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Criticality of the Thirring Model in 2+1D

Jude Worthy

Abstract

The 2+1d Thirring model provides a good laboratory to explore criticality in a strongly

coupled region. We investigate the utility of Ginsparg-Wilson relation obeying Dirac

operators, namely overlap operators and domain wall operators for this enterprise and

seek to improve them. These operators recover global U(2) symmetry in the continuum

limit as required by any theory with chiral symmetry. We do this via calculation of the

bilinear condensate and the evaluation of an equation of state around a phase transition.

However, numerical calculations using QFTs may be computationally very expensive,

especially around phase transitions. In the past often only quenched calculations have

been possible. As available computing power has increased however, dynamic calcula-

tions have become increasingly feasible. In this work we carry out both quenched and

dynamic simulations. We look to find critical exponents via the equation of state char-

acterizing the behaviour of the condensate in the continuum limit, and in the process

find improvements in the evaluation of the measurements.
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Chapter 1

Introduction

The fundamental idea of lattice field theory is to discretize spacetime, representing it

as a lattice of points and links, providing a natural regularistation, allowing access to

strongly coupled regions beyond the reach of perturbative methods. In Euclidean space,

working with the functional formalism (path integral formulations) the discretization

allows calculations on computers, utilising well established numerical methods from sta-

tistical mechanics. To find a continuum theory from the lattice one we must take the

limit of the lattice spacing a→ 0 in a manner corresponding to the renormalized group

techniques of Hamiltonian formulations, varying the parameters of the theory with a

suitably to keep the physical content constant.

From a condensed matter perspective the lattice spacing may correspond to different

physical systems, the lattice sites corresponding to the molecular structure of a metal

for example, and we may not initially seek the continuum limit. However, we may find

phase transitions in such a system occuring at critical values of the parameters. Such

critical phenomena are typically found in strongly coupled regions, and happen in the

continuum limit of the lattice theory. Thus the search for critical phenomena in the

condensed matter community corresponds to the search for a continuum theory in the

particle physics community.

From either persepctive finding the limit is a challenging task. On a lattice with a fixed

number of points the continuum limit corresponds to a vanishing volume. To keep the

volume constant requires a divergent number of lattice sites. Hence we must look at

lattice measurements close to, but not at, the continuum limit.

At a critical phase transition some physical quantity typically undergoes some sort of

continuous but non-smooth change. This quantity may be an order parameter. A

correlation length associated with the order parameter will be divergent at the phase

transition but will be characterised by a power law with its exponent (critical exponent)

in the region around the phase transition. As such, these exponents may be seen to

1



Ch.1 Lattice Quantum Field Theory 2

characterise the physics of the associated property. In this work we look at chiral sym-

metry breaking, in which the chiral condensate ⟨ψ̄ψ⟩ is the breaking order parameter,

and will be looking for appropriate exponents to describe its behaviour in the critical

region. To this end we carry out lattice simulations close to the transition and construct

an equation of state with suitable exponents.

Working in 2+1d, while having always been of theoretical interest, has become of prac-

tical interest especially with the industrial development of graphene. Exploring the

strongly coupled 2+1d Thirring model, a toy interacting fermion theory, is challenging

and has seen much endeavour increasingly over recent years. For example [1–6], cover as-

pects including critical flavour number, U(2) symmetry breaking, and meson correlators.

Different discretisations of the Dirac operator have been explored, including staggered,

domain wall, and SLAC fermions, and different results have been found. It is desirable

to capture as many of the continuum symmetries on the lattice as possible. However,

we cannot keep them all and must choose. Since we will be interested in U(2)-symmetry

breaking, picking a Dirac operator with U(2)-symmetry on the lattice would seem a

sensible choice. We choose to work with overlap and domain wall operators to this end.

I hope herein to contribute to this body of work.

In short the objectives of this thesis are to explore and compare some numerical at-

tributes of the chosen U(2)-invariant Dirac operators in the context of the 2+1d Thirring

model, and to calculate the critical exponents associated with the symmetry breaking

bilinear condensate in the continuum limit. We will access the continuum limit of the

lattice theory through the constuction of an equation of state in the vicinity of the lattice

fixed point.

The thesis is laid out as follows. The basics of lattice QFT in the functional formalism

is briefly highlighted in chapter 2. Some general aspects of Dirac operators are reviewed

in chapter 3, with a focus on the chiral operators which will be used in the numerical

calculations. Some details of the calculation of the operators are provided. Most of the

results in this work relate to the bilinear condensates which are described in chapter 4.

Chapter 5 reviews the Thirring model, and introduces the equation of state which will be

used to find the critical exponents. Chapter 6 gives an overview of dynamic fermions and

their evaluation before moving onto the results chapters. Chapter 7 shows the locality of

the overlap operator and looks at the Ginsparg-Wilson errors of the operators. Chapters

8 and 9 look at the condensates, equations of state, and critical exponents for quenched

and dynamic cases respectively. Chapter 10 considers the evaluation of the susceptibility

and the axial ward identity. Finally a summary and outlook is given in chapter 11.

Some of the early work relating to the locality of the overlap operator has been published

in the article [7] and further material has been presented and published at the symposium
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[8, 9]1.

Throughout, the following labels are often used in the legends of the figures, as well

as in the text. HT (occasinoally just H) denotes a formulation using the hyperbolic

tanh approximation to the sign function, and Z refers to a Zolotarev approximation. S

refers to a Shamir formulation and W the Wilson formulation. DW is the domain wall

formulation, and OL is the overlap formulation. Q refers to quenched, and D to dynamic

measurements. AXMY denotes a case where auxiliary fields have (dynamically) been

generated with Ls = X, and the measurements have been evaluated with Ls = Y . M

will usually refer to the mass type with M1 the standard mass, and M3 the twisted

mass, although M is the the domain wall height/overlap parameter. These labels will

sometimes be mixed together.

1Other unpublished presentations were given at the Miami 2020 Physics Conference (December 2020)
and the Asia-Pacific Symposium for Lattice Field Theory (August 2020).



Chapter 2

Lattice Quantum Field Theory

2.1 Functional Formalism

Following [10] the functional formalism (path integral method) of a fermionic theory

coupled to an auxiliary field in Euclidean space gives the quantisation

⟨O⟩ = 1

Z

∫
D[ψ, ψ̄]D[A] exp(−SF [ψ, ψ̄, A]− SG[A])O[ψ, ψ̄, A] (2.1)

Z =

∫
D[ψ, ψ̄]D[A] exp(−SF [ψ, ψ̄, A]− SG[A]) (2.2)

where ⟨O⟩ is the observable and Z is the generating (partition) function derived from

the classical action

S = SF [ψ, ψ̄, A] + SG[A] (2.3)

comprising (interacting) fermionic and bosonic components. The spinors ψ and ψ̄ are

4-component Grassmann fields on the lattice to ensure Fermi statistics, and A is a real

valued 3-component field. The actions comprise their respective lagrangains.

SF =

∫
dxLF [ψ(x), ψ̄(x), A(x)]

SG =

∫
dxLG[A(x)]

(2.4)

In this work we are interested in the single gauge invariantly coupled fermionic field

given by eqn. 2.5, and the gauge variant Thirring auxiliary field given by eqn. 2.6 in 2

spatial dimensions.

4



Ch.2 Lattice Quantum Field Theory 5

LF = ψ̄(γµ(∂µ + iAµ) +m)ψ (2.5)

LThirring
G =

1

2g2
A2

µ (2.6)

In order to make the integrals well defined the theory must be regularized, which we

achieve by moving onto a discrete lattice. The lattice regularization also enables the

exploration of strong coupling for which perturbative methods are not applicable and we

will then be able to calculate observables with the aid of computers. We will primarily

be concerned with the evaluation of the bilinear condensate, C = ⟨ψ̄ψ⟩. Hence our

observable of choice is O = ψ̄ψ.

2.2 Lattice Discretisation and the Dirac Operator

Working in 2 spatial dimensions, we discretise the continuum space x = (x0, x1, x2)

with a finite volume lattice over a volume V = T × L2 where T is the extent of the

time dimension and L the the extent of the spatial dimensions. We consider Nt and Ns

nodes in temporal and spatial dimensions, so that we have lattice spacings as = L/Ns

and at = T/Nt but we always work with a = as = at. We then have Nv = N2
sNt and

V = Nva
3. The fermion (Dirac) field points are distributed uniformly ψ(n) ≡ ψ(x(n))

at x(n) = (ta, ja, ia) for d = 3 with n = i + Nsj + N2
s t, and indices running from 0

to Ns/t − 1. The volume is periodic in the spatial dimensions and anti-periodic in the

temporal direction. As such there are no nodes on x0 = T , x1 = L, or x2 = L. The anti-

periodic conditions implement non-zero temperature conditions and are implemented by

fixing the temporal component of the auxiliary field Aµ(Nt − 1, j, i) = −Aµ(0, j, i). As

Nt → ∞, T → 0.

It would seem natural to simply discretise the bosonic field Aµ on the nodes, but

Wilson’s formulation ensured exact gauge invariance through the introduction of the

bosonic link fields Uµ(n). These links are located between nodes in their respective

orientation. eg U1(n) ≡ U1(t(n), i(n), j(n)) is on the link connecting nodes with coords

(t(n), i(n), j(n)) and (t(n), i(n)+1, j(n)). Such link fields may be constructed compactly

or non-compactly from the auxiliary field Aµ(n).

Compact link:

Uµ(n) = exp(iaAµ(n)) (2.7)

Non-Compact link:

Uµ(n) = 1 + iaAµ(n) (2.8)
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The Taylor expansion of the compact form is identical to the non-compact form up to

first order. It is tempting to think that these formulations should be equivalent in the

continuum limit a→ 0, but we shall see that they may lead to very different results.1

With the link fields suitably constructed we locate the discretized fermionic components

ψ(n) on the nodes. The naive discretization of the fermionic lagrangian at node n is

given by

LF (n) = ψ̄(n)(
d∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− Uµ(n− µ̂)†ψ(n− µ̂)

2a
+mψ(n)) (2.9)

with corresponding action

SF [ψ, ψ̄, U ] = a3
∑
n∈Λ

LF (n) = ψ̄D0ψ +mψ̄ψ (2.10)

The γµ are elements of a Clifford algebra. We will choose from 4x4 complex valued

matrix representations. 4x4 subelements of D0, where D = D0 +mI, are then given by

D0(j|i) = a3
d∑

µ=1

γµ
Uµ(j)δj,i+µ̂ − Uµ(j − µ̂)†δj,i−µ̂

2a
(2.11)

For the vector auxiliary field we have the lagrangian and action, where Aµ(n) is 3-

component (over µ) at lattice site indexed by n, and Λ is the set of all lattice sites.

LG(n) =
1

g2

∑
µ

A2
n,µ (2.12)

SG[A] = a3
∑
n∈Λ

LG(n) (2.13)

The discretisation provides a natural regularisation, with the grid spacing a providing

an ultra-violet cutoff, and the spatial size L providing an infra-red cutoff. The allowed

momenta are thus restricted to the Brillouin zone, pµ ∈ [−π/a, π/a]. To recover vacuum

conditions we require T → ∞, and correspondingly a finite time extent corresponds to

a finite temperature system. Thermal equilibirum is reached by extending the spatial

dimensions L→ ∞.

1It is to be noted that although we assume the convergence of the MCMC algorithm for the non-
compact case, it is not as clear cut as for the compact case.
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2.3 Lattice Measurements

We use the Matthews-Salam relations2 [11, 12] to integrate out the Grassmann variables

in the fermionic action, SF . We find the fermion matrix M ≡ M [A], where M results

from the replacement of each elementD(j|i) with a 4x4 complex valued matrix according

to the choice of gammas. Eqns 2.1 and 2.2 become

⟨O⟩ = 1

Z

∫
D[A] exp(−SG[A])det[M ]Ô[A] (2.14)

Z =

∫
D[A] exp(−SG[A])det[M ] (2.15)

The particular form of Ô[A] is not general in this notation. For example though, with

O = ψ̄ψ, and mass term mψ̄ψ in the Lagrangian, Ô[A] = Tr[M−1].

The Haar measure of the continuum becomes the product of weighted Riemannian in-

tegration (measure) over each auxiliary field component Ai,µ.

D[A] =
∏
i,µ

∫ ∞

−∞
dAi,µ (2.16)

Hence

Z =
∏
i,µ

∫ ∞

−∞
dAi,µ exp(−SG[A])det[M ] (2.17)

The calculations are now well defined, and it is feasible to calculate eqn. 2.14 analyt-

ically in some simple instances. However, in practice, we must resort to Monte Carlo

integration, based on a series of N auxiliary link field configurations {An} so that

⟨O⟩ ≈ 1

N

N∑
n=1

Ô[An] (2.18)

The error of the approximation decreases as 1/
√
N when the fields {An} are generated

independently with probability

P (An) ∝ exp(−SG[An])det(M [An]) (2.19)

The determinant must be positive for this technique to work. Unfortunately, the de-

terminant is not guaranteed to positive, and this is known as the sign problem. A

2See appendix A.1.
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commonly used remedy, which is assumed to be physically acceptable3, is to replace

M [A] with (M [A]M [A]†)1/2.

This covers the barest of bones of lattice field theory and we now turn to the choice of

Dirac operator.

3(M†M)1/2 may lose the locality of M if M not positive definite.



Chapter 3

Dirac Operators

We start by reviewing some properties and symmetries of the continuum operator, no-

tably the U(2) global symmetry, that we wish to replicate in the lattice formulations.

We then go on to describe the difficulty of achieving this symmetry caused by Nielsen-

Ninomiya ”No-Go” theorem, which states that chiral symmetry (the analogue of U(2)

symmetry in 3+1d) cannot be achieved on the lattice in conjunction with a set of other

desired lattice properties. The workaround to this problem, the Ginsparg-Wilson re-

lations, is described, and Dirac operators, domain wall and overlap, satisfying these

relations are then introduced. Calculational details are given of these operators. The

optimal Zolotarev approximation to the sign function required by the overlap operator

is specified as well as the coefficients required by the equivalent domain wall formula-

tion. Finally the relation between the overlap and domain wall formulations is provided.

With precise definitions forthcoming in this chapter, we believe this work introduces the

overlap and domain wall operators with Wilson kernel and twisted mass term to the

literature, and that simulations using this variant have not been carried out elsewhere

before.

3.1 Properties of the Continuum Dirac Operator

We consider the Euclidean Dirac equation (γµ(∂µ + iAµ) + m)ψ = 0. In 3+1d there

is no choice but for ψ to be a 4-component spinor, comprising two Weyl fermions and

a mass term coupling them. In 2+1d it may be 2-component in the irreducible form

comprising only a single Weyl fermion and mass term. However, this is not parity

invariant (invariant under a reflection). We choose the reducible 4-vector form which is

parity invariant [3], as shown in appendix A.2. Then we choose the gamma matrices

9



Ch.3 Dirac Operators 10

γ0 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , γ1 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ2 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 (3.1)

and we have

γ3 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , γ5 =


0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

 (3.2)

where γ5 ≡ γ0γ1γ2γ3 would be the chirality operator in 3+1d.

In 3+1d the helicity of a spinor ϕ(x) is the spin direction projected onto the plane normal

to its direction of motion, and so may be imagined to be a corkscrew motion rotating

either clockwise/left-handed or anti-clockwise/right-handed relative to the direction of

motion [13]. Since it is relative to the direction of motion, helicity is a constant of motion

but is not Lorentz invariant. However, it is independent of the frame of reference for

massless particles travelling at the speed of light. The chirality operator γ5 is closely

connected to helicity, but is Lorentz invariant. For massless fermions it corresponds to

helicity. γ5 has degenerate eigenvalues ±1 which are associated with a left and right

handedness. As such the Dirac 4-vector may be separated into a left-handed component

and right handed component via left and right projectors (operators with the property

P 2 = P ) using γ5.

P+ =
1 + γ5

2
; P− =

1− γ5
2

(3.3)

with further properties P+ + P− = I, P+P− = P−P+ = 0. We can then define left and

right handed Weyl fermions

ψR = P+ψ ; ψ̄R = ψ̄P−

ψL = P−ψ ; ψ̄L = ψ̄P+

(3.4)

from which we make the chiral decomposition of the fermion action

S = ψ̄Dψ +mψ̄ψ = ψ̄LDψL + ψ̄RDψR +m(ψ̄LψR + ψ̄RψL) (3.5)
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Eqn. 3.5 shows that the massless Dirac 4-vector may be viewed as comprising 2 inde-

pendent Weyl fermions, which couple with the introduction of a mass term.

As we will see below, due to an expanded global symmetry in 2+1d there is no longer a

unique choice of ”chiral” projector,1 and hence there is no longer a unique way to define

left or right handedness. Since we are free to choose certain alternative projectors, we

will instead use γ3 projectors.

P+ =
1 + γ3

2
; P− =

1− γ3
2

(3.6)

The choice of γ3 in eqn. 3.2 leads to these projectors having the simple form

P+ =

(
I 0

0 0

)
;P− =

(
0 0

0 I

)
(3.7)

where I is the 2× 2 identity matrix. γ5 and γ3 are not interchangeable in general, even

though we may choose either for the projector.

Having introduced chirality, we can introduce chiral symmetry. In 3+1d massless fermions

have global invariance under the chiral rotation

ψ → eiαγ5ψ ; ψ̄ → ψ̄eiαγ5 (3.8)

Chirality can be equivalently expressed by the chirality relation, the anti-commuting

relation

Dγ5 = −γ5D (3.9)

In 2+1d the Euclidean Dirac action for fermions was given by eqns. 2.4 and 2.5. The

action has global symmetries [3]

ψ → eiαψ ; ψ̄ → ψ̄e−iα (3.10a)

ψ → eαγ3γ5ψ ; ψ̄ → ψ̄e−αγ3γ5 (3.10b)

Further, when m = 0,

ψ → eiαγ5ψ ; ψ̄ → ψ̄eiαγ5 (3.11a)

1Strictly speaking, there is no chirality in 2+1d, but we continue to use the analogy.
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ψ → eiαγ3ψ ; ψ̄ → ψ̄eiαγ3 (3.11b)

These make up a U(2) symmetry, explicitly breaking to a U(1) ⊗ U(1) with the mass

term (the symmetry breaking is U(1) ⊗ U(1) → U(1) in 3+1d). This symmetry was

enabled by choosing the reducible rather than irreducible spinors. Since we are working

in a 2+1d ”physical” space, one may view the extra γ3 spin dimension as a fictitious

non-physical extra dimension. As well as eqn. 3.9 we have

Dγ3 = −γ3D
Dγ3γ5 = γ5γ3D

(3.12)

We distinguish explicit, spontaneous, and anomalous symmetry breaking [14]. Explicit

symmetry breaking occurs in the classical lagrangian as with the mass term in eqn. 3.5.

Anomalous symmetry breaking occurs when the lagrangian keeps its symmetry but on

quantisation, that is taking the path integral over the lagrangian, loses the invariance.

The symmetry breaking is associated with the measure rather than the lagrangian itself.

Spontaneous symmetry breaking maintains the symmetry in the lagrangian, but it is

broken in the ground state of the system. This is associated with a degeneracy of ground

states. These forms are not mutually exclusive but spontaneous symmetry breaking may

be hidden by anomalous and anomalous may be hidden by explicit.

In a chiral theory, chirality swaps under a parity (reflection) transformation. In a vector

theory, chirality remains constant under a parity (reflection) transformation [15, 16]. So

chiral symmetry does not imply a chiral theory. The search for a chiral theory on the

lattice was a signifcant challenge and led to the chirally symmetric Dirac operators which

we will consider, albeit with vector theories. In 3+1d chiral symmetry is anomalous.

Not so in 2+1d and we may be able to observe spontaneous symmetry breaking at some

critical value of some symmetry breaking parameter should the model possess such a

property.

Having already chosen the parity invariant 4-component form of ψ we are allowed to

replace the mass with the twisted invariant mass terms [3]:

m→ iγ3m

m→ iγ5m
(3.13)

which were shown to have signifcant numerical advantages. The twisted mass terms are

anti-hermitian. They are a consequence of the U(1)⊗ U(1) symmetry and hence found
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via the rotations eqns. 3.11a and 3.11b. We will use the m→ iγ3m variant extensively

throughout this work.

3.2 Wilson Dirac Operator

In the continuum a single massless fermion with momentum p is identified as a pole in

the momentum space propagator. Unfortunately, on the lattice we find 2d such poles,

where d is the dimension of the problem. This is known the doubling problem. Wilson

added a vanishing term (as a → 0), −a/2D2
µ, to the lagrangian to circumvent this. In

the continuum

SF [ψ, ψ̄, A] =

∫
d4x ψ̄(x)(γµDµ − a

2
D2

µ +m)ψ(x) (3.14)

Dµ = ∂µ + iAµ(x) (3.15)

We presented the naive Dirac operator on the lattice in section 2.2. We further add the

(lattice) Wilson correction

ψ̄Wψ = −a
5

2

∑
n∈Λ

ψ̄(n)(

d∑
µ=1

Uµ(n)ψ(n+ µ̂)− 2ψ(n) + U−µ(n)ψ(n− µ̂)

a2
) (3.16)

so the entries of W are

W (j|i) = −a
5

2

d∑
µ=1

Uµ(j)δj,i+µ̂ − 2δj,i + U−µ(j)δj,i−µ̂

a2
(3.17)

The Wilson Dirac operator is then just DW = D0 +W and the Wilson Dirac action is

SF [ψ, ψ̄, U ] = ψ̄DWψ +mψ̄ψ (3.18)

The Wilson-Dirac operator does not have chiral symmetry or U(2) symmetry in 2+1d.

However, it is γ5-hermitian, γ5Dγ5 = D†, and also γ3-hermitian in 2+1d.

3.3 Nielsen-Ninomiya No-Go Theorem

Unfortunately the Wilson term added to the Dirac operator to deal with the doubling

problem explicitly breaks chiral symmetry, i.e. while γ5D0 = −D0γ5, γ5DW ̸= −DWγ5.

More broadly the Nielsen-Ninomiya No-Go theorem [17], in 3+1d, asserts that certain
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desirable properties of a lattice model are simultaneously unachievable. [18] restates

the theorem as that there can be no net chirality (i.e. the number of left handed and

right handed particles is equal, and hence we cannot isolate a single left or right handed

particle, which is an objective of a chiral theory) in a lattice model of fermions in which

the Hamiltonian satisfies the following conditions:

1) it is quadratic in the fields

2) it is invariant under translations of the (cubic) lattice

3) it is invariant under change of the chiral phase of the fields

4) it is local, specifically in the sense that it is continuous in momentum space

Proofs and variants under differing assumptions have been proposed and [19] provides

one of the clearer introductions to the topic including the following definition in mo-

mentum space. Assuming the fermionic lattice action SF = a4
∑

p ψ̄pD̃(p)ψp, then the

following four assumptions imply the existence of doublers and that they comprise an

equal number of left and right handed particles.

1) Reflection positivity. This may be expressed as D̃(p) = γ4D̃(p,−p4)γ4.

2) Cubic group symmetry. These are the rotations and translations on the cubic

lattice and imply that further reflections hold: D̃(p) = γµD̃
†(p)(Rµp)γµ with

(Rµp)ν = pν(1− 2δµν).

3) Chiral invariance. D̃(p) = −γ5D̃(p)γ5.

4) Locality. Locality in coordinate space, ||D(x)|| ≤ Cexp(−γx) should fall off ex-

ponentially with the number of lattice spacings, implies continuity in momentum

space of D̃(p).

In order to remove the doublers one of these conditions must be broken. We note that

a discretisation is ultra-local if the derivative stencil is limited to only a finite number

neighbouring lattice sites.

In 2+1d we (masslessly) have U(2) symmetry analogously to chiral symmetry, and points

(3) are altered as set out in the next section.

3.4 Ginsparg Wilson Relation

The Ginsparg-Wilson [10, 20] (GW) relation provided the solution to the Nielsen-

Ninomiya conundrum which had been thought to be an insurpassable problem for chirally

invariant theories. Nevertheless, the domain wall [21] and overlap operators [22] circum-

vent the chiral condition. With a vanishing (in the continuum limit as a→ 0) modifica-

tion to the 3rd condition of the Neilsen-Ninomiya No-Go theorem, γ5D +Dγ5 = 0, all
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4 properties can be achieved for finite a. The (GW) relation may be given equivalently

by either of

γ5D +Dγ5 = 2aDγ5D

(1− aD)γ5D = −Dγ5(1− aD)
(3.19)

which replaces the chiral relation. For the 2+1d formulation, further GW relations

[3, 23, 24] are found.

