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Existence and Optimization of the
Critical Speed for Travelling Front
Solutions with Convection in Unbounded
Cylinders

Résumé

Pour n > 1, on considére une équation de réaction-diffusion
w = Au+a(y)V-Gu) + f(u), (0.1)

dans un cylindre non borné  := R x D, o D C R* ! est un domaine borné lisse, avec
la présence d’un terme de convection, sous les conditions au bord de Neumann et de
Dirichlet sur 0€2. Pour les deux types de conditions au bord, on consideére deux différentes
formes de terme de convection : «a(y)V - G(u) et V - (a(y)G(u)). Le terme de réaction
f est “monostable”. Dans les deux cas Neumann et Dirichlet, on prouve qu’il existe
une vitesse critique ¢* € R telle qu’il existe une onde progressive solution de la forme
u(z,t) = w(x; — ct,y) avec une vitesse ¢ si et seulement si ¢ > ¢*, ou z; désigne la
coordonnée de ’axe du cylindre. La vitesse critique ¢* joue souvent un role important pour
les problemes monostables en caractérisant le comportement asymptotique du probleme de
valeur initiale. L’existence d’ondes progressives pour tout ¢ > ¢* est typique des probleémes
monostables comme par exemple I’équation bien connue de Fisher-KPP.

On donne une formule min-max pour la vitesse critique ¢*. Dans les deux cas de
conditions au bord, on prouve que ¢* est minorée par une quantité ¢’ qui est liée & un
probleme de valeurs propres associé au probleme linéarisé autour de 0. Remarquons que
sous les conditions au bord de Dirichlet, une hypothése supplémentaire est nécessaire afin
d’assurer existence de ¢’. Plus précisément, f’(0) doit étre plus grand que la valeur propre
principale de I'opérateur linéarisé.

On présente deux cas particuliers ou 'on a I’égalité ¢* = ¢/. Sous les conditions au
bord de Neumann et Dirichlet, le premier cas particulier est lorsque G = (G1,0,--+,0), en
supposant la condition de KPP pour f et que a(y)G)(u) > a(y)G}(0), pour tout y € D
et u €]0,1[. Le second cas particulier est traité sous les conditions au bord de Neumann
: lorsque G (0) = 0, en supposant la condition de KPP pour f et que a(y)G)(u) > 0,
pour tout y € D et u €]0,1[. Dans ce cas particulier, on obtient une formule explicite :

s =d =2/f0).



Sous les conditions au bord de Dirichlet, on met en avant 'influence du domaine D,
du terme de réaction f et du terme de convection a(y)V - G(u) sur la vitesse critique c*.
Dans le cas particulier ou G = (G1,0,- - -,0), en utilisant 1’égalité ¢* = ¢/, on utilise le
probléme de valeurs propres lié & ¢ afin d’obtenir des résultats d’optimisation pour c*.

Abstract

For n > 1, we consider a reaction-diffusion equation
u = Au+ a(y)V-Gu) + f(u), (0.2)

in an unbounded cylinder  := R x D, where D C R"™! is a smooth bounded
domain, with a presence of a convection term, under both Neumann and
Dirichlet boundary conditions on 0f2. For both types of boundary condition,
we consider two different forms of convection term, namely : a(y)V-G(u) and
V - (a(y)G(u)). The reaction term f is “monostable”. In both Neumann and
Dirichlet cases, we prove that there exists a critical speed ¢* € R such that
there exists a travelling front solution of the form w(z,t) = w(z1 — ct,y) with
speed c if and only if ¢ > ¢*, where z1 is the coordinate corresponding to the
axis of the cylinder. The critical speed ¢* often plays an important role for
monostable problems by characterizing the long-time behaviour of the initial
value problem. The existence of travelling waves for all ¢ > ¢* is typical of
monostable problems such as the prototype Fisher-KPP equation.

We give a min-max formula for the speed ¢*. For both types of boundary
conditions, we prove that ¢* is bounded below by a quantity ¢’ which is related
to a certain eigenvalue problem, associated with the linearized problem around
0. Note that under Dirichlet boundary conditions, an extra assumption is
needed to ensure that ¢ exists, namely, f’(0) has to be greater than the
principal eigenvalue of the linearized operator.

We discuss two special cases where the equality ¢* = ¢ holds. Under
both Neumann and Dirichlet boundary conditions, the first special case is
when G = (G1,0,- - -,0), assuming the so-called KPP condition for f and
that a(y)G)(u) > a(y)G(0), for all y € D and all u € (0,1). The second
case is treated only under Neumann boundary conditions : when G(0) = 0,
assuming the KPP condition for f, and that a(y)Gi(u) > 0, for all y € D
and u € (0,1). Note that in that case, we give an explicit formula : ¢* = ¢ =
2/ f(0).

Under Dirichlet boundary conditions, we highlight the influence of the
domain D, the reaction term f and the convection term a(y)V - G(u) on the
critical speed ¢*. In the special case where G = (G1,0, -++,0), using that ¢* = ¢/,
we use the eigenvalue problem related to ¢’ to establish some optimization
results for ¢*.
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1 Introduction

1.1 Introduction (French version)

Les ondes progressives sont des ondes qui se propagent sans changement de forme.
Autrement dit, si u(x,t) est une onde progressive au temps ¢ et de coordonnée
spatiale z, la forme de la solution sera la méme pour tout temps t, et sa vitesse
de propagation c est constante. Plus précisément, si la solution u(z,t) = w(z —
ct), alors w est une onde progressive se déplacant a vitesse constante ¢ et dans la
direction positive x si ¢ > 0 et dans la direction négative z si ¢ < 0. En remplacant
u(z — ct) par u(z + ct) on obtient une onde progressive qui se propage dans la
direction opposée. Les ondes progressives apparaissent naturellement en biologie,
par exemple comme onde progressive d’une concentration d’une espece chimique ou
d’une densité de population, voir [MUR] Section 11.1]. Afin d’obtenir des résultats
physiquement réalistes, u doit étre bornée et positive. Par exemple, 1’équation
suivante en dimension 1 peut modéliser un changement biochimique causé par la
cinétique de réaction et la diffusion :

ou 0%u

En —Dw—i-f(u), (1.3)
ou u est la concentration, f(u) la cinétique et D le coefficient de diffusion. Selon le
profil du terme de réaction f dans , différentes propriétés d’ondes progressives
peuvent survenir. C’est précisément ce qui a poussé les mathématiciens a étudier
la branche de la théorie de la diffusion par réaction. Dans [FIS], Fisher a proposé
I’équation avec f(u) = ku(l — u) ol k est positive, pour modéliser la propa-
gation d’un gene privilégié dans une population. Ce cas particulier a été beaucoup
étudié par la suite, par plusieurs mathématiciens tels que Kolmogoroff, Petrovsky et
Piskounoff, voir [KPP]. De telles équations apparaissent également en modélisation
dans le domaine de la physique et de la chimie. Avec ce type de terme non linéaire f,
la fonction u peut aussi représenter le profil de température normalisé d’un mélange
de deux gaz, dans un modele de combustion, voir [HAM] Introduction] pour d’autres
références.
Pour étre plus réaliste physiquement, il est nécessaire d’étudier ce type d’équations
dans des dimensions supérieures. En 1937, avec I'intention de modéliser le processus
de diffusion spatiale lorsque des individus mutants avec une adaptibilité supérieure
se manifestent dans une population, Fisher proposa I’équation de diffusion bidimen-
sionnelle suivante :

ou Pu  O%u
a = D(@ + 8—y2) + (8 — uu)u, (1.4)



ou u(z,y,t) représente la densité de population au temps ¢, en la coordonnée spatiale
(z,y). Le premier terme du membre de droite illustre un phénomene de diffusion,
tandis que le second exprime une croissance démographique locale. Ces deux termes
entrainent des changements dans ’évolution de la densité de population modélisée
par le terme %—;‘. Le coefficient de diffusion D indique la vitesse a laquelle la densité de
population peut varier, tandis que € représente le taux intrinseque d’augmentation
et la constante p > 0 prend en compte le taux de reproduction de l’espece étudiée.
Cette équation a été considérée par Kolmogorov en 1937 et de nombreux autres sci-
entifiques dans différents domaines afin d’étudier I'’expansion d’une bactérie, voire
méme la propagation de cultures humaines, voir [SK1l, Chapter 3]. Par exemple, en
1951, Skellam appliqua cette équation avec pu = 0 pour étudier I’évolution des rats
musqués. En particulier, il a été montré que la densité de population croit expo-
nentiellement lorsque t devient suffisamment grand, ce qui signifie que les effets de
diffusion et de croissance conduisent a une expansion de la population. De plus, il
a été prouvé que ce front d’ondes se déplace avec une vitesse constante ¢ = 2v/eD.

Cependant, lorsque l'espece étudiée est transportée par le vent ou un courant
d’eau, Iéquation (|1.4)) doit étre modifiée pour prendre en compte ce phénomene,
en ajoutant un terme supplémentaire dans (1.4)) :

ou Pu  *u ou

—:D(——i-—)—c——f—su, 1.5

ot ox?  Oy? ox (15)
ou 'axe des x est aligné selon la direction du vent. Notons que la présence d'un
terme de diffusion non linéaire pourrait également étre considérée comme un effet de
convection non linéaire. Dans le cas unidimensionnel, 1’équation suivante apparait
dans de nombreux domaines différents comme dans les colonnes d’échanges d’ions
ou la chromatographie :

Ou  Oh(u) O*u

E + O = @ + f(U), (16)

ou h'(u) est appelée vitesse de convection, voir [MUR] Section 13.4]. La présence
d’un terme de convection non linéaire peut avoir un impact sur les solutions. En
effet, en considérant ce type de terme, un processus de transport majeur, qui dépend
non linéairement de u, joue un role important dans ce nouveau modele. Notons que
la présence d’un terme non linéaire de diffusion peut aussi étre vu comme un effet
non linéaire de convection.

De nombreux travaux ont été faits sur les solutions de front d’ondes progressives dans
des cylindres non bornés, voir par exemple [VE2], [BN2], [VOI] et [HAM]. Dans
[BN2] et [HAM], les auteurs ont considéré un terme §(y)0,u dans I'équation qui peut
représenter un terme de transport ou d’écoulement le long de la direction du cylindre.
Ce terme ne dépend pas de la coordonnée de ’axe du cylindre. Dans les deux cas, les
conditions au bord de Neumann ont été imposées au bord du cylindre, contrairement
a [VE2] qui a considéré les conditions au bord de Dirichlet. Dans [VO1], Volpert
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a traité les conditions au bord de Dirichlet, expliquant que les conditions au bord
de Dirichlet sont par exemple utilisées dans le modele d’explosion de chaleur de
Frank-Kamenetskii qui étudia notamment 1’équation de diffusion de réaction dans
un domaine borné d’une réaction exothermique monomoléculaire. D’un autre coté,
les conditions au bord de Neumann illustrent une sorte de flux nul signifiant que
I’espece ne peut s’échapper du domaine.

Une notion importante est la stabilité des solutions de modeles biologiques qui a
été prise en compte dans une série d’articles couvrant une variété de scénarios, voir
par exemple [MUR] Section 11.3], [ROQ)], [VO3| et [BN2l Section 1]. Une solution
de front d’onde est localement stable si une petite perturbation de cette solution
converge dans un certain sens vers ce front lorsque t — +o00. Notons que différents
types de convergence vers une onde peuvent étre définis, voir par exemple [Section 5
- [VO2J], ou I'approche en forme et I’approche uniforme d’une onde ont été définies.
La stabilité des solutions est un phénomene qui est lié aux propriétés du spectre du
probléme linearisé, voir [VOIl, Introduction|. Cependant, nous n’allons pas étudier
le concept de stabilité ici.

Dans cette these, on étudie l'existence d’ondes progressives solutions d’une
équation de réaction-diffusion avec la présence d’un terme de convection. Plus
précisément, pour n > 1, on considere le probleme suivant :

ur = Au+a(y)V - G(u) + f(u), (1.7)
out € Retu(z,t) € R, dans le cylindre non borné 2 =R x D, o D C R"! est un
domaine borné lisse. On note x = (z1,y) € R x D, ou y = (29, - -, Zy).

De plus, on s’intéresse aux solutions u satisfaisant les conditions au bord de Neumann
sur la frontiere du cylindre :

ou
ov
ou v désigne la dérivée normale extérieure a 9D.
On considerera également les conditions au bord de Dirichlet :

(x,t) =0, pour tout x = (z1,y) € R x D, et pour tout ¢t € R, (N)

u(z,t) =0 pour tout x = (x1,y) € R x 9D, et pour tout t € R. (D)

On suppose que la fonction de réaction f : R — R est C! et “monostable”, ce qui
signifie que

F0)=Ff1)=0, f(0)>0, f(1)<0, flu)>0if 0<u<l (18

Le terme a(y)V - G(u) dans est un terme non-linéaire de convection. Ce drift
non linéaire dépend de la fonction u, ce qui signifie que le terme de convection peut
dépendre de la densité de population de 'espece étudiée. A notre connaissance,
le terme non-linéaire de convection a(y)V - G(u) n’a jamais été considéré dans de
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précédents travaux. On considere dans une premiere partie cette forme mais on
étudiera plus tard la forme suivante : V - (a(y)G(u)).

Dans le cas des conditions au bord de Neumann, on s’intéresse aux solutions de
la forme u(x,t) = w(xy — ct,y), on ¢ € R est la vitesse de propagation de 'onde,

w(&,y) — 1 lorsque £ — —oo et w(,y) — 0 lorsque & — 400,

uniformément avec y € D.

Sous les conditions au bord de Dirichlet, puisque la fonction constante 1 ne satisfait
pas les conditions au bord de Dirichlet, une onde progressive solution doit alors
converger vers un autre état stationnaire en —oo. C’est pourquoi sous les conditions
au bord de Dirichlet nous supposerons qu'’il existe une fonction w_ € C**(D) telle
qu'une onde progressive solution de vitesse ¢ doit satisfaire

w(&,y) = w_(y) lorsque £ = —o0 et w(&,y) — 0 lorsque £ — +oo,

uniformément avec y € D.

Sans terme de convection, autrement dit lorsque o = 0, Berestycki et Nirenberg

ont prouvé, voir [BN2], qu’il existe une vitesse critique ¢* € R telle que : une onde
progressive solution de vitesse ¢ de existe si et seulement si ¢ > c*. L’existence
d’une telle vitesse critique c* est typique des problemes monostables et caractérise
le comportement asymptotique du probleme initial. En effet, de maniere générale,
pour une certaine classe de conditions initiales, la solution du probléme initial va
converger vers l'onde progressive ayant une vitesse critique ¢* lorsque t — +00. De
plus, Berestycki et Nirenberg ont également prouvé que cette vitesse minimale est
strictement positive, ce qui signifie que toutes les ondes progressives se propagent
dans la direction positive de ’axe du cylindre.
On montrera que sous certaines hypotheses concernant les fonctions f et G, une
vitesse critique ¢* existe également avec la présence d'un terme de convection, mais
dans notre cas, cette vitesse minimale peut étre positive ou négative. En particulier,
si ¢* est strictement négative, certaines ondes progressives ayant pour vitesse 0 >
¢ > ¢* vont se propager selon I'axe négatif du cylindre. Berestycki et Nirenberg ont
obtenu une formule explicite pour ¢* dans [BN2]. Plus précisément, sans terme de
convection, et si la fonction f satisfait la condition de KPP

fuw) < f(0)u, Yu€]o,1], (1.9)

les auteurs ont montré, voir [BN2, Théoréeme 1.5, Section 10], que ¢* = ¢, ou ¢
est une quantité liée a un probleme de valeurs propres associé au probleme linéarisé
autour de 0.



Figure 1: Illustration d’une fonction de réaction typique satisfaisant la condition
KPP.

Comme nous ’avons mentionné précédemment, beaucoup de travaux ont été ef-
fectués concernant ce type d’équations dans des cylindres non bornés, sans terme
de convection, voir [BN2], [BLL], [ROQ] et [VE1]. Certains articles considerent
un terme de convection en dimension 1, voir [CRO], [CRM] et [CRT]. Des résultats
d’existence ont été prouvés dans ce cas, voir [CRM|, Théoreme 2.4], [CRO, Théoréeme
2.4] et [AKC|, Théoreme 3.6]. Dans cette these, nous étendons ces résultats. Dans le
cas multidimensionnel, un grand drift & divergence nulle a été considéré dans [BHN],
avec les conditions au bord de Dirichlet ou de Neumann, ou le cas périodique, ou
les auteurs ont étudié le comportement asymptotique de la valeur propre principale
d’un opérateur elliptique.

Sous les conditions au bord de Neumann, et avec la premiere forme du terme de
convection, a(y)V - G(u), si u(x,t) = w(x; — ct,y), est une solution de (|1.7]), alors
la fonction w vérifie :

—coiw = Aw+ a(y)V - G(w) + f(w) dans Q,

w(—o0,y) =1, w(+oo,y) =0 uniformément pour y € D, (1.10)
w >0, ’
w, =0 sur R x 0D.

On prouve qu’il existe une vitesse critique ¢* telle qu'une onde progressive solution de
vitesse ¢ de ce probleme existe si et seulement si ¢ > ¢*. Pour démontrer ce résultat,
on suivra approche de [VOI, Chapitre 5, Section 4], tout en utilisant diverses idées
de [BN2]. Plus précisément, on montre dans un premier temps qu'’il existe une onde
progressive solution de vitesse ¢ > ¢* sur le cylindre tronqué Qy =] — N, N[x D,
avec les conditions au bord de Dirichlet sur {+=N} x D et les conditions au bord de
Neumann sur | — N, N[x0D, et ensuite on fait tendre N vers l'infini afin d’obtenir
une onde progressive solution de vitesse ¢ > ¢* sur le cylindre infini. On étudiera
ensuite un probleme de valeurs propres lié au probleme linéarisé autour de 0, en
s'inspirant de [BN2]. On montrera qu'il existe une valeur critique ¢’ € R telle que ce
probleme de valeurs propres possede deux valeurs propres strictement positives si et
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seulement si ¢ > /. On compare par la suite ces deux valeurs critiques ¢* et ¢, et en
utilisant le [BN3 Théoreme 2.1], on montre que ¢* > ¢ sous certaines conditions sur
f et G; voir Théoreme Soulignons que sans présence de convection, Berestycki
et Nirenberg ont prouvé dans [BN2, Section 10], que ¢* = ¢’ si la fonction f satisfait
la condition de KPP (1.9). Cependant, a cause du terme de convection et plus
précisément des termes de dérivation d;u pour 2 < i < n, la méthode de sous
et sursolutions utilisée dans [BN2] pour démontrer que ¢* < ¢’ ne permet pas de
conclure. En revanche, dans cette these on mettra en avant deux cas particuliers
ou cette égalité est satisfaite. Plus précisément, le premier cas particulier apparait
lorsque f satisfait la condition de KPP et que

G = (G1,0,---,0), a(y)Gi(u) > a(y)G1(0) pour tout y € D et u €]0,1[. (1.11)

Il n’y a alors pas de termes de dérivation d;u pour 2 < i < n, et la méthode utilisée
dans [BN2| Section 10] par Berestycki et Nirenberg donne 1’égalité ¢* = ¢’. Le second
cas particulier est lorsque

G1(0) =0, a(y)Gy(u) >0 pour tout y € D et u €]0,1], (1.12)

et sous la condition de KPP pour f. Dans ce cas précis, une formule explicite
est obtenue pour la vitesse minimale ¢*, a savoir ¢ = ¢ = 2,/f(0). Notons que
cette formule a été obtenue pour ¢* par Berestycki et Nirenberg dans [BN2], sans
terme de convection, et lorsque f satisfait la condition de KPP (|1.9)).

Sous les conditions au bord de Neumann, et avec la premiere forme du terme de
convection a(y)V - G(u), on suppose que la fonction f satisfait et on note
L > 0 sa constante de Lipschitz sur ]0,1[. On considere p > n et on suppose les
conditions suivantes :

e (GN1) : La fonction G : R — R" est C2.

(GN2) : La fonction G est lipschitzienne sur ]0, 1], de constante de Lipschitz
L>0.

(GN3) : Pour tout 1 <i <mn, G;(0) =0.

(AlphalN1) : La fonction o : D — R est dans C*(D).

(AlphalN2) : La fonction « satisfait « = 0 sur 9D.

Comme dans [VOI, Section 4.1], une hypothese d’unicité des solutions du
probleme sur la section transversale D est nécessaire :

(AN) : Les seules solutions dans W2?(D) du probleme sur la section transver-
sale sont 0 et 1. Plus précisément, pour n < p < oo, si z € W?(D) : D — R
satisfait

{ Az4a(y) Y, Gi(2) 22 4+ f(2) =0 dans D, (1.13)

2z, =0 sur 0D,
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ou
= E P 27ety:($2,$3,"'7$n)-
i I

alors
z=0ouz=1.

Remarque 1.1. Remarquons qu’avec la premiere forme du terme de convection
a(y)V - G(u), on peut supposer 'hypothese (GIN3) sans aucune perte de généralité.
En effet, si G(0) = B # 0, posons G(u) = G(u) — 5. Puisque G'(u) = G(u) pour
tout 1 < i <n, il vient que

ZG’ 8U—ZG’ )Ou =V - G(u),

ce qui montre que le probleme (1.32)) est inchangé.

Remarque 1.2. Si aG’ est un vecteur constant, alors I'hypothese (AN) est satis-
faite. En effet, en utilisant les [YIH, Théoremes 4.9] et [YIH, Théoremes 4.11] avec
e €]0, 1] en tant que sous-solution et 1 en tant que sursolution de , il existe une
solution minimale u et une solution maximale w telles que ¢ < u < u < 1, dans le
sens ol si u est une solution de , alors u vérifie u < u < wu. Notons que puisque
1 est une solution, il vient que w = 1, et alors, u vérifie ¢ < u < 1. En multipliant
I’équation satisfaite par u par e®“¥ et en intégrant sur D, il vient

/ e YAy + G - V'u) + / e f () = 0. (1.14)
D D

Puisque
v/ . <6aG’.yv/Q> — 6O¢G’.y<A/Q + aG/ . V/Q),

et u satisfait les conditions au bord de Neumann sur 9D, il vient que la premiere
intégrale de est nulle et fD e"‘Gl'yf(g) = 0, ce qui donne f(u) = 0, par posi-
tivité de l'intégrande. Enfin, puisque u > ¢ > 0, et que f ne s’annule qu’en 0 et 1,
on obtient uw = 1. On a donc prouvé que si z est une solution strictement positive
de , en choisissant ¢ telle que z > € dans D, il vient que z = 1.

Supposons maintenant qu’il existe une solution positive z de telle que
2(yo) = 0 ou yp € D. Mais alors, puisque p > n, le Principe du Maximum Fort,
assure que z est constante dans D, et par conséquent, z = 0. Notons que le lemme
de Hopf empéche la fonction z de s’annuler sur 0D.

Avec la seconde forme du terme de convection, a savoir V- (a(y)G(u)), et sous les
conditions au bord de Neumann, on obtient les mémes résultats sous des hypotheses
légerement différentes :

12



— G,(1) =0.

e (GNY') : La fonction G : R — R" est C*.

e (GN2') : La fonction G est lipschitzienne sur [0, 1], de constante de Lipschitz
L>0.

e (GN3') : La fonction G satisfait G1(0) =0

e (GIN4') : Pour tout 2 < i < n, la fonction G; satisfait G;(0)

e (AlphalN1’) : La fonction a : D — R appartient & C'(D).

e (AlphaNZ2’) : La fonction « satisfait @ = 0 sur 9D.

L’hypothese d’unicité de solution sur la section transversale D devient :

(AN) : Les seules solutions dans W??(D) du probléme sur la section transver-

sale D sont 0 et 1. Plus précisement, pourn < p < oo,siz € W*P(D): D — R

satisfait

&2tz Gl + Tl Gl e+ 1(2) =0 dansD. |\

z, =10

alors
z=0ouz=1.

e (EN’) : La condition suivante est satisfaite :

/
;2£ZG axz

sur 0D,

(1.16)

Cette condition est suffisante afin de garantir ’existence de la valeur critique
¢, mais aussi pour assurer ’existence de sous-solutions pour le probleme défini

sur le cylindre tronqué Qy, voir (4.122)).

Remarque 1.3. L’hypothese (AN’) implique en particulier que

u Ja u 1oJe
ZGi(O)aa:i = ;Gi(l)a—% =0,

1=2

ce qui est en particulier vérifié lorsque ’on suppose (GN4').
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Avec les conditions au bord de Dirichlet et avec la premiere forme de terme
de convection a(y)V - G(u), si u(x,t) = w(x, — ct,y) est une solution de (|1.7)), la
fonction w satisfait :

—cow = Aw+ a(y)V - G(w) + f(w) dans Q,

w(—o00,y) =w_(y), w(+oo,y) =0 uniformément pour y € D,
w > 0,

w=20 sur R x 0D.

(1.17)

Avec les conditions au bord de Dirichlet, une différence importante est qu’une con-
stante positive € €]0, 1[ n’est plus une sous-solution du probleme sur le cylindre
tronqué 2y, nous empéchant donc d’utiliser la méthode de sous et sursolutions.
C’est, pourquoi, sous les conditions au bord de Dirichlet, il est nécessaire de faire
une hypothese supplémentaire. On suppose que [ satisfait et les conditions
suivantes :

e (GD) : La fonction G est C? et satisfait G;(0) = 0 pour tout 2 < i < n.
e (AlphaD) : La fonction a : D — R est dans C*(D).

e (AD) : Soit A €]0,1]. Il existe une fonction positive w_ € C?M(D) telle que
les seules solutions dans C?*(D) du probleme sur la section transversale D
sont w_ et 0. Plus précisément, si 2 € C**(D) : D — R satisfait

{ ANz+aly)d i, G;(z)g—; + f(2) =0 dans D,

z2=0 sur 0D, (1.18)

alors z =0ouz=w_.
Comme dans [VOI], afin d’assurer l'existence de sous-solutions du probleme
sur le cylindre tronqué Qy, voir ([5.145)), nous supposerons :

e (BD) : Il existe une suite de fonctions {vi(y)}xen uniformément bornée dans
C*X(D), qui tend uniformément vers 0 lorsque k tend vers +o0 et qui satisfait
pour tout k € N

0 < vps1(y) < v(y) <w_(y), pour y € D,

et

(1.19)

Avg+aly) Yois, Gi(vp) 5% + f(ve) >0 dans D,
v, =0 sur 0D.

Remarque 1.4. Egalement dans ce cas, nous pouvons supposer que G;(0) = 0 pour
tout 1 <17 < n, sans perte de généralité, voir Remarque (1.1

14



Il est intéressant de savoir sous quelles conditions sur f, G ou encore le domaine
D, ces hypotheses peuvent étre satisfaites. On montrera que si le domaine D est

suffisamment grand, et si le vecteur aG’(0) est assez petit en norme L alors les
hypotheses (AD) et (BD) sont satisfaites, voir section [6.4]

Sous les conditions au bord de Dirichlet, et avec la seconde forme du terme de convec-
tion V- (a(y)G(u)), on obtient les mémes résultats sous ’hypothese supplémentaire
(1.16). Remarquons qu’il s’agit exactement de la méme condition que dans le cas
des conditions au bord de Neumann et de la seconde forme du terme de convection.
Enfin, sous les conditions au bord de Dirichlet, on s’intéressera particulierement a
I'influence du domaine D, du terme de convection aGG et de la fonction g sur la
vitesse minimale ¢*, voir chapitre [7]

Enfin, sous les conditions de Dirichlet et avec la seconde forme de terme de con-
vection V - (a(y)G(u)), nous supposerons que la fonction f satisfait et les
conditions suivantes :

e (GDY) : La fonction G : R" + R est C? et la fonctions Gy satisfait G1(0) =
0.

e (GD2') : Pour tout 2 <i < mn, la fonction G; satisfait G;(0) = 0.
e (AlphaD’) : La fonction a : D — R est dans C*(D).

e (AD') : Soit A € (0,1). Il existe une fonction positive w_ € C**(D) telle
que les seules solutions dans C**(D) du probleme sur la section transversale
D sont w_ et 0. Plus précisément, si z € C**(D) : D — R satisfait

{ Nz+aly) Y, G;(z)g—; +> 0, Gi(z)g—; + f(2) =0 dans D,

z=0 sur 0D, (1.20)

alors z=0ou 2z = w_.

e (BD’) : Il existe une suite de fonctions {vy(y) }xeny uniformément bornée dans
C?*(D), qui tend uniformément vers 0 lorsque k tend vers 4+o0 et qui vérifie
pour tout k € N

0 < vps1(y) < vk(y) < w_(y), pour y € D,

et
ANv, +a(y) Do, G;(vk)giz‘z +> 0, Gi(vk)g—z + f(vg) >0 dans D,
v, =0 sur 0D.
(1.21)
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e (FD’) : La condition suivante est satisfaite :

£(0) + inf S G(0) 09 (y) > \(=L), (1.22)

Remarque 1.5. L’hypothese (AD’) implique en particulier, puisque la fonction 0

satisfait ((1.20]),
= O
Gi 0 — 0,
> Gil0) 5

=2

ce qui est vérifié lorsque 1'on suppose (GDZ2').

Cette these est organisée de la fagon suivante.

Dans le chapitre [2] avec les conditions au bord de Neumann et la premiere forme
du terme de convection, on commence par définir ¢* via une formule min-max, puis
on montre que cette quantité est strictement inférieur a +oo. On prouve ensuite
Iexistence d’ondes progressives solutions de vitesse ¢ > ¢* sur le cylindre tronqué
Qn =] — N, N[xD, en utilisant la méthode des sous et sursolutions. En faisant
tendre N vers 400, on obtient alors le résultat suivant :

Théoreme 1.6. Sous les conditions au bord de Neumann et la premiere forme de
terme de convection, supposons (GN1), (GN2), (GN3), (AlphaN1), (AN) et
que la fonction f est C' et vérifie (1.8)). Then for ¢ > c*, il existe au moins une
solution w de (1.32)).

De plus, cette solution est strictement décroissante par rapport a x, et vérifie

ow
8_x1<0'

Nous nous inspirons de [VOI] et [BN2], mais plutot que de construire une solu-
tion sur le demi-cylindre infini comme [VOI], nous la construisons sur un cylindre
tronqué €2y avant de faire tendre N vers l'infini. Par ailleurs, lorsque N — +o0,
il est possible que la suite des solutions construites tende vers 0. Afin d’éviter cela,
nous montrons en amont qu’il existe une solution sur le cylindre tronqué 2y satis-
faisant une condition de normalisation lorsque x; = 0, assurant ainsi que la solution
ne s’écroule pas vers 0. Enfin, on démontre qu’il existe une onde progressive solution
sur le cylindre infini 2 ayant pour vitesse exacte ¢*, et que pour ¢ < c¢*, il n’existe
pas d’onde progressive solution strictement décroissante.
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Dans le chapitre |3| avec les conditions au bord de Neumann et la premiere forme
du terme de convection, on introduit un probléeme de valeurs propres lié au probleme
linéarisé autour de 0, et on prouve 'existence de la valeur critique ¢’. Précisément,
on démontre qu’il existe deux valeurs propres strictement positives du probleme de
valeurs propres si et seulement si ¢ > . Il est alors naturel de comparer les deux
valeurs critiques ¢* et ¢/, et nous obtenons I'un des résultats principaux de cette
these :

Théoreme 1.7. Sous les conditions au bord de Neumann et la premiére forme de
terme de convection, soit ¢ défini dans la Proposition[3.4. Supposons les hypothéses
(GN1), (GN3), (AlphaN1), (AlphaN2) et que f est C* et vérifie (1.8)). Sup-

posons également qu’il existe sg €]0, 1] telle que la condition suivante soit satisfaite

" Gz(S) 8a

s Oz

f(0) >k, ouk:= sup
(5,4)€]0,50[x D

<y>‘ . (1.23)
i=2
Alors,

>,

En particulier, ¢* > —oo.

