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A Functional Coefficients Version of a Generalized
Orr–Sherby–Dorn Creep Model: An Application
to 2.25Cr–1Mo Steel

M. EVANS

It is important to be able to predict the creep life of materials used in power plants. This paper
illustrates the inadequacies of the Orr–Sherby–Dorn (OSD) creep model in achieving this aim
for 2.25Cr–1Mo steel. This failure is explained in terms of non-constant model parameters—
which in turn is the result of changing creep mechanisms. The paper introduces a
semi-parametric estimation procedure for a variant of the OSD model (a structural coefficients
version) that can be used to deal with such changing creep mechanisms while maintaining the
structure of the model and consequently producing more reliable long-term predictions
compared to the unmodified OSD model and the recently introduced LOESS technique. For
2.25Cr–1Mo steel, it was found that the model parameters varied in line with changing creep
mechanisms, but in a modified way compared to that already suggested in the literature for this
material. The models used suggested that with diminishing stress and increasing temperature,
dislocation creep within the crystal structure morphs into grain boundary dislocation motion
and finally Nabarro-Herring creep.
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I. INTRODUCTION

FOR materials operating at high temperatures, the
understanding of creep and its interaction with other
damage mechanism such as fatigue and oxidation is of
great importance. Indeed, creep is the dominant failure
mechanism for pipework that is used to transport steam
from boilers to turbines in power plants. 2.25Cr–1Mo is
a main stay steel used for such structural components
within the UK’s aging power plants—where the usual
service conditions for heater tubes is around 840 K and
35 MPa. Under these static conditions, this material is
designed to resist creep failure up to 250,000 h of
operation. The development of new materials that can
operate at higher temperatures, to improve efficiency
levels, is however considerably hampered by the fact
that currently there are few creep models that have
proved capable of accurately extrapolating accelerated
test data (out only to around 5000–10,000 h) to such
operating conditions.[1] Studies on low alloyed steels
typically reveal substantial downward revisions in

estimated creep life as longer-term test results become
available over time.
Many of the traditional parametric creep models such

as the Larson–Miller,[2] Manson–Haferd,[3] and the
Dorn and Shepherd[4] models have as their basis the
simple Arrhenius expression for relating minimum creep
rates to temperature. The Dorn-Shepherd model is
usually written in terms of the minimum creep rate _em,
but using the Monkman–Grant[5] relation with an
exponent of unity, it can also be written in terms of
time to failure tF

tF ¼ M

_em
¼ Drð�nÞexp

Qc

RT

� �
; ½1a�

where r is stress, T is absolute temperature, and M, n
(sometimes termed Norton’s n), and D are unknown
model constants. Qc is the activation energy for creep.
This can be linearized using natural logs

ln tFð Þ ¼ ln Dð Þ þQc
1

RT

� �� �
� nln rð Þ; ½1b�

so that at constant temperature the model predicts a
linear (and negative) relationship between ln(tF) and
ln(r) with the effect of temperature then being to shift
this linear relationship in a parallel fashion (i.e., change
only the intercept D in the model). When this model is
applied to minimum creep rates obtained by the
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(NIMS)[6,7] on one batch (termed MAF) of 2.25Cr–1Mo
steel, the results seen in Figure1(a) are obtained.
Figure 1(a) plots various isothermal lines and it can be
seen that Norton’s n [the power of x in Figure 1(a)] is
not a model constant. Clearly, n tends to diminish with
increasing temperature.

Figure 1(b) plots various iso-stress lines, and the
activation energy for creep is also far from a con-
stant—tending to diminish with increasing temperature.
But again, is not clear if this is just a temperature
dependency as the lower Qc value [of 325 kJ mol�1—the
power of e in Figure 1(b)] also occurs at the lowest
stress. It is this variation in n and Qc that leads to the
OSD model producing unreliable long-term predictions
based on shorter-term data.

There is a tendency in the literature to attribute these
changes in n and Qc values to different creep mecha-
nisms applying over different stress and temperature
ranges. Some solutions to this problem of changing
creep mechanisms are present in the literature. A recent
approach taken by Ding et al.[8] is to specify a separate
equation to explain creep rates due to grain boundary
sliding, dislocation creep, and dislocation glide. The
overall creep rate is then simply the sum of the creep
rates predicted by these mechanisms. Integration using
true stress and true strain then yields an expression for

predicting the observed creep curve at any point in time
based on these evolving creep mechanisms. The
approach is readily extended to encompass other mech-
anisms—for example to include a role for high-temper-
ature oxidation. By modeling the whole creep curve, this
approach can predict the role of both primary creep and
microstructure evolution on time to failure.
This paper makes use of varying parameter models

common in the statistical literature to deal with the
non-constancy of n and Qc. Recently, Evans[9] made a
first attempt at this by proposing a semi-parametric
approach based on the LOESS technique. Here, the
parametric form of a particular creep model corre-
sponding to a fixed temperature is estimated by least
squares or weighted least squares. For example, the
OSD model at constant temperature has the form

ln tFð Þ ¼ a� nln rð Þ; ½1c�

where a = ln Dð Þ þQc
1

RT

� �
is a constant if T is held

fixed. LOESS then involves selecting one of the test
stresses (r0) in the test matrix and applying least squares
or weighted least squares to estimate a and b, but instead
of using all test results, only the nearest ones to r0 are
used. This is then repeated for all values of r0 in the test
matrix and so what emerges from such repetition are

