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ABSTRACT

Despite the recent interest in the discontinuous shear-thickening (DST) behavior, few computational works tackle the rich hydrodynamics of these
fluids. In this work, we present the first implementation of a microstructural DST model in smoothed particle hydrodynamic (SPH) simulation. The
scalar model was implemented in an SPH scheme and tested in two flow geometries. Three distinct ratios of local to non-local microstructural effects
were probed: zero, moderate, and strong non-locality. Strong and moderate cases yielded excellent agreement with flow curves constructed via the
Wyart–Cates (WC) model, with the moderate case exhibiting banding patterns. We demonstrate that a local model is prone to a stress-splitting
instability, resulting in discontinuous stress fields and poor agreement with the WC model. The mechanism of stress splitting has been explored and
contextualized by the interaction of local microstructure evolution and the stress-control scheme. Analytic solutions for a body-force-driven DST
channel flow have been derived and used to validate the SPH simulations with excellent agreement in velocity profiles. Simulations carried out at
increasing driving forces exhibited a decrease in flow. We showed that even the simple scalar model can capture some of the key properties of DST
materials, laying the foundation for further SPH study of instabilities and pattern formation.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188444

I. INTRODUCTION

Suspensions of both colloidal1 and non-colloidal2,3 particles are
ubiquitous in industrially relevant flows,4 and their rich properties
have been subject of extensive study. Some dense suspensions of fine
non-Brownian particles can exhibit discontinuous shear thickening
(DST) behavior,5 which has been a subject of great interest in the last
decade. With possible implications in industries spanning from
manufacturing, environmental engineering, and military application,
understanding the underlying mechanism responsible for the unique
behavior has become paramount. Multiple physical explanations have

been proposed,6 with the most widely adopted being the mechanism
of Seto et al.7 or Wyart–Cates (WC) model,8 where the particles are
held apart in a frictionless state by a characteristic repulsive force.
Upon application of external stress, the interparticle repulsion is over-
come, bringing about a transition to a frictional state where the devel-
oped contact network inhibits the ease of motion of the suspension.
Recently, significant effort has been dedicated to characterizing and
understanding the effect of the force chain networks in DST.9–12 In the
work of Sedes et al.,13 the macroscopic microstructure parameter f,
which in the WC model represents the fraction of particles in contact
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within some averaging fluid element, was shown to be congruent with
the microscopic description of contact force networks.

A defining feature of DST, as opposed to continuous shear thick-
ening (CST), is the characteristic “S” shape of the flow curve. This
unique non-monotonic shape facilitates unstable behaviors in rheo-
metric14,15 and complex flows. For example, Texier et al.16,17 demon-
strated that the negative gradients of the flow curve (d _cdr < 0) present in
DST materials cause instability in free surface flows of cornstarch sus-
pension, leading to roll-waves. In the context of simple shear, Cho
et al.18 investigated relaxation dynamics in a parallel-plate setup and
proposed a non-trivial two-step mechanism based on a viscoelastic
response and force network disintegration, although their system never
fully transitioned back to the entirely frictionless state. Rathee et al.19

employed boundary stress microscopy (BSM) to study stress distribu-
tion in rheometric flows. Their results revealed a high degree of hetero-
geneity in stress fields,20 including two separate high-stress regions in
contact with upper and lower plates, respectively, and propagation of
high-stress fronts.21

WC-type models are inherently microstructural—the key param-
eter governing the state of the suspension at any point is the arrange-
ment of the particle contact network. Typically, works in the context of
WC theory propose a relationship between development of the micro-
structure and macro-hydrodynamic flow properties through a tran-
sient evolution equation. Nakanishi et al.22 employed a scalar model
with an assumed S-shape rheology curve in a range of geometries,
including simple shear, Poiseuille flow, and free surface inclined plane.
The results in simple shear exhibited periodic solutions, accompanied
by formation of inhomogeneous fields of the microstructural parame-
ter across the gap. Baumgarten and Kamrin23 proposed a scalar model
based on the balance of strain-dependent hardening and softening
attributed to load buckling, shearing, and electrostatic repulsion. Their
model predicted rheological behavior in good agreement with the
experimental evidence.

Another development comes from the work of Gillissen et al.,24

who proposed a full tensorial evolution equation. In addition to pre-
dicting DST rheology, they were able to predict negligible first normal
stress difference, significant negative second normal stress difference,
and flow behavior in more complicated flow arrangements, including
flow reversal and superposed transverse oscillations,25 although the
values of normal stress differences predicted by their model were
quantitatively too high (N1) and too low (N2) relative to the discrete
element method (DEM) values, along with the increases during thick-
ening being underestimated. Their model also did not consider the
role of contact friction in the development of microstructure and
excluded tangential forces and torque balance.