Nous présentons également deux cas particuliers ou les valeurs critiques ¢ et ¢*
sont égales. Le premier cas particulier est lorsque le terme de convection est de la
forme G = (G4,0,---,0), que f satisfait la condition KPP et sous la condition
. Le second cas particulier est toujours sous la condition de KPP pour
f et la condition ((1.12]).

Le chapitre [4 présente une forme alternative de terme de convection : V -
(a(y)G(u)) au lieu de a(y)V - G(u). Tout au long de ce chapitre, nous établissons
des résultats similaires, sous la contrainte supplémentaire impliquant le terme
de convection G et la fonction f. Cette condition assure non seulement qu’une con-
stante € €]0, 1] est toujours une sous-solution du probléme sur le domaine tronqué
Qx, mais aussi I'existence de la valeur critique ¢’. Nous comparons alors les valeurs
c* et ¢ et obtenons :

Théoreme 1.8. Sous les conditions au bord de Neumann et avec la seconde forme
de terme de convection, supposons les hypothéses (GN1'), (GN3’), (AlphaN1’),
(AlphaN2'), (EN') et qu’il existe C > 0 et que f est C est satisfait (1.8). Then

>

Notont que dans la preuve du Théoreme (1.8 nous avons besoin de la condition
suivante : il existe C' > 0 et s¢ €]0, 1] telles que pour tout s €]0, so[, |G1(s)| < Cs, ce
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qui est une conséquence de (GIN3'). Avec cette nouvelle forme de terme de convec-
tion, 'égalité ¢* = ¢ n’est montrée que dans le cas particulier ou G = (G4, 0, - - -, 0).

Dans le chapitre 5] on considere les conditions au bord de Dirichlet et la premiere
forme de terme de convection. Dans ce cas, une constante £ €]0, 1[ n’est plus une
sous-solution du probleme sur le cylindre tronqué 5. On fait alors une hypothese
supplémentaire (BD) afin de garantir l'existence de sous-solutions du probléeme
sur Q. Cette hypothese n’est peut-étre pas nécessaire, mais on montre qu’elle est
suffisante. Comme précédemment, on montre I’existence d’une valeur critique ¢* telle
qu’il existe une onde progressive solution sur le cylindre non borné €2, de vitesse ¢
si et seulement si ¢ > ¢* :

Théoreme 1.9. Sous les conditions au bord de Dirichlet et avec la premiere forme
de terme de convection, supposons les conditions (GD), (AlphaD), (AD), (BD)
et que f est C et vérifie . Alors pour ¢ > c*, il existe au moins une solution
w de (1.17)).

De plus, cette solution est strictement décroissante par rapport a x, et vérifie

ow
8_a:1<0'

Comme précédemment, on montre également qu’il existe une solution avec une
vitesse critique ¢ = ¢*, mais que pour ¢ < ¢*, il n’existe pas de solution strictement
décroissante par rapport a z; de ((1.17)).

Dans le chapitre [6 on introduit le probleme de valeurs propres associé au
probleme linéarisé autour de 0. Sous les conditions au bord de Dirichlet, une hy-
pothese supplémentaire est requise pour assurer 'existence de la valeur critique ¢’. A
savoir, on demande que f’(0) soit strictement supérieure a la valeur propre principale
de Popérateur linéarisé —L := —A+a(y) > 1, G;(O)a%i. Par ailleurs, on démontre
que cette hypothese est vérifiée des lors que le domaine D est suffisamment grand
et que le vecteur a(y)(G5(0), -+, G, (0)) est assez petit en norme L. Enfin, lorsque
c existe, on démontre le résultat suivant :

Théoreme 1.10. Sous les conditions au bord de Dirichlet et avec la premiére forme
de terme de convection, soit ¢ défini dans la Proposition . On suppose (GD),
(AlphaD), (FD) et que f est C* et vérifie (1.8)). Supposons également qu’il existe

so €]0,1[ telle que la condition suivante soit satisfaite :

ZG"—(S)S—Z(y)‘. (1.24)

- S
=2

f(0)>k, otuk:=  sup
(5,9)€]0,50[xD

Alors,

>
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En particulier, ¢* > —oc.

Notons que dans la preuve du Théoreme |1.10, nous avons besoin de la condition

suivante : il existe C' > 0 et 59 €]0, 1] telles que |G(s)| < C's pour tout s €]0, sol, ce
qui est une conséquence de I'hypothese (GD).
Sous les conditions au bord de Dirichlet et avec la premiere forme de terme de con-
vection, 'égalité ¢* = ¢ n’est montrée que dans le cas particulier ou G = (G1, 0, -+, 0)
la fonction f satisfait la condition KPP ([1.9)), que le domaine D est assez grand et
sous la condition . A la fin du chapitre |§|, nous montrons que les hypotheses
(AD) et (BD) sont satisfaites lorsque le domaine D est assez grand et que la quan-
tité [|aG'(0)||« est assez petite.

Dans le chapitre [7] sous les conditions au bord de Dirichlet et avec la premiére
forme de terme de convection, on met en avant 'influence des fonctions f, G et «
sur la vitesse minimale ¢*. Par exemple, on prouve que si a et G sont fixées, alors
I'application f +— ¢*(f) est croissante. On montre des résultats similaires dans le
cas particulier ou G = (G4, 0, ---,0), et sous la condition en utilisant que sous
ces hypotheses, ’égalité ¢* = ¢’ est valide. On se concentre ensuite sur I'influence du
domaine D sur la vitesse critique ¢*. Puisque la fonction « est définie sur D, notons
qu’il est nécessaire de la définir sur un autre domaine avant d’étudier 'influence de
D sur ¢*. On prouve par exemple que si Dy est une homothétie du domaine D de
coefficient R > 0, alors ¢*(D) < ¢*(Dg) pour tout R > 1. On montre également un
résultat similaire apres avoir considéré D*, la boule centrée en 0 telle que |D*| = |D|,
autrement dit le réarrangement symétrique du domaine D.

Dans le chapitre [§] on considere la seconde forme de terme de convection
V - (a(y)G(u)), sous les conditions au bord de Dirichlet. Sous I’hypothese
supplémentaire qui permet d’assurer 'existence de ¢/, on obtient les mémes
résultats. Notons que cette hypothese garantit une nouvelle fois I'existence de la
valeur critique ¢’. Nous présentons le résultat principal de ce chapitre :

Théoreme 1.11. Sous les conditions au bord de Dirichlet et la seconde forme du
terme de convection, supposons (GD1'), (AlphaD’), (FD') et que f est C' et

satisfait (L.8]). Alors,

>

Soulignons encore que dans la preuve du Théoreme [I.11 nous avons besoin de la
condition suivante : il existe C' > 0 et s¢ €]0, 1] telles que |G;(s)| < Cs pour tout
s €]0, so[, qui est satisfaite puisque nous avons supposé (GD1').

Le chapitre [J est la conclusion dans laquelle nous mettons en avant certaines
questions naturelles qui peuvent se poser a la suite des résultats montrés dans cette
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these. Plus précisément, dans cette these nous nous sommes intéressés a un profil
particulier concernant la fonction f, généralement appelé monostable. Il est alors
naturel de se demander quelles auraient été les différences si nous avions considéré
un autre profil, comme le cas bistable, et plus précisément quel aurait été le signe
de la valeur critique c¢*, qui caractérise le comportement asymptotique d’une onde
progressive solution puisqu’il détermine ce qu'un observateur verra lorsque ¢t — +o0.
En effet, rappelons que si ¢* > 0, alors toutes les ondes progressives solutions auront
une vitesse strictement positive ¢ > ¢* > 0 et donc se propageront dans une seule
direction.
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1.2 Introduction (English version)

Travelling waves are waves that propagate without change of shape. Namely, if
u(z,t) is a travelling wave at time t and spatial coordinate x, the shape of the
solution will be the same for all time ¢, and the speed ¢ of propagation is constant.
Precisely, if the solution u(x,t) = w(x — ct), then w is a travelling wave profile
moving at constant speed c in the positive z-direction if ¢ > 0 and in the negative
x-direction if ¢ < 0. Replacing u(z — ct) by u(z + ct) we obtain a travelling wave
moving in the opposite direction. Travelling waves naturally appear in biology,
for instance as travelling waves of chemical concentration or population density, see
[MUR] Section 11.1]. In order to get physically realistic results, u has to be bounded
and non-negative everywhere. For example, the following one-dimensional equation
can model a biochemical change caused by reaction kinetics and diffusion :

ou 0?u
5 D@:U? + f(u), (1.25)
where u is the concentration, f(u) the kinetics and D the diffusion coefficient. De-
pending on the form of the reaction term f in (1.25)), different properties of travelling
wave solutions can arise. This is precisely what motivated mathematicians to start
studying the field of reaction diffusion theory. In [FIS], Fisher proposed the equa-
tion with f(u) = ku(l — u), where k is positive, to model the spread of a
favoured gene in a population. This special case has been studied a lot by many
mathematicians, starting with Kolmogoroff, Petrovsky and Piskounoff, see [KPP].
Such equations also arise widely in modeling in physics or chemistry. With this kind
of non linear term f, the function u can also represent the normalized temperature
profile of a mix of two gases in a combustion model, see [HAM| Introduction], for
references.
Higher dimensional spaces are needed to be more realistic. In 1937, with the inten-
tion of modeling the process of spatial spread when mutant individuals with higher
adaptability manifest in the population, Fisher suggested the two-dimensional dif-
fusion equation :
ou D (82u 0%u

_ e + 8_3/2> + (e — pu)u, (1.26)

ot
where u(x,y,t) represents the population density at time ¢, and spatial coordinate
(x,y), see [SKI, Section 3.9]. The first term of the right hand side illustrates a dif-
fusion phenomenon and the second term a local population growth. Both of these
terms lead to changes in the population density modeled by the term %. The dif-
fusion coefficient D indicates how quickly the density population can vary, € is the
intrinsic rate of increase and the constant u > 0 takes into account the reproduc-
tion rate of the species. This equation has been considered by Kolmogorov in 1937
and many other mathematicians in various fields to study the expansion of a bac-
terium, or even the spread of human cultures, see [SK1, Chapter 3]. For instance,

in 1951, Skellam applied this equation with ¢ = 0 in order to study the evolution of
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muskrats. In particular, it was shown that the population density increases expo-
nentially when ¢ is large enough, which means that the diffusion and growth effects
lead to an expansion of the population range. Moreover, it was proved that this
wave front moves with a constant speed ¢ = 2v/eD.

However, when the species is carried by wind or water flow, the equation (1.26) has
to be modified to take this into account, for instance by adding an additional term
in (T.26) :
ou Pu  O*u ou
o )

5 = @—'—a_?ﬂ —c£+5u, (1.27)

where the z-axis is aligned to the direction of the wind. In the one dimensional

case, the following equation appears in many different fields such as in ion exchange

columns or chromatography :

ou  Oh(u) *u
_|_ J—

5t o — a2 /W (1.28)

where h'(u) is called the convective velocity, see [MUR] Section 13.4]. The presence
of a non linear convection term can have an impact on the solutions. Indeed, by
considering this kind of term, a major transport process, which depends non linearly
on u, plays an important role in this new model. Note that the presence of a non
linear diffusion term could also be thought of a non linear convection effect.

A lot of work has been done regarding this kind of equation in unbounded cylinders,
without any convection term, see [BN2], [BLL], [ROQ] and [VE1]. Many works
have studied travelling front solutions in an unbounded cylinder, see for example
[VE2], [BN2], [VO1] and [HAM]. In [BN2] and [HAM], the authors considered a
term ((y)0iu in the problem, which can represent a transport term or a driving
flow along the direction of the cylinder. Note that this term does not depend on the
coordinate of the axis of the cylinder. In both cases, Neumann boundary conditions
are imposed on the edge of the cylinder, contrary to [VE2] who studied the problem
with Dirichlet boundary conditions. In [VOI], Volpert considered Dirichlet condi-
tions, explaining that Dirichlet boundary conditions are for instance used in the
Frank-Kamenetskii model of heat explosion, which studies on the reaction diffusion
equation in a bounded domain, of a one-step monomolecular exothermic reaction.
On the other hand, Neumann boundary conditions illustrate a sort of zero flux at
the boundary meaning that the species cannot escape from the domain.

An important notion is the stability of solutions of biological models which has been
considered in a range of papers covering a variety of scenarios, see for instance,
[IMURL Section 11.3], [ROQ)], [VO3] and [BN2 Section 1]. A wave front solution
is locally stable if a small perturbation of this solution converges in some sense to
this front when ¢ — +o00. Note that different kinds of convergence to a wave can be
defined, see [VO2l, Section 5] where the approach in form and the uniform approach
to a wave were defined. The stability of solutions is related to spectral properties of
the linearized problem, see [VOI|, Introduction]. However, we will not focus on the

22



concept of stability here.

In this thesis, we study the existence of travelling front solutions for a certain
reaction-diffusion equation with a convection term. Precisely, for n > 1, we consider
the following problem :

u = Au+ a(y)V - G(u) + f(u), (1.29)

where t € R and u(z,t) € R, in the unbounded cylinder = Rx D, where D C R"!
is a smooth bounded domain. We write z = (z1,y) € Rx D, where y = (z2, -+, x,).
We first seek solutions u satisfying Neumann boundary conditions on the edge of
the cylinder :

9,
8_5@’ t) =0, forall z = (x1,y) € R x 9D, and for all t € R, (N)

where v is the normal derivative exterior to 0D.
Then, we will consider Dirichlet boundary conditions

u(z,t) =0 for all z = (x1,y) € R x 9D, and for all t € R. (D)

Throughout the thesis, the reaction function f : R — R is assumed to be C! and
“monostable” in the sense that

f0)=f(1)=0, f(0)>0, f(1)<0, f(u)>0if 0<u<l. (1.30)

The term a(y)V - G(u) in is a non linear convection term. This non linear
drift is depending on u, which means that the drift can depend on the density of
the species. To our knowledge, the non linear convection term «(y)V - G(u) has
not been considered in previous work. We first consider this first form of convection
term, and we will consider later the alternative form V - (a(y)G(u)).

In the Neumann case, we are interested in travelling front solutions of the form
u(z,t) = w(x; — ct,y), where ¢ € R is the speed of the front, and

w(&,y) = 1as{ — —oo and w(,y) — 0 as £ — +oo, uniformly in y € D.

In the Dirichlet case, since the constant function 1 does not satisfy Dirichlet bound-
ary conditions, a travelling front solution has to converge to another steady state at
—o0. That is why, with Dirichlet boundary conditions, we assume that there exists
a function w_ € C?*(D) such that a travelling front solution u(z,t) = w(x; — ct,y)
of speed ¢ has to satisfy

w(&,y) = w_(y) as £ > —oco and w(&,y) — 0 as £ — 400, uniformly in y € D.
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Without the convection term, which means for a = 0, it was proved by Berestycki
and Nirenberg in [BN2] that in the Neumann case, there exists a critical value ¢* € R
such that travelling front solutions with speed ¢ of exist if and only if ¢ > ¢*.
The existence of such a critical speed c¢* is characteristic of monostable problems
and often can be shown to play a key role in the long-time behaviour of the initial
value problem. Indeed, the solution of the initial value problem for a certain class of
initial conditions will typically converge to the travelling wave of speed ¢* as t tends
to infinity. Moreover, Berestycki and Nirenberg also proved that this critical value
c* is positive, which means that all the travelling waves propagate in the positive
x1-direction.

We will prove that under certain conditions on f and G, such a critical value
c* also exists in the presence of non linear drift, but in our case, the critical value
can be positive or negative because of the convection term. In particular, if ¢* is
negative, some of the travelling waves with negative speed 0 > ¢ > c¢* propagate
in the negative zj-direction. In [BN2], the authors obtained an explicit formula
for the critical value ¢* under an additional condition on f. Precisely, without any
convection term and under the famous KPP condition

fuw) < f'(0)u, Vu e (0,1), (1.31)

it was proved in [BN2, Theorem 1.5 and Section 10], that ¢* = ¢/, where ¢’ is related
to a certain eigenvalue problem and the linearized travelling-front problem around
0.

f(u)

Figure 2: Illustration of a typical reaction function satisfying KPP condition.

As we mentioned earlier, a lot of work has been done regarding this kind of equa-
tion in unbounded cylinders, without any convection term, see [BN2], [BLL], [ROQ)]
and [VEI]. Some papers deal with the presence of convection term in dimension 1,
see [CROI, [CRM] and [CRT]. Some existence results were proved in that case, see
[CRM,, Theorem 2.4], [CROL Theorem 2.4] and [AKC, Theorem 3.6]. In this thesis,
we extend these results to multi-dimensional cylinders . In the multidimensional
case, a large divergence free drift was considered in [BHN], with both Neumann and

24



Dirichlet boundary conditions and also in the periodic case, where they studied the
asymptotic behaviour of the principal eigenvalue of some linear elliptic equations.

Under Neumann boundary conditions and with the first form of the convection
term a(y)V - G(u), if u(z,t) = w(x; — ct,y), is a solution of (|1.29)), the function w

satisfies :

—cow = Aw+ a(y)V - G(w) + f(w) in £,

w(—o0,y) =1, w(+o0,y)=0 uniformly in y € D, (1.32)
w > 0, ’
w, =0 on R x 9D.

We prove that there exists a critical speed ¢* such that travelling front solutions exist
if and only if ¢ > ¢*. To do that, we are following the approach of [VOI, Chapter
5, Section 4] and using some ideas of [BN2]. Precisely, we first show that there
exists a travelling front solution on a truncated cylinder Qy := (=N, N) x D with
Dirichlet boundary conditions on {=N} x D and Neumann boundary conditions on
(=N,N) x 0D, and then let N tend to infinity. Then, as in [BN2], we study an
eigenvalue problem related to the linearized problem around 0, and show that there
exists a critical value ¢ such that for ¢ greater than ¢/, this eigenvalue problem has
two positive eigenvalues. We then compare these two critical values ¢* and ¢/, and by
using the key [BN3|, Theorem 2.1], we show that ¢* > ¢/, under some assumptions on
f and G; see Theorem [I.18 Note that without the convection term, it was proved
in [BN2|] that ¢* = ¢ under the KPP condition on f. Contrary to [BN2], the
method of sub and supersolutions they used to prove that ¢* < ¢ is difficult to use
in general because of the non linear drift and specially the presence of the derivative
terms O;u for 2 < i < n. However, in this paper we highlight two special cases where
if the convection term G has a specific form, then ¢* = ¢’. Note that this equality
holds in two “opposite” cases. In the first case, assuming the KPP condition
for f, and that

G = (G1,0,---,0), a(y)Gi(u) > a(y)Gi(0) for all y € D and u € (0,1), (1.33)

there are no derivative terms 0;u for 2 < ¢ < n and then the method used in [BN2,
Section 10] proves that ¢* = ¢. In the second case, assuming the KPP condition

(1.31)) for f and that
G1(0) =0, a(y)Gi(u)>0forallye D and u e (0,1), (1.34)

the equality ¢* = ¢ holds and we in fact obtain also the explicit formula ¢* = ¢ =
24/ f"(0). Note that this is the formula obtained for ¢* by Berestycki and Nirenberg
in [BN2] when f satisfies the KPP condition (1.31]).

Under Neumann boundary conditions, with the first form of the convection term
a(y)V - G(u), we assume the condition for the function f, and denote by
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L > 0 the Lipschitz constant on (0,1) of f. We consider p > n and assume the
following conditions :

e (GN1) : The function G : R — R" is C?.

e (GN2) : The function G’ is Lipschitz continuous on [0, 1], with constant
L >0.

(GN3) : Forall 1 <i<mn, G;(0)=0.

(AlphaN1) : The function a : D — R belongs to C*(D).

(AlphaN2) : The function « satisfies « = 0 on 9D.

Asin [VOI1, Section 4.1], we also need a uniqueness assumption of the solutions
of the problem on the cross section D :

(AN) : The only solutions in W??(D) of the problem on the cross section are
0 and 1. Precisely, for n < p < oo, if 2 € W*P(D) : D — R satisfies

/ n / & = 1
Az +aly) Xy Gi(2)gz, + f(2) =0 in D, (1.35)
2, =0 on 0D,
where
A/:;a—x%, andy— (ZL’Q,J]3, 7x’ﬂ)
then
z=0or z=

Remark 1.12. Note that with the first form of the convection term a(y)V - G(u),
we are not losing generality assuming (GN3). Indeed, if G(0) = 8 # 0, define
G(u) = G(u) — . Since G(u) = Gi(u) for all 1 < i < n, it follows that

V- G(u) = Zég(u)&u = Z Gi(u)du = V - G(u),

which shows that the problem ((1.32]) is unchanged.

Remark 1.13. If aG’ is a constant vector, the assumption (AN) is satisfied. In-
deed, by [YIH, Theorem 4.9] and [YIH, Theorem 4.11] applied with € € (0,1) as a
subsolution and 1 as a supersolution of , there exist a minimal solution u and
a maximal solution @ of such that ¢ <u <7 < 1, in the sense where if u is a
solution of , then u satisfies u < u < . Note that, since 1 is in fact a solution,

26



it follows that w = 1, and then, u satisfies ¢ < u < 1. By multiplying the equation
(T.35)) satisfied by u by €*“"¥ and integrating over D, it follows that

/ YAy + oG- V') + / I f () = 0. (1.36)
D

D

Since

v/ . (eaG/.yv/H> — eaG’/.y(Alg_'_ O{G/ . v/g)’

and u satisfies Neumann boundary conditions on 0D, it then follows that the first
integral in is 0, and then [, eV f(u) = 0, which gives f(u) = 0, by positiv-
ity of the integrand. Finally, since u > ¢ > 0, and since f only vanishes at 0 and
1, we obtain u = 1. We have then proved that if z is a strictly positive solution of
that is bounded away from 0, by choosing € such that z > ¢ in D, it follows
that z = 1.

Assume now that there exists a non negative solution z of such that z(yg) =0
at an interior point yy € D. Then, the Strong Maximum Principle ensures that z is
constant in D, and hence z = 0 on D. Note that because of the Hopf lemma, we
cannot have z = 0 anywhere on 0D.

With the second form of the convection term V - (a(y)G(u)), and again under
Neumann boundary conditions, we obtain the same results as for the first form of
convection term provided we assume some slightly different assumptions :

e (GN1') : The function G : R — R" is C2.

e (GN2') : The function () is Lipschitz continuous on [0, 1], with constant
L>0.

(GIN3') : The function G; satisfies G1(0) = 0.

(GN4') : For all 2 <14 < n, the function G; satisfies G;(0) = G;(1) = 0.
(AlphaN1’) : The function o : D — R belongs to C'(D).

(AlphalN2’) : The function « satisfies & = 0 on 9D.

The uniqueness assumption of the solutions of the problem on the cross section
D becomes :

(AN’) : The only solutions in W*P(D) of the problem on the cross section
are 0 and 1. Precisely, for n < p < oo, if z € W*P(D) : D — R satisfies

{ Nz+aly)d i, G;(z)g—; +>0, Gi(z)g—; +f(z)=0 inD,

2z, =0 on 0D, (1.37)
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e (EN’) : The following condition holds :

f ! ) 1.
z}gD Z Gil 8951 (1.38)

This condition is sufficient to ensure the existence of ¢ and also to make sure
that a small constant is still a subsolution of the problem (4.122]) on the trun-
cated cylinder Qy.

Remark 1.14. Assumption (AN’ ) implies in particular that

;G 81: ;G 0,

which holds in particular if we assume (GN4').

)

Under Dirichlet boundary conditions and with the first form of the convection
term a(y)V - G(u), if u(z,t) = w(z; — ct,y) is a solution of (1.29)), the function w
satisfies :

—cow = Aw+ a(y)V - G(w) + f(w) in £,

w(—o00,y) = w_(y), w(+oo,y) =0 uniformly in y € D,
w > 0,

w =0 on R x dD.

(1.39)

With Dirichlet boundary conditions, a key difference with the Neumann case is that
a small constant £ € (0, 1) is no longer a subsolution of the problem on the truncated
cylinder 2y anymore, which prevents us to use sub and supersolution method with
a non-zero constant as the sub-solution. That is why under Dirichlet boundary
conditions, we need slightly different assumptions. We assume that the function f

satisfies ((1.30]), and the following conditions :
e (GD) : The function G is C? and satisfies G;(0) = 0 for all 1 <4 < n.
e (AlphaD) : The function a : D — R belongs to C*(D).

e (AD) : Let A € (0,1). There exists a non negative function w_ € C*N(D)
such that the only solutions in C**(D) of the problem on the cross section D
are w_ and 0. Precisely, if 2 € C**(D) : D — R satisfies

Nzt aly) S, G + f(z) =0 in D, o)
z=0 on 0D, ’

then z=0or 2z = w_.

To make sure that there exist subsolutions of the problem ([5.145) on the
truncated cylinder Qy, as in [VOI], we also assume the following condition :
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e (BD) : There exists a sequence of functions (vk(y))ren uniformly bounded
in C?*(D), and which tends uniformly to 0 when k tends to +oc and which
satisfies for every k € N

0 < vgs1(y) < wvi(y) <w-(y), fory € D,

and

{ Av +aly) oL, Giu) gt + () 20 in D, (1.41)

v, =0 on 0D.
e (FD) : The following conditions holds :
f1(0) > M(=1L),

where —L := —A" — a(y) Z?:Q G;(0) 821-'

Remark 1.15. In this case also, we are not losing generality assuming that G;(0) =
0 for all 1 <17 < n, see Remark [1.12]

We also give some sufficient conditions in section [6.4] under which assumptions
(AD), (BD) and (FD) are satisfied. Namely, if the measure of the domain D
is big enough, and the vector aG’(0) is sufficiently small in the infinity norm, then
those assumptions are satisfied.

Under Dirichlet boundary conditions, we then show the influence of the domain D,
the convection term aG and the function f on the critical speed ¢*, see chapter [7}

Finally, with Dirichlet boundary conditions and the second form of the convection
term V- (a(y)G(u)), we assume that the function f satisfies ((1.30]), and the following
conditions :

e (GDY') : The function G : R" + R is C? and the function G; satisfies
G1(0) = 0.

e (GD2') : For all 2 < i < n, the function G; satisfies G;(0) = 0.
e (AlphaD’) : The function a : D — R belongs to C*(D).

e (AD’) : Let A € (0,1). There exists a non negative function w_ € C?*M(D)
such that the only solutions in C’Z’)‘@) of the problem on the cross section D
are w_ and 0. Precisely, if 2 € C**(D) : D — R satisfies

Nz aly) i, Gi2) g5 + 20, G2) 52 + f(2) =0 in D,
i i (1.42)
z=0 on 0D,

then z=0or z = w_.
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e (BD’) : There exists a sequence of functions {vx(y)}ren uniformly bounded
in C?*(D), and which tends uniformly to 0 when k tends to +oc and which
satisfies for every k € N

0 < vr1(y) < vp(y) < w_(y), fory € D,

and
A'vg, + aly) Y iy G;(Uk)avk + > iy Gi(vr) f + f(u) >0 in D,
v, =0 on 0D.
(1.43)
e (FD’) : The following conditions holds :
/
) + ylgngG 8901 ) > A (—L), (1.44)

where —L := —A' — a(y) Y1, G4(0) 2=

We will show in chapter |8 that if (1.38]) holds, the measure of the domain D is big
enough and ||aG’(0)||z~ small enough, then the inequality (1.44)) holds.

Remark 1.16. Assumption (AD’) implies in particular, since the function 0 satis-

fies , that
Z Gi(0 81:1 0,

which is satisfied if we assume (GD2').

This thesis is organized as follows.

In chapter [2, with Neumann boudary conditions and the first form of the con-
vection term, we first define ¢* by a min-max formula, and show that ¢* < 4+00. We
prove the existence of travelling front solutions with speed ¢ > ¢* on a truncated
cylinder Qy := (=N, N) x D, by using the method of sub and supersolutions. We
then let NV tend to infinity and obtain the following result :

Theorem 1.17. With Neumann boundary conditions and the first form of convec-
tion term, assume (GN1), (GN2), (GN3), (AlphaN1), (AN) and that f is C*
and satisfies (1.30). Then, for ¢ > c*, there ezists at least one solution w of -

In addition this solution w is decreasing with respect to x1 and satzsﬁes < 0.
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Our strategy is inspired by [VOI] and [BN2] but instead of constructing a solu-
tion on the half cylinder, we do this on a truncated cylinder €25 and then let N tend
to infinity. When NN tends to infinity, we have to avoid that the solution collapses to
0. To do that, we show that there exists a travelling front solution on the truncated
cylinder 2 which satisfies a normalization condition when z; = 0, which ensures
that the solution will not tend to 0 when N tends to infinity. We also show that
there exists a decreasing (with respect to z;) travelling front solution on the infinite
cylinder 2 with a speed ¢ = ¢*, and that for ¢ < ¢*, there is no decreasing travelling
front solution.

In chapter [3, again with Neumann boundary conditions and the first form of
the convection term, we introduce an eigenvalue problem related to the linearized
problem around 0, and show the existence of the critical value . Namely, we prove
that there exist two positive eigenvalues of the generalized eigenvalue problem if and
only if ¢ > ¢’. We then compare ¢* and ¢ and obtain one of the main results of this
thesis :

Theorem 1.18. With Neumann boundary conditions and the first form of convec-
tion term, let ¢’ be as defined in Proposition below. Assume (GN1), (GN3),
(AlphaN1), (AlphaN2) and that f is C' and satisfies (1.30). Assume also that
there exists sg € (0,1) such that the following condition holds :

f(0) >k, wherek:=  sup o Gils) gj (y)‘ : (1.45)

(s,y)€(0,50)x D

: s
1=2
Then one has :

& >c.

In particular, ¢* > —oo.

We also discuss two special cases where ¢* and ¢’ are equal. The first special
case is when the convection term has the form G = (G1,0, - --,0), if f satisfies KPP
condition and under the condition (1.33). The second special case is still
under KPP condition for f and also the condition .

Chapter [ is devoted to the alternative form of convection term, still under
Neumann boundary conditions, where we consider the form V - (a(y)G(u)) instead
of a(y)V - G(u). Throughout this chapter we establish similar results to before,
but under the additional condition involving the convection term G and the
function f. This condition ensures that a small constant is still a subsolution of the
problem on the truncated cylinder 2y, allowing us to use the sub and supersolutions
method as before. Note that this condition ensures the existence of ¢ as well. We
then compare the two critical values ¢* and ¢’ and claim :
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Theorem 1.19. With Neumann boundary conditions and the second form of the
convection term, assume (GN1'), (GN3'), (GN4'), (AlphaN1’), (AlphaN2’),
(EN') and that f is C' and satisfies (1.30). Then

>

Note that in the proof of Theorem [1.19] we need the following condition : there
exist C' > 0 and so € (0,1) such that for all s € (0,s¢), |G1(s)| < Cs, which is
satisfied since we assumed (GN3'). With the second form of convection term, only
the special case where G = (G1,0,- - -,0) can be handled to show that ¢* = ¢.