γ3D +Dγ3 = 2aDγ3D

γ3γ5D −Dγ3γ5 = 0
(3.20)

Together these correspond to the invariant transformations

Ψ → eiαγ3(1−
aD
2

)Ψ ; Ψ̄ → Ψ̄eiαγ3(1−
aD
2

)

Ψ → eiαγ5(1−
aD
2

)Ψ ; Ψ̄ → Ψ̄eiαγ5(1−
aD
2

)

Ψ → eiαγ3γ5Ψ ; Ψ̄ → Ψ̄eiαγ3γ5

(3.21)

We also require that the Dirac operator D has γ5- and γ3-hermiticity, i.e. γ5Dγ5 =

γ3Dγ3 = D†. The GW relation may be further expressed in terms of a fully chirally

symmetric, but non-local, Dirac operator Dc, such that Dcγ5 + γ5Dc = 0.

Dc = (1− aD)−1D

D−1
c = D−1 − a

(3.22)

GW fermions do not suffer exceptional configurations [10]. Exceptional configurations

occur when negative real eigenvalues are close to the mass value. A vanishingly small

mass term will always be enough to render the smallest eigenvalue vanishingly positive.

Mass terms have not been considered so far. [25] specifies, with a = 1, the bare mass to

be added directly to the chiral Dirac operator rather than the GW operator, resulting

in the relations
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D = (Dc +m)(1 +Dc)
−1

Dc =
D −m

1−D

(3.23)

3.5 Ginsparg Wilson Dirac Operators

In this work we consider overlap and domain wall formulations which may be formally

equivalent (domain wall may be seen as a generalisation of the overlap although devel-

oped first). Within each method which we choose twisted or non-twisted mass, Shamir

or Wilson kernel, and Zolotarev or hyperbolic tanh (HT) sign approximations. One of

the driving considerations of this work is to discern the most pertinent differences be-

tween the formulations in the context of the 2+1d Thirring model. The chiral anomaly

for which the overlap method was developed does not exist in 2+1d, but it is thought we

still require the correct chiral symmetry on the lattice to attain the correct continuum

theory in the a→ 0 limit.

Although we do not explore it in this work we mention the SLAC Dirac operator as an

alternative solution to the doubling problem, which has been used in other closely related

studies [4], and has found conflicting results which will be discussed further. Rather than

using a finite point stencil for the derivative, a fourier representation is used which does

not have doublers, since the dispersion relation remains linear. However, it is non-local,

upsetting the Nielsen-Ninomiya conditions in that way2.

3.6 Domain Wall Operator

The domain wall method that eventually led to the overlap operator was initially devel-

oped by Kaplan [21], building on work of Callen and Harvey [26], and was an attempt

to find a chiral theory on the lattice, with the plan to put the electroweak part of the

Standard Model on the lattice. Eventually, it was used for QCD, a vector theory, and

is used in this work. We review the origin of the method closely following the original

work [21] and especially a good early overview [27].

To begin, consider the Hamiltonian operator of free fermions in a single spatial dimension

H = σ1[σ2∂x+m0], where σi are Pauli matrices, and σ3 = −σ1σ2 is the chirality operator.

Define a so called mass defect term in a non-physical extra dimension, s, such that m(s)

is a smooth asymptotic monotonic odd function with

2However, it can be shown that taking the derivative of a sufficiently smooth ϕ, with a Fourier
operator is exponentially local. The non-locality only manifests with discontinuous ϕ. Limiting the
possible Dirac fields ϕ on the lattice may provide another way around the Nielsen-Ninomiya theorem.
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m(s) =


−m0 s→ −∞
0 s = 0

+m0 s→ +∞
(3.24)

Then we consider the new Hamiltonian with the extra dimension

H = −σ1[σ2∂x + σ3∂s +m(s)] (3.25)

which has chiral energy eigenstates

Ψ± = eipxxΦ±(s)u± (3.26)

Φ±(s) = exp(±
∫ s

0
m(s′)ds′) (3.27)

and u± are chiral eigenstates

σ3u± = ±u± (3.28)

Φ+(s) diverges and hence is not normalizable, leaving Φ−(s) as the only acceptable

solution. The chiral zeromode eigenstate it describes propagates parallel to the wall

and falls off exponentially away from the wall. Hence the mode is bound to the s = 0

hyperplane.

Moving to an infinite lattice, with lattice spacing a and m(s) given by a step function

m(s) = m0θ(s); θ(s) =


−1 s ≤ a

0 s = 0

+1 s ≥ a

(3.29)

where m0 ≡ sinh(aµ0)
a we have the Hamiltonian given by

H = −σ1[σ2△x + σ3△s +m(s)] (3.30)

where △k is the usual 2nd order 1st derivative stencil. This has two chiral zeromode

solutions

Ψ± = eikxΦ±(s)u± (3.31)
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where, with ns the index of the lattice node in the extra s-dimension,

Φ+(s) = eµ0|s| (3.32)

Φ−(s) = (−1)nsΦ+(s) (3.33)

Φ+(s) is now normalizable, and hence is also an acceptable solution. Unfortunately there

are still doublers and we have 2 positive chirality states, and 2 negative chirality states

(2d in higher dimensions). Again we can turn to the Wilson correction for doublers with

the Hamiltonian

H = −σ1[σ2△x + σ3△s +m(s)− r(△xx +△ss)] (3.34)

which has solutions

Φ±(s± a) = −keff (s)Φ±(s) (3.35)

and it is found that not only are the doublers removed, but the Φ+ solution is not

normalizable, resulting in a single chiral zero mode bound to the domain wall and

exponentially decreasing away from the wall, which was the objective of the method.

Unfortunately, for calculations we must have a finite lattice and boundary conditions

(bcs) must be imposed. Periodic bcs in the s-direction and antiperiodic bcs in the x-

direction are chosen. To ensure that solutions are separable in the s-dimension, the

lattice Hamiltonian eqn. 3.34 is rewritten

H = −σ1[σ2sin(k) + σ3△s +m(s)− r(cos(k)− 1)− r△ss)] (3.36)

with momenta k given by, for n = 0, ..., L− 1

k =
π

L
(n+ 1/2) (3.37)

The mass terms are given by

m(s) ≡ sinh(µ0)θ(s); θ(s) =


−1 1 < s < Ls+1

2

+1 Ls+1
2 < s < Ls

0 s = 1, Ls+1
2

(3.38)
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Now there are two domain walls, and two defects, one at s = 1 and one at s = Ls+1
2 .

The energy eigenvalues of eqn. 3.36 come in ± pairs each corresponding to an eigenstate

bound to one of the defects and of opposite chirality.

Finally we want to couple to an auxiliary field. Unfortunately, regardless of whether

the auxiliary field is constructed with an extra s-dimension or not, the theory is vector

like again, and not the chiral theory that was initially envisaged. However, the electro-

weak sector of the Standard Model was the target chiral theory. Shamir and Furman

[28, 29] proposed using the method for QCD, a vector-like theory, and provided a slightly

different formulation that is the most often used, the most salient point now being that it

satisfies the Ginsparg-Wilson relation. The lattice mass distribution now has the defect

on the boundaries rather than the interior walls.

m(s) =

−M 0 < s < Ls

0 s = 0, Ls

(3.39)

We present that formulation and similar formulations in the following. It is most easily

viewed in a reduced matrix form in the extra dimension, whereDW ≡ DW (−M) contains

the domain wall height, M , and m is a bare mass which we require to be introduced

into the formalism to take the m→ 0 limit.

DSDW (m) =


DW + I −P− 0 mP+

−P+ DW + I −P− 0

0 −P+ DW + I −P−

mP− 0 −P+ DW + I

 (3.40)

where we identify the fermion on the wall with

ψ(x) = P+Ψ(x,N) + P−Ψ(x, 1)

ψ̄(x) = Ψ̄(x, 1)P+ + Ψ̄(x,N)P−
(3.41)

We consider this the standard formulation which has the standard mass term, the Shamir

kernel, and the hyperbolic tanh sign approximation. To consider the variants we split

eqn. 3.40 into component massive and non-massive parts, DDW (m) = D0
DW+Dm

DW , and

with the introduction of coefficients ωs into the diagonal of the kinematic component,

which are set to 1 for the usual hyperbolic tanh (HT) formulation.
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D0
SDW =


ω1D

∥ + I −P− 0 0

−P+ ω2D
∥ + I −P− 0

0 −P+ ω3D
∥ + I −P−

0 0 −P+ ω4D
∥ + I

 (3.42)

Dm1
SDW =


0 0 0 P+

0 0 0 0

0 0 0 0

P− 0 0 0

 (3.43)

Then without adjustment to the kinematic component, we may choose the twisted mass

form

Dm3
SDW = iγ3D

m1
SDW =


0 0 0 iγ3P+

0 0 0 0

0 0 0 0

iγ3P− 0 0 0

 (3.44)

The subscript SDW denotes the Shamir kernel formulations. We also consider the Wil-

son kernel formulations, subscript WDW , introduced by Borici [30], and made optimal

by Chiu [31], the latter introducing non-unity coefficients chosen to match the Zolotarev

approximation in the overlap operator.

D0
WDW =


ω1D

∥ + I (ω1D
∥ − I)P− 0 0

(ω2D
∥ − I)P+ ω2D

∥ + I (ω2D
∥ − I)P− 0

0 (ω3D
∥ − I)P+ ω3D

∥ + I (ω3D
∥ − I)P−

0 0 (ω4D
∥ − I)P+ ω4D

∥ + I


(3.45)

We denote the T1 mass terms, mDm1
TOL, which are correspondingly given as

Dm
WDW =


0 0 0 −(ω1D

∥ − I)P+

0 0 0 0

0 0 0 0

−(ω4D
∥ − I)P− 0 0 0

 (3.46)
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Dm3
WDW =


0 0 0 −i(ω1D

∥ − I)P+γ3

0 0 0 0

0 0 0 0

−i(ω4D
∥ − I)P−γ3 0 0 0

 (3.47)

The identification with the fermion fields must be adjusted from eqn. 3.48.

ψ(x) = P+Ψ(x,N) + P−Ψ(x, 1)

ψ̄(x) = −Ψ̄(x, 1)(ω1D
∥ − I)P+ − Ψ̄(x,N)(ωND

∥ − I)P−
(3.48)

The domain wall fermionic partition function ZF =
∫
D[Ψ, Ψ̄, U ] e−SF [Ψ,Ψ̄,U ], with

SF =
∫
Ψ̄DDW [U ]Ψ, includes not only the fermion field identified in eqns. 3.41 and

3.48 but also Ls − 1 non-physical fields spread throughout the extra dimension. While

measurements may be taken with identification of the physical field we need to add so

called Pauli-Villars fields to the action to make a partition function which corresponds

to a single field. This is necessary for the correct production of auxiliary fields as shown

in chapter 6. We require

Z =

∫
D[Ψ, Ψ̄,Φ, Φ̄, U ] e−SF [Ψ,Ψ̄,U ]−SG[U ]−SPV [Φ,Φ̄,U ] (3.49)

where the Pauli-Villars action SPV can be defined in terms of the domain wall operator

with mass set to 1.

SPV [Φ, Φ̄, U ] =

∫
x
ΦDDW [U ](1)Φ (3.50)

We note that these pseudo fermions Φ, Φ̄, are complex valued rather than being Grass-

mann numbers, and hence are bosonic, with the property that

∫
D[Φ, Φ̄, U ] e

∫
x Φ̄DDW [U ]Φ =

1∫
D[Ψ, Ψ̄, U ] e

∫
x Ψ̄DDW [U ]Ψ

=
1

det[DDW ]

(3.51)
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3.7 Overlap Dirac Operator

The overlap operator was developed in a series of papers [32, 33] following on from

Kaplan’s orginal domain wall paper [21], before finally finding its modern form by Neu-

berger [22] in the lattice functional formalism. It was developed in the Hamiltonian

formalism and a review of the initial development is provided by Jansen [27]. It is re-

lated to the domain wall operator, exactly when the bulk formulation is used3. It was

originally given by (although without the mass term), with lattice spacing a = 1,

DOL =
1 +m

2
+

1−m

2
V (3.52)

V = DW (D†
WDW )−1/2 (3.53)

DW ≡ DW (−M) (3.54)

Equivalently, since DW = γ5D
†
Wγ5,

DOL =
1 +m

2
+

1−m

2
γ5sgn(HW ) (3.55)

HW = γ5DW (3.56)

where 0 < M < 2 (the mass term in the Wilson Dirac operator, eqn. 3.54) is here

an overlap regularisation parameter4 corresponding to the domain wall height, and the

sign function is defined by sgn(X) = X(X2)−1/2. Eqn. 3.56 is the Wilson kernel . The

kernel is not unique, and HW may be replaced, most notably by theShamir kernel HS

where

HS = γ5DW (2 +DW )−1 (3.57)

and the Mobius kernels which comprise combinations of the two. We focus on the Wilson

and Shamir kernels. In 2+1d we may replace the γ5 with γ3 [35] so that we have the

structurally identical formulation

DOL =
1 +m

2
+

1−m

2
γ3sgn(HW ) (3.58)

HW = γ3DW (3.59)

We also have the alternative mass formulations

3The bulk formulation uses the same auxiliary field on every slice in the extra s-dimension.
4There is topological significance to this parameter not considered in this work, as discussed in [34]

for example.



Ch.3 Dirac Operators 23

Dimγ3
OL =

1 + imγ3
2

+ V
1− imγ3

2
(3.60)

Dimγ5
OL =

1 + imγ5
2

+ V
1− imγ5

2
(3.61)

which should be physically the same. Although V is γ3,γ5-hermitian, the new mass terms

are not (since i makes them anti-hermitian). Note also there is a numerical difference

whether the mass term is left or right of the V term.

An approximation to the sign function is necessary, and typically a rational function is

used. After the approximation is applied the operator is sometimes referred to as the

truncated overlap operator, although we will continue to refer to the approximation as

the overlap operator.

Similarly to the domain wall operator, it is applicable to vector theories and has been

applied extensively to QCD. As such it has been designated as the vector overlap operator

[36], whereas the same authors introduce the chiral overlap operator. The chiral overlap

operator exploits further similarity with the domain wall operator which is more general

in the sense that the auxiliary field may vary in the extra dimension. The chiral overlap

operator uses this flexibility to have different auxiliary fields associated with left and

right chirality modes.

We see that the overlap operator satisfies the GW conditions, eqns. 3.19 and 3.20

γ3D +Dγ3 = γ3(
1

2
+

1

2
V ) + (

1

2
+

1

2
V )γ3

= γ3 + γ3
V

2
+
V

2
γ3 =

1

2
(γ3 + γ3V + V γ3 + γ3)

= 2(
1

2
+

1

2
V )(

γ3
2

+
γ3
2
V ) = 2Dγ3D

(3.62)

The same holds for the γ5 formulation, and also

γ3γ5D −Dγ3γ5 = γ3D
†γ5 −Dγ3γ5

= Dγ3γ5 −Dγ3γ5 = 0
(3.63)

However, it is not so clear that they satisfy locality. However, we will numerically

demonstrate this in chapter 7.
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3.8 Direct Calculation of the Overlap Operator

The computational difficulty in calculating the overlap operator is in the sign function.

Fortunately it can be expressed, and calculated approximately, as a rational function,

including as a factored expression or as a partial fraction. The partial fraction formula-

tion may be derived from the factored form. The sign function can be expressed as [37],

where the coefficients are to be determined.

sgn(x) = cx

∏
i x

2 − ni∏
j x

2 − dj
(3.64)

and hence we have

DOL =
1 +m

2
+

1−m

2
cDW

∏
i(γ5DW )2 − niI∏
j(γ5DW )2 − djI

DOL =
1 +m

2
+

1−m

2
cDW

∏
iD

†
WDW − niI∏

j D
†
WDW − djI

(3.65)

The denominators may be evaluated, for example, successively with a conjugate gradient

algorithm, or simultaneously with a multishift conjugate gradient algorithm [38]. The

factored form above may be reexpressed as a partial fraction for improved numerical

stability, in which eqn. 3.65 becomes

DOL =
1 +m

2
+

1−m

2
cDW (a0 +

∑
j

aj

D†
WDW − djI

) (3.66)

The product ranges are i = 1, ..., Ni, j = 1, ..., Nj . a0 is one if Ni = Nj and zero

if Ni < Nj . To evaluate with the Shamir kernel, DS = DW [2 + DW ]−1, with D†
S =

D†
W [2 +D†

W ]−1, which corresponds to the domain wall formulation eqn. 3.42, we may

use

VS =
DW

2 +DW
[
D†

W

2 +D†
W

DW

2 +DW
]−1/2

≈ DW

2 +DW

∑
j

aj(2 +DW )[D†
WDW + (2 +D†

W )di(2 +DW )]−1(2 +D†
W )

(3.67)
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3.8.1 Hyperbolic Tangent Approximation

The coefficients must be chosen. A simple approximation to the sign function is given

by the hyperbolic tangent (polar) approximation [39].

sgn(x) ≈ tanh(ntanh−1x) =
1− (1−x

1+x)
n

1 + (1−x
1+x)

n
(3.68)

The approximation becomes exact as n → ∞. Note for matrices (1 + x)/(1 + y) would

be ambiguous if x and y do not commute. This becomes

sgn(x) ≈


xn

∏n/2−1
j=1 [x2+(tan jπ

n
)2]∏n/2−1

j=0 [x2+(tan
(j+1/2)π

n
)2]

n even

x
n

∏(n−1)/2
j=1

[x2+(tan jπ
n
)2]

[x2+(tan
(j−1/2)π

n
)2]

n odd
(3.69)

and the partial fraction expressions

sgn(x) ≈
{

2x
n

∑n/2−1
j=0

1+(tan
(j+1/2)π

n
)2

x2+(tan
(j+1/2)π

n
)2

even (3.70)

1

0.001 0.01 0.1 1 10 100 1000

sg
n

x

N=200
N=100
N=50

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

er
r

x

N=200
N=100
N=50

Figure 3.1: Hyperbolic tangent (polar) approximation to the sign function with dif-
ferent n. Left panel: Sign Function. Right panel: Error.
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Figure 3.2: Hyperbolic tangent approximation to the sign function.

We see in figure 3.1 that the approximation is roughly symmetric about x = 1, and that

the error, in the right panel, remains large away from x = 1 even for relatively large n.

It is strictly symmetric about 0, as shown in fig. 3.2 with the approximation vanishing

as it approaches zero for both even and odd cases, and as x → ∞ for even n cases.

However, it seems worthwhile choosing even n since the odd n approximation diverges

as x→ ∞

We can use the scaling rule, eqn. 3.71 [40], to keep the accuracy in the lower range, and

forgoing it in the upper range (or vice versa). Significant reductions in n can potentially

be achieved, improving the speed of calculation of the approximation. Fig. 3.3 shows

the scalings where N has been reduced from 200 to 50 via scalings of 1 to 4. The error

at the lower range remains nearly identical to the higher n counterpart.

sgn(x;n) ≈ sgn(sx;n/s) (3.71)
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Figure 3.3: Scaled hyperbolic tanh (polar) approximation to the sign function with
different scale factor s. Left panel: Sign Function. Right panel: Error.
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3.8.2 Zolotarev Optimal Rational Function

We seek an odd rational approximation over the positive and negative ranges [r1, r2] and

[−r2,−r1]. Zolotarev [41] found optimal such rational approximations which we denote

Z [r1,r2]
sgn (x) ≈ sgn(x) (3.72)

The approximation is optimal in the L∞ norm in the specified range, i.e. no other ratio-

nal approximation exists over the specified range that does not have a larger maximum

error somewhere in that range.

Herein we follow [31, 37, 42–44], which provide derivations. At the crux of it is the

Jacobi elliptic sine function sn(z, k), and what we call the Zolotarev elliptic function,

with coefficients given in the algorithm box below

sn(z/M, λ)

sn(z, k)
=

1

M

N∏
m=1

1− sn(z,k)2

cm

1− sn(z,k)2

c′m

(3.73)

from which we we can find the continuous real rational function by considering the

contour z(t) = tK for t ∈ [0, 1] and z(t) = K + i(t− 1)K ′ for t ∈ [1, 2], where K ≡ K(k)

and K ′ ≡ K(k′) are the complete elliptic integrals, defined in the box below, and k′ =

(1− k)1/2. Specifying x = sn(z(t), k) gives

sn(z/M, λ) =
x

M

∏
m

1− x2

cm

1− x2

c′m

(3.74)

The approximation may be stated as in the following box:

The Zolotarev sign function applies over a designated range [r1, r2] and approxi-

mation order N . Then if N is even let, Nn = N/2− 1 and Nd = N/2, otherwise

if N is odd, let Nn = (N − 1)/2 and Nd = (N − 1)/2. Let the Zolotarev sign

function be given by

Z [r1,r2]
sgn (r) = Z [1,β]

sgn (x) = mx

∏Nn
m=1 1− x2

cm∏Nd
m=1 1− x2

c′m

(3.75)

where β = r2
r1

and x = r
r1
. Then we have the factored expression

Z [r1,r2]
sgn (r) = dr

∏Nn
m=1(am − r2)∏Nd
m=1(dm − r2)

(3.76)
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with d = m
r1

∏Nd
m=1 r

2
1c

′
m∏Nn

m=1 r
2
1cm

, am = r21cm, dm = r21c
′
m. Further, it can be expressed via a

partial fraction decomposition

Z [r1,r2]
sgn (r) = dr(b0 +

Nd∑
m=1

bm
r2 + dm

) (3.77)

where bm must be evaluated and dm are the denominators of the factored expres-

sion.

Calculation of the Zolotarev sign function coefficients is then carried out as follows:

Set range parameters

k =
1

β

k′ =
√
1− k2

(3.78)

∆ = K ′/N (3.79)

Set complete elliptic integrals

K =

∫ 1

0

dt

(1− t2)(1− k2t2)1/2

K ′ =

∫ 1

0

dt

(1− t2)(1− k′2t2)1/2

(3.80)

Set constants

m =
2λ

1 + λ

1

M
(3.81)

M = R(1) (3.82)

C =
sn(K, k)sn(∆, k′)

1− dn2(K, k)sn2(∆, k′)
(3.83)

λ =
M

C R(C2)
(3.84)

where

R(x) =

∏Nn
m=1 1− x

cm∏Nd
m=1 1− x

c′m

(3.85)

and

cm =
−sn2(2m∆, k′)

1− sn2(2m∆, k′)

c′m =
−sn2((2m− 1)∆, k′)

1− sn2((2m− 1)∆, k′)

(3.86)

Fig. 3.4 shows the errors of the two approximations. The Zolotarev errors are, in a



Ch.3 Dirac Operators 29

sense, uniform across the specified range, whereas the HT errors, while very small around

x = 1 struggle with large errors away from unity. In fig. 3.5 we see the distribution

of denominator coefficients of the two approximations. The left panel shows the strong

clustering and narror range of the HT method contrasting with the much wider range

of the and more even spread of the Zolotarev method.
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Figure 3.4: Errors for approximations to sign function. Left panel: HT. Right panel:
Zolotarev.

0

0.5

1

1.5

2

2.5

3

3.5

4

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000100000

d
en

om
in

a
to

r
co

effi
ci

en
t

x

N=200
N=100
N=50

0

0.5

1

1.5

2

2.5

3

3.5

4

1e-08 1e-06 0.0001 0.01 1 100 10000 1e+06 1e+08

d
en

om
in

a
to

r
co

effi
ci

en
t

x

N=20
N=40
N=60

Figure 3.5: Distribution of denominator coefficients for approximations to the sign
function with different n. Note the wide difference in x-axis ranges. Left panel: Hy-

perbolic tanh. Right panel: Zolotarev approximation.

The domain wall formulation requires knowledge of uj , the roots of Z [r1,r2]
sgn (x)− 1. The

extrema and roots are calculated via
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Extrema: For m ∈ (1, . . . , N + 1)

xm = r1(1− k′
2
sn2((m− 1)∆, k′)−1/2 (3.87)

Roots: For m ∈ (1, . . . , N)

y0 =Msn−1(

√
1 + 3λ

(1 + λ)3
, λ′)

ym = (−1)m−1y0 + 2[
m

2
]∆

(3.88)

xm = r1(1− k′
2
sn2(ym, k

′))−1 (3.89)

where [m2 ] is the lowest integer value and asn is the inverse of the Jacobi elliptic

sine function.

Fig. 3.6 shows error plots, extrema and root locations over an exemplary range.
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Figure 3.6: Roots and extrema of the Zolotarev approximation with N = 12.

