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Abstract

Plasma facing components (PFCs) must be designed to routinely withstand the

harsh environment of a fusion device, where temperatures at the core of the

plasma exceed 150,000,000 °C. The heat by induction to verify extremes (HIVE)

experimental facility was established to replicate the thermal loads a PFC is

subjected to during normal operation of a fusion device.

To maximise its impact on the design of PFCs, HIVE must deliver smarter

testing and improved component insight. Currently, the experimental parameters

required to deliver a certain response to the component are decided at the point

of testing through a combination of previous experience, intuition, and trial &

error, which is both time-consuming and unreliable. To assess a PFC’s suitability,

knowledge of its mechanical performance while operating at high temperatures

is desirable, however HIVE only records pointwise temperature measurements on

the component’s surface using thermocouples. Currently, HIVE has no method

of inferring a component’s mechanical response using the temperature measure-

ments.

Both the challenges of smarter testing and improved component insight can

be achieved through the identification of inverse solutions. A popular approach

to solving engineering inverse problems is surrogate assisted optimisation, where

a machine learning model is trained using finite element (FE) simulation data.

Much of the work in literature use single value surrogate models on quite simplistic

problems, however HIVE is a real-world, multi-physics problem which requires

full field (FF) surrogate models to solve its multitude of inverse problems.

The development of a method which can easily construct FE data driven FF

surrogates would be invaluable for a variety of tasks in engineering, as well as

solving inverse problems. In this work, it demonstrates that it can provide a much

more robust and comprehensive method of characterising a PFC’s strengths and

limitations, enabling more informed decisions to be made during its design cycle.
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Chapter 1

Introduction

1.1 Fusion Energy

The world’s energy consumption has increased dramatically over the past 80

years, increasing from 22,869TWh in 1940 to 176,431TWh in 2021 [1]. This

increase has been predominantly supplied through the burning of fossil fuels such

as coal, oil and natural gas, highlighted by the breakdown of energy sources over

time shown in fig. 1.1. The burning of fossil fuels releases carbon dioxide (CO2) in

to the atmosphere, resulting in an increase of more than 30% in its concentration

in the atmosphere in the past 70 years, rising from 315 parts per million in 1950

to 414 in 2021 [2]. The link between rising global atmospheric temperatures,

often termed as global warming, and increasing concentration of CO2 and other

greenhouse gases in the atmosphere is well established [3]. This has resulted in

the majority of countries committing to net-zero greenhouse gas emissions by

2050, with China - the world’s largest emitters - committing to 2060 [4], [5].

The energy sector accounts for 72% of global greenhouse gas emissions, there-

fore to achieve the ambitious 2050 net-zero targets alternative, emission-free en-

ergy sources are required [5]. Renewable energy sources, such as solar, wind and

tidal, have developed rapidly over the past two decades. By 2026 wind turbines

which produce in excess of 16MW of power will be available, producing more

than 80,000MWh of energy per year [6]. While renewables are integral to the

makeup of the net-zero energy portfolio, their supply is unreliable due to their de-

pendence on weather, especially on a local level. It is essential that other energy

sources are available at times when renewables are unable to satisfy the energy

demand.
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Figure 1.1: Global energy consumption by source, 1800-2021 [1].

Nuclear power plants have been delivering power to the grid in the UK since

1956. These plants produce energy by means of nuclear fission, where the nucleus

of a heavy element is split into two lighter nuclei, releasing energy in the process.

While nuclear fission is an extremely efficient energy source, its use is opposed

by many due to the by-production of radioactive waste, which is harmful to the

environment if released. This waste must be properly disposed of and monitored

for hundreds, if not thousands, of years [7].

Often viewed as the ‘holy grail’ of energy sources, fusion energy can play an

important role in the future energy portfolio. Conversely to fission, nuclear fusion

involves fusing lighter nuclei to form a heavier nucleus, which releases between

three and four times more energy than nuclear fission for the same quantity of

fuel [7]. Fusion also produces no CO2 or other harmful atmospheric emissions,

meaning that it does not contribute to greenhouse gas emissions or global warm-

ing.

Achieving fusion of nuclei on Earth requires heating a plasma to in excess

of 150,000,000 ◦C, around ten times hotter than the core of the sun. This has

routinely been achieved over the past 40 years at the Joint European Torus (JET)
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fusion facility located at the UK Atomic Energy Authority (UKAEA) site in

Culham, Oxfordshire. JET is currently the world’s largest and most advanced

operational tokamak, the inside of which is shown in fig. 1.2. Due to its size and

design, JET will never be able to produce net energy.

Figure 1.2: JET tokamak [8].

There are a number of key challenges which must be overcome for fusion

energy to become a widely available and a financially viable energy source [9]:

1. Creation and sustainment of a controlled burning plasma.

2. Controlling the exhaust of heat and helium ‘ash’.

3. Developing materials for fusion reactors, including those which are neutron-

tolerant.

4. Developing components to work inside a fusion device.

5. Breeding and managing tritium, an important fuel source for fusion.

6. Achieving a high availability for the fusion plant through robotic mainte-

nance.

These challenges span a wide variety of disciplines, from plasma physics to

materials science, from chemistry to robotics, highlighting the truly multi-physics

nature of fusion.
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1.2 HIVE Experimental Facility

The heat by induction to verify extremes (HIVE) facility, also located at UKAEA’s

Culham site, was established to help tackle challenge number 4 in the above list;

the development of components to work inside a fusion device [10]. Plasma facing

components (PFCs) are those in closest proximity to the extremely hot plasma,

and thus must be designed to withstand this hostile environment long-term. For

reference, the majority of components shown in fig. 1.2 are classified as PFCs.

HIVE is a multi-physics, high heat flux (HHF) experimental facility which

aims to replicate the thermal loads a PFC is subjected to during normal operation

of a fusion device. Under vacuum, induction heating is used to thermally load

components, while pressurised coolant is used to remove excess heat. HIVE was

designed to replicate even the most extreme conditions experienced in a fusion

device, which is a heat flux of up to 20MW/m2.

The primary experimental data collected by HIVE is via thermocouples, which

are probes that are joined on to the surface of a component that record pointwise

temperature measurements. Unfortunately, there are only a limited number of

thermocouples available for use in HIVE, and their placement is restricted, i.e.

they cannot be placed in a location which interferes with the induction coil.

To maximise the impact that HIVE has during the research & design (R&D)

of PFCs, two different opportunities have been identified; smarter testing and

enhanced component insight.

1.2.1 Smarter Testing

Prior to testing, the client – those who have designed the component under testing

– will specify the different conditions they desire the component to be subjected

to during the experimental campaign. Examples include ensuring a prescribed

temperature is delivered to a certain part of the component or subjecting the

component to a large thermal gradient, all the while ensuring that the compo-

nent’s maximum temperature stays below its service limit. The suit of tests a

component will be subjected to during an experimental campaign is known as

the design of physical experiments (DoPE). Problems such as this, where the

outcome is known, but the conditions needed to achieve it are not, are known as

inverse problems and arise frequently in science and engineering [11]–[13].

Due to the limited diagnostics available in HIVE, it’s extremely difficult for

its operators to accurately assess whether these desirable outcomes have been
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achieved. Moreover, the experimental parameters required to deliver each out-

come are identified at the point of testing through a combination of previous

experience, intuition, and trial & error. An initial experiment is performed using

a set of experimental parameters chosen by the HIVE operator, which are then

iteratively changed until the perceived desired result is achieved. Since HIVE of-

ten tests components designed with novel features, materials and manufacturing

methods, these initial guesses can be highly inaccurate. Coupling this with the

large number of experimental parameters inevitably leads to performing a high

number of redundant experiments.

This approach is not only expensive due to the high running costs of the

facility, but also extremely time-consuming due to the need to depressurise the

vacuum vessel prior to each experiment. Furthermore, the component will un-

dergo lifecycle degradation during this iterative process, which will impact the

results of the desired tests.

Due to its involvement in numerous projects within UKAEA and collaborating

fusion research labs, the HIVE facility is in high demand, therefore it is essential

components are tested in a high throughput manner. Along with this, relying

on the intuition of experienced operators is an unsustainable approach, since this

breadth of knowledge, which has been built up over many years, can be quickly

lost through staff turnover, for example. It is imperative, therefore, that a faster,

more robust, and cost-effective method of solving this inverse problem is found.

1.2.2 Enhanced Component Insight

To assess a component’s suitability as a PFC, knowledge of its mechanical perfor-

mance while subjected to large thermal gradients, caused by the induced heating

and active cooling, is desirable. Unfortunately, due to operational and logistical

constraints, the inclusion of diagnostic tools to measure a component’s mechanical

performance, such as strain gauges, is infeasible. Instead, only the temperature

of the component at specific points is measured by means of thermocouples. Cur-

rently, HIVE has no method of inferring the mechanical properties of interest from

the sparse thermal experimental data, meaning that only limited understanding

of a component’s suitability is gained from each experiment. The development

of a method which uses the sparse temperature data to infer a component’s me-

chanical behaviour would enable more informed changes to be made during the

design cycle, thus reducing the number of iterations required and the time taken
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to develop PFCs.

Problems such as this, where the property of interest can’t be measured di-

rectly but is inferred using other ‘proxy measurements’, arises often [14]. In

economics, gross domestic product (GDP) is often used as a proxy for living

standards [15], in conservation, habitat areas are used as a proxy for the degree

of welfare of endangered species [16], and in marine biology coral reef health is

used as a proxy to measure the bio-diversity of the marine life [17]. The work of

Chen et al. even shows that the movement of a computer mouse can be used as

a proxy for a person’s level of attention [18].

The use of proxies is also commonplace in other experimental facilities. Laser

flash analysis is an experiment used to measure the thermal properties of a ma-

terial [19], [20]. In this experiment, a short laser pulse heats the ‘top’ surface

of a standardised disc-shaped specimen, with the resulting temperature rise on

the opposing ‘bottom’ face measured as a function of time using a detector. The

time dependent temperature data recorded by the detector is used as a proxy to

estimate the thermal conductivity of the material, which are related by means of

an empirical relationship. Similarly, in a tensile test, a specimen with a standard-

ized geometry is subjected to uniaxial loading along its length until failure [21].

