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1 Introduction

To obtain physical observables in lattice field theory, it is essential to approximate the path
integral as a sum over field configurations. Monte Carlo methods rely on random sampling
from the probability distribution, determined by the action of the system [1]. These methods
can have high computational costs, particularly in the vicinity of a critical point in parameter
space [2]. Generative models, as a class of machine learning (ML) algorithms, can be trained
to generate new data that follow the same distribution as a given data set, representing the
underlying target distribution [3]. An important potential application of generative models
in lattice QCD is therefore to improve the efficiency of Monte Carlo simulations [4].

Depending on the way the likelihood is estimated, roughly two main categories of gen-
erative models are being developed. In implicit maximum likelihood estimation (MLE),
Generative Adversarial Networks (GANs) can learn to generate new configurations via a
min-max game using training on a dataset prepared using, e.g., a standard lattice simulation.
A well-trained GAN can subsequently generate new samples, which should follow the same
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statistical distribution as the original dataset, but with reduced computational cost. Addi-
tionally, GANs can be used to improve the interpretability of lattice QCD simulations by
generating visualizations of the system’s behavior [5, 6]. In explicit MLE, flow-based models
have recently been proposed to improve the efficiency of lattice simulations [7–20]. Flow-based
models are able to directly approach the underlying distribution of the quantum field without
preparing training data. Although the method may encounter “mode-collapse” and scalability
problems [21, 22], it allows for the generation of independent new configurations that can
be used in MC simulations, again reducing the computational cost. The current progress
in applying generative models also includes designing novel neural network architectures
for specific field theories, e.g., autoregressive networks [23, 24] and gauge-equivariant neural
networks [8, 18, 24–27]. These approaches suggest that generative models have the potential
to advance the capabilities of lattice QCD simulations. A comprehensive review can be
found in refs. [28, 29].

Recently, the ML community has developed a new class of deep generative models known
as Diffusion Models (DMs) [30]. Impressive success has been obtained in generating high-
quality images via stochastic denoising processes, as showcased in prominent applications [31]
such as DALL-E 2 [32] and Stable Diffusion [33]. As a prevalent class of generative models
encoded in a stochastic process, DMs are grounded in Markov chains, and their implementation
involves the utilization of variational inference methods. For an adoption in high-energy
physics experiments, see, e.g., refs. [34, 35].

In numerical lattice field theory, there is an approach alternative to Monte Carlo methods
to generate field configurations which relies on solving a stochastic differential equation, i.e.,
a Langevin equation. Its origin is stochastic quantization (SQ) as proposed by Parisi and
Wu [36]. The basic idea of SQ is to view the quantum system as the thermal equilibrium
limit of a hypothetical stochastic process with respect to a fictitious time. For gauge fields, it
does not require gauge fixing [36]. Comprehensive reviews include refs. [37, 38]. For theories
with a sign or complex weight problem, such as Quantum Chromodynamics at nonzero
baryon density or theories in real (rather than Euclidean) time, the Langevin process can
be extended to complex Langevin dynamics [39], which evades the sign problem in certain
cases [40–44], see also the reviews [45–48]. Although the method has been put on firmer
theoretical grounds [49–53], convergence and boundary condition issues continue to hinder
obtaining a fully satisfying approach. Recent work to address this includes refs. [54–57].

In this work, we first point out the correspondence between generative DMs from the
ML community and SQ in quantum field theory. Then, we explore using DMs to generate
lattice field configurations. Specifically, we demonstrate for a two-dimensional ϕ4 lattice field
theory that, combined with a hybrid Monte Carlo (HMC) algorithm, DMs can serve as an
efficient global sampler along a Markov chain, leading to shorter autocorrelation times. We
provide self-consistency checks and numerical evidence that this approach is able to capture
the SQ perspective-induced stochastic dynamics of quantum field theories.

The paper is organized as follows. In the subsequent section, we provide a brief overview
of the concept of SQ. In section 3, we present details of DMs. It is argued that the denoising
process of DMs can explicitly serve as a SQ procedure. In section 4, we explore the application
of DMs to a two-dimensional scalar ϕ4 field theory. Additionally, we demonstrate that DMs

– 2 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
0

can accurately estimate the physical action in an unsupervised manner using the probabilistic
flow approach. In section 5, we summarize the correspondence between DMs and SQ, and
outline how this novel method can motivate further research, in particular for theories where
it is expensive to sample from the prior distribution using standard approaches. Appendix A
contains information on the U-Net architecture employed, while appendix B contains a brief
discussion on the Skilling-Hutchinson estimator. A study of the dependence of observables
and the acceptance rate on various system and DM parameters can be found in appendix C
and D respectively.

2 Stochastic quantization

In Euclidean quantum field theory, as an alternative quantization scheme, one may invoke
stochastic quantization (SQ) [36]. We only consider real actions here, for which SQ is well
understood and convergence is guaranteed [37]. Starting from a generic Euclidean path
integral with Euclidean action SE ,

Z =
∫

Dϕ e−SE . (2.1)

SQ introduces a fictitious time, τ , for the field, ϕ, whose evolution is described by Langevin
dynamics,

∂ϕ(x, τ)
∂τ

= − δSE [ϕ]
δϕ(x, τ) + η(x, τ), (2.2)

where the noise term routinely satisfies,

⟨η(x, τ)⟩ = 0, ⟨η(x, τ)η(x′, τ ′)⟩ = 2αδ(x − x′)δ(τ − τ ′), (2.3)

with α being the diffusion constant. Denoting the distribution as

p(ϕ) = e−SE(ϕ)

Z
, (2.4)

the drift term in the Langevin equation can be written as

K(ϕ) ≡ − δSE

δϕ(x) = δ log p(ϕ)
δϕ(x) . (2.5)

In the long-time limit (τ → ∞) the system reaches an equilibrium state of the dynamics [38] if
the drift term has a damping effect, which is best analysed using the Fokker-Planck equation
(see below). In addition, introducing the stochasticity is only one strategy for the quantization.
The fictitious time itself can serve as a clue to develop microcanonical quantization, which
describes a deterministic evolution with an ordinary differential equation [58]. We will revisit
this idea and its connection with DMs in section 3.3.

