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A B S T R A C T   

Plantar pressure measurement systems are routinely used in sports and health applications to assess locomotion. 
The purpose of this review is to describe and critically discuss: (a) applications of the pressure measurement 
systems in sport and healthcare, (b) testing protocols and considerations for clinical gait analysis, (c) clinical 
recommendations for interpreting plantar pressure data, (d) calibration procedures and their accuracy, and (e) 
the future of pressure sensor data analysis. Rigid pressure platforms are typically used to measure plantar 
pressures for the assessment of foot function during standing and walking, particularly when barefoot, and are 
the most accurate for measuring plantar pressures. For reliable data, two step protocol prior to contacting the 
pressure plate is recommended. In-shoe systems are most suitable for measuring plantar pressures in the field 
during daily living or dynamic sporting movements as they are often wireless and can measure multiple steps. 
They are the most suitable equipment to assess the effects of footwear and orthotics on plantar pressures. 
However, they typically have lower spatial resolution and sampling frequency than platform systems. Users of 
pressure measurement systems need to consider the suitability of the calibration procedures for their chosen 
application when selecting and using a pressure measurement system. For some applications, a bespoke cali-
bration procedure is required to improve validity and reliability of the pressure measurement system. The testing 
machines that are commonly used for dynamic calibration of pressure measurement systems frequently have 
loading rates of less than even those found in walking, so the development of testing protocols that truly measure 
the loading rates found in many sporting movements are required. There is clear potential for AI techniques to 
assist in the analysis and interpretation of plantar pressure data to enable the more complete use of pressure 
system data in clinical diagnoses and monitoring.   

1. Introduction 

Plantar pressure measurement systems are routinely used in sports 
and health applications to assess locomotion. In the clinical domain, 
these systems have become an integral part in helping clinicians assess a 
patient’s gait, dynamic balance and pressure distribution to assist them 
in the prescription and assessment of treatment interventions including 
orthotics [1–11], surgery [12–16], medication [17] or rehabilitation 
programmes [18–21]. Within sports, practitioners, researchers and 

sporting equipment designers use this technology to measure plantar 
pressures during sporting movements to assess the effect of factors such 
as footwear and terrain [22–30]. 

This paper follows on from our previous review of commercially 
available pressure sensors for sport and health applications which dis-
cussed the design requirements and the suitability, validity and reli-
ability of commercial pressure measurement systems and future 
directions for the development of pressure sensors in this area [31]. The 
aim of this current review is to describe and critically discuss: (a) 
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applications of the pressure measurement systems in sport and health-
care, (b) testing protocols and considerations for clinical gait analysis, 
(c) clinical recommendations for interpreting plantar pressure data, (d) 
calibration procedures and their accuracy, and (e) the future of pressure 
sensor data analysis. 

2. Applications of pressure measurement systems in sport and 
healthcare 

2.1. Pressure platforms 

Rigid pressure platforms (and mats) are typically used to measure 
plantar pressures for the assessment of foot function during standing and 
walking, particularly when barefoot [32], and generally in laboratories 
or clinics [4,33–38]. The main uses of plantar pressure measurement in 
clinical gait analysis are to assist in the diagnosis and selection of 
treatment, to evaluate the outcome of treatment, to inform the design of 
orthotics and prosthetic devices, and to monitor the longitudinal pro-
gression of diseases or illness on gait [4,39]. For example, plantar 
pressure measurement can be used in clinical gait analysis to help pre-
scribe and assess the effect of orthotics and other physical therapy in-
terventions, such as taping of the foot, in redistributing or reducing 
plantar pressures [1–8,40,41,42]. Plantar pressures have been measured 
to assess the effect of surgical procedures [12,14–16,43], and medica-
tion [17] on gait characteristics whilst physical therapists have 
measured plantar pressure to assess the effect of rehabilitation pro-
grammes on patients’ gait and balance following surgery, injury or 
medical conditions [18–21,44]. A further use of pressure platforms is to 
assess plantar pressure distribution and postural effects in patients with 
clinical pathologies, such as diabetes [1,45–52], Parkinson’s disease 
[53], multiple sclerosis [54–56] and rheumatoid arthritis [57], and to 
monitor the progression of these pathologies. The National Institute for 
Health and Care Excellence (NICE) in England recommend plantar 
pressure assessment in their clinical guidelines to examine the biome-
chanical status of diabetic feet for those classified as moderate to high 
risk of developing a diabetic foot problem [58]. As a result of this 
assessment, patients may be prescribed specialist footwear and/or or-
thoses to redistribute areas of high pressure to minimise the risk of 
pressure ulcers developing [58]. 