So far, nearly all continuum microstructural models have been
implemented in Eulerian frameworks. In recent times, there has been
much interest in simulations of complex fluids with grid-less methods,
primarily smoothed particle hydrodynamics (SPH).26,27 SPH was orig-
inally developed by Gingold and Monaghan28 and Lucy29 in 1977 in
the study of astrophysical problems. It is a fully Lagrangian scheme,
where the fluid is represented by a set of discrete “particles” carried by
flow. Hydrodynamic properties are computed at the position of each
particle by averaging via a smoothing kernel at each time step, and the
trajectories of particles evolve over time. In comparison with Eulerian
and mixed Lagrangian–Eulerian methods, SPH has a number of
advantages and disadvantages. Generally, grid-based schemes benefit

from superior convergence rates and easier implementation of bound-
ary conditions.26 On the other hand, SPH is inherently conservative
and handles free surface boundaries and interfacial multiphase flows
naturally30—which is of importance in a number of studies, including
the behavior of granular bed loads,31 mixing,32 and cavitating flows.33

Moreover, SPH allows for direct access to the flow history—a crucial
feature for microstructural models of complex fluids. This can be lever-
aged in heterogeneous multi-scale modeling (HMM),34 with an exam-
ple application in biologically relevant flows,35 or by directly solving
integral constitutive equations.36

Beyond Newtonian fluids, SPH has been used in a host of fields,
including solid and complex fluid mechanics. In 2002, Ellero et al.37

simulated viscoelastic flow by incorporating the corotational Maxwell
model in SPH, followed by Oldroyd-B.38 Since then, Fang et al.39,40

studied the behavior of free surface flows of an Oldroyd-B fluid, with a
focus on addressing tensile instability. Rafiee et al.41 implemented both
Maxwell and Oldroyd-B models in SPH free-surface flows, including
impacting drop and jet buckling. Xu et al.42 simulated three-
dimensional (3D) injection molding of a cross-model fluid.
Implementation of Oldroyd-B was studied in a periodic array of cylin-
ders by V�azquez-Quesada and Ellero43 and Grilli et al.,44 and in extru-
date swell by Xu and Deng.45

Furthermore, a range of viscoplastic and elasto-viscoplastic mod-
els have been implemented in SPH. Rodriguez-Paz and Bonet46 simu-
lated debris flow down an incline using the Bingham model and the
generalized viscoplastic model. Minatti and Paris47 considered free sur-
face granular flows, with a constitutive relation based on the works of
Pouliquen et al.48 and Jop et al.,49 and validated their model against
granular column collapse experiments. Furthermore, Bingham-like
viscoplastic models have been applied to sedimenting flows,50,51 rheo-
metric flows,52 and mixed fluid–structure cases.53,54 Recently, Rossi
et al.55 implemented a modified microstructural Papanastasiou model
to study thixo-viscoplastic flows around a cylinder. The first applica-
tion of SPH to DST flow was carried out in the work of V�azquez-
Quesada et al.,56 wherein they considered a non-microstructural
inverse biviscous model in a simple planar flow.

In this work, we present in detail the first implementation of a
scalar non-local microstructural DST rheological model in an SPH
scheme. Unlike previous models,56 we obtain typical S-shaped DST
rheology in the simple shear and characteristically inflexed velocity
profiles accompanied by flow reduction behavior in channel flow. In
both cases, stress-splitting is observed as a result of the local term in
the evolution equation acting on a perturbed microstructure field.
Section II lays out the details of the model used in this study. Section
III presents the details of the numerical scheme and boundary condi-
tion treatment.

In Sec. IVA, the origin of stress-splitting and the effect of non-
locality on establishing spatial correlations in the structure are dis-
cussed in context of simple shear. In Sec. IVB, we derive a solution for
planar channel flow for a fluid following the Wyart–Cates model and
use it to validate our SPH simulations. Finally, we compare our results
to a previous non-microstructural model.

II. GOVERNING EQUATIONS

In this section, we outline the main equations used to model our
DST fluid system. The continuum system can be written in the
Lagrangian frame as follows:
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dq
dt

¼ �qr � v; (1)

dv
dt

¼ 1
q
r � rþ F; (2)

r ¼ �pI þ g rvþrvTð Þ; (3)

where d=dt � @=@t þ v � r is the material derivative, qðx; tÞ is the
density field, vðx; tÞ is the velocity field, rðx; tÞ is the stress field, p is
the pressure, and F is a body force acting on fluid. In this DST model,
the local suspension viscosity is determined using the Maron–Pierce
expression,57

gð/;/J; tÞ ¼ gs 1� /

/J

� ��2

; (4)

where gð/;/J; tÞ and gs are, respectively, the suspension and constant
solvent viscosities. / is the particle volume fraction, and /J is the jam-
ming volume fraction. Assuming particle migration is negligible for
the problems studied in the present work, the value of / is kept con-
stant. The value of /J is inferred dynamically as

/Jðf ðx; tÞÞ ¼ /mf ðx; tÞ þ /0f1� f ðx; tÞg; (5)

where /m and /0 are frictional and frictionless divergence volume
fractions, respectively.