2.1 Fokker-Planck equation and observables

The Fokker-Planck equation [59] describes the time evolution of the probability distribution of
field configurations, subject to a stochastic process, such as the Langevin equation. Also known
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as the Kolmogorov forward equation, in the context of SQ it describes the time evolution of
the probability density function P [ϕ, τ ] for field configurations ϕ at time τ [37, 60], as follows,

∂P [ϕ, τ ]
∂τ

=
∫

dnx

{
δ

δϕ

(
α

δ

δϕ
+ δSE

δϕ

)}
P [ϕ, τ ]. (2.6)

Here n is the dimension of the Euclidean spacetime on which the field theory is formulated.
Given this probability distribution function, the expectation value of an observable O[ϕ]
is then given by [37]

⟨O[ϕ]⟩τ =
∫

DϕO[ϕ]P [ϕ, τ ], (2.7)

where the left-hand side is understood as an average over many stochastic processes and on
the right-hand side the integral is taken over all field configurations ϕ.

In the long-time limit, the probability distribution P [ϕ, t] approaches an equilibrium
distribution, which is the stationary solution of the Fokker-Planck equation (2.6),

Peq[ϕ] ∝ e−
1
α

SE [ϕ]. (2.8)

If α is set (formally) as ℏ and the equilibrium distribution is normalised, expectation values
of observables are indeed observables in a quantum theory, with

⟨O[ϕ]⟩τ→∞ =
∫

DϕO(ϕ)e− 1
ℏSE(ϕ)∫

Dϕ e−
1
ℏSE(ϕ)

= ⟨O[ϕ]⟩quantum, (2.9)

demonstrating that a stochastic process according to eq. (2.2) can be used to quantize a system.
Note that convergence to the stationary solution (2.8) follows from properties of the

Fokker-Planck Hamiltonian associated to the Fokker-Planck equation (2.6) [37]. In short,
writing the time-dependent solution P [ϕ, t] as

P [ϕ, t] = e−
1

2α
SE [ϕ]Q[ϕ, t], (2.10)

it is easy to show that Q[ϕ, t] satisfies the equation

∂Q[ϕ, τ ]
∂τ

= −HFPQ[ϕ, τ ], (2.11)

where the Fokker-Planck Hamiltonian reads

HFP =
∫

dnx L†L, (2.12)

with
L =

√
α

δ

δϕ
+ 1

2
√

α

δSE

δϕ
, L† = −

√
α

δ

δϕ
+ 1

2
√

α

δSE

δϕ
. (2.13)

The Fokker-Planck Hamiltonian is hence bounded from below by zero. Provided its spectrum
is gapped, time-dependent components in eq. (2.11) will decay exponentially and only the
solution HFPQ[ϕ] = 0 survives. This solution is given by

LQ[ϕ] = 0 ⇒ Q[ϕ] ∝ e−
1

2α
SE [ϕ], (2.14)

which, when combined with eq. (2.10), results again in the equilibrium solution (2.8), com-
pleting the standard proof of convergence.
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𝜙~𝑃[𝜙, 𝜏 = 0] 𝜙~𝑃[𝜙, 𝜏 = 𝑇]
𝜏

Figure 1. Sketch of a Langevin simulation. Each line represents a different trajectory, evolving from
an initial state at τ = 0 to one at a later time, T . The initial configurations are sampled from a
prior but naive distribution, ϕ ∼ P [ϕ, τ = 0]. After the simulation, the final configurations follow the
equilibrated distribution, ϕ ∼ P [ϕ, τ = T ] ∼ Ptarget[ϕ].

2.2 Langevin simulations

In most cases, the Fokker-Planck equation cannot be solved analytically. Instead, one solves
the stochastic process numerically by discretizing the Langevin equation eq. (2.2). Using Itô
calculus, the simplest discretized Langevin equation, using time step ∆τ , is

ϕ(x, τn+1) = ϕ(x, τn) + K[ϕ(x, τn)]∆τ +
√

∆τη(x, τn), (2.15)

with ⟨η(x, τn)η(x′, τn′)⟩ = 2αδ(x − x′)δnn′ .
A typical calculation includes, firstly, an initial condition to prepare field configurations

{ϕ(x, τ = 0)}; secondly, the thermalization procedure, i.e, evolve the system to reach
equilibrium by iterating through a sufficient number of time steps with an appropriate
time step, ∆τ ; thirdly, after thermalization, record the values of the physical observable
O[ϕ] for each configuration in an ensemble, e.g. after a time T . This is repeated for
numerous configurations to improve the statistical accuracy of the ensemble average. Figure 1
demonstrates one such typical Langevin process for a one-dimensional case. The target
distribution is encoded via the drift, cf. eq. (2.5).

This procedure provides an estimate of the quantum expectation value for the observables
O[ϕ]. Since the simple discretization scheme above results in finite-stepsize errors linear in ∆τ ,
one has to repeat the analysis to extrapolate to vanishing stepsize. The Langevin simulation
provides an alternative to Monte Carlo approaches and has been used in simulations of
lattice QCD [61]. A characteristic is that no accept/reject step is used, which makes the
algorithm not exact (as demonstrated by e.g., the finite-stepsize corrections). This can be
remedied by introducing such an accept/reject step, which results in more sophisticated
algorithms that outperform the basic Langevin algorithm and are hence favoured (such as
Hybrid Monte Carlo). The absence of an accept/reject step is turned into a feature for
theories with a complex-valued Boltzmann weight, for which importance sampling is not
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Figure 2. A sketch of the forward diffusion process (left panel) and the reverse denoising process
(right panel). The two stochastic processes are described by two stochastic differential equations. The
target distribution is typically unknown but learnt from the training data.

possible. The application of SQ to these theories is commonly referred to as complex Langevin
dynamics [39], which is still an active area of research [40–57], but not further explored here.

3 Diffusion models

Turning now to deep learning, DMs denote a class of deep generative algorithms that simulate
a stochastic process to generate samples following a desired target distribution [62]. The
fundamental concepts underlying DMs involve modeling the data distribution through a
continuous-time diffusion process or a discrete-time Markov chain, wherein noise is incremen-
tally added to or removed from the data. This generative framework has gained prominence in
recent works, such as score-based models (SBMs) [63, 64] and denoising diffusion probabilistic
models (DDPMs) [65]; for a comprehensive review, see ref. [30]. In this section, we will first
introduce the denoising perspective of DMs and then point out the connections of DMs to SQ.

3.1 Denoising model

In the context of DMs, the denoising model can be perceived as a mapping that reconstructs
the original data from its noisy variant, which is attained through the application of a
diffusion process. Similar to the Langevin dynamics introduced above, the first process (also
called forward process) gradually introduces noise to the data, effectively “smoothing” the
underlying (but typically unknown) probability distribution of data. Then the denoising
model aims to learn its inverse process, i.e., denoising the data by eliminating the added
noise. Upon training, the denoising model can be employed to generate samples following
the data distribution by executing the reverse diffusion process only. This sampling process
commences with random noise and iteratively applies the trained denoising model to “clean”
it until convergence, resulting in a sample representative of the target data distribution.