The force required to uniaxially load the component along with the reduction

in its cross-sectional area are used as a proxy to infer key mechanical material

properties, such as its elastic modulus, yield strength, and tensile strength.

The ability to use these proxy measurements to infer more insightful infor-

mation is attributed to the single mechanism nature of these experiments, along

with the highly controlled environment in which they are tested, e.g. specific

specimen geometry, specific loading conditions etc. The multi-physics nature of

HIVE along with its variability in terms of the component design and experimen-

tal parameters means that a novel method is required to identify the properties

of interest from the sparse experimental data.

The mechanical response of a component is derived from its thermal state,

therefore knowledge of the temperature field throughout the component is re-

quired. Inferring the entire temperature field from a few pointwise measurements

can be thought of as an extension of the inverse heat transfer problem (IHTP).

The IHTP is a well known inverse problem in science and engineering, where

unknown boundary conditions (BCs) or material properties are estimated using

discrete temperature measurements taken within the domain of the heat con-

ducting medium [22]. In general, the IHTP terminates with the knowledge of the
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unknown quantities.

An extension of the IHTP would be to use the estimated unknown quantities

along with other known quantities as inputs in the forward model to generate

the temperature field throughout the domain. This temperature field will have

matching temperatures with those discrete measurements which were used to es-

timate the unknown parameters. As a result, the ability to solve inverse problems

is crucial to the task of enhancing the component insight, as well ensuring smarter

testing.

1.3 Inverse Problems and Machine Learning

Inverse problems are characterised by knowledge of the outcome, but not the

conditions needed to achieve it. Given the highly nonlinear nature of the HIVE

experiment along with the plethora of experimental parameters means that solv-

ing this inverse problem is simply too complex for the human mind. Inverse

modelling, which is the term used to describe the process of gaining an inverse

solution, is an extremely active area of research and can provide more accurate

and robust solutions than those currently employed.

Many of the recent developments in the field of inverse modelling use super-

vised learning algorithms, which is a branch of machine learning (ML) [23]–[25].

ML is the science of getting computers to learn and make predictions without

being explicitly programmed to do so. ML algorithms enable computers to self-

learn by finding patterns and extracting features from data, which are used to

make predictions on new, previously unseen data.

The theory behind supervised learning techniques is well documented in lit-

erature [26], [27]. Many of the supervised learning algorithms used nowadays

were postulated a long time ago, however due to the recent development in com-

puter hardware and the availability of machine learning libraries, such as PyTorch

and TensorFlow, means their full potential is now being realised. For example,

the logic of artificial neural networks (ANN) were conceptualised by McCulloch

and Pitts in 1944, while regression – which is now commonly grouped in with

supervised learning – has its roots as far back as the late 18th century [28], [29].

A supervised ML model uses available data to update the values of the model

parameters to improve its accuracy in a process known as training. The number of

parameters a model consists of will depend on the supervised learning algorithm

used. In most engineering applications, the data used to train these models is
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synthetic. Synthetic data is generated using a computational model, commonly

referred to as a simulation, of the system in question. It is extremely useful in

circumstances where the real data is insufficient, and is used in most, if not all,

branches of science and engineering to guide decision-making. Given the limited

quantity of experimental data generated by HIVE, this work will depend entirely

on synthetic data for training ML models.

While computational models have been an extremely important tool over

the past seven decades, they are often computationally expensive to evaluate

[30]. A popular application of ML in the field of computational science and

engineering is for the development of surrogate models. Surrogates, often referred

to as metamodels or emulators, use supervised learning algorithms to imitate the

behaviour of computational models, providing orders of magnitude speed up in

their evaluation time [31]. This faster evaluation time makes them useful for

a number of applications, including sensitivity analysis, ‘what-if’ scenarios, and

optimisation problems, commonly referred to as surrogate assisted optimisation

(SAO) [32].

Surrogates can also be used to solve inverse problems in an approach known

as indirect inverse modelling, which is a branch of SAO and is discussed in more

detail in section 2.2 [33]. Much of the SAO work in literature is insufficient for

the problems faced by HIVE. Often, these problems are highly idealised, e.g.

specimens with simple geometries made from single materials or 2D problems

based on single mechanisms, e.g. thermal or mechanical [34], [35]. HIVE, on the

other hand, will test multi-material components with complex geometries in a

highly-nonlinear, multi-physics, real world setting. There are also a wide variety

of different unknowns which HIVE will need to estimate, whereas the work in

literature tends to revolve around estimating at most two different parameters

[24], [36].

The majority of SAO work in literature uses single value (SV) surrogates

[37]. The outputs of SV surrogates are key metrics extracted from the simulation

results, e.g. maximum temperature or stress at a specific location [37]–[39]. The

advantage of SV surrogates is that the small number of outputs means that

training and evaluating the ML model is fast, however a new model will need to

be generated if the desired outcome changes. Full field (FF) surrogates, on the

other hand, predict entire results fields generated by a simulation, e.g. predicting

the temperature at the nodes of a mesh [40], [41]. These offer more flexibility since

a variety of different key metrics can be extracted from the results field, however
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they come at an increased computational cost since the number of outputs can

be very large.

The use of FF surrogates for inverse modelling, and indeed SAO in general,

in literature is extremely limited. This work will investigate their use for solving

inverse problems along with SV surrogates to compare their performance. This

work will also investigate the use of dimensionality reduction techniques to reduce

the computational burden of generating FF surrogates. While many supervised

learning algorithms have been used for the generation of surrogate models, with

an excellent review given by Kianifar et al., this work will use Gaussian process

regression (GPR) and multi layer perceptron (MLP), a type of ANN [42].

1.4 Aims and Objectives

The primary aim of this thesis is to investigate the use of surrogate models in

solving inverse problems for a highly complex, nonlinear, real world testcase to

maximise its impact on the design of PFCs. As HIVE continually tests compo-

nents of different geometries and materials, a different surrogate model will be

required for each. This means that new synthetic data will need to be generated

on a case-by-case basis. Also, given that HIVE is in high demand, it is essential

that the required analysis is performed in a timely manner. Achieving this will

require the development of a fully automated workflow which takes advantage

of parallelisation and high performance computing (HPC) capability to provide

rapid solutions.

The secondary aim is to develop a method for optimising the location of ther-

mocouples for each component tested. Currently, all available thermocouples are

used in each experiment and are arbitrarily placed. Joining the thermocouples to

the component is a very time-consuming process, with each individual thermo-

couple taking around half an hour to join. Identifying an optimal configuration

of thermocouples could result in more insightful data, and possibly reduce the

number required, enabling experiments to take place more rapidly.

To achieve these aims, the following objectives are identified;

1. Provide a review of the recent work and developments surrounding inverse

modelling with ML and sensor optimisation.

2. Develop a framework which supports the automation of entire workflows,

and utilises HPC systems for improved parallelisation.
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3. Develop a robust and accurate computational model for the HIVE facility.

4. Investigate the accuracy of different ML algorithms for the generation of

surrogate models and their ability to identify inverse solutions.

5. Demonstrate the improvements in the DoPE and component insight using

this methodology.

6. Demonstrate a proof of concept for inferring the stress state of components

from sparse, discrete temperature measurements.

7. Develop a method of optimising the placement of thermocouples.

The research carried out in order to achieve these objectives is split into several

stages, which are described in the outline of the thesis. This research has been

carried out within the framework of the EUROfusion Consortium and has received

funding from the Euratom research and training programme 2014-2018 and 2019-

2020 under grant agreement No 633053 and from the RCUK Energy Programme

[grant number EP/I501045] and EPSRC [grant number EP/R012091/1]. The re-

search was conducted under the supervision of Dr Llion Evans and Prof. Perumal

Nithiarau, both of Swansea University, and Dr Andrew Davis of UKAEA.

1.5 Outline of the Thesis

This thesis is formed of 9 chapters and is complemented by an appendix. The

organisation of these is as follows:

• Chapter 1: Introduction presents a brief introduction to fusion energy

and its role in the future energy portfolio, along with its challenges and

motivation for the HIVE facility. The current limitations of HIVE are used

as motivation for this thesis, specifically the construction of a comprehensive

DoPE and estimation of key properties without relying on the need for

previous experience and intuition. The aim and objectives of this thesis are

then stated.

• Chapter 2: Review of Current Methodologies provides a review of

inverse modelling methods used in literature, especially those which use

surrogate models. Both the use of SV and FF surrogate are discussed,

along with the dimensionality reduction techniques which are commonly
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employed in the latter. Following this, the literature surrounding the opti-

misation of sensor placements is also reviewed to harness the state-of-the-

art methods for optimal data collection using thermocouples. This chapter

also presents an overview of popular optimisation algorithms, with the novel

MultiSLSQP package presented. Along with this, the difficulty currently

faced in establishing automated workflows for computational engineering

purposes is discussed, highlighting the need for the development of the Vir-

tualLab package.

• Chapter 3: Surrogate Model Generation presents the theory behind

the supervised learning algorithms used to generate surrogate models for

this work. This chapter also presents the theory of dimensionality reduc-

tion techniques used in this work, providing examples of their use for both

linear and nonlinear data. This chapter also discusses the different data

sampling strategies available in literature for collecting simulation data to

train surrogate models, with both pre-determined and adaptive methodolo-

gies presented.

• Chapter 4: The HIVE Facility gives a more detailed discussion on

fusion energy, its challenge with regard to the exhaust system and need

for a facility such as HIVE. This section discusses the setup of the HIVE

facility, including its multi-physics loading and available diagnostic tools.

Here, common desired experimental outcomes are discussed, along with the

experimental parameters which affect the heating of a component and their

sensitivity.