In chapter [, we consider the Dirichlet boundary conditions and the first form
of the convection term. In this case, a small constant is not a subsolution of the
problem on the truncated cylinder 2. That is why we need an extra assumption
to make sure that such a subsolution does exist, namely . Similarly to before,
we show the existence of a critical speed ¢* which satisfies :

Theorem 1.20. With Dirichlet boundary conditions and the first form of the con-
vection term, assume the assumptions (GD), (AlphaD), (AD), (BD) and that f
is C' and satisfies (1.30). Then for ¢ > c*, there exists at least one solution w of
(T.39).

In addition this solution w is decreasing with respect to x1 and satisfies g—ﬁ < 0.

We also show that there exists a solution with a critical speed ¢ = ¢* and for
¢ < ¢* there is no decreasing solution with respect to z; of (1.39).

In chapter [6] we introduce the generalized eigenvalue problem under Dirichlet
boundary conditions, which is associated with the linearized equation. Under Dirich-
let boundary conditions, an extra assumption is needed to make sure that ¢’ exists
: f/(0) has to be greater than the principal eigenvalue of the linearized operator
—L:=-A+a(y) >, GQ(O)[%. We show that this assumption can be satisfied
if the domain D is big enough, and the vector a(y)(G5(0),- - -G7,(0)) is sufficiently
small in L*> norm. Knowing the existence of ¢/, we prove the following result :

Theorem 1.21. With Dirichlet boundary conditions and the first form of the con-
vection term, let ¢ defined in Proposition [6.6. Assume (GD), (AlphaD), (FD)
and that f is C' and satisfies . Assume also that there exists so € (0,1) such
that the following condition holds :

Gl(8> Oa

s Ox;

f(0) >k, wherek:=  sup

(s,)€(0,50)x D

(y)‘ . (1.46)

=2

Then
>,
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In particular, ¢* > —oo.

In the proof of Theorem [1.21| we need the following condition : there exist C' > 0

and s € (0,1) such that |G(s)| < Cs, for all s € (0, sy), which is satisfied since we
assumed (GD).
Under Dirichlet boundary conditions and with the first form of the convection term,
we show that the equality ¢* = ¢ holds in the special case where G = (G4, 0, - - -,0),
assuming KPP condition for f and that a(y)G(u) > a(y)G1(0) for ally € D
and all u € (0,1), and if the domain D is big enough. At the end of chapter |§|, we
show that the Assumptions (AD) and (BD) are satisfied if the domain D is big
enough, and if the quantity ||a«G’(0)||« is small enough.

In chapter [7] with Dirichlet boundary conditions and the first form of the con-
vection term, we highlight the influence of the functions f, « and G on the critical
speed c*. For instance, we prove that if we fix the functions a and G, then the
map f — ¢*(f) is increasing. We show similar results in the special case where
G = (G1,0,---,0), using that in that case, the equality ¢* = ¢ holds. We then focus
on the influence of the domain D on the speed ¢*. In that case, since the function
« is defined on D, we need to define the function a on other domains. We prove
for instance that if Dp is a rescaling domain of D, then ¢*(D) < ¢*(Dg) for all
R > 1. We also show a similar result, considering the symmetric rearrangement of
the domain D instead of a rescaling.

In chapter |8 we consider the second form of the convection term : V- (a(y)G(u))
for the Dirichlet problem. We show the existence of a critical speed ¢* € R such that
travelling front solution exists with speed c if and only if ¢ > ¢*. We also show the
existence of ¢ under the extra assumption ([1.38)) which ensures that ¢ does exist.
We then show the main result of this chapter :

Theorem 1.22. With Dirichlet boundary conditions and the second form of the
convection term, assume (GD1'), (AlphaD’), (FD') and that f is C' and satisfies
(1.30). Then

& >c.

Note again that in the proof of Theorem [1.22] the precise condition needed is
that there exist C' > 0 and sy € (0,1) such that |G(s)| < Cs, for all s € (0, s),
which is satisfied since we assumed (GD1').

Chapter [9] consists of some conclusions, where we reflect on the results of the
thesis discuss what further natural questions we could ask. Precisely, we focused on
a specific profile of the function f called monostable case, but we can wonder what
could happen under other profils for f for instance the bistable case, and specially
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what would be the sign of the critical speed c*, which characterizes the profile long-
time behaviour of the travelling front solution since it determines what an observer
will see when t — 400. Indeed, recall that if ¢* > 0, then all the travelling front solu-
tions will have a positive speed ¢ > ¢* > 0 and hence will travel in only one direction.
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2 Existence of a solution for Neumann boundary
conditions

2.1 Solution on the truncated cylinder

Our strategy here is to construct a solution of on a bounded domain Qy =
(=N, N) x D, and then let N tend to infinity. To do that, we will use an iteration
method. Note that in [VOI, Chapter 5, Section 4], a solution is first constructed
on a half-cylinder of the form (—oo, N) x D, before passing to the limit. In their
case, they have Dirichlet boundary conditions on the edge of the cylinder and they
can use standard theorems on existence of solutions of the initial value problem for
parabolic equations with Dirichlet data on the boundary. In our case, because of the
Neumann conditions on the edge of the cylinder, there would be Neumann conditions
on part of the boundary and Dirichlet conditions on other parts of the boundary.
Since it is not straightforward to track down suitable results in the literature about
existence of solutions for parabolic equations with such boundary conditions, we will
first argue on a truncated cylinder of the form Qy = (=N, N) x D.

Denote by K the set of functions p € C2(R x D) such that

O1p <0 in R x D,
lim,, oo p(z1,y) =1, limg, 00 p(z1,y) =0, uniformly iny € D, (2.47)
P =20 on R x dD.

For p € K, let

te) = Bl -2V o) + Tt

and
¢ = inf supr(p)(x). (2.48)

PEK zeQ

Proposition 2.1. Assume the conditions (GN1), (GN2), (AlphaN1) and that
f 1s Lipschitz continuous, with constant L > 0. Then

¢ < +o0.

Proof. Let h : R — R be a C? decreasing function such that A'(xz;) < 0 for all
T € R,

1= ifa <1
h<x1) - { e~ 1 if T > 1 ) (249)
and define
g(x1,y) == h(xq), for all (zq,y) € Q. (2.50)
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We will show that the function g belongs to K. First, g is C!, and one has 9,9 <
0, g(z1,y) — 1 as z; tends to —oo, and g(z1,y) — 0 as z; tends to +o00, uniformly
with respect to y € D. Furthermore, if z; < —1,

—e™ + afy) G (g(z1, y)(—e™) + f(1 —e™)

erl

r(g)(71,y) =
(1 —e™)

er1

- a()G - )+

< —1-a(y)Giy(1 —e™) + L.
Similarly, we obtain for z; > 1,

r(g)(z1,y) < 1—a(y)Gi(e™™) + L.

Since 7(g) is a continuous function in [—~1,1] x D, a is bounded and G/ is a locally
Lipschitz function, it follows that

supr(g)(r1,y) < +o0,
z€Q

and consequently, ¢* < +o0.

[]

We present two sets of sufficient conditions that ensure that ¢* > —oc.
Note that we will show later, see Theorem [1.18] that under certain assumptions on
f, G and «a, ¢* > ¢, where ¢ is defined in Proposition which will also imply in
paritular that ¢* > —oo.
We first show that in the special case G = (Gy,- - +,0), then ¢* > —oc.

Proposition 2.2. Assume that G = (Gy,- - +,0), and that the function (y,s)
a(y)Gy(s) is bounded on D x [0,1]. Then

¢ > —o00.

Proof. Assume that ¢* = —o0o, and let A > 0. By definition of ¢*, there exists p € K

such that )
Ap+aly)Gi(p)dp + flp) _

—01p
Since d1p < 0 and f > 0 on (0, 1), it follows that

Ap+ (aly)Gi(p) — A)drp < 0.

Let k := sup(, o ecpx 0,1 @(¥)G1(s). By integrating on D and because of the Neumann
boundary conditions, we get

/D@anr(k—A)/ dip < 0. (2.51)

D
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Denote g(z1) := [}, p(z1,y)dy. Since p € C*(R x D), the inequality (2.51)) can be
rewritten

q"(z1) + (k— A)¢ (x1) <O.
Multiplying by e*=4)=1 it follows that for all z; > z,

N1 (21) < D0 ().

k=421 and then integrating between xg, and xy > 1 :

By multiplying by e~
6—(k—A)x0 . e—(k—A):cg

k—A ’

q(x2) — q(x9) < e*M70g/ ()

which we can rewrite as

q(x2) < qlwo) + Z/(_x(j (1 - e(A"“)(“‘“)). (2.52)

Taking A > k ensures that ¢'(z)/(k — A) > 0. Hence, the right hand side of ([2.52))
tends to —oo when x9 — 400, which is impossible since ¢ > 0.
[

In the general case, we need more assumptions to make sure that ¢* > —oo.
Denote G = (Ga, - - -, G,). We claim :

Proposition 2.3. Assume that « =0 on dD. Assume also that there exist € > 0,
B >0,v>0 and sy € (0,1) such that |V'a(y)| < e, for ally € D, |G(s)| < Bs for
all s € [0,1], and f(s) > s for all s € [0, so|, and that v — e > 0. Then ¢* > —o0.

Proof. Assume that ¢* = —oo, and let A > 0. By definition of ¢*, there exists p € K

such that _
Ap+ aly)Gi(p)dip + a(y)V' - G(p) + f(p)
—dip

< —A.

Again, using that 0;p < 0 and integrating on D, we obtain

/Df?nva(k—A)/D@lp<—(/Da(y)v’-@(p)Jr/Df(p)>7 (2.53)

where k := sup(, o cpx(o,1 a(y)G(s).
Using Green’s formula, the fact that « = 0 on 9D, and that p tends uniformly (with
respect to y € D) to 0 when 27 — +00, one has for z; large enough :

| oV -G+ [ 1o)== [ Va6 + [ 1)

2—65/Dp+7/Dp
~(-28) [ p20.

Hence, the right hand side of (2.53)) is negative and we conclude as in the proof of
Proposition [2.2] O
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Now, let ¢ > ¢*. Then, by definition of the infimum, there exists a function
p € K, such that

Ap+a(y)V-Gp)+ f(p) +cop <0 Y(x1,y) e Rx D

Op <0 in R x D, (2.54)
p(—o0,y) =1, p(+00,y) =0, uniformly in y, '
Py =0 on R x aD.

Let N > 1 be an integer. Since the function y ~— p(IN,%) is continuous and D is
compact, there exists ey € (0,1) such that

p(N,y) >en, Vy € D. (2.55)

Note that f(ey) > 0. We claim:

Proposition 2.4. Let N > 1 and Qy = (—=N,N) x D C Q. Assume (GN1),
(AlphaN1) and that f satisfies (1.30). Then, there exists a unique solution u €

W2’p((—N, N) x E) which satisfies

loc
e p(—N,y) > u(z1,y) > en for all (z1,y) € (—N,N) x D,
e for all zy € (—N, N) there exists y € D such that p(—N,y) > u(z1,y),
of the following problem :

Au+cou+a(y)V-Gu)+ f(u) =0  in Qy,
u, =0 for — N <xy <N, ye€ oD, (2.56)
u(=N,y) = p(=N,y), w(N,y)=en, yeD.

Remark 2.5. Note that the proof will show that u is well defined in {—N} x D
and {N} x D, which is not trivial since u € W2’p((—N, N) x E).

loc

Proof. The proof relies on the theory of sub and super solutions.
The function ey (resp. p) is a subsolution (resp. a supersolution) of (2.56)). Indeed,
one has

Aen+coen+a(y)V-G(en)+ flen) = flen) > 0> Ap+corp+a(y)V-G(p)+ f(p),

Jden  Op
Er V(z1,y) € (=N, N) x 9D,
and, since 0;p < 0 and ([2.55) holds,

p(m,y) > EN V<I1,y) < {_Na N] x D.
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From now on, we will denote by u and w the sub and supersolutions u := ey, and
u := p. We will also use the classical notation

G (u) 8“' =Y G;(u)gz _ V- G(u).

We will construct a sequence of functions (u;);>o on [—=N, N| x D, where u; will
belong to C’([—N, N] x E) NW2P <Q_N\ {—N,N} x 8D), with ug := u, solving the
following equation :

Ou, , Ou,;
Aujyy +c 8;1 + a(y)Gi(uj)ﬁ

where kg is a constant which will be chosen large enough, as well as the boundary
conditions

— koujp1 = —f(u;) — kouy, (2.57)

Uj+1 = P Ol’l{—N}XD7
ujy1 =y on{N} x D,

st — 0 on (—N,N) x dD.

We start with wy = w. The |[BNI1, Lemma 7.1] gives the existence of u; €
C’([ N, N] x D) N W2p<QN \{—N,N} x 8D> which satisfies

loc

8u1
ox;

with the same boundary conditions. Note that [BNT, Lemma 7.1] is applied with
a;; =07, bi(x) = ¢+ a(y)G(u), bi(z) = a(y)Gi(ug) for 2 < i < n, and ¢ = —ky.
Assume that for j > 1, u; which was constructed solving (2.57) with u;_; in the

right hand side, belongs to C’([—N, N] xE), which implies that u; — f(u;)+kou; €
L°°<(—N N) x D). Hence, [BN1, Lemma 7.1] gives the existence of the function
i1 € C([ N, N] x D) N W2p<QN \ {~N, N} x aD) which satisfies

Auy + corug + a(y)G(ug) — kouy = — f(uo) — kouo,

loc

ou;
6;1 — kouj1 = —f(uy) — kouy,

o
Aujir + e 4 a(y)Giluy)
8931

with the boundary conditions.
Now, we will show by induction that for all j € N, one has

u<u; <. (2.58)

For j = 0, it is trivial. Let j > 0, and assume that v < u; < w. First, we want to
prove u < u;y1. The functions u; and u satisty

Aut et aly)Cilu) o > _f(w). (2.59)

{ Aujiq + 2 g+ a(y)Gi(u )811’”1 — koujp1 = —f(u;) — kouy,
f
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By subtraction, one has

A= y1) + e — uy01) + (o) (G1w) - Giuy)) 25 + @l)Gl) (= 701

— ko(u — ujy1) > —f(u) — kow + f(u;) + kouy,

which gives

0 , 0
Alu = uja) +eg (U —uj) + a(Y)Giu) 5 (= 1) = Fo(u = u541)
ou

> f . ) — G U

> f(ug) = f )+ hofusy —w) + a(y) (Gil) — Cllw) 5=

> —L(u; — u) + ko(u; — u) — LC(u; — u) since 0 <u<wu; <u<1,

> 0,
where C > 0 is such that

Ju ou
— — <
|a(y)|gcselg])V 1@?2;{ o1, (x) "&ri (x) } <CforalyeD,

and we choose kg > L + LC.
Analogously, the functions u;;; and w satisfy

(2.60)

{ Ayt + 2+ a(y) G Uj)agifl — kujn

— f(uy) = kuy,
Au+c‘9;fl +a( VGi(u )8% f

< (@).

By subtraction, the same method shows that A(w — u;1q) < 0, provided that & is
chosen as before. By [GIL, Theorem 9.1], the function u—wu,;; reaches its maximum
over [N, N] x D on the boundary 92y. Let P be a point of ([~ N, N| x D) where
U — uj41 reaches its maximum :

(u—uj1)(P) = max _(u—uj1).
[~N,N]xD

If P is on the part of the boundary where the Neumann boundary condition holds,

then at P, one has
8@ 8Uj+1

ov ov

but since u — w4 is not constant, the Hopf lemma, see [PW1, Chapter 3, Theorem
7], ensures that

:O,

@ . Ouji

ov ov >0,
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which is impossible. This shows that P is on the other part of the boundary where
the Dirichlet conditions hold, one has u —uj 1 =0if P € {N} x D, or u—u;4; <0,
if P € {—N} x D. Hence,

max 7(@ — Uj+1) S O,
[-N,N]xD

and consequently : u < u;+1. An analogous argument shows that u;1; <, and by
induction, we proved that for all j € N, u < u; <.
Thus, one has for all j € N,

0 0 2.61
Auj + 52+ a(y)Giuj 1) g — kuy = — f(uj1) — kuj 1. (261)

In addition, the inequalities (2.58]) imply that the functions u; are uniformly bounded
in L™ ((—N ,N) x D) and because of the equations (2.61)) that are satisfied by u;,

the functions u; are uniformly bounded in W2? ((—N ,N) x E) , for all p € (1, 400).

Consequently, by taking a diagonal subsequence, (u;);>o has a subsequence that
converges strongly in C*, for all A € (0,1), on compact subsets of (—N, N) x D
to a solution u¥ of (2.56). Then, for each N > 0, one has a solution u"¥ defined on

—N, N) x D which satisfies u < u" < @ and belongs to W2*((—N,N) x D).
loc

In order to know the behaviour of the solution 4" on the boundary of (=N, N) x
D, we will construct a barrier function.
The equation (2.60) can be rewritten in the form

Qi

8%

LujJrl = AUjJrl + bl(x) + dujJrl = g(l'),

with o
bi(z) = c+a(y)Gi(u;) ifi=1
! a(y)Gh(u; ifi>1"
d=—k, and g(z) = —f(u;) — ku;.
Let b> /Y i, b?(z), for all z € Q. As in the proof of [BNI, Lemma 7.1}, we can

define a concave and positive function h on [—N, 0] by

1 1
h(:Cl) _ b_2€bN(1 . efb(x1+N)) — g(xl + N) (2.62)
One has

1
B (zy) = 3 (e‘bxl — 1) and A’ (x,) = —e "™, for — N < x; <0.

Thus, h is a concave positive function and satisfies Lh < —1 on [—N, 0].

We extend h on [0, N] to be symmetric. Hence, the function h is concave, symmetric
and defined on [—N, N|. In addition, one has : h(—N) = h(N) =0, and

Lh ="+ bk +dh < K" + b/ on [-N, 0].

41



The change of functions in the proof of [BN1, Lemma 7.1] becomes

N+x1
2N

N—.Clﬁl
2N

Ujr1 =0+ p(—N,y) + EN-

It follows that the function g defined by Lv = ¢ is bounded in L ((—N ,N) x D)

independently of N.
Moreover, with the definition ([2.62)) of the barrier function h, by the computations
in the proof of [BN1, Lemma 7.1}, one has on (=N, N) x D

N—Qll
2N

N+l’1
2N

ujy1(71,y) — p(=N,y) — ~| < Ch(zy), (2.63)

with C' and h independent of N. Let j tend to 400, the function uV has to satisfy
([2.63) as well. This estimate gives the continuity of u" on {N} x D, and then, u®
satisfies the boundary condition

u™(N,y) =en Yy € D.

Similarly, using that h(—N) = 0, and the continuity of u’¥ on {—=N} x D, it follows
that the function u” satisfies

uN(_N7 y) = p(_N7 y)7 vl/ € D7

which ensures that u is continuous on Q. Finally, since (u;);s0 converges uni-
formly on each compact subsets of (=N, N) x D to u™ € W2*((=N, N) x D) as
Jj — 400, and since for —N < x; < N and y € 9D, the function u; satlsﬁes
it follows that the limit function u” also satisfies

ouly

o0 =0, for — N <z <N andy € 9dD.
v

The uniqueness of the function u” will be proved in the next section.

2.2 Solution on the infinite cylinder and solution with a
critical speed c*

Now that we have a solution vV of (2.56)) on a truncated cylinder Qy, the next goal
is to let NV tend to infinity to get a solution on the unbounded cylinder 2 = R x D.
To do that, we first show that the function u" is monotone with respect to z;.
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Proposition 2.6. Assume (GN1), (GN3), (AlphaN1) and that f satisfies
(1.30). Assume also that u is a solution of the problem (2.56) which satisfies

b p(_N7y) > U’(xhy) > EN fOT all (x17y> S (_N7N) X D7
e for all zy € (—N, N) there exists y € D such that p(—N,y) > u(z1,y).

Then u is decreasing with respect to x1, and O1u < 0. Moreover, the solution u of

(2.56) is unique.

Proof. Since for all (z1,y) € (=N, N) x D, p(—N,y) > u(xy,y) > ey, and since for
all x; € (=N, N), there exists y € D such that p(—N,y) > u(z1,y), we can apply
[BN1), Theorem 2.4] with

F(z,u, Du, D*u) = Au + <c+a( )G (u 81u> ZG’ + f(u),

and we get immediately that u is decreasing with respect to x;. Note that [BNI]

Theorem 2.4] gives the uniqueness of the solution w.
O

Now, we would like to obtain a solution u on (—oo, +00) x D. We need to ensure
that the solution we obtain is neither identically 0, nor 1.

Proof of Theorem[1.17. The structure of the proof follows that in [BN2, Section
9.1]. Precisely, we consider a translation of the function p introduced in , in
order to have a solution on 2y which satisfies max, 5 u(0,y) = 1/2, thus avoiding
that the solution collapses when we pass to the limit. Consider for all » € R, and
all (z1,y) € Qu,
{ pr(xla y) = p('rl +r, y)a
h" = min, 5 p(N +7,9).

By compactness of D, and continuity of p, 7 — h" exists and is continuous on R.
As before, there exists a unique function v" € W27 ((—N, N) xb) ﬂC’([—N, N] xﬁ)

loc

with A" <o" < p" in (=N, N) x D, satisfying

AV + v + a(y)Gi(v") 2 (v")=0 on (—=N,N) x D,
v, =0 for — N <z <N, yedD,
V(=N y) = p"(=N,y), v"(N,y)="", yeD.

(2.64)
Indeed, p” and h" are super and subsolutions of ([2.64)).
Using the same arguments as in [BN2, Section 9.1], and since p tends to 1 (respec-
tively 0) when z; tends to —oo (respectively 4+00), we obtain a solution u which
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satisfies
Au + coyu + a(y)Gg(u)g—:Z + f(u)=0 onRxD,
u, =0 on R x 0D,
0<u<l1, 0iuw<0 inR x D,
1

max, 5 u(0,y) = 3.

(2.65)

In particular, the last condition and the fact that f > 0 in (0,1) show that the
function w is not constant. Moreover, since u is bounded and non-increasing with
respect to xq, it follows that v has finite limits @ and u* when x; goes to 400 and

—o0. We will show that this convergence is uniform with respect to y € D. Let
Q; = (—1,1) x D, and define z,, : Q; — R, by

Zm(ajlay) = U([L’l + may)

Because of the equation satisfied by u, the family (z,,),, is bounded in W??(Qy).
Hence, there exists a subsequence (2, )i of (2m)m which is weakly convergent in
W2P(Q;) and strongly in C1*(€;). But since for y € D,

m u(e,y) = aly),
it follows that (z,,, ), converges to @ in C**(;). Thus, all the subsequences of (2, )
converge to @ in C'*();), which implies that (z,,),, tends to @ in C**(Q;) when m
tends to +oo, which in turn gives that u converges in C**(D) to @ when z; — +00.
Indeed, suppose u does not converge to @ in C**(D) as x; — +00. Then there exist
£ > 0 and a sequence (b, )men, which tends to +00 as m — 400, such that

[y, ) = @()lerap) = e (2.66)

But the sequence (zp, )men is bounded in W?2P(Q;) so there is a subsequence
(2, Jken that is weakly convergent in W27(€;) and strongly in C**(€) to a limit
that must be @, since we know that lim,, 4 u(x1,y) = @(y) for each y € D. This
implies in particular that

||u<bma ) — ﬂ(')”cq,)\(ﬁ) — 0 as mg — +00,

which contradicts ([2.66]).

A similar argument shows that u converges weakly in W?%P(2;) and strongly in
C' () to u* when z; — —o0.

Now, we want to show that the limits u and u* of v as 1 — 400, which in principle
depend on y, have to satisfy the problem on the cross section. To do that,
we will use the following lemma :

Lemma 2.7. Let u be a solution of (2.65). Then, for ally € D,

lim %(a@l,y) = 0.

xr1—+00 1
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Proof. Let y € D. Assume that the partial derivative does not tend to 0 when x;
goes to infinity. Since du/0x; < 0, there exists a sequence (z7),>0 which tends to
infinity when n tends to infinity, and € > 0 such that

ou

— (2", y) < —e.
81’1 (:L‘l y)

Since u € C**(R x D), the partial derivative du/dx; is uniformly continous. Hence,
there exists 0 > 0, such that

ou
Oy

But this is impossible, because if 1 > x7 + ¢, then

—(z1,y) < —§ for all |z — 27| <6, and for all n > 0.

i @1 +0 ou ou
— ulal — 5,y) +Z/ u g, y)ds+/{ | 9, y)ds

-6 81’1 s>x1—6; |s—xi|>6, s<wz1,i=1,,n} a‘CEl
1 —€ ou ou
< u(xy —0,y) —|—n25(7), since Er <0 and 8_(8 y) < —= 1f |s —2i| < 6.

Here, we assumed without loss of generahty that z™ —2? > 2§, foralli =1,---,n—1,
which means that the intervals (z} — §, 2% + §) are disjoint. The last term —nde
tends to —oo when n — +oo, which contradicts the fact that u(zi,y) > 0 for all
(z1,y) € R x D. O

Now, let v € C}(D) be a test function and #; € R, one has,

", ou
/Q1 vAu—i—c/lea—xle/Ql va(y);Gi(u)ami +/Ql vf(u) =0, (2.67)

where )y = (£7 — 1,77 + 1) x D. First, by integration by parts, one has

2
/ vAu = U@_@; — Vv - V.
1951

(951 8131 (951
Using Lemma one has
o? 9, 9,
v—u:/ ( u(xl—i—l y)—a—u(xl—l y)) — 0, when #; — +00.

o 8$% 8361 1

Since u(zy,-) converges to @ in C**(D), it follows that
/ V'o(y) -V'u(zy,y)dredy = / V'o(y) -V'u(p+zy1,y)dpdy — 2/ V'v-V'a.
o Dx(~1,1) D
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Similarly, one has

Ua_u
81‘1

/ & ’ ~ ou
/ UQZZG 8$1 /D><(1,1) v(y)a(y) ;Gl(u(p+ xl’y)) 7

—(p+ 21, y)dpdy,

= / v(y) (u(fl +1,y) — u(a; — 1,y))dy — 0 when 77 — +o00,
D

which tends to

0~
Gi(u(y dpdy = 2/ Gi(u(y dy,
/Dx(—l,l) Z ) Z 3@ )

when 77 — +o0, by Lemma again. Analogously, when #; — +oo, the last
integral of (2.67)) tends to

o(y) f(@ly))dpdy = 2 / o(y) f(a(y))dy.

D

/Q vf(u) = /D o Py

Dx(—1,1)

Hence, by passing to the limit when #; — +o0 in (2.67)), the limit function @ has to

satisfy :
n a~
/ AT+ / aly) > Gi(a) 8“ / fl@)v = 0. (2.68)
D D P D
Since u tends to @ in C*(D) as x; — 400, it follows that @ satisfies also the boundary

condition 55
83 =0, on 0D.

Hence, since @ € W?P(D) for all p, the limit function @ solves the problem on the
cross section (|1.35)).

However, we made the assumption (AN) that the weak form of the problem on the
cross section has no other solutions than 0 and 1. Consequently, due the normaliza-
tion

mal(u<07 y) =35
yeD 2

and the fact that u is decreasing in x1, one has :

lim wu(zy,y)=1and lim wu(zy,y) =0.

r1——00 r1—+00

We will show the last point of Theorem [1.17] namely that w is decreasing with
respect to x; if the function G is C? after proving the following result which is a
more general result than Lemma :
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Proposition 2.8. Let ¢ > ¢ and let w the solution of (1.32) constructed in Propo-

sition (1.17). Then,
xllig:loo ”Vw(xl’ .)HLOO(D) =0.
Proof. By construction, we know that w € W?P(€;), where Q; = (—1,1) x D.
Now, consider all the possible translations of w in the z; direction, and define zy :
Q — R, by
ZN<x17 y) = UJ(SEl + N7 y)

The family {zx}n is bounded [[] in W2P(€) by [YIH, Theorem A.26] and the fact
that there exists C' > 0 such that ||w||rrq,) < C and || f(w)||rr,) < C. Hence there
exists a subsequence (zy,) of (zy)y which is weakly convergent in W?*P(€2;) and
strongly in C**(€2;). But since w tends uniformly to 0 (with respect to y) when
goes to infinity, the limit has to be 0. Hence, all the subsequences of (zy) converge
to 0, in C** which implies that zy tends to 0 when N goes to infinity.
Thus, one has

lim |jw(z1,-)[c1a@) = 0. (2.69)

T1—>+00

The proof for ;1 — —oo is very similar. Indeed, since w tends uniformly (with
respect to y) to 1 when z; — —oo, it follows that all the subsequences of (zy)
converge to 1 in C'**, which implies that zy tends to 1 when N — —oo. Hence,

lim |lw(zy, ) = 1lciag) =0, (2.70)

T1—>—00

n fact, the estimate of [YIH, Theorem A.26] (or [ADN] Theorem 15.2]) is valid on any domain
of the form (—1,1) x D" where D’ CC D. The estimate of [YIH| Theorem A.26] up to the boundary
on 3 = (=1,1) x D follows from an adaptation of the proof of [ADN| Theorem 15.2], taking into
account the [ADN] Remark (a) - Section 14 - Chapter 5], saying that “we can obtain estimates near
the boundary for solutions satisfying boundary conditions on merely a portion of the boundary”.
Indeed, with respect to the notations in [ADN], we write :

Lu—Au+bl—+Zba$ F,

where b; 1= ¢+ aG(u), for 2 < i < n, b; := aG}(u) and F := —f(u), and where the boundary

conditions B;ju = ¢; is only imposed on a part I' of the boundary. We use for the norm of the
boundary data :

i 1= inf V|i—m. L.
||¢J||l—7n_7—117 {(vEH, 1p, v=0; ON T} ” ||l mj,LP

Under Neumann boundary conditions, one has % = 0 := ¢. Hence, using the fact that for all
1 <4 < n, the functions b; are bounded and continuous, the proof of [ADN| Theorem 15.2] gives
that there exists Cy > 0 such that :

ullwzp(,) < Cl(HUHLP(m) + ||f(u)||Lp(92))

on a slightly bigger domain Q. Moreover, both ||ul|rq,) and [|f(w)| rr(q,) are bounded by a
constant Cy > 0 which depends on the size of Qs and |Ju|| - < 1.
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and the conclusion follows.
O

We now prove the last point of Theorem [1.17] namely that the solution con-
structed in the proof of Theorem is decreasing with respect to x;.

End of the proof of Theorem[1.17. Recall that we assume that the function G is C?,
and let w the solution of (|1.32] - we have constructed in the proof of Theorem
Since the function w belongs to VVzoc , it follows from the equation (|1 satlsﬁed by
w, bootstrapping and by standard regularity results, see [KRY], Chapter 9 - Section
4 - Theorem 1], and hence, we can differentiate the equation satisfied by w
with respect to x; to obtain

ow 0 Ow ", 0w Ow ‘" 3 ow ., 0w
A(8x1)+cax1 0x, +a(y) ZG <w)(9xz(9_:vl+a ZG (9362 8x1 +f (w)a_xl =0

(2.71)

It follows that v(z,t) := —a%lw(xl — ct,y) solves

UtZAv+a(y)ZG;’( %ijoz ZG’
=1
= Av +b(z,t) - Vv + c(z, t)v,

fw)v

where for all 1 <i <n,

bi(z,t) = a(y)G; <W(9€1 —c, y))

and
n

c@,t) = aly) Y G (w(rrl — ct, y)> ng

i=1

/(w(xl — ct, y))

By construction, we know that v(z,t) > 0 for all x € Q, t > 0. Using that
|Vw (1, )| Lo (py = 0 as x1 — +o0o0 by Proposition [2.8] it follows that

o(0,0) = 0(0) 3 6 (wler 1)) O

=1

’(w(xl,y)) # 0,

since ¢(x,0) — f'(0) as ;1 — +oo, uniformly with y € D. By [VOI, Chapter 2 -
Theorem 3.26], it follows that either v = 0 or v > 0. Since w converges to different
limits as 7 — o0, it follows that v # 0, and hence v > 0, meaning that <0

for all z € Q2 and all ¢ > 0, and that the constructed solution w is decreasmg
O
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Now that we know that if ¢ > ¢* > —o0, there exists a solution of ([1.32), we will
show that there exists a solution of ((1.32)) with a speed ¢ = ¢*, and for ¢ < ¢*, such
solutions do not exist.