The discontinuous shear-thickening phenomenon wherein the
viscosity of the medium undergoes a sharp transition from a lower to a
higher value is modeled with the help of a single microstructure scalar
field called the fraction of frictional contacts f ðx; tÞ. The use of this
scalar field model follows from the Wyart–Cates model,8 in which the
value of f is determined as exp ð�r�=rÞ. The repulsive force between
particles, F0, sets the characteristic stress scale at the onset of shear
thickening r� ¼ F0=6pa2.

11 Figure 1 shows (a) typical flow curves
produced by the model and (b) the corresponding viscosity depen-
dence on shear stress. For sufficiently low volume fractions
(/ < 0:50), continuous shear thickening (CST) is achieved. Increasing
volume fraction above 0.50 leads to a transition from CST to a DST
regime, marked by the appearance of the characteristic S-shape, where

stress is a multi-valued function of shear rate. Further increases in the
volume fraction sharpen the S-curve up to a point of divergence
(/ ¼ /m).

The value of f ðx; tÞ at a point in the flow field depends on the
local value of stress, and the dependency follows a sigmoid function.
Time dependence of microstructure is captured in the microstructure
evolution equation (6), which in the present work consists of a local
and a non-local term. The local term has been widely used in the DST
literature17,22,23,58,59 and represents approach of the system toward a
shear-stress dependent equilibrium state prescribed by the Wyart–
Cates model (7) with a characteristic timescale set by the shear-rate
and a microstructural rate constant Kf. In addition to the usual local
term, we introduce a non-local contribution in the dynamics of struc-
ture, where the microstructural parameter f diffuses with a diffusion
coefficient a. In this work, we follow the approach of Kamrin and
Henann60 and include microstructure diffusivity directly in the evolu-
tion equation. The non-local feature of our model has the benefit of
stabilizing the local-driven instability discussed in Sec. IVA,

df ðx; tÞ
dt

¼ Kf _c f̂ ðx; tÞ � f ðx; tÞ
� �

þ ar2f ðx; tÞ; (6)

f̂ ðx; tÞ ¼ exp � r�

rxyðx; tÞ
� �b !

; (7)

where _cðx; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_c : _c=2

p
is the local shear calculated as the second

invariant of the strain rate tensor _cðx; tÞ ¼ ðrvþrvTÞ=2. The first
term on the right-hand side of Eq. (6) accounts for the local evolution
of microstructure, whereas the second term introduces non-local
effects via microstructure diffusivity, where a is the diffusion
coefficient.

III. SPH–DST MODEL
A. SPH equations of motions

The Navier–Stokes equations are solved using the SPHmethodol-
ogy. A possible discretized form of the governing equations is given as
follows:61

FIG. 1. WC model of the DST fluids: (a) flow curves in the stress-shear plane and (b) viscosity dependence on shear stress. Plots for r� ¼ 0:005, /m ¼ 0:562, and
/0 ¼ 0:693.
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dqi
dt

¼
X
j

mjvij � riWij; (8)

dvi

dt
¼ �

X
j

mj
pi þ pj
qiqj

riWij þ
X
j

mjðgi þ gjÞxij � riWij

qiqjr
2
ij

vij þ g i;

(9)

where mj is the mass of a particle, Wij ¼ WðjxijjÞ is the smoothing
kernel, and vij ¼ vi � vj; xij ¼ xi � xj, and rij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

xij � xijp
.

Following the weakly compressible SPH (WCSPH) formulation,
a 1% variation in density is permitted. The fluid pressure is then calcu-
lated based on the Tait’s equation of state,

p ¼ q0c
2

c
q
q0

� �c

� 1

" #
þ pb; (10)

where q0 is the density of the fluid, pb is the background pressure, and
c is the numerical speed of sound typically set as 10 times the maxi-
mum flow velocity vmax.

B. SPH–DSTmicrostructure model

So far, we have described details of SPH for general flows with
Navier–Stokes equations. In this section, we discuss the closure SPH
model for the definition of viscosity giðfi; tÞ in the SPH–DST model.
The constitutive equations are written as follows, where the subscript i
indicates the particle index (that is f ðxi; tÞ ¼ fi),

_f i ¼ Kf _ciðf̂ i � fiÞ þ ar2fi; (11)

/J
i ¼ /mfi þ /0ð1� fiÞ; (12)

gi ¼ gs 1� /i

/J
i

 !�2

: (13)

In Eq. (11), fi is calculated to evaluate /J in Eq. (12), which in turn is
used to obtain viscosity via Eq. (13). The value of _c in Eq. (11) is com-
puted as the contraction of the strain rate tensor _c as follows:

_c ¼ 1
2

ffiffiffiffiffiffiffiffiffi
_c : _c

p
; _c lk ¼

1
2

@ul
@xk

þ @uk
@xl

� �
: (14)

The SPH approximation of the gradient of the a-component of the
velocity vector in b-direction is obtained as

@ul

@xk

� �
i
¼
X
j

mj

qj
ðulj � uliÞrk

i Wij: (15)

The non-local term in Eq. (11) is discretized in a manner consistent
with the Morris formulation of the moment equation,26

ðr2f Þi2f ¼
X
j2f

2mjðfi � fjÞxij � riWij

qjr
2
ij

: (16)