• Chapter 5: VirtualLab presents the VirtualLab platform which has been

developed for this thesis to provide an automated workflow for synthetic

data generation and analysis. A detailed description of the simulation cre-

ated within VirtualLab for the HIVE experimental facility is presented,

which includes the use of clustering algorithms to reduce the computation

times substantially. The developed simulation is validated using experimen-

tal data, showing a high degree of accuracy.

• Chapter 6: Optimisation of Hardware Configuration uses the su-

pervised learning algorithms discussed in chapter 3 to construct SV and

FF surrogates to model the impact of the coil design and positioning in

terms of the thermal loading delivered to a component. The SV surrogate
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models reduce the heating profile generated by the FE model to two values;

the power delivered to the component and the variation of the heating pro-

file. The FF surrogate models aim to replicate the heating profile on the

surface adjacent to the induction coil. These models are then used to in-

versely identify a range of experimental parameters which deliver desirable

outcomes.

• Chapter 7: Smarter Component Testing builds on the knowledge

gained in chapter 6 to construct three-dimensional FF surrogate models

for both the temperature and Von Mises stress field. These are used to

identify the experimental parameters which deliver a variety of desirable

behaviour in the component, enabling a more comprehensive DoPE to be

generated. These surrogate models are also used to assess the sensitivity

of the experimental parameters on the results. To showcase the developed

workflow, the same analysis is performed on an alternative component with

a different design and materials to highlight that the same level of insight

can be gained without any prior knowledge of the component other than

its design.

• Chapter 8: Enhancing Sparse Experimental Data presents a method-

ology for using the thermocouple data recorded by HIVE to enhance the

understanding of a component’s strengths and limitations. First, this data

is used to infer both the temperature and stress field throughout the com-

ponent. Following this, the placement of the thermocouples is optimised,

reducing the number required. A method of adding prior knowledge of

the experiment in to the methodology is presented, which helps reduce the

number of thermocouples required further. Finally, the experimental data

is used to estimate the values of uncertain parameters relating to the com-

ponent design. This is demonstrated here for the thermal efficiency of the

bond between two surfaces, however its use can be applied to any number

of other uncertain parameters relating to the manufactured state of the

designed component.

• Chapter 9: Conclusions and Future Work presents an overview of the

work and the main achievements of the thesis, along with a discussion on

how this work is of benefit to the wider scientific community. A summary of

the most useful tools developed for this thesis are also presented, and their
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use in other research projects. Finally, a discussion on future work which

could improve the methodology and frameworks for use in other applications

is discussed.

• Appendix A: presents specific scripts extracted from the VirtualLab pack-

age which are discussed during the thesis.

1.6 Research Outcomes

This section presents a list of the research outcomes from the work performed as

part of this thesis.

1.6.1 Contributions

This thesis has demonstrated that surrogate models can be used to solve a variety

of inverse problems for a challenging engineering problem. In chapter 7 it is

shown that surrogates can advise a substantially more comprehensive DoPE for

a component to assess its suitability, even taking into account the stress state

of the component. This is demonstrated for two very different components to

highlight that this insight is possible without the need for any prior knowledge

of the component.

This thesis has also demonstrated that surrogate models can be used alongside

proxy measurements to infer highly elusive properties in a complex use case. This

is demonstrated in section 8.2, where it is shown that as few as four pointwise sur-

face temperature measurements are sufficient to infer the temperature and stress

field throughout the component, thus providing a much better understanding of

the component.

The methodology described in this thesis has resulted in the development of

two new open source packages; VirtualLab andMultiSLSQP. VirtualLab is a fully-

automated, parallelised and portable framework for rapid generation of synthetic

data and subsequent analysis, which is discussed in more detail in chapter 5 [43].

Along with the software itself, there is considerable support offered around the

package in the form of a comprehensive set of documents [44]. These documents

cover the installation of the package, tutorials and guide on how to contribute. In

addition to the software, four different datasets generated for this thesis have been

made publicly available [45]. These consist of data extracted from simulations

which were used to train surrogate models.

13



MultiSLSQP is an extension of SciPy’s sequential least squares programming

(SLSQP) optimisation algorithm to support the input of multiple initial points,

and is discussed in section 2.4.3. Harnessing the use of tensor multiplication

reduces the computational burden of performing tasks individually, enabling a

substantial improvement compared with a sequential strategy. This is especially

useful in scenarios where evaluation of the objective function is computationally

expensive to evaluate. MultiSLSQP has been developed so that it’s compatible

with any version of SciPy from 1.4.0 to the most recent version (1.11.0), and

requires no additional python packages to those required by SciPy [46].

1.6.2 Conference Papers and Presentations

• Rh. Lewis, Ll.M. Evans, R. Otin, K. Leng , A.D.L. Hancock, A. Davis, J.

Thyiagalingam, P. Nithiarasu. Lab Experiment Optimisation Using Cou-

pled Finite Element Analysis and Machine Learning. UK Association for

Computational Mechanics Conference, Loughborough, United Kingdom.

April 2021.

• Rh. Lewis, Ll.M. Evans, R. Otin, A.D.L. Hancock, A. Davis, P. Nithiarasu.

Using Gaussian Process Regression with Coupled Multi-physics FEA Sim-

ulations to Enhance Sparse Experimental Data. European Community on

Computational Methods in Applied Sciences, Oslo, Norway. June 2022.

Keynote in inverse modelling stream.

• Rh. Lewis, Ll.M. Evans, R. Otin, A.D.L. Hancock, A. Davis, P. Nithiarasu.

Optimisation of Sensor Placement for HIVE Experimental Facility using

Data Driven Surrogate Models. FuseNet PhD Event, Padova, Italy. July

2022.

• Rh. Lewis, Ll.M. Evans, R. Otin, A.D.L. Hancock, A. Davis, P. Nithiarasu.

Machine Learning Guided Optimisation of Sensor Placement for HIVE Ex-

perimental Facility. Symposium on Fusion Technology, Dubrovnik, Croatia.

September 2022.

• Rh. Lewis, B. Thorpe , Ll.M. Evans. VirtualLab: A fully automated,

open-source platform for virtual experiments. Image Based Simulation 4i,

London, United Kingdom. October 2023.
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1.6.3 Workshops

• A one-day workshop demonstrating the VirtualLab package for use in image

based simulation workflows. Image Based Simulation 4i, London, United

Kingdom. October 2021.

1.6.4 Research Posters

• Rh. Lewis, Ll.M. Evans, R. Otin, A.D.L. Hancock, A. Davis, P. Nithiarasu.

A Virtual Twin of UKAEA HIVE Experiment for Improved Analysis of Di-

vertor High Heat Flux Testing. Symposium on Fusion Technology, Dubrovnik,

Croatia. September 2020.

• Rh. Lewis, Ll.M. Evans, R. Otin, A.D.L. Hancock, A. Davis, P. Nithiarasu.

Coupling Simulation with Machine Learning to Enhance the HIVE Exper-

imental Facility. FuseNet PhD Event, Padova, Italy. July 2022.

• Rh. Lewis, Ll.M. Evans, R. Otin, A.D.L. Hancock, A. Davis, P. Nithiarasu.Optimisation

of Design of Physical Experiments for the HIVE Experimental Facility us-

ing 3D GPR surrogate models. Symposium on Fusion Engineering, Oxford,

United Kingdom. July 2023.
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Chapter 2

Review of Current Methodologies

2.1 Introductory Remarks

The aim of this chapter is to provide a review of the state-of-the-art of two research

topics integral to this thesis; inverse modelling and sensor placement optimisa-

tion. As discussed in chapter 1, both the goal of smarter testing and enhanced

component insight in HIVE can be achieved by solving an inverse problem, there-

fore this in an integral component of this thesis. Inverse modelling is still a very

active area of research, therefore this chapter will provide a review of the most

recent work presented in literature in section 2.2, with the primary focus on those

that use surrogate models.

The second aim of this thesis is to develop a method of optimally locating

the sensor placements in HIVE, ensuring only the most valuable data is recorded.

This has close parallels to the field of IHTP, where sensor optimisation has been

identified as an avenue of future research [23]. Section 2.3 will provide a review

of the use of sensor placement optimisation in other fields and identifying those

applicable to HIVE and the wider IHTP field.

As optimisation plays an important role in both the inverse modelling and

sensor placements, an overview of popular optimisation algorithms is given in

section 2.4, with the novel MultiSLSQP package presented [46]. MultiSLSQP

enables a fare more efficient search of the parameter space for the identification

of a more optimal solution.

Finally, section 2.5 provides an overview of computational modelling tech-

niques and the issues faced in generating vast quantities of synthetic data.

16



2.2 Inverse Modelling

Inverse problems are defined as the identification of a set of conditions x∗ =

{x∗1, ..., x∗i } which achieve a certain outcome y∗ = {y∗1, ..., y∗j} for a process or

system which maps x to y. Depending on the application, an equation for the

forward model, f , for this mapping may or may not be known.

Inverse problems, inverse modelling and inverse methods are overlapping,

amorphous terms which are used interchangeably depending on the field in ques-

tion. For clarity, this work uses the term inverse problems to describe the problem

statement, e.g. what the desired unknown parameters are for the given outcome,

while inverse modelling refers to the way in which these unknown parameters are

estimated.

One of the reasons inverse modelling has received much attention in literature

is due to the ill-posedness of these types of problems. Any problem which is not

well-posed is referred to as ill-posed. The idea of well-posedness was defined by

Jacques Hadamard in 1902 and states that any problem must have the following

properties to be considered well posed [47]:

1. a solution exists,

2. the solution is unique, and

3. the solution depends continuously on the initial values.

For inverse problems, condition 2 is violated for all but the most trivial ex-

amples, as multiple combination of inputs can produce the same outcome (non-

uniqueness). Condition 3 is also often violated, as slight changes in the outcome

will often lead to large changes in the inverse solution (ill-conditioning).

2.2.1 Direct and Indirect Methods

Many modelling techniques have been researched for solving inverse problems,

which can be grouped in to two distinct categories; direct and indirect methods

[48].