Proposition 2.9. Suppose that ¢ € R, and assume (GN1), (GN2), (GN3),
(AlphaN1), (AN) and that f is C* and satisfies (1.30)). Then, for ¢ = c*, there
exists a decreasing solution (with respect to x1) of (1.32)), and there is no decreasing

solution of (1.32) if ¢ < c*.

Proof. Let m > 0, and consider the family of solutions (um)m=o of with
speed ¢, := ¢*+1/m. We argue as in the proof of Proposition , using a diagonal
argument, weak convergence in W?2?(€);) and then C**(Q;) convergence, there exists
a subsequence of (U, )m=0 Which converges to @ satisfying

AT+ c* 01U + a(y)G;(ﬂ)g—; + f(u)=0 onRxD,

u, =0 on R x 0D,

0<ua<l, 0u<o0 in R x D,
1

max, .5 4(0,y) = 3.

(2.72)

Furthermore, @ is bounded and z;-decreasing and then has finite limits when x; —
+00. Since 0u/0r; tends to 0 when x; tends to infinity, the limit has to satisfy
(1.35). Under assumption (AN), the normalization max, 5 @(0,y) = %, and that
o1u < 0, it follows

lim a(xy,y)=1and lim a(zy,y) =0.
T1—>—00 x1—r400

Thus, the function @ is a solution of (|1.32)) with speed c¢*.

Let ¢ < ¢*, and assume that there exists a solution u of (1.32]), decreasing in x,

with a speed c. Then as argued previously, we must have 8‘9—;1 < 0, so the function u

belongs to the set K defined in (2.47), and hence ¢* > inf,_x sup,cq 7(p)(x), which
is a contradiction. O

3 Lower bound for ¢* for Neumann boundary con-
ditions

Without any convection term, i.e when G = 0, it was shown in [BN2, Theorem 1.5
and Section 10], that if f satisfies the KPP condition then c* is determined
by an eigenvalue problem related to the linearized equation around 0. In dimension
1, an explicit formula exists for ¢* which only depends on f, namely,

& = 2/F0).
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In our situation, we will show that that ¢* is bounded from below by a quantity
related to the eigenvalue problem (3.74), under some more general conditions in-
volving both f and G. To do that, we will follow the approach of [BN2] but with
some modifications due to the presence of the convection term.

3.1 Associated linearized operator and eigenvalue problem

In [BN2], Berestycki and Nirenberg consider the linearized problem around 0 and
show that there exists a critical value v such that a certain eigenvalue problem has
two positive eigenvalues if ¢ > 7. They then prove that under the KPP condition
on f, ¢ = . We will follow this method and prove that with a convection
term in the equation, there still exists a critical value that we will call ¢/. To do that,
consider the linearized system of around 0

{ Aw + (c + a(y)G’l(O))alw +a(y) >, G;(O)g—;‘i + f/(0)w=0 inRx D,

w, =0 on R x 9D.
(3.73)
If w(zy,y) = e Mp(y), the function ¢ has to satisfy the following problem :
~Np = aly) T, GH0)2Z — [(0)p = (X = Me+a@)Gi(0)¢  in D,
w, =0 on 0D.
(3.74)

We say that A is a principal eigenvalue of (3.74)), if there exists a positive function
¢ such that (3.74)) holds.

Consider now the following eigenvalue problem

{ —Ao —a(y) X7, Gi0)§Z — f(0)0 = o in D,

o,=0 on 0D. (3.75)

By [YIH, Theorem 1.3], problem has a simple eigenvalue p; € R, which
corresponds to a positive eigenfunction. However, we can not deduce immediately
that the eigenvalue problem has an eigenvalue A because the right-hand side
depends on y. This is why we first need to prove a continuity property.

Proposition 3.1. Let w C R™ be a domain of class C?, and
L= aij(ac)@ij + bl(x)(?l + C(.’L’)

be a uniformly strongly elliptic operator with a;; = aj; € C(w), b; and ¢ € L®(w) for
all 1 <i,5 < n. Define forp>n :

Y1 = sup {7 | 3¢ € W2P(w), ¢ >0 inw, ¢, =0 on dw, (L+7)p < O}.
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1. With this definition of v, one has v; = o“(—L), where 0“(—L) is defined
in [YIH, Theorem 1.3] as the only eigenvalue which corresponds to a positive
eigenfunction. Moreover, this eigenvalue is real.

2. The function ¢ — v1(c) is Lipschitz continuous, with Lipschitz constant 1.
3. The function c — ~(c) is concave.
Remark : This definition of 7, is analogous to the definition of the principal
eigenvalue in [BNV] for the Dirichlet boundary conditions.
Proof. 1. Let ¢ be the principal eigenfunction, given by [YIHL Theorem 1.3], of
the operator — L. The function ¢ satisfies

—Lp=0"“(—L)p inuw,
0, =0 on Jw. (3.76)
>0 in w.

Hence, the definition of v; as a supremum yields
T = 0¥(=L).

Suppose now that v, > ¢“(—L). Then, there exists a positive function 1y €
W2 (w), (o), = 0 on dw, and vy € (0“(—L), ), such that —Ltpy > yotho,

loc
which implies

( . aw(—L)>¢o > (% — O'w(—L)>¢0 > 0.

In other words, the function % is a strict supersolution. Furthermore, [AML,
Theorem 2.4] yields 0¥ (—L—J"J(—L)) > 0. It follows that o“(—L) > 0¥(—L),

which is impossible. Thus, one has the equality
T =0"(=L).

2. Let v1(c) be the principal eigenvalue 0 (—L) of — L and ¢ be the corresponding
eigenfunction. The function ¢ is positive in w and satisfies

2, =0 on Ow. '

Hence, one has, for ¢ € L>(w),
> asddp+ 3 bidhp+ (e 7(e) = e =l )0 = (6= = [l = clloe )0 <0,
ij i

which implies that v, (¢) > v1(c) — [|¢ — ¢/, and hence,
m(c) = (@) < ¢ = df|oe.
Exchanging the roles of ¢ and ¢ yields the conclusion of [2|
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3. The concavity follows from the proof of [BNV] Proposition 2.1], which es-
tablishes concavity in the case of Dirichlet boundary conditions. This proof

adapts to our situation and does not depend on the boundary conditions.
m

Now, one can show the existence of an eigenvalue A of (3.74)), with A € R.

Proposition 3.2. Assume (GN1) and (AlphalN1). Then the principal eigenvalue

w1 of (3.75) is negative :
= —£'(0). (3.78)

Proof. By [YIH, Theorem 1.3], the eigenvalue problem has a simple eigen-
value p; € R which corresponds to a positive eigenfunction ¢. In addition, none of
the other eigenvalues corresponds to a positive eigenfunction. Denote by —L the
operator

L= ZG’ ax, 7(0).

If € is a positive constant, one has —Le = —f’(0)e. In other words, —f’(0) is an
eigenvalue of (3.75]) which corresponds to a positive eigenfunction €. By uniqueness,
it follows that

_fl(o) = M1,

and in particular, py < 0.

For each ¢ € R, let p$(¢) denote the principal eigenvalue of the operator

Z Gi(0
with Neumann boundary conditions, where

Be(y) := ¢+ a(y)G1(0).

By [YIH, Theorem 1.3], this principal eigenvalue u§(t) is characterized by the ex-
istence of a unique ¢ = ¢(t) € Wh2(D), such that ¢(t)(y) > 0, for all y € D,
satisfying :

{ —Np—a(y) S, GH0)ZE — f/(0)p + tBe(y)e = u5(t)e  in D, (3.79)

F1(0) + tBe(y),

©, =0 on 0D.

Note that ¢ is bounded in D by elliptic estimates, see [YIH, Theorem A.29].
With this notation, A € R is an eigenvalue of (3.74)) if and only if

A= ().
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Indeed, if A € R is an eigenvalue of , then there exists a positive function
¢ in D such that the couple (), ) satisfies (3.74). But then, the couple (A, )
satisfies also (3.79) with (¢, u$(t)) replaced by (A, A?). Using uniqueness of ¢ (by
[YTH, Theorem 1.3], it follows that u§(\) = A2.

On the other hand, if A = u$(\), then there exists a positive function ¢ in D which
satisfies

{ ~A'G — aly) LI, G032 — F/(0)6 = (M = AB(y) )o  in D, (3.80)
¢, =0 on 0D,

which means that X is an eigenvalue of . Once again, according to [YIH|, Theo-
rem 1.3], since none of the other eigenvalues corresponds to a positive eigenfunction,
it follows that A is a principal eigenvalue of if and only if p¢(\) = A?; in other
words, if and only if X is a root of the equation ps(t) = t*.

Proposition 3.3. The eigenvalue p§(t) of problem (3.79)) is concave with respect to
teR.

Proof. Denote ,ul( — f(0) + tﬁ(y)) = p§(t) where B.(y) = ¢ + a(y)G1(0). Let ¢,

and ¢, € R, and v € (0,1). Using the concavity of s — 71(s), as in Proposition [3.1]
one has

py (’m +(1- 7)t2> = m( — f1(0) + (vtl +(1- ’y)tz>5(y)>
= (7= F O +t8w) + 1= (= 0 +150)))
> i (= £1(0) +118() + (1 =i ( = F(0) + £8(0)
=i (t) + (1 = 7)pi(ta).

]

Now we will prove that there exist two critical values ¢ and ¢, such that if ¢ > ¢/,
the eigenvalue problem has exactly two positive eigenvalues which we will de-
note 0 < A\;(c) < A2(c). Note that by concavity of t — u$(t), the equation ps(t) = ¢2
admits at most two roots.

Proposition 3.4. Assume (GN1), (AlphalN1) and (1.30) for f. Let g.(t) =
p$(t) — t2. Then there exist ¢ < ¢ such that

c<¢ = g.(t) =0 has exactly 2 negative solutions

c=¢ = g.(t) =0 has exactly 1 negative solution
c<c<d = g.t) =0 has no solutions

c=c = g.t) =0 has exactly 1 positive solution

d<c = g.(t) =0 has exactly 2 positive solutions.
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The number of roots of the equation g.(t) = 0 corresponds to the number of principal

eigenvalue(s) of (3.74)).

Proof. Consider the t-dependent eigenvalue problem (3.79)). For each ¢ € R, we
know that t — p§(¢) is continuous and concave by Proposition (3) . Thanks to
Proposition 3.1 (1), we will use the following characterisation of pS(t) :

pi(t) = sup {/f(lf) | 3p € W2P(D), ¢ >0in D, ¢, =0 on 9D, (L1 +p(t))¢ < 0},
(3.81)

where

- 0
—L;=—-A"— ! — f tBe(y). .82
| (ﬂw;;GﬂD%% 1(0) + the(y) (3.82)
First, note that for ¢ > 0, the function ¢ — puf(t) is increasing. Indeed, let ¢ > ¢ and
denote by ¢ the eigenfunction corresponding to u(t). One has :

0
6 _ g

—N¢—aly) }_ Gil0) 5= = f(0)6 +1(E+a(y)G1(0)6 = ui(H) + te - )¢

= (ui + 1@ - 0))o.

Hence, by using the characterisation , it follows that for ¢ > 0,
pi(t) = p5(t) + (e —c).
In particular, p§(t) is increasing with respect to c.
Now, let ¢ be a positive constant, k := infepa(y)Gi(0) and K =

supyep a(y)G1(0).
Ift > 0, then

~Lie = (= [(0) + tB.) )=

v

(= £(0) +taly)Gi(0) + <))
( — F0) +t(k + c))a.

By definition of p(t), it follows that for ¢ > 0,
pi(t) = = f1(0) + t(k + ).
We can deduce from this inequality that for ¢ > 0,

lim wuf(t) = +oo.

c——+00

o4



If t <0, then

Lie— ( — £(0) + tﬁc(y))8

(= 7(0) + ta(y)G1(0) +0))=
( — 1(0) + t(K + c))e.

Y

The same argument then yields that for ¢t < 0,

lim pf(t) = +oo.

Cc——00

First, note that g.(t) — —oo when t — +oo. Indeed, since for ¢ > 0, puf(t) <
—f(0) + t(K + ¢), it follows that g.(t) = us(t) —t* < —f'(0) + t(K + ¢) — t*, which
tends to —oo when ¢ — +o0.

Similarly, since for t < 0, pé(t) < —f(0)+t(k+c), it follows that g.(t) = pS(t) —t* <
—f(0) + t(k + ¢) — t*, which tends to —oo when t — —oc.

Now, since uS(t) is a strictly increasing function of ¢ for each t > 0, ¢.(0) = p$(0) —
0% = u5(0) = —f'(0) < 0 and g.(t) = —oo as t — +oo for each c, it follows that
if g.(t) = 0 has a positive solution ¢ty and ¢; > ¢, then g.,(f) = 0 has exactly two
positive solutions since pf(t) is concave function of ¢ which implies that g¢. is also
concave, and g., (tg) > 0. Likewise, uS(t) is a strictly decreasing function of ¢ for
each t < 0, so if g.(t) = 0 has a negative solution t, and ¢; < ¢, then g., (t) = 0 has
exactly two negative solutions since pS is concave, g, (to) > 0 and g, (t) — —o0 as
t — —oo. Also, for each ¢ € R, g.(t) is a strictly concave function of ¢ and g.(0) < 0,
0 ¢.(t) = 0 cannot have both a negative and a positive solution, and we know that
ge(t) = 0 has two negative solutions when c is sufficiently negative, and two positive
solutions when c is sufficiently positive, because lim,, ;o p§(t) = 400 for t > 0, and
the analogous fact for ¢t < 0.

Now define
¢ = inf {c : g¢(t) = 0 has 2 positive solutions},

¢ :=sup {7’ : gc(t) = 0 has 2 negative solutions}.

Then it follows from the properties of g above that ¢ € R, and for each ¢ > ¢,
ge(t) = 0 has 2 positive solutions, whereas for each ¢ < ¢, g.(t) = 0 has no positive
solutions, and g»(t) = 0 has exactly one positive solution. Indeed, if ¢ > 0, g.(t) < 0
for all ¢ < ¢, so g« (t) <0, so g« vanishes at most once by concavity. If g.(t) < 0
for all £ > 0, then maxj ) g~ < 0 and this remains true for ¢ > ¢’ close enough,
which is false.

Likewise ¢ € R, and for each ¢ < ¢, g.(t) = 0 has 2 negative solutions, whereas
for each ¢ > ¢, g.(t) = 0 has no negative solutions, and gs(tf) = 0 has exactly one
negative solution.

95



Moreover ¢ < ¢, since otherwise there would exist some ¢ such that ¢.(t) = 0 has
both positive and negative solutions, which is impossible.

]

Before comparing the two critical values ¢* and ¢/, we show the monotonicity of
¢ — A(c) and ¢ — Ag(c).

Proposition 3.5. Let ¢ > . Then the functions ¢ — A (c) and ¢ — As(c) are
respectively decreasing and increasing.

Proof. Recall that if ¢ > ¢/, then there exist 0 < A(c) < A2(c), ¢1 and ¢y positive
in D such that for j =1,2:

s — aly) S, G052 = (00 = (X = A(e + a(y)Gi(0) )¢;  in D,

% =0 on dD.
(3.83)

Since puS(t) is increasing with respect to ¢, (see the proof of Proposition , one

has for t = A\y(c) :

pi(Ae(c)) > A3(0).
Hence, it follows that A2(¢) > A2(c). A similar argument shows that ¢ — Ai(c) is
decreasing for t > 0 and ¢ > . [

3.2 Comparison between ¢* and ¢

Now, we want to compare ¢ and c¢*. Precisely, we will show that under some as-
sumptions on G and f, ¢* > ¢, with equality in certain special cases. To do that,
we first need to study the asymptotic behaviour of solutions of . We obtain an
exponential asymptotic behaviour under a condition involving f, G and «, see .

Proposition 3.6. Assume (GN1), (AlphalN1) and (AlphaN2) and let w be a
solution of (1.32). Assume also that

e there exist C > 0 and sy € (0,1) such that |G(s)| < Cs for all s € (0, sp).

e the following condition holds :

f(0) >k, wherek:=  sup Gl—(s)g—j(y)| : (3.84)

(s,9)€(0,50)x D S

=2

Then, there exist two positive constants C' and € such that, for all R large enough,

/ / w < Ce ¢k,
R JD
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Remark 3.7. Note that the assumptions (GN3) and (AlphalN1) ensure that
k < +o00, where k is defined in (3.84)).

Proof. The proof is slightly different from the one of [BN2, Lemma 3.1] because of
the extra term «a(y)V - G(w).
Let N > R > 0 and define a smooth cut-off function ¢ on R such that 0 < ¢ <1

and

5(!131) = 1 1fR§m1§N,
0 ifz; <R-—1.
Multiplying (1.32)) by &, integrating on €2 = R x D, using Green’s formula and the
fact that @« = 0 on 9D, by assumption (AlphalN2), it follows that

/Q[ §" —we' (c+a( )quiw)>—€wzn:Gi )8:1:1 + & f(w )]

1=

Since we assumed (3.84)), we can take § > 0 such that (1 — 4)f’(0) > k. Since w
tends uniformly to 0 with respect to y € D when z; tends to +o00, there exists R > 0
sufficiently large such that f(w(x1,y)) > (1 = 9)f'(0)w(z1,y), for all z; > R — 1,
y € D, and we obtain

-

Since

w  O0r; —

[a-orowe= " [a-orowes [ [a-srows [ [a-orou

N
> [ [a-arou

r Jp

the inequality (3.85]) implies

1o f, fos folecram®?) -] fo3 SHE

(3. 86)
Then, since £ is constant on (—oo, R — 1] U [R, N]U [N + 1, +00), it follows that

/Qw[é’(choz(y)Gll(U = /Rl /NH / c+ (y)Glliw)>—§”}
<[ Lo [ )
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where K is such that
I(C-'-Oé(y)Gl(w)) _en
w

Similarly, since w — 0 when x; — +o00 uniformly in y, the last integral of (3.86))
satisfies for R large enough :

S e L [ )

Finally, the inequality (3.86|) gives

((1— //w< (K +k) /Rl/er/NH/ (3.87)

Since w tends to 0 uniformly in y when x; tends to +oo, it follows that when

N — o0,
N+1
/ /w—>0.
N D

Then ([3.87)) yields that w € L* ([R, +00) X D) by the monotone convergence theo-
rem. Now, letting N — +o0 in (3.87)), we obtain

((1— / /w< K+k/Rl/ (3.88)
:/:/Dw

From inequality (3.88) it follows that

<K, forallye Dandx € [R—1,RJU[N,N +1].

Let

g(R—-1) (1-0)/'(0) — &

<
g(R)_ 1+a

,  Where a :=

As a consequence, there exist C' > 0 and € > 0 such that for all R > 0,

g(R) < Ce =R,

Thanks to Proposition we are able to prove the following theorem :

Theorem 3.8. Under the same assumptions as Proposition there exist two
positive contants Cy and € such that the solution w of (1.32)) satisfies

w(zy,y) + |[Vw(zy,y)| < Coe™ =™, for all zy >0 and y € D. (3.89)
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Proof. Let 1 > 1, Q1 := (1 — 1,21 + 1) X D and Q5 := (x; — 2,27 +2) x D. By
embedding and then using [YTH, Theorem A.26| EL there exist two positive constants
C7 and (5 independent of z; such that

lwlleran) < Cillwllwasy < Cao(lwlls@ + 1F @)l ).
where p > n is fixed.

Since there exists C3 > 0 such that |f(w)| < Csw for all w € (0,1), it follows
that || f(w)| rs) < Csljw||Lr(q,)- Hence, there exists K > 0 such that

lwllera@yy < Kllwllzrs)-

Since 0 < w < 1, and according to Proposition [3.6] there exists C’ > 0 such that,

21+2 1/p
wary) + Vo < k([ [ w)
T D

1—2

z1+2 1/p
([ ]
r1—2 D

! —Ex] 1/p
< KC'|e

with Cy := K. O

Now we will prove Theorem [1.18] To do this, we will show that if there exists a
travelling front solution w of (1.32)) with speed ¢ > ¢*, then there exists at least one
real eigenvalue A of (3.74), which implies that ¢ > (.

Proof of Theorem[1.18 Let ¢ > ¢*. By definition of ¢* and Theorem [[.17] there

exists a decreasing solution w of

Aw+ (e+ a(y)Gh(w)) 22 + aly) S, Gilw) 32 + f(w) =0 in ©,

w(—o0,y) =1, w(+oo,y) =0 uniformly in y € D,
w > 0,
w, =0 on R x 0D.

(3.90)

ZNote that in fact [YIH, Theorem A.26] gives the estimates for y € D’ where D’ is such that
D’ cC D. As in the proof of Proposition the local up to the boundary W2 estimate for y € D
follows by adaptating the proof of [ADN] Theorem 15.2], see footnote
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We want to prove that there exists at least one real eigenvalue A, associated to a
positive eigenfunction ¢ satisfying

~Ap = aly) T, GH0)Z — [(0)p = (X = Me+a)Gi(0)¢  in D,
v, =0 on 0D.
(3.91)

First, we will show that there exists a positive solution h of the linearized problem

Ah + (c + a(y)G’l(O))ﬁlh +a(y) Xr, GUO) 2 + f/(0)h=0 inRxD,
h,=0 on R x dD.
(3.92)
To do this, choose a sequence (z1') y>2, which tends to +0o when N goes to infinity

and satisfies )

N
supw(xy,y) = —.
yeD N

Note that such a sequence exists since w is continuous and tends uniformly (with
respect to y) to 0 when z; tends to infinity. Now define

w(xl -+ T, y)

hN
) = i,y 0l y)

Note that for all N > 2, the function h'Y satisfies

1
sup hN(an) =3

yeD 2’
Furthermore, the function A" also satisfies
ALY + <c + a(y)G <w(3:{v + 24, y)))@th

" onv f(wed +a1,y)
! N _
y);Gi<w($1 —0—1’171/)) oz, + QSUPyeﬁw(l‘{v,y) =0

On each relatively compact subset €, := (—a, a) x D of €, the family A% is bounded
in W2P(Q,).

Note that as in the proof of Proposition , the W2P local up to the boundary
estimate follows from an adaptation of the proof of [AGN, Theorem 15.2], see also
footnote [Il

Hence, there exists a subsequence h'¥* of A which is weakly convergent in W2P(,)
and strongly in C'*(€Q,). Then, usmg continuity of G} and differentiability of f, it
follows that A" converges in C’ 1o, and weakly in Wocp to a function h, which satisfies

Ah + (c+ a(y) G, (0 )81h + af ZG’ FOh=0mQ  (3.93)
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Moreover, since the function w is non negative, h has to be non negative, and satisfies

Ah+ (e am)GL0))h +aly) iy GHO)2E + [(0)h =0 on R x D,

h, =0 on R x 0D,

0<h<1, 0,h<0 in R x D,

max, 5 h(0,y) = 3

(3.94)

Note that the boundary condition h, = 0 on R x @D follows from the W?2? local up
to the boundary estimate, see footnote . Indeed, this estimate gives that (h™*)
converges in C1* ((—a, a) X D), from which it follows that h* converges, so h, = 0

on R x D.

Now, we prove that h > 0, using the maximum principle and the Hopf lemma.
Assume that for some z; € R, and y € D, one has h(z1,y) = 0. Then,

Al + (¢ + a(y)Gh(0)01h + aly ZG’ —f'(0)h < 0.

83:Z

The Strong Maximum Principle gives that h is constant in €2, therefore h = 0 in €2,
which is impossible due to the condition max, 5 h(0,y) = 1/2. So h > 0 in Q. Now,
assume that there exists 29 € R and y° € 9D, such that h(2?, y°) = 0. Since h > 0
in 2, the Hopf lemma ensures that

oh
5(1'(1], yO) < 07

which is impossible due to the Neumann boundary conditions.

We will now show that
lim |[h(z1,)[[c1a @) = 0.

x1—+00

First, since h is decreasing with respect to x; and bounded, it follows that for each
y € D, h(zy,y) has a finite limit h(y) when z; tends to +oo. Using a translation
Zm : [=1,1] X D — R as in the proof of Theorem [L.17] z,,(z1,y) := h(z1 +m,y), we
obtain that h(zy,-) tends to h in C’l(_ Take v € Cj(D) and using Lemma 2.7} we
can argue as in the proof of Theorem [1.17|to show that h satisfies

{ —A'h = a(y) i, GH0) 2% — f/(0)h =0 in D, (3.95)
h =0 on 0D.

If h reaches its minimum on dD, the Hopf lemma gives that d,h < 0, which is a con-
tradiction. Therefore, h reaches its minimum inside D, and by the maximum princi—
ple, h is constant in D. Finally, since h satisfies —A’h—a(y) Y, Gi(0 )8% f(0)h
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0 in D, it follows that i = 0.

Note that by construction, h € WP (€2), which, together with the fact that h > 0

loc

enables [BN2| Theorem 3.2] to be applied to obtain the existence of two positive
constants C' and a such that

h(z1,y) > Ce ** in Q. (3.96)

Now, we want to show that when x; is sufficiently large, the function h can be
written as

N
h(xhy) = quk(xlay)e_Akzl + b(xhy)u
k=1

where the )\, are complex eigenvalues of (3.91)), the functions ¢ are polynomial in
x1, and

N
b(xy,y) = O(quk(xl, y)e*’\’“xl), when z; — +o0.
k=1

To do that, we will apply [BN3| Theorem 2.1}, with x = 0 and ¢ = 400, where
and ¢ are defined in [BN3]. First, note that one has ||h(x1,-)|/zr(p) = o(1) when
x1 tends to +o0o. Indeed, since D is compact and h is a continuous function which
tends to 0 in C*(D), we can write

lim hP(x1,y)dy :/ lim AP(z1,y)dy = 0.

xr1—+00 D D xr1—+o00

The equation (3.93) satisfied by h can be rewritten as
Onh + Ai(y,0,)01h + As(y,0y)h = 0 in Q,

where

0
al’i

Ay = c+ a(y)G(0), and Ay == A + a(y) Z GH(0)=— + f'(0).

By [BN3, Section 2], there exists a countable family of eigenvalues of (3.91)), and
any strip 1 < ReA < (5 in the complex plane contains a finite number of such
eigenvalues.

Let a > 0 asin (3.96]) and fix g > 0. Denote by Ay, ---, Ay the complex eigenvalues
of (3.91)) in the strip

0<Relj<ay:=a+c¢ep, for1 <j<N.

Fix ¢ > 0 sufficiently small such that € < ey and 0 < Re); <ap —¢e for 1 <j < N.
By [BN3, Theorem 2.1], there exists a constant K > 0, such that

W2.p(D) < Kemteomo ’ (3.97)

Hh<‘r17 ) — i (1, -)e N
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where the functions ¢, are polynomial in xq, with coefficients depending on y, and
the \g, called generalized eigenvalues, are solutions of , in the sense that there
exists a function ¢ € W*P(D), non identically 0, such that the pair (¢, \) satisfies
. We adopt the convention C that ¢, = 0 if the corresponding eigenvalue Ay
does not contribute a non zero term in the expansion in .

Now note that the function

N
b(x1,y) == h(zy,y) — Z o (21, y)e_)"““ = O(e_(‘lo_a)‘“) when z; — +o00,
k=1

uniformly for y € D, so at least one eigenvalue \; has to make a non-zero contribu-
tion to be expansion Zivzl dr(y,-)e M1 in . Indeed, if all the ¢, = 0, then
since ayp — € > a, the estimate implies that h decays more rapidly than the
lower bound Ce™*t of , which is impossible. Thus, there exists at least one

eigenvalue A in the strip 0 < Re A < @y which makes a non zero contribution in the

estimate (3.97)).

Knowing that near infinity, h(xq,y) ~ Z,ivzl ¢r (21, y)e " uniformly in y € D and
that h is a positive function, we will prove that at least one of the A\, which makes
a non zero contribution has to be real and positive.

Denote by J the non-empty set of all the eigenvalues A in the strip 0 < Re A < ag
such that A makes a non-zero contribution in (3.97)). Let

a:= max Re(—Xg). (3.98)

1<k<N, A\ €J

Since there is at least one eigenvalue in the strip 0 < Re A < ap which makes a non
zero contribution in (3.97)), « is well defined.

By (3.97) and assuming that the eigenvalues with real part —« are contained in the
set

{)\1 = —Q, )\2 = — +i527 )\3 = —« +i537 T >‘N = —a+ iﬁN}’ (399)

we can write
N

Ber ) = e (ap()af + D ot (m)e™™ ) + by (w1, ), (3.100)

j=2

where we denote

61 (1) = ¢ (p()al + -+ @),

and for j =2,---, N,
G (1,y) = eI (0 () 4+ 210(0)).
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where ¢;,, #,0 for each j = 2,---, N and by (z1,-) contains the terms of the form
elatifierg, - % for s, < s;, as well as the terms in S0 | ¢p(xy,-)e 1 where
Re(—\) < o and the term

N

b(xhy) = h’(*Tl’ y) - Z¢k<x17 _)67)\;63:1’

k=1

which by (3.97) decays at an exponential rate that is strictly faster than the terms
in 3,y ok, e M

Note that Ay = —a is not assumed a priori to be an eigenvalue but we adopt the
convention that ¢; = 0 if it is not.

Now setting s := max{sy, - -, sy} and redefining l;l(xl,y) to include the terms
eletibi)ziyl o (y) when s; < s, we can write

Y
h(z1,y) = ™ (qp(y)x’f +ai )y soj(y)ewj“) + by (21, 7). (3.101)

Jj=2

Since we know that h € R, we have

M1, y) = Re {e™ (qy(y)af + a1 S 2y W)™ ) + biler,y) |

J=2

— ¢ 2} Regy(y) + 2} ZNj Re (ps(y)e )| + Rebi(1,)

=2
N
— 0w [Re ¢ (y)2h + i Z (Cos(ﬁjxl) Re p;(y) — sin(f;21) Im goj(y)ﬂ + l;(xl, Y),

=2

where by (21, y) := Reby (21, y). In other words, the function & can be written :

h(z1,y) = e ( Re g, (y)2} + p(w1, y)xi) +b(x1,y), (3.102)

where p(z1,y) == fo\iz (Cos(ﬂjxl) Re p;(y) — sin(B;21) Im goj(y)>.

Using that h > 0, we will show that for all y € D, the function Reg, is non-
negative. To do that, we will use some properties of uniformly almost periodic
functions, defined in [BES, Chapter 1], which we recall here.
If a continuous function F' : R +— R satisfies : for all x € R, and all € > 0, there
exists L(e) > 0 such that in every interval of length L(e), there exists ¢ > 0 such
that

|F(z+1t)— F(x)| <e,
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then F'is a uniformly almost periodic function. Note that a finite sum of uniformly
almost periodic functions is a uniformly almost periodic function, see [BES|, Theorem
12 - Section 1 - Chapter 1]. Then for a continuous function f, denote by M; and
M the upper and lower limit when 7" — +o00 of

% /0 ' f(x)dz

When M; = M;, we call their common value the mean value of the function f,
denoted M;. By [BES| Theorem 2 - Section 3 - Chapter 1], the mean value of any
uniformly almost periodic function exists.