(a)

(b)

Fig. 1—The variation in minimum creep rates shown in NIMS creep data sheets 3B & 50A[6,7] with (a) stress at constant temperature and (b)
reciprocal of temperature at constant stress.
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values for a and b that can be associated with each
stress. By applying this OSD model over such a local
range of stresses, the creep mechanism remains approx-
imately constant, so allowing for more accurate creep
life predictions. This LOESS model was shown by
Evans[9] to produce better extrapolations of creep life
than a fully parametric OSD model.

However, this approach comes with several limita-
tions and complications. First, the functional relation-
ships between the parameters a and b and stress can only
be identified by plotting a and n against stress, and then
as a second stage, fitting trend lines to such plots. From
a statistical perspective, such a two-stage estimation
procedure produces less efficient estimates of the param-
eters of this trend line than any potential one-step
procedure. By less efficient it is meant the parameters are
not estimated with the smallest possible variance or level
of sample variation uncertainty. Furthermore, the
approach says nothing about the correct functional
form of this trend line, which is currently unknown.

Secondly, LOESS only works for models containing
one explanatory variable, but time to failure also
depends on temperature. Evans[9] incorporated temper-
ature into this LOESS model by introducing sub
repetitions within the above-described repetitive process.
But this came at cost. A relatively minor issue is that it
results in a rather computer intensive estimation proce-
dure that some readers and practitioner’s dislike. For
example, Evans[9] incorporated T into the OSD model
using a temperature compensated failure time

ln tFð Þ � Qc

RT
¼ a� nln rð Þ; ½1d�

where now a = ln(D). LOESS then involves guessing a
value for the activation energy Qc, selecting one of the
test stresses (r0) in the test matrix and applying least
squares or weighted least squares to estimate a and b,
using nearest test results to r0. This is then repeated for
all values of r0 in the test matrix and so what emerges
from such repetition are values for a and b that can be
associated with each stress. Finally, Qc is varied in a
structured way until the fit to the temperature-adjusted
failure times is maximized,

While Evans[9] showed that temperature adjusting
stress as well as times opens up the LOESS procedure to
other well-known creep models such as the Soviet
model[10] and the Minimum Commitment Methods[11],
it forces the activation energy to be a constant that does
not vary with stress. Yet, changing creep mechanisms
will often be associated with a change in activation
energy, and Evans[9] stated that this limitation war-
ranted future research to relax the constraint of a
constant Qc. This paper presents the functional coeffi-
cient model as a solution to this identified shortcoming
of LOESS. Closely related to the above point is the fact
that each local regression in the above LOESS proce-
dure is over a local range of stresses and not temper-
atures. But creep mechanisms also vary with
temperature and the local regressions may therefore
not be over constant creep mechanism conditions. So, it
may be possible to improve life predictions by defining

local in terms of stress and temperature, i.e., by local test
conditions and not just local stress.
The first issue mentioned above (an unknown func-

tional relationship between n and Qc with both stress
and temperature) can be dealt with by approximating
these unknown functions with a Taylor series expansion.
This can be of any order, but this paper restricts itself to
first and second-order Taylor series approximations.
The second problem can be dealt by (i) including T as an
additional explanatory variable on the right-hand side
of Eq. [1c] and (ii) defining close in a local regression as
similar stress-temperature combinations to the one
under investigation. This allows Qc to vary with stress
and temperature and allows estimation of all the models
unknown parameters to be done in a single stage or step.
The result is a functional coefficients model[12].
Therefore, the aim of this paper is to implement the

suggestion made by Evans[9] of developing a fully
variable parameter model (allowing Qc to vary as well)
to predict creep failure times. This is done by introduc-
ing readers to the functional coefficients model that
overcomes the limitations of the LOESS procedure
proposed by Evans. The second aim is to assess whether
this model is still capable of producing predictions of
time to failure that are i. at least comparable with that
produced by LOESS and ii. superior to a fully para-
metric creep model. The third aim of the paper is to try
and explain the pattern of the varying creep model
parameters that the functional coefficients model pro-
duces, in terms of changing creep mechanisms. To
achieve these aims, experimental failure time data on
2.25Cr–1Mo steel produced by NIMS [6,7] will be used.
The next section therefore describes these NIMS data.
This is followed by a method section that outlines the
structure of a functional coefficient model to reveal its
inherent flexibility in creep model specification com-
pared to the LOESS technique. A section on how the
unknown parameters of such a model are estimated then
follows. The penultimate results section then compares
the functional coefficients models to a fully parametric
OSD model and a LOESS version of this model. Finally,
conclusions are drawn.