Pressure platforms have several applications in sport, and are typi-
cally used to assess plantar pressures as a measure of balance during 
standing sporting movements, such as during golf shots [59], air-gun 
shooting [60] and the body position for initiating offence in basketball 
[61]. Pressure platforms have also been used to measure plantar pres-
sures during running [62–64]. However, in-shoe systems are often better 
for this purpose as they can measure multiple steps over a continuous 
effort, and can do so in the field if wireless, but they typically have lower 
sampling frequency and spatial resolution [31]. Pressure platforms have 
been used to measure plantar pressure to identify factors associated with 
lower limb injury risk and to screen athletes for these risk factors [6, 
65–72]. For example, a prospective study of physical education students 
identified that those who have a more lateral centre of pressure at initial 
contact, more pronated foot over a prolonged period and greater pres-
sure underneath the medial side of the foot, during running were at a 
greater risk of an inversion sprain [71]. Pressure platforms can also 
subsequently be used to assess the effect of training interventions, for 
example on reducing an athlete’s injury risk [73]. 

2.2. In-shoe systems 

In-shoe pressure measurement systems include discrete sensors, 
instrumented insoles and socks. Typically, insole systems provide a more 
comprehensive and valid measurement of plantar pressures than 
discrete sensors and socks (which contain a few discrete sensors), as the 
latter can miss locations of high pressure [4,74–76]. One of the main 
advantages of the in-shoe systems is that it is easy to record multiple 

steps and, therefore, no targeting of a platform occurs, whether intended 
or not, and thus a more natural gait is measured [34,74,77,78]. There-
fore, in-shoe pressure measurement systems are often used to assess 
dynamic sporting movements and are particularly suited to measuring 
plantar pressures during running [22,24,79–82]. They are highly suit-
able for assessing the effect of different types of footwear on plantar 
pressure [4,30,33,34,61,74,77,78,83,84–88], and can be used to mea-
sure plantar pressures inside sport specific footwear, such as during ice 
skating [27,89], snowboarding [90,91], and skiing [28]. Similar to 
pressure platforms, in-shoe pressure measurement systems can be used 
to help prescribe and assess the effect of orthotics in redistributing or 
reducing plantar pressures [9–11,40,92–94]. In-shoe systems typically 
have lower spatial resolution compared to platform systems due to fewer 
sensors [31,33,95], and wireless versions can have a thicker insole due 
to the incorporation of the battery and data transmitter [31]. In-shoe 
system sensors are more susceptible to degradation as they are sub-
jected to bending within the shoe, as well as heat and humidity gener-
ated within footwear [31,32,77,78]. 

2.3. Pressure treadmills 

In addition to assessing plantar pressure over multiple steps, pressure 
treadmills can be used for gait retraining by providing visual cues or 
perturbations, and then monitoring the effect of these on gait and 
plantar pressures [96–99]. A single session of gait training on a treadmill 
which provided perturbations in the form of three-dimensional tilting to 
the walking surface demonstrated gait improvements (increased over-
ground walking speed and reduced gait variability) for patients with 
Parkinson’s disease [96]. Another possible suggested application of 
pressure treadmills is to use the gait metrics obtained during standing 
and walking to estimate the Gross Motor Function Measure score in 
children with cerebral palsy; this is quicker than the traditional testing 
protocol and reduces the need for trained and specialised therapists to 
conduct the testing [100]. 

2.4. General flexible pressure sensors 

Commercially available flexible pressure measurement systems can 
be used for sport and health applications to measure pressures between 
two objects in direct contact, such as prosthesis-limb interface 
[101–107] and joint contacts [108–111]. Stump ulcers are a common 
problem in amputees [112,113] and can be the result of high pressure 
and shear forces at the stump-prosthesis interface [114]. Therefore, 
specific pressure measurement systems have been developed to assist in 
prosthetic limb fitting, and to assess the effect of interventions to reduce 
prosthesis-limb interface pressures [101–107,115,116–121]. 

