coating thickness
is crucial for quality and is achieved using air knives which wipe off excess zinc. At high strip speeds, zinc splatters onto
equipment, causing defects and downtime. Parameters such as knife positioning and air pressure influence splatter severity and
can be optimised to reduce it. Therefore, this paper proposes a system that converges computer vision andmanufacturingwhilst
addressing some challenges of real-time monitoring in harsh industrial environments, such as the extreme heat, metallic dust,
dynamic machinery and high-speed processing at the galvanising site. The approach is primarily comprised of the Counting
(CNT) background subtraction algorithm andYOLOv5, which together ensure robustness to noise produced by heat distortion
and dust, as well as adaptability to the highly dynamic environment. The YOLOv5 element achieved precision, recall and
mean average precision (mAP) values of 1. When validated against operator judgement using mean average error (MAE),
interquartile range, median and scatter plot analysis, it was found that there was more discrepancy between the two operators
than the operators and themodel.This research also strategises the deployment process for integration into the galvanising line.
The model proposed allows real-time monitoring and quantification of splatter severity which provides valuable insights into
root-cause analysis, process optimisation and maintenance strategies. This research contributes to the digital transformation
of manufacturing and whilst solving a current problem, also plants the seed for many other novel applications.

Keywords Galvanisation · Steel manufacturing · Computer vision · Deep learning

Introduction

Immersion of preheated steel strip into a molten zinc bath
is a critical step that occurs during galvanising. During this
step, a zinc-iron alloy forms on the steel surface, increasing
corrosion resistance dramatically. This process is carefully
controlled to ensure constant uniform thickness,which is cru-
cial to ensure proper protection from corrosion, to maintain a
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good aesthetic and structural integrity and also to ensure the
output is predictable. The schematic shown in Fig. 1 repre-
sents this stage of the galvanising process. After the substrate
is immersed in the zinc bath, which is maintained at around
450◦ C, the coating weight thickness is controlled by a pair
of air knives that wipe the strip as it leaves the zinc bath.
The excess zinc (runoff) normally flows smoothly down the
strip back into the zinc bath, however, at high strip speeds
(typically meaning high productivity provided there are no
issues), the runoff detaches from the strip surface presenting
a spray-like effect, named “splatter”, which is detrimental to
the process.

The splattering zinc travels onto the air knives and the
electromagnetic stabilisation system (EMS), where it causes
poor strip surface quality and failure of the EMS respectively.
Currently, there is often a delay between the occurrence of
splatter and the recognition it is occurring, meaning it is diffi-
cult to identifywhich specificprocessing conditions cause the
problem. Conventional manufacturing technologies would
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Fig. 1 A schematic representing the part of the galvanising process
where zinc splatter occurs

struggle to monitor and quantify the splatter phenomenon
due to its complex shape and transient nature. Therefore,
this paper proposes a novel computer vision (CV) applica-
tion tailored for this application.

CV is the field of work concerning enabling computers
to understand visual input from cameras or camera-like sen-
sors. As a subfield of artificial intelligence, it overlaps with
machine learning (ML) and deep learning (DL) whilst con-
taining a vast array of image processing techniques. With
the advent of Internet of Things (IoT) and the consequential
growth of Big Data and DL, a diverse variety of CV appli-
cations are being discovered rapidly in all domains such as
automotive industry with autonomous vehicles, healthcare
with automated medical diagnosis, surveillance and pro-
cess monitoring of manufacturing processes. With CV, tasks
that require a detailed interpretation of what is visible can
be revolutionised through rapid automation and enhanced
performance. The CV landscape is constantly undergoing
transformation through the release of new techniques and
useful applications developed with said techniques.

Existing steel manufacturing applications include things
like automated surface defect detection (Zhou et al., 2021),
automated ladle de-slagging (Lee et al., 2021; Hao et al.,
2021), automated steel section resizing (Lin et al., 2023)
and automated personal protective equipment (PPE) checks
(Xiong&Tang, 2021).However despite the leaps in progress,
there are still countless highly beneficial applications of
CV that are yet to be unearthed. Real-time monitoring of
industrial operations is evidently becoming a prominent area
for CV application development due to its benefits such as
data-driven insights, reduced labour costs, improved qual-

ity control and process standardisation. Meanwhile, these
tasks are constrained by the challenges in developing and
operating models that can make inferences in real-time, the
potential variability of the environment as well as the abun-
dance of sources of visual noise in steel manufacturing sites
such as poor lighting, vibrating equipment, dust, fumes and
heat waves, which often confuse DL models (O’Donovan et
al., 2023). Other challenges include interpretability of raw
model output, operator interaction and hardware constraints.
These factors collectively make developing and deploying
these types of applications a difficult task but in this work,
have all been addressed and overcome.

The system proposed here is a real-time molten zinc
splatter severity measurement system. Primarily using the
Counting (CNT) background subtraction (Zeevi, 2023) and
YOLOv5 object detection (Terven et al., 2023) algorithms,
the proposed device aims to revolutionise quality assurance
through data-driven insights for process optimisation and
predictive maintenance, as well as address a critical gap in
quality control of real-time monitoring, root-cause analysis,
defect detection of defects caused by excessive splatter and
potentially closed-loop control depending on whether oper-
ators choose to loop the model predictions back around to
the original process controls. This paper contributes in the
following ways:

• It presents an innovativemethodology for real-time quan-
tification of molten zinc splatter severity that uses a novel
combination of YOLOv5 for air knife detection and CNT
background subtraction for splatter segmentation. This
approach significantly enhances monitoring capabilities
and is suitable for industrial application.

• It exhibits a novel, annotated dataset that indicates the
location of air knives across sequential frames of videos
that have varying environmental conditions. This is a
valuable resource for further research in advancing mon-
itoring systems and is available upon reasonable request.

• It outlines a blueprint for the deployment of a splatter
monitoring system in a steel galvanising line, including
details on system integration and data flow management.

• It demonstrates the potential for significant improve-
ments in process optimisation through the application
of computer vision in complex and dynamic industrial
environments.

This paper is organised as follows. “Literature review" sec-
tion is a literature review covering the overlap between
manufacturing and CV applications. “Methodology" section
describes themethodologywhile “Results&discussion" sec-
tion presents and discusses results. “Industrial application"
section addresses the model deployment and “Conclusions"
section concludes the paper with key outcomes.
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Literature review

This literature reviewwill first look at existing applications of
CV in themanufacturing industry, beforemoving deeper into
those specifically developed for steel galvanising processes.
The review will then move towards existing applications of
the techniques used to develop the tool; background subtrac-
tion algorithms and YOLO models. Exploring these topics
will lead to exposure of gaps in research and development
that will either be addressed in the remaining parts of this
paper, or will be recommended as potential directions for
future work.

Manufacturing applications

CV technology has successfully been integrated with many
types of manufacturing and therefore brought great ben-
efits such as process efficiency, process quality and most
importantly, process safety. This section will cover existing
research on integrating CV with various types of manufac-
turing.

Within automotive manufacturing, CV has been used for
surface quality inspection such as in Chang et al. (2020)
where a quality assessment system for painted car bodies
was developed as a two step process consisting of defect
detection with TinyDefectRNet, a model based on YOLOv3,
followed by appearance quality evaluation. The dataset was
produced by splitting 200 large images into 432 patches
which were then labelled (Chang et al., 2020). Recall and
precision ranged from about 91.9% to 95.3% and 88.2% to
90.7% depending on whether the left, right or hood side was
being analysed, whilst average analysis times ranged from
20.3s on the hood to 64.7s and 64.2s for the left and right sides
respectively (Chang et al., 2020). The proposed approach
for monitoring zinc splatter during galvanising also makes
use of object detection for quality assessment however it is
focused on directly measuring process quality rather than
product quality. Another example is the use of YOLOv3 to
localise and classify three types of solder joints on automotive
door panels which are rectangle, semi-circle and circle solder
joints (Mo et al., 2019). A dataset that consisted of 447 train-
ing samples and 106 testing samples was used to achieve a
mean average precision (mAP) of 0.85 and a detection time
of 0.18 seconds per panel image, which met the real-time
requirements for the production line (Mo et al., 2019). This
application is similar to the proposed application since both
focus on meeting real-time requirements for a production
line. However, the main task of (Mo et al., 2019) is clas-
sification, whereas the proposed application primarily uses
background subtraction which is supported by both localisa-
tion and classification (together they constitute detection).

Electronics manufacturing also benefits from CV tech-
nology which has been shown in Zheng et al. (2021)

where automated surface inspection of copper clad laminate
images using defect detection was achieved through an effi-
cient convolutional neural network (CNN) based architecture
comprised of convolutional layers amongst squeeze-and-
excitation blocks, as well as squeeze-and-expand blocks. A
large dataset of 49560 samples was used which was split into
80% for training, 10% for testing and 10% for validation
(Zheng et al., 2021). The reported precision, recall and F1
were all 0.99 and are superior to that achieved byMobileNet-
v2, Inception-v3 and ResNet-50 (Zheng et al., 2021). An
improved version of YOLOv3 was also used for printed cir-
cuit board (PCB) electronic component detection by using
both real and synthetic data (Li et al., 2019). The real data
consisted of 50 images containing 29 instrument categories
such as resistors, capacitors, transformers and potentiome-
ters, and 9145 component instances which were augmented
to create a dataset 20 times the size (Li et al., 2019). The aug-
mented dataset was split using 80% for training and 20% for
testing (Li et al., 2019). The model achieved an mAP of 0.93
(Li et al., 2019). Whilst the performance metrics show these
approaches to be effective, these applications focus on static
images containing discrete components. Meanwhile, zinc
splatter is highly dynamic and variable in terms of appear-
ance. Also, while air knife appearance is mostly consistent,
they move position which increases the complexity of the
task.