In the limit of continuous time, the forward process follows a stochastic differential
equation (SDE),

dϕ

dξ
= f(ϕ, ξ) + g(ξ)η(ξ), (3.1)
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where ξ ∈ [0, T ] is the Langevin time, η is the noise term, satisfying ⟨η(ξ)η(ξ′)⟩ = 2αδ(ξ − ξ′)
with α ≡ 1/2 as a convention in the machine learning community, and f(ϕ, ξ) is the drift
term. Note that the noise and drift term have the same size as the field ϕ. Finally, the
square of g(ξ) is the time-dependent scalar diffusion coefficient. The forward diffusion process
can be modeled as the solution of such a generic SDE, provided the drift and diffusion
coefficient are chosen appropriately.

As figure 2 demonstrates, the aim is to obtain a sample from the data distribution p0
by starting from a sample of the prior distribution pT and reversing the above diffusion
process. This is achieved by solving a reverse SDE, representing a diffusion process evolving
backward in time, which reads [66]

dϕ

dt
=
[
f(ϕ, t) − g2(t)∇ϕ log pt(ϕ)

]
+ g(t)η̄(t), (3.2)

where the reverse time t ≡ T − ξ and η̄ is a noise term in the reverse time direction.
Importantly, the drift term now contains two terms, including the gradient of the logarithm
of pt(ϕ), the probabilistic distribution at time t in the forward diffusion process. This reverse
SDE can be computed once we have specified the drift term and diffusion coefficient of the
forward SDE, and determined the gradient of log pt(ϕ) for each t ∈ [0, T ].

The key to implementing a denoising model lies in accurately estimating the probability
distribution, pt(ϕ), under a well-designed forward diffusion process of eq. (3.1). In score-based
models [63, 64], ∇ϕ log pt(ϕ) is named as the score of each sample. Routinely, one can
introduce a perturbation kernel for each forward diffusion step1 as pξ(ϕξ|ϕ0) ≡ N (ϕξ; ϕ0, σ2

ξ I),
where ϕ0 ∼ p0. Thus, the score can be computed from

pξ(ϕξ) =
∫

pξ(ϕξ|ϕ0)p0(ϕ0)dϕ0. (3.3)

A neural network sθ(ϕ, t) can be trained to approximate the score conveniently, which is
named as score matching [67, 68]. The parameters of the neural network are optimized
with the objective,

Lθ =
N∑

i=1
σ2

i Ep0(ϕ0)Epi(ϕi|ϕ0)
[
∥sθ(ϕi, ξ) −∇ϕi

log pi(ϕi|ϕ0)∥2
2

]
, (3.4)

where the interval T has been divided into N segments with index i (further details are
given below). The optimal score-based model sθ̂(ϕ, t) with θ̂ = arg minθ Lθ should match
the score at every time-step. Sampling turns to solving the reverse SDE shown in eq. (3.2),
with the score replaced with sθ̂(ϕ, t),

dϕ

dt
=
[
f(ϕ, t) − g2(t)sθ̂(ϕ, t)

]
+ g(t)η̄(t). (3.5)

For a concrete and concise example, by putting the forward drift term f(ϕ, ξ) to zero
and simplifying the diffusion coefficient, see, e.g., ref. [64], as g(ξ) ≡ σξ, one gets a variation

1By adding to samples a sequence of Gaussian noise with scales, σmin = σ1 < σ2 < · · · < σN = σmax, so
the starting point is p1(ϕ1) ≃ p0(ϕ0) when σmin is small enough, and the end point is pN (ϕ) ≃ N (ϕ; 0, σ2

maxI)
when σmax is large enough. Hereafter, we abbreviate ϕ(ξ) as ϕξ, or ϕi for the discretised case.
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expanding forward process whose transition kernel remains Gaussian,

pξ(ϕξ|ϕ0) = N
(

ϕξ; ϕ0,
1

2 log σ
(σ2ξ − 1)I

)
. (3.6)

We note that both eqs. (3.1) and (3.2) are Langevin equations.2 In the context of the
reverse SDE, given the gradients ∇ϕ log p(ϕ, t), it is convenient to generate samples from a
prior distribution in a stochastic evolution process, as introduced in section 2.2.

3.2 Diffusion model as stochastic quantization

The reverse SDEs of DMs are mathematically related to the Langevin dynamics. To explore
the connection of DMs to stochastic quantization in more detail, we choose the variance
expanding picture of the DMs. Its denoising process transfers ϕT back to ϕ0 with the same
marginal densities as the forward process, but evolving according to

dϕ

dt
= −g(t)2∇ϕ log pt(ϕ) + g(t)η̄(t), (3.7)

where time t flows backward from T to 0. With the redefinition of time, τ ≡ T − t (dτ ≡ −dt),
and denoting gτ = g(T − τ), qτ (ϕ) = pT−τ (ϕ) of the forward process, the SDE now reads

dϕ

dτ
= g2

τ∇ϕ log qτ (ϕ) + gτ η̄(τ) (3.8)

and in discretised form

ϕ(τn+1) = ϕ(τn) + g2
τn
∇ϕ log qτn [ϕ(τn)]∆τ + gτn

√
∆τ η̄(τn), (3.9)

where the noise term ⟨η̄(τn)⟩ = 0, ⟨η̄(τn)η̄(τn′)⟩ = 2ᾱδnn′ , with ᾱ ≡ ℏ = 1 as a convention in
quantum field theories. Because the mean value of the noise term remains zero, the sign in
front of the noise term is unrelated to the stochastic process. We note that g2(τ) is referred to
as a kernel, rescaling both the drift term and the variance of the noise term [37]. Its effect can
be absorbed by rescaling time with g2(τ), or equivalently absorb it in the time step, g2

τ ∆τ .
The derivation of the corresponding Fokker-Planck is straightforward and one finds