Orthopaedic surgeons and researchers often want to assess the effect 
of different surgical techniques on joint contact pressures and the size of 
the contact area; flexible pressure sensors can be used to measure these 
in cadavers [108–111]. Pressure measurement systems have been used 
during surgery to inform decisions, for example, during total knee 
replacement surgery to determine the position for the implant and lig-
ament reattachments that minimise tibiofemoral contact stresses [122]. 
Flexible pressure sensors have also been used to assess different joint 
replacement devices, such as total knee arthroplasty devices [123] and 
different knee brace designs [124]. 

3. Protocols and considerations for clinical gait analysis 

3.1. Pressure platforms for measuring plantar pressures 

The most accurate plantar pressure readings from rigid pressure 
platforms are obtained from the centre of the measurement area [4,33, 
78,125]. This can result in participants targeting the platform [125], 
particularly when a small pressure platform is used. Greenhalgh et al. 
(2014) found that hip and knee kinematics altered when participants 
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walked over a pressure platform compared to normal walking with no 
measurement device to target [125]. This raises questions concerning 
whether natural gait plantar pressures can confidently be measured with 
platform systems and, to reduce these effects participant familiarisation 
should be undertaken [4,33,78,125]. The number of steps the partici-
pant takes from gait initiation before they contact the pressure platform 
i.e., one, two or three-step protocols can also influence the reliability of 
the plantar pressures measured [126]. Bus and de Lange (2005) rec-
ommended that a two-step protocol is used to measure barefoot plantar 
pressures in diabetic patients, as this protocol required the least amount 
of trials (four trials) in order to obtain reliable estimates of peak pressure 
and the pressure-time integral [126]. Naemi et al. (2012) found that 
there were no significant differences between plantar pressures 
measured by a pressure platform either with or without an additional 
EVA walkway either side of the pressure platform to create a flush 
surface [127], suggesting such additional walkway panels are not 
necessary. However, stepping preference ̶ whether the left or right foot 
contacted the pressure platform ̶ did have a significant effect on the 
plantar pressures measured, and therefore needs to be considered in gait 
testing protocols and made consistent between trials [127]. Another 
factor that can influence plantar pressures is walking speed. Faster 
walking speeds typically result in higher plantar pressures in all regions 
of the foot except for the arch and lateral metatarsals [128]); this 
therefore needs to be monitored and controlled during testing sessions 
[32,128–130]. 

When selecting a pressure platform for assessing gait or balance, 
certain design specifications need to be considered for specific pop-
ulations or type of assessment. When studying plantar pressures in 
children, higher spatial resolution pressure platforms are typically 
required to obtain accurate data due to their smaller feet. For posturo-
graphic assessments, pressure platforms that consist of resistive sensors 
are not recommended [32]. This is because they suffer from hysteresis 
and drift that will affect the accuracy of centre of pressure (CoP) mea-
surements during the longer static trials required to assess balance [32]. 

3.2. In-shoe systems 

In-shoe systems have the benefit of allowing more steps to be 
recorded per trial, and for this to be undertaken in a free living envi-
ronment [32]. However, a common compromise of this is that the 
measurement accuracy of many in-shoe systems is lower than platforms 
[32]. Researchers have recommended that, in order to obtain reliable 
plantar pressure data when using in-shoe systems, a minimum of eight 
steps for healthy adults [131], nine steps for patients with hallux valgus 
[132] to 12 steps for neuropathic diabetic patients [133] are required. 
When using in-shoe systems the placement of the pressure insole (above 
or below the standard shoe insole) needs to be considered as it affects the 
plantar pressure measurement, with lower plantar pressures measured 
when the pressure insole is placed beneath the standard shoe insole 
[82]. Therefore, the placement of the pressure insole should be consis-
tent and reported in research studies to allow for comparison of in-shoe 
plantar pressures. It has also been highlighted that it is important to use 
the same pressure insole for all trials for a participant, due to individual 
responses of a pressure insole to the same applied pressure, even for two 
sets of insoles of the same model and manufacturer [134–137]. Another 
factor that affects the plantar pressures and contact area is the type of 
insole material [138]. Healy et al. (2012) recommended insoles made of 
medium density polyurethane for patients with compromised ability to 
deal with pressures, as this material increased contact area and reduced 
the pressure-time integral compared to other materials commonly used 
to make orthotics for diabetic patients [138]. The choice of in-shoe 
system and the material of the pressure insoles can influence the pres-
sure sensor readings [139]. For example, thicker softer insoles provide a 
cushioning effect and reduce the volume within the footwear which can 
influence the pressure readings. This also, therefore, needs to be 
considered when both selecting a system and interpreting the data. 