II. THE DATA

This paper makes use of the information in Creep Data
Sheets3B,50A,publishedby theJapaneseNational Institute
forMaterials Science (NIMS).[6,7] These have extensive data
on twelve batches of 2.25Cr–1Mo (according to ASTM A
387, Grade 22) steel where each batch has a different
chemical composition that underwent one of four different
heat treatments–details of which are given in Reference 6.
This paper makes use of just one of these batches, theMAF
batch, which was in tube form that had an outside diameter
of 50.8 mm, a wall thickness of 8 mm, and a length of
5000 mm with a chemical composition of Fe–2.46
Cr–0.94Mo–0.1C–0.23Si–0.43Mn–0.011P–0.009S–0.008-
Ni–0.07Cu–0.005Al. Specimens for creep testing were
taken longitudinally from thismaterial. Each test specimen
hadadiameter of 6 mmwith a gauge length of 30 mm.The
creep tests were obtained over a wide range of conditions:

METALLURGICAL AND MATERIALS TRANSACTIONS A



400�22 MPa and 723–923 K. For the MAF batch (and
only this batch), both minimum creep rates and time to
failure measurements were recorded, together with the
times toattain various strains� 0.005, 0.01, 0.02 ,and0.05.
Figure 2 plots the creep failure times obtained for this
MAFbatch at the different stresses and temperatures used.

III. METHOD

A. Fully Parametric Creep Models

The Orr–Sherby–Dorn (OSD) and Larson–Miller
(LM) models have as their basis the Arrhenius relation,
that when applied to creep explains the relationship
between absolute temperature and the minimum creep
rate at a constant load or stress. The Arrhenius
expression is typically used to relate the minimum creep
rate to temperature but combining it with the Mon-
kman–Grant relation also allows it to also be written in
terms of the time to failure

_em ¼ Aexp � Qc

RT

� �
¼ M

tF
; ½2a�

tF ¼ M

A
exp

Qc

RT

� �
: ½2b�

The OSD model has as its foundation this Arrhenius
relation and introduces the effect of stress on the time to
failure by making the parameter M/A a function of
stress. More specifically, the OSD model postulates that

ln tFð Þ ¼ ln Dð Þ þQc
1

RT

� �� �
� nln rð Þ; ½2c�

M=A ¼ fOSD rð Þ ¼ Dr�n, so that
Consequently, in the OSD model, the effect of

temperature is to shift in a parallel fashion the isother-
mal lines when plotted in ln(tF)–ln(r) space. As temper-
ature changes by DT, the slope of the isothermal line
remains unchanged at the value given by n in Eq. [2c],

but its intercept changes by Qc
1
R
DT

� �
. If r is replaced

with ln(ln(rTS/r)) in Eq. [2c], the Wilshire[13] creep
model emerges (where rTS is the materials tensile
strength).
The LM model also has as its foundation the

Arrhenius relation, but in this model it is parameter
Qc that is made a function of stress Qc ¼ fLMðrÞ. This
functional relationship is postulated differently in dif-
ferent applications of the LM model, but a typical
specification is Qc = B0 + B1ln(r), where the B are
further model parameters. Substituting this into Eq. [2c]
gives one representation of the LM model

ln tFð Þ ¼ lnðM=AÞ þ Bo
1

RT

� �
þ B1

ln rð Þ
RT

� �
: ½2d�

Fig. 2—Relationship between stress, temperature, and time to failure for the MAF batch of 2.25Cr–1Mo steel contained within NIMS creep
data sheets 3B &50A.[6,7]
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Consequently, in the LM model, the effect of temper-
ature is to shift and rotate the isothermal lines when
plotted in ln(tF)–ln(r) space. The LM model predicts
that the slope of the isothermal lines should be given by

B1

RT

� �
and so changes with temperature. The LM model

also predicts that the intercept of the isothermal lines is

given by ln(M=AÞ þ Bo
1

RT

� �
and so also changes with

temperature.
The changing intercept of the isothermal lines shown

in Figure 1(a) with changes in temperature is consistent
with the OSD model, but the reduction in Norton’s n
(exponent on x) seen in Figure 1(a) is not. This suggests
that a sensible way to progress is to allow n to vary with
tests conditions in the OSD model—i.e., to generalize
the OSD model. But should this be with respect to stress
or temperature? Because decreasing stresses are associ-
ated with increasing temperatures in Figure 1(a), it is not
clear whether the observed fall in the value of n seen in
Figure 1(a) is the result of a fall in stress or a rise in
temperature. In the absence of any additional informa-
tion, it is decided that the intercept of the isothermal
lines be made temperature dependent, as in the original
OSD model, but instead of treating the slope as a
constant, it is made dependent on stress. Call this the
generalized OSD model (GOSD).