To simulate the S-curve (see Fig. 1) with the above-mentioned defini-
tion of order parameter f, the choice of / has to be sufficiently close to
/m which in the above-mentioned case is / > 0:50. However, the
value of g=gs for / ¼ 0:54 at a high shear rate is approximately 3000,
which drastically lowers the time step size required for stable integra-
tion of the governing equations. A simple idea used to address this was

to modify the definition of f so that we can anticipate the S at a
lower volume fraction. Therefore, the modified definition of f is as
follows:

f̂ i ¼ exp f�ðr�=riÞbg; (17)

where b is the parameter setting the “sharpness” of the transition
between the frictional and frictionless plateaus, without changing the
plateau values. We set b¼ 2 in this work. Increasing it allows us to
introduce the previously discussed S-shaped rheology to an otherwise
CST volume fraction, resulting in DST behavior without increasing
viscosity to computationally prohibitive values. Furthermore, we
choose the rest of the parameters, primarily /m and /0, such that all
simulations lie within the prescribed region of 10�3 < Re < 1. The
lower bound was chosen to facilitate feasible run time by preventing
excessively small time-steps (36) due to shear thickening. The upper
bound is used to exclude fluid inertial effects from all cases in this
work. Once the values of fi and /JðfiÞ are obtained, the dynamic vis-
cosity of a SPH particle is updated using Eq. (13).

C. Solid wall boundary modeling

The dummy particle method of Adami et al.62 is employed for
imposing no-slip velocity boundary conditions and impermeability
conditions. For a full explanation behind this method, we direct the
reader to their work. Below we present their method in notation con-
sistent with the present model.

Pressure, density, and velocity are assigned to the dummy par-
ticles as

pi2w ¼

X
j2f

pjWij þ ðg � ai2wÞ �
X
j2f

qjxijWij

X
j2f

Wij

; (18)

ai2w ¼ �rpi2f
qi2f

þ g; (19)

qi2w ¼ q0
pi2w � pb

p0
þ 1

� �1
c

; (20)

p0 ¼ q0c
2

c
; (21)

vi2w ¼ 2vwall � ~v i2w; (22)

where subscript w and f denote the dummy wall and fluid particles,
respectively, vi2w is the prescribed wall velocity, and

~vi2w ¼

X
j2f

vjWij

X
j2f

Wij

: (23)

D. Time integrators

A semi-implicit predictor–corrector type integration scheme is
used for time marching as follows.
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(1) Predictor step:

v
nþ1

2
i ¼ vn

i þ
Dt
2

dvi

dt

� �n

; (24)

q
nþ1

2
i ¼ qni þ

Dt
2

dqi
dt

� �n

; (25)

x
nþ1

2
i ¼ xni þ

Dt
2

við Þn; (26)

f
nþ1

2
i ¼ f ni þ Dt

2
dfi
dt

� �n

: (27)

(2) Corrector step:

v
nþ1

2
i ¼ vn

i þ
Dt
2

dvi

dt

� �nþ1
2

; (28)

q
nþ1

2
i ¼ qni þ

Dt
2

dqi
dt

� �nþ1
2

; (29)

x
nþ1

2
i ¼ xni þ

Dt
2

við Þnþ1
2; (30)

f
nþ1

2
i ¼ f ni þ Dt

2
dfi
dt

� �nþ1
2

: (31)

The flow variables at the subsequent time step are obtained as
follows:

vnþ1
i ¼ 2v

nþ1
2

i � vn
i ; (32)

qnþ1
i ¼ 2q

nþ1
2

i � qni ; (33)

xnþ1
i ¼ 2x

nþ1
2

i � xni ; (34)

f nþ1
i ¼ 2f

nþ1
2

i � f ni ; (35)

where n represents the current time instant, nþ 1
2 represents the pre-

dicted time instant (variables at an intermediate time level), and nþ 1
represents the corrected time instant. This scheme is second-order
accurate in time. Finally, the time step size Dt is determined based on
the following condition:

Dt ¼ min 0:25
hsl
c
; 0:125

h2sl
�
; 0:25

hsl
jgj
� �1=2

( )
; (36)

where hsl is the smoothing length and � is the kinematic viscosity. The
adaptive time step approach ensures that the CFL condition63 is satis-
fied, along with additional constraints due to the viscous diffusion and
particle acceleration.61 Due to the extreme shear-thickening nature of
the material studied in the present work, viscous diffusion is likely to
be the most restrictive condition (Fig. 2).

IV. NUMERICAL SIMULATIONS
A. Stress-imposed shear flow

The behavior of the previously introduced DST model is explored
by simulating the rheology in a simple shear geometry. The fluid is
bound between two solid walls vertically and two periodic boundaries
horizontally at a distance l ¼ 0:01m. The domain is planar with no
depth in the vorticity direction. Unlike previous shear-imposed simu-
lations,64 input stress rin is set here on the upper wall by assigning wall
particles an appropriate velocity.