The Zolotarev algorithm was optimal across the ranges [−r2,−r1] and [r1, r2]. We may

further seek an optimal rational function across just [r1, r2]. The Remez algorithm is

an iterative technique, also based on Chebyshev’s theorem, which has no requirement

that the function be odd, and will find more optimal solutions should they exist. As it

turns out, it seems that the Remez algorithm does identically give the optimal Zolotarev

solution, and no improvement.
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3.9 Relation Between Domain Wall and Overlap

The equivalence of the domain wall and overlap formulations was understood from the

beginning. Early in the development of the overlap operator it was noted [33] that

the domain wall of [21] could be developed from their formalism. We show the formal

equivalence of the methods via their shared determinant in appendix A.3 following [39]

and [35]. Below we just quote the most pertinent relations from [40] to highlight the full

matrix equivalence. With the compacting matrix

C =


P− P+ 0 0

0 P− P+ 0

0 0 P− P+

P+ 0 0 P−

 , C† = C−1 =


P− 0 0 P+

P+ P− 0 0

0 P+ P− 0

0 0 P+ P−

 (3.90)

we have

KDW = C†D−1
DW (1)DDW (m)C =


DOL(m) 0 0 0

−(1−m)△R
2 1 0 0

−(1−m)△R
3 0 1 0

−(1−m)△4
4 0 0 1

 (3.91)

[35] has further shown the equivalence for the twisted mass terms. It is important to

note that the twisted mass formulation is not used for the Pauli-Villars terms, so that

KM3
DW = C†D−1

DW (1)DM3
DW (m)C (3.92)

Hence (KDWΨ)1 = DOLψ when Ψ = {ψ, 0, · · · , 0} and since we have

(KM3
DW )−1 = C†(DM3

DW )−1(m)DDW (1)C (3.93)

we may also calculate the inverse of the overlap operator indirectly with (K−1
DWΨ)1 =

D−1
OLψ. We sometimes refer to these calculations as indirect calculation of the overlap

operator rather than calculation of the domain wall operator.

3.10 Further Formulations

There are alternative algebraic formulations using an extra “dimension” and exploit-

ing the Shur complement to achieve the same evaluation of the overlap operator [39].

Although we don’t explore them further it is useful to be aware of them. The Schur
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complement of a block matrix is defined via its LDU decomposotion M = LDU , to be

the bottom right element of the D component

M =

(
A B

C D

)
=

(
I 0

CA−1 I

)(
A 0

0 D − CA−1B

)(
I A−1B

0 I

)
(3.94)

This is given by

S = D − CA−1B (3.95)

and has the property that det(M) = det(A)det(D − CA−1B).

We may indirectly evaluate the partial fraction formulation sign(H) =
∑n

j=1
ajH

H2−d2j
using



γ5DW
a1

1 0 0 1

1 a1γ5DW

d21
0 0 0

0 0 γ5DW
a2

1 1

0 0 1 a1γ5DW

d22
0

−1 0 −1 0 R


(3.96)

which has the Schur complement

R+
a1γ5DW

D†
WDW − d21

+
a2γ5DW

D†
WDW − d22

(3.97)

There is also a continued fraction formulation

sign(γ5DW ) = β0γ5DW +
1

β1γ5DW + 1
β2γ5DW+ 1

β3γ5DW

(3.98)

which is the Schur complement of


β3γ5DW 1 0 0

1 β2γ5DW 1 0

0 1 β1γ5DW 1

0 0 1 β0γ5DW

 (3.99)



Chapter 4

Bilinear Condensate

The bilinear condensate ⟨ψ̄ψ⟩ is the primary measurement of this work, and we will use

calculations of it to look for the critical coupling, βc, in the lattice Thirring model, taking

m→ 0, and to find critical exponents characterising the behaviour of the condensate in

the vicinity of the critical point. The suitability of the different variants set out in this

chapter will be explored in the results chapters.

4.1 Measurements

We start by introducing some useful notation. With D ≡ D[U ], we define the brackets

⟨·⟩F and ⟨·⟩G with integrals

⟨O⟩F ≡
∫

D[Ψ, Ψ̄]O[Ψ, Ψ̄]exp(−Ψ̄DΨ) (4.1)

⟨O⟩G ≡
∫

D[U ]exp(−SG[U ])O[U ] (4.2)

We then have the fermionic part of the partition function

ZF ≡ ⟨1⟩F =

∫
D[Ψ, Ψ̄]exp(−Ψ̄DΨ) = det[D] (4.3)

and the full interacting partition function

Z = ⟨ZF ⟩G =

∫
D[U ]exp(−SG[U ])det[D] (4.4)

Our measurements will then be of the form

33
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⟨O⟩ = 1

Z
⟨⟨O⟩F ⟩G (4.5)

which defines our use of the bracket ⟨·⟩.

4.2 Bilinear Condensate

We are most interested in the bilinear condensate, C = ⟨ψ̄ψ⟩, herein referred to as just

the condensate. The condensate is the order parameter we choose for the Thirring model.

It is zero in the unbroken phase and non-zero in the broken phase. The continuous but

non-smooth change occurs at the critical coupling strength. The condensate is defined

by the derivative of the free energy1 wrt the symmetry-breaking parameter, and is given

by

C ≡ ∂lnZ

∂m
(4.6)

Noting that in general2

∂lnZ

∂m
=

1

Z
⟨∂ZF

∂m
⟩
G

(4.7)

and since for Dirac operators linear in mass which we again split according to D =

D0 +mDm we have

∂ZF

∂m
= ⟨ψ̄Dmψ⟩F (4.8)

and hence we find that the condensate may be equivalently expressed as

C ≡ ⟨ψ̄Dmψ⟩ (4.9)

To evaluate this we require

∂ZF

∂m
= ⟨Tr[DmD−1]det[D]⟩ (4.10)

and from here we use the Monte Carlo integration3 with

1By analogy to classical statistical mechanics in which the Helmholtz free energy F (T ) ∝ lnZ(T )
2Derivations of equations in this section are given in appendix A.5
3As set out in appendix B.1.
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C =
1

N

∑
i

Tr[Dm[Ui]D
−1[Ui]] (4.11)

We observe in passing that the mass term in the Shamir domain wall formulation is

independent of U . We now turn to the particular forms for the overlap and domain wall

operators.

4.3 Overlap Condensate

We distinguish two mass variants of the overlap operator, the standard mass and the γ3

twisted mass formulation, given in section 3.7, and again separate the mass terms from

the non mass terms with the notation given in eqn. 4.12. The indices j = 1 corresponds

to the standard mass term and j = 3 the twisted mass term so that

Dj
OL = D0

OL +mDMj
OL (4.12)

in which we have the mass terms

D0
OL =

1

2
+

1

2
V

DM1
OL =

1

2
− 1

2
V

DM3
OL =

iγ3
2

− V
iγ3
2

V =γ3sgn[H]

(4.13)

H is given by either theWilson kernelHW = γ3DW or the Shamir kernelHS = γ3DW (2+

DW )−1. The trace terms to evaluated for the condensate are then given by

C̃1
OL = Tr[DM1

OL (D
1
OL)

−1] = Tr[
1

1−m
((D1

OL)
−1 − 1)] (4.14)

C̃3
OL = Tr[DM3

OL (D
3
OL)

−1] = Tr[
−1

iγ3 +m
((D3

OL)
−1 − 1)] (4.15)

We note that a left handed formulation with the twisted mass gives the same condensate

even though DM3
OL (D

3
OL)

−1 ̸= DM4
OL (D

4
OL)

−1 where

DM4
OL =

iγ3
2

− iγ3
2
V (4.16)
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These formulations are unaffected by the choice of kernel, and derivations are given in

appendix A.5.

4.4 Domain Wall Condensates

For the domain wall formulation, the trace is more complicated due to the splitting of

the fermion onto opposite walls. Also, the formulation is dependent not only on the

mass term but also on the choice of kernel. The different fomulations have already

been described for splitting and we again use the notation Dj
DW = D0

DW + mDMj
DW

with subscript DW replaced with SDW for Shamir formulations and WDW for Wilson

formulations, and the superscript j again corresponds to the mass formulation. In each

case the M matrix corresponds the domain wall operator, so for example in eqn. 4.17

M = D1
SDW . The subscript indices indicate the submatrix of the extra dimension, as

illustrated in eqn. 3.42 for example. The variant components are defined in section 3.6.

Then we have traces for the Shamir kernel given by

Tr[DM1
SDW (D1

SDW )−1] = −(Tr[P+(M
−1)N1] + Tr[P−(M

−1)1N ]) (4.17)

Tr[DM3
SDW (D3

SDW )−1] = −i(Tr[P+M
−1
N,1]− Tr[P−M

−1
1,N ]) (4.18)

And for the Wilson kernel we have

Tr[DM1
WDW (D1

WDW )−1] = (Tr[(ω1D
∥ − I)P+M

−1
N,1] + Tr[(ωND

∥ − I)P−M
−1
1,N ])

(4.19)

Tr[DM3
WDW (D3

WDW )−1] = i(Tr[(ω1D
∥ − I)P+M

−1
N,1]− Tr[(ωND

∥ − I)P−M
−1
1,N ])

(4.20)

Derivations of these are given in [44].



Chapter 5

Thirring Model in 2+1D

The Thirring model [45] was introduced as a toy relativistic model with an analytic

solution in 1+1d. With considerable current industrial interest in planar materials

such as graphene, understanding of the 2+1d case is of interest both as toy model

and is of relevance to the commercial world. However, there is no analytic solution in

2+1d, and odd dimensioned theories have significantly different properties to their even

numbered counterparts. The model may be further considered a stepping stone towards

understanding strongly coupled QED in 2+1d. It has been suggested [3] that this is

the simplest relativistic fermi model which necessitates numerical techniques for the

exploration of the strongly coupled sector where perturbative approaches don’t work.

The Euclidean continuum formulation of the Thirring model for a single fermion field,

in which the current density Jµ = iψ̄γµψ is conserved, so that
∂Jµ
∂xµ

= 0, is given by [46]:

S[ψ, ψ̄] =

∫
d3xψ̄(γµ∂µ +m)ψ +

g2

2
(ψ̄γµψ)

2 (5.1)

It has a global U(2) symmetry with mass terms explicitly breaking this to U(1)⊗ U(1)

as set out in section 3.1. The self interacting term may be reformulated (see appendix

A.4) with an auxiliary field so that we have S[ψ, ψ̄] = SF [ψ, ψ̄, A] + SG[A], where the

fermionic action takes the form of the usual gauge invariant Dirac term although the

Thirring action SG[A] is not gauge invariant:

SF [ψ, ψ̄, A] =

∫
d3xψ̄(γµ(∂µ + iAµ) +m)ψ (5.2)

SG[A] =
1

2g2

∫
d3xA2

µ (5.3)

This formulation allows the Monte Carlo integration technique already introduced (eqn.

2.18) to be used in calculations. After discretisation we have the dimensionless coupling

37
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strength parameter β = a/g2. We keep the lattice spacing fixed at a = 1 and will vary

β in its stead.

We will will seek fixed point parameter values, described in the next section, in the

lattice theory parameter space1. In the case of the Thirring model, we have two pa-

rameters2 m and β. We a priori know that mf = 0 and will seek βf . Fixed points

correspond to continuum theories, that is taking a → 0, although methodologically we

will control a through β. If 0 < βf < ∞ then it is a critical coupling, βc = βf , and

it is associated with a phase transition. At such a phase transition there may be an

observable which changes phase.3 Such an observable is an order parameter and we

wish to characterize that order parameter. Lumping together [47] higher order forms4

from Ehrenfest’s classification of phase transitions, we distinguish between first order

phase transitions wherein the order parameter is discontinuous at the critical point, and

continuous phase transitions in which some higher derivative of the order parameter is

discontinuous. The characterisation will be with power law functions (functions of the

form f(a, b) = aαbβ) expressed in an equation of state (EoS) around the critical point.

For the Thirring model we will concentrate on the condensate C = ⟨ψ̄ψ⟩ as the order

parameter and will seek some form C(m,β) which holds close to the critical point. To

this end we continue on a path set out in the 90s with the Gross-Neveu model [48], and

later the Thirring model [2], and will utilise the EoS developed therein.

The change in order parameter at the critical point is caused by the breaking of some

symmetry and is called spontaneous symmetry breaking.

Early numerical work on the 2+1d Thirring model was carried out with staggered

fermions [49]. More recent work has included SLAC fermions [4], and domain wall

fermions [50]. A summary of related work in the area is provided in [6]. Somewhat

problematically, the different methods have found different critical flavour numbers.

Simulations with staggered formulations lead to 3 < Nc < 4, and the SLAC formu-

lations have Nc < 1. Domain wall results indicate 1 < Nc < 2. In this work we

continue with the domain wall/overlap formulation, motivated by the intention to cap-

ture the U(2) symmetry on the lattice, in contrast to staggered fermions which break

from U(1) ⊗ U(1) → U(1), but also with a local formulation in contrast to the SLAC

fermions.

5.1 Fixed Points, Power Laws, and Critical Exponents

Although it is usual to consider the lattice spacing fixed in lattice calculations, it is

intuitive to consider the continuum from the a → 0 limit. As the lattice spacing a

1The parameter space is just the set of lattice theories covering all possible values of the parameters.
2We have already specified the number of fermions, Nf = 1, and do not consider it a parameter here.
3The critical point of water is a counter example of this.
4The lowest order of discontinuous derivative gave the classification order.
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varies, if the parameters of the theory are fixed, β and m in our Thirring model, the

physical measurables will change. That is to say, changing the lattice spacing changes the

physical theory. For small enough a, to keep the same physical theory we must change

the parameters in accordance with a. That is we require β ≡ β(a), and m ≡ m(a). To

be independent of this change requires ∂β
∂a = 0 which defines a fixed point5. We will

find this fixed point in the continuum limit as a → 0. Thus we are saying that at a

fixed point the constants of the theory (which govern the physics) are independent of

the lattice scale. This is equivalent to the usual perturbative renormalization process

[48]. In the Thirring model we have the critical parameters mc = 0 and we want to find

βc.

A consequence of scale independence is that ratios of measurements at corresponding

ratios of scales should be equal. Denoting a measurement M using a lattice lagrangian

L[β] with a single parameter β (ignoring m for illustration), close to a critical value

β = βc, this can be expressed as (with the colon : meaning such that)

M[L(β : β − βc = c)]

M[L(β : β − βc = αc]
=

M[L(β : β − βc = d)]

M[L(β : β − βc = αd]
(5.4)

M can then be expressed as a power law M ∝ (β − βc)
δ since if f(a)

f(αa) = f(b)
f(αb) then

f(x) ∝ xδ. Since we can find this power law through curve fitting we can then extrapolate

to find the measurement of the continuum limit.

In the region around a system with dimensionless critical coupling value βc, the hy-

perscaling hypothesis [51] asserts that the only significant parameter is a length scale

ξ of the order parameter. For the Thirring model we use the condensate as the order

parameter. Letting Σ(x) = ψ̄(x)ψ(x), Σ = (
∑

xΣ(x))/V , the condensate may be ex-

pressed as C = ⟨Σ⟩, and we define the associated correlation length ξ such that for large

|x− y| ≫ ξ:

⟨Σ(x)Σ(y)⟩ ∝ 1

|x− y|p e
−|x−y|/ξ (5.5)

Then the length scale has an associated power law with exponent ν as the critical

coupling strength is approached.

ξ ∝ |β − βc|−ν (5.6)

However, it is divergent at βc. At the critical coupling the correlator takes a pure power

law form

5Note this not the beta function relating coupling strength to energy scale.
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⟨Σ(x)Σ(y)⟩ ∝ 1

|x− y|d−2−η
(5.7)

which defines another critical exponent η. These two critical exponents are the physical

properties of the system that are the ultimate goal of our calculations. Given the diver-

gence of the length scale at the critical coupling we must work with calculations in the

vicinity of the critical coupling. It is easier to calculate the order parameter than the

diverging length scale directly, and we shall do this in conjunction with an equation of

state in order to evaluate the critical exponents.

5.2 Equation of State

From RG equation reasoning [2] we have the general macroscopic equation

H(M, t, 1) ∼M δF(tM−1/βm) (5.8)

where H is some field that breaks the symmetry explicitly, M is the order parameter

broken at the critical point, t is the distance from the critical point, F is a universal

scaling function, and the 1 in H refers to the lattice regularization. For the Thirring

model, the external force H, is replaced with the mass m, the order parameter M is the

bilinear condensate ⟨ψ̄ψ⟩, and the coupling strength β = a/g2 is the critical parameter,

so t = β − βc. Then we have

m = ⟨ψ̄ψ⟩δ F [(β − βc) ⟨ψ̄ψ⟩−1/βm ] (5.9)

and after taking the Taylor expansion of F we have the equation of state (EoS)

m = A(β − βc) ⟨ψ̄ψ⟩δ−1/βm +B ⟨ψ̄ψ⟩δ (5.10)

in which A = F(0) and B = F ′(0). Considering the line m = 0, and since ⟨ψ̄ψ⟩δ ̸= 0 in

the broken phase, we have F [(β − βc) ⟨ψ̄ψ⟩−1/βm ] = 0, and hence

(β − βc) ⟨ψ̄ψ⟩−1/βm ∼ const (5.11)

Clearly, at the critical coupling we have β − βc = 0, so

m ∼ ⟨ψ̄ψ⟩δ (5.12)
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We can relate δ and βm back to ν and η via the hyperscaling relations, with d = 3:

βm =
1

2
ν(d− 2 + η) =

1

2
ν(1 + η) (5.13)

δ =
d+ 2− η

d− 2 + η
=

5− η

1 + η
(5.14)

and hence

η =
5− δ

1 + δ
(5.15)

ν =
2βm
1 + η

(5.16)

For Dirac operators which have the same physical content, we would expect the cal-

culated critical exponents to be the same. Hence the choice of Wilson or Shamir

kernel should yield the same critical exponents, and that calculation and comparison

is one of the objectives of this work. If so there should be some relation between

mw = EoS(βw, Cw(mw, βw)) and ms = EoS(βs, Cs(ms, βs)) so that for some functions

f , and g,

ms = f(mw, βw)

βs = g(mw, βw)
(5.17)

Rather than seeking critical exponents according to an equation of state [52] consid-

ers more general space of four fermi models, including Gross-Neveu interactions (ψ̄ψ)2,

Thirring interactions (ψ̄γµψ)
2 as well as (ψ̄γ35ψ)

2 and (ψ̄γµνψ)
2 and looks at a network

of fixed points in the parameter space. Should our results not match it could be in-

dicative that such a wider model space is required in which to find a continuum theory.

The magnitude of the discrepancy might also measure the magnitude of the required

correction.

Uniqueness of universality class implied by locality [53] suggests different discretisations

should have the same continuum limit, but in a space with a multitude of fixed points

it is difficult to ensure different algorithms converge to the same fixed point.
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5.3 Quenched Generation of Auxiliary Fields and the Choice

of Measure

We want to generate an ensemble of auxiliary fields so that we can use the Monte Carlo

integration calculation of eqn. 2.18. However, the determinant of the Dirac operator

in the probability density function, eqn. 2.19, is very costly, and some insight can be

garnered simply assuming det[D] = 1. This is the quenched approach, and then we are

interested in the quenched auxiliary measure

∫
D[A] exp(−SG[A]) (5.18)

which, for the Thirring model with Riemannian measure, eqn. 2.16, and with Ak ≡ Ai,µ,

is given by

∏
k

√
β

2π

∫ ∞

−∞
dAke

−β
2
A2

k (5.19)

So our sequence of auxiliary fields An may be generated with each value being an inde-

pendent gaussian random number An
k ∼ N (0, 1β ). This is the non-compact measure. A

compact (unnormalised) measure [54] is given by

∏
k

∫ π

−π
dAke

β[cos(Ak)−1] (5.20)

for which we require our sample Ak to be taken from the probability density function

eβ[cos(Ak)−1]/N where N =
∫ π
−π dx e

β[cos(x)−1].

However, for a fermion measurement, we use either non-compact links Uk = 1 + iaAk,

eqn. 2.7, or compact links, Uk = eiaAk , eqn. 2.8, transforming A to U for use in Dirac

operators, denoted D[UNC ] or D[UC ].

In true gauge field theories we want the link fields to be unitary, U(1), to ensure gauge

invariance on the lattice and hence the compact formulation is natural. It is appropriate

to use the compact measure with compact links. However, this introduces O(a) terms

into the naive lattice fermion action [10]. Since the auxiliary field of the Thirring model

is not gauge invariant there is no reason to force a U(1) link and so it seems natural

to use the non-compact link formulation for which no additional terms are found in the

lattice fermion action. Further, there are no lattice artifacts in the bosonic action of

order higher than the intended A2
µ term when using the non-compact link. Accordingly

the non-compact measure is appropriate. There is plenty of precedent in the literature

[3, 5] for this. However, compact links and measures have also been explored with the
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Thirring model [54]. We are primarily interested in the non compact, but will touch on

the compact as well in our calculations.6

It is worth pointing out that at first glance it seems that any derivative of the compact

or non compact links should be the same in the a → 0 limit, and indeed in the weakly

coupled limit, where Ak is small, UC |a→0
β→∞ = UNC |a→0

β→∞, the Dirac operators are the

same, D[UC ] = D[UNC ], and the compact and non compact measures are equivalent.

However, away from the weakly coupled region this is not the case and they constitute

distinct formulations.

6We note that the RHMC algorithm to be described in the next chapter is only formally proven for
the compact case.



Chapter 6

Dynamic Fermions

While quenched fermions have been studied extensively in the past, that was largely

due to the computational challenge of dynamic fermions, for which the det[D] = 1

assumption is not made. We will distinguish between the valence fermions - that is the

Dirac operator used to calculate measurements - and sea fermions - the Dirac operator

used in the generation of the auxiliary fields. Compromising between quenched and

dynamic fermions we may use different Dirac operators for each calculation. If they are

not the same, then the measurements are considered partially quenched. The primary

reason to do this, similarly to full quenching, is to accelerate the calculation. At best

this may be viewed as two calculationally inconsistent methods for different parts of the

overall calculation, and at worst as being a non-physical calculation. Nevertheless it is

an established practice; partially quenched simulations in QCD have been carried out

with regular Wilson fermions for the sea components, and domain wall valence fermions

for example. Changing the mass term has also been tested [10], although [55] gives an

example where the condensate measured using massively generated gauge fields in the

m→ 0 limit erroneously remained non-zero.

Since we want to calculate the integral eqn. 2.14 with Monte Carlo integration, and

we cannot simply generate the auxiliary fields via the distribution functions allowed by

the quenched formulation, alternative methods must be found. Such methods include

Markov chain, classical dynamics, and langevin (stochastic dynamics) methods [19, 39],

but perhaps the currently most used method is the hybrid Monte Carlo method [56],

taking aspects of classical dynamics and the Markov methods. The rational hybrid

Monte Carlo [57] (RHMC) method allows for the calculation of any number of fermion

fields rather than the necessarily even number of fermion fields of the original hybrid

Monte Carlo (HMC) method.

44
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6.1 Markov Chain Monte Carlo Generation of Auxiliary

Fields

We want to generate a sequence of independent auxiliary fields A from which to derive

the Dirac operator link fields U used in the Monte Carlo integration of our lattice

measurement, eqn. 2.18. For a given action S[A], we want to find a distribution A with

probability distribution P [A] ∝ e−S[A]. This is done via Markov chain (A0, . . . , AN ).

The essence of a Markov chain is simply that the generation of the next stochastic

variable in the sequence is dependent only on the previous value and not the entire time

history. [39] gives more details and proofs of the underlying maths, but the resulting

Metropolis algorithm is

1. Choose A0.

2. Loop for n = 1, N

� Choose some A′, according to any probabilistic rule which ensures that

all allowable A fields may be achieved after a finite number of steps

(this is ergodicity).

� Assign An according to

An =

A′ with probability min{1, exp(−S[A′]− S[An−1])}
An−1 otherwise

For N large enough, AN will take the specified distribution ∝ e−S[A], regardless of the

choice of A0 and we have created an independent A field for the Monte Carlo integration.

To ensure the convergence of the AN field to a fixed probability distibution, it suffices

to have detailed balance, also called time reversibility. Some more details are given in

appendix B.2. In practice one does not choose a new initial field A0 for each new field

to be generated, and we take our fields from a single extended Markov chain. Further,

the fields extracted from this chain may be correlated but there are methods available

to work with correlated data.

6.2 Hybrid Monte Carlo Generation of Auxiliary Fields

We want a good way to choose A′. The most utilized method is currently to adopt a

non-physical hamiltonian dynamics step, specifying the hamiltonian H = 1
2P

2 + S[A],

and then march according to
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Ȧ =
∂H

∂P
= P (6.1a)

Ṗ = −∂H
∂A

= −∂S[A]
∂A

(6.1b)

The time marching scheme must be time reversible to satisfy detailed balance. Further

symplectic integrators are bound to surfaces of constantH to within discretisation errors.

To this end the leapfrog method1 is used to discretise the time marching. Here that is

if A is evaluated at t = i△t, then P is evaluated at t = (i + 1/2)△t. It is possible

to evaluate the force term, Ṗ , when we use an effective action Seff (A) which has real

numbers rather than the Grassmann numbers of the original action. An−1 is known

at the beginning of each hamiltonian dynamics step, except for A0 which must be set,

either as a random distribution or fixed to zero. Each member of P must be set to a

random gaussian distribution at the beginning of each step. This is the hybrid Monte

Carlo method introduced in [56].

1. Choose A0

2. Loop for n = 1, N

(a) Initialise ϕ, and Pstart with gaussian random variables.

(b) Set Astart = An−1 and evaluate H0 = H(ϕ, Pstart, Astart).