In-shoe pressure measurement systems that consist of discrete sen-
sors attached to anatomical locations on the foot may miss information if 
the locations of high pressure occurs away from the sensors and total 
normal force cannot be obtained [4,74–76]. Nevertheless, a minimum of 
nine sensors has been shown to be sufficient for accurately calculating 
CoP during walking and running [140]. However, care needs to be taken 
when choosing the sensor layout as different sensor layouts have been 
found to affect the strength of the correlation of the CoP with that 
measured by a force plate [75]. Another important consideration is to 
ensure the discrete sensors are placed in the same location for each 
session to ensure reliable pressure sensor data [74,77]. Using inked mats 
and the palpation of bony landmarks can assist this process [77]. There 
are several other important considerations when using discrete sensors: 
the sensors may migrate during a trial due to shear stresses, so need to be 
firmly secured to the sole of the foot using tape [75,77,141]; the sensors 
can act as a foreign body in the shoe, acting as an irritant to the 
participant [77], and the difference between the material of the pressure 
sensor and the skin can cause an edge effect leading to falsely elevated 
pressure values [78]. 

Recently, guidelines for the use of the commercially available pres-
sure measurement system (F-Scan, Tekscan) was published based on a 
DELPHI-derived consensus by clinicians involved in managing plantar 
ulcers [142]. Whilst these provide a valuable framework and highlight 
some important concepts that users must consider, some remain quite 
broad and users will need to critically interpret and apply them in the 
context of their own specific uses. 

3.3. Environmental factors 

Environmental factors such as heat, humidity and dust within the 
testing environment can influence pressure sensor measurement [77, 
143,144]. Piezoresistive sensors can be particularly sensitive to changes 
in temperature and humidity [77,137,143,145–148]. In-shoe pressure 
sensors are more susceptible to degradation than platform systems as 
they are subjected to bending within the shoe, and the heat and hu-
midity generated within footwear can also damage the sensors [32,77, 
78]. For example, it has been shown during a 7 km run that the tem-
perature of the shoe midsole may increase by as much as 15C and for 
many devices this may have an important effect on device sensitivity 
[77,149]. Many manufacturers specify an operating temperature range 
for which the calibration is valid. The sensors will also degrade quicker 
when subjected to higher forces, so their life-span will be shortened if 
they are used for measuring relatively high force activities, such as 
running and jumping compared to walking, and creases, bends or other 
degradation of the insole can result in measurement artefacts [74,77, 
150,151]. 

4. Clinical recommendations for data interpretation 

Clinicians typically compare the pattern of plantar pressures 
measured for their patient to normative plantar pressure data collected 
from healthy individuals. If atypical plantar pressure distributions are 
observed, clinicians will then often prescribe interventions to adjust 
plantar pressures to the normal range [78]. Plantar pressure assessment 
can by be used to identify abnormal biomechanical loading for those 
with osteoarthritis to identify if they require an orthotic [152] and by 
podiatrists to assess those with rheumatoid arthritis and foot problems 
[153]. 

One of the key areas of the clinical application of plantar pressure 
assessment is in the management of diabetic foot and its complications. 
The International Diabetes Federation and International Working Group 
on the Diabetic Foot along with many national healthcare systems 
provide guidelines for clinical care of the diabetic foot [154]. For 
example, NICE (England) recommend moderate to high risk diabetic feet 
be biomechanically assessed which can include measuring plantar 
pressure during standing and walking [58]. As a result of this assessment 
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patients may be prescribed specialist footwear and/or orthoses to 
redistribute areas of high pressure with the aim of minimising the risk of 
pressure ulcers developing [58]. For diabetic patients, a mean peak 
pressure of 200 kPa has been proposed as a potential threshold to reduce 
risk in a previously ulcerated foot affected by diabetes [47,155,156]. 
However, the thresholds discussed in various reports and guidelines 
disregards the effect of plantar shear stresses, which often occur at 
different locations to peak pressure [157] and are an important 
consideration in the formation of diabetic ulcers [77,78,158,159–161]. 
In addition, there are differences in absolute values between technolo-
gies such as capacitive and resistive sensor based systems and the type of 
system used either in-shoe or platform [162]. The amount of cushioning 
effect introduced by the systems themselves also needs to be considered. 
Hence, it is important that one does not take absolute values from one 
type of system and compare it against another system. Whilst plantar 
pressure assessment has a pivotal role to play in the management of the 
foot at risk, it is important to understand that the assessment cannot be 
reduced to single number and the pressure distribution seen on the 
screen is combination of a variety of interlinked biomechanical factors. 