Prior to computers becoming available, direct methods were the only practical

method to solve inverse problems [33]. The approach of direct methods is to

transform from the data space into the model space view [48]. That is, an inverse

model is sought who’s inputs are the outputs of the forward model, while its
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output is the forward model’s input, see fig. 2.1. Using this inverse model, the

desired conditions, y∗, are input to the model, resulting in the inverse solution,

x∗. Due to the aforementioned ill-posedness issue of inverse models, regularisation

must be added, the most common of which is the Tikhonov regularisation [49].

Figure 2.1: Forward and inverse models

Direct methods have the advantage of delivering rapid solution to inverse

problems, which is especially useful in scenarios where speed is important, such as

robotics [12]. Originally the inverse mapping was achieved through a combination

of exponential, power law and polynomial shape functions that best fit the data.

An example of this can be found in the work of Jaluria, where a number of

different thermal systems are investigated [50].

More recently, ML algorithms have been used to create the mapping for these

inverse models. In the work of Wanigasekara et al. a shallow MLP was used

to identify the ideal conditions to manufacture a thermoplastic laminate with

desirable characteristics [51]. The work of Tamaddon-Jahromi et al. used a deeper

MLP, often referred to as deep neural networks, to solve the IHTP [23]. Here,

the focus was on the 2D diffusion and convection-diffusion problems in a square
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domain. Toquica et al. investigated the accuracy of three variations of ANNs to

solve the inverse kinematics problem of a robotic arm [25].

Nowadays, indirect inverse methods are more commonly used than direct

methods [33]. Instead of creating an inverse mapping, this method identifies x∗

using an optimisation algorithm to minimise the difference between the output

of the forward model, f and y∗. This is formulated in eq. 2.1 where Lf is the

objective function of the optimisation problem and P is the i-dimensional search

space where solutions are sought.

x∗ =argmin
x

Lf (f(x),y
∗)

s.t. x ∈ P
(2.1)

The form of Lf will depend on the problem, however when y∗ are real valued

outputs this is commonly the squared error between the two, which is given by

eq. 2.2. Minimisation of this objective function is often referred to as the least

squares error (LSE) approach.

LSE
f (f(x),y∗) = ||f(x)− y∗||2 (2.2)

The squared error objective function is commonly used since its derivative

with respect to x is easily derived, which is given in eq. 2.3. This result means

that the objective function’s differentiability depends on the differentiability of

the forward model with respect to x. This is an important result, since having a

well-defined gradient for the objective function means that gradient-based opti-

misation algorithms can be used. An overview of gradient-based and gradient-free

algorithms are provided in section 2.4.

d

dx
LSE
f (f(x),y∗) = 2(f(x)− y∗)

df

dx
(2.3)

Indirect methods provide a great deal more flexibility compared with direct

methods, enabling the exploration of various solutions to the inverse problem

(where multiple valid solutions exist). This is extremely advantageous for the

construction of a DoPE in HIVE, where knowledge of several combinations of

experimental parameters which deliver the same desired outcome enables the op-

erators to decide which to use based on other external factors. For example,

consider that there are two different combinations of experimental parameters

which will deliver the same outcome, both of which use a different induction coil,
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then to save time, the experimental parameters with the induction coil which is

already in place would be chosen. This is an example of human-machine collab-

oration guiding, but not making, decisions [52].

2.2.2 Surrogate Assisted Optimisation

In the majority of applications in science and engineering, the forward model

f is an expensive to evaluate computational model of the system in question.

This means that their use in optimisation algorithms can be extremely time-

consuming. An example of this is given in the work of Dabrowski and Dabrowski,

where thermocouple data was used alongside a computational model to estimate

the heat flux a rocket surface is subjected to [53]. This analysis took over 3 days

to complete, with only a single unknown parameter estimated. This explains why

most of the work carried out in literature use surrogate models in a field known

as SAO.

In the majority of cases, the surrogate models generated for the purpose of

SAO are SV surrogates. Jin et al. compared the use of polynomial regression,

GPR and radial basis function (RBF) to ascertain the diameter and height of a

two bar structure which minimises its volume [36]. Values for these two variables

are also sought which minimise the uncertainty of the system. Varhan et al. use

a random forest based surrogate model to identify geometric parameters which

maximises the efficiency of a propeller design [24]. Zhu et al. use GPR to reduce

the weight of an automotive front-body structures by modelling its structural

crashworthiness performance indicators [54].

There are occasions where the number of outputs a SV surrogate model must

predict is large. An example of this are transient problems, where data is ex-

tracted from the computational model and different times [55]. Many supervised

learning algorithms are unsuited to modelling a large number of outputs, there-

fore a common approach is to reduce the dimensionality of the output. The most

popular approach for this is to project the high dimensional data on to a lower

dimensional, linear subspace, with is achieved using a principal component anal-

ysis (PCA), also termed as proper orthogonal decomposition (POD), of the data.

This approach, which is outlined in more detail in section 3.3.1, identifies the

principal components (PC) of the data on which to project it, thus reducing its

dimensionality.

In the work of Khaledi et al. the vertical displacement is recorded at 9 locations
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at 45 different steps for a tunnel excavation, resulting in 405 outputs which need

to be modelled [56]. PCA is used, with the subsequent reduced outputs modelled

using RBF. In the work of Havinga et al. PCA and GPR is used to reduce the

dimensionality of the output during the process of metal forming [57]. In the

work of Kato et al. computational fluid dynamics (CFD) analyses are replaced

by a POD and RBF-based surrogate model to optimize turbine blades [58].

Currently, FF surrogates are not commonplace, especially for SAO applica-

tion. One possible reason for this is the difficulty in generating models with a very

large number of outputs. For example, a simple cube discretised in to 10 elements

in each direction would consist of 1331 nodes, with the value (e.g. temperature)

at each accounted for by the surrogate model. A mesh for a HIVE component

will consist of tens or hundreds of thousands of nodes.

There are examples of the use of dimensionality reduction techniques for pre-

dicting FF surrogates in literature. Dupuis et al. used a combination of GPR and

PCA to model the pressure coefficient on the 2D external surface of an AS28G

aircraft [59]. Li et al. similarly uses GPR, but with a modification of the PCA

algorithm, for predicting the thermal behaviour during a three-layer printing pro-

cess for laser powder bed fusion [60].

While the PCA algorithm is extremely powerful and easy to implement, it

projects the data on to linear subspaces, making it poorly suited for certain

types of data [61]. Auto-encoders are a special type of ANN algorithm which are

used to efficiently learn a lower dimensional encoding of a dataset. Since ANNs

underpin auto-encoders, they are able to identify nonlinear relationships between

high dimensional data and its lower dimensional representation. Auto-encoders

have been used for a variety of tasks, including image compression [62], time series

data [63] and denoising data [64], however its use for dimensionality reduction for

FF surrogate model construction has thus far not been established.

While most supervised learning algorithms will require the use of dimension-

ality reduction for constructing FF surrogates, for ANNs this is not necessarily

the case. ANNs are able to model numerous outputs, meaning they can be used

for FF surrogates without dimensionality reduction, however these models would

consist of a huge number of trainable parameters, making it slow to train and

prone to overfitting if the training data is not sufficiently large.

A few different types of ANNs have been used in literature to generate surro-

gates. Recurrent neural networks (RNNs) are used for the prediction of sequences,

meaning they were originally developed for tasks such as natural language pro-
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cessing [65], however more recently they have been applied to the field of FF

surrogate modelling [66]–[68]. Modelling stationary or steady-state problems can

be achieved using MLPs, as it has been in the work of Liang et al. [69]. Since

the focus of this work is on the steady-state behaviour of PFCs tested in HIVE,

MLPs would be the most practical in terms of the ANNs available.

The supervised learning algorithms discussed thus far are solely data driven,

which require no underlying understanding of the physics involved, and instead

just learn an optimal mapping between the inputs and target values. An active

area of research these days is to incorporate the governing equation of the system

as part of the training of the surrogate model. These physics informed methods

have the advantage of needing fewer, if any, data points to train the model.

The most well known of these are physics informed neural networks (PINNs), an

overview of which is given by Sharma et al. [70].

Billah et al. use a PINN to solve the IHTP, however this is for a 1D problem

only [34]. While the author state that PINNs can be used to solve extremely

complex problems, this paper only demonstrates their use for a simplistic 1D

problem. Moreover, the PINN used in this work took more than 10 hours to

train, meaning that this would be substantially larger for more complex problems

in 2D or 3D. A PINN is used by Manavi et al. to construct a 2D surrogate model

on rectangular square domain for the IHTP, however no information is provided

in terms of it’s training time [71]. While PINNs offer a huge amount of potential

in surrogate modelling, their development is still in their infancy, meaning that

they are not yet applicable to tackling a problem as complex as HIVE.

None of the work presented thus far in literature is comparable in complexity

to that of HIVE. HIVE tests multi-material components with complex geometries

in a highly-nonlinear, multi-physics, 3D problem, while the work presented thus

far in literature have been for simple geometries and problems e.g. 2D geome-

tries, single mechanism problems etc. Along with this, the greatest number of

parameters estimated in the above work is two, whereas the HIVE experiment

consists of estimating substantially more unknowns. The use of FF surrogates in

literature is also limited, especially in the context of SAO. This work will inves-

tigate the development and use of such models, including the success of the PCA

and auto-encoders techniques in reducing their computational expense.

GPR has shown to perform excellently for engineering based surrogate mod-

els, usually requiring fewer data points compared with many of its competitors

[36], [54], [72], [73]. MLP are an extremely popular choice for supervised learn-
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ing applications and have shown excellent performance in extracting high level

features from data, therefore these will also be investigated [69].