(c) Loop for t = 1, T

i. March P and A with leapfrog scheme.

ii. Check if loop ends.

(d) Evaluate H1 = H(ϕ, Pend, Aend)

(e) Monte Carlo acceptance step An = Aend with probability

min{1, exp(H0 −H1)}, otherwise An = An−1

Note however, now the probability in the acceptance step uses the artificial H rather

than the original action S, since the fixed point distribution of the Metropolis algorithm

now includes the hamiltonian momentum variables P . However, the marginal probability

distribution of the auxiliary field remains e−S[A].

6.3 Effective Action and Pseudofermions

Again, we need to remove the Grassmann variables from eqn. 2.3. We will replace the

fermionic action SF [ψ̄, ψ, U ] with an effective action Seff [ϕ,U ] which we can use with

1For the advection equation given by
qn+1
i −qn−1

i
2△t

+ ∂qn

∂x
= 0
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the HMC strategies [58].

Since the Grassmann integral can be recast (assuming M is positive definite) with com-

plex valued pseudofermions ϕ via

∫
D[ψ, ψ̄]exp(−ψ̄Mψ) =

∫
D[ϕ, ϕ†]exp(−ϕ†M−1ϕ) (6.2)

we will have the have partition function

Z =

∫
D[A]D[ϕ, ϕ†] exp(−Seff [ϕ,A]− SG[A]) (6.3)

in which the effective action for 2 species of fermion is given by the real valued

Seff [ϕ, ϕ
†, U ] = SG[U ] +

1

2
ϕ†(D[U ]†D[U ])−1ϕ (6.4)

We have used M = (D[U ]†D[U ])−1 where we have exploited det[D[U ]] = det[D†[U ]]

to ensure positive semidefinite eigenvalues, since the eigenvalues of γ5D[U ] are real

and D[U ] has γ5-hermiticity. These attributes may not be true in general but are for

operators satisfying the GW relations. For Nf = 1 we want

Seff [ϕ, ϕ
†, U ] = SG[U ] +

1

2
ϕ†(D[U ]†D[U ])−1/2ϕ (6.5)

corresponding to partition function

Z =

∫
D[U ] exp(−SG[U ])det[(D†[U ]D[U ])]1/2 (6.6)

ϕ is initialised at the beginning of each trajectory with complex gaussian distribution

P (ϕ) ∼ exp(−1
2ϕ

2).

6.4 Effective Domain Wall Action

Denoting the domain wall fermion operator with bare massm,M(m), and incorporating

the Pauli-Villars components for the sea fermions gives D[U ] =M(m)M(1)−1 so letting

the two fermion form be D†D, where we have dropped the explicit dependence on U ,

we have
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Z =

∫
D[U ] exp(−SG[U ])det[M †(1)−1M †(m)M(m)M(1)−1]1/2

=

∫
D[U ] exp(−SG[U ])det[(M †(1)M(1))−1/4(M †(m)M(m))1/2(M †(1)M(1))−1/4]

(6.7)

Hence the effective action is given by

Seff [ϕ, ϕ
†, U ] = SG[U ] + ϕ†(M †(1)M(1))

1
4 (M †(m)M(m))−

1
2 (M †(1)M(1))

1
4 )ϕ

(6.8)

as given in [46].

6.4.1 Force Terms

We need to evaluate ∂S
∂Ax,µ

, eqn. 6.1b, for the hamiltonian evolution step. The matrix

derivative dA−1

dt = −A−1 dA
dt A

−1 is useful in the following. In the Thirring model we have

for the auxiliary field

∂SG[A]

∂Ax,µ
=

2

g2
Ax,µ (6.9)

For the fermionic term we have

δS

δAx,µ
= ϕ†

δ(M †M(1))1/4

δAx,µ
(M †M(m))−1/2(M †M(1))1/4ϕ

+ ϕ†(M †M(1))1/4
δ(M †M(m))−1/2

δAx,µ
(M †M(1))1/4ϕ

+ ϕ†(M †M(1))1/4(M †M(m))−1/2 δ(M
†M(1))1/4

δAx,µ
ϕ

= 2Re[ϕ†
δ(M †M(1))1/4

δAx,µ
(M †M(m))−1/2(M †M(1))1/4ϕ]

+ ϕ†(M †M(1))1/4
δ(M †M(m))−1/2

δAx,µ
(M †M(1))1/4ϕ

(6.10)

Denoting
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ϕ̂ =(M †M(m))1/4ϕ

ϕ̄ =(M †M(m))−1/2ϕ̂
(6.11)

we have the much more benign looking

δS

δAx,µ
= 2Re[ϕ†

δ(M †M(1))1/4

δAx,µ
ϕ̄] + ϕ̂†

δ(M †M(m))−1/2

δAx,µ
ϕ̂ (6.12)

The rational hybrid monte carlo method [57, 59] evaluates these fractional powers as par-

tial fraction expansions, the coefficients of which are obtained with the Remez algorithm,

an implementation of which is provided by [60]. We have the expansions

(M †M(m))α = α0 +
∑
i

αi

M †M(m) + βi

δ(M †M(m))α

δAx,µ
=
∑
i

αi
δ

δAx,µ

1

M †M(m) + βi

(6.13)

δ

δAx,µ

1

M †M(m) + βi
= (M †M(m) + βi)

−1 δ(M
†M(m) + βi)

δAx,µ
(M †M(m) + βi)

−1

(6.14)

∂(M †M(m) + βi)

∂Ax,µ
=M †(m)

∂M(m)

∂Ax,µ
+
∂M †(m)

∂Ax,µ
M(m) (6.15)

Ultimately the domain wall force terms boil down to the force terms of Wilson Dirac

operator. If the Wilson kernel of the domain wall formulation is being used, then extra

force terms must be included to account for the off-diagonal terms in eqn. 3.45.

6.4.2 Dirac and Wilson Force Terms

We are looking for ∂SF [A]
∂Aµ(x)

. For the (massless) naive part

SF [ψ, ψ̄, U ] =
∑
n∈Λ

ψ̄(n)(
d∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− Uµ(n− µ̂)†ψ(n− µ̂)

2
) = ψ̄D0ψ

(6.16)
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For the non-compact links we have (remembering A†
µ = Aµ since A is real)

SF [A] =
∑
n∈Λ

ψ̄(n)(
d∑

µ=1

γµ
(1 + iAµ(n))ψ(n+ µ̂)− (1 + iAµ(n− µ̂))†ψ(n− µ̂)

2
)

(6.17)

and so

∂SF [A]

∂Aµ(x)
= (ψ̄(x)γµiψ(x+ µ̂) + ψ̄(x+ µ̂)γµiψ(x))/2 (6.18)

∂S†
F [A]

∂Aµ(x)
= −i(ψ̄(x)γµψ(x+ µ̂) + ψ̄(x+ µ̂)γµψ(x))/2 (6.19)

and for the compact links we have

SF [A] =
∑
n∈Λ

ψ̄(n)(
d∑

µ=1

γµ
eiAµ(n)ψ(n+ µ̂)− (eiAµ(n− µ̂)†ψ(n− µ̂)

2
)

∂SF [A]

∂Aµ(x)
= (ψ̄(x)γµie

iAµ(x)ψ(x+ µ̂) + ψ̄(x+ µ̂)γµie
−iAµ(x)ψ(x))/2

(6.20)

and the Wilson part

SFW [ψ, ψ̄, U ] = −1

2

∑
n∈Λ

ψ̄(n)(

d∑
µ=1

Uµ(n)ψ(n+µ̂)−2ψ(n)+U−µ(n)ψ(n−µ̂)) (6.21)

For the non-compact formulation we have

SFW [A] = −1

2

∑
n∈Λ

ψ̄(n)(
d∑

µ=1

(1 + iAµ(n))ψ(n+ µ̂)− 2ψ(n) + (1 + iAµ(n− µ̂)†)ψ(n− µ̂))

∂SFW [A]

∂Aµ(x)
= −1

2
(ψ̄(x)iψ(x+ µ̂)− ψ̄(x+ µ̂)iψ(x))

(6.22)

and for the compact formulation we have
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SFW [A] = −1

2

∑
n∈Λ

ψ̄(n)(
d∑

µ=1

(eiAµ(n))ψ(n+ µ̂)− 2ψ(n) + (eiAµ(n−µ̂)†)ψ(n− µ̂))

∂SFW [A]

∂Aµ(x)
= −1

2
(ψ̄(x)ieiAµ(x)ψ(x+ µ̂)− ψ̄(x+ µ̂)ie−iAµ(x)ψ(x))

(6.23)

6.5 Effective Overlap Action

It is interesting to note the step which separates the force term of the domain wall

formulation from the overlap formulation. Although the force terms are different the

measurements should still be identical between the methods in the Monte Carlo integra-

tion limit. The question would be whether there is any difference in acceptance rate or

other properties of the hamiltonian dynamics step. For the overlap action we have the

partition function, identical to eqn. 6.6

Z =

∫
D[U ] exp(−SG[U ])det[DOL(m)D†

OL(m)]1/2 (6.24)

and for which we have the effective action

Seff [ϕ, ϕ
†, U ] = ϕ†1(DOL(m)D†

OL(m))−1/2ϕ1 (6.25)

In order to directly recast this in a domain wall formulation we use ϕ̃ = {ϕ1, 0, ..., 0},
and recall KOL(m) = C†M−1(1)M(m)C, eqn. 3.91. Then

Seff [ϕ, ϕ
†, U ] = ϕ̃†(KOL(m)K†

OL(m))−1/2ϕ̃

= ϕ̃†[C†M−1(1)M(m)M †(m)(M †)−1(1)C]−1/2ϕ̃

= ϕ̃†(C†)1/2(M †(1))1/2(M(m)M †(m))−1/2(M(1))1/2C1/2ϕ̃

(6.26)

And so comparing with eqn. 6.8 we see the alterations which facilitate the use of a

symmetric matrix inverter. The C matrices can be dropped since they just recombine

to make a new set of random numbers.

ϕ̃†(C†)1/2(M †(1))1/2 → ϕ̃†(M †M(1))1/4

(M(1))1/2C1/2ϕ̃→ (MM †)1/4ϕ̃
(6.27)



Chapter 7

Locality and the GW error

A code has been written in Fortran implementing the overlap and domain wall operators

set out in chapter 3 with which to explore some of their properties. We provide some

validation of the code before looking at the locality and the GW error.

7.1 Validation

Fig. 7.1 shows the Ls convergence of Dirac overlap operators (eqn. 3.55 and variants)

with a fixed auxiliary field, and a fixed field ψ to apply the operator to. With j being

the Ls value, for direct evaluation we use

errj = |Djψ −Dj−2ψ|∞ (7.1)

For indirect evaluation of the overlap operator utilising the domain wall operator, eqns.

3.91 and 3.92, we have

errj = |vj − vj−2|∞ (7.2)

where vj = (D5
jΨj)1, and Ψj = {ψ, 0, ..., 0}, so that vj is the same size as Ψj . D

5 = KDW

or D5 = KM3
DW .

The error of the Shamir operator is seen to converge more quickly than for the Wilson

operator in both HT (hyperbolic tangent) and Z (Zolotarev) cases, the latter converging

much more rapidly with Ls as expected. The convergence rates are indifferent to the

choice of mass term, a slightly surprising result given our a priori knowledge [3] of the

significant improvements to be had using the twisted mass formulation M3. The bare

mass is set to 0.05. For the HT formulations, the indirect calculations should give

identical values to the direct calculations (the Shamir Zolotarev and Shamir HT are

52
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only the same in the Ls limit). This is shown in the right panel where the convergence

plots are identical for the corresponding formulations. 122 × 12 lattices were used and

the auxiliary field instance was generated, with the quenched assumption, with weak

coupling of β = 2. Not only do we want each formulation to converge with Ls, we want

all Shamir formulations to convergence to the same values, and all Wilson formulations

to converge to the same values, although these will be distinct. Happily, we find this to

be the case.
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Figure 7.1: Dirac Operator Convergence. Left panel: Direct evaluation of the overlap
operator (eqn. 3.55 and variants). Right panel: Indirect calculation of the overlap

operator through KDW (eqn. 3.91) and KM3
DW (eqn. 3.92)

7.2 Locality of Overlap Operator

Overlap and domain wall fermions operators in the Ls → ∞ limit obey the GW relation.

In order to recover the U(2) symmetry in the continuum limit a → 0, we must have

the GW terms aDγ5D (eqn.3.19) and equivalently the transform terms aD
2 (eqn.3.21)

vanishing in the same limit. A sufficient condition for this to be the case is the Dirac

operator being exponentially local, which also ensure the uniqueness of the continuum

limit [53]. The overlap operator is a dense matrix and manifestly non-local and hence

exponential locality is certainly not obvious. Proof that it is has been given for the

overlap operator in 3+1d in the weakly coupled region for QCD [53], and numerical

support was also provided. The proof depends on the positive real boundedness of

H†H, where H is the kernel of the sign function, and makes a separate case for when

the smallest eigenvalues go to zero. However, the upper boundedness stems from the

unitarity of the gauge links U = eiθ. However, with the non-unitarity U = 1 + iθ, there

is no such bound. Further, we are considering a strongly coupled region. Considering

these factors, it is not inevitable that locality will hold near a critical region, nor in an

unbounded model of different dimension.

To recover continuum U(2) symmetry as a→ 0, we require
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e
iαγ3(1−aD

2
)

a→0 = eiαγ3 (7.3)

To see that exponential locality is sufficient to achieve eqn.7.3, note that

eiαγ3(1−
aD
2

)Ψ = eiαγ3(I + iαγ3(−
aD

2
) + · · · )Ψ (7.4)

so that recovery requires

[aDΨ]a→0 = 0 (7.5)

Remembering D is itself dependent on a, we have Ψ′
j = [a

∑
iDjiΨi]a→0 = 0, which is

true if [
∑

iDjiΨi]a→0 <∞, which is true for any bounded Ψ if [
∑

iDji]a→0 <∞, which

is true if D is exponentially local, and hence exponential locality allows recovery of U(2)

symmetry.

Now, following the numerical methodology of [53], we want to illustrate locality in the

critical region. We consider the effect of a Dirac operator D on a point source ηy,i

specified at an arbitrary location y on the lattice, and for a specified Dirac index, i. ie

ηy,i(x, d) = δx,yδi,d. Then we evaluate

ψ = Dηy,d (7.6)

Next, we calculate the decay of the point source as

l(r) = max{|ψ(x)|2 : |x− y|1 = r} (7.7)

using the l2 norm for the decay value (over the dirac indices), and the l1 norm to

determine the distance from the source location y. This calculation of distance has been

called the “Manhattan taxi distance”.

For locality to hold, we expect to see exponential decay at some distance from the source.

The decays of the Wilson overlap operator for quenched cases are shown for different

lattice sizes and coupling strengths in figure 7.2. The mass is non-zero in the left panel

and zero in the right panel, and suggests that the locality is essentially independent

of m, at least for small m. Increasing the coupling strength slows the decay rate, and

increasing the lattice volume shows the decay continuing to fall away further from the

source at the same rate, indicating there is not a finite volume effect preventing the

decay rate going to zero.
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Figure 7.2: Quenched Wilson Locality. Calculated with Zolotarev, Ls = 24, range
[0.001, 10]. Measurements taken at 8 points on each of 50 auxiliary fields. Left panel:

m = 0.01. Right panel: m = 0.

Fig. 7.3 shows the decay with compact links for the quenched Wilson case. Unlike

the compact case for which the decay rate is monotonically increasing with coupling

strength, now the decay rate increases through the strong coupling region and then

starts to decline again.
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Figure 7.3: Quenched Wilson Locality. Measurements taken at 8 points on each of
50 auxiliary fields, m = 0, Zolotarev range [0.001, 10]

Although quenched formulations were used in the work of [53], we really want to use

dynamically generated auxiliary fields. To this end we use fields, from a collaboration

[7], generated with the Shamir kernel, m = 0.005, the twisted mass, and the HT ap-

proximation with Ls = 64 on a 162 × 16 mesh. β is varied over the established critical

region β ≈ 0.28. Plots are shown in fig. 7.4.
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Figure 7.4: Dynamic Shamir Locality. Measurements taken at 8 points on each of 12
auxiliary fields.

We see in the left panel that, although increasing slightly over the critical point, the

decay rate is dependent on the number of lattice points rather than physical distance,

and hence is consistent with non-locality.1 Convergence to a meaningful value of the

decay rate on this small volume is seen to be difficult in the right-hand plots which show

the exponent from one dt-value to the next, by plotting f(dt)/f(dt − 1).

At the critical value, as a → 0, non locality would lead to a zero decay rate in lattice

units. Since this is manifestly not the case in any of the results, we may conclude that

this is strong evidence for the exponential locality of the operators, as we hoped.

7.3 Ginsparg Wilson Error

We also examine the Ls error of the overlap operator via the GW term, as a means to

assess recovery of U(2) symmetry. We define the GW error as, with a = 1,

errGW = |(γ3D +Dγ3 − 2Dγ3D)ψ|∞ (7.8)

with ψ a randomly assigned field. This error should be exactly zero for zero mass as

Ls → ∞. There is also what we call the GW correction term, eqn 7.9.

GWcor = |(2Dγ3D)ψ|∞ (7.9)

The correction should vanish as we reach the continuum limit, and U(2) symmetry

is restored. Now we concentrate on the GW error which is amenable to testing with

quenched fields, and rely on the locality of the previous section to ensure that this

correction term will vanish.

1The non-dimensional lattice spacing in the code is kept at 1. As β → βc the physical lattice spacing
goes to zero.
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For each β we use a single fixed instance of a quenched auxiliary field, consistent between

different equal-β cases, and a fixed instance of ψ, consistent between all cases. With

these configurations we look at the GW error. Fig. 7.5 shows plots with the Wilson

kernel. In the left panel, using the HT approximation, we see that in the weakly coupled

case, β = 2, the error vanishes rather quickly (to machine precision by approximately

Ls = 60). Errors are also shown with non-zero mass values of m = 0.001 and m = 0.01.

The larger the mass value is, the sooner on the Ls scale the GW error is subsumed by

the mass term. With the stronger couplings, β = 1 and β = 0.5, we see that the error

decay rate is very significantly hampered, not even reaching a value of 0.01 by Ls = 160

in the strongest β = 0.5 case. The non-zero mass terms again limit the Ls convergence

according to their magnitude.

The right panel shows the error with Zolotarev approximations. The Zolotarev range

was set according the the kernel eigenvalues as given in table 7.1. A stronger coupling

of β = 0.2 is now included. As expected the decay rate is significantly improved, and

again the mass terms overwhelm the error decay. Interestingly, the decay rate does not

deteriorate further from β = 0.5 to β = 0.2, but in fact is a marginal improvement.

This is reasonable since β is then further away from the critical value (which we will

show is ≈ 0.8 for the quenched case). However, it is also explained by the difference in

instance of the auxiliary field, considering the eigenvalue range given in table 7.1. The

β = 0.5 has a larger condition number than the β = 0.2 case, and the error of the sign

approximation is proportional to this.

As will be shown in the next chapter, on average the stronger coupling will lead to a

wider eigenvalue range, rather than the inversion found in these instances. Of course

Ls convergence is not exclusively governed by the properties of the scalar sign function

approximation.
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Figure 7.5: Wilson kernel GW error calculated on a single quenched configuration,
generated with β = 0.2, β = 0.5, β = 1.0 or β = 2.0. For masses m = 0 (no point
type), m = 0.01 (circle), m = 0.001 (cross). Left and right panels have different scales.

Left panel: HT formulation. Right panel: Zolotarev formulation.
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In the left panel of fig. 7.6 a direct comparison of the Wilson Zolotarev and Wilson HT

cases is plotted. In the right hand panel, a similar plot is given, but for the Shamir cases.

Again, the Zolotarev approximation very significantly increases the error decay rate.

Further the Shamir formulations give a slight improvement on the Wilson formulations

despite having a larger condition number in the β = 0.5 instance.
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Figure 7.6: GW error calculated on a single quenched configuration with Zolotarev
and HT formulations with m = 0 in all cases. Left panel: Wilson kernel. Right panel:

Shamir kernel (82 × 8 lattice).

β W min W max W cond S min S max S cond

1 1.82e-2 5.72 314 9.1e-3 2 219
0.5 2.72e-4 7.29 26,801 1.36e-4 4.3 31,618
0.2 5.8e-4 10.77 18,569

Table 7.1: Wilson and Shamir kernel eigenvalue ranges and condition number
(max/min eigenvalue) for the auxiliary field used for the GW error calculations at

each β.

Referring to table 7.1 we observe that the lowest Shamir eigenvalues are half of those

with the Wilson formulation. This is not a coincidence and is reproduced on a series of

auxiliary fields in fig. 7.7 with the legend S(Wilson) referring to the evaluation of eqn.

7.10.

λS ≈ λW /(2 + λW ) (7.10)

It is not a formal relation, λS ̸= λW /(2+λW ) in general, and merely observed in passing.

It only holds when M = 1, and only for the smallest eigenvalues. It does not hold for

the largest eigenvalues.
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Figure 7.7: Minimum eigenvalues for Wilson and Shamir kernels for a range of aux-
iliary fields. S(Wilson) is the smallest eigenvalue calculated according to eqn. 7.10.

Error plots are included for the compact formulations in fig. 7.8 in which a similar story

is borne out, but with greatly improved convergence rates, suggesting that the very high

Ls needed for U(2N) recovery in the critical region of the Thirring model have their

origin in the non-unitary nature of the link fields.
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Figure 7.8: GW error calculated on a single compact gauge configuration with m = 0.
Left panel: Wilson. Right panel: Shamir.

We note there are ways to estimate the chiral error which are independent of the random

ϕ field. [61] defines mres =
Tr[∆Ls (D

†D)−1]

Tr[(D†D)−1]
and [43] uses σ = max[(D−1γ5 + γ5D−1)i,j ]

with D−1 = ⟨qq̄⟩.

The GW error gives a measure of how well Ls converged the overlap operator. However,

it is limited by the magnitude of the mass term, and it is tempting to assume that in

the massive cases we are sufficiently Ls converged when the GW error is dominated by

the mass term. However, condensate measurements (in the next sections) show that

this mass limited Ls convergence is not sufficient for accurate measurements, and much

higher Ls values are required.



Chapter 8

Quenched Overlap Condensate

Results

The evaluation of the condensate, attempts to improve the evaluation of the condensate,

and calculation of the equation of state constitute the primary focus of this work and

take up the next two chapters. This chapter focuses on quenched condensates, from

which we learn what we can, before moving to the physically more relevent dynamic

cases in the next chapter. We start with a validation of the condensates which were set

out in chapter 4. Then we look at the eigenvalue range of the operator kernel which is

an essential aspect in achieving Ls-convergence, as well as the condition number of the

overlap operator itself, which controls the ease of its inversion. We finally look at the

condensates themselves and the equations of state to be constructed from them.

8.1 Validation

As before, we want to ensure that the condensate, measured in the Ls → ∞ limit, is

unaffected by choice of sign approximation, HT or Z, or choice of mass type, M1 or M3.

We start with sanity checks on 62 × 6 grids with a free auxiliary field, Aµ = 0. We can

see in Figure 8.1 that both the different Wilson and Shamir formulations converge with

Ls as expected, for each of the four cases considered. The Wilson formulation solution

appears to oscillate around the limit rather than converge only from above as is the

case for Shamir, as has been previously noted [3]. The Zolotarev range, eqn. 3.72, was

calculated as designated by the eigenvalue range of the overlap kernel generated with

the free auxiliary field, explored further in the next section. The point method (see

appendix B.3) was used for exact results. The overlap regularisation parameter, M ,

eqn. 3.54 is set to 0.9 for consistency with earlier work [44] (unless otherwise stated it

is set to 1.0 by default).

60
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Figure 8.1: Condensates C = ⟨ψ̄ψ⟩ vs Ls with free auxiliary field Aµ = 0. HT denotes
hyperbolic tangent formulations, Z denotes Zolatarev. Left panel: Wilson kernel. Right

panel: Shamir kernel.

Moving to stronger coupling, we consider single fixed quenched auxiliary fields with link

values given by gaussian random numbers with standard deviation s, Ai,µ ∼ N(0, s2) =

sN(0, 1), and β = 1/s2, i.e. in accordance with eqn. 5.19. The noisy estimation method

is used (again see appendix B.3), and plots for s = 0.5 and s = 1.0 are shown in figure

8.2. Somewhat alarmingly the standard mass formulation, designated M1, with the

HT rational function, in the stronger coupling case does not appear to converge to the

other values. Again M=0.9, and the Zolotarev range was calculated for each designated

auxiliary field.
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Figure 8.2: Condensates with Wilson kernel, denoted W in the legend. N80 specifies
80 fields were used for the noisy estimation. Left panel: auxiliary field with s=0.5.

Right Panel: auxiliary field with s=1.0. Note both x and y axis scales differ.

Figure 8.3 continues to show this more distinctly on another s = 1.0 configuration.