B. Functional Coefficients Representation
of the Generalized OSD Model

A functional coefficients model starts with a specifi-
cation of the relationships between a dependent variable
and one or more explanatory variable. It then intro-
duces other explanatory variables by using these addi-
tional variables to explain how the parameters of that
relationship change. The functional coefficients repre-
sentation of the GOSD parametric creep model starts
with the isothermal representation in the OSD model

ln tFð Þ ¼ aþ bln rð Þ; ½3�

where b< 0 (and b = � n). Then, parameter a is
made a function of temperature a = f(1/RT) and b a
function of stress b = g(ln(r)). Other specifications are
possible and lead to other well-known creep models.
The difference between these well-known models and
the functional coefficients model is that the functions
f() and g() are left unspecified. Instead, they are
approximated using a Taylor series. If this variation is
modeled using a 1st order Taylor series expansion,
then

a ¼ ao þ a1
1

RT

� �
� 1

RTo

� �� 	
; ½4a�

b ¼ bo þ b1 lnðrÞ � lnðroÞð Þ; ½4b�

where bo = g(ln(ro)), ao = f(1/RTo), b1 ¼ dgðln r0ð ÞÞ=
dlnðr0Þ; a1 ¼ dfð1=RT0Þ=dð 1

RT0
Þ—i.e., each derivative is

evaluated at specific values for stress and temperature,

r=ro and T = To. This approximation can be done for
all values of stress and temperature in a test matrix and
so there are values for bo, b1, ao, and a1 at each test
condition making up the creep data set.
If a second-order Taylor series expansion is used to

approximate g(ln(r)) and f(1/RT), then Eqs. [4] become

b ¼ bo þ b1ðlnðrÞ � lnðroÞÞ þ b2ðlnðrÞ � lnðroÞÞ2; ½5a�

a ¼ ao þ a1
1

RT

� �
� 1

RTo

� �� 	

þ a2
1

RT

� �
� 1

RTo

� �� 	2
; ½5b�

where now bo = g(ln(ro)), ao = f(1/RTo),

b1 ¼ dgðln r0ð ÞÞ=dlnðr0Þ; a1 ¼ dfð1=RT0Þ=dð 1
RT0

Þ; b2 ¼
0:5d2gðln r0ð ÞÞ=dlnðroÞ2; a2 = 0:5d2fð1=RT0Þ=
dð1=RT0Þ2—with each derivative evaluated at r= ro
and T = To. So, the first model to be used in this paper
will be termed a first-order functional coefficient version
of the generalized OSD model (or GOSD1 for short)
and the second model used in this paper is the
second-order functional coefficient version of the gener-
alized OSD model (or GOSD2 for short).

C. Estimating the Functional Coefficients

The technique of least squares can be used to estimate
values for all the above-mentioned derivatives by
including a random error term e to pick up the
stochastic nature of creep failure times. Then inserting
Eqs. [4] into Eq. [3] gives the single equation represen-
tation of the GOSD1 model

lnðtFÞ ¼ a0 � a1
1

RTo

� 	
þ b0 � b1 lnðroÞ½ �lnðrÞ þ a1

1

RT

þ b1½lnðrÞ�2 þ e

½6a�

Values for a1, b1, [a0�a1
1

RTo
], and [b0�b1 lnðroÞ] are

then chosen to minimize Re2, where the sum is over all
test conditions, of which there are say N, in the test
matrix. Such a minimization has a well-known solution.
This least square procedure therefore yields direct
estimates for a1 and b1. Parameters a0 and b0 are
obtained indirectly by substituting in each existing
stress-temperature test combination for ro and To in
Eq. [6a]. For example, the least squares procedure will
yield a value for [a0�a1

1
RTo

] and a1. If the least squares

estimate for [a0�a1
1

RTo
] is say h, then the value for a0 at

a temperature of 823 K would be given by ao = h + a1
1

ð8:314Þ823].

Inserting Eqs. [5] into Eq. [3] gives the single equation
representation of the GOSD2 model
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lnðtFÞ ¼ a0 � a1
1

RTo
� a2

1

RTo

� �2
" #

þ b0 � b1 lnðroÞ þ b2ðlnðrÞÞ2
h i

lnðrÞ

þ a1 � 2a2
1

RTo

� 	
1

RT
þ ½b1 � 2b2 lnðroÞ�½lnðrÞ�2

þ a2
1

RT

� �2

þ b2½lnðrÞ�3 þ e

½6b�

So at each test condition a2, b2 are estimated directly
and the others indirectly. Higher order approximations
can also be used. As Taylor series approximations are
more accurate the closer the test condition is to (To,ro),
an additional way of improving the predictive accuracy
is to accept that any specified functional coefficients
model is only a realistic descriptor of creep over a
restricted range of test conditions, for example, over
conditions where the creep mechanism remains
unchanged around (To,ro). This can be achieved using
the technique of weighted least squares. As stress and
temperature are measured in different units, they must
first be standardized using their means and standard
deviations

x1 ¼ ½lnðrÞ
�mean of lnðrÞ�=standard deviation of lnðrÞ:

½7a�

x2 ¼ ½1=RT
�mean of 1=RT�=standard deviation of 1=RT:

½7b�

The closeness of each test condition to test condition
(To, ro) can then be measured as

d ¼ x1 � x1;o�þ


 

x2 � x2;oj; ½7c�

where x1,o is the standardized value for ln(ro) and x2,o
is the standardized value for 1/RTo. Other distance
measures, such as the Euclidean distance, can also be
used, but using absolute values is more likely to make
the distance measure robust to the presence of any
unusually small or large failure times, i.e., to any out-
lying data points. Kernels can be used to determine
the values for the weights, w. There are many such
Kernels in common use, but the one used by Cleveland
[14] for LOESS procedures is the tri-cubic Kernel

w2 ¼ Khðd=hÞ ¼ 0:864 1� d
h

� �3� �3

when d
h



 

<1

0 otherwise

(
;

½7d�

and where h is a selected band width in the same ‘‘units’’
as d. While other kernels can be used (the Epanechnikov
Kernel is also popular), the different Kernels tend to
give similar weight values, but some Kernels may give

better lifetime predictions than others. This could form a
possible topic for future research but is not the main
scope of this paper. This paper uses the tri-cubic Kernel
to enable broad comparisons to the results of Evans[9]

that were obtained using this Kernel within his LOESS
model.
For a selected target test condition (To, ro), wlnðtFÞ is

regressed on the variables w, ln(r)w, (ln(r))2w, and w/
RT (by minimizing Re2 in Eq. [8a]))

w lnðtFÞ ¼ a0 � a1
1

RTo

� 	
wþ b0 � b1 lnðroÞ½ �lnðrÞw

þ a1
w

RT
þ b1w½lnðrÞ�2 þ e

½8a�

when using the GOSD1 model. Note that these
weighted least squares estimates of a1 and b1 provide
values for the required derivates around the target test
condition. When using GOSD2 model, the parameters
in Eq. [8b] are chosen to minimize Re2

w lnðtFÞ ¼ a0 � a1
1

RTo
� a2

1

RTo

� �2
" #

þ b0 � b1 lnðroÞ þ b2ðlnðrÞÞ2
h i

lnðrÞw

þ a1 � 2a2
1

RTo

� 	
w

RT
þ ½b1 � 2b2 lnðroÞ�wðlnðrÞÞ2

þ a2w
1

RT

� �2

þ b2wðlnðrÞÞ3 þ e

;

½8b�

where e is a random disturbance term. A prediction of
the time to failure at test condition (To, ro) is then
given by Eq. [3] or equivalently Eqs. [8]. So, a
weighted regression (often termed a local regressions)
defined by Eqs. [8] is carried out for each test
condition in the test matrix to yield an estimate for
bo, b1, ao, a1 (and a2, b2 if using the GOSD2 model) at
all such conditions. Notice that the weighted least
squares procedure also depends on the bandwidth h
that now needs further explanation.

D. Determining the Band Width, h

The band width h is on the same scale as d and so
must be a value between the largest and smallest
observed value for d. If h is set too large, the resulting
creep predictions will be over generalizations leading to
a poor prediction for any individual failure time. On the
other hand, if h is set to low, the predictions may be so
specific to the sample of failure times in the local
regression that any extrapolation to other failure times
may be unreliable—over fitting to the specific sample of
data. As the value of d will depend on the test condition
(To, ro), it follows that the number of data points in
each local regression will also be different. One
approach to preventing over fitting is to use a ‘‘leave
one data point out cross validation’’ procedure (see for
example Fan et al.).[15] In this approach, Eq. [8a], when
using the GOSD1 model, is replaced with
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w lnðtFÞ ¼ a0 � a1
1

RTo

� 	
w þ ½b0 � b1lnðrÞ� lnðrÞ w

þ a1
w

RT
þ b1w ðlnðrÞÞ2 þ kDþ e;

½9a�

where D is a dummy variable that equals 1 when (T,
r) = (To, ro) and zero otherwise. The parameter k
then measures the error made in predicting that value
for ln(tF) at test condition (To, ro), when this failure
time recorded at (To, ro) is not used in the estimation
of the other parameters in Eq. [9a]. Such a value for k
can be computed for all test conditions, then squared,
and finally summed to obtain the sum of squared cross
validation errors (SSCV)

SSCV ¼
XN

i¼1
k2i ; ½9b�

The band width h is then taken to be that value which
minimize SSCV. The variable D can also be added to
Eq. [8b] when using the GOSD2 model

w lnðtFÞ ¼ a0 � a1
1

RTo
� a2

1

RTo

� �2
" #

w

þ b0 � b1 lnðroÞ þ b2ðlnðrÞÞ2
h i

lnðrÞw

þ a1 � 2a2
1

RTo

� 	
w

RT
þ ½b1

� 2b2 lnðroÞ�wðlnðrÞÞ2 þ a2w
1

RT

� �2

þ b2wðlnðrÞÞ3 þ kDþ e; ½9c�

IV. RESULTS

One of the aims of this paper is to use the functional
coefficients representation of a generalized OSD model
to predict failure times beyond an accelerated test data
set. To do this, the accelerated creep data set is defined
as all those test conditions in Figure 2 that have a failure
time of 10,000 h or less. This accelerated data set is thus
made up of N = 33 failure times. The band width h is
then calculated using just this accelerated test data set,
using Eq. [9] to measure the value for ki at each of these
i = 1 to 33 test conditions (some repeated). Then
suppose a prediction at test condition (To, ro) is
required. If (To, ro) = (873 K, 29 MPa), this prediction
would be an example of an extrapolation, while if (To,
ro) = (873 K, 115 MPa), this prediction would be an
example of an interpolation.