Now note first that Re ¢, cannot be identically 0. Indeed, if Re g, = 0, we have :

e~ h(x,y) = p(ay,y) + e “ay b(a:l, Y). (3.103)

Since e““les?)(xl,y) — 0 as 7 — 400, and p is an uniformly almost periodic
function of x; with mean value (in z;) equal to zero, it follows that the right hand-
side of takes negative values for a sequence (})ren, where 2% — 400, which
contradicts the fact that h > 0. A similar argument shows that Reg, cannot be
negative for any y € D, so Reg,(y) > 0, and also that p > s, since if s > p, dividing

(3.103]) by e**1x7 gives

Reqy(y)z1p — s+ e‘axlesél -0

as rp; — —+o0o, which again contradicts that A > 0 and p is an uniformly almost
periodic function with mean value 0.

We will show now that the function Reg, has to be an eigenfunction of (3.91)),

associated to A\s = —a > 0.
Since e *%1¢5 (1, y) is a solution of (3.91)), where

b5(21,9) = gp(1) 2} + g1 (W) 4 -+ qo(y),

it follows that

AN'g, + aly ZG’ 8qp f'(0)g, + ()\2 — AMe+ a(y)G;(O)))qp =0, (3.104)

where A = A5 = —a, and so, taking real parts of both sides of (3.104), it follows
that Re g, satisfies

A’(Re q,,) +aly ZG’ 8Re qp +f(0)Req,+ (/\2 —)\(c+0z(y)G;(0))> Reg, = 0.
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Hence, the function Re g, satisfies , with Reg, > 0 in D. If Re g, vanishes at
Yo € D, then the Strong Maximum Principle ensures that Reg, is constant in D
which is impossible. Consequently, the function Re ¢, which is positive in D has to
be an eigenfunction of associated to the real eigenvalue A5, which is positive.
Thus, since c¢ is the speed of the travelling front w, so by definition of ¢/, we must
have ¢ > ¢/, and hence ¢* > (.

O

3.3 Special case where G = (G1,0,---,0).

The equality ¢* = ¢ does not necessarily hold in general. Indeed, in the one-
dimensional case, take for instance

f(u) = u(l —u) and G(u) = —yu?,

for all w € [0,1], and v > /11/3. Then, the functions f and G satisfy the con-
ditions [AKI, Proposition 2.3], which imply that ¢* > ¢. Note that the proof of
Proposition 2.3 in [AKI] is an adaptation to the case of no convection term of the
approach of Berestycki and Nirenberg, see [BN2, Remark 10.2]. In [BN2, Remark
10.2] Berestycki and Nirenberg proved that the strict inequality ¢* > ¢ holds, in a
one dimensional special case, where f does not satisfy the KPP condition ,
and where the travelling front solution satisfies the equation v’ — cu’ + f(u) = 0.

In the absence of convection term, it was proved in [BN2] Section 10] that the KPP
condition is a sufficient condition that ensures that the equality ¢* = ¢ holds.
A natural question is whether there exist cases where under the KPP condition,
the equality still holds in presence of the convection term when G # 0. We will show
that ¢ = ¢ in the case where G = (G4,0,- - -,0), under an additional condition
on o and G and the KPP condition also holds for f. Indeed, assuming that
c* > , we will construct a solution of with speed ¢ € (¢, ¢*), following the
approach of [BN2 Section 10], using the method of sub and supersolutions.

Proposition 3.9. Assume that G = (G4,0,- - -,0), with Gy # 0. Assume also that
forye D and u € R,
a(y)Gi(u) > a(y)G1(0), (3.105)

and the KPP condition, namely, that for all u € (0,1),

flu) < f'(0)u.
Then
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Proof. Assume ¢* > ¢/. Choose ¢ such that ¢* > ¢ > ¢. Then, by definition of ¢,
there exist 0 < A\; < Ay and positive functions 1, o such that, for j =1, 2,

{ ~Ng; = FO)p; = (¥ = Xy(e +aly)Gi0) )¢y in D,

_ (3.106)
%LVJ -0 on 0D.

Note that in fact we will only use the eigenfunction ¢; and the eigenvalue A;.

We will construct a solution of ([1.32)), with speed ¢, using the method of sub and
supersolutions.

Let z(xy,y) := e "M% (y). Using that \; and ¢, satisfy (3.106]), we can write
—Az = =N M e [)\% -\ <c + a(y)G&(O))gm + f’(O)(pl]
= ~Xiz(c+ a)Gi(0)) + F(0)=

Hence, since we assumed (3.105) and the KPP condition ([1.31)) for f, the function
z = e M, (y) satisfies

Az (et aW)GL)hE— f(2) 20 Q.
% — on 09, (3.107)
z(—00,+) = 400, and z(+00,:) =0 uniformly in y.

Note that the limit when x; — —o0o is uniform with y € D because the function ¢
satisfies min, 7 1 (y) > 0 because of the Neumann boundary conditions.

Let N > 1 be an integer, such that
2(=N,y) > 1, forall y € D. (3.108)

The function y ~— z(N,y) is continuous and D is compact. Hence, there exists
en € (0,1) such that

z(N,y) > ey, forall y € D. (3.109)
Note that f(ey) > 0.

The function ey is a subsolution and z is a supersolution on Qy = (=N, N) x D,
since both satisfy Neumann boundary conditions, and

—Az = (c+ay)Gi(2))0z — f(2) 2 02 —Aey — (c+ aly)Gi(en))Dren — flen)-

Note that the constant function 1 is also a (super)solution.
Now we will apply Proposition [2.4] with p replaced by the constant function 1,
and with u = ey and w = 1. Proposition [2.4] gives the existence of a solution

ue W2’p<(—N, N) x E) of

loc

—Au— (c+ a(y)Gi(u)ou — f(u) =0 in Qy,
%:0 for — N <z, < N,y € 0D, (3.110)
u(—=N,y) =1, u(N,y) =en and ey < u < 1.
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Furthermore, the functions ey and 1 are not solutions of (3.110]), since no con-
stant function solves (3.110f). Then, [BN1, Theorem 7.2] ensures that there exists

only one solution u € W2” (Q_N\ ({£N} x QD)) N C(Qy) of (3.110). Moreover,

since ¢ + a(y)G is Lipschitz continuous in zy, the same theorem also yields that
Ou(zy,y) <0for =N <zy < N and y € D.

Thus, for each N sufficiently large, there exists a unique solution u” € W2P (Q_N\

loc
({£N} x 0D)> N C(Qy) which satisfies

—AuN — (c+ a(y)G (M) ouN — f(uN) =0 in Qy,

2t~ for — N <z, < N,y € D,

uN(=N,y) =1, u(N,y) =en and ey <ul <1,

o (z1,y) <0 for —N <axy <N,y€D.
(3.111)

Now, we will apply [BN2, Lemma 5.1] to show that u” < z in Qy. Note that the
functions z and u" belong to W2? (Q_N\ ({£N} x (9D)> N C(Qy) and satisfy

{ —Az = (c+ a(y)Gi(2))0rz = f(2) 2 0= —Au" — (c+ a(y) Gy (u™))0ru” — f(u™)

oulN Oz _ 0

ov v
(3.112)

and since z is decreasing in x; and satisfies (3.108|) and (3.109)), for N sufficiently
large, u™(N,y) < z(z1,y) and u™(z1,y) < 2(=N,y), for —N < z; < N. Then,
[BN2, Lemma 5.1] ensures that

uV < 2 in Qu.

Once again, we want to let N tend to infinity, preventing the solution u" from
tending neither to 0 nor to 1. To do this, consider the supersolution, as minimum
of two supersolutions, see [YIH, Theorem 4.12], which is based on results in [LE1] :

h'(21,y) = min (17 z(zy + 1, y))

Using the constant function min, 5 h"(N,y) which is a subsolution of (3.111)) for N
sufficiently large, we argue as in the proof of Proposition [1.17] and get a sequence of
solutions (u™)y~o which has a subsequence that converges to a limit u that satisfies

/

—Au — <c + a(y)Gﬁ(u))@lu —f(u)=0 inRxD,

% =0 for y € 0D,
0<u<l, (3.113)
Ou(zy,y) <0 for y € D,
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Finally, since u is non-inscreasing with respect to xq, it follows that u has finite
limits when z; tends to +oo. Moreover, lim,, oo u(21,y) and lim,, o u(z1,y)
have to satisfy . Hence, those limits have to be 0 or 1 because of Assumption
(AN). But the normalization condition

mal{U’(OJ y) =5
yeD 2

ensures that

lim wu(zy,y) =0and lim wu(zy,y) =1.
T1—>+00 T1—r—00

Similarly as in the proof of Theorem we prove that g—; < 0 and that u is
decreasing.

Thus, the function w is a solution of with a speed ¢ < ¢*, which is impossible
by definition of c¢*. O

3.4 Special case where G/ (0) = 0.

We will prove that ¢* = ¢’ also in a second special case, again using a similar ap-
proach to that in [BN2, Section 10]. Note that in this case we have an explicit
formula which agrees with the corresponding formula for ¢’ when there is no con-
vection term and when KPP condition holds.

Proposition 3.10. Assume G1(0) = 0. Then

¢ =2+/1(0).
Proof. If G'(0) = 0, the eigenvalue problem ({3.74) can be written in the following

form

—Ap — aly) TIL, Gi032 — f(0)p = (¥ = Ac)p in D, (3.114)
0, =0 on 0D.

By [YIH, Theorem 1.3], there exists a unique 8 € R for which there exists a positive
function ¢ such that the following eigenvalue problem

—N¢—aly) Y, Gi(0)52 = B¢ in D,
{ 6, =0 2 0 on 9D, (3.115)

is satisfied, and ¢ is unique up to a multiplicative constant. Hence, since a positive
constant function ¢ satisfies (3.115) when g = 0, it follows that § = 0, and ¢ is a
constant function.
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Consequently, the principal eigenfunction ¢ of is in fact a positive constant.
From , it follows that the eigenvalue A\ associated to this principal eigenfunc-
tion satisfies A — Ac + f’(0) = 0. Hence, there exists a positive real eigenvalue \ if
and only if ¢ — 4f'(0) > 0. By definition of ¢, it follows that

¢ =2/F(0).
]

Now we will prove that ¢* = ¢’ in a second special case, assuming for contradiction
¢ > ¢ and again using method of sub and supersolutions to construct a solution of
(1.32) with speed ¢’

Proposition 3.11. Assume that
G1(0) =0, a(y)Gi(u) >0 for allu € (0,1),
and that f satisfies the KPP condition (1.31)). Then, ¢ = c*.

Proof. Assume that ¢* > ¢/. Take ¢ such that ¢* > ¢ > ¢/. Since ¢ > ¢, there exists

a positive eigenvalue A of (3.114]).

Let z := e 1. We claim that the function z is a supersolution of

{ —Au— (c+ a(y)G(u)du — aly) Yo, Gi(u) &~ — f(u) =0 in Q,
u, =0 on 0f).
(3.116)

Indeed, since z only depends on 1, one has

—Az — (c+ a(y)G(2)0z — f(2) = X2z + Mc+ a(y)Gi(2)z — f(2)
— (= A2 2e = F10))2 + Aa)GL)z + £(0)z - f(2)
= Aa(y)G(2)z + f'(0)2 — f(2),

since A satisfies —A? + A\c — f/(0) = 0. Hence, z is a supersolution, assuming the
KPP condition and that a(y)G}(z) > 0, for all z € (0,1) and all y € D.
Let N > 1. As before, there exists a subsolution ey € (0, 1) such that z(N,y) > ey
for all y € D. Arguing as in the proof of Proposition it follows u”¥ < z in Qy.
By means of function A"(x1) := min (1, z(z; + r)), we can then rely on similar
arguments to those in the proof of Proposition [3.9] to obtain a function u which is
a solution of with 887“1 < 0 and a speed ¢ < ¢*, which is impossible.

O
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4 Another form of convection term for Neumann
boundary conditions

Different modeling approaches could give several forms of convection terms, so we
also consider an alternative form of convection term.

Here we consider the case where the convection term has the form V - (a(y)G(u))
instead of a(y)V-G(u). In this case, a travelling front solution u(x,t) = w(x, —ct, y)
will satisfy

—cOiw =Aw+V - (a(y)G(w)) + f(w) in £,

w(—o0,y) =1, w(4o0,y) =0 uniformly in y € D,
w > 0,

w, =0 on R x 0D.

(4.117)

Note that the first equation in (4.117]) can be rewritten in the following form

Aw+( Gl (w))d Gl(w Gy(w 0. (4.118

w+ (cta(y)G(w) ) drw+a(y Z axl +; (w) = 0. (4.118)
Throughout this chapter, we make the following assumption :

f G0 . 4.119

)+ JQD Z 8951 ( )

Remark : Note that condition ([3.84) which is the corresponding condition for the
second form of convection term, implies condition (4.119)).

With the inclusion new term Y7, G;(w) 2%, we will now construct a solution on
the truncated cylinder Qy = (=N, N) x D.

4.1 Existence of a solution on the unbounded cylinder
As before, for p € K, defined in ([2.47)),

Ap(@) + V- (a(y)G(p()) + f(p(x))

r(o)(e) = e ,

and

* = inf . 4.120
c [}gKitelgr(p)(x) (4.120)

We again have the existence of an upper bound for c¢*.
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Proposition 4.1. Assume the conditions (GN1'), (GN2'), (GN4'), (AlphalN1’)
and that f is Lipschitz continuous. Then,

¢ < +o0.

Proof. To prove this, we will use the function g defined in (2.50). For z; < —1, one
has

Ag+V - (aG(g)> + f(9)

r(g) =

—819
W+ aGi ()N + Do Gi(h)g—; + f(h)
— —
R , 1< oa  f(h)1—h
=~ 4 “*ﬁZGi(h)ax.——l(_L o
i=2 ¢

Since f satisfies f(1) = 0, it follows that f(h)/(1—h) is bounded. The ratios —h" /b’
and (1 —h)/h are equal to —1, and by aG’(h) is bounded by (AlphaN1’). Finally,
using that (GN4') and the mean value theorem, for all 2 < ¢ < n, there exists
& € (h,1) such that

%gmg—;): %Z(Gi(m”“))a@ - ZG’ €5

which is bounded. Hence, r(g) is bounded for z; < 1.

L

For xy > 1, we write
W aG (MW + 3, Gi(h) 5 + f(R)
= —

o _f(h) R
=~ oGl h’ZG 0@ “h R

Since f(0) = 0, the ratio f(h)/h is bounded. The ratios h”/h and h/h’' are equal
to —1, and aG’(h) is bounded by (AlphaN1’). Using (GN4’) and the mean value
theorem, there exists £ € (0, h) such that

1< O 1 <& O
ﬁgai(h) 5| = Eé (Gih) - Gi(0)) ol =

which is bounded. Hence, r(g) is bounded for z; > 1.
Thus since r(g) is a continuous function in €, it follows that sup,.q7(g9)(z1,y) <
400, and thus ¢* < +o00.

Y

h
m Z <&>

T

]
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We now provide some sufficient assumptions for the inequality ¢ > —oo to
hold. Obviously, in the special case G = (G1,0,- - -,0), we are back to the case of
Proposition 2.2l In the general case, with this second form of convection term, we
need fewer assumptions than in Proposition :

Proposition 4.2. Assume (GN1') and (AlphaN2'). Then ¢* > —oc.

Proof. Assume that ¢* = —oo, and let A > 0 and G := (G, - -+, G,). By definition
of ¢*, there exists p € K such that

Ap+aly)Ci(p)orp + V' - (ay)Gp)) + F(p)
—0ip

< —A.

As in the proof of Proposition [2.3] since 0,p < 0 we obtain, by integrating on D, :

Jowstw-a) [ o< [ v (awéw)+ [ 1), @

where k := sup, ;)cpj0.1] ¥(y)G1(s). Using that « =0 on 9D, one has :

[ () + [ s0)= [ 1) =0

Hence, the right hand side of (4.121)) is negative and we conclude as in the proof of
Proposition
O

Under certain assumptions, we will construct a solution of in the trun-
cated cylinder Qy = (=N, N) x D. Let ¢ > ¢*. By definition of ¢*, there exists a
supersolution p of . As in Proposition , let N > 1, and choose ey € (0,1)
such that p(z1,y) > ey, for all ; € [-N, N] and y € D.

Proposition 4.3. Assume the condition (4.119), (GN1’) and (AlphaN1’'). As-

sume also that the function f is C' and satisfies (1.30)). Then, there exists a unique
solution u € VVZQO’f((—N, N) x E) which satisfies
e p(—N,y) > u(z1,y) > en for all (x1,y) € (—N,N) x D,
e for all zy € (—N, N) there exists y € D such that p(—N,y) > u(z1,y),
of the following problem :
Au + <c + a(y)Gﬁ(u))@lu +aly) D, Giw) 2+ Yo, Gi(w) g + f(u) =0 in Qy
ul/:O (x17y>€(_N7N)XaD7

u<_N7y):p(_N7y)7 U(N7y):5N yED.
(4.122)
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Proof. The approach is similar as in chapter [2]and chapter [3, we focus on the places
where the arguments are different. We start by proving the following lemma :

Lemma 4.4. Asssume the condition (4.119) and that ex > 0 is sufficiently small.
Then the following condition holds : for ally € D,

)+ f(en) > 0. (4.123)
Proof. Fix y in D. Then

ZGeNga()+f5N ZGeNgj( )+ flen) — (ZG

y) + £0))

(ZG’ &) (1) + 1) e
for some € € (0,ey) and & € (0,ep).
Note that
/ - ! aOC !/
lim (ZG €5 ) +f <£>) > Gi(0) 5, ) + 110
> inf G0
Loz e} o>

Hence, for ey sufficiently small holds. m

As in the proof of Proposition we use the method of sub and super solutions.
First, note that the function p is a supersolution of , and under the condition
, the function €y is a subsolution of . The proof is almost the same
as the proof of Proposition 2.4 We detail some points that are different. Precisely,
we will prove that v < u; < u, where u and % are the sub and supersolutions ey
and p, and where the sequence of functions (u;);>¢ satisfies

{Aum“ Nt () S Gu) 2 S Gilu) 22 — g = — () — kou,

Pl — ) on (—N,N) x 9D,

(4.124)
and u = uy =en, U = p.
First, we will prove that v < u; by induction. It is obvious for j = 0. Assume that
u < u; for some j € N. The functions ;4 and u satisfy

Aty ‘anuﬂl +aly) 2, G/(Ug)agi“ — koujrr = —f(u;) — kou; — 3., Gi (uj)ax )
Au+ et +aly) X, Gilw) g > —f(u) - XL, Gilw) g
(4.125)
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By subtraction, one has

A= ) + (= w30) + ) Y (Glla) = Giu)) 5 ZG’ ) o= 1)

i=1

Kol w5e) 2 ~ ) ko + £ + ks + 3 (Galu) - Gz@))

which gives

0
Alu —uj1) + Dt (u — ujs1) Z Gi( U] — wjr1) — ko(u — uj41)
B 0 B 0
> f(uy) — F) + koluy —u) +a(y) Y (G;<uj> W) 5 ( Giw)) 7
i=1 7
> —L(u; — u) + ko(u; — u) — LC(u; — u) — L'C'(u; — u) since u <wu; <T
> 07

where ' is such that

Cl>‘28xl

and we choose kg > L + LC + L'C".
Similarly, the functions u;, and w satisfy

Auji +f6:§;“ + a(y )Zz 1 G'(Ug)aggl — kouj1 = —f(u;) — kou; — Zz » Gi (U])ax )
A+ et +aly) i, Gi@ g, < —f(@) - XL, Gi@) g
(4.126)
Again, the subtraction leads to

_ o _ , o ,_ _
AT — ujyr) + Ca—fcl(u —ujy1) + a(y) ZGi(Uj)a—xi(u — 1) — ko(U — ujt)

IN

flus) = 1)+ bl =)+ (o) S (Giws) - 6@ 5 + 3 (Giw) - Gi@) 5
—L(u; — @) + ko(u; — @) — LC(u; — @) — L'C’'(u; — ) since u <wu; <T
0.

IA A

As in the proof of Proposition [2.4], Maximum Principle and Hopf lemma arguments
ensure that v < u;;; < w. By induction, we proved that for all j € N,

u<u; <u
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As before, we can take a diagonal subsequence of the sequence of functions (u;);>o.
This sequence converges strongly in C** on compact subsets of Qy to a function u
which satisfies

Au+ (c+ a(y)G(u)diu + a(y ZG’ Ou —l—ZGZ’(u)%—i—f(u):Oin Qp.
'L i=2 (2

Finally, we can use the exactly same barrier function (2.62)) as in the proof of
Proposition to be sure that the solution u will satisfy the boundary conditions
u(N,y) = en, u(—N,y) = p(=N,y) for y € D, and %* = 0 for —N < z; < N and
y € 0D.

Hence, for each N sufficiently large, we constructed a solution u of (4.122)). Note
that we have the monotonicity with respect to x; of the solution u of (4.122)), as in
Proposition Indeed, [BN1, Theorem 2.4] yields the result again.

O

Now that we have a solution on a truncated cylinder €25, we can argue as before
to let N tend to infinity.

Theorem 4.5. Assume that holds. Assume also the assumptions (GN1'),
(GN4'), (AlphaN1’), (AN') and that f is C* and satisfies (L.30). Then, for
c > c*, there exists at least one solution of .

In addition this solution is decreasing with respect to xy.

Moreover, there exists also a solution of with speed ¢ = c*.

Proof. The proofs are analogous to those in the proof of Theorem [1.17]and the proof
of Proposition [2.9]
We will focus on the point of Theorem that a solution of is decreasing
with respect to .
Let w be the solution of we constructed. Note that the function w satisfies

xll_ig:loo HV’LU(.%l, .)HLOO(D) = 0. (4.127)
Indeed, the proof of Proposition is still valid, even with the second form of the
convection term.
Using the fact that w € VVli’f, bootstrapping and standard regularity results, see
[KRY], Chapter 9 - Section 4 - Theorem 1], it follows that we can differentiate with
respect to x; the equation (4.117) satisfied by w as in the proof of Theorem m
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(see equation ([2.71)))to obtain that the function v(x,t) := —a%lw(xl —ct,y) satisfies

// / - ! aa
=Av+aly ZG —v—l—a ZG 0xz+;Gi<w)8_xv+f()
:Av—l—b(x,t)-Vv—i-c(x,t) v,

where for all 1 <17 <n,

b 1) = a(y)G (w(ar = et.y)

and

Y) i G (w(ml—ct, y)) g—xw—i-i G (w(xl—ct, y)) 8804 '(w(ml—ct, y)) .
i=1 toi=2 !

By construction, one has v > 0. Using 4.1277 it follows that
L 1"
o(2.0) = aly) 3 G (i) o (w0 9) 5+ £ (wlon) 20

=1
since as 1 — +00, and uniformly in y € D, one has

c(x,0) — Z G.(0) Oa

which is positive by (4.119). It follows from [VOI|, Chapter 2 - Theorem 3.26] that
either v = 0 or v > 0. Since w converges to different limits when z; — 400, it
follows that v # 0 and hence v > 0, meaning that dyw < 0 and that w is decreasing
with respect to x;.

/'(0)

O

4.2 Linearized operator and eigenvalue problem

Now we will show the existence of a critical value ¢’ as in Proposition [3.4 under
some additional assumptions. To do this, consider the linearized problem of (4.117])
around 0

{ Aw + <c+a(y)G’1(0)>8lw+a( )3, Gl(0) 2 (zl , Gi(0) 22 +f/(0)>w:0 in R x D,

w, =0 on R x 9D.
(4.128)
If w(zy,y) = e Mp(y), then the function ¢ satisfies
{ A — aly) D, GHO 2 — (i GH0)E: + £1(0)) ¢ = (A = Me+ a(y)GL(0))¢ i D,
v, =0 on 0D.
(4.129)
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As before, [YIH Theorem 1.3], the following eigenvalue problem

~A —aly) S, GU0)2E — (L1, GH0ZE + f(0))o = e in D,
o,=0 on 0D,
(4.130)
has a simple eigenvalue py € R, which corresponds to a positive eigenfunction. We
claim :

Proposition 4.6. Assume (GN1’), (AlphaN1’) and (4.119). Then the principal
eigenvalue ps of (4.130)) s strictly negative.

Proof. Let

—Ly:=—-A }:G’ a@ £(0),

and

—L2:=—A'—a<y>iG;< o (ZG’ +1(0)).

Denote by p; and po the principal eigenvalues of Ly and Ly characterised by, for
1<j<2

14 :sup{u|5|¢>0inD, ¢, =0 on 0D, (Lj-FM)CbSO}.

Let k := inf,ep 320, G;(O)g—;(y). One has
I :sup{u]5|¢>()in D, ¢, =0 on 0D, (L1+M)¢§O}
:sup{wrl% 136> 0in D, ¢, =0 on dD, (Ly + i+ k)o
)¢

:l;:+sup{u|3¢>01nD, ¢, =0 on dD, (L1+,u—|—k;

2/~£+Sup{u]5|¢>()inD,¢,,:00n8D, <L1+u+ G;(O)go‘)¢go}
=2 Ti

=k +su {u|3¢>01nD ¢, =0on 0D, (Lg—i—,u)ngO}

=k + po.

Since p11 = —f'(0), we proved that o < —f'(0) — infyep >, G(0 ) . Hence,
to < 0 if the condition (4.119) is satisfied.

O
Consider now the following eigenvalue problem depending on ¢ € R :
A~ aly) i, Gi0) 3 — (LI, GH0)22 + 1(0) ) + thy)e = 15t in D,
Yy = 0 on 0D,
(4.131)

78



where 5.(y) = ¢ + a(y)G}(0).
As before, one has that A is an eigenvalue of (4.129)) if and only if A\ satisfies

p5(A) = A°.

Proposition 4.7. Assume (GN1'), (AlphaN1') and ([4.119)). Then the conclusion
of Proposition holds. In particular, there exists a critical value ¢ such that if
¢ > c, the eigenvalue problem has two positive eigenvalues 0 < Ay < Ao, and
only one positive for ¢ = .

Proof. The arguments are the same as in the proof of Proposition [3.4] using the
concavity of ¢ — u$(t), and the fact that p5(0) < 0 by Proposition O

4.3 Comparison between ¢* and ¢

Now that we have established the existence of the critical value ¢/, we will compare
¢* and . Precisely, we will prove Theorem [1.19] :

Proof of Theorem[1.19. We start by showing that we have the same conclusions as
Proposition and Theorem [3.8, Note that in this case, we only need that « = 0 on
0D and that G;(u)/u, is bounded, which is satisfied if G;(0) = 0 and (AlphalN2')
holds.

We first show that we have the same conclusion as Proposition 3.6l Let w be a
solution on () of

Aw+<c+a(y)G( )81w+oz ZG/ 8xz+iG (w) = 0. (4.132)

1=2

Let N > R > 0 and define the cut-off function

f(&?l) = 1 1fR§I1 SN,
0 ifxry <R-1.

By multiplying (4.132) by &, integrating over {2 and using Green’s formula, it follows

that
e[ ¢w(cram™ /5 ZG’ /ﬁzG 2o i [ et -
(4.133)

Using Green’s formula on the third integral and that o = 0 on 9D, one has :

[eow X amgs =~ [ awg
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Thus, the equation (4.133]) becomes

|erw= [ wfe (et o) ¢ (4.131)

/Q £f(w) > /R ) /D f(w)

because £ =1 in [R, N], £ > 0 and f > 0. Since u tends uniformly to 0, with respect
to y, when z; tends to infinity, we can take R sufficiently large such that there exists
9 > 0 such that f(w) > (1 —0)f'(0)w when z; > R, and we obtain

/R ) /D (1—6)f (0w < /Q wle(c+ a((y)%) e

Then, since ¢ is constant on (—oo, R — 1] U[R, NJU[N + 1, +00), it follows that

[ole(era @y —e] = ([* 4 [77) [ufe(cran ) -]
fﬂ(LALw+A /.
where K is such that

(ot g

w

Note that

<K, forallyeD.

Hence, we obtain

/O)/RN/DwSK[/RI:AW/NNH/Dw] (4.135)

We argue as in the proof of Proposition and let N tend to infinity to obtain :

O L)

and we conclude as in the proof of Proposition using the function

:/:/Dw

that there exist C' > 0 and ¢ > 0 such that for all R > 0,

/ /wﬁC’e_ER
R JD

80



Now we will prove the conclusion of Theorem [1.19, namely, that ¢* > ¢/.
Let ¢ > ¢*, and consider a solution u of with speed c.
As in the proof of Theorem [1.18] we will construct a positive solution of the linearized
problem (4.128)). To do this, define

u(zy + x1,y)
2 Supyeﬁ u('I{V? y) ’

hN(a:la y) =

where (z))y is chosen as in the proof of Theorem m The function AV satisfies

ARN + (c +a(y)G (u(lev + x4, y))>61hN + aly) zn: G (u(a:iv . y)) %};N
=2 i

u(@y +21,y)) O f(u(x{v+:c1,y)>

= 0.
+Z 2SUPu (=Y,y) Oz 2sup,pu(el,y)

As before, a compactness argument ensures that the sequence of functions (h'V)y
converges weakly in VVZQOCP and strongly in C’llo’;\ to a function ~ when N — 4o0.
Moreover, when N tends to 400, the extra term will converge to

lim Gl<u(‘xl +x17y>>8_a _ li G( (xl +.1:17 ZG/

- —
N-rtoo &=~ 2sup u(zy,y) Oz, £ N—-too w(xl +x1,y 891:@

Hence, the function h satisfy the linearized problem (4.128]) and the condition
SUp,cp h(0,y) = % Furthermore, since we assumed the condition (4.119)), one has

Ah—l—(c—l—a(y)G’l( >81h—|—oz ZG’ 0:6 (ZG’

(;22{2(?’

<0.

+1(0))h

o)

As in the proof of Theorem [1.18| note that in order to have that h, =0 on R x 0D,
we actually argue as in the proof of Proposition to have the C''* convergence up
to the boundary, see also Remark [I]

As before, Maximum Principle and Hopf lemma arguments ensure that h > 0 in
R x D. The rest of the proof is identical to that of Theorem [1.18| n

4.4 Special case where G = (G4,0,---,0).

With our alternative form of convection term, we can handle only one of the special
cases. Note that in the special case where G'(0) = 0, the eigenvalue problem (4.129)
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becomes

~Np—a(y) LI, Gi(0)82 — (1L, G082 + £1(0))p = (M = Ac)e in D,
o, =0 on dD.
(4.136)
Then, since the extra term y . , G;(O)g—; depends on y, we cannot conclude as in the
proof of Proposition that A2 — A\c = — f/(0). The extra term prevents us to get
a supersolution as in the proof of Proposition Thus, we cannot conclude that
¢ = ¢* in the case where G (0) = 0. However, in the case where G = (G1,0,- - -, 0),

we claim :

Proposition 4.8. Assume that G = (G4,0,---,0), with Gy # 0, and that f satisfies
the KPP condition (1.31). Assume also that for y € D and u € R, a(y)G(u) >
a(y)G1(0). Then ¢ > c*.

Proof. In this case, we obtain the same eigenvalue problem as (3.106|). Hence, the
proof is the same as the proof of Proposition [3.9] ]

5 Existence of front solutions for Dirichlet bound-
ary conditions

5.1 Introduction

Recall that under Dirichlet boundary conditions and with the first form of the
convection term a(y)V - G(u), if u(x,t) = w(x; — ct,y) is a solution of (1.29),

the function w satisfies :

—cOw =Aw+ ao(y)V - G(w) + f(w) in Q,

w(—o00,y) =w_(y), w(+oo,y) =0 uniformly in y € D,
w > 0,

w =0 on R x dD.