To impose specified stress on the top wall of the Couette geome-
try, the following approach is used. The wall particles are assigned with
velocity (vi2w) computed from the wall force (Fdiff ), which is in turn
determined from a predictor–corrector method,

vnþ1
i2w ¼ vni2w þ KpFdiffDt: (37)

The net wall force (Fdiff ) is computed as the difference between the
applied wall force (Fin) and the resistive shear force (Fr) exerted by the
fluid on the top wall,

Fdiff ¼ Fin � Fr; (38)

Fr ¼
X
j2w

Fj; (39)

Fi2w ¼
X
j2f

F�
ij ; (40)

where subscripts w and f denote wall and fluid particles, respectively.
F�
ij is the interparticle viscous force in Eq. (9). All simulations use a

FIG. 2. Comparison of WC model flow curves, i.e., (a) rate dependence of viscosity and (b) stress dependence of viscosity for b¼ 1 and b¼ 2.
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quintic kernel, and smoothing length hsl ¼ 1:1Dx, where Dx ¼ 0:02l
is the initial spatial resolution. Simulations are carried out for the same
material parameters (see Table I) with different imposed stress values.
Three microstructure diffusion coefficients are tested to probe the
effects of the non-local term—strong non-locality (a ¼ 10�5m2s�1),
moderate non-locality (a ¼ 10�8m2s�1), and zero non-locality
(a ¼ 0m2s�1). In addition, three values of volume fraction were simu-
lated for the case of strong non-locality: CST (/ ¼ 0:48), moderate
DST (/ ¼ 0:50), and strong DST (/ ¼ 0:54). Steady-state values are
used to construct the flow curve (Fig. 4). All rheometric values are
obtained by averaging over the entire domain and across time, with an
equilibration time of 100 s. Convergence study was carried out in the
context of purely local channel flow (Sec. IVB), where the obtained
SPH velocity profiles were compared to the theoretical solution.
Significant improvements in the solution accuracy were seen up to the
resolution of 50� 50 particles, beyond which only marginal improve-
ments were observed. Hence, in both sections, resolution of 50� 50 is
employed. Both walls were constructed with 200 dummy particles
each. Simulations were run for up to 72h of computing time and
10min of simulation time.

Far below onset stress, behavior is essentially Newtonian—all
three measured properties (shear stress, shear rate, and microstructural
parameter f) approach their respective steady-state values asymptoti-
cally and within relatively short timescales. Once the stress is increased,
the time required to achieve a steady state is significantly increased,
and over/under-shoots are present prior to achieving a steady state.
This is likely due to the formation of microstructure being relatively
slow compared to purely inertial transient effects—in the initial stages,
the lack of structure allows shear rate to peak above the equilibrium
value. This overshoot then accelerates formation of microstructure,
increasing viscosity, which in turn adjusts the shear rate (or under-
shoots). To mitigate this behavior, we choose to initialize all simula-
tions from a pre-defined homogeneous field f corresponding to the
correct prediction of the WC at a given input stress, along with the
appropriate shear rate via the upper wall velocity. For all values of a,
simulation results [Figs. 4(a)–4(c)] on stable branches are in excellent
agreement with the theoretical model predictions.

In the case of strong non-locality, the simulation results for all
three volume fractions [Fig. 3(a)] match the WC model very well
across the entire flow curve, including the region of negative gradient
for the DST volume fractions. Both the stress and microstructure fields
are entirely homogeneous [Figs. 4(d) and 4(g)] due to the strong non-
local term, with minor deviations in the computed shear rate field,
likely due to the imprecision associated with numerical approxima-
tions and low resolution.

In the purely local (a¼ 0) case, for all imposed stresses falling
within the unstable region of negative flow curve gradient, seemingly
spurious “jumps” in microstructure, local stress, and viscosity were
observed, where individual particles attain either much higher or lower
stress and microstructural parameter with respect to the imposed
stress. This behavior had no impact on the numerical stability of the

simulations, and a solution could be computed even in this extreme
case. These jumps occurred with no clear spatial correlation, yet both
the domain averaged properties and the properties measured at the
wall remained in close agreement with the correct theoretically pre-
dicted values. By plotting all individual SPH particles for a given
applied stress over the expected flow diagram [Fig. 4(f)], it is apparent
that these jumps are directed toward the valid stable solutions of the
WCmodel.

In principle, a DST fluid could undergo vorticity banding under
stress-controlled regime, which, in the simplest case, would manifest as
any stress applied within the unstable branch (the branch joining fric-
tional and frictionless branches) being split vertically into two bands
organized along the vorticity direction each with either higher or lower
stress, but the same shear rate. The width of the bands is then decided
by a lever rule such that the total average stress is equal to the applied
stress. Such phenomena in DST materials have been experimentally
observed in the work of Herle et al.,14 but Hermes et al.65 excluded the
possibility of steady-state vorticity bands in non-Brownian suspensions
on the account of particle migration and normal stresses. For a purely
local model and a constant volume fraction field, no effects counteract
such splitting, giving rise to a new steady state configuration, where all
individual SPH particles occupy stable branches of the flow curve