5. Calibration procedures 

Calibration of pressure sensor systems is essential to ensure accuracy 
of measurement. Some systems are calibrated by the manufacturer 
whilst others require the user to perform a calibration prior to each 
testing session [150]. Pressure platforms certified as medical devices 
must have their technical performance checked in the factory and 
certified [32]. The calibration procedure should simulate the conditions 
at the interfaces being measured [163] and will typically include static 
and dynamic calibration tests. Pressure sensors that have a linear 
response simplify the process of static calibration [74]. However, most 
pressure sensors will be used to measure pressures during dynamic 
conditions and, therefore, a dynamic calibration should also be per-
formed [164]. Dynamic calibrations should also be performed to assess 
and account for any time-dependent effects such as hysteresis and drift 
[74,165,166]. A dynamic calibration requires the sensor to be subjected 
to loading-unloading cycles within a specific time interval – both the 
time and load should be representative of the loading conditions likely 
to be encountered during the activity of interest, and these will differ 
between activities such as walking, running, sprinting, jumping and 
many others [164]. However, the testing machines that are commonly 
used for dynamic calibration have loading rates that are frequently less 
than even those found in walking, so the development of testing pro-
tocols that truly measure the loading rates found in many sporting 
movements are required [74,164]. These testing and calibration pro-
tocols should include impulse loading with a force of appropriate 
magnitude but very short duration (average braking time < 0.03 s for 
male sprinters over the first 50 m [167]), as this gives an indication of a 
sensor’s ability to respond to rapid loading rates [74]. Where array 
systems are used, it is recommended that each cell is calibrated indi-
vidually, as individual cells can, and do, have different calibration 
characteristics and using one calibration for all cells can introduce large 
errors [77]. 

A popular calibration method is to apply several known uniform 
pressures over the pressure sensor using a compressed-air filled rubber 
bladder. This system allows the sensors to be uniformly loaded and 
permits the generation of a calibration matrix for each sensor or group of 
sensors [78]. An example of such a system is the trublu® calibration 
device (Novel), which allows the user to check and calibrate their de-
vices at any time. Giacomozzi et al. (2009) developed a specialist 
pneumatic test device for pressure sensor assessment that is relatively 
light, easily transportable, and adaptable to pressure sensors and plat-
forms of different technologies and size [168]. It can apply pressure in 
the range 0–700 kPa under static and dynamic conditions over a small 
square area, in the frequency range 0.5–1 Hz [168]. However, this de-
vice still cannot load at the rates required for many sporting movements, 

such as running and jumping. In clinical settings, a simple check of the 
validity of the calibration of a pressure platform or insoles is a single 
stance body weight test (BWT) which should be done before assessing a 
patient [32]. The patient’s mass is measured and then the patient stands 
on one leg for a few seconds on at least five different areas of the plat-
form surface [32]. If the root mean squared error is greater than 10% of 
the expected value then the platform may require maintenance or 
re-calibration and should not be used [32]. 

Often the effects of the temperature, humidity, and electromagnetic 
fields in the testing environment can be compensated by taking into 
account measurement values at zero pressure at the start of each testing 
session [166]. The effects of hysteresis and drift of pressure sensors can 
be compensated by using algorithms; these include both 
deconvolution-based algorithms and custom-made drift correction al-
gorithms [166,169–172]. Different base materials under the pressure 
sensor have also been shown to influence its response [134,135,173]. 
Therefore, the calibration and validation of the sensors needs to be 
performed under the same loading and environmental conditions as the 
sensor will be used. 