2.3 Sensor Placement Optimisation

As discussed in section 1.2, HIVE is only able to record a small quantity of

experimental data via thermocouples. Fitting each thermocouple is a very time-

consuming process, with each taking around 30 minutes to join successfully. Cur-

rently, all the available probes are joined to a component prior to an experiment

at arbitrary locations decided by the HIVE operators. These locations are chosen

based on the previous experiences of HIVE operators, which is an unsustainable

approach. Moreover, given the complexity of the problem, it’s unlikely that these

thermocouples are placed in an optimal configuration to extract the most insight-

ful data. Identifying an optimal configuration of thermocouples would not only

provide better data, but could also reduce the number required, thus speeding

up the frequency in which components are tested.

The work of Tamaddon-Jahromi et al. highlighted the sensitivity of the esti-

mated BCs on the placement and quantity of data used for the 2D IHTP [23].

While they identify optimisation of the used data as future work, this has yet

to be covered in the literature. This work aims to create a generic methodology

which can be used for HIVE along with other types of IHTPs.

The thermocouples used in HIVE are somewhat similar to a sensor network

(SN). SNs consist of a network of sensor devices, where each device can au-

tonomously sense the target environment and communicate with other sensors

to achieve the goal of delivering valuable information to the end user. In re-

cent years, SNs have been used in a wide variety of settings, including structural

health monitoring, environmental monitoring and factory automation [74], [75].

While the thermocouples in HIVE aren’t able to communicate with each other,

their combined information can provide a huge amount of insight about a system,

much like a SN does.

It has been shown that the optimal placement of sensors is an important design

consideration, providing improved performance of the SN [76]. As a result, this

topic has received much attention in literature. In the majority of cases, gradient-

free optimisation algorithms are employed, since the objective function does not

have a well-defined gradient. In the work of Akbarzadeh et al. an evolutionary

strategy is used to identify the optimal locations of sensors for a wireless network
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[77], while Jourdan and de Weck used a genetic algorithm for a similar problem

[78]. In the work of Yi et al. particle swarm optimisation (PSO) is used to

identify the optimal locations of sensors in a high rise building for structural

health monitoring purposes [74]. Simulated annealing was used by Chiu and Lin

to solve some benchmark problem relating to sensor placements in a 2D domain

[79].

Interestingly, Xu et al. use a combination of PCA and Gaussian processes to

optimise the placement of temperature sensors in the Berkeley Intel laboratory

[80]. Temperature data was recorded at 50 equally spaced times over a period

of two months for 54 different locations in the lab, which are effectively points

in a 2D domain. PCA is used to identify the PCs of the spatial data, which

are subsequently modelled as Gaussian processes and used with the branch and

bound optimisation algorithm.

For the Berkeley lab problem, the branch and bound method is applicable,

since there are a finite number of combinations of sensor placements. For HIVE,

an alternative optimisation algorithm is required, such as evolutionary strategies

or genetic algorithm, since there are infinitely many combinations due to the

continuous nature of the problem. These types of algorithms perform a large

number of evaluations, therefore the performance of numerous configurations of

thermocouples will need to be assessed. To achieve this in a timely manner, FF

surrogate models will be beneficial to support the rapid evaluation of various

thermocouple configurations.

2.4 Optimisation Algorithms

The use of optimisation can be found in most, if not all, industries. In the

aerospace industry it is used to improve aerodynamic performance of an aircraft

[81], in manufacturing it is used in the design of production lines and minimising

waste [82], [83], while in logistics it is used for scheduling and route planning [84],

[85], to name only a few. This work also requires the identification of optimal

solutions, both for the task of identifying inverse solutions and sensor placement.

The formal definition of an optimisation problem is given in eq. 2.4, where Lf

and P are like those defined in eq. 2.1 and he and gr are optional equality and

inequality constraints, respectively. The inclusion of constrains in an optimisation

problem means that an optimal solution is identified while ensuring that the

constraints are satisfied.
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Constrained optimisation problems arise frequently, such as in aerospace,

where the goal is to reduce the drag of an aircraft while ensuring the internal

volume of the aircraft stays above a certain value [81]. Maximising the volume

of the aircraft enables increasing capacity, thus increasing revenue, while min-

imising the drag will reduce the quantity of fuel needed, thus reducing costs.

However, there is a trade-off between the two, because drag will increase with the

cross-sectional area of the aircraft [86].

x∗ =argmin
x

Lf (x)

s.t. x ∈ P

he(x) = 0, e = 1, ..., E

gr(x) ≥ 0, r = 1, ..., R

(2.4)

Since optimisation is such a widely used discipline, there are a variety of

optimisation algorithms available in literature. These algorithms can be divided

into two categories; gradient-free and gradient-based algorithms.

2.4.1 Gradient-free

In a number of scenarios, the derivative of the objective function does not ex-

ist. Fortunately, there are a family of optimisation algorithms available which

do not rely on any gradient information and are known as gradient-free algo-

rithms. These are sometimes preferred to the gradient-based algorithms even if

the gradient is available, because these can avoid getting trapped in local minima

[87].

A number of these types of algorithms follow a similar structure; start off

with an initial number of guesses, evaluate the value of the objective at these

points, and then use these to guide the next set of points to sample. Evolution-

ary strategies, particle swarm optimisation and simulated annealing all follow a

similar pattern and differ in how they choose the next set of points from the

previous set.

For operational research and computer science problems, the genetic algorithm

is especially popular [88]. This algorithm work on the idea of survival of the fittest

and is a subclass of evolutionary strategies. An initial population (generation 0)

of N points are chosen, with the ‘fitness value’ for each member calculated using

the objective function. The L < N best performing members of the population,
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that is those with the highest or lowest fitness values, are chosen as parents for

mating.

From the pool of parents, the next generation is produced. The first step is

known as crossover, which involves combining two parents to create an offspring.

One way in which this is achieved is by encoding each parent as a genetic sequence,

and then choosing genes from each parent randomly. The next step is mutation,

where genes in the offspring’s genetic sequence are randomly altered based on

a defined criterion. The offspring’s genetic sequence is then decoded back in

to its original form. New offspring are produced until there are N members in

the new generation (generation 1), with the option to include the parents of the

previous generation as members of the next. This procedure is followed until some

stopping criterion is met, such as a set number of generations or convergence of

the solution. A visualisation of the steps required for the genetic algorithm is

shown in fig. 2.2.

Figure 2.2: Iterative loop of the genetic algorithm

PyGAD is a python package which provides an easy-to-use class for performing

optimisation via genetic algorithm [89]. This package has a multitude of options

available for crossover, mutation, and parent selection, as well as supporting

custom-made functions for each. Along with this, it supports optimisation of

parameters which take discrete or continuous values.
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An important aspect of any gradient-free algorithm is a combination of ex-

ploration and exploitation of the search space. Exploration is the search of new

areas in the search space, while exploitation is where the neighbourhood of a

promising solution is searched more thoroughly. A balance of the two is key, as

too much exploitation will likely result in the solution being trapped in a local

optima, while too much exploitation means that a large amount of time is wasted

on poor solutions by ignoring the information previously gathered. In the case

of the genetic algorithm, mutation ensures that the algorithm has exploration

properties, while crossover provides exploitation by combining good solutions.

2.4.2 Gradient-based

In general, gradient-based algorithms are faster for solving optimisation problems

compared with gradient-free algorithms [90]. This isn’t all that surprising, given

that a large amount of information is stored in the gradient. They also have

fewer, if any, hyperparameters which must be decided compared with gradient-

free algorithms.

A popular method used to calculate this derivative is the adjoint-state method

[91]. This is an efficient way to calculate the gradient of the objective, which is

independent of the number of parameters for which the gradient is required (the

dimension of x). This approach can also be applied to constrained optimisation

problems.

The information gained from the gradients is used to define a search direction

to move the solution forwards towards an optima. The oldest and most intuitive

of these algorithms is gradient descent (GD) [92]. As the gradient points in

the direction of the greatest ascent, this algorithm updates the current point by

taking a step in the direction of the negative gradient, thus moving towards the

minima via the steepest descent. This algorithm is shown in eq. 2.5, where the

parameter α is a positive number known as the learning rate, which dictates the

step size taken at each iteration. The learning rate is the cause of many of the

issues faced using this algorithm. If the value is too large the solution oscillates

around the minima (and can even diverge), while if it is too small the algorithm

takes many iterations to converge, which is extremely inefficient.

xk+1 = xk − α∇Lf (xk) (2.5)

The Momentum algorithm [93] was developed to reduce the issue of oscillations
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of the solution near the optima by adding a fraction to the first term in eq. 2.5.

This factor ensures that the gradients are increased for dimensions where the

gradient points in the same direction (thus gaining momentum), while reducing

it for dimensions whose gradient alternates direction.

Given there is no way of knowing the ‘best’ learning rate in advance, a number

of adaptations to GD have been proposed in the literature which aim to over-

come this. The Adagrad algorithm applies adaptive learning rates to different

dimensions to speed up training [94]. This removes the need to tune the learning

parameter α and it is usually set to the value 0.01. The Adadelta algorithm is an

adaptation of Adagrad which aims to improve its performance [95]. The adaptive

moment estimation algorithm, commonly referred to as Adam, is another popular

algorithm which is similar to Adadelta but also includes aspects of the Momen-

tum algorithm to improve its performance [96]. A number of other adaptations

to the vanilla GD algorithm include RMSprop, AdaMax and Nadam [92], [96],

[97].

The GD algorithm and its variants discussed thus far use the first order gra-

dients, however there are a variety of algorithms which take advantage of higher

order derivatives to optimise the objective. The Newton-Raphson method uses

second order derivatives which removes the need for a learning rate, as shown

in eq. 2.6, where H is the Hessian of the objective function [98]. While this

method usually requires much fewer iterations than first order methods, calculat-

ing the Hessian and its inverse scales with O(n3), meaning it becomes extremely

inefficient in high dimensional problems [99].

xk+1 = xk −H(xk))
−1∇Lf (xk) (2.6)

To overcome the issues relating to the Hessian, a class of optimisation tools

known as quasi-Newton methods were developed. These aimed to approximate

the Hessian using a matrix B which is updated at each iteration using information

gathered from the previous iteration. The way this update is performed is what

distinguishes one algorithm from the next. One of the most popular of these

algorithms is the BFGS method, which is an acronym of its authors; Broyden,

Fletcher, Goldfarb and Shanno [100]. Instead of approximating the Hessian, it is

the inverse of the Hessian which is approximated, as it is this which is ultimately

needed to perform the update. The SLSQP algorithm is an extension of the BFGS

algorithm to a Lagrangian function, meaning that it can be used in optimisation
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problems with constraints, which BFGS cannot [101].