There are various applications of CV in additive manufac-
turing such as process monitoring, defect detection and error
detection. For example, one paper exhibits a hybrid CNN
model architecture that was used to learn both spatial fea-
tures and give a quality-level classification for a powder-bed
fusion process (Zhang et al., 2020). The model was devel-
oped using 4256 training samples, 800 validation samples
and 800 testing samples (Zhang et al., 2020). When tested
on overheating, normal, irregularity and balling conditions
the model achieved detection accuracies of 0.995, 0.996,
0.998 and 0.996 respectively (Zhang et al., 2020). These
are impressive values but again, the study deals with static
images and does not focus on real-time application. Another
laser powder bed fusion (LPBF) paper was somewhat sim-
ilar to the splatter model discussed in this paper, since the
spatter signatures occurring during LPBF were segmented
using a parallel model made up of a CNN and a thresholding
neural network (TNN) (Tan et al., 2020). The dataset was
measured in image blocks produced by splitting images into
a grid format, and 5500 blocks were used for training whilst
500 were used for validation (Tan et al., 2020). Precision and
recall values averaged over four different laser powers rang-
ing from 100W to 200W were 0.777 and 0.805 respectively
(Tan et al., 2020). Whilst "spatter" in additive manufacturing
and "splatter" in the context of the steel galvanising line refer
to different phenomena, they are similar in nature. Also, in
both (Tan et al., 2020) and the proposed approach, segmen-
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tation has been used. This is because the pixel-level shape
(rather than just a bounding box) is often crucial in analysing
complex shapes. Interestingly, the approach in Tan et al.
(2020) performs segmentation with deep learning, whereas
the proposed approach uses background segmentation. This
is because the splatter signatures existing in the galvanising
footage are more complex than the spatter signatures seen in
additive manufacturing, which highlights the novelty of this
work.

Steel manufacturing has already been positively impacted
byCVwith an arrayof existing technologies being researched
and developed. Similarly to other types of manufacturing,
much of the progress made on developing CV applications
for steel industry has been focussed around defect detection.
One example of this is where YOLOv3 was used as the basis
of anmodel developed for detecting defects on steel strip sur-
faces (Kou et al., 2021). Themodelwas developed using 1800
greyscale images that were split using 90% for training and
10% for testing (Kou et al., 2021). It was evaluated against
SSD300, SSD512, Faster R-CNN, YOLOv2 and YOLOv3
on two popular surface defect datasets, namely GC10-DET
and NEU-DET (Kou et al., 2021). For GC10-DET, ten types
of defects were localised and classified with an overall mAP
of 0.713 which was the best and a speed of 45.6fps which
was the second best after YOLOv2 with 51.2fps (Kou et al.,
2021). ForNEU-DET, six defectswere detectedwith an over-
all mAP of 0.722whichwas the second highest after SSD512
with 0.724 and a speed for 64.5fps which was the second
highest after YOLOv2 with 127.1fps (Kou et al., 2021). Ear-
lier in the steel lifecycle there are also various examples ofCV
applications, for example with slag monitoring. In terms of
real-world application, steel surface defect detection could be
used along the galvanising line before the zinc bath to ensure
steel strip surfaces are suitable before coating, as well as after
the air knives to ensure the strip has been coated properly.
However, the proposed approach addresses splatter severity
which immediately indicates the quality of the coating pro-
cess, which has not been found in any other published work.
In Kim et al. (2020), a CNN was used to predict the optimal
slag removal path during de-slagging of ladles which was
then intended for usewith a robot to automate the de-slagging
task (Kim et al., 2020). Similarly, to Tan et al. (2020), the
model was trained using 1568 blocks and tested using 1046
blocks. Testing accuracy of over 91% was achieved for the
CNN and overall the slag removal path was estimated with
approximately 90% accuracy (Kim et al., 2020). Both the
work in Kim et al. (2020) and the work proposed here move
towards automating operator behaviour when carrying out a
task. However, whilst the work in Kim et al. (2020) intends to
simply automate the task, the work proposed here intends to
surpass the observational capabilities offered by an operator
by continuously providing quantitative, objective and precise
results multiple times per second.

Background subtraction applications

Background subtraction is the name given to the set of tech-
niques used for efficiently segmenting foreground pixels
from background pixels in a sequence of images. Whilst the
deep learning CV task of segmentation is similar in nature to
background subtraction, they have clear differences such as
the complexity of the algorithms, how they learn features as
well as their capabilities.

For this application, it was decided that it was more
appropriate to use background subtraction rather than a seg-
mentation network such as Mask R-CNN (He et al., 2017) or
YOLACT++ (Bolya et al., 2022), since these models require
large labelled segmentation datasets which when observ-
ing the air knife footage, would be almost impossible to
label accurately within a practical amount of time due to
the finite form the splatter sometimes presents itself in. Not
only this, but deep learning models can sometimes be diffi-
cult to operate in real-time without spending large amounts
of time optimising the model and its deployment approach.

Oppositely, background subtraction algorithms, particu-
larly those available in OpenCV, are capable of segmenting
the background with great detail within just a few sequential
frames and zero labels. Furthermore, the algorithms on their
own canmake inferences in real-time with little to no optimi-
sation. Of course, there are limitations such as the inability to
specify what kind of objects are segmented and the inability
to deal with a moving camera. This means background sub-
traction is particularly well-suited for scenarios where the
background is static and the object of interest is dynamic,
such as in the air knife region.

Recent advancements in image segmentation, such as the
Segment Anything Model (SAM) (Kirillov et al., 2023), the
FastSAM (Zhao et al., 2023) variant and Robust Saliency-
aware Distillation (RSaD) (Liu et al., 2024) exemplify
significant developments in the field and could potentially be
integrated into future iterations of splatter severity systems.
SAM is a segmentation network with zero-shot capability,
meaning it can segment objects without being trained for
specific objects (Kirillov et al., 2023). This is promising
for the research project discussed in this paper, however
currently SAM lacks the real-time processing required for
dynamic environments such as those found in steel gal-
vanisation. Whilst SAM is reported to take from 110ms to
5147ms to process one image depending on complexity, Fast-
SAM is reportedly capable of operating at 40ms per image
which is much more applicable (Zhao et al., 2023). How-
ever, both models require explicit input prompts which adds
unnecessary complexity when deploying them in fully auto-
mated systemswhereminimal human interaction is desirable
(Kirillov et al., 2023; Zhao et al., 2023). Considering these
factors, whilst SAM and FastSAM significantly advance
the field of computer vision, they are currently unsuitable
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for real-time automation applications in dynamic industrial
environments. Additionally, the RSaD method is a recent
advancement in terms of enhancing segmentation of fine-
grained features and is considered few-shot since it is only
trained on approximately one to five samples per class (Liu
et al., 2024). These aspects could be beneficial for achieving
robust segmentation of complex industrial processes with
minimal annotated data requirements, however RSaD has
high computational demands due to its fine-grained nature
which is detrimental for application to high-speed produc-
tion lines (Liu et al., 2024).

OpenCValgorithms such asmixture ofGaussians (MOG),
MOG2 and the Gaussian mixture-based background fore-
ground segmentation algorithm (GMG)areGaussianmixture
models (GMM),meaning they subtract the background using
a combination of Gaussian probability densities. In other
terms, a set of Gaussian distributions each represent part
of the background which combine to represent the entire
background (Zivkovic, 2004). Literature exists on attempts
to combine deep learning with background subtraction such
as Machado et al. (2021); Christiansen et al. (2016); Yu et al.
(2019). Combining techniques from the two types of algo-
rithms is a potential area of future research that could produce
exciting results for industry.

Whilst background subtraction has not yet been applied
to this kind of application, it has still been applied success-
fully for various use cases. For example, one paper proposes
the use of the MOG background subtraction algorithm in
combination with a timedmotion history image (motion seg-
mentation)method andKalman filtering as part of a real-time
vehicle traffic tracking system (Qu et al., 2010). Another
paper evaluates all of the available OpenCV algorithms with
the task of ship detection on inland waters and finds that the
GSOC (Google summer of code) andCNT algorithms are the
best for that particular application (Hyla et al., 2019). One
final example is a comparison of the GMG, KNN (K-nearest
neighbours),MOGandMOG2algorithms at performing sub-
traction on near infrared spectrum images of moving wild
mammals for animal detection (Trnovszký et al., 2017). The
study found that when evaluating algorithms using hand-
crafted labels, the KNN algorithm mask was most similar
to the labels, followed by MOG2 in terms of similarity but
MOG2 was faster and therefore more suitable for real-time
processing. These examples demonstrate just how versatile
background subtractions algorithms are for tracking mov-
ing objects. The proposed approach however, advances on
these applications firstly in that the structure of the splatter-
ing zinc is far more complex and variable than the objects in
these examples (road vehicles, ships and animals). Secondly,
the proposed approach analyses segmentation masks in real-
time for deeper insights. Additionally, by integrating object
detection, this work enhances the robustness and precision
of motion detection.