(dfidt ¼ 0), while being split such that the stress control equation is also

satisfied (dvwalldt ¼ 0).
The lack of spatial correlation in structure [Fig. 4(i)] is caused by

the action of the microstructure evolution equation on the numerical
noise introduced in the SPH solution. Suppose all particles are initial-
ized exactly at the steady state solution, with small perturbations in a
random direction in the rate-stress plane. The particles that find

TABLE I. Simulation parameters.

h (m) l (m) q (kgm�3) gs (Pa s) / /m /0 r� ðPaÞ
0.01 0.01 1000 0.001 0.48/0.50/0.54 0.562 0.693 0.005

FIG. 3. Results for three volume fractions: 0.54 (circles), 0.50 (triangles), and 0.48
(diamonds). Strong non-locality (a ¼ 10�5 m2 s�1).
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themselves to the right of the flow curve will experience dfi
dt > 0, leading

to an increase in the local viscosity. This will, in turn, increase the local
shear stress, increasing the value of f̂i , ensuring that the particle will
continue to move upward until it reaches a stable upper branch where
dfi
dt ¼ 0. An identical argument applies to the particles to the left of the
curve, with the resultant downward movement instead. In the case of

our simulations, the small perturbations are introduced by the inherent
numerical noise associated with meshless calculation of the local shear
rate _ci via Eq. (14). These small imprecisions do not have a spatial cor-
relation; hence after stress-splitting amplification, we arrive at effec-
tively random spatial distribution of microstructural parameter. The
left-right split of particles should approach an even split

FIG. 4. The results of the SPH simulation compared against the WC model (black) for strong [(a), (d), and (g)], moderate [(b), (e), and (h)], and zero [(c), (f), and (i)] non-
locality. The top row (a)–(c) consists of domain-time averaged shear stress and shear rate signal (SPH in blue and red). A single simulation (red) in each diagram (RE ¼ 1:25)
was chosen, and values of all SPH particles were plotted over the WC flow curve (d)–(f). Fields of the microstructure parameter f associated with the previously chosen simula-
tions in (d)–(f) visualized in (g)–(i). For high non-locality (g), entire smooth fields of f and stress are achieved. In the case of moderate non-locality (h), two high stress regions
are attached to the upper and lower walls with bands propagating in the flow direction. Zero non-locality (i) yields discontinuous microstructure fields.
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(w1 ¼ w2 ¼ 0:5); however, the flow curve is not symmetric about the
horizontal imposed stress line, and such split would result in an
increase in measured shear stress. This means that as the stress-
splitting takes place, particles are simultaneously rearranged between
the lower and upper branches via the stress-control mechanism of Eqs.
(37)–(40) to achieve correct average stress.

To further explore both the microstructural transients and steady
states, new dimensionless parameters are defined as follows:

w1 ¼ number on the lower branch
total number

; (41)

w2 ¼ number on the upper branch
total number

; (42)

wu ¼ number on the unstable branch
total number

: (43)

The number of particles on either the upper or lower branch is mea-
sured with reference to the two threshold stress values ra and rb,
which occur at the intersection of the unstable branch with the upper
and lower branches, respectively. Typical response consists of a 50 s
period for banding process to begin and almost 150–200 s to reach a
steady state. Different initial configurations were tested, including (a)
relaxed microstructure, (b) correct steady-state microstructure, and (c)
excessive level of structure. Due to the local nature of this process, the
splitting is independent of the resolution, as there is no finite charac-
teristic length scale associated with this process. All three configura-
tions yielded the same steady-state banding ratios, i.e., the above-
mentioned steady state is broadly independent of the path taken to
achieve it. Furthermore, shear-controlled cases were tested both within
and outside the multivariate region and yielded results with no appar-
ent banding, a result consistent with the theory where only stress-
controlled flow of DST fluids should experience vorticity banding.

To better understand the exact split between w1 and w2 at steady
state, a simple model of DST vorticity banding is considered. Suppose
that stress is applied within the unstable region of the flow curve at a
coordinate ð _cu; ruÞ. This unstable point will split directly in the vertical
direction until it meets the lower and upper branches, resulting in a new
steady-state consisting of two stable points ð _cu; r1Þ and ð _cu; r2Þ, respec-
tively. We also assume that the total average stress is preserved such that

ru ¼ w1r1 þ w2r2: (44)