∂pτ (ϕ)
∂τ

=
∫

dnx

{
g2

τ

δ

δϕ

(
ᾱ

δ

δϕ
+ ∇ϕSDM

)}
pτ (ϕ), (3.10)

where
∇ϕSDM ≡ −∇ϕ log qτ (ϕ) (3.11)

is the score trained on the forward diffusion process, and pτ (ϕ) is the probability density of
ϕτ in the reverse diffusion process. One can immediately derive the following equilibrium
condition, locally in time,

peq(ϕ) ∝ e−SDM/ᾱ, (3.12)
2This approach has been utilized in Bayesian learning as stochastic gradient Langevin dynamics [69]. In

contrast to standard stochastic gradient-descent (SGD) algorithms, stochastic gradient Langevin dynamics
introduces stochasticity into the parameter updates, thereby avoiding collapses into local minima.
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where we recall that ᾱ = 1 and that SDM is an effective action that will be learned in
DMs. When the noise scales are on par with the quantum scale, that is, O(ᾱ) ∼ O(ℏ),
eq. (3.12) encompasses the quantum fluctuations exhibited in eq. (2.8). In the τ → T limit,
pτ=T (ϕ) → P [ϕ, T ], where P [ϕ, T ] is nothing but the time evolution of the PDF in SQ.
This implies that the “equilibrium state” of SQ can be achieved by denoising from a naive
distribution. Concurrently, sampling from a DM is equivalent to optimizing a stochastic
trajectory to approach the “equilibrium state” in eq. (2.8) given a naive distribution from
the SQ perspective.

However, reverting the noise configuration back to the physics configuration is a highly
intricate process. In principle, one could solve the reverse SDE of eq. (3.8) to depict this
denoising process, while computing the “time-dependent” drift term remains intractable. A
particular type of deep neural network, known as the U-Net, is used here. The architecture
of this network is discussed in more detail in the appendix A. The U-Net is tailored to
parameterize the score function, ŝθ(ϕ, τ), for estimating this time-dependent drift term,
−∇ϕ log qτ (ϕ). It is designed to accept two inputs: time and a time-dependent configuration
within a trajectory, while its output is the same size as the input (field configuration).

3.3 Building effective actions

To derive effective actions for quantum fields in DMs requires the probability flow ODE
formulation [64, 70], which provides a quantitative way to compute the negative log-likelihood
of the field configuration. Assuming a differentiable one-to-one mapping h that transforms
a data sample ϕ0 ∼ p0 to one from a prior distribution h(ϕ0) = ϕT ∼ pT , the likelihood of
p0(ϕ0) can be computed using the change-of-variable formula as

p0(ϕ0) = pT (h(ϕ0))| det(Jh(ϕ0))|, (3.13)

where Jh denotes the Jacobian of the mapping h, and it is assumed that the prior distribution
pT is easy to evaluate. ODE trajectories also define a one-to-one mapping from ϕ0 to ϕT .
In our case, for quantum field theories,3

dϕ

dt
=
[
f(ϕ, t) − g(t)2∇ϕ log pt(ϕ)

]
. (3.14)

It aims to find the trajectory of the state variable ϕ that has the same marginal probability
density pt(ϕ) as the stochastic process described by the SDE, i.e., eq. (3.1). An instantaneous
change-of-variable formula can be derived to connect the probability of p0(ϕ0) and pT (ϕT ), as,

p0(ϕ0) = exp
[∫ T

0
dt∇ · f̃(ϕt, t)

]
pT (ϕT ), (3.15)

where the divergence is the trace of the Jacobian, with redefinition of f̃(ϕt, t) ≡ f(ϕ, t) −
g(t)2∇ϕ log pt(ϕ). The practical computation of the trace can be found in appendix B by
using the Skilling-Hutchinson estimator [71].

3The derivations can be found in ref. [59] and appendix D.1 of ref. [64]. The difference for the factors in
front of g(t)2 is due to the convention of ᾱ = 1 in quantum field theories.
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From the perspective of probability current conservation, the stochastic process we
derived in the previous section intrinsically connects with flow-based models, which have
recently been widely explored in current lattice calculations [11, 28]. In a flow-based model,
one can construct a flow mapping with a neural network whose parameters are {θ}, which
represents a bijective transformation between the physical distribution p(ϕ) and a prior
distribution, e.g., z ∼ N (0, I). Although it is common to build the flow mapping in discrete
steps, the transformation f̃ which follows,

log p(ϕ) = log p(z) − log
∣∣∣∣∣det∂f̃

∂z

∣∣∣∣∣ , (3.16)

can also be designed in continuous steps.4 It refers to the continuous normalizing flow [18],
in which the parameterized mapping, f̃θ̂, is the solution to a neural ODE for time t ∈ [0, T ],

dϕ(t)
dt

= f̃θ(ϕ(t), t), (3.17)

with boundary conditions: ϕ(0) ≡ z, ϕ(T ) ≡ ϕ. In which, a neural network with parameters,
f̃θ(ϕ, t), can be introduced to represent the dynamical kernel. The probabilistic flow follows,

d log p(ϕ(t))
dt

= −
(
∇ϕ · f̃θ

)
(ϕ(t), t), (3.18)

with boundary p(ϕ(0)) ≡ p(z). Comparing the mapping and ODEs in eqs. (3.13) and (3.14)
with eqs. (3.16) and (3.17), one can immediately find that the flow mapping, f̃θ(ϕ(t), t), is
equivalent to f̃(ϕt, t) in eq. (3.15) for DMs.

3.4 Effective action in a toy model

From eqs. (3.8) and (3.10), one can find a “time-dependent” stochastic process. In the
variance-expanding DM, the forward process of eq. (3.1) features a predetermined time-
dependent diffusion noise denoted as σT−τ , which ensures field configurations will eventually
be reduced to a noise configuration. The effective action and the corresponding denoising
process can be understood from a field deformation perspective: the field is continuously
deformed following a stochastic process from the noise distribution to the physical distribution.

To demonstrate this in action, we introduce an over-simplified 0+0-dimensional field
theory, i.e., a toy model which only has one degree of freedom,

S(ϕ) = µ2

2 ϕ2 + g

4!ϕ
4, f(ϕ) = −∂S(ϕ)

∂ϕ
= −µ2ϕ − g

3!ϕ
3, (3.19)

where the physical action and drift term are determined by the parameters, µ2 and g. We
prepared 5120 configurations as training data-sets in two set-ups: µ2

1 = 1.0, g1 = 0.4 (single-
well action), and µ2

2 = −1.0, g2 = 0.4 (double-well action). A one-to-one neural network with
time-embedding is implemented to represent the score function sθ(ϕ, τ).