Examples of background subtraction use for manufac-
turing purposes firstly include (Nettekoven et al., 2022)
where over 30 different segmentation algorithms (including
OpenCV background subtraction algorithms) were evalu-
ated when applied to infrared laser track images in LPBF.
The results showed that despite struggling to segment laser
tracks, MOG, MOG2, CNT, GSOC and KNN were the
only algorithms able to exclude spatter from the foreground,
suggesting they were more robust to spatter-like noise (Net-
tekoven et al., 2022). The ability to distinguish between
spatter-like structures and other signals is crucial formonitor-
ing zinc splatter, and the results from (Nettekoven et al., 2022)
suggest that the mentioned algorithms may be beneficial.
The MOG algorithm was applied in Bonello et al. (2020) for
inspection of missing and misaligned components in printed
circuit board assemblies (PCBAs). The results showed the
algorithm was capable at distinguishing between reference
PCBA images and a defective PCBA images, highlighting
the effectiveness of the method (Bonello et al., 2020). Whilst
the study in Bonello et al. (2020) is innovative and effective,
it focuses on still images and essentially performs anomaly
detection for quality control. The approach here is differ-
ent because although it still contributes to quality control, it
involves continuously monitoring a dynamic process, and is
also beneficial for process optimisation. The CNT algorithm
was used in Sabih et al. (2023) to distinguish raw materi-
als on a conveyor belt system from the background, in order
to monitor material flow rate on a soda-ash production line.
In combination with a frame difference technique, the CNT
algorithm proved to be effective in precise, real-time analysis
required for process optimisation for improved gas produc-
tion, reduced production waste and reduced costs (Sabih
et al., 2023). Similarly, the CNT algorithm has been used
in this work to precisely monitor zinc splatter in real-time
to improve steel strip quality, reduce waste and costs, and
minimise equipment downtime. Again, the dynamic splat-
ter structure in this work is far more variable and complex
than the rawmaterials in Sabih et al. (2023), emphasising the
advancement made by this study.

YOLOv5 applications

YOLOv5 is the fifth version of the you-only-look-once object
detection models and is comprised of three parts. Firstly,
CSP-Darknet53 is used as the CNN backbone which essen-
tially performs feature extraction (Terven et al., 2023). Sec-
ondly, spatial pyramid pooling (SPP) and path aggregation
network (PANet) perform pooling and feature aggregation
respectively, which is considered the neck of the architec-
ture (Terven et al., 2023). Finally then, the prediction head
predicts bounding boxes, class probabilities, and objectness
scores (Terven et al., 2023). YOLO models are possibly the
most widely used and well-known object detection models
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existing today, with at least eight versions at the time this
paper was written. A fewYOLOv3 applications have already
been mentioned in the manufacturing applications section.
YOLOv5 is one of the most suitable choices for applications
due to its speed, flexibility, active open source community,
user-friendly implementation and general ease of deploy-
ment. Whilst it is recognised that YOLOv7 and YOLOv8 are
now available and suitable for application with good sup-
port, YOLOv5 has more information built up by community
contributions over time.

SomenotableYOLOv5 applications include safety helmet
detection which was achieved by replacing the conventional
non-maximum suppression (NMS) with DIoU-NMS and
using 6000 images for training and 1000 for testing, achieved
an average precision (AP) of 0.957 at 98fps (Tan et al., 2021),
tomato virus disease recognition that used 1036 samples split
using 80% for training, 10% for testing and 10% for valida-
tion of YOLOv5 with an additional squeeze-and-excitation
module, achieving 0.868 precision, 0.922 recall and 0.760
mAPCOCO (Qi et al., 2022), and forest fire detection using
a model based on YOLOv5 with changes such as from the
Spatial Pyramid Pooling-Fast (SPPF) module to the Spatial
Pyramid Pooling-Fast-Plus (SPPFP) module, addition of a
convolutional block attention module (CBAM) and chang-
ing the PANet to a bi-directional feature pyramid network
(BiFPN) (Xue et al., 2022). The forest fire study used 3170
data samples split using 80% for training, 10% for testing and
10% for validation, and experiments showed that with all of
the aforementioned modifications to YOLOv5, an mAP0.50
of 0.821 was achieved for forest fire detection with a speed of
54.1fps (Xue et al., 2022).Meanwhile, the originalYOLOv5s
only achieved mAP0.50 of 0.761 with a slightly higher speed
of 55.2fps (Xue et al., 2022). These studies emphasise how
YOLOv5 can be modified to performwell in a variety of sce-
narios in terms of both precision and speed. The proposed
approach uses YOLOv5 as a secondary technique to sup-
port the primary technique of background subtraction, and
since the air knives remainedmostly unchanged, therewas no
need tomodify theYOLOv5architecture.However, real-time
quantification of zinc splatter drove the need for combining
YOLOv5 with background subtraction which expands cur-
rent capabilities in the field.

Examples of YOLOv5 in manufacturing specifically
firstly include (Le et al., 2022) where it was used for sur-
face defect detection of micro-motors on the assembly line,
which were classed as either normal, dirty, structurally dis-
torted, deformed at the main body or incomplete. Using a
total of 1400 labelled images and 8613 bounding box labels
whichwere split so 80%were used for training and 20%were
used for validation, YOLOv5 achieved an mAP of 0.734 and
an inference time of 6.4ms (Le et al., 2022). The study pre-
sented in Zendehdel et al. (2023) optimised YOLOv5 for
real-time detection of detection of tools used in smart facto-

ries. In Zendehdel et al. (2023), 3286 images of 17 different
classes of tool were split using 70% for training, 15% for test-
ing and 15% for validation and the model achieved an mAP
of 0.983 with no mention of the final inference speed other
than describing the model as real-time. Finally, (Chen et al.,
2023) presents the application of YOLOv5modified for weld
type classification, tacked spot recognition and weld region
of interest determination for robotic welding. A total of 3450
structured light images from different welding assemblies
were used for model development, with a 65% used for train-
ing, 20% used for validation and 15% used for testing (Chen
et al., 2023). The overall method was shown to achieve 100%
precision and recall and an inference time of 18ms (Chen
et al., 2023). Manufacturing applications of YOLOv5 pre-
sented here again show the efficacy of the model in various
scenarioswhich suggests it is a versatile toolwith highperfor-
mance in terms of both speed and precision. In comparison,
the front faces of the air knives are basic compared to tools
and motors (however they do move along multiple axes),
but the underside faces of them are more complex and only
appear depending on the camera position. Therefore, this
work involves the training of YOLOv5 for object instances
that may not exist for the entire video, which is unique
when looking at the literature. Also, in this work, detection
is applied purely to video footage (a series of frames) as
opposed to one image at a time.

There are some key findings from reviewing the litera-
ture which are as follows. CV is suitable for a large range of
applications in different types ofmanufacturing such as auto-
motive, electronics, additive and steel, and across these the
majority of CV developments are based on defect detection
and inspection systems. Meanwhile, there is no published
work on real-time monitoring of molten zinc splatter occur-
ring on the galvanising line, meaning this work addresses a
novel challenge. In fact, due to CV with deep learning being
an emerging field, there are many gaps in the literature. For
example, many studies achieve high performance but have no
focus on real-time application. Even for technology that is not
on the processing line, speed and efficiency are paramount
in industry and therefore real-time capabilities are crucial in
advancing the field. Additionally, many studies use object
detection alone to perform tasks where adding a segmenta-
tion component would be greatly beneficial. Furthermore, in
manufacturing there are many existing processes that could
benefit from CV that have not been addressed at all. The
splatter monitoring system developed in this work uncov-
ers a significant type of use case for CV in manufacturing,
which is tomonitor variables that are visible but not currently
monitored due to the lack of compatibility with traditional
manufacturing technology. Examples of other applications
could be quantifying the light intensity during arc welding
for process quality and process safety, quantifying the qual-
ity of welded joints or assemblies, quantifying the visible
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degradation of equipment for maintenance planning, moni-
toring of process temperature distributions from a distance to
prevent the need for degradation of measurement tools, and
many more.

This work also highlights the difference between back-
ground subtraction and object segmentation. Background
subtraction algorithms are much easier to train than neu-
ral networks that perform segmentation on objects they are
trained for long periods of time to recognise, however are
normally only suitable for static backgrounds. Both methods
have advantages and disadvantages, and combining back-
ground subtraction and DL algorithms could be a great way
to advance the fields of CV and manufacturing.

Finally, the versatility of YOLOv5 and other variants
as tools for robust real-time object detection has been
demonstrated. The integration of YOLO models with other
techniques for tackling real-world challenges has been exem-
plified through literature and promoted through discussion,
which contributes to the advancement of the field.