A. The Fully Parametric OSD Model

Applying least squares to Eq. [1b] using all 33 test
results in the accelerated set of test data yielded the
following result

lnðtFÞ ¼ �1:179� 5:063ln rð Þ þ 279:416
1000

RT

� �
; ½10�

implying a Norton n value of 5.063 and an activation
energy of 279 kJ mol�1. However, the R2 value of
78.23 pct suggests a very poor fit to the short-term data
shown as closed circles in Figure 3. The vertical axis of
Figure 3 is the temperature-adjusted failure time given

by lnðtFÞ � 279:416 1000
RT

� �
. Estimating the parameters of

this fully parametric OSD model in this way results in
predictions that have substantial systematic errors
associated with them—both when predicting the short-
term and long-term data. At moderate stresses, the
predictions shown by the fitted line substantially under-
estimate the time to failure, but as stress falls toward
values associated with typical operating conditions for
this material, the model dramatically overestimates the
time to failure. Unsurprisingly then, the model produces
predictions for the longer-term data with an average
absolute error of some 150 pct. These results can be
used as a benchmark for comparisons with the GOSD1
and GOSD2 models.

B. A First-Order Functional Coefficients GOSD1 Model

Now consider the functional coefficients GOSD1
model that uses a 1st order Taylor series expansion to
approximate coefficients a and b in Eq. [3]. The optimal
band width estimated only from the accelerated tests
data was found to be 2.2 using cross validation with
SSCV = 0.00231. Figure 4 shows the estimates made
for the parameters a0, b0, a1, and b1 of this model at
each of the 33 test conditions in the accelerated test data.
The arrows highlight the parameter values obtained at
test condition (To, ro) = (823 K, 196 MPa).
Before discussing the trends seen in Figure 4, it is

informative to explain how these highlighted values were
obtained. There were 22 such data points out of the 33
in the accelerated test matrix that had a Kh(d/h) value of
less than 1 using h = 2.2. Figure 5 shows these 22 test
conditions and the actual temperature-adjusted failure
times associated with these conditions. These were
calculated using an activation energy of creep of

375 kJ mol�1—lnðtFÞ � 375 1000
RT

� �
. This value for the

activation energy was obtained by minimizing Re2 in
Eq. [8a] using just the 22 data points shown in Figure 5.
The procedure yielded a1 = Qc = 374.876 kJ mol�1,
b1 = 1.448, [b0–b1 lnðroÞ] = � 22.808, and [a0–a1

1
RTo

] = 37.337. These values for the parameters in

Eq. [8a] define the dashed curve in Figure 5—which is
the weighted regression curve. The arrow in Figure 4(b)
shows this value for Qc. Consequently, values for ao and
bo can be derived from these estimates: bo = � 22.808
+ 1.448ln(196) = � 15.1634 and ao = 37.337 +
375,876/(8.314 9 723) = 92.124. The arrows in
Figures 6(c) and (d) show these values for a0 and b0.
When r = ro = 196 MPa, Eq. [6a] collapses to
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lnðtFÞ ¼ ao � boln 196ð Þ ¼ 92:124� 15:1635 lnð196Þ
¼ 12:09;

½11�

which defines the arrow highlighted point of the dashed
regression curve in Figure 5. This is an example of an
interpolated failure time. This interpolation has a
prediction error of some 7.28 pct. The above steps are
repeated for each test condition, so that a separate
weighted regression is computed yielding values for a0,
b0, a1, and b1 and an interpolated tF value for all test
conditions in the accelerated test data. The resulting
parameter estimates are shown in Figure 4.

Clearly, higher order approximations will give better
fits to the local data, but may not necessarily give a
better failure time prediction. It does so at the test
condition shown in Figure 5 because the point it is
trying to predict is within the range of the accelerated
data points used for the local fit. In some instances,
especially in extrapolation, this may not be the case, and
this is more likely the higher the order of approximation
used (due to the skipping rope effect of using polyno-
mials). So a balance needs to be struct between
parsimony and accuracy of prediction.