2.4.3 MultiSLSQP

Given that gradient-based algorithms are faster and simpler to implement for

solving inverse problems, these are preferred for this work. As outlined in section

2.2.1, the differentiability of squared error objective function depends entirely on

the differentiability of the surrogate model. The differentiability of the surrogate

model depends on the supervised learning algorithm used, therefore these must

be chosen appropriately.

For this work, second order methods will be used as they remove the problem

specific knowledge of the learning rate and are able to converge to a solution in

substantially fewer iterations [102]. Given that constraints will occasionally be

placed on the optimiser, the SLSQP algorithm is the best choice for this work.

An implementation of the SLSQP algorithm is provided in SciPy’s Optimize

package, along with a host of other algorithms [103]. In the majority of cases, the

objective function will be non-convex, meaning there exists multiple local optima

(non-uniqueness of inverse problems). To identify several inverse solutions, and

to avoid being trapped in a bad local optima, multiple runs of the optimisation

algorithm are required using differently initiated values x0. As is the case with

many optimisation libraries, SciPy Optimize supports using only a single initial

point. This means that trying l different initial points would have to be performed

sequentially, which would be inefficient for large search spaces (since l would need

to be large).

MultiSLSQP is a package developed by myself for this project which enables

multiple initial points to be trialled simultaneously [46]. This is achieved through

the use of tensor computation, something which the NumPy library (on which

SciPy is built) is able to perform much more efficiently than following a sequential

operation. The benefit of MultiSLSQP is that it enables the functional value and

gradients for l different points to be evaluated together, before being updated by

the SLSQP Fortran compiler used in SciPy. This package requires no additional

libraries to those required by SciPy, and is compatible with version 1.4.0 to the

most recent version (1.11.0).

The performance of MultiSLSQP is compared with the original SciPy im-

plementation for a 10D problem with a forward model which requires a matrix

inversion. The forward mapping is given by eq. 2.7, where A is a matrix of size
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10×200, B is a matrix of size 200×200 and c is a vector of size 200×1. If k = 1000

different starting points were to be investigated then this previously would have

required inverting a 200×200 matrix for each of the 1000 attempts, however with

the multi-start implementation this only requires inverting this once. This leads

to a reduction in the evaluation time from 17.08 s to 0.52 s, a reduction of more

than 96%. While this is a simplistic example, it demonstrates the improvement

that MultiSLSQP offers for rapidly identifying multiple optima in the parameter

space.

f(x) = xAB−1C (2.7)

2.5 Synthetic Data Generation

In the majority of cases in science and engineering, the available, real data is

insufficient for the given task. This may be because collecting sufficient quantities

of the real data is too time-consuming, too costly, or is infeasible. Synthetic

data, generated by means of computational models, is widely used in science

and engineering to guide decision-making. In some industries, it is preferred to

real data, i.e. medical sciences, where the use of synthetic patient data avoids

potential ethical issues.

This section provides an overview of synthetic data generation in the field

of computational engineering, highlighting the need for the development of a

workflow package for streamlining this process.

2.5.1 Computational Modelling

Most physical systems can be described by a governing set of partial differential

equations (PDEs), however for the vast majority of geometries and problems,

PDEs cannot be solved with analytical approaches [104]–[106]. Computational

modelling is a field which uses numerical methods to approximate the behaviour

of these systems, and has been an extremely active field of research over the past

seven decades.

The earliest and simplest numerical method was the finite difference method,

which used finite differences to approximate derivatives in differential equations

[30]. Although the idea of finite differences can be traced back as far as the early

18th century, it was the work of Courant, Friedrichs and Lewy in 1928 where a
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more general theory was established [107].

During the 1960s, the finite element (FE) method was developed by Zienkiewicz,

Turner, Clough, Martin and Topp for structural mechanics applications [108]. In

this method, the PDE is converted in to a weak formulation using a weighting

function before it is returned to integral form over the domain. The domain is

subdivided in to a collection of elements, with the equation of the system repre-

sented on a simplified, local, geometry. The equations representing each element

are then recombined to create a global system of equations which are solved.

Dividing the domain into elements has a number of advantages; it provides an

accurate representation of complex geometries, enables refinement in the size of

element near regions with large gradients, and allows the use of multiple materials.

Because of its generality, the FE method is most commonly used to perform

structural, thermal and electromagnetic analysis.

The finite volume method was developed by McDonald, Mac-Cormack and

Paullay shortly after the FE method and similarly subdivides the domain into

smaller elements, or volumes as they are referred to here [109]. The main differ-

ence between this and the FE method is the adherence to conservation laws for

each volume, meaning that what goes out of one cell must go into its neighbouring

cell. Historically, this method has been very successful in solving CFD problems.

While computational modelling tools are instrumental in a variety of fields,

one drawback is that they can be expensive to evaluate. This is because these

methods require solving a system of equations, which is often time-consuming,

especially for highly discretised, 3D problems.

Two important steps in the creation of any type of computational model is

its verification and validations. Verification is the process of confirming that the

computational model is correctly implemented with respect to the conceptual

model. This is often characterised by the finding and fixing of modelling errors

to ensure that the model works correctly and matches any agreed-upon specifi-

cations and assumptions [110]. Validation is the process of confirming that the

computational model represents the real system to a sufficient level of accuracy.

The validity of a model is usually determined by following a series of tests and

comparing the results with the real system [111].
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2.5.2 Obstacles

Generating synthetic data using computational models requires executing steps

of a workflow. These steps will vary depending on the problem, the individual,

and the organisation. In computational engineering, a typical workflow will first

require creating an idealised representation of the component used for the analysis

using an appropriate computer aided design (CAD) software. Following this, the

CAD geometry is discretised in to a mesh using a meshing software, which is then

used as an input to the computational model along with information about the

analysis, e.g. material properties, BCs and initial conditions.

Unfortunately, in the majority of cases, executing this workflow is a time-

consuming process, which is largely attributed to a lack of workflow automation.

Workflow orchestration tools are extremely popular in a number of industries for

creating more automated workflows, however as discussed in the work of Maric

et al. they are not commonly employed in the field of computational engineering

[112]. One reason for this is the manual steps performed at the different stages of

the workflow, which is largely attributed to a dependence on the graphical user

interfaces (GUI) of software packages. While GUIs are a central component to

modern computers and provide ease of use and accessibility, dependency on them

will likely limit the adoption of more automated processes that could require

scripting or programming. During a typical computational engineering workflow,

GUIs are used to visually construct the CAD geometry during its construction,

observe and refine the fidelity of the mesh, and then used to manually assign BCs

to parts of the mesh in the simulation, for example.

Many simulation packages will have design of experiment (DoE) capabilities,

which enables a variety of different types of analyses to be specified in advance,

thus providing a degree of automation in the collection of synthetic data. How-

ever, as high-performance computing (HPC) systems typically do not feature

GUIs, or indeed any form of interactive usage, the simulations which make up

the DoE are usually performed on a local computer. Given the more modest

computing resources available on a local computer and the lack of parallelisation

capabilities, these simulations would likely be performed sequentially, thus taking

an infeasibly long time. For example, performing 400, one hour long simulations

sequentially would take over two weeks to complete.

Another issue with the workflows developed in computational engineering is

their lack of portability. Usually, a computational engineering workflow will re-
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quire a variety of different software packages (e.g. CAD, meshing, modelling),

which can make it extremely challenging to move the workflow from one system

to another. This is because certain software packages are only compatible with

certain versions of operating systems, and some will require a paid licence. This

means that in many cases, the generation of synthetic data can only be achieved

on a specific computer by an individual who knows the necessary steps. This

inevitably leads to repetition of work between colleagues, resulting in a waste of

both time and resources [112].

Certain commercial modelling packages aim to deliver a one-platform solution

to overcome this issue [113]. The one-platform approach is where a single software

offers a variety of tools, reducing the reliance a consumer has on an external or

competing package. Ansys Workbench is an example of this, where meshing,

various modelling tools, visualisation, and data analysis are all supported [114].

However, these platforms do not cater for modelling all kinds of phenomena,

and their one-platform approach means it’s inherently difficult to incorporate

external tools – which are unavailable in the main package – in to the workflow.

This can make it extremely challenging to automate a workflow using these types

of packages. Along with this, these types of commercial packages usually have

very large licence fees, meaning that it’s inherently expensive to use them on

multi-node HPC systems.

Generating surrogate models requires substantial quantities of synthetic data

from across the parameter space of interest, e.g. different material properties,

different magnitude of loads. Since HIVE continually tests different types of

components, new synthetic data will need to be generated and used to train

models in a short space of time. Therefore, there is need for a platform which

supports the rapid generation of synthetic data in a fully automated fashion.

Along with this, since this project is a collaboration between Swansea University

and UKAEA, it is essential that the workflow developed at Swansea is easily

portable to colleagues at UKAEA so that they can perform the same analysis.

2.5.3 Workflow Platform

This work will aim to develop a workflow platform for computational engineering

which streamlines the production of synthetic data by harnessing the power of

HPC systems. Such a platform will make data more abundant, supporting the use

of ML algorithms and helping overcome many of the obstacles discussed by Pan
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et al. in moving engineering towards a more ‘data centric’ era [115]. A workflow

platform for computational engineering will need to deliver the following;

1. The capability to automate the entire workflow.

2. Parallelisation to support rapid data generation.

3. Compatibility with HPC systems.

4. Support installation and configuration of multiple external software pack-

ages.

5. Enable data generated from various software packages to be seamlessly

linked.