Methodology

The overall task for this body of work was to develop a tool
that can in near real-time, quantify the severity of molten
zinc splatter occurring along a steel galvanising line at high
strip speeds due to air knives that wipe off excess zinc to give
a uniform thickness coating along the steel strip. Using this
tool, the operators at the coating site can collect data on the
severity of splatter whilst using different settings for process
parameters such as strip speed, air knife distance and air knife
pressure, and then find relationships between the two sets of
data which can be used to optimise the galvanising process
to minimise splatter severity whilst maximising strip speed.
The methodology followed is summarised in Fig. 2.

The flow chart has six steps. Firstly, data preparation
began with acquiring footage from a local galvanising site
that showed the air knives, steel strip and splatter occur-
rences whilst the site was in operation. Once the footage was
acquired it was divided into frames for processing,whichwas
sufficient for the background subtraction stage but not object
detection. Therefore, it was then necessary to label the data
which was done using VGG image annotator (VIA) (Dutta
et al., 2016).

The prepared data was used for the second step of running
different background subtraction algorithms to find the best
choice for the splattermodel. The parameters of the best algo-
rithmwere then adjusted through amethodical trial-and-error
process which focused on optimising the trade-off between
sensitivity to splatter detection and robustness against noise
from environmental factors like heat and dust. Background
subtractionwas used to segment pixels that represented splat-
tering zinc from the background pixels. These algorithms

adapt to scene changes over time and generally perform
well in scenarios with static backgrounds. Since the aim was
to achieve real-time processing and adaptability to erratic
splatter patterns in an environment with a mostly consistent
background, these algorithms were suitable for this applica-
tion.

The third step used the output mask from background
subtraction to properly quantify the splatter severity. It was
quantified in terms of splatter amount (the number of pix-
els in the designated splatter region) and splatter width (how
widespread the splatter was in terms of pixels). These val-
ues were plotted as histograms then used to give an overall
splatter severity rating using a proposed rating system.

The fourth step was integration of object detection during
which YOLOv5was used for two purposes. Firstly, to ensure
the model could deal with vertical and horizontal air knife
movement. Since background subtraction techniques are not
good at dealing with dynamic backgrounds and the relevant
region of splatter was always below the air knives which
sometimes moved, detecting the air knives with YOLOv5
identified the region for measurement and ensured it was
adjusted dynamically. Secondly, cameras were moved by
operators between shifts and therefore did not have a con-
sistent viewpoint. Using YOLOv5, detection box sizes could
be used to indicate the distance between the camera and the
air knives and therefore scale the background subtraction out-
puts depending on this distance. Overall, YOLOv5 ensured
the model was able to adapt to a changing environment in
both real-time and long-term cases.

The fifth step was model validation where comparisons
were made between the model developed in this paper, and
the judgement of operators observing the splatter.Mean aver-
age error (MAE), scatter plots andbox andwhisker plotswere
used to assess results.

The final step is the model deployment strategy which
has been presented in this paper as a future plan rather than
a completed task. Deployment in itself is a substantial task
and therefore an overview has been presented rather than
a full report. This includes a workflow and the benefits of
deployment.

The method used in the third step of Fig. 2 for measur-
ing the severity of splatter using quantity and width, is a
novel contribution the the field that could be applied to indus-
trial monitoring applications. Also, there is novelty in the
combination of a background subtraction algorithm with an
object detection algorithm for improved adaptability and reli-
ability of real-time manufacturing process monitoring. This
approach sets a foundation for future automated industrial
quality control.
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Fig. 2 An overview of the methodology used for this work

Data preparation

An overview of the data strategy used for this work is shown
in Fig. 3, whilst descriptions of each source video is pro-

vided in Table 1. Within VIA, for every frame, both front
faces of the air knives were labelled with a bounding box
as “Knife Face” whilst Underside faces of the knives were
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Fig. 3 Diagram showing overview of data strategy

Table 1 Description of videos and their settings

Name Splatter Air Knife
Movement

Camera
Position

Video 1 Entire range No Normal distance

Video 2 Low Mid No Close to knives

Video 3 Low No Far from knives

Video 4 Low No Zinc pool shown

Video 5 Low Horizontal Angled towards right

Video 6 Entire range No Angled towards right

Video 7 Low-Mid Vertical Close to knives

also labelled but as “Knife Underside”. This was done for
30 seconds of seven different videos (Video 1 to Video 7)
with different viewpoints and process conditions. Since the
footage ran at 25fps, this meant 750 frames for each video
were prepared, giving a model development dataset of 5250
samples. The dataset was divided by using approximately
80% (4200) for training, 10% (525) for validation and 10%
(525) for testing as shown in green in Fig. 3. Furthermore,
seven one-minute videos (shown in red) were used for some
further production testing (PT) of the model to ensure the
prototype was fit-for-purpose before attempting deployment
and so were considered part of the validation stage before
considering the prototype complete. The pieces of footage
were originally from the same videos as the seven sets of 30

second videos used for the original dataset. Once all required
data was prepared for object detection the next step was to
look at background subtraction algorithm selection.

Background subtraction

Background subtraction is the task achievedby a certain set of
algorithmsdesigned to separate backgroundpixels from fore-
ground pixels across frame sequences. The algorithms tested
were MOG, MOG2, LSBP (local singular value decomposi-
tion binary pattern), GSOC, GMG, KNN and CNT.

Of these,MOG,MOG2,GMGareGaussian-based (briefly
mentioned in the literature review). Gaussian distributions
(also called normal distributions) are essentially bell curves
that are symmetrical and are typically defined by their
mean (μ) and variance (σ 2) (Newcastle University, 2024).
Gaussian distributions are commonly used to model the
distribution of values in various forms of data, including
images and videos, where they are often used for smooth-
ing (OpenCV, 2023b). Gaussian mixture models operate by
modelling pixel values over a series of frames as a mixture
of Gaussian distributions to emphasise associations between
groups of pixels whilst allowing for small variations such
as changes in lighting and shadows (Zivkovic, 2004). Equa-
tion 1 calculates the probability that a certain pixel has a value
of xN at time N , where each pixel is modelled by a mixture
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of K Gaussians (KaewTraKulPong & Bowden, 2002).

p(xN ) =
K∑

j=1

w jη(xN ; θ j ) (1)

In Eq. 1, w j is the weight parameter of the jth Gaussian
component, η is the probability density function and the jth

Gaussian component parameters including mean and covari-
ance are represented by θ j (KaewTraKulPong & Bowden,
2002).

Each component captures part of the background and col-
lectively their weights indicate the likelihood of different
pixel values (Zivkovic, 2004). When each new frame is pro-
cessed, pixels that do not align with the expect background
pixels are considered foreground pixels (Zivkovic, 2004). In
GMMs, the number of Gaussians for each pixel plays a key
role in performance outcomes (Zivkovic, 2004).

Alternatively, the LSBP algorithm is based on SVDbinary
patterns and despite GSOC not having a dedicated paper, it
is a successor of LSBP (Guo et al., 2016), (OpenCV, 2023a),
(Bobulski, 2022). LSBP is a combination of local binary pat-
terns (LBP) and SVD. LBP captures textural information
by comparing each pixel with its neighbours and encoding
these relationships into a binary pattern (Ojala et al., 2002).
Equation 2 can be used to calculate LBP based on P neigh-
bouring pixels at radius R, where s is the sign function used
to compare the intensity of the central pixel to that of the
neighbouring pixel, gp is the intensity value of the pth neigh-
bouring pixel, gc is the intensity value of the central pixel
being evaluated and 2p is the binomial factor which corre-
sponds to the pth neighbour’s position (Ojala et al., 2002).

LBPP,R =
P−1∑

p=0

s(gp − gc)2
p (2)

However, LBP is not robust to local image noise when
neighbouring pixels are similar (Guo et al., 2016). Therefore
SVD, which is used for dimensionality reduction of rectan-
gular matrices, is integrated with LBP to enhance robustness
by emphasising the most significant patterns within the data
which reduces the effect of noise and results in better back-
ground stability (Guo et al., 2016). Equation 3 can be used to
perform SVD on a matrix B surrounding the location (x, y),
whereU and V are orthogonal matrices, and � is a diagonal
matrix containing the singular values of B(x, y) (Guo et al.,
2016).

B(x, y) = U�V T (3)

LSBP works by firstly computing the LBP descriptor for
each pixel using local neighbourhoods, secondly by creat-

ing matrices of the descriptors, thirdly by applying SVD to
the matrices to obtain principal components to reduce noise,
and finally by using the components to robustly identify the
foreground and background (Guo et al., 2016). Equation 4
calculates the LSBP binary string at (xc, yc), where i p is the
neighbourhood point value and i c is the central point value
(Guo et al., 2016).