By considering that the system is now in a steady state (w1 þ w2 ¼ 1
and wu ¼ 0), both fractions can be uniquely determined for any
input stress. It is immediately apparent that the exact split will be gov-
erned by the exact shape of the flow curve. Finally, we define a dimen-
sionless stress coordinate q using critical stress values rb and ra [see
Fig. 4(f)],

q ¼ ru � rb

ra � rb
; (45)

such that, for q< 0, input stress is on the lower stable branch, 0 � q �
1 input stress is on the unstable branch, and for q> 1, input stress is
on the upper stable branch. The results along with simulations are pre-
sented in Fig. 5. The simulation results exhibit a significantly lower
number of particles on the lower branch and a higher number of par-
ticles on the upper branch relative to the theoretical predictions. This
is due to how the split rearrangement is achieved. Since an even split

would result in an increase in the measured shear stress, initial splitting
causes the stress-control scheme to reduce shear rate. The shear rate
reduction is set by the decrease in wall velocity, which affects all par-
ticles, causing a shift to the left in the (_c–r) phase diagram. Particles
on the upper branch can only shift to the lower branch by crossing the
critical stress rb, where particles can no longer follow the linear rela-
tionship between shear rate and shear stress and “fall” down to the sta-
ble branch, due to the combined effects of the microstructure
evolution equation and the stress-control scheme. This results in the
particles on the upper stable branch, occupying shear stress and shear
rate values lower than anticipated in the naive vertical splitting sce-
nario. A lower stress value of r1 in Eq. (44) necessitates a higher value
of w2 (and a lower value of w1) at steady state. This mechanism also
accounts for the poor agreement between the simulations and the WC
model in Fig. 4(c)—average shear stress is close to the correct input
value, but the splitting causes much lower shear rate values.

Finally, the case of moderate non-locality is considered. The aver-
aged results show good agreement with the WC model Fig. 4(b) along
the entire flow curve, just as in the homogeneous case. Unlike the
homogeneous case, the plot of individual SPH particles in Fig. 4(e)
shows a clear and significant spread in both shear stress and shear rate.
However, this spread is different from the local case—particles occupy
mainly the unstable region between the two stable branches. The bands
in the microstructure parameter are also accompanied by bands in
shear stress and shear rate. This steady state occurs as a result of a bal-
ance between the split-inducing local term and the smoothing non-
local term in the microstructure evolution equation. Furthermore, the
competition between the local and non-local effects yields an apparent
spatial correlation in the microstructure field in Fig. 4(h) reminiscent
of the bands observed in the work of Nakanishi et al.22

B. Channel flow

1. Theoretical analysis

In this section, we consider flow in a planar channel (Fig. 6), with
gap d ¼ 0:01m and periodic boundary conditions in the flow

FIG. 5. Theoretically predicted branch split ratios (lines) vs simulations. Simulation
values represented by black circles (w1) and triangles (w2).
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direction. Body force F parallel to the flow direction is applied to all
particles. In the following, a derivation of the theoretical solution is

provided. We begin by assuming a steady state, well-developed unidi-
rectional [u ¼ ðu; 0; 0Þ] axial flow driven by a body force F. Equation
(2) simplifies to

@rxy
@y

¼ �F: (46)

The constitutive equation for the only non-zero component of the
stress tensor is rxy ¼ g du

dy subject to no-slip and vanishing stress
boundary conditions u¼ 0 at y¼ 0 and rxy ¼ 0 at y¼ h.

Integrating Eq. (46) with appropriate boundary conditions yields

rxy ¼ Fðh� yÞ: (47)

Using Eqs. (4) and (5), the constitutive relation can be rewritten
to yield an ODE,

du
dy

¼ Fðh� yÞ
gs

1� /

/m exp � r�

Fðh� yÞ
� �b !

þ /0 1� exp

�
� r�

Fðh� yÞ
� �b !0

BB@
1
CCA

2

: (48)

Equation (48) can be solved numerically to obtain shear rate,
velocity, and viscosity profiles. In this work, the solution was obtained
via ODE45 MATLAB algorithm with a relative tolerance of 10�8.

2. Numerical results

With the chosen parameters, we focus primarily on transitional
DST regime where both frictional and frictionless states are meaning-
fully present within the flow and consider only the purely local case. At
the steady state, the velocity shape of DST flow displays a sharper pro-
file with an upward inflection near the surface [Fig. 7(c)] and is in
good agreement with the theoretical solutions of our model. The
inflection corresponds to the threshold transition region between pri-
marily frictional and frictionless regimes.

It is worth noting that for these values, the ratio between friction-
less and frictional viscosity, �g, is approximately 30—far lower than typ-
ical magnitudes observed in experimental model systems such as
cornstarch, where the viscosity can span multiple orders of magnitude
during shear thickening.66,67 This low value of �g was chosen to facili-
tate feasible simulation run time by avoiding excessively low or high
viscosity at any point during shear thickening.

The resulting velocity profiles are presented in Fig. 7. The driving
force (and thus the stress profile) was increased to probe the influence
of shear thickening on the shape of the velocity profiles.

For sufficiently low driving forces, the velocity profile remains
parabolic (a) due to the lack of developedmicrostructure (b)—viscosity
remains close to the lower branch viscosity g0. The microstructural
profile is in good agreement with the theoretical profile, with minor
deviation near the centerline. This is due to the initialization of the
structure from a finite value—particles near centerline experience
near-zero shear rate, and thus, the structure cannot evolve to the
appropriate steady state. This deviation is not significantly reflected in

the velocity profile due to the weak scaling of viscosity with the micro-
structure at such low values, resulting in an excellent agreement in the
velocity profile.