6. Ease of portability of the platform to different workflows and organisations.

7. Easily enable the inclusion of new analysis and new software packages.

8. Flexibility to adapt the workflow for different objectives.

Full automation enables the workflow to run ‘in the background’, while paral-

lelisation, HPC compatibility and ease of portability means that it can be easily

deployed on HPC clusters to perform the analysis in a fraction of the time. Porta-

bility also ensures that the platform is usable by a wide variety of individuals,

who can easily include new types of analysis and software packages.

Such a platform would also greatly improve the ability to reproduce data,

something which Maric et al. say is rarely adhered to, especially in academia [112].

This is because reproduction of the computing environment used to generate data

is challenging, and not all details used throughout the workflow are available in

publication. The creation of a workflow tool will improve the ability to reproduce

data generated by others, since its fully-automated nature means that all the

required details to perform the analysis are available. This not only supports the

verification of others work, but also allows for modifications to be made to tackle

different problems.

This has led to the development of the VirtualLab platform, predominantly

by myself, for this thesis [43]. Details on how this package delivers the above

objectives are discussed in chapter 5.
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2.5.4 FAIR Principle

The FAIR principles, outlined by Wilkinson et al. in 2016, are a cornerstone

of good scientific data management which states that data must be findable,

accessible, interoperable, and reusable with minimal human intervention [116].

• Findable: It should be easy for both humans and computers to find the

raw data and the metadata.

• Accessible: The data should be retrievable using an identifier (e.g. DOI)

using a standardised and open communications protocol, with restrictions

in place if necessary.

• Interoperable: It should be possible to integrate the data with other

data, applications and workflows. The format of the data should therefore

be open and interpretable for various tools.

• Reusable: Ultimately, the FAIR principle is in place to optimise the reuse

of data. In order to do this, data should be well-documented, have a clear

licence to govern the terms of its reuse.

All the synthetic data generated to perform the analysis for this thesis is

hosted on Zenodo, which uses CERN’s data centre to house scientific data [45].

2.6 Summary

This chapter has presented the state of the art in both inverse modelling and

sensor placement optimisation, providing justification for the approach this work

follows in addressing these issues. Most of the work in this chapter presents

material from literature, and is designed to set the scene for the novel contribu-

tions provided in chapters 6 - 8. A novel contribution was provided by means

of the MultiSLSQP package discussed in section 2.4.3, which showed a 96% re-

duction in the time taken to identify optima compared with the original SciPy

implementation.

Section 2.5 highlighted that a lack of workflow automation means that engi-

neering is slow in its transition towards a more data centric approach. This has

resulted in the development of a fully automated workflow package, which will

be presented in chapter 5.
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Chapter 3

Surrogate Model Generation

3.1 Introductory Remarks

The focus of this chapter is on the methodologies required to develop both SV

and FF surrogate models, and can be thought of as an extension of the current

methodologies presented in chapter 2. Firstly, the methodology for the MLP and

GPR algorithms used in this work are presented in section 3.2. Following this,

section 3.3 presents the theory behind the PCA and auto-encoder algorithms for

the purpose of dimensionality reduction, which are key components of successful

FF surrogate models. Finally, since synthetic data is generated specifically for

training these surrogate models, section 3.4 provides an overview of different

data sampling techniques available in literature, along with their strengths and

weaknesses for this application.

3.2 Supervised Learning Algorithms

Supervised learning is one of the three main branches of ML algorithms, along

with unsupervised learning and reinforcement learning. The goal of supervised

learning is to use labelled data to learn an optimal mapping between the inputs

and outputs of the model. Labelled data is the term given to a data point which

has an associated, or paired, observation, denoted as {xt,yt}. These observa-

tions are the ‘ground truth’ values, the difference from which the model is aiming

to minimise during training. This difference is quantified by the loss function

used. Scenarios where the observations are continuous values are categorised as

regression models, while those that have discrete labels are termed classification
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models. Unsupervised learning uses unlabelled data, meaning that the goal in-

stead is to identify the underlying structure of the data. Reinforcement learning

is significantly different to the others, where the goal is to train an ‘agent’ in an

interactive environment, where correct decisions are rewarded, and incorrect ones

are punished. Surrogate models require regression supervised learning algorithms,

and will be the focus of this section.

A supervised model, Fθ, maps the i input features to the j output labels.

The subscript θ = {θ1, .., θk} are parameters which parameterise the model. For

conciseness, this mapping will be denoted as F from here on. During a process

known as training, the values of these parameters are optimised using the available

data. This data is referred to as the training dataset, and is made up of m

observations. Another p observations are held back during training and are used

to test the generality of the model. As a result, this dataset is commonly referred

to as the test dataset. A model which performs poorly on both datasets is said

to be under fitting, while one that performs well on only the training dataset is

over fitting. A model which performs equally well on both is optimal, see fig.

3.1. In the majority of cases p < m and the ratio of p to m is referred to as the

test-train split.

The inputs of the training dataset are combined to create a matrix Xtrain =

[x1, ...,xm]T of size m× i, while a matrix of size p× i of test input data is given

by Xtest = [xm+1, ...,xm+p]
T . To ensure unbiased assessment of the model using

the test dataset, it is essential that Xtrain ∩ Xtest = ∅. Similarly, training and

testing matrices are constructed for the outputs, which are denoted by Ytrain and

Ytest and have size m× j and p× j respectively.

There are a variety of different metrics available by which to assess the per-

formance of a supervised regression ML model. These are usually calculated

individually for each of the j outputs, allowing the performance for each to be

interpreted. The average value of these is then used to assess the model’s general

performance. These are calculated for the train and test data to assess the scores

on both.

The mean absolute error (MAE) calculates the averaged absolute difference

between the model prediction and ground truth over the observations of the

dataset. This is often normalised by the range of the ground truth observations

to give the normalised mean absolute error (nMAE), which is given in eq. 3.1

for the l-th output. Here n = m for the training dataset and n = p for the test

dataset, yl is column l of the target matrix (Ytrain or Ytest), y
k
l is the k-th entry

37



Figure 3.1: Comparison of three models, where one is under fitting, one is optimal,
and one is over fitting [117].

of that vector and F k
l = Fl(xk) is the l-th output using the ML model evaluated

for input xk, which is the k-th column of the input matrix (Xtrain or Xtest).

Similarly, the normalised root mean squared error (nRMSE) normalises the

square root of the mean squared error (MSE) by the range of the data, see eq.

3.2. Eq. 3.3 is known as the R2 score, where Fl denotes the averaged value for

all mode outputs {F 1
l , ...., F

n
l }. This formula provides information about the fit

accuracy, so that values of 1 is a perfect fit, while lower (and possibly negative)

values suggests a poorer fit.

nMAEl =
1
n

∑n
k=1

∣∣ykl − F k
l

∣∣
max(yl)−min(yl)

(3.1)

nRMSEl =

√
1
n

∑n
k=1

(
ykl − F k

l

)2
max(yl)−min(yl)

(3.2)

R2
l = 1−

∑n
k=1

(
ykl − F k

l

)2∑n
k=1

(
ykl − Fl

)2 (3.3)

All ML algorithms used in this work has been carried out using the PyTorch

library, unless otherwise stated [118]. Since its conception in 2016 PyTorch has

become an extremely popular ML library, especially in academic circles where it

accounts for nearly 80% of the work carried out in published papers in 2021 [119].
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3.2.1 Multi Layer Perceptron

ANNs are an extremely powerful and popular tool for tackling a wide variety of

supervised ML problems. Inspired by the behaviour of biological neural networks

found in human and animal brains, each artificial neuron (referred to as node) is

connected to each other with a connection type and strength dependent on the

type of ANN used.

The simplest and most common type of ANN is the MLP, an example of

which is shown in fig. 3.2. An MLP consists of 1 or more hidden layers between

the input and output layer and is an extension of a simple perceptron model

which linked the input layer to the output layer directly. The nodes in one layer

are connected to the nodes in the following layer via weights which are unknown

initially but are learnt during training.
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Figure 3.2: Graphical representation of a multi layer perceptron network.

MLPs are commonly referred to as deep neural networks because of the depth

of the architecture. Each layer in the MLP can extract different features from

the data, with deeper networks able to understand more complex and high-level

features. The number of nodes in the input and output layer are the number of

inputs and outputs to the model, which in this case is i and j respectively.

The general structure of the MLP is shown in eq. 3.4 - 3.6. W p is a matrix of

weights with size np×np−1 with the entry at row k, column l defining the weight
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that connects node l in layer p − 1 to node k in layer p, denoted by W p
kl in eq.

3.5. An activation function g is applied to the sum of the information received by

each node, with apl denoting the value assigned to node l in layer p. The values

which make up the entries to the matricesW 1, ...,WL are the parameters, θ often

referred to as weights, which are optimised during training.

a1k = g

(
i∑

l=1

xlW
1
kl

)
, k = 1, ..., n1 (3.4)

apk = g

(
np−1∑
l=1

ap−1
l W p

kl

)
, k = 1, ..., np, p = 2, ..., L (3.5)

yk = g

(
nL∑
l=1

aLl W
L+1
kl

)
, k = 1, ..., j (3.6)

Equation 3.7 - 3.10 define 4 well known activation function; sigmoid, tanh,

leaky ReLU, and swish respectively, with their profiles shown in fig. 3.3. The

activation function is key to the MLP, as it is this which adds non-linearity to

the model. While the formulation given by eq. 3.4 - 3.6 have the same activation

function for each layer, this is not a requirement. It is common that regression

problems will have an activation function of unity, g(z) = z, for the final layer

(eq. 3.6).

gsigmoid(z) =
1

(1 + e−z)
(3.7)

gtanh(z) =
(ez − e−z)

(ez + e−z)
(3.8)

gReLU(z) = max(z, α) (3.9)

gswish(z) =
z

(1 + e−z)
(3.10)

The first step in creating a MLP model is deciding the architecture of the

model, which is dictated by the number of hidden layers the model has and the

number of nodes in each layer. The architecture of a model interacts with other

hyperparameters, so changing one of these can affect its performance, meaning

there is no generic method for choosing a ‘best’ architecture. For example, a

certain architecture may perform well using the ReLu activation function, how-

ever the sigmoid activation function would likely perform better on a different
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(a) Sigmoid (b) Tanh

(c) Leaky ReLU (d) Swish

Figure 3.3: Activation functions for ANNs.

architecture.