LSBP(xc, yc) =
P−1∑

p=0

s(i p, ic)2
p (4)

KNN background subtraction is based on the common
machine learning technique called K-nearest neighbours,
which is used for classification based on feature similarities
(Scikit-learnDevelopers, 2023). In the context of background
subtraction, the KNN algorithm is a non-parametric tech-
nique that uses a kernel to classify pixels as belonging to
the foreground or background (Zivkovic & van der Heij-
den, 2006). The kernel is described as a "balloon estimator"
and the diameter of it is dynamically adjusted to cover a
predefined number of data points which varies depending
on the density of local data (Zivkovic & van der Heijden,
2006). The "density" of data refers to the extent of similarity
between pixels in terms of features such as colour (Zivkovic
& van der Heijden, 2006) This approach means the KNN
algorithm can effectively adapt to areas of varying sample
density, making it robust to noise and capable of handling
gradual background changes (Zivkovic & van der Heijden,
2006). Equation 5 shows the formula for the non-parametric
density estimate which distinguishes between background
(BG) and foreground (FG) components (Zivkovic & van der
Heijden, 2006). In Eq. 5, T is the number of historical frames
used for adaptation, t is the current time, m is the earliest
frame that the algorithm begins to iterate through until it
reaches t , −→x (m) is the pixel RGB value at time m, −→x is
the pixel RGB value at the current time, k is the number of
samples from the dataset XT that lies within the hypersphere
(balloon) volume V of the kernel which has diameter D, and
the kernel function is denoted by K(u) (Zivkovic & van der
Heijden, 2006).

p̂non-parametric(
−→x |XT , BG + FG)

= 1

T V

t∑

m=t−T

K
(

‖−→x (m) − −→x ‖
D

)
= k

T V
(5)

The CNT algorithm is another non-parametric approach
that counts the number of frames each pixel has remained
constant for, and uses pixel stability values to decide on
whether the counted value of each pixel should mean it is
foreground or background (Zeevi, 2023). There is also a
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threshold to decide on the boundaries for what is consid-
ered the same colour (Zeevi, 2023). It is not based on any
particular distributions and therefore is not represented by a
formula. However, Algorithm 1 captures the essence of the
CNT algorithm.

Algorithm 1 CNT Algorithm
for each pixel in the frame do

if pixelColour == previousPixelColour then
pixelStability += 1

else
pixelStability = 0

end if
if pixelStability ≥ minPixelStability then

classify pixel as background
else

classify pixel as foreground
end if

end for

All algorithms are available in OpenCV and were imple-
mented using Python. Each algorithm has its own set of
parameters that can be changed, and some have no change-
able parameters. The steps listed next were taken to decide
on the best algorithm for the splatter model.

• Process Video 1 using algorithm.
• Record speed and observe precision.
• Eliminate algorithms slower than 1fps.
• Optimise best overallmodel for air knifemovement using
trial-and-error.

This approach was taken so that firstly, time was not
wasted optimising all models for air knife movement. Sec-
ondly, efficiency was further practiced through the elimina-
tion of slow algorithms. Overall this was resource-efficient
and ensured that the speed and accuracy requirements for
the application were met. For optimisation, trial-and-error
was used over an alternative such as grid search, since there
was already some inclination as to what the values should be
based on previous results with default parameter settings.
Values were adjusted incrementally to balance sensitivity
to splatter dynamics with resistance to noise from environ-
mental factors such as heat distortion, dust and air knife
movement. Since parameterswere specific to each algorithm,
more information is provided in “Results & discussion" sec-
tion.

Splatter severity measurement

The optimal background subtraction algorithm gave a mask
output that could be used for splatter measurement and this
was processed using erosion and contour thresholding for

Fig. 4 The rating system used to obtain an overall splatter severity
rating

denoising. Erosion is when the outer boundaries of con-
tours are thinned. In this work, erosion was performed with
a (2,2) filter to eliminate noise due to camera shaking and
faint heat waves visible in the footage. The contour thresh-
old ensures the model ignores contours within the splatter
region that are below 75 pixels in size in order to remove
some noise that remained after erosion noise removal. Only
the pre-processed output within the splatter measurement
regionwas used and thiswas observed for two features; splat-
ter width and splatter amount, where both are measured in
pixels. These were recorded for every frame and plotted on
two separate histograms which were used to heuristically
choose five different ranges representing five different sever-
ity levels for splatter amount and splatter width. Based on
the individual severity levels for splatter amount and width,
an overall splatter severity rating was given using the rating
system shown in Fig. 4. The systemworks by the assumption
that splatter amount and splatter width contribute equally to
the overall severity rating, and therefore the overall severity
rating will be equal to the highest of the two values.

Object detection

After splatter severity was quantifiable, it was necessary to
make the model robust to variations in camera position.
This was achieved using object detection for detecting air
knives, which was also beneficial for automatically defin-
ing the splatter measurement region (shown in “Results &
discussion" section) while the air knife position and scale
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moved due to camera perspective and vertical and horizontal
air knife movement.

Object detection was achieved using YOLOv5. The tech-
nical details of YOLOv5 were introduced in the literature
review. To reiterate briefly, the CNN backbone takes images
as input and performs feature extraction, the SPP and PANet
pool and aggregate extracted features and then the prediction
head predicts bounding box co-ordinates, class probabili-
ties and objectness scores (Terven et al., 2023). As with all
supervised detection networks, YOLOv5 required training,
validation and testing stages. The model was trained for 30
epochs on YOLOv5s using 4200 training samples and 525
validation samples which were used at the end of each epoch
tomonitor howwell themodel is generalising to unseen data.
Finally, the remaining 525 testing samples were used to give
amore accurate indication of howwell the final model would
generalise on unseen data.

Once object detection was successful, the bounding box
predictions were used to redefine the splatter measurement
region. Bounding boxes were then used to estimate the dis-
tance between the camera and the air knives relative to other
camera positions present in the originally acquired footage.
The relative distance was represented as a scaling factor (SF)
and calculated as shown in Eq. 6, where B represents the
current bounding box size and R represents the reference
bounding box size.

SF = B

R
(6)

The scaling factor was calculated per frame which was
sub-optimal as the bounding box sizes vary slightly between
every frame and the camera position normally stays constant
for hours at a time. Therefore, a moving average (MA) of
the scaling factor was calculated every frame and used as the
final value for the model. The equation is shown in Eq. 7
where X represents the scaling factor value calculated for
one frame and n represents the number of points averaged.

MA(SF) = X1 + X2 + ... + Xn

n
(7)

Expert validation

Upon nearing model completion, it was important to validate
the functionality and performance of the model to ensure
it was developed appropriately for deployment. Firstly, the
seven one-minute videos were processed by the model and
the seven output videos were analysed by eye to ensure
the model appeared to be functioning properly on differ-
ent potential inputs it may need to handle during real-world
application. Secondly, a validation test was produced and

completed by two operators at the galvanising site. The test
consisted of operators estimating the splatter severity of 20
frames with various camera and process conditions and then
comparing estimations to the ratings given by the model.

Results & discussion

The proposed approach introduces a novel application of
technology to monitoring zinc splatter severity. At the time
of writing, there are no directly comparable studies docu-
mented in the literature. This is one of the key contributions
of the work since it addresses this gap.

Background subtraction

The first set of results were from the initial testing of dif-
ferent background subtraction algorithms to find which was
most appropriate for the task. Video 6 alone was used to
evaluate algorithms since differences in performance were
obvious enough to not require testing on other sample videos.
Also, brief testing showed differences in camera position did
not affect performance significantly. However, in Video 7
where the air knives move upwards, the system appearance
changed which impacted algorithms and is addressed later.
The first performance metrics observed were inference time
and consequential speed which are shown in Table 2. As
shown in bold, CNT algorithm inferences were much faster
than inferences made by any other algorithm, which meant
it also performed at the highest frame rate.

The raw footage initially acquired ran at 25fps and so
this should he considered “real-time” performance. The tar-
get was to reach “near real-time” performance so that most
frames of the original footage would be processed during
deployment. Therefore, considering that YOLOv5 inference,
splatter measurement and other steps would also be per-
formed for every frame, the speed of the chosen algorithm
needed to be as high as possible. Whilst acknowledging this,
the frame rates shown in Table 2 can be increased signifi-

Table 2 Inference Times and Frames Per Second for Various Algo-
rithms

Algorithm Inference Time (s) Frames Per Second

MOG 0.0951 10.5152

MOG2 0.1116 8.9606

LSBP 1.0188 0.9815

GSOC 0.4066 2.4594

GMG 0.2733 3.6590

KNN 0.1286 7.7760

CNT 0.0505 19.8020
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Fig. 5 Effects of different background subtraction algorithms on an early frame with low splatter

cantly in multiple ways such as using a GPU, resizing frames
and optimising algorithm parameters. The values should
therefore be evaluated relative to each other and not based on
whether they run at 25fps or not. That said, it is clear from
Table 2 that the algorithms initially appearing most suitable
for real-timemonitoring areMOG,MOG2andCNT,whereas
the least suitable is LSBP. Based on the results, LSBP was
eliminated from the process and no longer considered for the
final model.

Figure 5 shows a frame during the first second of footage
processed by each of the algorithms (excluding LSBP) with
default parameter settings. In this frame there is what could
be describe as “low” severity of splatter. An initial observa-
tion from the output video showed that the GMG algorithm
segmented nothing, MOG2 started to track pixels shown in
grey but were not fully segmented, MOG segmented a small
amount of zinc, GSOC and KNN segmented zinc and back-
ground noise, and CNT required a certain number of frames
to “learn”where the backgroundwas, so had not yet initiated.

Figure 6 shows a frame during the 18th second of footage
processedbyeachof the algorithms exceptLSBPwithdefault
parameter settings. In this frame there is what could be
describe as “moderate” severity of splatter. CNT followed
by MOG segmented the splatter most precisely, whilst all
other algorithms segmented the regions between streams of
splatter. The CNT algorithm was most precise at segment-
ing the splatter however also carried some background noise,
whereas MOG carried significantly less.