After 500 epochs of training, the learned score function ŝθ(ϕ, τ) is seen to approximate
the drift term fτ (ϕ) in the upper row of figure 3. Here the solid blue line represents the

4In fact, if one enforces log p(z) = const., the transformation becomes the trivializing flow, see more details
in refs. [12, 15, 19, 72].
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Figure 3. Drift terms (upper row) and effective actions (middle row) learned by the DM as a function
of ϕ in both single-well (left column) and double-well (right column) actions, for various values of
the time τ during the stochastic process. The action is shifted by a constant ∆S0. The dashed lines
indicate the exact values. 1024 samples generated using the exact and the DM are shown in the
bottom row.

score function at the starting time (τ = 0), the rainbow-colored lines indicate different
τ > 0 with a color-bar at rightest, while the solid red line indicates the score function at the
end time (τ = 0.99) in a backward process of the well-trained DM. The learned effective
action SDM(ϕ, τ) =

∫ ϕ ŝθ(ϕ̃, τ)dϕ̃ is shown in the middle row of figure 3; it approximates
the physical action as τ increases. We have shifted SDM with a constant ∆S0, which is
the difference between min[S(ϕ)] and min[SDM(ϕ, τ)]. Generally, the learned drift terms
and effective actions are accurate approximations in both the single and double-well cases,
around ϕ ∼ 0. Samples generated with the trained DM are compared with samples from
the underlying theory in the bottom row of figure 3.

The evolution trajectory of DM resembles an exact renormalizing group (RG) flow and
its inversion. One intuitive understanding is that the gradually increasing noise scale (in
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the forward process of the DM) in coordinate space implicitly corresponds to a gradually
decreasing momentum scale Λ in an RG.5 With gτ→T = σT−τ → 1, Λ → ∞, the full quantum
theory is recovered. Although some works have discussed the running noise scales from a
colored noise perspective in a Langevin process [73, 74], the well-trained DM provides an
exact RG flow in the fictitious time space,

∂SDM(ϕ, τ)
∂τ

= ∂

∂τ

∫ ϕ

ŝθ(ϕ̃, τ)dϕ̃. (3.20)

Because the probability density is positive-definite, the equation has a fixed point when
∂pτ (ϕ)/∂τ = 0. The RG flow is the evolution trajectory of the system from the trivial
distribution at τ = 0 to the equilibrium state at τ = T , which has been shown in the
middle panel of figure 3.

4 Diffusion models for lattice ϕ4 scalar fields

Lattice scalar field theories have been studied extensively, with applications spanning a wide
range of topics. Scalar fields are frequently employed to showcase the efficacy of numerical
algorithms, including with machine learning. Here we will implement a DM to generate
configurations for a two-dimensional scalar field theory with quartic interaction, both in
the broken and the symmetric phase.

We consider a real scalar field in d Euclidean dimensions with the action,

SE =
∫

ddx

1
2

d∑
µ=1

(∂µϕ0)2 + 1
2m2

0ϕ2
0 + λ0

4! ϕ4
0

 , (4.1)

where the subscript specifies bare quantities, including mass m0, coupling λ0, and field ϕ0(x).
Discretising the derivative on a lattice with lattice spacing a in all directions, ∂µϕ0(x) =
[ϕ0(x + aµ̂) − ϕ(x)]/a, with µ̂ the unit vector along the µ−direction, and redefining the field
and parameters to yield dimensionless combinations, gives the lattice action (see e.g. ref. [75])

SE =
∑

x

−2κ
d∑

µ=1
ϕ(x)ϕ(x + µ̂) + (1 − 2λ)ϕ2(x) + λϕ4(x)

 , (4.2)

where κ is the hopping parameter, related to the bare mass parameter via

(am0)2 = 1 − 2λ

κ
− 2d, (4.3)

5From eq. (3.6), one can sample to get the evolving field (for a given initial field ϕ0) at any time during
the forward process as ϕτ (x) = ϕ0(x) +

√
σ2τ−1
2 log σ

ϵ(x) with ϵ ∼ N (0, I) a Gaussian distributed random noise,

which in momentum space is ϕτ (p) = ϕ0(p) +
√

σ2τ−1
2 log σ

ϵ(p). Considering the natural distribution of momentum
modes for the physical fields, the above evolution will perturb (smear) higher momentum modes faster because
of the gradually increasing noise level. This resembles somehow the functional renormalization group (FRG)
procedure to progressively integrate out the high momentum modes. Conversely, in the reverse denoising
process, the low momentum IR physics will be first generated, and only at a later time the UV details are
filled by the denoising model, as seen in figure 4.
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and λ = a4−dκ2λ0/6 denotes the dimensionless coupling constant describing field interactions.
Both parameters are positive. The field has been rescaled according to ad/2−1ϕ0 = (2κ)1/2ϕ.

In the case of d ≥ 2, for each coupling λ the hopping parameter exhibits a critical value
κc(λ), at which a second-order phase transition occurs. This quantum phase transition
corresponds to a spontaneous Z2 symmetry broken above the critical point in continuum
limit [76]. When the mass term becomes negative, the broken phase emerges classically. At
the classical level, the critical value for the hopping parameter is given by

κcl
c (λ) = 1 − 2λ

2d
, (4.4)

which is determined by the vanishing of the mass term, but quantum fluctuations will change
the value [75]. As κ decreases across the critical value, the system transitions from the
broken phase to the symmetric phase.

4.1 Configuration generation and model setups

To implement the DM, we first prepare field configurations of the scalar ϕ4-theory in d = 2
dimensions on a 32 × 32 lattice, at fixed λ = 0.022, as defined above. To evaluate the
performance of the model, we generated 5120 samples for training and 1024 samples for
testing in the broken and symmetric phases at κ = 0.5 and κ = 0.21 respectively. The reason
to choose these specific paramter values is that at λ = 0.022 the phase transition occurs
at approximately κc ≃ 0.239, as derived from eq. (4.4).

Hybrid Monte Carlo set-up. In order to prepare the dataset, we employ the Monte Carlo
Markov Chain (MCMC) approach. The classical Metropolis-Hastings algorithm for local
updating often suffers from long autocorrelation times, so we instead opt for the hybrid Monte
Carlo (HMC) method. By incorporating classical Hamiltonian equations of motion [77], the
HMC method improves the performance of the MCMC and allows larger steps to be taken
while maintaining acceptable acceptance rates. In our setup, with the selected set of action
parameters, we prepare configurations on a 2-dimensional lattice of size 32 × 32. For each
Markov Chain in HMC, we have a “100-step burn-in loop” for thermalization, and after 64
additional steps, we select the final step of the 64-step update as a configuration. Here one
step indicates one MC trajectory with a well-established HMC integrator. Each configuration
in the training data-set is from one different HMC trajectory.