However, as the right panel shows, the problem is merely than the Ls value was not

large enough. The plot further indicates that the solution is not oscillating around the

asymptotic limit, but oscillating around a monotonic curve with the same asymptotic

limit instead. We note care must be taken in extrapolating to the Ls limit.
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Figure 8.3: Condensates with Wilson kernel, denoted W in the legend. N20 specifies
20 fields were used for the noisy estimation, and N80 specifies 80 fields. Left panel: the

problem. Right panel: the solution.

Considering a N2
s × Nt mesh, we find the thermodynamic limit as the lattice spatial

extent Ns goes to infinity, keeping the temporal extent fixed at a lattice size Nt = 12.

The left panel of fig. 8.4 shows the quenched condensate for three different values of

β = 1/s2, and suggests that the spatial extent of Ns = 12 lattice vertices is sufficient for

our purposes, with the potential to even move to a smaller mesh. The right panel shows

the condensates for mesh sizes varying the time extent equally with the spatial extents.

Sending Nt → ∞ corresponds to zero temperature. We suggest a 122x12 mesh is (close

to) sufficient to investigate zero temperature cases in the thermodyamic limit.
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Figure 8.4: Quenched Condensates calculated with the Wilson kernel. Left panel:
thermodynamic limit varying Ns, and Nt = 12. Right panel: Varying both Ns = Nt

together, denoted Nst in the x-axis.

8.2 Eigenvalue Extrema and Condition Number of Kernel

The evaluation of the overlap operator requires the evaluation of the sign function. The

relative computational ease or difficulty of evaluation of the sign function is in part

dependent on the condition number and extrema of the eigenvalues of the sign function

kernel. The Wilson Dirac operator DW has complex eigenvalues and is γ5-hermitian,

i.e. γ5DW is hermitian, and hence γ5DW has real eigenvalues, and γ5DWγ5DW =
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D†
WDW has real semi-positive eigenvalues. Figure 8.5 shows the eigenvalue extrema

of the Wilson and Shamir overlap kernels, given by HW = γ3DW (−M), and HS =

γ3
DW (−M)

2+DW (−M) respectively, where now we use (the domain wall height) M = 1. Since

quenched auxilliary fields are generated independently from the fermions, the quenched

kernel has no dependence on the fermion mass m.

There is a lattice size independent increase in the upper bound for the Wilson kernel,

which continues to increase as β → 0. Noting from section 8.9 ahead that the critical

region is in the vicinity of β = 0.7, we observe that for the Shamir kernel, the upper

bound is largely lattice size independent only on the symmetry unbroken side. Only the

top halves of the standard deviation is plotted, since the values are too large on a log

plot. The lower bounds for both kernels are strongly dependent on lattice size as β moves

into the strongly coupled region. The lower bounds reach a minimum value somewhere

around the critical region and then increase again. Similarly for the strongly coupled

side for Shamir kernel, the maximum eigenvalue decreases again. However, the upper

bound for the Wilson kernel is monotonic. Whether the trends in these volume effects

continue arbitrarily is unclear from this data, although if continued it would suggest an

unbounded maximum eigenvalue for the Shamir case around the critical region.
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Figure 8.5: Minimum and maximum eigenvalues with standard deviation on different
grid sizes. NC denotes non-compact links. 8x8 denotes gird extents Ns = 8, Nt = 8.

Left panel: Wilson kernel. Right panel: Shamir kernel.

Figure 8.6 shows the condition numbers. In the weakly coupled limit the Shamir kernel

has the lower condition number, and hence better numerical properties, whereas moving

towards the stronger coupling and through the critical point the Wilson kernel has a

much smaller condition number, although the value declines again for the Shamir kernel.
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Figure 8.6: Condition number. Left panel: Non-compact link fields, eqn. 2.8. Right
panel: Compact link fields, eqn. 2.7.

Fig 8.7 shows a similar plot for the compact link formulation. The bounds appear

to be largely independent of the lattice size. The plots are qualitatively similar for

both Wilson and Shamir, being bounded above, and bounded below in both the strong

and weak coupling limit. It is unclear if the spike is bounded. The condition number

shown in the right panel of figure 8.6 suggests that the Shamir kernel is numerically

advantantageous under all coupling strengths.
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Figure 8.7: Minimum and maximum eigenvalues for compact quenched cases. Left
panel: Wilson kernel. Right panel: Shamir kernel.

The effect of the domain wall height is considered in fig. 8.8, and the results are stark.

Although the maximum eigenvalue on average becomes slightly higher with decreasing

M , the minimum eigenvalue becomes significantly larger around stronger couplings, with

the consequent improvement in condition number shown in the left panel of fig. 8.10.

There are similar improvements with the Shamir kernel, as shown in fig. 8.9 and the

right panel of fig. 8.10. The Shamir plots have a greater extent in the strong coupling

region, and the benefits, although still there, are reduced. As will be seen this is a region

beyond the critical coupling strength.
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Figure 8.8: Average eigenvalues for quenched Wilson kernels, varying domain wall
height M . Left panel: Minimums. Right panel: Maximums.
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Figure 8.9: Average eigenvalues for quenched Shamir kernels, varying domain wall
height M . Left panel: Minimums. Right panel: Maximums.
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Figure 8.10: Average condition number for quenched kernels, varying domain wall
height M . Left panel: Wilson kernel. Right panel: Shamir kernel.

8.3 Eigenvalues of Overlap Operator

We turn to eigenvalue ranges of the overlap Dirac operators, eqns. 3.60, 3.59, 3.57, with

the twisted mass variant and both the Wilson and Shamir formulations. The left panel

of fig. 8.11 shows the average minimum eigenvalues for m = 0 and m = 0.03, and for
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Zolotarev with Ls = 24 (Z24) and HT with Ls = 36 (H36) for the Wilson cases. We see

that the mass term controls the minimum value as the coupling gets stronger, and this

allows for the H36 case giving equal results to the Z24 case. For m = 0 we see that H36

is not sufficient and curtails the smallest eigenvalues, which are better captured by the

Z24 case. Shamir cases are shown in the right panel, and again show the suppression of

the smallest eigenvalues when the Ls limit has not been reached.
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Figure 8.11: Average minimum eigenvalues of the overlap operator using 122 × 12
quenched auxiliary fields. Left panel: Wilson kernel. Right panel: Shamir kernel.

8.4 Computational Cost of Overlap Operator

We want to evaluate the computational cost of inverting the overlap operator. This can

very roughly be done by counting the number of times the Dirac Wilson operator, DW

or D†
W , is called. The inversion includes an outer loop for which we count the number

No of applications of D†
OLDOL in the CG algorithm. For the inner loop we count the

number Ni of calls to the multishift CG [38] routine used for the calculation of the sign

function with each application of DOL. Each inner loop has a twin application of the

Wilson Dirac operator D†
WDW , and hence the total number of calls to DW or D†

W is

Nt = 4NoNi.

Fig. 8.12 shows for the direct calculation with the Wilson kernel (eqn. 3.66). The

outer loop count demonstrates a dependence beyond the condition number, although

for the larger masses at stronger coupling the condition number dependence on the

mass does appear to be the dominant factor. However, surprisingly and contrary to

the condition number, the HT formulation requires more outer loops than the accurate

Zolotarev formulation. Further the Zolotarev formulation at smallest mass requires more

outer loops with zero mass. On the other hand, the right panel shows the significantly

increased inner loop count with Zolotarev and strong coupling. Of course, since in the

quenched case the auxiliary field is independent of the mass term, the inner loop is

independent of the mass term, which is reflected in the plot.
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The indirect method1 is used to calculate the overlap operator with the Shamir formula-

tion (eqn.3.93). This requires the inversion of the domain wall operator (eqns.3.42 and

3.44) which only has outer loops for the CG algorithm, each loop calling D†
DWDDW .

Each call to the domain wall operator has Ls calls to either of the Wilson Dirac operators

DW or D†
W . The total count is then Nt = 2NsLs.

In the left panel of fig.8.13 we see the CG loop count Ns increasing as Ls increases.

Further we see that the addition of a small mass term further increases the loop count,

but again larger mass terms constrain the loop count, which we see at stronger cou-

plings. The right panel shows the total Wilson Dirac operator counts. While not a fair

comparison on which to base the choice of one method over the other, it is interesting

to note that both the nominally Ls converged formulations, H300 for the Shamir case,

and Z24 for the Wilson case, have the same order of magnitude in counts at the stronger

couplings. The increase in cost with the addition of a small mass is further demonstrated

in the total count.

50

100

150

200

250

300

350

400

450

0.5 0.6 0.7 0.8 0.9 1

β

Z24,m=0.0
Z24,m=0.01
Z24,m=0.03
Z24,m=0.05
H36,m=0.0
H36,m=0.01
H36,m=0.03
H36,m=0.05

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.5 0.6 0.7 0.8 0.9 1

β

Z24,m=0.0
Z24,m=0.03
H36,m=0.0
H36,m=0.03

Figure 8.12: Average Dirac operator application count for direct Wilson inversion.
The HT results are slightly offset for clarity. Left panel: Outer loop count. Right panel:

Inner loop count.
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1Meaning the domain wall formulation including Paulli-Villars terms and the compacting matrices,
eqn. 3.92
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8.5 Wilson Condensates

We are interested in the condensate C = ⟨ψ̄ψ⟩, which is the order parameter. Beyond

the critical point, β < βc, and at m = 0, we expect the value to become non zero.

Unfortunately we cannot calculate this directly using m = 0, and must instead consider

the limm→0 curves in order to find the critical point, as has been done for the (dynamic)

Shamir case [46].

Convergence with Ls is shown in the left panel of Figure 8.14 for m = 0.05 for Ls = 60

for the HT formulation and Ls = 24 for the Zolotarev formulation. Ls = 60 is shown to

be insufficient for the HT case withm = 0.01. The right panel, showingm = 0.005 cases,

similarly indicates that Ls = 84 is not sufficiently converged in the HT case, although

the Zolotarev formulation may be converged.
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Figure 8.14: Condensate for non-compact Wilson. Zolotarev cases use range
[0.001, 10]. Left panel: HT and Zolotarev cases for m = 0.01 and m = 0.05. Right

panel: Ls convergence for m=0.005.
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Figure 8.15: Wilson condensates vs Ls for different coupling strengths. The solid line
is for the Zolotarev approximation and corresponds to the upper x-axis. The dashed line
is for the HT approximation and corresponds to the lower x-axis. Left panel: m = 0.01.

Right panel: m=0.005.

Despite the kernel eigenvalues being independent of the mass (since quenched there is

no dependence on any aspect of the fermion), the condensate Ls convergence is clearly
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highly dependent on the mass value, as can be seen in fig. 8.15. The left panel indicates

that with Ls > 100 at m = 0.01 the HT formulation is reasonably Ls converged for all

the coupling strnegths considered. However, for m = 0.005, shown in the right panel, Ls

convergence has not been achieved, and is still a way off. The Zolotarev formulations,

noting that they are plotted at 3 times their Ls value seem to be converged.

The set of Zolotarev results are shown in the left panel of Figure 8.16. The right panel

shows the extrapolation to m = 0 and clearly indicates the non broken phase at β=1.56

and the broken phase at β=0.51.
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Figure 8.16: Wilson. Non-compact. Zolotarev range [0.001, 10], Ls = 24. Left panel:
C vs β. Right panel: C vs m.

8.6 Compact Wilson Condensate

We also consider the compact formulation for comparison, and because they are found

with considerably less computational requirements than for the non-compact cases. We

find the somewhat surprising results indicated in Figure 8.17, comparable to the non-

compact cases in Figure 8.16. Now the left plot shows the magnitude of the condensate

decreasing with coupling strength, contrary to expectation. All mass fit lines go through

the origin (or at least significantly closer to the origin than for NC) in the right panel,

suggesting that there is no spontaneous chiral symmetry breaking, at least with the mass

as the order parameter.
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Figure 8.17: Wilson. Compact. Zolotarev range [0.01, 10], Ls = 16. 96 aux fields. 10
noise. Left panel: Vs β. Right panel: vs m.

8.7 Shamir Condensates

We may surmise from the kernel eigenvalue ranges given in the right panel of fig. 8.5,

and the accuracy plots of the hyperbolic tanh approximation given in fig. 3.4, that

an Ls value of around 300 may be sufficient to capture the stronger couplings we are

interested in. Fig. 8.18 shows the Ls convergence for m = 0.01 and m = 0.05. Ls = 300

does appear to be sufficient for strong coupling and the smaller mass values, although

is unnecessarily large for weaker coupling and larger masses. This is in alignment with

the findings of Hands [46], although the larger meshes used in that work would require

yet higher values of Ls.
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Figure 8.18: Quenched condensates with Shamir kernel. Left panel: m=0.01. Right
panel: m=0.05.

Fig. 8.19 shows the condensates, both with Ls = 300, with the domain wall height

M = 1.0 in the left panel and M = 0.5 in the right panel. There is a very clear shift and

increase in the gradient, suggesting a rescaling so that mM=0.5 < mM=0.5(mM=1.0). It

would be interesting to see if any potential computational cost increases trade off more

or less than the likely cost advantages provided in the improved eigenvalue range of the

kernel indicated earlier in section 8.2.
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Figure 8.19: Quenched condensates with Shamir kernel, Ls = 300. Left panel:
M=1.0. Right panel: M=0.5.

8.8 Compact Shamir Condensate

Again we turn to the compact formulation for comparison, and find the same absence of

spontaneous chiral symmetry breaking. Fig. 8.20 shows similar behaviour to that of the

Wilson formulation but is no longer monotonically decreasing with coupling strength.

Fig. 8.21 shows a comparison of the Shamir and Wilson data, multiplying the Shamir

condensates by a factor of 3. Results with the Shamir kernel have a sharper gradient

through the transitional region, perhaps giving a hint of the difference in scaling between

the models.
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Figure 8.20: Quenched condensates with compact Shamir kernel. Ls = 64. 96
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Figure 8.21: Compact quenched condensates comparing Shamir and Wilson kernels.
Masses are m = 0.01, 0.03, 0.05.

8.9 Wilson EOS

We turn to the evaluation of the equation of state, and the critical exponents. We use

the np = 5 parameter EoS ≡ EoS(C,m, β;p) introduced in section 5.2, with C = ⟨ψ̄ψ⟩,
where the 5 parameters are p = {A,B, βc, βm, δ}, including the two critical exponents

βm, and δ, and also the critical coupling strength βc.

EoS ≡ A(β − βc)C
δ−1/βm +BCδ −m = 0 (8.1)

We have simulation data {Ci,mi, βi, σ
c
i } where σci is the error in the calculation of Ci.

We wish to find the best parameters for the EoS to fit this data with a least squares

minimisation of χ2 according to eqn. 8.2.

χ2
k(p) =

k∑
i=1

(EoS(Ci,mi, βi;p)/σ
2
i (8.2)

σ2i , the error in the fit, is given by ∂EoS
∂C σci . The reconstructions are carried out using a

python script2, providing a least squares fit using the Levenberg-Marquardt algorithm

[62]. A goodness of fit is given by χ2/dof , where the degrees of freedom is given by

dof = k − np, where 1 is the ideal fit, greater than 1 has the data overprescribing the

problem, and less than 1 indicating the errors in the data are large relative to the amount

of data available.

Fig. 8.22 shows the fit with the data taken in the ranges m ∈ (0.01, 0.05), β ∈ (0.5, 1),

which gives critical exponents

2Courtesy of S. Hands
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βc = 0.777(23)

βm = 1.09(10)

δ = 2.344(117)

(8.3)

and the corresponding exponents η = 5−δ
1+δ and ν = 2βm/(1 + η) given by

η = 0.796(46)

ν = 1.214(116)
(8.4)
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Figure 8.22: Quenched Wilson. Mass range m = [0.01, 0.5]. Data range β = [0.5, 1].
Left panel: Zolotarev Ls = 24. Right panel: HT Ls = 60 .

Although the goodness of fit value χ2/dof is an important parameter and improves from

case qwz1, defined below, from case qwz2 by changing the window of reconstruction with

the addition of the m = 0.005 data, looking at the data (left panel, fig. 8.23) suggests

we should not consider this parameter blindly. In particular, if some data region is

overprescribed (small error bars and lots of localised data points leading to values much

greater than 1) and some data region is underprescribed (large error bars and few data

points leading to values much less than 1), these effects may cancel to misleadingly

good (close to 1) goodness of fit values. And hence we must be judicious in choosing

our data ranges. It was with this in mind that qwz1 was singled out for representative

presentation above.

Corresponding to the seven Zolotarev cases with Ls = 24 plotted in the left panels of

figs. 8.22 through 8.28, the right panels hold plots with HT Ls = 60 cases. As has been

pointed out with staggered formulations [1], the calculation of the exponents is sensitive

to the window used for the reconstruction, although ballpark figures are reasonably
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id Ls β m βc βm δ gof gof2 Nd

qwz1 Z24 0.5-1.0 0.01-0.05 0.777(11) 1.09(5) 2.344(58) 3.782 0.945 85
qwz2 Z24 0.5-1.0 0.005-0.05 0.810(12) 1.22(5) 2.231(51) 3.984 0.987 101
qwz3 Z24 0.5-1.0 0.01-0.04 0.813(15) 1.20(7) 2.225(68) 2.266 0.567 68
qwz4 Z24 0.5-0.99 0.005-0.05 0.837(14) 1.32(6) 2.131(52) 3.044 0.761 95
qwz5 Z24 0.5-0.99 0.01-0.05 0.800(13) 1.18(6) 2.248(61) 2.867 0.717 80
qwz6 Z24 0.5-1.0 0.02-0.05 0.739(12) 0.96(5) 2.474(76) 3.396 0.849 68
qwz7 Z24 0.5-0.99 0.02-0.05 0.762(15) 1.05(7) 2.361(81) 2.570 0.643 64
qwz8 Z24 0.5-0.92 0.01-0.05 0.819(16) 1.25(7) 2.185(65) 2.12 - 75
qwh1 HT60 0.5-1.0 0.01-0.05 0.748(15) 1.15(7) 2.118(74) 2.55 0.638 83
qwh2 HT60 0.5-1.0 0.005-0.05 0.752(15) 1.37(8) 1.908(56) 8.76 2.19 100
qwh3 HT60 0.5-1.0 0.01-0.04 0.813(24) 1.46(12) 1.833(80) 1.72 0.43 66
qwh4 HT60 0.5-0.99 0.005-0.0.05 0.750(15) 1.37(8) 1.926(59) 9.03 2.26 95
qwh5 HT60 0.5-0.99 0.01-0.05 0.756(16) 1.19(8) 2.097(77) 2.09 0.523 79
qwh6 HT60 0.5-1.0 0.02-0.05 0.708(16) 0.94(8) 2.377(109) 2.58 0.645 66
qwh7 HT60 0.5-0.99 0.02-0.05 0.714(18) 0.96(8) 2.375(118) 1.91 0.477 63
qwh8 HT60 0.5-0.92 0.01-0.05 0.771(18) 1.25(9) 2.033(79) 1.9 - 75

Table 8.1: Critical exponents. Numbers in brackets are the errors. Goodness of fit
gof ≡ χ2/dof .

consistent (within error bars) for both Zolotarev and HT formulations, although there

is better consistency for the Zolotarev formulation.

With the removal of the m = 0.05 curve, cases qwz3 and qwh3 nominally provide the

best results respectively, although it should be noted that removing the m = 0.01 curves

also improves the nominal results for cases qwz7 and qwh7.

In the 6th and 7th cases, where mass ranges of 0.02-0.05 are chosen and where it is

thought the HT60 cases are also reasonably well Ls-converged, the HT exponents still

differ from the Zolotarev generated exponents. They should be near identical with

sufficiently good statistics, and we conclude that more data points are needed to improve

the consistency of the results.

It appears from looking at the data that the errors are smaller than they should be.

There are kinks in the constant mass curves, which the error bars suggest are real, and

we may presume are not. Scaling the errors σi in eqn.8.2 does not change the exponent

values, but does scale the error values of those exponents, and also the goodness of

fit. As such we may work backwards to find an inferred error in the source data. For

example, the error scaling required to find gof = 1 for case qwz1 is 1.945, whereas the

scaling for case qhz1 is 1.598.

Using unweighted least squares, and working backwards to estimate the error we have

for qwz1, βc = 0.808(20), βm = 1.20(8), δ = 2.257(80), and for qwh1, βc = 0.752(23),

βm = 1.18(11), δ = 2.115(103), in reasonable agreement with the weighted versions. It

would seem to be a matter of taste at this juncture whether using weighted, with its
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unmatched assumptions of equal variance in the data points, is a better choice than

unweighted.

We also note in passing that [63] investigated strongly coupled quenched QED in 4d and

found critical exponents βm = 0.8(1) and δ = 2.2(1), who further noted the narrowness

of the window around the critical point for which the EoS holds.
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Figure 8.23: Quenched Wilson. Window: Mass range m = [0.005, 0.05]. Data range
β = [0.5, 1]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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Figure 8.24: Quenched Wilson. Window: Mass range m = [0.01, 0.04]. Data range
β = [0.5, 1]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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Figure 8.25: Quenched Wilson. Window: Mass range m = [0.005, 0.05]. Data range
β = [0.5, 0.99]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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Figure 8.26: Quenched Wilson. Window: Mass range m = [0.01, 0.05]. Data range
β = [0.5, 0.99]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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Figure 8.27: Quenched Wilson. Window: Mass range m = [0.02, 0.05]. Data range
β = [0.5, 1]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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Figure 8.28: Quenched Wilson. Window: Mass range m = [0.02, 0.05]. Data range
β = [0.5, 0.99]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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Figure 8.29: Quenched Wilson. Window: Mass range m = [0.01, 0.05]. Data range
β = [0.5, 0.92]. Left panel: ZLs = 24. Right panel: HT Ls = 60.
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8.10 Shamir EOS

We turn to the EoS for the Shamir kernel, using the HT Ls = 300 formulation. While

the first case, qsh1, matches the Wilson cases reasonably well, reducing the analysis

window from the weak coupling side appears to reduce δ and increase βm in a manner

not matched by the Wilson cases. Although the data is noisier than for the Wilson cases

and the errors relatively large, one would be inclined towards the qsh3/qsh4 cases with

βc ≈ 0.9, βm ≈ 1.48 and δ = 1.84. However, there is no reason to expect the exponents

to match for the non-physical quenched cases, and we shoouldn’t be disheartened.

We also consider a couple of cases, qsm3 and qsm7, in which we use a domain wall

height of M = 0.5. The critical value has shifted to the left, to roughly βc = 0.6, δ has

increased again to values similar to the Wilson cases, and βm has dropped lower than

both the Shamir and Wilson M = 1 cases.

More usefully, we observe that the curves have sharpened significantly, suggesting we

are more zoomed in, with the reduced value M , lessening the requirements on m → 0

to find an analysis window independent set of of results.

id M β m βc βm δ gof Nd

qsh1 1.0 0.5-1.2 0.01-0.05 0.840(12) 1.20(6) 2.099(52) 2.07 100
qsh2 1.0 0.5-1.1 0.01-0.05 0.884(17) 1.39(8) 1.915(64) 1.71 90
qsh3 1.0 0.5-1.0 0.01-0.05 0.904(20) 1.48(9) 1.838(68) 1.63 85
qsh4 1.0 0.5-0.99 0.01-0.05 0.905(22) 1.48(10) 1.843(77) 1.68 80
qsh5 1.0 0.54-1.0 0.01-0.05 0.908(25) 1.50(13) 1.839(88) 1.72 75
qsh6 1.0 0.54-1.1 0.01-0.05 0.884(21) 1.39(11) 1.931(84) 1.8 80
qsm3 0.5 0.5-1.0 0.01-0.05 0.599(10) 0.91(10) 2.157(125) 6.17 85
qsm7 0.5 0.5-0.95 0.01-0.05 0.625(11) 0.92(11) 2.285(144) 1.87 75

Table 8.2: Critical exponents. Numbers in brackets are the errors. Ls = 300. Good-
ness of fit gof ≡ χ2/dof .
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Figure 8.30: Shamir. Ls = 300. Mass range m = [0.01, 0.05]. Left panel: Data range
β = [0.5, 1.2]. Right panel: Data range β = [0.5, 1.1].
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Figure 8.31: Shamir. Ls = 300. Mass range m = [0.01, 0.05]. Left panel: Data range
β = [0.5, 1.0]. Right panel: Data range β = [0.52, 1.0].
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Figure 8.32: Shamir. Ls = 300. Mass range m = [0.01, 0.05]. Left panel: Data range
β = [0.54, 1.0]. Right panel: Data range β = [0.54, 1.1].
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Figure 8.33: Shamir. Ls = 300. Domain wall height M = 0.5. Mass range m =
[0.01, 0.5]. Left panel: Data range β = [0.5, 1.0]. Left panel: Data range β = [0.5, 0.95].
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8.11 Summary

Although quenched measurements are not physical, they still provide a good foundation

in which to explore numerical techniques. Importantly in this section we went through

the prototype analysis to be carried out on the dynamical fermions in the next chap-

ter. The importance of the eigenvalue range of the kernel was highlighted, and most

significantly the unboundedness of the largest Shamir kernel eigenvalue was established

which is part of the explanation of why the Thirring model is as computationally chal-

lenging as it is. That the Wilson formulation is a computationally advantageous method

rather than the Shamir formulation was indicated, although we will continue to compare

both methods. That the Shamir and Wilson kernel formulations should be physically

equivalent was not borne out in the EoS results, although the statistical challenges of

the associated calculational methods were highlighted, especially the difficulty of get-

ting critical exponents independent of the chosen window of analysis. Disappointed by

the lack of apparent physical equivalence it is hoped that this is either a non-physical

consequence of the quenched approximation or due to insufficient data for the statistical

analysis.