(5.137)

Recall also that in that chapter, we assume that the function f satisfies ((1.30)), and
the following conditions :

e (GD) : The function G is C? and satisfies G;(0) = 0 for all 2 < i < n.
e (AlphaD) : The function a : D — R is in C*(D).

e (AD) : Let A € (0,1). There exists a non negative function w_ € C**(D)
such that the only solutions in C%*(D) of the problem on the cross section D
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are w_ and 0.
Precisely, if z : D — R satisfies

{ Az +aly) i, Gilz)55 + f(z) =0 in D,

z2=0 on 0D, (5.138)

then z=0or z = w_.

Since constants are no longer subsolutions of the problem (|5.145|) on the trun-
cated cylinder €y, we assume the following assumptions to ensure that there
exist subsolutions of the problem ([5.145)) on the truncated cylinder 2y, :

e (BD) : There exists a sequence of functions (vx(y))ren uniformly bounded
in C?*(D), and which tends uniformly to 0 when k tends to +oco and which
satisfies for every k € N

0 < vps1(y) < w(y) <w-(y), fory € D,

and

{ Avy + aly) i, Gilv) g + f(ue) 20 in D, (5.139)

v =0 on 0D.

e (FD) : The following conditions holds :
f1(0) > M(=1),

where —L := —A" — a(y) Z?:Q G;(0) 82,"

We will prove later in section [6.4] a result about the existence of the functions
(Uk(Y)) ken)-

Remark 5.1. Finally, we also recall that in this case too, we are not losing generality
assuming that G;(0) =0 for all 1 <i < n, see Remark|1.12]

First, we will prove the existence of travelling front solutions on the truncated
cylinder Qy := (=N, N) x D, and then pass to the limit using translates of these
solutions problem on the half cylinder.
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5.2 Existence of a solution on a truncated cylinder

Denote by K the set of functions p € C?(R x D) such that

O1p <0 inR x D,

limg, o p(x1,y) =w_(y) uniformly in y € D,

limy, 400 p(x1,y) =0 uniformly in y € D, (5.140)

p=0 on R x 0D,

g—5<0 for (z1,y) € R x 9D.
For p € K, let

A .
—alp(x)
and
¢ = inf supr(p)(x). (5.142)
PEK 4

Proposition 5.2. Assume (GD), (AlphaD) and that f is Lipschitz continuous.
Then
¢ < 4o00.

Proof. Define the following function h: R x D — R

A =-ew_(y) ifz < -1,
w1, y) = { e " w_(y) if & > 1, (5.143)

such that 0;h < 0 for all x € Q and h is sufficiently smooth for (z1,y) € (=1,1) X
R™! to ensure that h € C*(R x D), and such that there exists p € C?((—1, 1)) such
that we can write h(xq,y) := p(xz1)w_(y) for z; € (—1,1).

We will show that A € K. First, one has 01h < 0, and
h(z1,y) = w_(y) as x1 — —o0o, and h(zy,y) — 0 as 1 — +00,

uniformly with respect to y € D.
Furthermore, if 1 < —1, using the equation satisfied by w_, one has
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—emw_ + (1= e")Aw_ + ay)Gh(h) (—e™w_) + aly) i, Gi(h) (1 — e") 2= + f(h)

r(h)(z1,y) = ——
= 1) + (1 - e ST DR GG | T
= 1 - aly)Gi(W) + . [aly) Z (G - Gt ) 5= = rw)] + L2
1 @)@ () + (- ealy) Z Ao - i) 2
Aa=emes) —a e

eriy_

We want to show that this quantity is bounded for x; < —1. To do this, we will
apply the mean value theorem : for z; < 0, since there exists M > 0 such that for
ally € D, |lw_(y)| < M, one has for 2 <i<n:

‘G;(u — e ) - Giw) |

e S g G@NS e 1G]
and
f<(1 - e””l)w,> (1—e")f ( (1 —e")w ) — f(w-) Flw)
) eriw_ ‘ - ‘ eriy_ }—{—‘ w_ ‘
<| s I+ sw ()
(1—e®1)w_<z<w_ 0<s<w_
< swp |f'(2)|+ sup [f(s)].
—2M<z<M 0<s<M
Ifxy >1,
e+ e A+ a(y) Gl (h) (—e " w_) + aly) S, Gi(h)e ™ 2= + f(h)
r(h)(21,y) = o
, 1 1 f(h)
= 1 - aly)Gi(h) + - [Aw_ +aly ZG )G+ L
_ ow_ h
~ 1= )G + 5ot Y (600 ~ ) G )]+ 2
n (GUR) = Gl(w-)) gur_ h
- a0 ot 3 — ) e N ()

=2
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Using the mean value theorem and that there exists M > 0 such that for all y € D,
|lw_(y)] < M, one has for 1 >1and 2 <i<n:

G/ —T1 $1_

e p[GU(:)
e Tlw_<z<w_

S(l—e‘“) sup |G (2))]

—Me *1<z<M
< sup |GI(2)],

—Me—1<z<M
and
fleT™w_) flw_
E00)_JW)l oy e s PGS s 1S G swp 1F6)]
e w- Ww— 0<z<e~"lw_ 0<s<w_ 0<z<Me~1 0<s<M

Recall that for z; € (—1,1), h(x1,y) = p(z1)w_(y), where p is a smooth function.
Then,

p'w_ + pAw_ + a(y)Gy(R)pw-_ + ay) i, Gi(h)phe= + f(h)
—plw_

— - —aly)Gin) - 5P |Aw_ +aly ZG’ 8%

P pw_

}_ (h)

pw_

wo)

fpw_)

=2 )Gt - o) (@ - i) 2] 4 2 (L

/ /
P p- i=2

Using mean value theorem again, one has for 2 < < n :

Gi(pw-) — Gi(w
Gl ) ZC) | ) s (6(R)
w—_ z€[pw_,w_]
< (Ipllos + 1) sup 1G5 (2)],
2€[—M]||plloo, M||pll o]
B ) fewy)
w_ pw—_
R (< sw PG+ s [,
w— —M<z<M —M||plloo <s<M]||p[loo

Since r(h) is a continuous function in © and « and G are bounded it follows that

Supr(h) ('1'17 y) < +0o0,
€S2

and consequently, ¢* < +oo.
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We will show later, see Theorem [1.21], that under some assumptions on f, G and
«, the minimal speed ¢* is also bounded from below.

Now let ¢ > ¢*. Then, by definition of the infimum, there exists a function p € K,
such that

([ Ap+a(y)V-Gp) + f(p) +coip <0 Y(z1,y) € R x D,
8ip < 0 iR x D,
p(—o0,y) = w_(y) uniformly in y € D,
p(+00,y) =0 uniformly in y € D,
% <0 for (z1,y) € R x 9D,
L p=0 on R x 0D.

Let N > 1 be an integer. Since the function y — p(N,y) is continuous and the
sequence of functions {vg} tends uniformly to 0 when k tends to infinity, there
exists £ € N such that

p(N,y) > vi(y), Yy € D. (5.144)

We claim:

Proposition 5.3. Let N > 1 and Qy = (—=N,N) x D C Q. Assume (GD),
(AlphaD) and that f is C' and satisfies (1.8). Then, there exists a unique solution

u € W2’p<(—N, N) x E) which satisfies

loc
o p(=N,y) > u(z1,y) > v(y) for all (x1,y) € (=N, N) x D,
o forall x1 € (—N, N) there exists y € D such that p(—N,y) > u(z1,y),
of the following problem :

Au+cou+ a(y)V-Gu) + f(u) =0 in Qn,
u=20 for — N <x; <N, yedD,
u(=N,y) = p(—=N.y), u(N,y)=wv(y) yeD.

(5.145)

Proof. The proof relies on the theory of sub and super solutions. The function

(1,y) — v(y) (resp. p) is a subsolution (resp. a supersolution) of (5.145)). Indeed,
one has

Avk —+ c@lvk + a(y)V : G(Uk) + f(vk> Z 0> Ap + Cal/) + a(y)V : G(p) + f(p)>

vk(y) = p(z1,y) =0 V(z1,y) € (=N, N) x 9D,

and
p(x1,y) > vr(y) Y(z1,y) € [-N,N] x D.
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We will use the following adaptation of [BN1, Lemma 7.1], with Dirichlet boundary
conditions instead of Neumann boundary conditions considered in [BN1]. Consider

Lu = Mu + cu = a;;(z)w;j + bi(x)u; + c(x)u = g(xz) in Q,
u(zy,y) =0 for — N <z <N, yeaoD,
u(=N,y) = 1(y), u(N,y) = ¥2(y) y€D.

(5.146)

Here, ¢ and 1, belong to W2>(D), and satisfy 1;(y) = 1(y) = 0 for y € dD.
The function g belongs to L>(Qy) and there exists a constant C' > 0 such that
|bil, |c| < C, where ¢ < 0.

Lemma 5.4. Under the above conditions, with a;; := 0;;, the problem (5.146)) has a
solution u € WP (Q_N\ ({£N} x 0D)> N C(Y). Moreover, there exists a constant
C1 > 0 such that

e o] < (gl + 3 16 llwa )

J

Proof. Let
. N — T N + 2
U=+ oN P1(y) + ON Va(y).-
Then the function v has to satisfy
Lv=g(x) inQy,
{ v=20 on 09y, (5.147)

where g := g — %Lqﬂl — N;;\fleg.

However, the existence of a solution v of the problem is not straightforward
because the domain Qy is not C%2.

Asin [BNI, Lemma 7.1], consider an approximate problem in Q5, C Q with smooth

boundary. In 5, there exists a solution v. € W2?(Q%) of

Lv. =g in Q%,
{ ve =0 on 00%. (5.148)

We want to let € tend to 0 and obtain a limit function v that is a solution of ([5.147]).
Using the same barrier function h (2.62)) as in the proof of [BN1, Lemma 7.1] and
Chapter [2], we will show that

0] < (1G]l el in Q5. (5.149)

As in (2.62)), define the concave and positive function h on [—N, 0] by
1
h(ﬂjl) _ —6bN(1 _ e—b(x1+N)> — 6(331 + N), (5150)
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where b > /> " b2
We extend h on [0, N| to be symmetric. As in the proof of Proposition we show
that the function h is a concave positive function and satisfies Lh < —1 on (=N, N)

provided that b > (/> " | b?.

Assume that |||/~ = 1. Then one has in Q5 :

L(v. —h) = Lv. — Lh = § — Lh
>g+1
> 0.

Hence, by Maximum Principle, if v. — h is positive somewhere, it achieves its max-
imum at the boundary. But at the boundary, v. = 0 and then the maximum of
v. — h has to be negative, which is impossible. Hence, the function v, — h is always
negative, and we obtain

ve < h,

which ensures ([5.149)).

Now, as in the proof of [BNT, Lemma 7.1], using standard local W2 estimates and
diagonal arguments, we let € tend to 0 and we obtain a limit function v solution of
(5.147) and which satisfies

o] < gl Lot
Hence, the function v is continuous in Qy and v € W2? <Q_N\ ({£N} x aD)).

loc

O

From now on, we will denote by u and uw the sub and supersolutions u := vy,
where vy, is as chosen in (5.144]) and u := p. We will also use the classical notation

., Ou "L, L ou
Gi(u)ax' = ZGi<“>ax- = V- G(u).

We will construct a sequence of functions (u;);>o on [—=N,N| x D, with uy = u,
solving the following equation :

ou, ou,
Aujyr +c a;l + a(y)Gi(uy) agl — kouj1 = —f(uy) — kouy,
where kg will be chosen later, as well as the boundary conditions

uj1 =pon {—N} x D,
w1 =vp on {N} x D,
ujy1 =0on (—N,N) x dD.
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We start with ug = u. Lemma applied with a;; = 67, bi(x) = ¢ + a(y)G,(u),
bi(z) = a(y)Gi(ug) for 2 < i < n, and ¢ = —ky gives the existence of u; €

C’([ N, N] x D) N W2p<QN \{—-N,N} x 3D> which satisfies

loc

(9u1
ox;

Aul + c@lul -+ Oé( )G/(UO) — k(]ul = —f<U0) — ]ﬂouO,

with the same boundary conditions. Assume that for j € N, u; € C’<[—N, NJ x 5),
which implies that u; — f(u;)+kou; € L™ ((—N N) x D). Hence, Lemmagives
the existence of the function u;, € C’([ N, N] x D) N W2P<QN \{=N,N} x 8D>

loc

which satisfies

uj

0y

8 X
Auj iy + e 4 a(y) Gl (uy)

axl — kUj+1 = —f(uj) — k’u]‘.

Now, similarly to the proof of Proposition [2.4] in Chapter 2l under Neumann bound-
ary conditions, we will show by induction that for all j € N, one has

u<u; <T. (5.151)

For j =0, (p.151]) is trivial. Let j > 1, and assume that u < u; < u. First, we want
to prove u < u;;1. The functions u; and u satisfy

Oujp

du :
Atjir + e T +aly)Gi(uy)— = = kouj = —f(uz) = kow,
and 9 5
u ;o Ou
7= > )
AHJFC(%IJFQ( y)Gi(u )8% f(u)

By subtraction, one has

0 0 0
Au—uj) + . (u—uji1) + aly) (GQ(@) — Gé(uj)) % + Oé(y)GQ(Uj)%(M — Ujy1)
— k(u—wjp1) > —f(u) — kou + f(u;) + kouy,

which gives

A= y1) + el = 1) + )G ) (= 712) = Kt = 51)
flu

> fl) — Jlw) + s = ) + aly) (G5) — Gllu) o
> —L(uj —u) + k(uj —u) — f/C(uj —u) since u <wu; <u
>0

Y
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where C > 0 is such that

ou

o,

8w,~

‘Gﬂ

la(y)| sup max { } < CforalyeD,

2€QN 1<i<n
and we choose k large enough such that k& > L + LC.

We now prove (9.151)). The functions u;;, and w satisfy

ou; . 0uy
Aujpq +c 8;1 + a(y)G(u;) 8;1 — kw1 = —f(uj) — kuy, (5.152)
and - -
U U
Au + C@xl + a(y)G;(u) oz, = f(@)

By subtraction, the same method shows that A(7w — u;11) < 0, provided that k is
chosen as before. By [GIL, Theorem 8.1], the function u—w;; reaches its maximum

on the boundary 0€2y. Let P be a point of 8<[—N, N] x D) where u — u;; reaches
its maximum. If P € {—N} x D,

u— ujqpr < 0.
If Pe {N} x D, or (—N,N) x 0D, then
u—uj = 0.

Hence, in all cases,

[_Jrvnzgfiﬁ(u —ujy1) <0,

and consequently : u < u;1. An analogous argument shows that u;; < u, and by
induction, we proved that for all j € N, u < wu; <.

Thus, one has for all j € N,

(5.153)

Ou;;

Auj + gt + a(y)Giluj 1) g — kuj = — f(u; 1) — kuj

In addition, the inequalities (5.151)) imply that the functions w; are uniformly
bounded in L°°<(—N, N) x D) and because of the equations ((5.153) that are sat-

isfied by u;, the functions u; are uniformly bounded in I/Vlzo’f((—N ,N) x E) for

all p € (1,400). Hence, by taking a diagonal subsequence, (u;);en has a subse-
quence that converges strongly in C** for all A € (0,1), on compact subsets of
Qn = (=N, N) x D to a solution u" of (5.145). Then, for each N > 0, one has a

91



solution " defined on (—N, N) x D which belongs to WQ’p<(—N, N) x E).

loc

In order to know the behaviour of the solution u™¥ on {—N, N} x D, we will first
use the barrier function h.
The change of variables in the proof of Lemma [5.4] becomes

N—ZEI
2N

N—f—l'l
2N

u=0v+ p(=N,y) + Vg

It follows that the function ¢ defined by Lv = g is actually bounded in
L <(—N, N) x D) independently of N.
Moreover, with the definition (5.150)) of the barrier function h, and by [BN1, Lemma
7.1] one can deduce that on (0, N) x D

N—l’l
2N

uN (21, y) — p(—N,y) —

ve(y)| < Ch(xy), (5.154)

with C' and h independent of N. In particular, vV is continuous on {N} x 9D, and
satisfies the boundary condition

u (N, y) = v.(y) Yy € D.

Due to the symmetry of h, one has the estimate (5.154)) on (=N, N) x D, and since
h(—N) = 0, the function u” satisfies

uN(_N7 y) = p(_N7 y)7 vl/ € D7

which ensures that u” is continuous on Qy. Finally, since local up to the boundary
estimates (see footnote[l]) ensure that (u;);en converges uniformly on each compact

subset of Qn to u? € WQ”’((—N, N) XE), as j — +o00, and since for —N < 2y < N
and y € 0D, the function u; satisfies

U; = O,
it follows that the limit function u also satisfies
uY =0, for —N <2, < N andy € 9D.

Uniqueness in Proposition [5.3| will be addressed in the next section.
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5.3 Solution on the unbounded cylinder and solution with
critical speed c*

In order to let N tend to infinity, we first show that w is monotone with respect to
x1. Recall that for N > 1, there exists k large enough such that ([5.144]) holds. We

claim :

Proposition 5.5. Assume (GD), (AlphaD) and that f is C* and satisfies (1.8)).
Assume also that u is a solution of the problem (5.145)) which satisfies

o p(=N,y) = ulwr,y) = v(y) for all (x1,y) € (=N, N) x D,
e forall xy € (—N, N) there exists y € D such that p(—N,y) > u(z1,y).

Then u is decreasing with respect to x1, and one has u,, < 0. In addition, the
solution u 1s unique.

Proof. Since for all (z1,y) € (=N, N) x D, p(—=N,y) > u(z1,y) > vx(y), and since
for all z; € (=N, N), there exists y € D such that p(—N,y) > u(zy,y), we can
apply [BN1, Theorem 2.4] with

ou
al’i

F(z,u, Du, D*u) = Au + (c + a(y)Gy (u)81u> + a(y) Z Gi(u) + f(u),

and we obtain as before that u is decreasing with respect to z;. Note that [BNI]

Theorem 2.4] gives the uniqueness of the solution w.
O

Now, we would like to obtain a solution w on Q = (—o0,+00) x D. As in the
proof of Theorem [[.17] under Neumann boundary conditions, we will let N tend to
infinity, we will prove that there exists a solution u of . Note that we need
to make sure that this solution w is neither w_ nor identically 0.

Proof of Theorem [1.20. To prove the result, let r € R and consider

pr(x,y) = plzr+71,y),
() =su {uly) | vely) Sp(N +7y). vye D

By compactness of D, the uniform convergence of (v;)x to 0 on D and continuity of
p, r — h" exists and is continuous on R.

As before, there exists a unique function v™ € W?2» ((—N, N) XE) NC <[—N, N] xﬁ)
with h" < 0" < p" in (=N, N) x D, satisfying
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AV + O + oz(y)G;(v’")gZ,: + f(v") =0 on (=N, N) x D,
v =0 for — N <z <N, yedD,
v'(=N,y) =p"(=N,y), v"(N,y)="h"(y), yeD.

(5.155)

Indeed, p" is a supersolution of since

gi_ + f(p") <0,

Ap" +coip” + aly)Gip")

and
p"(N,y)=p(N +ry)>h"(y),

by definition of A". And A" is a subsolution of (5.155]) since

T

Oh
AW+ eyl + aly)GLR) 5+ f() 2 0,

and
h" < p(N +r,y) < p(—N+r,y) =p"(=N,y).

In addition, since v" < p” on (—N, N) x D and since p" is decreasing with respect to
x1, it follows that for all z; in (=N, N), there exists y € D such that p"(—=N,y) >
v"(x1,y). Hence, [BNT, Theorem 2.4] gives the uniqueness of solution of (5.155).

Since h" and p(N + r,y) vary continously with r € R, the uniqueness of solutions
of implies that v" depends continously in the C’D<[—N , N] x E) - topology
with respect to r. Also, since p is decreasing in 1, the function v" is a supersolution

of (5.155)) corresponding to any r’ > r :

A+ oo+ aly)Giv )2 + f(u™) =0 on (~N,N) x D
v" =0for — N <z <N, y € 0D (5.156)
v (=N,y) =p" (=N,y), v"(N,y)=h", ye D

Indeed, v" is a supersolution of ([5.156]) since

/

ov”
0$Z~

AV + cov” + a(y)G(v") + f(v") =0,

and

UT(_Na y) = pT(_Nv y) = 10<_N+ r, y) Z p(_N +'f'/,y) = pT/<_N7 y>7

v'(N,y) =h" = s%p{vk(y) | w(y) < p(N +1y), Vye D}
> s%p{vk(y) | okly) < p(N+7"y), Vye D}

/

=h".
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The function v" is decreasing in x; and in r, and bounded since h" < v" < p". Since
p tends uniformly to 0 when z; tends to 400, it follows that

lim v" =0, uniformly in y € D.
r—+00

Furthermore, since p tends to w_ when z; tends to —oo, and since

lim h'(y) = st;p{vk(y)} =v1(y),

r——00
we can deduce that lim,_,_., v" exists and satisfies

0<v < lim v" <w_, forally € D.

r——00

Since the function r — max 5 v"(0,y) is continuous, there exists a value rq such
that )
Sup,ep V1Y
max " (0,y) = — L0,
yeD 2

We denote by u” the corresponding solution v”. Actually, the function vV satisfies :

Aul + copulN —i—oz(y)Gg(uN)% + f(u¥)=0 on (=N,N)x D,
uV =0for — N <z, <N, y € 0D,
0<ul¥ <w_, 0N <0 in (—N,N) x D,

sup, 01 (1)
2

(5.157)
max, 5 uN(0,y) =

For any p > 1, given any compact subset of R x D, the family (u")y is bounded
in the W2? norm as N goes to infinity. Hence, there exists a sequence N; — 400
such that u™ — « uniformly on compact sets of R x D. Furthermore, since for all
N; € N the function u™i satisfies

uNi =0
on R x 0D, it follows that the limit function u satisfies

Au+ cOyu + a(y)G;(u)g—; + f(u)=0 onRx D,
u=0 on R x 0D,
0<u<w_, hu<O0 in R x D,

sup, 55 v1(y)
2

(5.158)
max, u(0,y) =

In particular, the last condition shows that the function u is neither 0 nor w_.
Moreover, since u is bounded and non-increasing with respect to xy, it follows that
1 has finite limits & and «* when x; tends to +oco and —oo.

We now argue as in the proof of Theorem to show that this convergence is
uniform with respect to y € D.

Let Q; = (—1,1) x D, and define z,, : 21 — R, by

Zm(xhy) = U(l'l + muy)
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As a result of the equation satisfied by u, the family (z,,),, is bounded in W?P(Q).
Hence, there exists a subsequence (2, )i of (2n)m which is weakly convergent in

WQ”’(Q ) and strongly in C1*(Q;). But since for y € D,

:E11i>r-r|-loo U(ﬂfl, y) - a(y)7

it follows that (z,, )x converges to @ in C1*(;). Thus, all the convergent subse-
quences of (2, ), converge to @ in C**(€);), which implies that (z,,), tends to % in
C'(€) when m tends to +oo, which gives that u converges in C'(D) to % when
x; — +00. A similar argument shows that u converges also in C'(D) to u* when
r1 — —0OQ.

Now, we want to show that the limits @ and u* of u as x1 — £00, which in principle
depend on y, have to satisfy the problem on the cross section D, namely .
To do that, we will use the following lemma :

Lemma 5.6. Let u be a solution of (5.158)). Then,

u
lim — =0
Ill)IEOO 8,’])1
Proof. The proof is exactly the same as the proof of Lemma [2.7] O

Now, let v € C}(D) be a test function and #; € R. Then

/leAu—l—c/lea—xl—l—/lvoz ZG’ 8951 / vf(u) = (5.159)

where 0y = (#; — 1,27 + 1) x D. First, by integration by parts, one has

2
/ vAu = / U@_@; — Vv - V.
(951 (921 axl (951

Using Lemma
82

du ou , _ ~
& (9x1 / (5x1 (@ +1y) - Oz 1( B 1’y>) — 0, when 7; — +o0.

Since u converges to @ in C1*(D), it follows that

/ V’v(y)-V’u(xl,y)dxldy—/ V’v(y)-V’u(p+a:~1,y)dpdy—>2/ V'v-V'a.
o (~1,1)xD

D

Similarly, one has

/ U@ — / v(y) (u(x] +1,y) —u(ad; — 1,y)>dy — 0 when 77 — +00,
O0xy D
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-(p + @1, y)dpdy,

‘" ‘" ou
/UO(ZZG 8% /(11 ZG u(p+ 71,v)) ™

which tends to

(i) 22 (y)dpdy = 2 (i) 2 (y)dy,
/(_171) Z (@(y)) 5 —(y)dpdy / Z (a(y (%Z (y)dy

when 77 — 400. Analogously, when £; — +00, the last integral of (5.159)) tends to

/vﬂmz/‘ o) (ulp + 1, y))dpdy — v(y) [ ((y))dpdy
951 (-1,1)xD (-1,1)xD

=2 [ o) fat)iy.

Hence, by passing to the limit when 7 — +o00 in (5.159)), the limit function @ has

to satisfy :
/~ - /[~ ou ~
/DUA u+ /D a(y) ;:2 Gi(u)& /Df(u)v = 0. (5.160)

Since u tends to @ in C'(D) as x; — +00, it follows that @ also satisfies the boundary
condition

=0 on dD.

Hence, the limit function @ satisfies the problem on the cross section (5.138)). In
addition, the function z,,, converges weakly in W?2?(D) and strongly in C**(D) to
@, which ensures that @ € W*P(D).

However, we assumed (AD) : the weak form of the problem on the cross section
has no other solutions than 0 and w_. Hence, due to the condition

Ssu U
mal(u(o’y) _ pyED 1<y)
yeD 2

and the fact that u is non-increasing in x;, one has :

lim w(zy,y) =w_(y) and lim wu(zy,y)=0.
1 ——00 x1—+00

In order to prove the last point of Theorem [1.20, we need the following result :

Proposition 5.7. Let ¢ > ¢* and let w the solution of (5.138)) constructed in the
proof of Theorem ([1.20)). Then,

lim [ Veo(e, )| <o) = 0.

T1—+00
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Proof. The proof is exactly the same as the one of Proposition under Neumann
boundary conditions.

]

Using Proposition we are now able to prove that the constructed solution w
of (4.117) is decreasing with respect to x;. In fact, the proof is exactly the same as
the proof of Theorem under Neumann boundary conditions.

O

Now that we know that if ¢ > ¢* > —oo, there exists a solution of ((5.138]), we
will show that there exists a solution of ([5.138)) with a speed ¢ = ¢*.

Proposition 5.8. Assume (GD), (AlphaD) and that f is C' and satisfies (1.8)).
Suppose that ¢* € R. Then, for ¢ = c*, there exists a solution of ([5.138|).

Proof. The proof is the same as in Neumann’s boundary conditions case, provided
that the constant function 1 is replaced by w_ in the proof of Proposition [2.9
O

6 Lower bound for ¢* for Dirichlet boundary con-
ditions

In the case of Neumann boundary conditions and without any convection term
(that is, when G = 0), it was shown in [BN1, Theorem 1.5 and Section 10] that if
we assume the KPP condition, namely

f(u) < f(0)u, (6.161)

for 0 < u < 1, then there exists an explicit formula for ¢* which only depends on f

namely
c=+/2f"(0).

With the convection term G # 0, and in the Dirichlet boundary condition case,
we will obtain a lower bound for the critical speed ¢*, under a set of conditions
involving both f and G.

We will establish a lower bound for ¢* involving the principal eigenvalue of a lin-
earized operator. Precisely, we will show that under the assumption (FD), namely
: 1(0) > A\j(—L), where the operator —L := —A"—a(y) > ., G;(O)%, there exists
a critical value ¢ which a lower bound for ¢*.
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6.1 Existence of ¢ and comparison with ¢*

Recall that in [BN2], in the Neumann boundary condition case, Berestycki and
Nirenberg consider the linearized problem around 0 to show that there exists a crit-
ical value v such that a certain eigenvalue problem has two positive eigenvalues if
¢ > 7. Then they prove that if f satisfies the KPP condition , the equality
¢* = v holds. We adapted their method in Chapter 4] under Neumann boundary
conditions.

Under Dirichlet boundary conditions, and in order to obtain an explicit formula for
¢* we will follow the approach in [BNI1] but with some modifications due to the
presence of the extra term G # 0 and the Dirichlet boundary conditions.

Consider the linearized system of ([5.138]) around O :

Aw + (c + a(y)G’l(O))alw +a(y) > r, G;(O)g—g +f(0Ow=0 inRxD,
w =70 on R x dD.
(6.162)
If w(zy,y) = e Mp(y), the function ¢ has to satisfy the following problem

{ ~Np = aly) i, GH0)2 — [(0)p = (X = Me+a@)Gi(0)¢  in D,

p=0 on 0D.
(6.163)
We say that A is a principal eigenvalue of , if there exists a positive function
© such that holds. Consider now the following eigenvalue problem

—Ao—ay) Y, Gi(0)dZ — f'(0)o = o in D,
{ c=0 on 0D. (6.164)

By [YIH|, Theorem 1.3], this problem has a simple eigenvalue p; € R, which corre-
sponds to a positive eigenfunction. However, as in Chapter [3| we can not deduce
immediately that the eigenvalue problem has an eigenvalue A\ because the
right-hand side term depends on y. We first need to prove a version of Proposition
with Dirichlet boundary conditions :

Proposition 6.1. Let w C R™ a bounded domain of class C?, and
L = a;;(2)0;; + bi(x)0; + ¢(x)

be a uniformly strongly elliptic operator with a;; = aj; € C(w), b; and ¢ € L®(w) for
all 1 <i,5 <n. We define

" ::sup{'y|3gb>0mw, ¢ =0 on dw, |(L+7)¢§0}-
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1. With this definition of v, one has v; = o“(—L), where 0“(—L) is defined
in [YIH, Theorem 1.3] as the only eigenvalue which corresponds to a positive
eigenfunction. Moreover, this eigenvalue is real.

2. The function ¢ — v1(c) is Lipschitz continous, with Lipschitz constant 1.

3. The function ¢ — ~(c) is concave.

Remark : This definition of +; coincides with the definition of the principal eigen-
value in [BNV].

Proof. The proof of the two first points is analogous to the proof of Proposition [3.1],
and the concavity is proved in [BNV] Proposition 2.1]. O]

Now, one can show the existence of an eigenvalue \ of (6.163[), with A € R, under
an additional condition on f’(0).

Proposition 6.2. Assume (GD), (AlphaD) and that
F1(0) > (L),

where the operator —L := —A' —a(y) >, G}(0)2-. Then, the principal eigenvalue
w1 of (6.164) is strictly negative.

Proof. By [YIH, Theorem 1.3|, the eigenvalue problem has a simple eigen-
value p; € R which corresponds to a positive eigenfunction ¢.

Consider A\ (—L) the principal eigenvalue of the operator —L := —A’'—a(y) >, G5(0)
Recall that A;(—L) is characterised by

0
axi :

M(=L) := sup {/\ 136> 0in D, 6=0o0n D, | (L+\)é < 0}. (6.165)

By taking ¢ the positive eigenfunction associated to u; in (6.164]) as a test function
in ([6.165]), one has

dp
81’7;

—Lo = =Ny —a(y) Z G;(0)

= (f’(O) + m)so-
Hence, by definition of A;(—L), it follows that
Ai(=L) = f(0) + pua,
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and hence, a sufficient condition to ensure p; < 0 is
f(0) > A (—L). (6.166)
O
We next show that the inequality can be satisfied under certain condi-

tions on 2 and the function aG.