Figure 7 shows a frame during the 33rd second of footage
processed by each algorithm except LSBP with default
parameter settings. There is what could be describe as “high”

severity of splatter. GSOC did not segment enough pixels
whereas GMG segmented too many. All other algorithms
performed well with CNT producing noticeably more back-
ground than the others. Overall, the CNT algorithmwasmost
suitable since it had a significantly higher frame rate, was
close to real-time, and was the most precise during testing.
The limitations of CNT were the initial learning stage which
took about 15 frames and was not an issue since the model is
expected to take some time to initialize, and the background
noise which can be eliminated using erosion which is dis-
cussed later.

The next step was to ensure it could deal with the air knife
movement in Video 7. Therefore, the algorithm processed
the video with default parameter settings. Three frames at
the 12th, 16th and 21st second marks are shown in Fig. 8,
which show there is an issue. Since the algorithm has defined
the background over hundreds of frames prior to knife move-
ment, when the knives move it is detected by the CNT
algorithm which makes the segmentation mask inaccurate.
This inaccuracy can be seen increasing across the frames in
Fig. 8.

As previously mentioned, trial-and-error experimentation
was conducted to optimise the CNT algorithm parameters for
this application and solve the issuewith knifemovement. The
parameters targeted were minimum pixel stability and maxi-
mum pixel stability. Minimum pixel stability is the minimum
number of frames with constant pixel colour to be considered
stable for segmentation, whereas maximum pixel stability is
the maximum allowed historical credit for a pixel (OpenCV,
2023) Based on the definition of minimum pixel stability,
the value needed to be very low (0–3) to ensure the algo-
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Fig. 6 Effects of different background subtraction algorithms on a frame with moderate splatter

Fig. 7 Effects of different background subtraction algorithms on a frame with high splatter

Fig. 8 Effects of knife movement on CNT background segmentation
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Fig. 9 Effects of knife movement on CNT background segmentation after modifying CNT algorithm

Fig. 10 Effects of contour erosion on CNT background segmentation

rithm was sensitive to pixels changing across every single
frame since the splatter often changed significantly between
frames. Based on the definition of maximum pixel stabil-
ity, the value needed to be low enough to only detect small
changes in the video and ignore occasional changes such as
air knifemovement, whilst being high enough above themin-
imumvalue to allow formore slowly developing splatter. The
final values for minimum and maximum pixel stability were
set at one and ten respectively and the before and after results
of this optimisation are shown in Figs. 8 and 9 respectively,
which use the same frames for comparison. The results show
optimising the CNT parameters was successful in removing
the air knife segmentation since the minimum pixel stabil-
ity was low enough to detect small changes in splatter from
frame to frame, whilst the maximum pixel stability was low
enough to ensure the background pixels are not calculated
based on many previous frames so air knife movement was
accounted for. Also, inference time was reduced marginally
from 0.0505s to 0.05s.

Finally, erosion was applied with a (2,2) filter in order to
remove small background noise due to heatwaves and camera
shaking which makes the mask much clearer. The results are
shown in Fig. 10 where (a) shows no erosion applied and (b)
is after erosion has been applied.

Splatter severity measurement

Once the model was capable of extracting the splatter the
next step was to properly quantify the severity of it. This

was fundamentally broken down into two factors: splatter
amount (number of segmented pixels in the splatter region)
and splatter width (how widespread the segmented pixels in
the splatter region were). The splatter region was the area in
the video specified as being expected to contain splatter, and
was applied to minimise the possibility of noise that occurs
in an area where splatter never exists affecting results. The
region was defined based on the results of object detection
which are presented in the next subsection. Also, a contour
threshold of 75 pixels was used to ignore tiny amounts of
splatter that spread far wider than the majority of the remain-
ing splatter signature meaning the severity rating would be
unrepresentative of what is observed.

The splatter amount and width were recorded for every
frame of Video 1 and plotted as the histograms shown in Fig-
ures 11 and 12 respectively. Splatter amount ranged from 0
to 42655 whilst splatter width ranged from 0 to 847. Both
histograms have been intentionally divided up into five dif-
ferent ranges that define the boundaries for the severity levels
of splatter amount and splatter width. For both variables, the
first severity level iswhat themajority of frames aremeasured
as since this is the baseline state of the process. The second
bin contains significantly less frames than the first however
it contains significantly more than every subsequent bin, and
this represents a severity of one. The third bin is the last that
has a high enough frequency to be visible on the chart and
this represents a severity of two. The fourth bin is invisible
and contains only seven and five frames for splatter amount
and splatter width respectively. The final bin defines a sever-
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Fig. 11 Histogram showing how frequent different splatter amount val-
ues occurred

Fig. 12 Histogram showing how frequent different splatter width val-
ues occurred

ity level of four and has no upper limit to account for any
extreme cases. For the final bin, six and four frames were
recorded for amount and width respectively. Figures 11 and
12 show the trend of higher severity levels being less likely
to occur, which is desirable as this is generally the case in
real-world scenarios. Finally, the rating system previously
shown in Fig. 4 within “Methodology" section was used to
give the final splatter severity rating for each frame. Exam-
ples of severity ratings from the final model are shown in the
next section.

Object detection

Model training

For training, the model was evaluated based on bounding
box, object and classification losses for training and also val-
idation at the end of each epoch. Precision, recall and mean
average precision were also recorded for validation results.
For testing, the same metrics were used for comparison.

Figure 13 shows the training losses for bounding boxes,
objectnessAnd classification decreased gradually over the 30
epochs with the same trend. This is a typical shape for a loss

Fig. 13 Graph showing how training loss changed over 30 epochs of
training

Fig. 14 Graph showing how validation loss changed over 30 epochs of
training

versus epoch graph during successful training as it shows the
model gradually improved its ability to predict bounding box
locations, object presence and class labels through learning
the features existing within the training data.

Figure 14 shows the validation losses which followed the
same pattern as the training losses with slightly lower values
overall. This is atypical since validation losses are normally
slightly higher, however it is unproblematic. It could be due
to the data distribution between training, validation and test-
ing sets that meant the validation set is easier to predict on
than the training set. The decreasing trend shows the model
successfully learned from the training set and applied that
knowledge to the validation set. There is some noticeable
jaggedness of the validation lines compared to the smooth
training lines, which is expected due to the model adapting
to unseen data.

Table 3 shows theprecision, recall,mAP50 andmAPCOCO

were all almost perfect which was expected due to the
large training set and minimal movement or environmen-
tal changes, excluding the splatter. This aligns with the loss
graphs which as discussed, both indicate successful training.
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Table 3 Validation Results

Precision Recall mAPCOCO

0.99988 1 0.99414

Fig. 15 Confusion matrix showing testing results

Model testing

Figure 15 shows the confusion matrix which shows true pos-
itives and false positives for both classes. All instances were
predicted correctly. Figures 16 and 17 show labelled frames
and corresponding predictions.

The testing results are shown in Table 4. In comparison
to the validation results, model performance was virtually
identical, which is a good indicator of it working well during
deployment. The model was trained on all camera positions
that it was tested on for a minimum of 750 frames and there
was not much variation between positions. New positions
will be experienced during deployment, however there is high
confidence that the model will still generalise well due to
learning from extremities and interpolating for unfamiliar

perspectives. If not, the model will be trained on a wider
range of positions until it performance is satisfactory.

Splatter region

Once object detection was successful, the next step was to
properly define the splatter region. Figure 18a shows how the
splatter line (which was originally always straight) has been
optimised to follow the shape of the knives. The bounding
boxes allowed enabled line optimisation and also meant the
model could deal with knife movement. When the underside
faces of the knives appear, the line straightens out as shown
in Fig. 18b, to avoid the walls entering the splatter region.
Also notable, is the two vertical red lines on either side of
the segmentation mask which shows exactly where splatter
is being measured and the distance between the two lines is
the splatter width.

Scaling factor

Bounding boxes were beneficial for defining the splatter
region, but also for improving model robustness in terms
of variations in camera position. Operators at the coating
site regularly move the cameras and so the model was bet-
ter adapted for use when having this capability. However, to
ensure themost reliable readings from themodel, it is advised
that the camera is kept as similar to an optimal reference posi-
tion which is that used to produce Video 1. As explained in
“Methodology" section, different camera positions used for
developing the model in order to account for this.

Robustness to camera position was further achieved by
using a scaling factor. The area in pixels of the combined
bounding boxes for the left and right knives of the optimal
reference position was used as a reference area, and then
dependingon the distance between the camera and the knives,
the bounding boxes increased or decreased in size and there-
fore increased or decreased the scaling factor which can be
seen in Eq. 6 of Sect. 3.

Fig. 16 Visualisation of testing results (one class shown)
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Fig. 17 Visualisation of testing results (two classes shown)

Table 4 Testing Results

Precision Recall mAPCOCO

0.99989 1 0.99449

The scaling factor was used as a multiplier on the splatter
amount and splatter width severity level boundaries to ensure
changes in distance between the camera and knives did not
cause splatter severity to be over or under-exaggerated. Fig-

ure 19a and b show results on two different camera positions
and whilst (b) shows a similar splatter amount and splatter
width, the severity rating is still low since the camera is closer
to the knives and therefore only giving the appearance that
there is more severe splatter.