Diffusion Model set-up. We adopt the variance expanding DM as shown in eq. (3.6)
with σ = 25. The diffusion time is set as T = 1. In the training procedure the stepsize is
not fixed, but we randomly sample the time points in the interval [0, T ], with the number of
time points equal to the batch size in each batch optimization. The batch size is 64, and
the maximum number of epochs for training is 250 to ensure convergence. In the sampling
procedure, we use the Euler-Maruyama approach to solve the reverse-time SDE with time
stepsize T/N = 0.002. The U-Net architecture [78] is utilized to represent sθ in eq. (3.4);
more details can be found in appendix A. Unless otherwise indicated, we generated 1024
samples from the well-trained DM to demonstrate its performance.

We deployed the HMC and DM algorithms on different devices. For the chosen parameter
values (κ = 0.21, λ = 0.022, 32 × 32 lattice), the HMC generates samples on CPU (Intel Xeon
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Figure 4. The denoising process for generat-
ing four independent configurations from a well-
trained DM.

Figure 5. Comparison of the distribution of the
magnetization with 1024 samples generated from
the well-trained DM and using HMC.

Gold 6226R @ 2.90GHz) with 1.57 configuration/s. The DM generates samples on GPU
(Nvidia GeForce RTX 3090 @ 1.40Ghz) with 97.52 configuration/s.

4.2 Broken phase

We start in the broken phase. Here one expects large clusters, in which field configurations
fluctuate around a positive or negative average value, usually referred to as the vacuum
expectation value, order parameter or magnetisation. We demonstrate that the clustering
behavior of field configurations can be successfully captured by the well-trained DM. Figure 4
visualizes the denoising process. Each row in the figure represents a different sample, and each
column represents a different time point in the denoising process. The first column represents
noise samples randomly drawn from the prior distribution, i.e., p ≈ N

(
ϕ; 0, 1

2 log σ (σ2 − 1)I
)

,
while the fifth column represents the generated samples obtained by denoising. The arrow at
the bottom of figure 4 indicates the direction of time evolution in the stochastic differential
equation, as per eq. (3.2).

The order parameter or magnetization is defined as

⟨M⟩ = 1
V

〈∑
x

ϕ(x)
〉

, (4.5)

where V = Nd denotes the number of lattice sites. A comparison between HMC generated
testing samples and DM generated samples is shown in figure 5, where we see consistency
between the distributions containing 1024 samples each.

4.3 Symmetric phase

We now turn to the symmetric phase and take κ = 0.21, below but near the critical value.
In the thermodynamic limit, the phase transition can be characterized by a divergence in
the connected two-point susceptibility. This susceptibility is a measure of how a system
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Figure 6. Comparison of the distribution of the magnetization in the symmetric phase from the test
data-set (HMC) and from the well-trained DM. The number of independent configurations is 1024 in
both cases.

data-set ⟨M⟩ χ2 UL

Training (HMC) 0.0012± 0.0007 2.5160 ± 0.0457 0.1042 ± 0.0367
Testing (HMC) 0.0018 ± 0.0015 2.4463 ± 0.1099 -0.0198 ± 0.1035

Generated (DM) 0.0017± 0.0015 2.4227 ± 0.1035 0.0484 ± 0.0959

Table 1. Comparison of observables calculated on different datasets with lower error bounds
determined using the statistical jackknife method. The sample size is comparable for the bottom two
rows and a factor of 5 larger for the training set (top row).

responds to small perturbations and is defined as

χ2 = V
(
⟨M2⟩ − ⟨M⟩2

)
. (4.6)

In addition, the Binder cumulant [79] is a dimensionless quantity often used to identify phase
transitions, defined as a ratio of moments of a distribution,

UL = 1 − 1
3
⟨M4⟩
⟨M2⟩2 . (4.7)

It is sensitive to the shape of the distribution, i.e., the kurtosis of the order parameter, and is
particularly useful for detecting and analyzing phase transitions in finite-size systems.

In figure 6 we compare the distributions of the magnetization obtained independently
from the trained DM and using HMC. Good consistency between the distributions is observed.
To make this more quantitative we present in table 1 the magnetization ⟨M⟩, two-point
susceptibility χ2, and the Binder cumulant UL obtained using both the trained DM and
with HMC. For the latter, expectation values are shown both for the training set and the
testing set, with the former having a factor of five more configurations, which is reflected in
the uncertainty. We conclude that the DM is capable of accurately capturing the statistical
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Figure 7. Correlation between the effective action estimated from the trained DM using the
probabilistic ODE and from the physical action on 1024 samples.

properties of the system, as reflected by these observables, and is in good agreement with
HMC, a well-established method for sampling from the target distribution. A study of the
dependence on the size of the training set and the generated data set can be found in the
appendix C. We note that no accept-reject step has been applied in the DM.

The likelihood computation method described in section 3.3 enables us to estimate
the action for the field configurations generated by the trained DM. By comparing the
action estimation from the trained DMs with the true action, see eq. (4.2), we can confirm
whether the DM has captured the underlying physics correctly. For this purpose, we first
generate an ensemble of field configurations using the trained DM. We then compute the
likelihoods, q(ϕ), for these configurations using the probability flow ODE approach. By
applying the change-of-variable formula, we are able to compute the action values for these
field configurations, as

Seff = − log q(ϕ), (4.8)

where the constant term Z has been omitted. In figure 7 we compare the evaluated effective
action with the one obtained directly from the physical action, i.e., eq. (4.2). The black
dashed line means the x-axis is proportional to the y-axis, and the green sites are action
values estimated from the probabilistic ODE (on the x-axis) and calculated from the physical
action (on the y-axis).

The coefficient of determination, R2, is a useful metric for quantitatively measuring how
well the estimated action values, denoted as Seff(ϕi), match the actual ones, denoted as S(ϕi).
Here i indicates the index in sampled configurations. We use

R2 = 1 −
∑

i [S(ϕi) − Seff(ϕi)]2∑
i

[
S(ϕi) − S(ϕ)

] , (4.9)
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Figure 8. Comparison of the normalized autocorrelation function of |M | for the Metropolis-Hastings
MC algorithm, HMC, and DM-based MC, using 1024 samples at κ = 0.27, λ = 0.22 and L = 32.

where S(ϕ) is the average value for the actual action,

S(ϕ) = 1
N

N∑
i=1

S(ϕi). (4.10)

It measures the proportion of variation in the dependent variable (in this case, the action) that
is predictable from the independent variable (in this case, the DM-generated samples). R2

values close to 1 indicate that the DM provides an accurate estimate of the action, suggesting
that the trained DM has effectively learned the underlying physics of the scalar field theory
correctly. In figure 7, with the default dataset size, i.e., 5120 samples for training, the R2

value is 0.960 calculated on the 1024 generated configurations.