Figure 4(a) shows the variation in Norton’s n with test
conditions, where n is the predicted change in ln(tF)
following a small change in ln(r), which from Eq. [6a] is
found from the functional coefficients as [b0–b1
lnðroÞ] + 2b1ln(r). Figure 4(b) shows the variation in
the activation energy for creep with test conditions.
These two together are suggestive of specific changes in

creep mechanism with test conditions. The high values
for n (ignoring the sign) and Qc at the highest stresses
indicate creep takes place through the generation and
movement of new dislocations, formed at appropriate
sources, since the yield stress of the material is exceeded.
These new dislocations that are continuously generated
due to the high stress leads to large net movement of
atoms, and so contributes to high creep rates making
failure times very sensitive to changes in stress (hence the
very negative n values). This creep occurs largely
because of these dislocations moving within the grains
and under these circumstances Qc is expected to be high
and equivalent to that for self-diffusion in bainitic
matrices. Figure 4(b) suggests this activation energy is
Qc @ 420 kJ mol�1. Notice this value is much higher
than the constant value of 279 kJ mol�1 obtained from
the fully parametric OSD model.
At intermediates stresses, where the stress is below the

yield stress, creep takes place within the grain boundary
zones rather than in the grains, and this reflects itself in a
lower activation energy for creep—Qc @ 370 kJ mol�1

in Figure 4(b)—representing diffusion along dislocations
and grain boundaries. With fewer atoms moving the
creep rate slows down and this reflects itself in a
reduction in n to around � 8 in Figure 4(a). The change
in n from around � 18 to � 8 (and Qc from 420 to
370 kJ mol�1) then reflects the growing dominance of
grain boundary creep as the stress falls. At the lowest
stress, the activation energy increases again to approx-
imately 420 kJ mol�1 in Figure 4(a). Wilshire and
Whittaker [16] attributed this to the bainitic regions
transforming to ferrite and coarse molybdenum carbide

Fig. 3—Relationship between temperature compensated time to failure and stress using an activation energy estimated using least squares
applied to the fully parametric OSD model.
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particles in long-term tests at 923 K and very low
stresses. This they argued would result in creep once
again taking place within the grains where the activation
energy is higher. But this is inconsistent with the
continual reduction in the value of n seen in
Figure 4(a)—the expectation would be for n to creep
back to the values seen at the higher stresses if there was
microstructural degradation. Instead, there is a tendency
for n to diminish to a value of 1 at the very lowest stress
and the highest temperature—and such conditions are
usually associated with Nabarro-Herring diffusional
creep. Such creep also leads to an n value of around 1
and an activation energy equal to that for self-diffusion
as diffusion of atoms takes place only within the crystal
lattice during Nabarro-Herring creep. This is consistent
with the values seen in Figures 4(a) and (b) where n
tends to 1 with decreasing stress and Qc back to a value
approaching 420 kJ mol�1—that was taken above to be
that associated with self-diffusion. Figures 4(c) and (d)
shows the variation in the structural coefficients ao and
bo with test conditions. Their changing values also
reflect the above-mentioned changes in creep mecha-
nism. While n, ao, and bo show very little dependency on

temperature, Qc appears to also show some temperature
dependency.
The same procedure as above is used to make

extrapolative predictions into the longer-term data—lo-
cal weighted regressions were carried out using acceler-
ated test conditions closest to the test conditions in the
longer-term data set. For example, to get a prediction
for the time to failure of a specimen tested at 216 MPa
and 723 K, 19 data points out of the 33 in the
accelerated test matrix had a Kh(d/h) less than 1 using
h = 2.2. A weighted regression through these 19 data
points is used to predict the failure time at 216 MPa and
723 K following the same steps as demonstrated above
for an interpolative prediction. Repeating this for all test
conditions in the longer-term data sets produced the
predictions shown in Figure 6, where they are plotted
against the actual failure times beyond 10,000 h. The
trend line through all the data points is quite close to the
1:1 line, and these predictions have an average absolute
error |U| associated with them of 31.81 pct—which is a
massive improvement on the error associated with the
fully parametric OSD model of the previous sub
section. The predictions are differing from this 1:1 line
for three reasons. The first is because the slope of the

Fig. 4—Variations in (a) Norton’s n, (b) the activation energy for creep, and (c, d) the structural coefficients ao and bo, with stress and
temperature based on the GOSD1 model.
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Fig. 5—Local test conditions used to interpolate the failure time at 196 MPa and 823 K, together with the weighted regression curve through the
nearest 22 data points to this test condition.

Fig. 6—Plot of actual against predicted failure times beyond 10,000 h using the GOSD1 model. The U statistics are as calculated by Evans.[17]
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best fit line of 0.83 differs from 1 and this accounts for
some 24.28 pct of |U| (as revealed by |UR|—see
Evans[17] for details on how to calculate these U values).
Secondly, the average of the predictions differs from the
average of the actual failure times by 0.0095 and this
accounts for some 2.04 pct of |U| (as revealed by |UM|).
In part this reflects itself in the intercept of the trend line
in Figure 6 (23.894) differing from zero. The rest of the
error is random in nature, and this accounts for some
73.76 pct of |U| (as revealed by |UD| and the R2 value of
less than 100 pct). Figure 6 also reveals that most of the
prediction errors occur at the lowest stresses at temper-
ature of 873 K. The Z value shown in Figure 6 is given
by Z = e2:58se , where se is the standard deviation in the
percentage prediction errors. Ideally, for single-cast
assessment, Z should be less than or equal to 2, whereas
Z ‡ 4 is unacceptable according to Holdsworth
et al.[18,19] While this value is slightly above 2, its value
is acceptable according to Holdsworth and substantially
below the Z value for the fully parametric OSD model
where Z = 13.18.