At intermediate driving forces, flow in the center (y=D ¼ 0:5)
remains unconstrained; however, the microstructure builds up from the
walls (d) toward the center leading to a sharpened velocity profile (c)
with an upward inflection—feature characteristic of the S-shaped rheol-
ogy. It is apparent that the stress-splitting is present here, with large
deviations in the simulated microstructure from the theoretical values.
Despite this discrepancy, the simulated velocity profile has very good
agreement with the theory. The banding behavior seems to preserve
average velocity, stress, and microstructural profiles within the channel.

Further increase in the driving force leads to almost completely
shear frictional flow (f)—the velocity becomes broadly parabolic (e)
again with the velocity corresponding to the upper branch viscosity g1;
however, small inflection persists at the tip, where the transition takes
place over a very thin region. Any banding behavior is constrained the
small transitional slice, leading to a deteriorated microstructural solu-
tion near the centerline.

The model was compared to the simplest DST model, i.e., inverse
biviscous.56 The biviscous model does not predict S-curves; dc=dr >
0 for all cases. The two models were compared by plotting the average
velocity for a range of driving forces (Fig. 8) for an equivalent viscosity
ratio. The biviscous model predicts two branches corresponding to
lower and upper viscosities, joined together by a plateau where increas-
ing the driving force does not affect the average flow. The model pre-
sented in this work exhibits similar low and high viscosity branches;
however, the conjoining region exhibits a flow reduction pattern
unique to the S-shape rheology. It is noteworthy that the presence of a
negative flow curve gradient is not always sufficient on its own—a cer-
tain minimum viscosity ratio is required to achieve flow reduction
behavior.

FIG. 6. Sketch for the channel geometry. The flow is driven solely by a constant
body force F.
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V. CONCLUSIONS

In this work, we have presented the first implementation of a
microstructural model of discontinuous shear thickening in SPH simu-
lations. A simple non-local scalar microstructural evolution equation
based on the work of Baumgarten and Kamrin23 was proposed and
implemented in simple shear and channel geometries. Measured tran-
sients in shear rate were found to be in qualitative agreement with
experimentally measured shear rates under constant imposed stress.

The simple shear results were used to construct flow curves and
compare the macroscopic results with the microscopic WC model
which we employ. Simulation results were in good agreement along
lower and upper viscosity branches and predicted the characteristic
S-shape transition between them. In the absence of non-locality, the
stress-splitting instability has been observed as a result of the action of
the local term in the microstructure evolution equation upon small
numerical perturbations in the shear rate field. The resulting steady
state was found to be characterized by correct domain-averaged shear
stress, despite all SPH particles occupying stable upper and lower
branches, lack of spatial correlation, and a low shear rate relative to the

WCmodel. Both the low shear rate and the discrepancy between theo-
retical and measured split ratios were contextualized in terms of the
particle rearrangement mechanism resulting from the stress-control
scheme. Both moderate and strong non-locality yielded good agree-
ment in average shear rate and shear stress, with banding spatial corre-
lation being observed in the case of moderate non-locality.

Channel flow simulations showed excellent agreement in velocity
profiles with the theoretical solution of the WC model across a range
of driving forces. Once channel flow is forced into the intermediate
DST regime, the velocity profile forms an upward inflection as a result
of the S-shaped rheology. Stress-splitting was observed in the channel
flow, with no discernable impact on the velocity profiles. Comparison
in channel flow was made with the inverse biviscous mode.56 The pre-
sent S-shape microstructure model produced a flow reduction behav-
ior, in contrast to the flow plateau displayed by the biviscous model.

Further study is required to assess stability of the present model
and implementation. Exhaustive assessment of the stress-splitting phe-
nomena, band spatial correlation, and the associated characteristic
length scale is required. Reproduction of known instability phenom-
ena15,58 along with introduction of depth in the vorticity direction
could provide further insight into the chaotic rheology of the DST
materials.
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APPENDIX: PARTICLE SHIFTING TECHNIQUE

Following the work of Lind et al.,68 we introduce shifting of
particle position to disallow SPH particles from following the
streamlines of the flow, which might lead to anisotropic particle dis-
tribution under certain conditions. It is pointed out that the accu-
racy of SPH approximations diminishes with irregular particle
distribution. The shifting of particle position is completely numeri-
cal in origin and not physical. Therefore, we keep the shifting to a
minimal level by setting the condition that maximum particle shift-
ing xmax

i;shift < 0:1h, where h is the smoothing length (approximately
equal to the average interparticle spacing).

The particles are shifted based on a shifting velocity vi;s, which
depends on the local particle concentration gradient vector rCi,

vi;s ¼ DirCi: (A1)

Here, Di is the shifting velocity coefficient. The normalized particle
concentration Ci at a given particle location is computed as

Ci ¼
X
j

VjWij; (A2)

where V is the volume of the particles. The gradient of the particle
concentration is then calculated as

rCi ¼
X
j

1þ 1
4

Wij

Wii

� �4
( )

VjrWij: (A3)

For more details on the treatment of free surface boundary condi-
tions in SPH, the reader is referred to the work of Lind et al.68
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