4.4 Autocorrelation time

Critical slowing down [2] emerges when simulations approach a critical point and the correla-
tion length of the system diverges. This should be explored at κ values close to the phase
transition, which is located at κc ≃ 0.27 (for L = 32, λ = 0.022); see e.g. refs. [6, 74, 80].

Critical slowing down can be studied using the autocorrelation function of an observable
O, defined as

CO(t) = ⟨(Ot0 − ⟨Ot0⟩)(Ot0+t − ⟨Ot0+t⟩)⟩ = ⟨Ot0Ot0+t⟩ − ⟨Ot0⟩ ⟨Ot0+t⟩ , (4.11)

where t0 is the starting time and t denotes the time along the Markov chain. In an exponential
fit, CO(t) ∼ exp{−t/tc}, the characteristic time tc should scale as a power of the correlation
length ξ around the critical point, i.e., tc ∼ ξz (the correlation length ξ should not be
confused with the time variable in the forward SDE). The normalized autocorrelation
functions, C̄O(t) ≡ CO(t)/CO(0) can be used for a clearer comparison.

We investigate this for the “absolute value” of the magnetization, defined as

|M | = 1
V

〈∑
x

|ϕ(x)|
〉

, (4.12)
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and compare various updates. Because the likelihood of samples can be computed, as shown
in the previous section, we can use the Metropolis-Hastings (MH) algorithm to construct
the asymptotically exact Markov chain sampler with the well-trained DM. We refer to this
as the DM-based Monte-Carlo method, following the convention of flow-based models. The
acceptance criterion is corrected as

paccept(ϕproposal | ϕi−1) = min
(

1,
q(ϕi−1)
p(ϕi−1)

p(ϕproposal)
q(ϕproposal)

)
, (4.13)

where ϕi−1 is the previous configuration and ϕproposal is sampled from the well-trained DM.
Further, we can estimate the efficiency gain of the DM by comparing the behavior of the
autocorrelation function C|M |(t) with the one obtained using a Metropolis-Hastings Monte-
Carlo (MC) and the HMC algorithm on 1024 configurations, as shown in figure 8. A more
comprehensive discussion on the dependence of the acceptance rate on the parameters and
the number of training epochs can be found in appendix D.

Beside, one can compute the integrated autocorrelation time [6, 12, 81] for a more
quantitative comparision. It is defined as

τO,int = 1
2 + 1

CO(0)

tmax∑
t=1

CO(t). (4.14)

For the algorithms discussed, integrated autocorrelation times are τ|M |,int(MC) = 79.984,
τ|M |,int(HMC) = 41.354, and τ|M |,int(DM-MC) = 2.360, where we calculated the autocorre-
lation time with tmax = 100 MC trajectories on 1024 configurations. To get a more precise
estimation with uncertainties, one can also choose the automatic windowing procedure in
the computation [82, 83]. These comparisons demonstrate that our proposed method has
the potential to significantly suppress autocorrelations along a Markov chain.

5 Conclusion and outlook

In this work, we proposed a new method to generate quantum field configurations using
diffusion models, popular in the ML community. We highlighted the connection with stochastic
quantization (SQ), an approach to quantize field theories based on a stochastic process in
a fictitious time direction. In SQ the drift term in the stochastic process is known, as it is
derived from the probability distribution one wants to sample from, which is determined by
the quantum theory under consideration. In DMs the drift term is not known but is learned
from data in a forward stochastic process. After estimating the drift term, the trained DM
is run in the opposite direction and independent configurations are created from noise, the
“denoising” process. This latter part is akin to the dynamics in SQ, albeit with a learned
and time-dependent drift term. In figure 9, we summarize the relation between stochastic
quantisation and diffusion models schematically.

We have demonstrated the approach in a simple toy model and in a two-dimensional
scalar field theory with a ϕ4 interaction, both in the symmetric and in the broken phase.
We have shown that the DM can serve as a global sampler to assist methods based on the
Monte Carlo principle. We note that one can include an accept-reject step at the end of each
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Figure 9. Schematic overview of the relation between stochastic quantisation and diffusion models in
the case of lattice field theory.

trajectory. We have found in our numerical results that the well-trained DM can successfully
reproduce configurations in both phases and that autocorrelation times are reduced along
a Markov chain. This improvement in sampling efficiency can be beneficial for studying
lattice field theories and should be analyzed further.

There are various directions to explore in the future. The forward (“smoothening”)
and backward (“denoising”) processes are reminiscent of (inverse) renormalization group
transformations and it would be interesting to make this precise. Because the action can
be estimated relatively accurately, it is feasible to train a DM without preparing a training
data-set, which needs to be investigated. The connection between DMs and SQ offers new
perspectives. It is well known how to implement SQ for non-abelian gauge theories; hence it
should be possible to formulate DMs for the non-abelian case. An intriguing direction is the
following: imagine one has generated a set of configurations for a quantum field theory with
fermions, such as QCD or the Schwinger model. Since the fermions are “integrated out”, the
configurations are given in terms of the gauge fields only. By using these configurations as
the starting point of a DM, one can learn an effective stochastic process which incorporates
the effect of the fermions implicitly. This may be used to create additional configurations in
a numerically “cheap” manner. An accept-reject step based on the underlying theory can be
included, which would require the evaluation of the fermion determinant. Finally SQ can also
be used for theories with a sign or complex action problem, and hence a non-positive definite
distribution. This is commonly known as complex Langevin (CL) dynamics. It is known that
CL may become less reliable along long trajectories in the stochastic process. Combining
CL with DMs, one may consider fairly short trajectories, but subsequently use the resulting
configurations to train the DM to generate additional configurations to increase statistics.
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Note added. Recent related work introduces the stochastic process into the hybrid Monte-
Carlo algorithm [84] and explores the correspondence between the exact renormalizing group
(ERG) and DMs based upon the heat equation [85].

A U-Net architecture

U-Net architectures are utilized to present sθ(ϕ, t) with a time-embedding input. This
architecture is widely used in tasks that require semantic segmentation due to its ability
to capture both local and global information in an image. The model is initialized with a
function that calculates the standard deviation of the perturbation kernel, a list of channels
for feature maps at each resolution, and an embedding dimension for Gaussian random feature
embeddings. The model consists of an encoding path (contracting path) and a decoding
path (expansive path), which are characteristic of the U-Net architecture, as figure 10 shows.