After implementing the scaling factor, it was decided that
a 25000-point moving average would be used. The reason
for this value was that at 25fps, the MA scaling factor will be
updated every 1000 seconds which is just under 17 minutes.

Fig. 18 Demonstration of splatter region line changing depending on how the knives are positioned
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Fig. 19 Demonstration of splatter measurement boundaries adapting to changes in camera position

It is expected that the operatorswillmove the camera nomore
often than every few hours so this provides a safety factor.

Final evaluation

After the entire prototype was developed it was necessary
to test it on the seven 60-second videos that were set aside
initially to ensure themodel was as close to production-ready
as possible.

For Video 1, the camera-knife distance was roughly at
the reference point for the scaling factor and contained the
entire range of severity levels. The model performed well
throughout and there were only a handful of frames from the
whole video that contained clear inaccuracies due to noise,

and these could easily be detected as anomalies and removed
or ignored when interpreting the data for process optimisa-
tion.

For Video 2, the camera-knife distance was over double
the reference point for the scaling factor and containedmostly
low severity levels but also exhibited higher severity at times.
The model performed well with minimal inaccuracies due to
noise.

For Video 3, the camera-knife distance was about half the
reference point for the scaling factor and splatter severity was
mostly low. Inaccuracies were minimal.

For Video 4, the camera-knife distance was normal and
the camera was positioned so that the zinc pool could be seen
clearly. The flowing zinc was detected by the CNT algorithm
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due to constant movement, which made the model massively
inaccurate. A way of enabling the CNT algorithm to segment
splatter accurately but ignore the flowing zinc pool is yet to
be proposed, however one solution and the one taken for this
deployment is to accept the limitation and ensure the camera
is always positioned so that the pool cannot be seen, which
is acceptable since it normally cannot be seen.

For Video 5, the camera-knife distance was about half and
only low severity levels were exhibited. Therewas some light
reflecting off an area to the right of the air knives which could
not be seen in other videos. Similarly to the zinc pool also
discussed, this is currently an accepted limitation handled
by ensuring the camera is positioned to eliminate the noise
source fromview. it is possible that the light could be detected
or segmented and then eliminated, but thiswould take tedious
and potentially difficult model development which can be
done just by camera position adjustment. The video also
showed some horizontal knife movement to which the object
detection element of the model handled well, and the splatter
region was adjusted accordingly.

For Video 6, camera-knife distance was normal and a
range of severity levels were seen. Similarly to Video 5,
the camera was angled to the right slightly which exposed
reflecting light that often occurs just outside the optimal field
of view. Other than the noise caused by this, the model per-
formed well.

For Video 7, camera-knife distance was over double and
only low severity levels were seen. This video contained ver-
tical air knife movement from the bottom to the top of the
camera”s view. The model competently adjusted the splat-
ter region as the knives moved upwards and the transition
between only front knife faces being visible to front and
underside faces was fairly smooth.

A final important finding found during the final produc-
tion testing was that despite having near perfect performance
during training, validation and testing, the model struggled
with distinguishing between classifying knife front faces and
knife undersides. In some frames of some videos, whilst the
bounding box predictions remained near perfect, the model
switched classes for the boxes incorrectly. The reason for the
discrepancy between the model development and final test-
ing results is probably due to the size of the validation and/or
testing sets being too small in comparison to the 15000-frame
production set, or just insufficiently representative of it. This
is not an issue for deployment, since the box predictions are
reliable enough to be able to inform the model that the under-
side faces are visible if there are two boxes predicted under
the main (front face) boxes. However, this is definitely an
area for improvement, especially if the model is developed
further or adapted to other applications.

Table 5 Mean average error values between different validation test
results

Model-O1 MAE Model-O2 MAE O1-O2 MAE

0.95 0.60 0.95

Fig. 20 Scatter plot showing model predictions compared to PO1 over
20 hand-selected validation frames

Expert validation

Table 5 shows the MAE between model predictions and
the first operator (PO1), the model and the second opera-
tor (PO2), and between PO1 and PO2. From Table 5 it can
be seen that firstly, the model”s maximumMAE across both
operators is 0.95. This implies it is unusual for themodel to be
predicting splatter severity as more than one level away from
what an expert observer would say, which is promising. Sec-
ondly, the MAE between the two operators was higher than
the MAE between the model and PO2. This suggests that
either the element of subjectivity has caused a wide variation
in results leaving a high chance of high variability between
operators, or the model is more accurate than one or more
of the operators. The significance of the differences between
MAE values could be further established by extensive testing
to learn more about the degree of random variability between
operators and whether certain datasets, environmental con-
ditions or the experience level of selected operators result in
divergence from model predictions.

The scatter plots in Figures 20 and 21 show a frame-by-
frame comparison between the model and operators 1 and 2
respectively. While the results show that the model”s predic-
tions did not consistently lean towards PO1or PO2, theywere
noticeably closer to PO2. The fact that the model generally
sits between the opinions of both operators suggests it could
be useful as a reference point when operators disagree. The
subtle leaning to PO2 suggests the assessment criteria dur-
ing model development was more similar to PO2 than PO1.
Additionally, the model predicted outside of both operator
judgements by one severity level six times. These were on
frames 5, 10, 11, 13, 14 and 18. All of these except frame 18
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Fig. 21 Scatter plot showing model predictions compared to PO2 over
20 hand-selected validation frames

had a scaling factor of approximately 2.3 (camera close to
the knives), suggesting that the camera position at the initial
stages ofmodel development resulted in accurate predictions,
whereas scaling factor multipliers that accounted for camera
position were not optimal. This is further supported by the
fact that of the 20 sample frames, seven of them had this
scaling factor.

Figure 22 shows frame 11 within the expert validation
set. The model predicted a severity of zero, whereas PO1
and PO2 judged the severity as one. As shown in the image,
the CNT algorithm did not detect a large amount of the zinc,
however there was a minute amount of splatter visible. There
was bias built into the model during development as it could
have been decided that any amount of splatter segmentation
raises the severity from zero to one, however this was not the
approach taken which evidently resulted in the discrepancy.
Also, Fig. 22 shows that the model may struggle to differen-
tiate between very small amounts of splatter and no splatter,

which is an area for future improvement but is not critical to
the model application.

Figure 23 shows frame 14 within the expert validation set.
Themodel predicted a severity of one, whereas PO1 and PO2
judged it as four and two respectively. Of all six discrepancies
this was the most significant since the difference between
PO2 and the model was three severity levels which is large.
The results show that firstly, the discrepancybetween thePO1
and the model was one severity level, which as previously
mentioned, was likely due to the scaling factor multiplier
being slightly misaligned with operator judgment. Secondly,
the difference between PO1 and PO2 was significant and by
looking at Fig. 23, as well as considering the model did not
disagree with any operator judgement in any other frame by
more than two severity levels, the value given by PO1 was
misjudged.

Figure 24 shows frame 18 within the expert validation set.
This was the only clear discrepancy of the whole expert val-
idation set that was not based on a scaling factor of 2.3. In
this case, the model predicted a severity of four whereas both
operators judged it as three. The discrepancy here appears to
be due to built-in bias when choosing severity level bound-
aries. The model has been built to consider this amount of
splatter as the highest severity level, whereas the operators
have considered it the second highest severity level, which is
certainly more accurate by observing Fig. 24. This analysis
contributes to model refinement.

The box and whisker plot in Fig. 25 further explores
model-operator relationships. The boxes represent the
interquartile ranges of each results set, whilst the whiskers
represent the range of potential valueswhichwas always zero
to four. The boxes show that the distribution of the model”s
severity predictions was between both operator”s distribu-

Fig. 22 Frame 11 in the expert validation sample set where a discrepancy was found between operators and the model
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Fig. 23 Frame 14 in the expert validation sample set where a discrepancy was found between operators and the model

Fig. 24 Frame 18 in the expert validation sample set where a discrepancy was found between operators and the model

tions. The interquartile range of the model and PO2 were
most similar, whilst the medians of the model and PO1 were
most similar. These results suggest the model is effectively
capturing operator”s observational tendencies and indicate
the potential for the model to serve as a robust tool for stan-
dardising severity measurements in application.

In conclusion, the model has demonstrated promising
accuracy in splatter severity prediction, however there is
noticeable variability between operators which possibly
exposes an underlying complexity of manual evaluations.
The results suggest that the model is suitable for assisting
experts and could serve as a standardisation tool for splatter
severity assessment. To further refine the model and ensure Fig. 25 Box and whisker plot showing model prediction distribution

compared to two different operators over 20 hand-selected validation
frames
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it not just replicates but surpasses expert precision, a more
in-depth study on expert judgment would be critical.