Several researchers have proposed new calibration methods and 
techniques in an attempt to improve the validity and reliability of 
pressure sensor measurements [174–179]. These include using a 
compressed-air filled rubber bladder [174,175] or mechanical loading 
materials testing machine [177–179] to apply standardised loading 
ramp with each load held for a period before being increased to the next 
load followed a similar unloading sequence to generate a calibration 
equation to convert raw electrical signal to force/pressure instead of the 
single point loading method typically recommended by the manufac-
turers. Also, some researchers have used different algorithms to create 
the calibration equation instead of using the standard linear relationship 
[178,179]. Users of pressure measurement systems need to consider the 
suitability of the calibration procedures for their chosen application 
when selecting and using a pressure measurement system. 

6. Future directions for data analysis 

Pressure measurement systems can generate a large amount of data. 
For example, a single walking trial which lasts for 8 s, with plantar 
pressures measured by 100 sensors per insole at 200 Hz generates 
320,000 data points per trial. Multiple trials and participants obviously 
increases the quantity of data but this is then typically reduced to 
discrete values such as average and peak pressure. Pataky et al. (2008) 
demonstrated the benefits of analysing pixel level plantar pressure data, 
using statistical parametric mapping to compare the effects of walking 
speeds on the spatial distribution of plantar pressures, with different 
findings for pixel level data compared to average plantar pressure data 
when assessing the midfoot region [130]. This highlights the potential 
importance of methods that analyse the pressure data at higher spatial 
resolutions to ensure that more valid conclusions can be drawn from the 
data when necessary. Artificial intelligence (AI) techniques have pro-
vided promising innovations in medical imaging, and impacted how 
radiologists work, helping them to speed up scan time, make more ac-
curate diagnoses, and ease their workload [180–182]. Given that med-
ical images made up of pixels are fundamentally similar to pressure 
sensor data, some AI methods such as deep learning models have 
recently been applied to plantar pressure sensor data [76,183–189]. 
Mun and Choi (2022) demonstrated that deep learning models (such as 
long short-term memory; LSTM) can be used to predict pressure distri-
bution of the whole foot based on pressure data from a small number of 
pressure sensors in an insole [187]. These types of algorithm therefore 
have the potential for applications to data obtained from low-cost 
portable smart insole systems in order to facilitate the monitoring of 
plantar pressures across the whole foot in daily living in clinical pop-
ulations [187]. Deep learning models have also been successfully 
applied to plantar pressure images to assess the risk of foot ulcers, which 
has the potential to transform diabetic patient monitoring [184]. In the 
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future, AI clearly has the potential to assist in the analysis and inter-
pretation of plantar pressure data to assist in clinical diagnoses and 
monitoring, and researchers working in this space are encourage to 
collaborate with AI experts to explore the transfer of existing and new 
techniques to the analysis of pressure sensor data. 

7. Conclusions 

This comparative review of testing protocols and measurement 
techniques when using pressure sensors for sport and health applications 
highlights that:  

● Rigid pressure platforms are typically used to measure plantar 
pressures for the assessment of foot function during standing and 
walking, particularly when barefoot, and are the most accurate for 
measuring plantar pressures. For reliable data - two steps before 
contacting the pressure plate are recommended (two-step protocol).  

● In-shoe systems are most suitable for measuring plantar pressures in 
the field during daily living or dynamic sporting movements as they 
are often wireless and can measure multiple steps. They are the most 
suitable equipment to assess the effects of footwear and orthotics on 
plantar pressures. However, they typically have lower spatial reso-
lution and sampling frequency than platform systems. 

● Users of pressure measurement systems need to consider the suit-
ability of the calibration procedures for their chosen application 
when selecting and using a pressure measurement system. For some 
applications a bespoke calibration procedure is required to improve 
validity and reliability of the pressure measurement system. 

● The testing machines that are commonly used for dynamic calibra-
tion of pressure measurement systems frequently have loading rates 
of less than even those found in walking, so the development of 
testing protocols that truly measure the loading rates found in many 
sporting movements are required.  

● There is clear potential for AI techniques to assist in the analysis and 
interpretation of plantar pressure data to enable the full use of 
pressure system data collected during a movement to assist in clinical 
diagnoses and monitoring. 
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