Proposition 6.3. Let Q@ C R™ be a C* bounded domain. For all v € L*(Q,R"),
let A\1(Q,v) be the principal eigenvalue of —L == —A 4+ v -V in ), under Dirichlet
boundary conditions. Then, there exist Cy, Cy, > 0 such that, for all R > 0 such that
there ezists xy € Q with B(xg, R) C Q and all v € L*(Q,R"™) with |||v||| =: T,

Ch L 5 2
)\1(9,’0) S ﬁ + ﬁT / + 027‘ . (6167)
Proof. First, we apply [BNV] Proposition 5.1] with their notation : for 1 < i < n,
b, =0,s0 L' = —A,0 =b=r, and ¢y = 1. Hence, the condition > »? < b? is

=1 "1
satisfied since
n n
SRS ol ==
i=1 i=1

and the condition Y 7 | (0 — b;)* = 6% < beyg is valid for 7 < 1. Indeed,

n

> (0 - b)? :ibf =7rt<r
=1

i=1
if and only if 0 < 7 < 1. Hence, for 0 < 7 < 1, [BNV] Proposition 5.1] gives
M (L) < M\ (=A) + 72, (6.168)

Now consider the case where Q = B(0,1). It was proved in [HNRI Section 1] that,
when © = B(0, 1), the principal eigenvalue attains its supremum among all the drifts
v € L with [[v]le <7 if and only if v(z) = —7. Consider ¢ € Wy?(B(0,1)) the
principal eigenfunction of L which is positive in B(0, 1) and satisfies
x
—A¢(x) — Tl Vo(z) = M(B(0,1),7)¢(x).
For y € B(0, 1), define ¢)(y) := ¢(y/7). Then, the function 1) satisfies for = € B(0, 1),

—r2A(r) — 7 Vi(rx) = M (B(0, 1), 7 (rz).

]

In other words, the function v € H*(B(0, 7)) satisfies ¢ > 0 in B(0,7) and

~0() = L Vol) = M (BO.1). 7))
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for all y € B(0,7). By definition of A\;(B(0,7), 1), it follows that for all 7 > 1,

i)‘l(B<O’ 1)77_) = )‘1(3(077)’ 1) < )\1(3(07 1)’ 1)7

2
and so for all 7 > 1,
M(B(0,1),7) < A, (B(0,1), 1),

Hence, using (|6.168|), it follows that for all 7 > 0, there exist C; > 0, and Cy > 0,
such that

M(B(0,1),7) < Cy + 7% 4+ Cyr. (6.169)
Consider now the case where € := B(0, R), with R > 0. The principal eigenfunction
¢ € HY(B(0, R)) of L is positive in B(0, R) and satisfies

x
—Ap(r) —7—
() 7

For all z € B(0,1), now define ¢(z) := ¢(Rx). Then,

_%M(%) _ %% Vi (5) = MBO, R, ().

V() = M(B(0, R), 7)e(x).

In other words, the function ¢ € H*(B(0,1)), ¢ > 0 in B(0,1) and

—A(y) — TR% - Vi(y) = R (B(0, R), 7)),

for all y € B(0,1). This means that
1

M(B(0,R).7) = 7

A (B(0,1),7R).
Using (6.169)), we obtain
1
M(B(0,R),7) < 72 (01 + (TR)%? + CQ(TR)2>,

and finally,

Cl 7'3/2

2
Al(B(O,R),T) S ﬁ +ﬁ+027‘ .

Finally, if Q is such that B(0, R) C €2, we conclude using the fact that

() < M(Q) if Q C

which follows from the definition of the principal eigenvalue of \{, see for example
[BNV], Chapter 1].
The general case where B(xg, R) C {2 follows by translation.
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Corollary 6.4. If the measure of the domain D s sufficiently large, and the supre-
mum of aG' is sufficiently small, the inequality

f1(0) > M(=1) (6.170)
holds.

Proof. 1t is an immediate consequence of Proposition [6.3| with

vi=aly)(Gh(0). -+ G(0)).

Now, for each t € R, let uS(t) denote the principal eigenvalue of the operator

— = aly) Y GLO0) o — £1(0) + 15.00),

where

Be(y) = ¢+ a(y)G1(0).
As before, according to [YIH, Theorem 1.3], the principal eigenvalue u$(t) is char-
acterized by the existence of a unique ¢ = ¢(t) € Wy*(D), on the domain D with
Dirichlet boundary conditions, such that ¢(t)(y) > 0, for all y € D, normalized by
lo(t)||Lee(py = 1. This unique function satisfies

—Ap —aly) X, Gi0) 52 — f/(0)¢ + tB.(y)p = p§(t)p  in D,
{ =0 ’ on 0D. (6.171)

Denote by 5 (t) the principal eigenvalue of this problem ({6.171]). With this notation,
A € R is an eigenvalue of (6.163) if and only if

A= ().

Indeed, \? = p$(A) if and only if there exists a positive function ¢ in D which
satisfies
~A'¢—aly) i, Gi0) 52 — /(006 + Ae(y)é = N¢ in D, (6.172)
=0 on 0D, .

which is equivalent to

—N¢ —aly) Y, Gi(0)52 — f(0)p = (V — Aﬁc(y))¢ in D, (6.173)
¢ =0 on 8D,

which means that \ is an eigenvalue of . Once again, according to [YIH,
Theorem 1.3], none of the other eigenvalues corresponds to a positive eigenfunction.
Hence, it follows that A is a principal eigenvalue of if and only if p$(\) = A2,
in other words, if and only if A is a root of the equation u(t) = t.

In addition, we claim :
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Proposition 6.5. The eigenvalue p$(t) of problem (6.171)) is concave with respect
tot e R.

Proof. The proof is exactly the same as the proof of Proposition since the proof
does not depend on the boundary conditions.

[]

Now we are able to prove that there exist two critical values ¢’ and ¢ such that
if ¢ > ¢ the eigenvalue problem has exactly two positive eigenvalues, and if
¢ < ¢, it has exactly two negative eigenvalues, similarly to the earlier results, namely
Proposition and Proposition [4.7] in the case of Neumann boundary conditions.

Proposition 6.6. Assume (GD), (AlphaD) and that
f1(0) > M(=L),

where the operator —L := —A" — a(y) > 7, G;(O)%. Let g.(t) = p§(t) — t*. Then,
there exist ¢ < ¢ such that

c<¢ = g.(t) =0 has 2 negative solutions

c=¢ = g.(t) =0 has 1 negative solution
c<c<d = g.(t) =0 has no solutions

c=d = g.t) =0 has I positive solution

d<c = g.t) =0 has 2 positive solutions.

The number of roots of the equation g.(t) = 0 corresponds to the number of principal

eigenvalue(s) of (6.163)).

Proof. The proof is similar to the one of Proposition under Neumann boundary
conditions. We will details the points which are different.

Consider the t-dependent eigenvalue problem . For each ¢ € R, we know that
t — p$(t) is continuous and concave. In particular, by concavity of ¢ — u§(t), the
equation u§(t) = t* admits at most two roots.

We are going to use the following characterisation of pu§(t) :

pi(t) = sup {uc(t) |3dp>0in D, ¢ =0o0n 0D, (L + p(t))o < 0}, (6.174)

where

~Ly= A = a(y) Y GLO0) 5 — 110 + (). (6.175)
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Consider the eigenvalue problem

’ n l 09 __ 1
e N L

By [YIH, Theorem 1.3], this problem has a simple eigenvalue ;1 € R which corre-
sponds to a positive eigenfunction. Denote by ¢, this positive eigenfunction, and
take it as a test function in the definition (6.174) of p§(¢t) :

—Ligy = — ANy — Z G;(0 8% "(0)¢o + tBe(y)do
= pgo — f'(0)do + tﬁc( )(%50
_ (M - f’(O))cbo + t(c+ oa(y)G’l(O))%-

Denote k := infy a(y)G7(0) and K := supy a(y)G,(0). Then, for ¢ > 0, one has

~Ligo = (= /(0) + tle+ k) ),
and for t < 0,
~Ligo = (4= F'(0) + (e + K) ) .
Hence, by definition of uS(t), it follows that for ¢ > 0,
pi(t) > p— f(0) +t(c+ k),

and for ¢t < 0, that
HS(E) = = f1(0) + te + K).

We can deduce from those inequalities that

lim uf(t) =+oo fort >0, lim pj(t) = +oo fort <O0.
Cc——00

c—-+00

The rest of the proof is similar to the one of Proposition under Neumann bound-
ary conditions.
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6.2 Comparison between ¢* and ¢

Throughout this section, we assume the condition (FD), namely that
f'(0) > M\ (=1), (6.177)

where L is defined in Proposition 6.6 which ensures that the critical value ¢’ defined
in Proposition does exist. Recall that this condition holds if the measure of the
domain €2 is sufficiently big, and if the supremum of the function aG is sufficiently
small, see Corollary [6.4]

Now, we want to compare ¢ and c¢*. Precisely, we will show that ¢* > ¢ and that
under certain assumptions on G and f, ¢* = ¢.

Proposition 6.7. Assume (GD), (AlphaD) and that f is C' and satisfies (1.8)).
Let w be a solution of (5.138)) and assume also that the following condition holds :

"L Gy(s) Oa

s Ox;

f(0) >k,  wherek:= sup
(5,9)€(0,80)xD

(ww (6.178)

=2

Then, there exist two positive constants C' and € such that, for all R large enough,

/ / w < Ce ¢k,
R JD

Remark 6.8. Note that under Dirichlet boundary conditions, we do not need to
assume that a = 0 on 90D, in contrast to the corresponding result Proposition [3.6
in the Neumann boundary conditions case.

Note also that the assumptions (GD) and (AlphaD) ensure that k < 400, where

k is defined in (6.17§]).

Proof. The proof is very similar to the one of Proposition but not exactly the
same because of the Dirichlet boundary conditions. We will stress the only point
that differs. As before, let N > R > 0 and define a smooth cut-off function £ on R
such that 0 < ¢ <1 and

€z1) =4 1 if R<a <N, (6.179)
0 ife; <R-1
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Multiplying (5.138)) by &, integrating on 2 = R x D, and using Green’s formula it
follows that

/Q[wﬁ” £<c+a( )%) —é“wi%g—g +§f(w)} =0.  (6.180)

Indeed, holds because w satisfies Dirichlet boundary conditions on 9D, which
ensures that G(w) = 0 on D because G(0) = 0. In the proof of Proposition [3.6] we
needed to assume that o = 0 on D in order to have ((6.180]). The rest of the proof
is exactly the same as the one of Proposition |3.6] O

Thanks to Proposition we are able to prove the following theorem :

Theorem 6.9. Under the assumptions of Proposition there exist two positive
contants Cy and € such that the solution w of (5.138]) satisfies

w(xy,y) + |[Vw(zy,y)| < Coe™ =, for all (x1,y) € R x D. (6.181)

Proof. Let x1 > 1, Qq := (1 — 1L,z1 + 1) x D, and Qs := (27 — 2,21 +2) x D. By
embedding and then using [GIL, Theorem 9.13], there exist two positive constants
C7 and (5 independent of z; such that

lolleraar) < Cillullwasiay < Ca ol + 1F@)le ).

where p > n is fixed.

Remark 6.10. Recall that the local up to the boundary W?2? estimate for y € D
follows by adaptating the proof of [ADN] Theorem 15.2], see footnote

Since there exists C5 > 0 such that f(u) < Cyu for all w € (0,1), it follows that
| f(w)||r2) < Csl|wl|Lr(q,)- Hence, there exists K > 0 such that

lwllora@yy < Kllwllzrs)-

Since 0 < w < 1, and according to Proposition [6.7],

1+2 1/p
w(zy,y) + [Vw(zy,y |<K</ /

( /:1+2 / 1/p
< KC(e —m) "
= Coe "
with Cy := KC. m
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We are now able to prove Theorem [1.21] As previously in the proof of Theorem
[1.18] our strategy is to consider a travelling front solution w with speed ¢ > ¢* which
is a solution of ([5.138)), and show that there must exist at least one real eigenvalue

A of (6.163)).

Proof of Theorem|[1.21. Let ¢ > ¢*. By definition of ¢* and Theorem there exists

a solution w of

Aw + (et ap)Gw)) 22 + aly) i, Gi(w) g2 + f(w) =0 in Q,

w(—o00,y) =w_(y), w(+oo,y)=0 uniformly in y € D,

w > 0,

w =0 on R x dD.
(6.182)

We want to prove that there exists at least one real eigenvalue A\ associated to a
positive eigenfunction ¢, of

~Ap = aly) Tis, GU0)ZE — [(0)p = (X = Me+a)Gi(0)¢  in D,
=0 on 0D.
(6.183)
First, we will show that there exists a positive solution h of the linearized problem

h =20 on R x dD.
(6.184)
To do this, for N > 2, choose a sequence ng), which tends to 400 when N goes to
infinity and satisfies

{ Ah + (c + a(y)G’l(O))alh +a(y) X, GO 2 + f/(0)h=0 inRx D,

1
supw(ay,y) = -
yeD

Note that such a sequence exists since w is continuous and tends uniformly (with
respect to y) to 0 when z; tends to infinity. Now, define

hN(l‘l y) — w<x{\[+xlyy)
U 2sup,pw(y,y)

Exactly as in the proof of Theorem [1.18, we show that the function AN converges

in C’llo’;\ to a non negative function h which satisfies the following problem :

Ah+ (c+ a(y)Gi(0)oh + aly) > i, G;(O)g—; + f(0)h=0 onRx D,
h=20 on R x 0D,
0<h<1, 0,h<0 in R x D,
max, .5 h(0,y) = 3.

(6.185)
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Now, we want to prove that A~ > 0, in R x D using the Strong Maximum Principle.
Observe that

Ah+ (¢ + a(y)Gy(0))01h + a(y ZG’ —f'(0)r < 0.

axl
If h vanishes in €2, the Strong Maximum Principle gives that h is constant in €2,

therefore A = 0 in €2, which is impossible due to the condition max, 5 h(0,y) = 1/2,
hence, h > 0 in €.

We will now show that when z; tends to 4+oo, h tends to 0 in C'(D). The same
arguments as in the proof of Theorem [1.20] ensure that the function h tends to a
function h in C*(D) which satisfies :

{— aly) o, GH0) 4% — f'(0)h =0 in D, (6.186)
h=0 on 0D.

First, recall that under the assumption (FD), the principal eigenvalue j; of (6.164)
is negative. If h does not vanish in D, then & > 0 in D, but then, & is a positive
eigenfunction of ((6.164]) associated to the eigenvalue 0, which contradicts the result
in [YIH, Theorem 1.3] saying that this eigenvalue problem has a simple eigenvalue
11 < 0 corresponding to a positive eigenfunction, and that none of the other eigen-
values corresponds to a positive eigenfunction. Hence h vanishes at some point in D
and by the Strong Maximum Principle, & is constant, and because of the equation

(6.186), h = 0.

In the proof of Theorem [1.17] in the Neumann case, we used the lower bound
to show that at least one eigenvalue must make a non-zero contribution to the
expansion in (3.97)). The estimate is based on the proof of [BN2, Theorem
3.2] which relies on the Krylov-Safonov-Harnack inequality :

supu < Cyinf u,
S S
where S = [a—1,a] x D, based on e.g, [BCN|, Theorem 2.1]. However, this estimate
up to the boundary that holds because of the Neumann boundary conditions on
part of 3S but cannot hold in the case of zero Dirichlet boundary conditions.

We will use a local Harnack inequality, see |GIL, Corollary 9.25] which ensures that
for any ball B(xg,2R) C R x D there exists C' > 0 such that

sup h < C inf h. (6.187)
B(Io,R) B(‘TO’R)

Let D’ CC D be sufficiently small that there exists R > 0 such that for each § € R,
there exists zg := (£7,9) such that

N
S = [5 — 5.0+ 5] « D' C B(xo, R) C B(xo,2R) C R x D. (6.188)
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Then by |GIL, Corollary 9.25] there exists C' > 0 independant of ¢ such that

sup h < C'inf h.
S S

Then using that [[hllcias) < Cllhllweacs) < CllAllze < C|lAl|z~ and arguing as in
[BN2, Theorem 3.2], there exists C5 > 0 such that for z; > 1 and y € D’

Oh

8_:1:1 (z1,y) < Cs sup h(z1,y),

|¢—a1|<3 yeD’

and hence there exists a > 0 such that
oh
_ah(xlay) S O_(xl’y) S ah('rlay)
T

which implies that

oh
— h >0
axl +a (xby) = Y%
which is equivalent to
0
—\e"*h) > 0.
(9x1 <e > -

and then
eaxlh(xla y) Z 6ah<1’ y)7

Finally, denote by v := e*inf 57 h(1,y), one has
h(zy,y) > ye * (6.189)

for 21 > 1 and y € D’. Thus, we obtained the analogue of for y € D’ instead
of for y € D in (3.96) under Neumann boundary conditions. However, the estimate
for y € D’ is enough to ensure that the expansion corresponding to (3.97
in the Dirichlet case cannot be identically zero. Indeed, if the expansion in (3.97
(under Dirichlet boundary conditions) is identically zero, that would then imply
that

||h’||L°°({Z1}><D) < C'ef(aJrs/):rl’

where ¢’ = g9 — € > 0 with the notation in (3.97). Thus, that would contradict the
fact that h(z1,y) > ye ** for zy > 1 and y € D'.

The rest of the proof is similar to the one of Theorem [1.18 under Neumann boundary
conditions. The only difference is that the function ¢, (with the same notation as
in the proof of Theorem satisfies Dirichlet boundary conditions. The Strong
Maximum Principle yields that g, is positive in D, which implies that ¢, is an
eigenfunction of , associated to the eigenvalue A5 > 0. Hence, ¢ > ¢/, which
implies that ¢* > ¢, as required.

O
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6.3 Special case where G = (G1,0,---,0).

Recall that in the one dimensional case the equality ¢* = ¢ does not necessarily
hold. Indeed, [AKI], Proposition 2.3] with f(u) = u(1 — u) and G(u) = —yu? for
u € [0,1] and where v > /11/3 ensures that ¢* > (.

Recall also that under Neumann boundary conditions, and in a special case where
G = (G41,0,- - -,0), we showed in Proposition that the equality ¢* = ¢ holds by
adapting the approach of [BN2| Section 10].

We now show that under Dirichlet boundary conditions, in that special case, the
equality ¢* = ¢ still holds with the same conditions on the functions f, G and «,.

Proposition 6.11. Assume that G = (G1,0,---,0), with Gy # 0. Assume also that
the measure of the domain D is sufficiently big and that for y € D and u € R,

ay)Gy(u) > a(y)G(0),
as well as the KPP condition, for all u € (0,1),

flu) < f'(0)u.
Then

d=c.

Proof. The proof is very similar to the one of Proposition 3.9, using the method of
sub and super solutions. But under Dirichlet boundary conditions, we will use a
function vy, as a subsolution, instead of a small positive constant €y under Neumann
boundary conditions.

First, by Corollary [6.4] when the measure of the domain D is big enough, we have
f(0) > A\ (—A'), which ensures that ¢ exists by Proposition Assume ¢* > (.
Choose ¢ such that ¢* > ¢ > ¢/. Then, by definition of ¢, and since f'(0) > A(—A’)
whenever |D| is large enough, there exist 0 < A\; < Ay and ¢y, @9 positive functions
such that, for j = 1,2

{ —Ap;— f(0)p; = ()6 — Aj(e+ @(Q)Gll(o))>90j in D, (6.190)
0 =0 on 0D.

We will construct a solution of ((5.138]), using method of sub and supersolutions.
The function z := e %1, (y) satisfies

Az (et aW)GL)RE— f(2) 20 Q.
z2=0 on 052, (6.191)
z(+00,:) =0 uniformly in y.
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Note that contrary to the Neumann case (see the proof of Proposition , we do
not have that z(—oo,-) = +oo uniformly in y € D, but in the Dirichlet case, we
have that since ¢p; = 0 on 9D and 0,1 > 0 by the Hopf lemma, it follows that
there exists N > 1 sufficiently large such that e *1%1p;(y) > w_(y) for all y € D
and 1 < —N.
Then, fix an integer N > 1 such that z(—N,y) > w_(y), for all y € D. Using
again the Hopf which ensures that 0,7 > 0 and that the sequence of functions
(vg)x tends uniformly to 0 when k& — 400, we can choose k large enough such that
z2(N,y) > v (y), for all y € D.
The function vy is a subsolution and z is a supersolution on Qy = (=N, N) x D.
Now we will apply Propositior? with w = v, and ©w = h(x,y) =
7)

min(w_(y), z(x1,y)). Proposition [5.3| gives the existence of a solution u € C’(f)ZN) N
W2 (O \ ((£N} x 0D)) of
—Au — (c + a(y)Gﬁ(u))@lu — f(u) =0 in Qy,
u=20 for — N <zy <N,y € oD,
u(—N,y) = h(—=N,y) , u(N,y) = v(y) and vy <u < h.
(6.192)

[BN1, Theorem 7.2] ensures that there exists only one solution u € W27” (Q_N\

loc

+N}x0D) )NC(Qy) of (6.192)). Moreover, since c+a(y)G" is Lipschitz continuous
1

in x1, the [BNI, Theorem 7.2] gives also that dyu(zy,y) <0 for —N <z < N and
yeD.

Thus, for each N sufficiently large, one has a unique solution u" € VVfof (m\

({£N} x 8D)> N C(Qy) which satisfies

—AuY — (c+ a(y)G(u)ou — f(u¥) =0 in Qyp,

uN =0 for — N <z, < N,y € 0D,

uN(=N,y) = h(=N,y) , uM(N,y) = v(y) and v, < u < h,

O™ (x1,y) <0 for — N <z <N,y€eD.
(6.193)

Now we want to let NV tend to infinity, but we have to prevent the solution u" from
tending to w_ or 0 when N tends to infinity. To do this, consider a shift of h :

h"(z1,y) := min <w_(y), z(xq + y)),

and
B"(y) == Sl}ip {Uk(y), u(y) < 2(N +ry), Vye D}.

By compactness of D and continuity of z, the function r — A" exists and is contin-
uous on R. As before, there exists a unique function v” € W2" <Q_N\{:i:N} X 6D> N

loc
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C([—N, NJ x 5) with A" < o" < w_ in Qy satisfying

AV + (e + a(y)GL(v7))oww" + f(v") =0 in Qy,

v" =0 for — N <z < N,y€ oD,

v"(=N,y) =h"(=N,y) , v"(N,y) = F"(y), forallye D.

(6.194)

Indeed, the function A" is a minimum of two supersolutions, and consequently A" is
a supersolution, according to [YIH|, Lemma 5.1], which is based on results in [LE1],
and (" is a subsolution.
Moreover, [BN1l, Theorem 2.4] gives that v" is decreasing with respect to x; and the
uniqueness of solution v" satisfying . Since h" vary continuously with r € R,
the uniqueness of solution gives that r — v" is also continuous in Qy.

Also, since the function v" satisfies 5"(y) < v"(z1,y) < min (w_(y),z(xl + 7, y)),

and that 0;v" < 0, it follows that v" tends uniformly to 0 when r tends to +o00, and
the limit of v" when r tends to —oo exists and satisfies

vi(y) < lim o (21,y) <w-(y),
where vy is one of the family {v}reny which is assumed to exist in condition (BD).
Hence, by continuity of r — max,5v"(0,y), there exists a value of r such that

Ssu v
maxv" (0, y) = SUPyep 1(y)
yeD 2

Let «" denote the corresponding solution v”. Then, as in the proof of Proposi-
tion under Neumann boundary conditions, using the boundedness of (u")y in

2
W2

loc

Qn\{£N} x 8D> and a diagonal argument there exists a sequence (V;); such

that 4 — u uniformly on compact sets of R x D. Furthermore, the limit function
u satisfies

—Au — <c + a(y)Gﬁ(u))@lu —f(u) =0 inRx D,
v =0 for y € 0D,

| o= s (6.195)
Oru(ry,y) <0 for y € D,

\ Max, p u(0,y) = w‘

Finally, since u is non-increasing with respect to x, it follows that u has a finite
limit when z; tends to +oo. Moreover, limy, 4o u(z1,y) and lim,, o u(z1,y)
have to satisfy the problem on the cross section D ({5.138]) which can be shown using
arguments similar to those in the proof of Proposition (3.9 in the Neumann case.
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Hence, by assumption (AD), these limits have to be 0 or w_. But the normalization
condition

su v
max u(0, y) = PyeD 1(y)

)
yeD 2

ensures that

lim u(zy,y) =0and lim wu(z,y) =w-_.
xr1—+o0 Tr1——00

Similarly as in Proposition |3.9| under Neumann boundary conditions, we show that

the function u is decreasing and satlsﬁes - < 0. Hence, u belongs to the set K and
is a solution of (5.137) with a speed ¢ < c _ which is impossible by definition of ¢*
D

6.4 Existence of the {v;}; and w_

Recall that we assumed (AD), namely that there exists a function w_ € C**(D)
such that if z € C?**(D) : D — R satisfies (5.138) then 2 = 0 or 2 = w_. Hence, the

function w_ satisfies

Aw_+aly) X, Gi(w )5=+ f(w) =0 in D,
_ =0 on 0D, (6.196)
w_ >0 in D,

and the existence of a sequence of subsolutions {vi(y)}s uniformly bounded in
C*X(D), which satisfies for every k € N

0 < vg41(y) < wvk(y) <w-(y), fory € D,

and ([5.139)).

It is interesting to consider under which conditions on f and G these assumptions
can be satisfied.

Proposition 6.12. Assume the measure of the domain D to be large enough,
and that ||aG'(0)||s is small enough. Then there exists a sequence of functions

{vr(y)}x € C?A(D), which satisfies (5.139)).

Proof. Consider the operator —L = —A' — a(y) Y1, G}(0)z>. By [YIH, Theorem
1.3], this operator has a simple eigenvalue A € R which corresponds to a positive
eigenfunction ¢, under Dirichlet boundary conditions :

~Ap —aly) YL, Gi0)52 =Ny in D,
{ Y= 0 on 0D. (6.197)
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Let 6 € (0,1), and compute

A'(0p) + a(y ZG'

(6p) = 6| A'p + aly }:G f%@]

:qmwﬁi@mm»—qmga¢+i@ﬁ_

=2

Using the mean value theorem, for each 2 < ¢ < n, there exists & € (0,dp) such
that G(6p) — GL(0) = dpGY(&;). Hence, after dividing by ¢, the function dp is a
subsolution if and only if

0 JO9)_\ oy

ox; dp

5%@2}%@

=2

Letting § tend to 0, the term da(y) >, GY (&) 5= 92 tends to 0, and the term f(‘i‘f) A
tends to f’(0) — A. Using Proposition [6.3] we know that when |D| is large enough
and ||aG’(0)||o small enough,

F(0) > A\

Thus, for a decreasing sequence (0x)reny with limyg_, o dx = 0 and d; sufficiently

small, the sequence of functions {dxp}ren satisfies (5.139)).
O

Corollary 6.13. Under the same assumptions as Proposition [6.19, there exists a
function w_ € C**(D) which satisfies (6.196]).

Proof. Now that we have the existence of a sequence of functions {wvy}, which sat-
isfies . Hence, since the constant function 1 does not satisfy the Dirichlet
boundary conditions, we can use a v, as a subsolution, and 1 as a supersolution to
construct a function w_ € C**(D) which satisfies (6.196)).

O

We will show, building an idea in the proof of [ALLL Theorem 6.1}, that in a
special case where GG’ is a constant, Assumption (AD) is satisfied.

Proposition 6.14. Assume the measure of the domain D large enough, aG' is a
constant vector the supremum of which is sufficiently small, and that the function
f(u)/u is non increasing. Then, Assumption (AD) is satisfied.

Proof. First, let z be a positive solution of ([5.138)). There exist £ > 1 and C' > 1
such that v, <z < Cin D.
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By [YIH, Theorem 4.9 and Theorem 4.11] applied with v as a subsolution and a
constant C' > 1 as a supersolution of (5.138]), there exist a minimal solution u and
a maximal solution @ of (5.138)) (in the sense where if @ is a solution of ((5.138]) then
u < @ < u) which satisfy v, <u <u < C, and

{ Au+aG -Vu+ f(u)=0 in D,

Au+aG -Vu+ f(u)=0 in D. (6.198)

Multiplying by e®“ ¥y the first equation and by e*% ¥ the second one, subtracting
and then integrating over D, we obtain

/D eo‘G’~yQ<A’H+aG’ : Vﬂ> - eaG,.yﬂ<A@+aG/ ' Vg) * 6aG,.yQﬂ<@ - @> -

u u
(6.199)
Note that, after integration by parts, the following equality holds

/DeO‘G,'yg<A’U +aG"- Vﬂ) =— /D Vu - eV = /Dﬂe“G"y (A’g +aG" - VZ_L).

Hence, the equation ((6.199)) becomes

- a2 1),

Since f(u)/u is a non-increasing function and @ > u > 0 in
f@ 1@ 440 p.
u u
Then it follows that _
f@) _ f(u) in D. (6.200)
u u

By subtraction, the function @ — u therefore satisfies

A’(H—g)—i—aG’-V(ﬂ—y}—l—@(H—g):OinD.

If there exists an interior point where u—wu = 0, then by Strong Maximum Principle,
u — u = 0. Assume there is no such interior point, then, w — v > 0 in D. But since
f(u)/u is non increasing, it has to be a constant because of (6.200) for all u €
(ming u, maxyu) = (0, maxyu). Hence, the constant is equal to lim, o f(u)/u =
£/(0), and thus, the function w — u satisfies

AN@—u)+aG -V(@w—u)+ f(0)(@—u)=0in D
and Dirichlet boundary conditions on dD, which is impossible since

£(0) >)\1<—A’—aG’-V>,

for | D| sufficiently big and oG’ small enough, by Corollary . As a consequence,
U= u.

]
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7 Optimization of the critical speed c*

The minimal front speed ¢* typically characterises the longtime behaviour of solu-
tions of the initial value problem of with Dirichlet boundary conditions for
initial conditions with compact support, so is very important from the point of view
of applications. Hence it is interesting to investigate how this important value c¢*
depends on the various ingredients in the problem i.e f, G, a and D.

In this chapter, under Dirichlet boundary conditions, we will show the influence of
«a, G and f on the critical speed ¢* in some special cases. Precisely, we will use the
min-max formula (5.142)) and the definition (5.141]) of r to show how ¢* depends on
a, fand G.

Remark 7.1. Note that the results of Proposition and Proposition still hold
under Neumann boundary conditions. We consider the Dirichlet boundary condi-
tions in this chapter in order to use certain results about the optimisation of the
principal eigenvalue under Dirichlet boundary conditions as Proposition [6.3{and the
Faber-Krahn inequality.

Proposition 7.2. Fiz o and G. Then the map f — c¢*(f) is nondecreasing, in the
sense that if f € C([O, 1],R) satisfies

fu) < f(u)
for all uw € [0, 1], then

(f) < ().

Proof. First, fix a, f and G, and consider @ a decreasing (with respect to 1)
travelling front solution of ((5.137)) with speed ¢*(f) associated to a function f instead
of f. We will use the function @ as a test function in the min-max formula ([5.142)).

Note that 88_:?1 <0, s0 w € K. We obtain

SR A () Rl A0
i) (a) = et (f) + HELE
where 7 is defined in ([5.141)).
By definition of ¢*(f) in it follows that
; W) — f(w
() < e () +sup O I0)
€ —01w

Hence, if f(u) — f(u) < 0 for all uw € (0,1), then

(f) < e (f)
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since —o;w < 0.
UJ

Recall that in the special case where G = (G4,0, - - -,0), and under the assump-
tions of Proposition [6.11] the equality ¢* = ¢ holds. It is interesting to use this
equality to show how ¢* depend on the functions f, G, and «.