Also, computational costs of the methods were considered and although not a fair com-

parison, in outcome from this data it would be recommended to use the Wilson Zolotarev

method rather than the Shamir HT scheme for the the condensate measurement. It was

also shown that there is potential benefit to be gained from using a smaller value of the

domain wall height M .



Chapter 9

Dynamic Overlap Condensate

Results

We now look at results in which the auxiliary field is dynamically generated using the

RHMC algorithm [57] as set out in chapter 6. The FORTRAN90 code, available on

github [64], was adjusted in this work for use with the HT Wilson domain wall formula-

tion. This required the change of the domain wall operator from eqn. 3.40 to eqns. 3.45,

3.47, and the addition of extra force terms accompanying those changes, also in chapter

6. A corresponding new condensate measurement routine was also implemented. All

results are on a 122 × 12 mesh unless otherwise stated. Extensive work [3, 50, 65] has

demonstrated the numerical advantage of the γ3 twisted mass formulation, and hence

that is used in the following.

We provide some validation of the code, before looking at the autocorrelation of the

condensates and the acceptance rates in the hamiltonian dynamics steps. Then following

a similar approach as in the quenched case we look at the kernel eigenvalue extrema

and condition numbers. Then we look at the Ls-convergence of the condensates before

moving on to the evaluation of the equation of state for the different formulations.

Finally we look at the overall computational cost of the methods.

9.1 Validation

Validation of the Wilson kernel domain wall measurement routine was achieved by check-

ing the condensate results could be reproduced using the direct overlap formulation as

shown in Figure 9.1. The results aren’t identical due to the use of noisy estimators

(see section B.3) and the use of the left formulation of the direct overlap (eqn. 4.16),

rather than the right formulation (eqn. 4.15) which has exact correspondence to the

domain wall formulation used in the software. Nevertheless, it indicates that the results

81
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are aligned, and that we may proceed to use the methods interchangably, and more

particularly to take fields generated with the domain wall formulation and remeasure

with overlap formulations.
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Figure 9.1: Condensate measurements using domain wall (DW) and overlap (OL)
formulations. Auxiliary fields generated with domain wall formulation. H36 denotes

HT scheme with Ls = 36.Twisted mass formulations are used in all cases.

Validation of the generation of the auxiliary fields is more difficult, but we gain some

confidence from consideration of the history of hg = 0.5βθ2i,µ/Nv calculated at the end of

each RHMC trajectory. Plots of the hg history with cold starts (Aµ = 0 at beginning of

simulation) are shown in Figure 9.2 and we see that choosing different parameters leads

to different times to reach equilibrium (thermalisation). The stronger the coupling, the

slower it is to reach equilibrium. When they have reached equilibrium, we see that it is

still auto-correlated.
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Figure 9.2: hg calculated at the end of each dynamic trajectory. Average trajectory
length is 0.5 with 10 steps. Left panel: m = 0.01. Right panel: m = 0.05.

Following [50] we show the averages of hg, plotted against β, in Figure 9.3. The left

panel takes the averages from trajectory 1000, and the right panel from trajectory 2000.

The right panel, despite significantly less data, seems to match the trend of [50] in

which at coupling strengths stronger than the critical point there is an upturn in the
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avarage value. This is less clear in the left panel data. We now go on to look at the

autocorrelation in the data.
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Figure 9.3: hg plotted with standard deviation. Left panel: Averages taken from
trajectories 1000-3000. Right panel: Averages taken from trajectories 2000-3000.

9.2 Autocorrelation

Fig. 9.4 shows the autocorrelation of the auxiliary field metric hg for varying β and

m. There is not sufficient data for numerically precise statements, as indicated by the

difference in results between the left and right panels. However, it would appear that

the autocorrelation increases strongly with coupling strength, and the impact of mass

being inconclusive. As in the previous section, equilibirium is deemed to be achieved

when the average value of hg reaches a constant value.
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Figure 9.4: Autocorrelation time of hg. Time scale is the number of hamiltonian
trajectories. Left panel: calculated from trajectories 1000-3000. Right panel: calculated

from trajectories 2000-3000.

We further look directly at the histories of some condensates for the Wilson formulation

in fig. 9.5 and for the Shamir formulation in fig. 9.6. The hamiltonian dynamics steps

are the same for both Shamir and Wilson cases, using a timestep of 0.05 and an average

number of 10 steps before the acceptance step1. The only cases which differ are the

1There is a fixed probability of the trajectory coming to an end after each dynamic step.
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β = 0.20 and β = 0.22 Wilson cases which use an average number of 9 steps. There

appears to be a stark increase in the autocorrelation in the strongly coupled Wilson case.

Fig. 9.7 confirms this, calculating the autocorrelation directly, with the Shamir case in

the left panel, and Wilson case in the right panel. Although the β value is smaller for the

Wilson case, as we will see more clearly in chapter 10, we probably do not want to push

the β values significantly lower. We also note that it appears to be mass independent

for the given range.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

m=0.01
m=0.05

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500

m=0.01
m=0.05

Figure 9.5: Condensate histories for Wilson with Ls = 36. Left panel: β = 0.2. Right
panel: β = 0.6
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Figure 9.6: Condensate histories for Shamir with Ls = 96. Left panel: β = 0.26.
Right panel: β = 0.6
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Figure 9.8: Condensate autocorrelation. Left panel: Wilson, Ls = 36. Right panel:
Wilson, Ls = 28.

We compare Ls values of 36 and 28 in the left and right panels of fig. 9.8. While

it appears that there is mostly no dependence, the β = 0.2 lines differ, although it

is difficult to conclude that this difference would not vanish with more data. For the

condensate autocorrelation, the Shamir measurements were based on trajectories 500-

2500, and the Wilson measurements on trajectories 1000-3000, and measurements of the

condensate taken every 5 trajectories.

While with correlated data the mean data continues to be calculated in the same way

we should no longer assume reliance on the usual calculation of the standard error

se = σ/
√
(N), although in the condensate measurements with the Shamir kernel we

do exactly that since the correlation decay rate is large. A formal remedy to the error

calculation is to multiply the error of uncorrelated formula by a timescale based on the

correlation, se =
√

2τ
N σ where τ is the correlation time scale as described in appendix

B.4.

9.3 Acceptance Rates

We look at the acceptance rates of the Monte Carlo step in fig. 9.9. The hamiltonian

dynamics controls are the same for both Wilson and Shamir setups as decribed in section

9.2 above. It is clear that under these conditions the Wilson formulation has a lower

acceptance rate. In the weaker coupling range, the acceptance rate is between 0.9 and

0.95 for the Wilson formulation and between 0.95 and 1 for the Shamir formulation, and

dropping to 0.65 to 0.75 and 0.8 to 0.95 respectively at the stronger coupling end of

the plots. The acceptance rates make a difference to the autocorrelation, but we would

suggest that this factor is not sufficient alone to provide a complete explanation. How far

a single trajectory “moves” the auxiliary field relative to the starting point also controls

the autocorrelation time. Hence we suggest that for the Wilson case the auxiliary field
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generated at the end of a single trajectory is relatively closer to it’s starting point than

for the Shamir case. The trajectory distance may be increased by taking more steps.2

It is also notable that the acceptance rate decreases with Ls. This could be a Ls

volumetric effect, due to the momentum marching term in the hamiltonian dynamics

step, Ṗ = −∂S[A]
∂A , eqn. 6.1b, getting larger since the action3 seems to scale with Ls.

Whether it is also connected to the accuracy, or rather the damping effect of lower Ls

would be interesting to explore. In this case it might be expected to find the acceptance

rate stops decreasing after achieving sufficient Ls.
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Figure 9.9: Acceptance Rate in the Monte Carlo Step. Left panel: Wilson kernel.
Right panel: Shamir kernel.

9.4 Eigenvalue Extrema and Condition Number of Kernel

Again it is very useful to look at the eigenvalue range of the kernels. Since the auxiliary

fields are now generated dynamically, they are dependent on the Ls extent of the domain

wall. When viewed from the overlap perspective this is not considered an extra physical

dimension, but merely an expression of the level of accuracy of approximation. Figure

9.10 shows the maximum and minimum eigenvalues for the Shamir kernel, and we see

that the average values are largely independent of either the mass or the value of Ls. The

bars are for the maximum and minimum rather than the standard deviation. At least

100 fields were used for each data point. As with the quenched non compact case, the

eigenvalues are no longer bounded from above and there is a significant increase in the

maximum eigenvalue beyond the critical β value, roughly 0.3. The compact values are,

however, bounded from above, and also have much larger smallest eigenvalues with very

little variance. This parallels the qualtitative behaviour of the quenched field kernels,

although we have not taken β to strong enough couplings to confirm that the maximum

value will fall again.

2Simplectic integrators bind the solution to a shadow hamiltonian, limiting the long term accumula-
tion of time step discretisation errors.

3At least the variance of the action
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Figure 9.10: Min/max Shamir kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

Plots for theWilson kernel are shown in Figure 9.11, again with the bars showing the data

point maxima and minima rather than standard deviation. These eigenvalues provide

a guide for choosing the Zolotarev range to be used in the overlap operator, unless the

range is to be reset for every auxiliary configuration. Since the latter is costly, especially

for the dynamic step, it is generally preferable to choose a fixed range. Although the

eigenvalues are strictly only bounded below by zero, a practical range can be identified

from the plots. In practice, we have found stricter adherence to the upper bound is more

important to the evaluation of the condensate than the lower bound.
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Figure 9.11: Min/max Wilson kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

The independence from Ls, at least for all Ls above an unexplored lower bound, com-

bined with our a priori belief that the condensate measurements will require signif-

icantly higher Ls values, suggests the possibility of using different Ls values for the

sea-fermions (the Dirac operator used in the generation of the auxiliary fields) and the

valence fermions (the Dirac operator used for the condensate measurements).
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9.5 Eigenvalues of Overlap Operator

The condition number for the Wilson kernel overlap operator is briefly considered via fig.

9.12 where the smallest eigenvalues are plotted. The largest eigenvalues in all instances

are just short of 1. Again, the minimum eigenvalue is constrained by the mass term,

although in the HT36 case is only just reaching this limit as β → 0.24. The same limits

apply for the Z30 case, but the minimum eigenvalues are lower when the calculations

are with m=0 (still with the massive auxiliary fields) compared with the HT36 case.

Similar to the quenched case, when setting the valence mass to 0, the higher auxiliary

mass terms correspond to a reduction in the lowest eigenvalue. A similar situation is

shown in the left panel of Fig. 9.13.
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Figure 9.12: Wilson Overlap Minimum Eigenvalues. am = 0 denotes the mass that
the auxiliary fields were generated with, if different from the measurement mass m.

Left panel: HT approximations. Right panel: Zolotarev approximations.
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Left panel: HT approximation with Ls = 96. Right panel: HT appromimation varying

Ls.
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9.6 Computational Cost of Overlap Operator

We again look at the Wilson Dirac operator count required by inversion of the overlap

operator. As in section 8.4 the total count is given by Nt = 4NoNi for the direct

evaluation using the Wilson kernel, and the indirect formulation has Nt = 2NsLs which

is used for the Shamir kernel. The outer loop operation count for the Wilson inversion

is in fig. 9.14, and find the count in accordance with the condition number for the H36

cases. For the Z30 cases this only holds for m = 0.03 and m = 0.05. Fig. 9.15 shows the

inner count in the left panel, indicating the significant increase in cost with the Zolotarev

formulation, especially at strong coupling. For the HT36 case there is essentially no

difference for either mass term, or whether the calculation matched the auxiliary field

mass. However there is a little auxiliary mass dependence in the Zolotarev cases. The

right panel shows the average count for the indirect Shamir loop at HT200 for which

setting the measurement mass to zero reduces the computational cost. Further Shamir

plots are in the left panel of fig. 9.16. The right panel gives the total costs in terms

of number of calls to the Wilson Dirac operator per inversion of the overlap operator.

The absence of the HT300 Shamir plots for the m = 0.01 (in the 12hr computational

window allowed4 these did not complete - no cases were run for Shamir at β = 0.24 for

this plot) highlights that there are more factors than just this count. Nevertheless, they

are a useful indicator, and support the use of the direct Wilson Zolotarev formulation.
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Figure 9.14: Operator counts for inversion. Outer loop (CG iterations) counts for
overlap operator with Wilson kernel. Left panel: HT36. Right panel: Z30.

4Simulations were run on the Skylake nodes of the Dirac supercomputing cluster.
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Figure 9.15: Operator counts of inversion. Left panel: Z30 Wilson overlap (direct
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Shamir overlap (indirect calculation) loop count (multishift CG iterations).

2000

4000

6000

8000

10000

12000

14000

16000

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

β

H96,m=0.01
H200,m=0.01
H300,m=0.01

H96,am=0.01,m=0
H200,am=0.01,m=0
H300,am=0.01,m=0

0.0e+00

1.0e+06

2.0e+06

3.0e+06

4.0e+06

5.0e+06

6.0e+06

7.0e+06

8.0e+06

9.0e+06

1.0e+07

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

β

S,H96,m=0.01
S,H96,m=0.00

S,H200,m=0.01
S,H200,m=0.00
S,H300,m=0.01
S,H300,m=0.00
W,H36,m=0.01
W,H36.m=0.00
W,Z30,m=0.01
W,Z30,m=0.00

Figure 9.16: Operator counts of inversion. Left panel: Shamir overlap (indirect
calculation) loop count (multishift CG iterations). Right panel: Total count of appli-
cations of Wilson Dirac operator for indirect Shamir overlap and direct Wilson overlap

operators.

9.7 Shamir Condensates

Following in the footsteps of [46, 50] we look again at the condensates evaluated with

the Shamir kernel, but here we continue to use the smaller 122 × 12 mesh size rather

than the 162 × 16 meshes in those works. This is computationally beneficial not only

from the decreased mesh size, but also the expected decrease in eigenvalue range of the

kernel, as noted from the quenched cases (see fig. 8.5). Although diminished, the Ls-

limit challenges remain, and indeed the condensates plotted in the left panel of fig. 9.17,

which include Ls values of 24, 60, and 96 for mass values 0.01, 0.03, and 0.05, do not

suggest convergence in the strongly coupled region, even for the larger masses. The right

hand panel replots two β values against m reemphasising this. We scale the error bars

by a factor of 3 uniformly over the β range, somewhat more than would be suggested

by the autocorrelation even in the strong coupling region, but the lack of smoothness in

the curves suggests smaller error bars would be highly improbable.
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Figure 9.17: Dynamic condensate plots with the Shamir kernel varying Ls. Left
panel: C vs β. Right panel: C vs m.

Following the intuition that there may be no requirement for the auxiliary field to be

generated with such a stringent Ls value, we look at partially quenched condensates in

fig. 9.18. In the left panel, the β = 0.4 case is considered. Fig. 9.17 indicates that the

solution is Ls converged by Ls = 60. To the two curves with sea and valence fermions

calculated with the same Ls values, are added curves where the valence fermions, and

hence the condensate is measured, with a different Ls value. In the first additional

curve, the auxiliary fields are generated with Ls = 24 and the measurements are made

with Ls = 60. In the second, we reverse the procedure and generate the auxiliary fields

with Ls = 60 and measure with Ls = 24. Pleasingly, it seems sufficient to use the

Ls = 24 auxiliary field to capture the converged Ls measurement. On the other hand,

there seems to be nothing to be gained from overextending the Ls value of the auxiliary

field if it is not to be matched in the measurement. This pattern seems to be matched

in the right panel, considering the β = 0.24 case, although slightly less convincingly at

the m = 0.01 datapoint, even though the Ls limit has not been reached. Given the

high costs of dynamically generating the auxiliary fields, this represents a significant

potential in compuational cost cutting.
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Figure 9.18: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ls = X, and the measurements were taken

with Ls = Y . Left panel: β = 0.4. Right panel: β = 0.24.
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There is a certain inevitability that utilising different but sufficiently large Ls values for

valence and sea fermions should give the same measurement results, given the nature of

Ls convergence. Beyond high enough values of Ls the limits of machine precision will be

reached. Given any measurements will only ever be wanted to a certain accuracy it seems

quite reasonable that different parts of the measurement process require differing levels

of accuracy, which is what varying Ls represents, at least when using the domain wall

formulation as an equivalent of the overlap operator - the claim that Ls is a parameter of

accuracy may not hold for more general domain wall formulations, such as the non-bulk

formulation.5

So we take our own advice, and choose Ls = 300 for the condensate measurements,

justified to a certain extent by the apparent convergence in the quenched cases (fig. 8.18)

and the kernel accuracy requirements shown in fig. 9.10. We use the auxiliary fields

generated with Ls = 96, and think the solution should feasibly be close to covering the

necessary range. Fig. 9.19 shows the results. The left panel continues to show that the

convergence continues well beyond the Ls = 96 value even at relatively weak coupling

and at the larger mass values. The right hand panel shows the full results, denoted

A96M300 (Auxiliary Ls = 96, Measurement Ls = 300), reemphasizing the same points.
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Figure 9.19: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ls = X, and the measurements were taken

with Ls = Y .

Fig. 9.20 vindicates this Ls quenching approach, demonstrating that the A96M300

results are satisfactorily Ls converged, since the results are close enough to being the

same as the A60M300 results. The measurements are taken every 10 trajectories of the

hamiltonian step (every other auxiliary field used in the non partially quenched results

above).

5We define the non-bulk domain wall operator to be one in which the auxiliary field isnotconstant in
the extra dimension.
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Figure 9.20: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ls = X, and the measurements were taken

with Ls = Y . Plots vs m.

Figure 9.21: Reprinted from [7, 8]. The Shamir condensates used in these plots were
generated using a 16x16 mesh, with the same code base [64]. Left panel: m = 0.01.

Right panel: m = 0.05.

In fig. 9.21 data from collaborators is reprinted. Convergence plots are provided from

[7] in the left panel, and [8] in the right panel. The requirement of large Ls-values

had already been amply demonstrated to be beyond the computing resources available.

Instead these papers use the extrapolation

⟨ψ̄ψ⟩∞ − ⟨ψ̄ψ⟩ = A(g2,m)e−△(g2,m)Ls (9.1)

It was troublingly found that the decay rate coefficient, △, goes to zero as m→ 0, sug-

gesting that eqn. 9.1 is not a suitable curve fit since this corresponds to the hopefully

unreasonable requirement that Ls → ∞ as m → 0. (While this would be the case for

any auxiliary field resulting in an overlap kernel with a zero eigenvalue, this would be

an exceptional ocurrence.) We worried about the meandering convergence discussed in

the quenched results validation section 8.1. What initially appeared to be exponentially

convergent according to eqn. 9.1, turned out to require considerably larger Ls. This may
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simply be explained by the nature of HT approximation, and the uneven distribution

of its accuracy over the kernel eigenvalue range. Alternatively, with the Zolotarev ap-

proximation, suitably tuned to the eigenvalue range, one may perhaps more reasonably

expect to find convergence of that form eqn. 9.1 but without a vanishing decay rate.

9.8 Wilson Condensates

Plots of the condensate generated with the Wilson condensate are shown in Figure 9.22.

The left panel shows measurements of the condensate taken every 5 trajectories over at

last 1500 trajectories, with the HT formulation at various Ls. Error bars are shown for

the Ls = 36 cases but are of similar magnitude for the other Ls curves. The m = 0.05

case seems to be well Ls convereged already at Ls = 20, and it appears that it may be

close to satisfactory convergence for Ls = 28/36 form = 0.01 andm = 0.03. Preliminary

calculations misleadingly hinted that the Ls may already be sufficiently convergered to

look at the equation of state since the critical exponents found for Ls = 28 and Ls = 36

were very similar. The right panel shows the full Ls = 36 data set. The error bars are

scaled according to appendix B.4.
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Figure 9.22: Dynamic Condensate with Wilson kernel. Left panel: HT formulation
with various Ls and m. Right panel: HT formulation for Ls = 36.

The left panel of Figure 9.23 shows measurements using the Zolotarev formulation with

Ls = 24 and a range [0.001, 10], against two different mass plots of the HT formulation.

While we see again that at m = 0.05 the condensate appears Ls converged, we see that

the HT formulation is not for m = 0.01. We argue that similarly to the Shamir case,

we do not require the Ls convegence in the generation of the auxiliary field to match

that in the measurements, and hence move forwards with the HT generated auxiliary

fields. We also want to see that the Zolotarev range and Ls value is sufficient. The right

panel of Figure 9.23 shows the condensates measured (still using the Ls = 36 generated

auxiliary fields) with Zolotarev range [0.001, 20] for Ls = 18 and Ls = 24, expanded to

[0.0005, 20] for Ls = 30. Based on the errors of the scalar sign function approximation
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we might have expected more stringent conditions to be necessary, but it appears that

reasonable Ls convergence is already achieved with the Ls = 18 case.
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Figure 9.23: Dynamic Condensate with Wilson kernel. Auxiliary fields dynami-
cally generated with HT and Ls = 36. Left panel: Measurements with Zolotarev
(Ls = 24, Range=[0.001, 20]) and HT (Ls = 36) formulations at different m. Right
panel: Measurements with Zolotarev (Ls = 18/24, Range=[0.001, 20], Ls = 30,

Range=[0.0005, 20])

Partial quenching with the sea fermions calculated using higher masses has been carried

out in the past [10], and our kernel eigenvalue range seems somewhat bare mass inde-

pendent, so it seemed worthwhile to see whether such partial quenching could produce

equivalent results, similarly to the Ls partial quenching and plots are shown in Figure

9.24. Somewhat disappointingly, although we can see that while there is some indication

this may be acceptable in the weakly coupled region, it is clearly not acceptable in the

strongly coupled region, with the partially quenched results rapidly diverging from their

non-quenched counterparts. Of course, there is no physical justification for this sort of

partial quenching, unlike the differing Ls case, where it may be viewed as different levels

of accuracy in different parts of the calculation.
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Figure 9.24: Auxiliary fields dynamically generated with HT and Ls = 36 with
m = 0.01 designated by “Am=01”. Mesurements calculated with Zolotarev Ls = 24
with m = 0.01 designated by “Mm=0.01”. Partial quenching with m = 0.05 in the

auxiliary field is considered.
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9.9 Wilson EOS

We are now in the position, or at least we are closer than prior work, to be able to

estimate the critical exponents via the equation of state, eqn. 5.10, generated from

dynamic condensate measurements, without the need for further non-trivial (constant)

extrapolation of those condensate measurements to their Ls limit. This constitutes the

primary step forward this thesis takes from previous work in this area. Fig. 9.25 shows

a number of such EOS fits. The upper panels have β ∈ [0.2, 0.6], the middle panels

have β ∈ [0.22, 0.55], and the bottom panels have β ∈ [0.22, 0.50]. The auxiliary fields

used are dynamically generated with Ls = 36 with the HT formulation. In the left hand

panels, the measurements are taken with a Ls = 24 Zolotarev scheme, and in the right

hand panels with a Ls = 30 Zolotarev scheme. The mass range is fixed in all cases

m ∈ [0.01, 0.05]. The critical exponent values for the different cases are also tabulated

in table 9.1. We see that the results between the two Zolatarev schemes are very similar,

and suggest that we have found a satisfactory level of Ls convergence, although it cannot

be ruled out that auxiliary fields generated with higher Ls values might provide further

convergence. Although the results differ with the choice of window, the errors are quite

wide and the results remain within the errors of each other. Nevertheless, it seems

that the weaker coupling points, β = 0.60 especially, but also perhaps β = 0.55 are

too far from the critical point to be sensibly included. The strongest coupling point

β = 0.20 appears to fit the curves better, although condensate data errors are larger

here. As such, despite the measure of fit being best for cases dw1/dw2 defined below, we

somewhat arbitrarily choose the middle panel as representative to designate our critical

exponents. Then we have

βc = 0.336(33)

βm = 1.04(29)

δ = 2.078(325)

(9.2)

and correspondingly the hyperscaled values

η = 0.95(15)

ν = 1.1(3)
(9.3)
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case id Ls β βc βm δ χ2/dof

dw1 24 [0.20,0.6] 0.328(22) 1.06(19) 2.111(208) 0.189
dw2 30 [0.20,0.6] 0.326(26) 1.01(23) 2.132(267) 0.151
dw3 24 [0.22,0.55] 0.339(30) 1.07(27) 2.067(287) 0.106
dw4 30 [0.22,0.55] 0.336(33) 1.04(29) 2.078(325) 0.0899
dw5 24 [0.22,0.50] 0.355(37) 1.19(32) 1.942(294) 0.0738
dw6 30 [0.22,0.50] 0.349(40) 1.13(33) 1.979(339) 0.0694

Table 9.1: Equation of state critical exponents found with partially quenched (aux-
iliary fields generated with HT approximation with Ls = 36 and measurements gener-
ated using Zolotarev approximation) for different β data range windows. Mass range

is [0.01, 0.05].