Evans[9] found that for the LOESS version of the
OSD model, the average absolute error |U| was
55.68 pct and 46.84 pct of this error was random in
nature. On both measures, the LOESS model produces
inferior extrapolations.

C. A Second-Order Functional Coefficients GOSD
Model

Figure 7 shows the variation of the GOSD2 model
parameters with stress and temperature estimated using
just the accelerated test data. Figure 7(a) shows the
variation in Norton’s n with test conditions, where n is
the predicted change in ln(tF) following a small change
in ln(r),which from Eq. [6b] is found from the functional

coefficients as [b0�b1 ln roð Þ þ b2fln roð Þg2] +
[b1�2b2ln(ro)] + 3b2ln(ro). Figure 7(b) shows the vari-
ation in the activation energy for creep with test
conditions. The trends with respect to stress seen in
these two figures are broadly consistent with those
obtained using the first-order approximation

(a)

(c) (d)

(b)

Fig. 7—Variations in (a) Nortons n, (b) the activation energy for creep, and (c–d) the structural coefficients a and b, with stress and temperature
using the GOSD2 model.
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[Figures 4(a) and (b)] and so support the conclusions
drawn in the previous sub section with regard to
changing creep mechanisms.

The GOSD2 model was then used to extrapolate into
the longer-term data. The results are shown in Figure 8

where these predictions are plotted against the actual
failure times beyond 10,000 h. The trend line through all
the data points is quite close to the 1:1 line, and these
predictions have an average absolute error |U|

Fig. 8—Plot of actual against predicted failure times beyond 10,000 h using the GOSD2 model. The U statistics are as calculated by Evans.[17]

Fig. 9—Plot of time to failure against stress together with the predictions from the GOSD1 and GOSD2 models.

METALLURGICAL AND MATERIALS TRANSACTIONS A



associated with them of 25.3 pct which is some 6
percentage points lower compared to the GOSD1
model.

But again, the predictions are differing from this 1:1
line for three reasons. The first is because the slope of
the best fit line of 0.89 differs from 1 and this accounts
for some 17.87 pct of |U| (as revealed by |UR|, and
which is some 6 percentage points lower than when
using the first-order approximation). Secondly, the
average of the predictions differs from the average of
the actual failure times by 0.022 and this accounts for
some 5.38 pct of |U| (as revealed by |UM|, which is about
3 percentage points higher than when using the first-
order approximation). The rest of the error is random in
nature, and this accounts for some 76.75 pct of |U| (as
revealed by |UM|, which is about 3 percentage points
higher than when using the GOSD1 model). Figure 9
also reveals that most of the prediction errors occur at
the lowest stresses at temperature of 873 K. In summary
then, using the GOSD2 model over the GOSD1 model
results in a set of predictions with a lower overall mean
absolute percentage error, and with the proportion of
this error that is random in nature being slightly
higher—and so a slightly lower systematic error. The
Z value for this model is also closer to 2 compared to the
GOSD1, but like the first-order model most of the
prediction errors are associated with a temperature of
873 K.

Finally, Figure 9 plots the long-term predictions from
the first- and second-order functional coefficients ver-
sion of the OSD model in the more familiar stress v
failure time space. This reinforces the points made above
where the predictions are good from both models at all
temperature but 873 K. But at this temperature, the
GOSD2 model performs best.

V. CONCLUSION

This paper has demonstrated the inadequacy of using
the fully parametric OSD creep model for predicting
long-term failure times for 2.25Cr–1Mo from acceler-
ated test data. This failure was explained by non-con-
stant model parameters—the result of changing creep
mechanisms. The paper then introduces a semi-para-
metric estimation procedure for a generalized OSD
model (a structural coefficients version of the GOSD
model) that can be used to deal with changing creep
mechanisms while maintaining the structure of the
parametric model and consequently produce more
reliable long-term predictions compared to the fully
parametric version. When this technique was applied to
2.25Cr–1Mo steel, it was found that the model param-
eters varied in line with changing creep mechanisms but
in a partially different way compared to that already
suggested in the literature for this material. With
diminishing stress and increasing temperature, disloca-
tion creep within the crystal structure morphs into grain
boundary dislocation motion and finally Nabarro-Her-
ring creep. The functional coefficients models produced
better long-term extrapolations compared to both the
fully parametric OSD model and the LOESS method

introduced by Evans. Areas for future work include
applying this technique to other steels and high-temper-
ature materials and extending the approach by specify-
ing different forms for parameters a and b—perhaps by
allowing a and b to vary with both stress and
temperature.
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