Proposition 7.3. Consider the special case where G = (G1,0,---,0).

1. If « < 0 in D (respectively « > 0 in D) then the map G| — c*(G}) is
nondecreasing (respectively nonincreasing).

2. If G} < 0 (respectively G| > 0) then the map o — ¢*(«) is nondecreasing
(respectively nonincreasing).

3. Assume that [ satisfies the KPP condition (1.31)) and that for y € D and
u€e R,

a(y)Gi(u) = a(y)Gy(0).
Then if G1(0) < 0 (respectively G (0) > 0) then the map o — c*(«) is nonde-
creasing (respectively nonincreasing).

Proof. 1. Fix v and f and let w be a decreasing (with respect to x1) travelling
front solution with speed c*(G) of (5.137) associated to G = (G4, 0, ---,0) with
G} < G. Then

ra(i)(x) = *(G) + aly) (G1(@) - Gy (@) ),

where rg is defined in ([5.141)).

By definition of ¢*(G), we obtain

¢(G) < @(G) + supaly) (Gi() - GL ().

z€Q
Hence, if o < 0 in D, and if for all u € [0,1], G}(u) > G (u), then
(@) < (G).
2. Fix G and f, and let @ be a decreasing (with respect to z;) travelling front

solution with speed ¢*(&) of ([5.138)) associated to &. Using a similar argument
to above, we obtain

¢*(0) < ¢'(3) + sup(a(y) = a(y)) G4 (7).

Thus, if G <0, and if @ > « in D, then ¢*(a) < ¢*(a).
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3. Recall that in this special case, the equality ¢* = ¢ holds. We will use the
characterisation, for ¢ > 0,

ji(t) = sup {p°(6) | 36 > 0in D, 6 =0 0n 0D, (A+f(0)~Het+aly)G(0) (1)) < 0},

already used in the proof of Proposition [6.6] Denote by ¢q the positive eigen-
function that satisfies

— Ny — f'(0)o + t(c + aly) G4 (0)bo = 15 (t)bo,

and with Dirichlet boundary conditions on dD. Using ¢, as a test function,
we obtain if ¢ > 0, that

~ 60— [(0)60 + te + @) G (0))do = (15(1) + LG1(0) (@ly) - aly) ) do
> (ui(0)+ t inf |G(0)(@(y) —alw)] ).

Hence, it follows that

A5 () > pS(t) 4t inf [G (0)(aly) — O‘(y))}’

yeD

and then, if &(y)G}(0) > a(y)G'(0), we obtain §(t) > u$(t). Recall that ¢ is
the only positive value such that the equation p(t) = * for each ¢ > 0 has
only one positive root. It follows that ¢(a) < ¢(«), if a(y)G}(0) > a(y)G'(0).
Since ¢’ = ¢* in this special case, the proof is complete.

]

Now, we will investigate the influence of the domain D on ¢* in the special case
where G = (G1,0,---,0) and « is constant.

Proposition 7.4. Consider the special case where G = (G1,0,---,0) and « is
constant. Assume that oG} (u) > aG}(0) for all u and the KPP condition (1.31)).
Assume also that f'(0) > AP(=A") where AP (—A") is the principal eigenvalue of the
Laplacian on the domain D, with Dirichlet boundary conditions on 0D. Then

(D) < ¢(B),
where B is the ball centered at 0 with the same measure as D, |D| = |B.

Proof. Recall that in this case one has ¢* = ¢ by Proposition [6.11} Consider the
following eigenvalue problem :

{ N — f(0)) = (Mg(t, D) —t(c+ oeG’l(O)))ﬁb in D, (7.201)

=0 on 0D.
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Recall that since we assume that f/(0) > AP(—A’), by Proposition there exists
¢ such that if ¢ > ¢, there exist 0 < A\; < A\, eigenvalues of , which are roots
of the equation u§(t, D) = t?, and for ¢ = ¢/, this equation has only one root \g > 0
which is an eigenvalue of (7.201)). By the Faber-Krahn inequality, it is well known
that the principal eigenvalue AP(—A’) of the Laplacian

—ANp=M\ in D,
{ 80:98 R (7.202)

reaches its minimum among all bounded C? domains with fixed measure when D =
B. Moreover we know that if AP(A’) = AB(A’), then D = B up to translation.
Hence, since we assumed that f/(0) > AP(A’), it follows that the inequality f’(0) >
AB(A") also holds. Consequently when D is the ball B, the quantity u$(¢, D) —t(c+
aG'(0)) reaches its minimum. Since t(c + aG7(0)) does not depend on D it follows
that p(t, D) reaches its minimum when D = B.

Let ¢ = ¢(B). By definition of ¢/, the equation ,u(fl(B) (t, B) = t? has only one root,
Ao > 0. But at this point Ay, one has

1P (N, D) > 15 P (N, B) = A2,

if D # B up to translation.

Recall that since f/(0) > AP(—A'), one has u$(0) < 0. By concavity and continuity
of t — uS$(t), using that p$(t) — t*> — —oo when t — +oo, it follows that the
equation ,uf(B) (t, D) = t* has two positive roots, which means that ¢/(B) > (D).
Since ¢ = ¢* in this special case, the proof is complete. O

In the case where « is not constant, we first need to define properly the function
a on other domains. To do this, define for R > 0

U(z) = ¢(z/R)

for all x in
Dg :={Rx,z € D}, (7.203)
where ¢ is the principal eigenfunction of
—NG+ |te+ aly)Gi(0) = 1(0)|6 = (e, D)o in D, (7200
»=0 on 0D.
It follows that the function v satisfies
A+ g te+ar(y)GLO) — O] =g i Dp oo
V=0 on 0Dg,
where
ar(y) == a(y/R) for all y € Dg. (7.206)
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Proposition 7.5. Consider the case G = (G4, 0, --+,0). Assuming the KPP condition
(1.31)) for f and that a(y)G)(u) > a(y)G(0) for ally € D, and all uw € (0,1), then

with the definitions ([7.203) of Dr and ([7.206) of agr, one has
(D) < ¢*(Dg),
for all R > 1.

Proof. 1f we denote by u$(t, R, Dg) the principal eigenvalue of ([7.205]), one has

ps(t, D)
RZ

1S (t, R, Dg) = < 1S(t, D) for all R > 1. (7.207)

Hence, taking ¢ = (D), it follows that for ¢ > 0 and R > 1, the equation
,u({,(D) (t, D) = t* has exactly one root )\g, whereas the equation ;ﬁ/(D) (t, R, Dg) = t*
has no solution for R > 1 because of the strict inequality , which means that
(D) < d(Dg). Recall that in this special case, the equality ¢* = ¢ allows us to

conclude.
O]

Another way to define o on other domains is to use the Schwarz rearrangement
o* of the function a. Before defining the Schwarz rearrangement o* of «, note that
if D is a measurable domain of finite measure |D| in R", we denote by D* the open
ball centered at 0 of measure |D|. If v is a non negative measurable function on D,
we define the Schwarz rearrangement o* on D* of the function « by :

a*(x) :=sup {t eER, ze{a> t}*}. (7.208)
We mention three properties of the Schwarz rearrangement that we will use, see
[KAW] :
Proposition 7.6. 1. The Schwarz rearrangement preserves the LP norm. Namely,
if € LP(D), then

o™ oDy = ||| Lo (D), for 1 < p < +oo. (7.209)

2. Let a1 and as be two measurable non negative functions on D. The Hardy-
Littlewood inequality holds :

/alagg/a{ag. (7.210)
D D

3. Ifae Wol’p(D), then a* € Wol’p(D) and one has the Pdlya-Szeqo inequality :

Vo], <||Vall, for all 1 < p < +o0. (7.211)
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Proposition 7.7. In the special case G = (G1,0, -+, 0), assuming the KPP condition
for f, >0 in D, and G(0) < 0 and that for’ allw € (0,1), G} (u) > G1(0),
then

(D) < (D7),

where D* is the ball centered at 0 with the same measure as D.

Proof. Consider the following two eigenvalue problems, defined in D and D* :

{ ~A6 + |te+a(y)G1(0) - (0)] ¢ = ps(t, D)¢  in D, (7.212)
=0 on 0D,
and
{ ~NG+ [tle+ ")) = SO0 = pi(t, D)6 MDY g
¢ =0 on 0D*,

Let ¢ > 0 in D be the principal eigenfunction of associated with
5 (t, D), which satisfies the normalisation condition ||¢||z2(py = 1. Using the Hardy-
Littlewood inequality and the fact that, for 1 < p < oo, the Schwarz re-
arrangement preserves the LP norm (see ) and the Pdlya-Szego inequality

it follows that for ¢ > 0
it.0) = te= £0)+ [ [Wp)Pay +1640) [ a)ity vy @2
> te=f0)+ [ Ve @Pde+1G(0) [ @)@ (s
—te— fO)+ [ IV @Pde+1G10) [ o) @)de. becanse ()" = (o),

S [V + [ (te+ a*(m)G1(0)) = £1(0)) ¢*
>

> in = us(t, D).
beHE (D), ¢ll2=1 [ ¢ 1(607)

The second line relies on the fact that G (0) < 0 and the Hardy-Littlewood inequal-
ity (7.210). As in the proof of Proposition [7.5] it follows from (¢, D) > p§(t, D*)
that /(D) < ¢/(D*), which concludes since ¢* = ¢ in that special case.

O]

8 Another form of convection term for Dirichlet
boundary conditions

Different modelling approaches could give several forms of convection term, that is
why we have considered a different form of convection term under Neumann bound-
ary conditions in Chapter I A natural question is to explore what happens with
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this alternative form of convection term under Dirichlet boundary conditions.

Here we consider the case where the convection term has the form V - (a(y)G(u))
instead of a(y)V - G(u).

With this form of convection term, a travelling front solution u(z,t) = w(z; —
ct,y) satisfies

—cOiw =Aw+V - (a(y)G(w)) + f(w) in Q,

w(—o00,y) =w_(y), w(+oo,y)=0 uniformly in y € D,
w >0 in €,

w =0 on R x dD.

(8.214)

Note that the first equation can be rewritten in the following form

Aw+ <c+oz(y)G’1 (w)>81w+oz(y) Z Gl(w) 2;3 +Z Gi(w)gz +f(w) =0. (8.215)

Throughout this chapter, we make the following assumptions :

e (GD1') : The function G : R® — R is C? and the function G, satisfy
G1(0) = 0.

e (GD2') : For all 2 < i < n, the function G; satisfies G;(0) = 0.

e (AlphaD’) : The function a: D — R is in C*(D).

e (AD’) : Let A € (0,1). There exists a non negative function w_ € C*N(D)
such that the only solutions in C**(D) of the problem on the cross section D
are w_ and 0.

Precisely, if 2 € C**(D) : D — R satisfies

{ Nz 4 aly) Yoy GU(=) 2 + Y0, Gi(2) 22 + f(2) =0 in D,

z2=0 on 0D, (8.216)

then z=0or 2z = w_.

e (BD’) : There exists a sequence of functions {vx(y)}ren uniformly bounded
in C?*(D), and which tends uniformly to 0 when k tends to +oc and which
satisfies for every k € N

0 < vgi1(y) < wvi(y) <w-(y), fory € D,

and
N+ a(y) Yo, Gilop) 32 + 30, Gi(vk) 8% + f(u) 20 in D,
v, =0 on 0D.
(8.217)
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e (FD') : The following condition holds :

£(0) + inf Y~ Gi(0) aa‘ (y) > A (—L), (8.218)

where —L := —A' — a(y) Y1, G4(0) 2.

With the new term >, G;(w) 2%, we will construct a solution on the truncated
cylinder Qn = (=N, N) x D.

8.1 Existence of a solution on the unbounded cylinder
As before, for p € K, defined in (5.140)),

] Ap(x) + V- (ay)Gp(@))) + (o))

7(p)(x) = — (@) , and

"= inf . 8.219
¢ = Inf supr(p)(z) (8.219)

As before, we have the existence of an upper bound for ¢*.

Proposition 8.1. Assume (GD1'), (GD2'), (AlphaD’) and that f is C' and
satisfies (1.30)). Then,
" < +oo.

Proof. To prove this, we will use the function g(z1,y) := h(x;)w_(y), where h is
defined in (2.49)).
For ;1 < —1, using the equation (8.216|) satisfied by w_, we obtain

A9V (aGl9) + f(9)

7(g)

—0ig
B h'w_ + hAw_ + aG&(g)h’w_ + o Z?:Q G;(g)h%ﬁz + Z;‘:Q Gi(g)g—; i f(hw_)
: —h'w_
B o (h had (G;(hw_) — G;(w_)) 861;;

—_W_a () —h'w._

S (i) = hGa(wo)) 82 phu) — hf(w)
+ N |
—hw- —h'w_

The terms —h”/h' and —aG'|(hw_) are bounded. We are going to deal with the
three other terms.
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Using the mean value theorem, for all 2 < i < n, there exists & € (hw_,w_) such
that

ho iy (Gilh-) — Gilw)) B2 i~ u-a L, GY(E) 5

—h'w_ —h'w_ ’

which is bounded because h(h — 1)/h’ is bounded.
Using again the mean value theorem, for all 2 < ¢ < n, there exists & € (hw_,w_)
such that :

S (Gilhwo) = hGi(w-) ) 22 Y, (Gulhw) = Gilwo) + Gilw-) — hGi(w-) ) 22
—hWw._ - —h'w_
- [G;<fi)(h — Dw- n (1- h)Gi<w)] da

—h'w_ —h'w_ a_xl

N

2

[h__h,l Gi(&) +

(2

3|

1-— hGi(w_)} Oa
N w_ 10z’

Il
V)

i

which is bounded because (h — 1)/h’ is bounded and because G;(0) = 0 for all
2 <i <n by (GD2'), which ensures that the ratio G;(w_)/w_ is bounded.
It can be shown similarly that the term

f(hw) = hf(w.)

—h'w_

is bounded, using the fact that f(0) = 0 and that the ratio (1 — h)/h’ is bounded
for r; < —1.

Hence, 7(g) is bounded for z; < —1.

For x; > 1, the ratio is (1 —h)/h’ is not bounded anymore, but using that G;(0) =0
for all 2 < ¢ < n and the mean value theorem, for all 2 < 7 < n there exist
& € (0,hw_) and & € (0,w_) such that

i (Gilhwo) = hGi(w-) ) 22 S, (Gilh) = Gi(0) + hGi(0) = hGi(w-) ) 42

—hw_ —hw_
= [GU&)hw_ hw_G'(zi;)7 Do
B ; [ —h'w_ + —h'w_ ] ox;

" h , ~.] O«

=Y —plee) a5

[|
I\

%

which is bounded, since for x; > 1 the ratio h/h’ is bounded.
We can show similarly that the ratio

flhw-) = hf(w-)

—h'w_
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is bounded, and hence, the function 7(g) is bounded for z; > 1.

We conclude using the continuity of 7(g), as in Proposition , that
sup7(g)(z1,y) < +oo.
e

Thus ¢* < +o00.
O]

Under certain assumptions, we will construct a solution of (8.214) on the trun-
cated cylinder Qy = (=N, N) x D. Let ¢ > ¢*. By definition of ¢*, there exists a
supersolution p of (8.214]). Assumption (BD’) ensures the existence of subsolutions

of (8:214).

Recall that since (vg)g tends uniformly to 0 when k& — o0, it follows that for
N > 1, there exists k large enough such that p(—N,y) > vi(y) for all y € D. We
claim :

Proposition 8.2. Let N > 1 and Qy = (—=N,N) x D C Q. Assume (GDY'),
(GD2'), (AlphaD’), (AD’), (BD') and that f is C' and satisfies (1.30). Then,
there exists a unique solution u € VV;f((—N, N) x E) which satisfies

o p(=N,y) = u(z1,y) = vi(y) for all (z1,y) € (=N, N) x D,

e for all x1 € (—N, N) there exists y € D such that p(—N,y) > u(z1,y),
of the following problem :

Au+ (e + aly)Gh(w)dhu + aly) Iy Giu) 2 + 70, Gi(w) 2 +(u) =0 in Qy
u=0 (z1,y) € (=N,N) x 0D,
uw(=N,y) = p(—=N,y), u(N,y)=vi(y) yeD.
(8.220)
For ¢ > ¢*, there exists at least one solution of (8.214).
Moreover, there exists also a solution of with speed ¢ = c*.

Proof. The proof of the existence of a solution on the truncated cylinder Q2 is
exactly the same as the proof of Proposition [5.3] using method of sub and super
solutions with the functions vy and p.

O

Theorem 8.3. Assume (GD1'), (GD2'), (AlphaD’), (AD’), (BD') and that f
is C1 and satisfies (1.30). Then, for ¢ > c*, there exists at least one solution of
(4.117).

In addition, if we also assume that the followz'ng condition holds :

ZG’

Then this solution is decreasing with respect to xy.

+f'(0) #0. (8.221)
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Proof. The proofs of the existence of solution on the unbounded cylinder Q) with a
speed ¢ > ¢* and a speed ¢ = ¢* are analogous to the proof of Theorem [1.20| and the
proof of Proposition
The proof of the monotonicity of the function w is very similar to the one of Theorem
4.5 The only difference is that we assume that to make sure that ¢(z,0)
does not tend to 0 when x; — +o0.

O

8.2 Linearized operator and eigenvalue problem

Now we will show the existence of a critical value ¢ as in Proposition [6.6] under
some additional assumptions.

To do this, consider the linearized problem of (8.214)) around 0

w =10 on R x 9D.
(8.222)

{ Aw + (c+a(p)GL(0) ) + aly) T, GHO)ZE + (LI, G0} 22 + [/(0))w =0 R x D,

If w(zy,y) = e A1 p(y), then the function ¢ has to satisfy

A = aly) LI, GHO) 2 — (LI GHO) 2 + 11(0) )¢ = (A2 = Me+ a(y)GL(0)¢ i D,
Y= O on 0D.
(8.223)
As before, by [YTH, Theorem 1.3], the following eigenvalue problem

~A — aly) S, GU0) 22 — (L1, GH0ZE + f(0))o = s in D,
oc=0 on 0D,
(8.224)
has a simple eigenvalue uo, € R, which corresponds to a positive eigenfunction. We
claim :

Proposition 8.4. Assume that G : R" — R is C*, (AlphaD’) and (8.218)). Then
the principal eigenvalue py of (8.224)) is negative.

Proof. Denote —L := —A' —a Y, G4(0)22

We will use the following characterisation of A\;(—L) :
Ai(—L) := sup {)\, d¢>0€ D, ¢=00ndD,(L+N)¢ < 0}.

Taking ¢ the principal eigenfunction of (8.224)) as a test function, it follows that

—Lyp = (ZG’ —+f( )+u2)902 (igfiGZ(O)aa
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which implies that, by definition of A\;(—L),

. . ! 80& /
M(=L) > ‘%f;Gi@)axi + f1(0) + po.

Hence, if

" 9
F1(0) + i%f; G(0) a;Z > \(—L), (8.225)

then ps < 0.
O

Corollary 8.5. Assume that G is C' and (AlphaD’) holds. Assume also that the
measure of the domain D is large enough, that |aG'(0)||s is small enough and that
the following condition holds :

£1(0) + %fzn: G4(0) 80‘4 > 0. (8.226)

Then the principal eigenvalue po of (8.224) is negative.

Proof. Using Proposition we know that for |D| large enough, and ||[aG’(0)]«
small enough, A;(—L) can be as small as we want. Hence, if (8.226)) holds, and if
|D| is big enough and [|aG'(0)]|» small enough, then (8.225) holds, (in other words,

assumption (FD’) is satisfied), which ensures that ps < 0.
[

Consider now the eigenvalue problem depending on ¢t € R :

=0 on 0D,
(8.227)

{ —Ap—aly) YL, Gi0) 52 - (ZZLQ Gi(0) 5 + f/(0)>90 +tBe(y)p = p5(t)p  in D,

where f.(y) = ¢+ a(y)G'(0).
As before, X is an eigenvalue of (8.223)) if and only if \ satisfies

p5(A) = A2,

Proposition 8.6. Assume that G is C*, (AlphaD’) and (FD'). Then the conclu-
sion of Proposition[6.6 holds. In particular, there exists a critical value ¢ such that
if ¢ >, the eigenvalue problem has two positive eigenvalues 0 < Ay < Ag,
and only one positive for ¢ = ¢ .

Proof. The arguments are the same as in the proof of Proposition [6.6], using the
concavity of ¢t — u$(t), and the fact that pu5(0) < 0 by Proposition O
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8.3 Comparison between ¢* and ¢

Now that we have the existence of the critical value ¢/, we will compare ¢* and (.
Precisely, one has

Theorem 8.7. Assume (GD1Y'), (AlphaD’) and that f satisfies (1.30)). Assume
either (GD2') or that « =0 on dD. Let w be the solution of (8.214). Then

w(xy,y) + [Vw(zy,y)| < Coe™ =, for all (x1,y) € R x D. (8.228)

Remark 8.8. Note that contrary to Theorem in the proof of Theorem [8.7, we
actually need that there exist C' > 0 and sy € (0,1) such that |Gy(s)| < Cs for all
s € (0, s9), which is satisfied since G1(0) = 0 (assumption (GD1’)).

Proof. We will first show that the conclusion of Proposition [6.7] holds. To do this,
let w be a solution, with Dirichlet boundary conditions on 0f2, of

Aw+<c+a(y)G'1( )81w+a ZG' +ZG ——l—f w) = 0. (8.229)

83:1

Let N > R > 0 and consider the cut-off function £ on R defined in (6.179).
By multiplying (8.229) by &, integrating over {2 and using Green’s formula, it follows
that

Jwe= [ en(cramn @) [ e ez [ €3 eimFee [ e -

(8.230)
The main difference with the proof of Proposition is that after using Green’s
formula on the third integral, under both assumption (GDZ2’) and that a = 0 on

0D, one has
- ow u Oa
G’ =— G;
| €atw) > Gitu)g, /QQ#; (w)

Thus, the equation (8.230]) becomes

/fo(w) :/Qw[f’<c+oz(y)Gl(w)> —5”] (8.231)

[erw = [ ) [ st

because £ = 1 in [R, N|. Since w tends uniformly to 0, with respect to y, when z;
tends to +o0o, we can take R sufficiently large such that there exists 6 > 0 such that
f(w) > (1 —=6)f'(0)w, and we obtain

[ [a-arows [ofe(eran @) -¢]

Note that




Then, since ¢ is constant on (—oo, R — 1] U[R, NJU[N + 1, +00), it follows that
/ Gl( . N+1 G1<w) "
[ole(er oy e] = ([* 4 [77) [ufe(eran @) e
N+1
ol e
RrR-1JD N D

Gl(w)> e

w

where K is such that

’(c—i—a(y) <K, forallyeD.

Hence, we obtain

IO)LN/Dng[/:I/Der/NNH/Dw] (8.232)

We argue as in the proof of Proposition and let NV tends to infinity :

O L)

and we conclude as in the proof of Proposition under Neumann boundary con-
ditions and the first form of convection term using the function

:/:/Dw

that there exist C' > 0 and € > 0 such that for all R > 0,

/ /wgCe_ER
R JD

The rest of the proof is identical to the one of Theorem [6.9] O
We now prove Theorem [1.22]

Proof of Theorem[1.23 Let ¢ > ¢*, and consider a solution u of (8.214) with speed
c.
As in the proof of Theorem [I.21] we will construct a positive solution of the linearized

problem (8.222)). To do that, define

U(.T{V + Ty, y)
2sup,cpu(zy,y)’

hN('Tlvy) =
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where (z))y is chosen as in the proof of Theorem The function h'¥ satisfies

ARY + (c—ka(y)G'l(u(lev—i—xl,y)))ath + a(y ZG'( u(z + a, )) %};N

u(zY + 1,y)) da N f(“(xiv +$1>y)>

+ =
Y e o Ta e

As before, a compactness argument ensures that the sequence of functions (h'V)y
converges weakly in VVZQOCP and strongly in Cllo’;\ to a function A when N — 4-o0.
Moreover, when N tends to 400, the extra term will converge to

lim zn: Gi(u(z +]5\1;17y)) O _ = I Gi(u(z + x1,7)) ZG, |
Notooi= 2supu(ay,y) O S Notoo  u(@) +21,y) 8:151
Hence, the function h satisfies the linearized problem (8.222) and the condition
SUp,cp h(0,y) = % Furthermore, since we assumed the condition (8.218]), one has

+1(0))h

S FO)h

Ah+(c—|—a(y)G’1( )31h+oz ZG’ 891: (ZG'

(;22{26”

<0.

As before, Maximum Principle argument ensures that A > 0 in R x D. The rest of
the proof is identical to that of Theorem [I1.21] n

Remark 8.9. Note that in the special case where G = (G4,0, - -+, 0), the extra term
is 0, and Proposition [6.11] gives that ¢* = ¢’

8.4 Existence of the {v;}; and w_

Recall that in assumptions (AD’) and (BD') we assumed that there exists a non
negative function w_ € C**(D) which satisfies

{A’w +aly) i, Gilw-) G + X0, Ga(w-) 5 + fw-) =0 in D,
w_ = on 0D,
(8.233)
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and that there exists a sequence of functions {vk(y)}xren uniformly bounded in
C*X(D), and which tends uniformly to 0 when k tends to +o0o and which satis-
fies for every k € N

0 < vpr1(y) < v(y) <w_(y), for y € D,

and
v+ aly) Yy G(0) 22 + 0, Gi(v) 22 + f(0) >0 in D,
i i (8.234)
v, =0 on 0D.
Proposition 8.10. Assume that the following inequality
"0)+ > GH0) da (8.235)
=2

holds, where X is the principal eigenvalue of the operator —L = —A’_—
aly) Soi, Gi(0)52. Then, there exists a sequence of functions {vi}y € C*(D),
which satisfies (8.234]).

Proof. Consider the operator —L = —A' — a(y) Y1, G4(0) 2. By [YIH, Theorem
1.3], this operator has a simple eigenvalue A € R which corresponds to a positive
eigenfunction ¢, under Dirichlet boundary conditions :

- ( )Zz 2G,( >3x —)\QO in D7
{ w= O on 0D. (8.236)
Let 6 € (0,1), and compute
1 (6 = Ja
A'(50) + aly ZG (6¢) éﬁ + Y Gildp) 5 + £(3¢)
i=2 ! i=2 ’
B ([ w9 | [(6p) ~ 0
= 6[ay) > (Ci00) = G10)) 5+ =57 = x| + > Gilbe) g

Using the mean value theorem, for all 2 < i < n, there exists & € (0,dp) such
that G(dp) — GL(0) = dpGY(&;). Hence, after dividing by ¢, the function dp is a
subsolution of (8.233)) if and only if

e 92 Gi(op) Do _

i=2 i=2
If ¢ tends to 0, the term da(y) >, G”(@)—Le tends to 0, and the term (‘if -2+

Yo, 5(2“’) gj tends to f/(0) — A+ Y1, G4(0) 22 - which is positive since we assumed
8.235).

Thus, for § sufficiently small, the sequence of functions {0xp}y satisfies (8.234]).

]
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Remark 8.11. If the measure of the domain D is sufficiently big, and if ||aG’(0)]~
is small enough, then the equation (8.235) holds by Proposition and hence there
exists a sequence of functions {vy}, € C**(D), which satisfies (8.234)).

Corollary 8.12. Under the same assumptions of Proposition there exists a
function w_ € C* (D) which satisfies (8.233)).

Proof. Under the assumptions of Proposition [8.10 we know that there exists a sub-
solution of ([8.233)). Taking the constant function 1 as a supersolution, we construct
a function w_ which satisfies all the required properties. O

9 Conclusion

Under both Neumann and Dirichlet boundary conditions, and with the two forms
of the convection term, namely a(y)V - G(u) and V - <a(y)G(u)>, we proved that

under the assumptions of Theorem and the assumptions of Theorem (for
Neumann boundary conditions), and of Theorem and Theorem (for Dirich-
let boundary conditions), that there exists a critical speed ¢* such that travelling
front solutions of and exist with speed c if and only if ¢ > ¢*. Due to
the presence of the convection term, in both cases, this critical speed ¢* might be
negative. This is an important difference with the case without convection term in
[BN2] where the critical speed ¢* was positive. Indeed, if a travelling front solution
has a negative speed ¢ < 0, then the wave will go from 1 to 0 by moving to the
right. Hence, what you see as an observer will depend on the sign of the speed c :
if ¢ < 0, the density of the population will converge to 0, meaning the extinction of
the species.

Under both Neumann and Dirichlet we also proved that there exists a critical speed
c related to a certain eigenvalue problem associated to the linearized problem around
0. We proved that, for the two forms of the convection term, the inequality ¢* > ¢/
holds under the assumptions of Theorem [1.18] Theorem (for Neumann bound-
ary conditions) and Theorem and Theorem [1.22] (for Dirichlet boundary condi-
tions). Recall that in [BN2], Berestycki and Nirenberg proved that under the KPP
condition for f, the equality ¢* = ¢ holds. With the presence of convection,
the derivative terms O;u for 2 < ¢ < n, were complicated to handle and prevented
us to adapt the method of sub and supersolution used by Berestycki and Niren-
berg to prove the equality except in some special cases. However, under Neumann
boundary conditions, we highlighted two cases where the equality ¢* = ¢ holds.
The first special case is when the convection term has the form G = (G1,0,- - -,0)
see Proposition and the second one is when G(0) = 0, see Proposition m
Under Dirichlet boundary conditions, we also proved this equality holds in the case
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where the convection term has the form G = (G4,0,- - -,0). The equality ¢* = ¢
does not hold in general, even when no convection terms are present, but it would
be interesting to find sufficient conditions for equality for a wider class of convection
terms G.

In [BN2], Berestycki and Nirenberg explained that the term «(y)0d;u in the equation
is a transport term or a driving flow along the direction of the cylinder. This flow is
represented by the term a(y) which does not depend on z;. In our special case when
the convection term has the form G = (Gy,0, -+, 0), the equation is similar to the one
in [BN2], except that the coefficient term in front of the first derivative 0;u depends
on u, which means that this diving flow can depend on the density of the species.
Note also that when the convection term G has the form G = (G4,0,- - +,0), the
equation is the same as the one in the one-dimensional case, and that is what mo-
tivated us to study this special case. Indeed, the one-dimensional theoretical model
has sometimes been relevant to practical observations. For instance, in [MUR] Sec-
tion 13.8], Murray explained that after a near extinction of the otter population in
the early 1900s, the population followed a growth that was very close to the one-
dimensional model.

Here we have only studied the case where f is monostable (see (1.30)). An inter-
esting question is to ask what the results would have been if the function f was
bistable, which means that there exists s € (0,1) such that f < 0 on (0,s), and
f > 0on (s,1), instead of monostable. For example, the bistable case could arise
in the field of combustion, see [BN2, Introduction]. Without any convection term,
it was proved in [BN2] that there exists a single speed ¢*, which means that all the
travelling wave solutions move with the same speed ¢*. In the bistable case, the sign
of ¢* is again important, because it typically determines what an observer will see
as t — 400, and except in some simple cases, the sign of ¢* is difficult to determine
even without convection term, and will clearly be affected by the presence of con-
vection.

The convection terms we have studied in this thesis have been prototype terms
that were not motivated by particular applications. It would be very interesting to
identify concrete applications where non-linear convection is important, which could
motivate both specific forms of convection term and application-inspired research
questions.
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