Industrial application

The model will be deployed near to and facing the air knives
which themselves are above themolten zinc bath where coat-
ing occurs. The model will be deployed using a NVIDIA
Jetson Nano (NVIDIA, 2023), which is a single-board com-
puter that has been designed specifically for edgeAI and deep
learning applications. It is comprised of a quad-core CPU,
a NVIDIA GPU with 128 NVIDIA CUDA cores as well as
internet connectivity, camera connectivity and more. Collec-
tively, these components allow running of computationally
demanding tasks such as recording live video footage and
performing real-time CV model inferences on it (NVIDIA,
2023). The camera input is resized to speed up processing to
ensure real-time which consequently means elements such
as severity level boundaries for amount and width are scaled
accordingly. Using an NVIDIA RTX 2070 Super the model
ran at 8fps with the raw frame size (1920px by 1080px)
and 15fps with the frame size at 20% and similar effects
are expected with the Jetson. Whilst the 2070 Super is built
for high performance computing and gaming, the Jetson
is designed for more lightweight applications in resource-
constrained environments. Therefore, the Jetson is expected
to perform at a lower frame rate of approximately 5fps, which
means the overall system will be capable of measuring one
in five frames in comparison to the original footage.

Figure 26 shows the workflow for the device. The work-
flow begins with the API (application programming inter-
face) which wraps around the model and allows operators to
interface with the model without having to understand the
model code. The API takes the operator input and communi-
cates it to the devicewhich takes in raw data from the camera.

The model will run as normal using the camera as input
and will only save the timestamp and splatter severity value
for each frame rather than the processed video output, splatter
amount, splatter width and scaling factor. Thiswill ensure the
minimal data necessary is stored for storage efficiency. Each
frame will save two values; the timestamp which will be in
Unix timestamp format (32-bit integer which is 4 bytes) and
the splatter severity which will be in integer format (1 byte),

making each frame adding 5 bytes to storage. At full real-
time speed there are 25 frames per second, meaning there are
125 bytes stored per second, which means in order to com-
pletely fill the 16GB storage on the Jetson Nano, the model
would need to run for over 30000 hours without deleting
measurements. Regardless of this, the main storage facility
will be an external computer that receives the output over a
TCP/IP connection which the Jetson connects to via an Edi-
max N150 Wi-Fi Nano USB adapter (Edimax, 2022), which
not only prevents data storage issues but also means the full
output video could be saved for particular experiments, or as
a troubleshooting mode

The severity values will be analysed by operators to look
for hidden trends and relationships between process parame-
ter values and splatter severity. These trends and relationships
will then be used to optimise the process parameter values
during operation tominimise the splatter severity at high strip
speeds. The workflow of the model is presented in Fig. 26.

Whilst the concept of objectively quantifying zinc splat-
ter severity using technology is entirely novel and therefore
has no alternative technologies, comparisons can still be
drawn between the approach presented in this paper and
current practice. The current approach is for operators to
judge by eye and give an entirely subjective opinion on how
severe the splatter is. This can be affected by a wide vari-
ety of factors such as the operator’s position relative to the
air knives, their experience, and even their mood on that
particular day. Oppositely, the approach presented in this
paper is entirely objective, measures splatter severity the
same way every time and gives a definitive number on a
scale of zero to four, making it more reliable and infor-
mative. Also, the consistent measurement of the proposed
approach means it can be used to standardise measurements
which is beneficial for optimising the galvanising process
over long time periods. Additionally, splatter monitoring is
performed automatically which after deployment, reduces
resource requirements. Previous discussion emphasises the
benefits of using this approach in comparison to the current
practice, however, it is also important to consider some of
the limitations of this approach. One limitation is the ini-
tial setup and training of the model which is time-consuming
and resource-intensive. This could pose a challenge for small
and medium-sized enterprises (SMEs) with limited com-
putational resources and expertise. Meanwhile the current

Fig. 26 Representation of the intended workflow for deployment
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practice relies purely on operators that are already present at
the site. Furthermore, to adapt the model to different manu-
facturing environments would currently require retraining on
new datawhich poses challenges with regards to how quickly
the model can be deployed effectively. Therefore, the flex-
ibility of using human judgement is advantageous over the
proposed approach. Despite these limitations, the advantages
of an automated, objective systemoutweigh the relatively low
resource requirements of the current practice.

The potential impact of this model can be broken down
into technological, environmental, economic and social ben-
efits. Technologically, advantages brought by the device are
vast. Firstly, a previously unquantifiable variable, splatter
severity, is now measurable. This brings new possibilities
for root-cause analysis, preventive maintenance, predictive
maintenance and process optimisation. Finding the cause of
the splatter will be easier since it will bemeasured as changes
are made to the process. Preventive maintenance in the form
of cleaning will be easier to manage since the accumulative
recorded splatter over a given period of timewill indicate how
much has collected on the surrounding equipment, whilst
predicting when maintenance is due will be easier since
the amount of splatter accumulated will be approximately
known. Also, the recorded data can be post-processed to give
various plots and analyses that showpreviously undiscovered
trends in the system related to splatter. Trends will suggest
process changes that reduce splatter at high strip speeds,
leading to less equipment downtime and increased produc-
tivity. Finally, the model concept is novel and uses cutting
edge CV algorithms in combination to monitor a previously
unrecorded process variable in real-time. It therefore pro-
vides an initiation point for future research and development
related to CV applications for manufacturing, particularly
those which involve liquid that changes morphology at a
fast pace. An example of a potential feature that could be
added to this model includes measurement of the air knife
distance to easily look for relationships between distance
and splatter severity. This could be developed further to fine
tune air knife distance autonomously in real-time tominimise
splatter severity. Some examples of potential applications
in other contexts firstly include automated spray assessment
for coating aircraft components. Overspray leads to material
wastage and increased costs, while underspray reduces per-
formance, meaning automating this could improve quality
control and sustainability of the process. Secondly, leaking
or spraying detection along food and drinks manufactur-
ing lines could make production processes more adaptable
in real-time, therefore improving production efficiency and
minimising waste. Thirdly, lubrication spray assessment for
real-time feedback on coverage, volume and consistency of
the lubricant applied to machinery to ensure optimal applica-
tion which prevents excessive wear and decreases downtime,
therefore maintaining high production standards. Not only is

this work beneficial for the manufacturing sector, but also for
industrial CV. For example, this work demonstrates the ben-
efits of using hybrid models that capitalise on the advantages
of both deep learning and more traditional CV techniques
to make models more adaptable, therefore encouraging fur-
ther research and development in this area. Also, this work
emphasises the potential for integrating CV models with
IoT devices such as the Jetson Nano for in-situ monitor-
ing of industrial processes. Furthermore, the importance of
real-time data analysis along manufacturing lines for instant
feedback is highlighted, which contributes to faster decision
making and improved efficiency.

By informatively driving process optimisation, the splatter
measurement device is beneficial for the environment since
less defects occur,meaning less energy andmaterial is used to
output the same amount of galvanised steel. Consequentially,
economicbenefits are that the steelmakerswill no longer have
to pay as much for energy or material for a given production
rate.

Regarding social impact, the workers will be required
to clean less zinc that has splattered off the strip and onto
the floor, air knives and electromagnetic stabilisation system
which eases workload. It also improves health and safety
since there is less time where workers are cleaning close-up
to the equipment which is hazardous. Furthermore, the auto-
matic real-time measurement of splatter severity using this
model is a far superior measurement approach compared to
the traditional method of observing by eye. This could not
only reduce workload but it will definitely improve the confi-
dence and awareness of workers making decisions based on
splatter severity which makes their job easier.

Conclusions

This paper has illustrated the development of a model that
can be used to monitor, and therefore quantify, the sever-
ity of molten zinc splatter occurring along the galvanising
line during bath immersion due to air knife application at
high strip speeds. Once a prototype was developed, indus-
trial application and model deployment were considered and
a production-ready device setup has been proposed. The
best background subtraction algorithm for this application
was the Counting algorithm with minimum and maximum
pixel stabilities of one and ten respectively, whilst YOLOv5
was suitable for the application with some notable room
for improvement on the multi-class element of the problem.
Despite this, the model was built to a deployment-ready level
of development and a plan for the remaining implementation
stage has been proposed. The recorded precision, recall and
mAPCOCO were 1, 1 and 0.99 respectively on the test set.

This research significantly contributes to the fields of
both manufacturing and CV as it binds CV techniques such
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as object detection, background subtraction and image pro-
cessing, with manufacturing elements of root-cause analysis,
process optimisation, and maintenance planning, to not only
develop real, applicable device that solves a real-world prob-
lemwith certified value, but also strengthens the research and
development space where it can be used as a starting point
to be built upon and used to inspire similar applications that
could revolutionise multiple industries.

Potential future developments on the model presented in
this paper were mentioned briefly in “Industrial application"
section, and so a few applications will be mentioned. Firstly,
the techniques used here would be ideal for developing an
automatic pipe leak detection system where may be useful to
automatically indicate the size, flow behaviour and morphol-
ogy of the leak using background subtraction. Similarly, a
safety system that detects fires could be built using the object
detection to recognise fire whilst using the background sub-
traction to reduce false positives caused by transient changes.
These are just two possible applications that underline the
versatility of the approach proposed in this paper.

Some limitations of this approach were mentioned in
the industrial application section and should be addressed
in future works. Despite the effectiveness of the training
process, it requires investment of resources which may not
be viable for SMEs. These mainly involve data and train-
ing requirements, and therefore future work should explore
methods for enhancing the scalability and adaptability of
the approach. One promising approach is the use of transfer
learning which significantly reduce data requirements and
training time by adapting pre-trained models to similar situ-
ations with a small amount of retraining.
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