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

2/dof=0.189
0.19 < < 0.61, 0.01 m 0.05
Ndat = 90

Ls = 24, c = 0.328(22), m = 1.06(19), = 2.111(208)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

2/dof=0.151
0.19 < < 0.61, 0.01 m 0.05
Ndat = 90

Ls = 30, c = 0.326(26), m = 1.01(23), = 2.132(267)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

2/dof=0.106
0.21 < < 0.59, 0.01 m 0.05
Ndat = 80

Ls = 24, c = 0.339(30), m = 1.07(27), = 2.067(287)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

2/dof=0.0899
0.21 < < 0.59, 0.01 m 0.05
Ndat = 80

Ls = 30, c = 0.336(33), m = 1.04(29), = 2.078(325)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

2/dof=0.0738
0.21 < < 0.51, 0.01 m 0.05
Ndat = 75

Ls = 24, c = 0.355(37), m = 1.19(32), = 1.942(294)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

2/dof=0.0694
0.21 < < 0.51, 0.01 m 0.05
Ndat = 75

Ls = 30, c = 0.349(40), m = 1.13(33), = 1.979(339)

Figure 9.25: Equation of State fits with different condensate data windows for Wilson
Zolotarev formulations. The critical coefficients at the top of each plot are tabulated
in table 9.1. Left panel: uses Ls = 24 for measurements. Right panel: uses Ls = 30 for

measurements.
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Note we have doubled the errors of the condensate measurement in the fit. As noted for

the quenched cases this only affects the χ2 value and does not affect any of the exponent

values.

9.10 Shamir EOS

Turning to the EOS for the Shamir cases, again we plot a number of β range window

fits in fig. 9.26 and tabulate them in table 9.2. Again eyeballing the plots suggests that

despite case ds1 having the highest χ2/dof, a better fit is found by discarding the values

at the strongest and weakest coupling. Indeed, it looks like Ls = 300 may still not be

sufficient for the strongest couplings. So we take case ds5 to present the critical values.

case id β βc βm δ χ2/dof N

ds1 0.24-0.60 0.299(9) 0.50(8) 3.057(350) 0.426 80

ds2 0.26-0.55 0.318(14) 0.68(15) 2.456(360) 0.324 75

ds3 0.26-0.50 0.333(19) 0.80(18) 2.171(343) 0.298 65

ds4 0.26-0.46 0.344(24) 0.88(21) 1.988(355) 0.322 55

ds5 0.28-0.50 0.339(24) 0.89(26) 2.069(399) 0.171 60

ds6 0.28-0.46 0.347(29) 0.95(30) 1.950(428) 0.186 50

Table 9.2: Equation of state critical exponents found with partially quenched Shamir
HT kernel for different β data range windows. Mass range is [0.01, 0.05].

Then we have

βc = 0.339(24)

βm = 0.89(26)

δ = 2.069(399)

(9.4)

and correspondingly the hyperscaled values (eqn. 5.13)

η = 0.96(18)

ν = 0.91(28)
(9.5)
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Despite the haphazard method of choosing the case, and in part thanks to the relatively

large errors, the critical exponents are consistent between the Shamir and Wilson for-

mulations. This is particularly pleasing because early results had suggested otherwise,

which would have been a disappointing result. Of course, this data only hints at the

similarity of the results, and more and better data is required. Results in the next chap-

ter will suggest a further refinement of the window should be considered, ie smaller m

values with a more focused β range around the critical value.

We note the significant difference with the values given in [8]. The exponents found

with a Shamir kernel on 162 × 16 mesh were βc = 0.320(5), βm = 0.320(5), δ = 4.17(5),

corresponding to ν = 0.55(1) and η = 0.16(1). Further comparison with a staggered

formulation may be considered which give βm = 0.57(2), δ = 2.75(9), corresponding to

ν = 0.60(4) and η = 0.71(3). We attribute the difference to the lack of Ls convergence

in earlier work. Although extrapolation techniques were utilized, as hinted at in section

8.1, we suspect the Ls convergence curves may not be amenable to such techniques.
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Figure 9.26: Equation of State fits with different condensate data windows for Shamir
HT formulations. The critical coefficients at the top of each plot are tabulated in table

9.2. Ls = 300 for the measurements in all cases.

9.11 Summary

Using different Ls values for the sea and valence fermions we have been able to calculate

an EoS and critical exponents relating to symmetry breaking condensates measured in

the large Ls limit of the overlap operator, a task not achieved before in the context of the

Thirring model, albeit on a relatively small 122 × 12 lattice. This was achieved through

the use of an efficient partial quenching scheme, using the HT approximation in the

generation of the auxiliary fields, and the Zolotarev approximation for measurements,

which loses none of the physics. Although greater refinement of the calculation should

be carried out in the future, the compatible results stemming from the Wilson and
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Shamir formulations give confidence in the process. Counts of the computational costs

suggest that the Wilson formulation is preferable, although without an equivalent scaling

window comparisons are not entirely fair.



Chapter 10

Further Measurements

Finally, we explore two measurements which have proven challenging in the past, namely

the axial ward identity, which relates meson correlators to the condensate via eqn. 10.1.

The ratio of the left and right terms should be equal to one both in the lattice formulation

and hence also in the continuum limit, which was not found to be the case [46, 65].

Suggestions for the cause of this discrepancy included a lack of U(2) symmetry on the

lattice, ie insufficient Ls. The relation was also found to be independent of the bare mass

leading to the suggestion that the bare mass is not correct to plug into eqn. 10.1 but that

a physical mass should be used. Also the suggestion that the field identification, eqn.

3.41, be altered through renormalisation in some way was put forward, although this

is ruled out when using the domain wall formulation in strict adherence to the overlap

operator.

The chiral susceptibility defined as the derivative of the condensate wrt m, eqn. 10.3,

and equivalently calculated as the variance of Σ, eqn. 10.4, has also previously been

calculated [7]. In that work the correct qualitative behaviour as a function of β was

successfully demonstrated for each mass value, but when evaluated with eqn. 10.4 the

magnitudes increased with increasing m, contrary to the value derived from eqn. 10.3

via the equation of state.

We return to these measurements in the less challenging environment of 122×12 meshes

where we are able to push closer to the large Ls limit, using the auxiliary fields and

partially quenched condensate results generated for the results of the previous chapter.

10.1 Axial Ward Identity

Continuous symmetries of the theory are identified with conserved currents, and con-

sideration of infinitessimal transforms of the standard measurements, eqn. 2.1, leads

to the Ward identities [10]. We want to calculate the axial Ward identity, associated
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with the U(2) symmetry of the Thirring model, given by eqn. 10.1 [46], where C is the

condensate.

C

m
=
∑
x

⟨ψ̄(0)γ5ψ(0)ψ̄(x)γ5ψ(x)⟩ (10.1)

We already have the data for the condensate of the left hand component and need to

evaluate the series of of meson-like propagators on the rhs, to which end we use eqn.

A.11, and via M−1
yx = γ5(M

−1
xy )

†γ5 we have

C

m
=
∑
x

⟨Tr[(M−1
x0 )

†M−1
x0 ]⟩ (10.2)

This is readily calculable. Although the correlator is defined from 0 to x in eqn. 10.1

we may choose any starting value y instead since it has translational invariance. Indeed,

statistics may be improved using more than one location for each auxilary field, although

all the results presented below just use y = 0. Having chosen y, we then use four point

estimators, one for each Dirac index, to calculate aM−1
x0 for all x, where M = DOL. We

note that using the overlap formulation directly eliminates the need to patch together

the meson correlator from distinct components on each wall as is the case for the domain

wall formulation.

We provide plots for both the ratio, C
mR where R is the rhs of eqn. 10.1. In fig. 10.1 we

consider the dynamic Wilson case. To match the condensate measurement, we similarly

use the auxiliary fields generated with HT Ls = 36, and measure with Zolotarev Ls = 30

in the generation of the rhs term. An increase with increasing β is found, with the

identity getting close to 1 at the stronger end of the range, although at weaker coupling

the ratio falls off significantly. In figs. 10.2 and 10.3 we show results from the Shamir

cases. The curves also ascend through the critical point with a value of around 0.5. Ls

improvement does not seem to make a significant difference.

Overall, the ratios we have achieved are closer to one than previous results although

something is clearly still amiss. Perhaps the neglected (disconnected) term in the eval-

uation of eqn. 10.1 is more significant than assumed. Despite the limited statistics it

looks like the underlying issues will not be resolved simply by better data and a more

fundamental remedy will be required.
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Figure 10.1: Axial Ward identity for dynamic Wilson formulation. Left panel: Ratio
C
mR . Right panel: RHS term (eqn.10.1).
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Figure 10.2: Axial Ward identity for dynamic Shamir formulation (Ls = 96 for
measurement). Left panel: Ratio C

mR . Right panel: RHS term (eqn.10.1).
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Figure 10.3: Axial Ward identity for dynamic Shamir formulation (Ls = 300 for
measurement). Left panel: Ratio C

mR . Right panel: RHS term (eqn.10.1).
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10.2 Chiral Susceptibility

We move on to the chiral susceptibility χ, defined by eqn. 10.3 [7], and detailed in

appendix A.5

χ ≡ ∂2lnZ

∂m2
=
∂C

∂m
(10.3)

We may calculate this directly either as the numerical derivative of the condensate data

or as the derivative of our equation of state. Alternatively, denoting the condensate

instances Σ via the the condensate, C = ⟨Σ⟩ = ⟨ψ̄Dmψ⟩, we may also evaluate the

susceptibility as the variance of those instances Σ, eqn. 10.41. Evaluation by either

method should match.

χ = ⟨Σ2⟩ − ⟨Σ⟩2 (10.4)

Figs. 10.4 and 10.5 show the susceptibility calculated from the derivatives of equation

of states chosen from those presented in the previous two chapters. All are qualitatively

similar, with the peak magnitude increasingly increasing as m → 0 around the critical

point. Since this limit, χm→0,β=βc = ∞, this is what we want to see. The peaks for the

Wilson cases are somewhat more than double those of the corresponding Shamir cases.

This suggests the feasibility of the simple rescaling described in section 5.2.
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Figure 10.4: Quenched susceptibilities from EOS. Left panel: Wilson ZLs24, β ∈
(0.5, 1.0). Right panel: Shamir Ls300, β ∈ (0.52, 1.2).

1This calculation omits the connected components as set out in appendix A.5
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Figure 10.5: Dynamic susceptibilities from EOS. Left panel: Wilson ZLs30 (AH36).
Right panel: Shamir Ls300 (AH96).

However, calculations based on eqn. 10.4 are less neat. Of course, variance calculations

are more computationally demanding that mean value calculations, and the data is

rather noisy again. Plots for the quenched Wilson and quenched Shamir cases are

shown in figs.10.6 and 10.7 respectively. The data used in the evaluation is noisy, and of

course, one should mitigate against the use of noisy estimators in the evaluation of Σ,

but this data was not preserved, and the following is based on a naive evaluation only.

The left panel Wilson plot uses Zolotarev with Ls = 24, and the right panel uses HT

with Ls = 36. The left panel Shamir plot uses HT with Ls = 300, and the right panel

uses HT with Ls = 96. While in all cases we find the correct increase in magnitude with

decreasing m in the strongly coupled region, for the Wilson case with HLs = 36 the

m = 0.01 curve gives the smallest magnitude in the weakly coupled region. Overall it

seems that limiting the Ls dampens the condensate instances, which makes sense since

this has the effect of reducing the magnitude of eigenvalues in the sign function of the

overlap operator to less than one beyond the range of the approximation. Further, the

susceptibilities increase with decreasing β, and do not show the downturn beyond the

critical point, although there are hints of this when the better Ls approximations are

used. We believe this is a consequence of ignoring the noisiness of the data.

The calculations using the dynamic data, shown in figs. 10.8, 10.9, 10.10 paint a similar

picture, but perhaps more strongly suggest that the inversion of the magnitude with

decreasing m is simply a consequence of sufficient Ls. We suggest that away from the

critical point, lattice artifacts may be stronger and are a potential reason for stronger

discrepancies for β-values further from the critical point.

Overall, however, these results suggest that better Ls resolution and better statistical

data is likely to be sufficient to have matching calculations of the susceptibility as we

require.
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Figure 10.6: Quenched Wilson susceptibilities calculated with eqn. 10.4. Left panel:
Z Ls = 24 formulation. Right panel: HT Ls = 36 formulation.

Figure 10.7: Quenched Shamir susceptibilities calculated with eqn. 10.4. Left panel:
HT Ls = 300 formulation. Right panel: HT Ls = 96 formulation.

Figure 10.8: Dynamic Wilson susceptibilities calculated with eqn. 10.4. Left panel:
Partially quenched Z Ls = 24 formulation. Right panel: HT Ls = 36 formulation.
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Figure 10.9: Dynamic Shamir susceptibilities calculated with eqn. 10.4. Left panel:
HT Ls = 60. Right panel: HT Ls = 96 formulation.

Figure 10.10: Dynamic Shamir susceptibilities calculated with eqn. 10.4. Partially
quenched HT Ls = 300.



Chapter 11

Conclusion

11.1 Summary

This work has investigated different formulations of lattice Dirac operators which obey

the GW relations and recover the U(2) symmetry in the continuum limit; namely the

overlap operator and the equivalent domain wall operator. These have been explored in

the context of the 2+1d Thirring model.

Code development has primarily been a standalone Fortran code implementing a range

of Dirac operators and measurements thereof utilising either quenched or imported aux-

iliary fields. Dynamically generated auxiliary fields were produced with the freely avail-

able Fortran code [64]. This is a Shamir kernel domain wall code, and it was altered to

provide the option of generating fields with the Wilson kernel.

As a modest contribution on the theoretical side, the twisted mass formulation of the

overlap condensate, eqn.4.15 was introduced in this work, corresponding to the twisted

mass formulation of the domain wall condensate introduced in [3].

The locality of the overlap operator was numerically demonstrated for the strongly

coupled 2+1d Thirring model. It had only been demonstrated for a weakly coupled

region with a bounded auxiliary field before. That the Zolotarev formulation improves

Ls convergence is not new, it being optimal, but this work contributes to the body of

knowledge on convergence rates and the GW error.

A number of different aspects of the Dirac operators and their implementations were

investigated. Eigenvalue ranges of the overlap kernel were explored, and a key finding is

that the non-compact link fields leads to apparently unbounded from above eigenvalue

ranges in the overlap kernel, whereas these are clearly bounded with compact link fields.

This has very significant (detrimental) implications on the computational difficulty of

inverting the Dirac operator. Further, the Shamir formulation appears to become more
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challenging as the mesh gets larger in a way that the Wilson kernel doesn’t. That is,

that the kernel eigenvalue range increases with mesh size around and beyond the critical

coupling strength.

Varying the domain wall height was briefly explored in the quenched cases, and was found

to signifcantly improve kernel eigenvalue ranges for fixed β, and the improvement is most

pronounced around βc. This benefit may be reduced somewhat since we subsequently

show that βc moves with M , but there is clearly benefit to be exploited here. Further,

we suggest that reducing the domain wall height appears to zoom in on the mass scaling

in the Shamir formulated EoS.

Using the relatively small mesh size of 12x12 we were able to achieve reasonably well Ls

converged quenched results with the Zolotarev approximation for the Wilson formulation

with a low Ls = 24 and the utilisation of Ls = 300 was achievable for the Shamir

formulation using the indirect domain wall formulation (eqn.3.91). Shamir cases were

run with both M = 1.0 and M = 0.5. It is clear that M has a significant impact on the

results, and one hopes corresponds to a rescaling of the equation of state variables.

In the dynamic generation of auxililary fields, it was found that the Wilson formulation

had a lower acceptence rate in the hamiltonian dynamics steps, becoming more pro-

nounced at the stronger coupling. Fitting with the perspective that the Shamir results

are rescaled from the Wilson results, we speculate that we might expect to find the same

acceptance rates with suitably rescaled Shamir mass and β values.

Another key finding, or observation, was that the level of accuracy corresponding to

the large Ls limit required in the measurement of the condensate, is not required in

the generation of the auxiliary fields. Given that the bulk of computational effort in

dynamic simulations is in the generation of the auxiliary fields this has the potential to

save significant computational cost.

Condensates with compact link fields were also considered, largely due to the celerity of

their calculation, and were found not to have a phase change at least not with the mass

as the order parameter. The significance of this is unclear and unexplored, but was a

surprising result.

We calculated an equation of state and critical exponents for both Wilson and Shamir

kernels, using low accuracy for the generation of the auxiliary fields and high accuracy

for the measurements. Although better statistics would be desirable, the results are

consistent between the formulations, as we would hope. This was particularly good

news as lower Ls-range preliminary work had hinted that consistency may not have

been found. This would not have been possible without the partial quenching.

Finally we looked at the axial ward identity and chiral susceptibility, calculations which

have been found challenging in the past. It appears that difficulties in the calculation

of the chiral susceptibility can simply be attributed to insufficient Ls resolution. While
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it seems some improvements are made here in the calculation of the axial ward identity,

it does not suggest that the better Ls combined with better statistics will be enough to

resolve the discrepancies found in the data.

A couple of comments are to be made before concluding with the outlook for future

work. At the outset one of the simple question was which kernel to use. It seems to the

author that both should be used, providing a valuable crosscheck. Although we were

able to get away with using the HT scheme with the Shamir formulation in this work,

this will be limited in general since the requirements seem to become more stringent with

increasing lattice size. We see via the denominator coefficients of the partial fraction

representation that the HT approximation needs to achieve a similar smallest coefficient

to the Zolotarev approximation to match its accuracy, but has very many wasteful

partial fraction terms. And hence Zolotarev should almost always be used from that

perspective, notwithstanding the scaled HT formulation may be preferable for relatively

small eigenvalue ranges.

The phrase partially quenched has been used to describe differing Ls values between the

sea fermions (those used to dynamically generate the auxiliary fields) and the valence

fermions. This is somewhat misleading, as it may more simply be viewed as relative

accuracy between two different parts of the overall calculation, and there is no quenching,

partial or otherwise, of any of the physics, when suitable Ls values are found.

11.2 Outlook

Inevitably, there is much more to do, too many stones were left unturned, and better

statistics would be beneficial in almost all of the simulations. Nevertheless we may set

out the following goals following on the work carried out in this thesis, continuing to

work with a 122x12 mesh for the moment.

� Generate more dynamic Wilson fields with M = 1 and include m = 0.005,

m = 0.075 data. Double the number of β data points to improve EoS χ2 value,

continuing with the same range. We want to see a very clearly window independent

EoS.

� Repeat the process with M = 0.5.

� Generate Shamir auxiliary fields with a narrower window (smaller m, β closer to

βc). Explore whether this is better achieved with M ̸= 1.0.

� Establish scaling relations between the different Dirac operator configurations.

This would provide a significant boost to the confidence in the validity of the EoS.

There are further issues which we would like to explore.
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Designer sign approximations Can we find non-optimal approximations which in-

clude higher order polynomial terms which allow a larger smallest denominator

coefficient for the rational part. Explicitly, can we extend eqn. 3.77 to the form

sgn(r) =
∑

j cjr
j +dr(b0+

∑Nd
m=1

bm
r2+dm

) and choose cj so that the smallest values

dm are increased, leading to faster evaluation overall.

GW correction term It would be affirmative to look at eqn. 7.9 for dynamic formu-

lations. We expect it to vanish as we go to critical coupling.



Appendix A

Formulational Issues

A.1 Matthews-Salam Relations

To ensure the correct Fermi statistics the spinors ψ,ψ̄ must be made up of Grassmann

numbers. We make use of the Matthews-Salam formula to integrate these which is given

by [10] ∫
D[η, η̄]eη̄Mη = det[M ] (A.1)

where D[η, η̄] = dηNdη̄N · · · dη1dη̄1, we have the vectors of Grassmann variables η =

{η1, · · · , ηN}, , η̄ = {η̄1, · · · , η̄N}, and the complex valued N ×N matrix M . We then

have Wick’s theorem, for n twin Grassmann numbers,∫
D[η, η̄] ηi1 η̄j1 · · · ηin , η̄jneη̄Mη = f(i1, j1, · · · , in, jn,M)det[M ] (A.2)

where

f(i1, j1, · · · , in, jn,M) = (−1)n
∑

P (1,··· ,n)

sign(P )(M−1)i1jP1
(M−1)i2jP2

· · · (M−1)injPn

(A.3)

where we sum over all the permutations of the set P = {1, · · · , n}, and sign(P ) is +1 if

the number of element swaps to reach the identity permutation is even, and −1 if odd.

Hence we have the Matthews-Salam relations

f(i1, j1,M) = −(M−1)i1j1 (A.4)

f(i1, j1, i2, j2,M) = (M−1)i1j1(M
−1)i2j2 − (M−1)i1j2(M

−1)i2j1 (A.5)

113
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If terms of our Dirac operator, each spinor has 4 components, although for notational

brevity we consider below a 2 component spinor,

ψ(i) =

(
ηi,1

ηi,2

)
ψ̄(j) =

(
η̄j,1 η̄j,2

)
(A.6)

so the propagator ⟨ψ(i)ψ̄(j)⟩ is

⟨ψ(i)ψ̄(j)⟩ =
(
⟨ηi,1η̄j,1⟩ ⟨ηi,1η̄j,2⟩
⟨ηi,2η̄j,1⟩ ⟨ηi,2η̄j,2⟩

)
=

(
⟨ηkη̄l⟩ ⟨ηkη̄l+1⟩
⟨ηk+1η̄l⟩ ⟨ηk+1η̄l+1⟩

)

=

(
−(M−1)k,l −(M−1)k,l+1

−(M−1)k+1,l −(M−1)k+1,l+1

)
= −(M−1)i,j

(A.7)

and further

⟨Γψ(i)ψ̄(j)⟩ = Γ ⟨ψ(i)ψ̄(j)⟩ = −Γ(M−1)i,j (A.8)

Conversely we have

⟨ψ̄(j)ψ(i)⟩ = ⟨η̄j,1ηi,1⟩+ ⟨η̄j,2ηi,2⟩
= ⟨Tr[(M−1)ij ]⟩

(A.9)

and

⟨ψ̄(j)Γψ(i)⟩ = ⟨Tr[Γ(M−1)ij ]⟩ (A.10)

For second order terms, corresponding to eqn. A.5, we have a meson like propagator.

⟨ψ̄(i)Γψ(i)ψ̄(j)Γψ(j)⟩ =− ⟨Tr[Γ(M−1)i,jΓ(M
−1)j,i]⟩

+ ⟨Tr[Γ(M−1)i,i]Tr[Γ(M
−1)j,j ]⟩

(A.11)

The second term, the disconnected term, is often neglected [10]. The eqns. A.9, A.10,

A.11 are the Matthews-Salam relations.

A.2 Parity Invariance

The parity of a system describes its “evenness” or “oddness”. A parity invariant system

has its lagrangian remain constant under a parity transformation, defined below.1 We

confirm parity of the three different mass terms, transcribing from [44]. For an active

1We invert an odd number of axes. Inverting an even number corresponds to a rotation of the
coordinates.[3]
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frame of reference transform we have

x→ Λx

ψ(x) → P [Λ]ψ(Λ−1x)

ψ̄(x) → ψ̄(Λ−1x)P [Λ]−1

∂µψ(x) → Λ−1P [Λ]∂µψ(Λ
−1x)

A(x) → ΛA(Λ−1x)

(A.12)

where Λ is the space-time transform, and the form P [Λ] is to be determined. We choose

our parity transform to reflect all 3 space-time dimensions, so the coordinate transform

matrix is Λ = −I3. We find two suitable forms, P1[Λ] = γ3 and P2[Λ] = γ5. This is

distinct from 3+1d where P [Λ] = γ0. Noting

P[S1] = P[ψ̄(D +m)ψ]

= P[ψ̄γµ∂µψ] + P[ψ̄γµiAµψ] + P[ψ̄mψ]
(A.13)

we can then show parity invariance of the individual terms

P1[ψ̄γµ∂µψ] = ψ̄P1[Λ]
−1γµΛ

−1P1[Λ]∂µψ

= ψ̄γ3γµ(−1)γ3∂µψ

= ψ̄γµ∂µψ

(A.14)

P1[ψ̄γµiAµψ] = ψ̄P1[Λ]
−1γµiΛAµP1[Λ]ψ

= ψ̄γ3γµ(−i)Aµγ3ψ

= ψ̄γµiAµψ

(A.15)

P1[ψ̄mψ] = ψ̄P1[Λ]
−1mP1[Λ]ψ

= ψ̄mψ
(A.16)

P2 follows an identical process since γ5 also anticommutes with γ0, γ1, γ2 similarly to γ3.