The encoding path consists of four convolutional layers (conv1 to conv4), each followed
by a dense layer (dense1 to dense4), and a group normalization layer (gnorm1 to gnorm4).
The convolutional layers progressively increase the number of channels from 1 to 32, 64, 128,
256. The dense layers incorporate information from the time embedding into the feature
maps, and the group normalization layers normalize the feature maps across the channels.

The decoding path consists of four transposed convolutional layers (tconv4 to tconv1),
each followed by a dense layer (dense5 to dense7), and a group normalization layer (tgnorm4 to
tgnorm2). The transposed convolutional layers progressively decrease the number of channels
back to 1. The dense layers incorporate information from the time embedding into the feature
maps, and the group normalization layers normalize the feature maps across the channels.
The decoding path also includes skip connections from the encoding path, which help the
model to better localize and learn representations with less loss of spatial information.
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The model uses the Swish activation function, which is a smooth, non-monotonic function
that has been found to work better than ReLU in deeper models. In the forward pass, the
model first obtains the Gaussian random feature embedding for the input time t. It then
passes the input ϕ through the encoding path, where it applies the convolutional, dense,
group normalization, and activation layers sequentially. It then passes the output of the
encoding path through the decoding path, where it applies the transposed convolutional,
dense, group normalization, and activation layers sequentially, while also adding the skip
connections from the encoding path. Finally, it normalizes the output by the standard
deviation of the perturbation kernel at time t and returns it.

B Skilling-Hutchinson estimator

The divergence function in eq. (3.15) can be hard to evaluate in practice for general vector-
valued functions f , but we can use an unbiased estimator, named Skilling-Hutchinson
estimator [71], to approximate the trace. Let ϵ ∼ N (0, I). The Skilling-Hutchinson estimator
is based on the fact that

∇ · f(ϕ) = Eϵ∼N (0,I) [ϵ⊺Jf (ϕ)ϵ] . (B.1)

Therefore, we can simply sample a random vector ϵ ∼ N (0, I), and then use ϵ⊺Jf (ϕ)ϵ to
estimate the divergence of f(ϕ). This estimator only requires computing the Jacobian-vector
product Jf (ϕ)ϵ, which is typically efficient.

As a result, for our probability flow ODE, we can compute the (log) data likelihood
with the following,

log p0(ϕ(0)) = log pT (ϕ(T )) −
∫ T

0

d[σ2(t)]
dt

∇ · sθ(ϕ(t), t)dt. (B.2)

With the Skilling-Hutchinson estimator, we can compute the divergence via

∇ · sθ(ϕ(t), t) = Eϵ∼N (0,I) [ϵ⊺Jsθ
(ϕ(t), t)ϵ] . (B.3)

Subsequently, we can compute the integral using numerical integrators. This provides us
with an unbiased estimate of the true likelihood of the data, and we can make this estimate
increasingly accurate by running the calculation multiple times and taking the average. The
numerical integrator requires ϕ(t) as a function of t, which can be obtained by the probability
flow ODE sampler. In our calculations, we tested different sampling sizes ranging from 1 to
100 and found that it converges when the size is larger than 10. Therefore, we chose the
sample size ϵ as 10 to ensure the accuracy of the estimation.

C Statistics examination

In figure 11 (with the same physical parameter setup as in section 4.3), we demonstrate
the dependence of four key physical observables including their uncertainties on the size
of the training datasets, while the size of the generated dataset remains constant (1024
configurations). The illustration uses gray markers to denote values derived from various
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Figure 11. Dependence of four observables and their uncertainties on the size of the training dataset
within the symmetric phase (κ = 0.21, λ = 0.022), using a fixed number of 1024 generated configura-
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dataset with 51200 configurations.
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Figure 13. Dependence of the acceptance rate on the hopping parameter κ on a 32 × 32 lattice.

training datasets, while colored markers represent values obtained from the generated datasets.
The analysis reveals a trend towards convergence in the estimations of observables as the size
of the training dataset increases, even with a relatively small generated dataset size.

In figure 12, we present the dependence of the observables on the number of generated
samples obtained from a DM trained on a dataset of 5120 configurations. The observables’
values calculated on the training dataset are traced with black lines, contrasting with gray
lines that represent calculations over a larger, unused dataset (51200 configurations). The
results show that observables from the generated datasets tend to align with those from
the larger dataset as their size increases.

Although there is a noticeable deviation in the ⟨M⟩ estimations towards the training
dataset values, it can be conceivably improved by introducing the Z2 symmetry into the
training data-sets explicitly, e.g., data augmentation with flipping all configurations.

D Acceptance rate

We investigate the dependence of the acceptance rate on the value of the hopping parameter,
the system size and the number of training epochs.

We have calculated the dependence of the acceptance rate on the hopping parameter,
specifically at κ = 0.1, 0.21, 0.27, 0.4, using an identical setup as in the main part of the
paper, i.e. with 250 training epochs, T = 100 MC time-steps and 1024 configurations. In
figure 13, we observe that the acceptance rate lies between 0.4 and 0.6. This observation
indicates that the efficacy of the DM-MC method remains robust against the variations in
interaction couplings, demonstrating its utility as an efficient sampling technique across a
broad range of parameter values.

Next we vary the linear size of the lattice, L = 16, 24, 32, 48, 64, at fixed κ = 0.27, using
an otherwise identical setup as above. In figure 13, we observe that the acceptance rate
converges to around 0.6 for larger sizes, suggesting that the efficacy of the DM-MC will
not be affected by the system size.

The dependence of the acceptance rate of DM-MC on the number of training epochs
is shown in figure 15 for parameter values closer to the critical point. It shows that the
acceptance rate increases rapidly within the first 200 epochs and converges slowly over the
remaining 1800 epochs. Although our choice of 250 epochs used in the main part of the paper
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Figure 15. Dependence of the acceptance rate on the number of epochs used for training, at
κ = 0.27, L = 32, λ = 0.022.

yields an acceptance rate slightly below the asymptotic value, it is indeed an acceptable
balance between training cost and performance.

Concerning the dependence of the training cost on the various parameters, we have
found that

• for different κ values on a 32× 32 lattice the training cost is almost constant (at around
6.54 seconds per epoch on our infrastructure);

• increasing the volume results in a longer training time; for linear size L = 16, 24, 32, 48,
64, the training cost is 5.80, 6.19, 6.54, 6.97, 8.63 seconds per epoch on our infrastructure.
A rough fit then yields a training time of L0.43 + 2.31 seconds per epoch.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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