For S3 we need only consider the mass terms, which are only invariant under one of the

two parity transforms.

P[S3] = P[ψ̄(D − iγ3m)ψ)] (A.17)

P1[ψ̄(−iγ3m)ψ] = ψ̄P1[Λ]
−1(−iγ3m)P1[Λ]ψ

= ψ̄γ3(−iγ3m)γ3ψ

= ψ̄(−iγ3m)ψ

(A.18)

which is invariant, but

P2[ψ̄(−iγ3m)ψ] = ψ̄P2[Λ]
−1(−iγ3m)P2[Λ]ψ

= ψ̄γ5(−iγ3m)γ5ψ

= ψ̄(iγ3m)ψ

(A.19)



Appendix A Formulational Issues 116

is not, since the sign of mass term has been flipped. This situation is reversed for S5.

To see that the irreducible formulation is not parity invariant, note that parity demon-

strated above was contingent on the anti-commutivity of the γ3 and γ5 matrices with

the γ0,γ1,γ2 matrices. For the irreducible formulation we would need to find an anti-

commuting matrix equivalent to γ3 or γ5 for the Pauli matrices. The Pauli matrices

possess σ21 = σ22 = σ23 = −iσ1σ2σ3 = I. If we require some M that anti-commutes with

all σiM = −Mσi then −iσ1σ2σ3M = iMσ1σ2σ3, i.e. M = −M , which only holds if

M = 0.

A.3 Equivalence of Domain Wall and Overlap Operators

We demonstrate the equivalence of the determinant of the domain wall operator and

the overlap operator. We choose the Wilson kernel and the twisted mass term for

the illustration. The overall approach is taken from [39], and the twisted mass form

derivation was initially provided in [35] for the Shamir kernel.

A.3.1 Some Linear Algebra

Consider [39] the LDU decomposition of a matrixM = LΛU with the following structure,

where the Ti and C± are square matrices,

M =


1 0 0 −T−1

1 C+

−T−1
2 1 0 0

0 −T−1
3 1 0

0 0 −T−1
4 C−

 (A.20)

then with T = T1T2T3T4,

LΛU =


1 0 0 0

−T−1
2 1 0 0

0 −T−1
3 1 0

0 0 −T−1
4 1



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 C− − T−1C+



1 0 0 −T−1

1 C+

0 1 0 −T−1
2 T−1

1 C+

0 0 1 −T−1
3 T−1

2 T−1
1 C+

0 0 0 1


(A.21)

with the Schur complement S = C− − T−1C+ and

L−1 =


1 0 0 0

−T−1
2 1 0 0

(−T2)−1(−T3)−1 −T−1
3 1 0

(−T2)−1(−T3)−1(−T4)−1 (−T3)−1(−T4)−1 −T−1
4 1

 (A.22)
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Λ−1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 S−1

 (A.23)

U−1 =


1 0 0 −T−1

1 C+

0 1 0 −T−1
2 T−1

1 C+

0 0 1 −T−1
3 T−1

2 T−1
1 C+

0 0 0 1

 (A.24)

so M−1 = U−1Λ−1L−1 and

(M−1)44 = S−1 = (C− − T−1C+)
−1 (A.25)

is the inverse of the Schur complement S. The example 4 × 4 M matrix given can be

extended to a N ×N with the same structure. For any Dirac operator that we can put

into this form with suitable T , we can connect to an approximation of the sign function

and hence the overlap operator. The salient feature of the LDU decomposition is that

the determinants of the lower and upper diagonal matrices are 1, so that

det[M ] = det[Λ] = det[S] (A.26)

A.3.2 Wilson Domain Wall M3

Choosing not to simplify2 with P−γ3 = −P−, P+γ3 = P+, we have

DM3
DW =


ω1D

∥ + I (ω1D
∥ − I)P+ 0 −(ω1D

∥ − I)imγ3P−

(ω2D
∥ − I)P− ω2D

∥ + I (ω2D
∥ − I)P+ 0

0 (ω3D
∥ − I)P− ω3D

∥ + I (ω3D
∥ − I)P+

−(ω4D
∥ − I)imγ3P+ 0 (ω4D

∥ − I)P− ω4D
∥ + I


(A.27)

Using the compacting matrix

C =


P− 0 0 P+

P+ P− 0 0

0 P+ P− 0

0 0 P+ P−

 (A.28)

2for future algbraic consistency and simplicity



Appendix A Formulational Issues 118

DM3
DWC =


(ω1D

∥ + I)P− + (ω1D
∥ − I)P+ 0 0 (ω1D

∥ + I)P+ − (ω1D
∥ − I)imγ3P−

(ω2D
∥ − I)P− + (ω2D

∥ + I)P+ · · · 0 0

0 · · · · · · 0

0 0 · · · −(ω4D
∥ − I)imγ3P+ + (ω4D

∥ + I)P−


(A.29)

Let

Q+
i = (ωiD

∥ + I)P− + (ωiD
∥ − I)P+

Q−
i = (ωiD

∥ + I)P+ + (ωiD
∥ − I)P−

(A.30)

C+ = P+ − imγ3P−
C− = P− − imγ3P+

(A.31)

so that

DM3
OLC =


Q+

1 0 0 Q−
1 C+

Q−
2 Q+

1 0 0

0 Q−
3 Q+

3 0

0 0 Q−
4 Q+

4 C−

 (A.32)

Let

V =


Q+

1 0 0 0

0 Q+
2 0 0

0 0 Q+
3 0

0 0 0 Q+
4

 (A.33)

then

V −1DM3
DWC =M (A.34)

We have det[C] = 1 but det[V ] ̸= 1. However, V is independent of m, unlike DM3
OL , and

hence while det[V −1DM3
OL (m)C] ̸= det[M(m)] we do have

det[M(1)−1M(m)] = det[(DM3
DW (1))−1DM3

DW (m)] (A.35)

This will provide the crucial link relating the determinants of the overlap operator to

the domain wall operator. Now M has elements C± as given in eqns. A.43 and Ti given

by

Ti = −Q
+
i

Q−
i

=
1−Hi

1 +Hi
(A.36)

where

Hi = ωiγ3D
∥ (A.37)
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Eqn. A.36 is found via

Ti = −(Q−
i )

−1(Q+
i )

= −[(ωiD
∥ + I)P+ + (ωiD

∥ − I)P−]
−1[(ωiD

∥ + I)P− + (ωiD
∥ − I)P+]

= −[(ωiD
∥) + (P+ − P−)]

−1[(ωiD
∥)− (P+ − P−)]

= −[(ωiD
∥) + γ3]

−1[(ωiD
∥)− γ3]

= −[(ωiγ3D
∥) + 1]−1[(ωiγ3D

∥)− 1]

=
1−Hi

1 +Hi

(A.38)

The Shamir variants have the same structure with Hi = γ3
ωiD

||

2+ωiD|| .

A.3.3 Overlap from Domain Wall

Having laid the groundwork, the final step is to show that

det[DM1
DW (1)−1DM3

DW (m)] = det[DM3
OL ] (A.39)

indicating that operators DM1
DW (1)−1DM3

DW (m) and DM3
OL are physically equivalent. Ap-

proximations to the sign function, designated ϵ may be expressed as

sgn(γ3D
||) ≈ ϵ =

1−∏i
1−Hi
1+Hi

1 +
∏ 1−Hi

1+Hi

=
1− T

1 + T
(A.40)

Then the overlap operator may be given by

DM3
OL (m) =

1 + imγ3
2

+ γ3
1− T

1 + T

1− imγ3
2

(A.41)

The Shur complement of M is S = (C− − T−1C+). So then we will show that

SM3(m) = −(1 + T−1)γ3 ×
1

2
[(1 + imγ3) + γ3sgn(γ3D

||(1− imγ3)] (A.42)

We may reexpress eqn. A.43 as

C+ = P+ − imγ3P− =
1 + im

2
− 1− imγ3

2
γ3

C− = P− − imγ3P+ =
1− im

2
− 1 + imγ3

2
γ3

(A.43)
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so then

2SM3(m) = [(1− imγ3)− (1 + imγ3)γ3 − T−1((1− imγ3) + (1 + imγ3)γ3)]

= [(1− T−1)(1− imγ3)− (1 + T−1)(1 + imγ3)γ3]

= (1 + T−1)[
T − 1

T + 1
(1− imγ3)− (1 + imγ3)γ3]

= −(1 + T−1)[ϵ(1− imγ3) + (1 + imγ3)γ3]

= −(1 + T−1)γ3 × [(1 + imγ3) + γ3ϵ(1− imγ3)]

(A.44)

In the standard mass case, we just replace imγ3 with m and get

2SM1(m) = −(1 + T−1)γ3 × [(1 +m) + γ3ϵ(1−m)] (A.45)

which we see has

SM1(1) = −(1 + T−1)γ3 (A.46)

Hence we get the result the expression for the overlap in terms of the Schur complement

of domain wall operators

DM3
OL (m) = (SM1(1))−1SM3(m) (A.47)

from which we see the relationship between the domain wall and overlap operators via

their determinants

det[DM3
OL (m)] = det[(SM1(1))−1SM3(m)]

= det[(MM1(1))−1MM3(m)]

= det[(DM1
DW (1))−1DM3

DW (m)]

(A.48)

The relation between the full overlap and domain wall operators is given in the main

text.

A.4 Thirring Model

The physical equivalence of the original Thirring model LThir = Ψ̄(γµ∂µ+m)Ψ+ g2

2 Ψ̄γµΨ

with its auxiliary field form LA = Ψ̄(γµ∂µ +m+ igAµγµ)Ψ + 1
2AµAµ can be seen via

LA = Ψ̄(̸∂ +m+ igAµγµ)Ψ +
1

2
AµAµ

= Ψ̄(̸∂ +m)Ψ + igAµΨ̄γµΨ+
1

2
AµAµ +

g2

2
(Ψ̄γµΨ)2 − g2

2
(Ψ̄γµΨ)2

= Ψ̄(̸∂ +m)Ψ +
g2

2
(Ψ̄γµΨ)2 + (

Aµ√
2
+

ig√
2
Ψ̄γµΨ)2

= LThir +
Ã2

µ

2

(A.49)
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where Ãµ = Aµ + igΨ̄γµΨ. Now we have the auxiliary form partition function

ZA =

∫
D[Ψ, Ψ̄]D[Aµ]e

−
∫
x LA

=

∫
D[Ψ, Ψ̄]e−

∫
x LThir

∫
D[Aµ]e

−
∫
x

Ã2
µ
2

= const ZThir

(A.50)

The last step holds since Ãµ is linear in Aµ, so D[Ãµ] = D[Aµ] and hence∫
D[Aµ]e

−
∫
x

Ã2
µ
2 =

∫
D[Ãµ]e

−
∫
x

Ã2
µ
2 = const (A.51)

Hence the physics is the same since scaling the partition function does not change the

physics. The constant is regularisation dependent.

A.5 Measurement Derivations

The following derivative

C =
∂lnZ

∂m
=

1

Z

∂Z

∂m

=
1

Z

∂

∂m
⟨ZF ⟩G

=
1

Z
⟨∂ZF

∂m
⟩
G

(A.52)

combined with

∂ZF

∂m
=

∂

∂m

∫
D[ψ, ψ̄]exp(−ψ̄Dψ)

=

∫
D[ψ, ψ̄]

∂

∂m
[exp(−ψ̄(D0 +mDm)ψ)]

= −
∫

D[ψ, ψ̄]ψ̄Dmψexp(−ψ̄Dψ)

= −⟨ψ̄Dmψ⟩F

(A.53)

leads to

C =
∂lnZ

∂m
= − 1

Z
⟨⟨ψ̄Dmψ⟩F ⟩G

= − 1

Z
⟨Tr[DmD−1]det[D]⟩G

= −⟨Tr[DmD−1]⟩

(A.54)
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Taking the next derivative

χ =
∂2lnZ

∂m2
=

∂

∂m
[
1

Z
⟨∂ZF

∂m
⟩
G
]

=
−1

Z2
⟨∂ZF

∂m
⟩
2

G
+

1

Z
⟨ ∂

2Z

∂m2
⟩
G

=
1

Z
⟨∂

2ZF

∂m2
⟩
G
− (

1

Z
⟨∂ZF

∂m
⟩
G
)2

(A.55)

and

∂2ZF

∂m2
= −

∫
D[ψ, ψ̄]

∂

∂m
[ψ̄Dmψexp(−ψ̄Dψ)

=

∫
D[ψ, ψ̄]ψ̄Dmψψ̄Dmψexp(−ψ̄Dψ)

= ⟨ψ̄Dmψψ̄Dmψ⟩F
= (Tr[DmD−1]2 − Tr[(DmD−1)2])det(−D)

(A.56)

leads to

χ =
∂2lnZ

∂m2
=

1

Z
⟨∂

2ZF

∂m2
⟩
G
− (

1

Z
⟨∂ZF

∂m
⟩
G
)2

=
1

Z
⟨⟨ψ̄Dmψψ̄Dmψ⟩F ⟩G − (

1

Z
⟨⟨ψ̄Dmψ⟩F ⟩G)2

(A.57)

And hence

χ =
1

Z
⟨Tr[DmD−1]2ZF ⟩G

− 1

Z
⟨Tr[(DmD−1)2])ZF ⟩G

− (
1

Z
⟨Tr[DmD−1]ZF ⟩G)2

(A.58)

And finally

χ ≡⟨ψ̄Dmψψ̄Dmψ⟩ − ⟨ψ̄Dmψ⟩2

= ⟨Tr[DmD−1]2⟩ − ⟨Tr[(DmD−1)2]⟩ − ⟨Tr[DmD−1]⟩2

= ⟨Σ2⟩ − ⟨Tr[(DmD−1)2]⟩ − ⟨Σ⟩2
(A.59)

The middle terms, the connected terms, are typically discarded since they are computa-

tionally relatively expensive and assumed to be negligible. We have along the way given

the general definition of susceptibility of an observable O, χO = ⟨O2⟩ − ⟨O⟩2.

Note the difference in meaning between ⟨·⟩ containing Grassmann variables and those

just containing numbers, the former referring to measurement integrals of form eqn. 2.1,

and the latter meaning the averages according to eqn. 2.18.
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A.5.1 Overlap Condensate with Standard Mass Term

The overlap operator with standard mass term is given by

D1
OL =

1 +m

2
+

1−m

2
V (A.60)

We separate the mass term D1
OL = D0

OL +mDM1
OL to get

D0
OL =

1

2
+

1

2
V (A.61)

DM1
OL =

1

2
− 1

2
V (A.62)

and want to find the trace Tr[DM1
OL (D

1
OL)

−1] and we have, making use of V =
2D1

OL−1−m
1−m :

DM1
OL (D

1
OL)

−1 =
1
2 − 1

2V
1
2 + 1

2V +m(12 − 1
2V )

= {1 + V +m(1− V )

1− V
}−1

= {
1 +

2D1
OL−1−m
1−m +m(1− 2D1

OL−1−m
1−m )

1− 2D1
OL−1−m
1−m

}−1

= {D
1
OL(1−m)

1−D1
OL

}−1

=
1

(1−m)

1−D1
OL

D1
OL

=
1

1−m
((D1

OL)
−1 − 1)

(A.63)

Twisted Mass Formulation

Now we consider the overlap operator with twisted mass term and it carries through in

exactly the same way.

D3
OL =

1 + imγ3
2

+ V
1− imγ3

2
(A.64)

which separates into D3
OL = D0

OL +mDM3
OL , with D

0
OL as above, to get

D0
OL =

1

2
+

1

2
V (A.65)

DM3
OL = (1− V )

iγ3
2

(A.66)
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Now we have V = (2D3
OL − 1− imγ3)(1− imγ3)

−1 and so

DM3
OLD

−1
OL = (1− V )iγ3[1 + V + (1− V )imγ3]

−1

= (1− (2D3
OL − 1− imγ3)(1− imγ3)

−1)iγ3

× [1 + (2D3
OL − 1− imγ3)(1− imγ3)

−1 + (1− (2D3
OL − 1− imγ3)(1− imγ3)

−1)imγ3]
−1

= (1−D3
OL)iγ3[(−imγ3 +D3

OL) + (1−D3
OL)imγ3]

−1

= (1−D3
OL)iγ3[(D

3
OL)(1− imγ3)]

−1

= (1−D3
OL)iγ3(1− imγ3)

−1(D3
OL)

−1

= (1−D3
OL)

−1

iγ3 +m
(D3

OL)
−1

(A.67)

And by the cyclic property of traces of matrices we have

Tr[DM3
OLD

−1
OL] = Tr[(1−D3

OL)
−1

iγ3 +m
(D3

OL)
−1]

= Tr[
−1

iγ3 +m
(D3

OL)
−1(1−D3

OL)]

= Tr[
−1

iγ3 +m
((D3

OL)
−1 − 1)]

(A.68)

Left Twisted Mass Formulation

Now we consider the overlap operator with twisted mass term and it carries through in

exactly the same way.

D4
OL =

1 + imγ3
2

+
1− imγ3

2
V (A.69)

which separates into D4
OL = D0

OL +mDM3
OL , with D

0
OL as above, to get

D0
OL =

1

2
+

1

2
V (A.70)

DM4
OL =

iγ3
2

(1− V ) (A.71)
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Now we have V = (1− imγ3)
−1(2D4

OL − 1− imγ3) and so

DM4
OL (D

4
OL)

−1 = iγ3(1− V )[1 + V + imγ3(1− V )]−1

= iγ3(1− (1− imγ3)
−1(2D4

OL − 1− imγ3))

× [1 + (1− imγ3)
−1(2D4

OL − 1− imγ3) + imγ3(1− (1− imγ3)
−1(2D4

OL − 1− imγ3))]
−1

= iγ3(1− imγ3)
−1((1− imγ3)− (2D4

OL − 1− imγ3))

× [(1− imγ3)
−1((1− imγ3) + (2D4

OL − 1− imγ3)

+ imγ3(1− imγ3)
−1((1− imγ3)− (2D4

OL − 1− imγ3))]
−1

= iγ3(1−D4
OL)[(−imγ3 +D4

OL) + imγ3(1−D4
OL)]

−1

= iγ3(1−D4
OL)[(1− imγ3)(D

4
OL)]

−1

= iγ3(1−D4
OL)(D

4
OL)

−1(1− imγ3)
−1

= iγ3((D
4
OL)

−1 − 1)(1− imγ3)
−1

(A.72)

And by the cyclic property of traces of matrices we have

Tr[DM4
OL (D

4
OL)

−1] = Tr[DM3
OL (D

3
OL)

−1] (A.73)
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Numerical Aspects

B.1 Monte Carlo Integration

Monte Carlo integration is the go-to tool for integration over high dimensional spaces.

Consider the integral

I =

∫
V
dx f(x) (B.1)

and

Z =

∫
V
dx (B.2)

then we may approximate the integral with

I ≈ Z

N

∑
f(xi) = Z ⟨f⟩ (B.3)

where the same points xi are taken uniformly randomly from the domain of integration

V . However we may choose the points xi from a non-uniform distribution in order to

improve the convergence rate. This is importance sampling. The points thus chosen are

more likely to contribute significantly to the calculation. Consideration of the Gaussian

integral I =
∫∞
−∞ e−x2

dx highlights the benefit (need) of sampling near the peak rather

than the tails. To proceed, we may reexpress the integration as

I =

∫
V
dx w(x)

f(x)

w(x)
(B.4)

with

Z =

∫
V
dx w(x) (B.5)

and then we may approximate the integral with

I ≈ Z

N

∑ f(xi)

w(xi)
= Z ⟨f/w⟩ (B.6)
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where the same points xi are taken non-uniformly randomly with weighting w(x) from

the domain of integration V .

For our measurements in chapter 4 we then have

I ≡ 1

Z

∫
D[U ]exp(−SG[U ])det[D[U ]]Ô[U ]

=
1

N

∑
Ô[Ui]

(B.7)

where the Ui are chosen with weighting exp(−SG[U ])det[D[U ]] and

Z =

∫
D[U ]exp(−SG[U ])det[D[U ]] (B.8)

B.2 Markov Chain Monte Carlo Integration

Markov chain Monte Carlo integration methods use Markov chains to produce the sam-

ples used in Monte Carlo integration. A slightly more detailed presentation of the

Metropolis algorithm, which is the foundation of the hybird method given in the main

text, is given below, following online lecture notes [66].

In general we want to find a vector A with probability distribution function p(A). This

can be achieved as follows.

1. Choose any initial vector A0.

2. Choose a proposal probability distribution J(A′|A), so that
∫
D[A′] J(A′|A) = 1.

3. Loop for n = 1, ...N

� Choose a proposal A′, with probability p(A′) = J(A′|An−1)

� Calculate Metropolis-Hastings ratio

r =
p(A′)J(An−1|A′)

p(An−1)J(A′|An−1)
(B.9)

� Assign An according to

An =

A′ with probability: min{1, r)}
An−1 otherwise

If we insist on the proposal distribution being symmetric, then the ratio reduces to

r =
p(A′)

p(An−1)
(B.10)
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which results in the Metropolis algorithm given in section 6.1. The two key properties

of the algortihm are ergodicity and having detailed balance. The first is the ability to

reach all possible distributions from any starting distribution, i.e. the space of possible

distributions has no isolated states or subsets of states from which the algoithm cannot

escape. Formally, for some N large enough, ∀A,A0

P (AN = A|A0) > 0 (B.11)

The second property is that the probability of going from one state to another is equal

to the probability of the reverse. Detailed balance may then be expressed as

P [An = A1|An−1 = A2] = P [An = A2|An−1 = A1] (B.12)

Observing that the probability to get from one state to another is the combination of

the proposal and acceptance probabilites we have that

P [An = A′|An−1] = rJ(A′|An−1]) (B.13)

B.3 Noisy Estimators and Point Sampling

For sparse matrices, multiplying a vector by the inverse of the matrix is often much faster

than calculating the full inverse matrix. Further, individual entries of a matrix may

be estimated through multiplication with a vector of random numbers. This provides

a rough and (relatively) rapid method for calculating the trace of the inverse action

matrix.

Let M be an n × n real matrix, and η be an n vector of standard Gaussian random

variables, then let

ξ =M−1η = Aη (B.14)

and so

ξj =
∑
k

Ajkηk (B.15)

hence

ξjηi = ηiξj = ηi
∑
k

Ajkηk (B.16)

and thus

⟨ηiξj⟩ = ⟨ηi
∑
k

Ajkηk⟩ =
∑
k

Ajk ⟨ηiηk⟩ = Aji (B.17)

For complex Gaussian random variables ⟨ηiηj⟩ = 2i, so must multiply by the conjugate

instead since < η†i ηk >= 0, so

< η†i ξj >=< η†i
∑
k

Ajkηk >=
∑
k

Ajk < η†i ηk >= Aji (B.18)
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The complex normal random variables have half variance components, i.e. ηj = Xj+iYj ,

where Xj ∼ N (0, 12) and similarly Yj ∼ N (0, 12). This ensures ⟨η
†
jηj⟩ = 1.

Note it is not required to populate the entirety of the η vector. Each entry provides for

the corresponding column of the matrix, i.e. if η0 is a random variable, and the rest are

zeros, then we still have ⟨η†0ξi⟩ = A0i.

With Gaussian random vectors the more samples used, the closer the approximation gets

to the target value ⟨η†jηk⟩ → 1, and the smaller the contributions of the off-target values

⟨η†i ηk⟩ → 0, i ̸= j. However, Gaussian rvs are not the only option available. A uniform

distribution over the elements −1, 1,−i, i instead may be used (Z2 noise), and in certain

circumstances it can provide a better solution more quickly. The target value is always

exact ⟨η†jηk⟩ = 1, and it is only the off-target values which must decay. On testing,

we found no advantage in our simulations, though, since to achieve a sufficient level of

decay in the off-target values, the approximation to the target value was sufficient. The

Z2 noise has a slightly smaller variance.

Alternatively, we can extract the kth column of A, ξ = Aη exactly by setting ηj = 0 for

k ̸= j and ηk = 1. Then ξj = Ajk. This is the point method.

B.4 Autocorrelation

The error in non correlated data is given by err = 1√
N
σ where σ is the standard deviation.

Correlated data error may be corrected through the integrated time scale τint.

err =

√
τint
N
σ (B.19)

where

τint = 1 + 2
∞∑
t=1

ĉ(t) (B.20)

and

ĉ(t) =
Ĉ(t)

Ĉ(0)
(B.21)

Ĉ(t) = ⟨C(x)C(y)⟩|x−y|=t (B.22)

When we have Ĉ(t) = e−t/τ we also have

τint = 1 + 2
∞∑
1

e−t/τexp = 1 +
2e−1/τ

1− e−1/τ
≈ 2τ (B.23)
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