A common approach is to rely on experience and start with an architecture

successfully used previously on similar problems. Variations to this initial archi-

tecture can be explored by adding or removing nodes and layers and changing

activation functions until an appropriate model is found. There are a huge number

of different permutations of models possible when changing these three parame-

ters, which depending on the size of the model can be extremely slow to train.

Along with this, the motivation for using surrogate models is to remove the trial

& error aspect of choosing the DoPE, however with MLPs this uncertainty is

being shifted to the model instead.

The loss function most commonly used for MLPs is MSE summed over the

training dataset. The most popular method of updating the model parameters is

using the back propagation algorithm [120]. In this algorithm the gradients for

the weights in the output layer (layer L+ 1) are calculated first, which are used

to inform the gradients of the weights in layer L, and so on. Once the gradients

for all the weights are known, they are updated. Due to the large number of

trainable parameters, ML algorithms tend to use first order methods to make the

41



update.

Calculating these gradients using the entire training data is referred to as a

batch gradient descent. For large datasets, this can be time-consuming and give

poor results due to ‘sharp’ minima [121]. Mini batch methods are a popular

alternative, where the gradients are calculated on sub-sets of the training data

before updating the weight and moving on to the next mini batch of data. Cal-

culating the gradient on a fraction of the data ensures a degree of noise, which

improves the model performance and generalisation properties by avoiding these

sharp minima. Common choices for the mini batch size ranges from 16-512 data

points, with a size of 1 referred to as stochastic gradient descent.

As MLPs usually have a large number of trainable parameters over-fitting is

often an issue, however there have been a number of techniques developed which

aims to avoid this. A popular technique employed is dropout, where the values

of some nodes are randomly set to zero during training. The probability that a

node being changed to zero is decided prior to training, and it can be applied

to any number of layers. The idea is that this stops the model depending too

heavily on the values of certain nodes within the network, improving its ability

to generalise to new data. Another technique commonly employed is to calculate

the loss value on the test data set alongside the training data set. The values

of both losses are monitored, with training terminated once the loss on the test

dataset begins to increase. Another consequence of models with many parameters

is the existence of numerous local minima for the loss function, with the optima

identified dependent on the randomly initiated weights.

It can be shown that the gradients of an MLP model’s outputs with respect

to its inputs depends on the differentiability of the activation function [122].

The ReLU function, for example, is not differentiable at the origin, therefore a

model which uses this activation function does not have a well-defined gradient

everywhere.

3.2.2 Gaussian Process Regression

All regression models make assumptions regarding the behaviour of the unknown

function. In linear regression problems, this is dictated by the degree of polyno-

mial afforded to each input feature, while in MLPs this is decided by the archi-

tecture of the network. GPR models follows the assumption that the function

can be modelled as a Gaussian process (GP).
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By definition, a GP is a collection of random variables whereby any linear

combination of those random variables has a uni-variate Gaussian distribution.

The GP of f is given by eq. 3.11, where m(x) is the mean function and k(x,x
′
)

is the covariance function. The choice of mean and covariance function are key

as it encodes any assumptions made about the data.

f(x) = N (m(x), k(x,x′)) (3.11)

In most cases, values observed from a system are susceptible to variability due

to a number of factors. This variability is factored in to the model by means of

noise, ε, added to the function value f(x), see eq. 3.12. The noise is assumed

to be an independent and identically distributed Gaussian with zero mean and

variance σ2
n. Note that GPR models are a single output procedure only, therefore

the theory presented here is for a function f which maps the i inputs to a single

output. Extension to multiple outputs are discussed at the end of this section.

y = f(x) + ε, ε ∼ N (0, σ2
n) (3.12)

By following a Bayesian approach, the prior assumption made about the data

using the covariance function is updated with the new evidence, which in this

case is the training data. A joint distribution of the training outputs, ytrain, and

the unknown test outputs, ftest = f(Xtest) is given by eq. 3.13. The mean vector

mtr is calculated using the mean function, m, applied to rows of Xtrain , while

Ktr,te is a m × p matrix whose entry at row t, column g is calculated using the

covariance function, k, applied to row t and row g of Xtrain and Xtest respectively.

The other terms are calculated following a similar approach. Generally the mean

function is assumed to be zero for most applications since the target outputs can

be normalised to have a zero mean, therefore m(x) = 0 from this point forward.[
ytrain

ftest

]
= N

([
mtr

mte

]
,

[
Ktr,tr + σ2

nI Ktr,te

Kte,tr Kte,te

])
(3.13)

The posterior distribution is calculated by conditioning the joint distribution

on the observations. Conditioning is the process of fixing the values of certain

variables in a multi-variate distribution and observing the distribution for the

remaining, free variables. In this case, the m variables associated with the ob-

servations are fixed, resulting in the posterior distribution, which is summarised

in eq. 3.14. The simplification to the posterior mean in eq. 3.15 is due to the
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use of the zero mean function, while the posterior variance is given in eq. 3.16.

One of the biggest drawbacks of GPR is highlighted here, with the need to invert

a m ×m matrix. This operation scales with O(n3), so this is usually calculated

using the Cholesky decomposition. For the noise-free case, the term σ2
n can be

omitted in these equations.

p(ftest|Xtest, Xtrain,ytrain) ∼ N (µ∗,Σ∗) (3.14)

µ∗ = mte +Kte,tr

(
Ktr,tr + σ2

nI
)−1

(ytrain −mte)

= Kte,tr

(
Ktr,tr + σ2

nI
)−1

ytrain

(3.15)

Σ∗ = Kte,te −Kte,tr

(
Ktr,tr + σ2

nI
)−1

Ktr,te (3.16)

From the posterior distribution, predictions of the values at the points in

Xtest are made. As this is a Gaussian distribution its mean is the value with the

highest probability, so it is this which is used to infer the values at these points.

An additional bonus to GPR is that the variance, which indicates the spread of

the data in the distribution, is available and can be used to give a measure of the

confidence in the prediction. Using the variance, a confidence interval (CI) can

be constructed, which gives a range of values that the prediction is estimated to

fall between for a specified level of confidence.

The mean, three randomly drawn samples and the 95% CI is shown in fig. 3.4

for the prior and posterior distribution of a simple 1D example with 5 observed

points. These are calculated at 50 equally spaced query points across input range.

The improvement using the posterior is clear as it has been conditioned to pass

through the observed points. The CI is small in the vicinity of the observed

points, but are larger further away from them.

Crucial to any GPR model is the covariance function chosen. There have been

a number of different covariance functions defined in literature that poses varying

number of free parameters, with some of the most popular presented here.

The simplest of these is a linear kernel, eq. 3.17, where σ2
o is an offset term

and Λ = diag (l21, ..., l
2
i ) is a diagonal matrix of lengthscales for each dimension.

This kernel has i + 1 trainable parameters and makes the assumption that the

regression problem is linear.

k(x,x′) = σ2
o + xΛx′T (3.17)
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(a) Prior (b) Posterior

Figure 3.4: Mean and 95% confidence interval of prior and posterior distribution,
along with 3 randomly drawn samples.

Covariance functions that prescribe different lengthscales for each dimension

are known as automatic relevance determination (ARD) kernels [123]. These nat-

urally give better performance compared with those that have a single lengthscale

l = l1 = ... = li and will be employed by all covariance functions used in this

work.

The most popular covariance function used for non-linear regression problems

is the radial basis function (RBF) [124]. The formula for this is given in eq.

3.18, where σ2
f is a scaling factor and Λ is the same as that of the linear kernel.

This assigns a higher value to points closer together and tends towards zero as the

distance between them increases. The lengthscale in the denominator accentuates

this, with a smaller value producing a more rapidly changing function. A general

rule of thumb is that it is not possible to extrapolate more than lk units way from

your data for dimension k [124].

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TΛ−1(x− x′)

)
(3.18)

This impact that the lengthscale has on the outcome is highlighted in fig.

3.5, where the posterior mean and 95% CI are shown for 3 different lengthscales

for a simple 1D problem. As anticipated, the CI increases rapidly away from

the observed points for a small lengthscale while for larger values the function is

unable to pass through all observations.

Even with the ability to change the lengthscales the RBF function is still

very smooth, which is attributed to the fact that the GP has mean squared

of all orders due to the infinitely differentiable nature of the function [124]. It
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(a) l = 0.1 (b) l = 1 (c) l = 3

Figure 3.5: Mean and 95% confidence interval for the RBF covariance function
with different lengthscale l.

is argued that a function with strong smoothness properties such as this are

unrealistic for modelling many real world problems, with the Matérn covariance

function recommended instead [125]. This covariance function is shown in eq.

3.19, where Kν is a modified Bessel function, Γ is the gamma function, ν is

a positive parameter which dictates the sharpness of the function and r is the

distance between x and x′ scaled by each lengthscale as shown in eq. 3.20.

k(x,x′) = σ2
f

21−ν

Γ(ν)
(
√
2νr)νKν(

√
2νr) (3.19)

r =
(
(x− x′)TΛ−1(x− x′)

)1/2
(3.20)

The behaviour of the Matérn function varies widely with the choice of ν. As

ν → ∞ Matérn becomes equivalent to the RBF function, however, for ν = 1/2

the Matérn function is identical to the absolute exponential covariance function

which results in a jagged, piecewise linear function.

Calculating the Bessel and gamma function can be computationally demand-

ing, however the formulation of the Matérn function is simplified in the case where

ν = p+ 1/2 and p is a non-negative integer. Values of ν ≥ 7/2 are ignored as it

is very difficult to distinguish between them and the RBF kernel, while ν = 1/2

has a limited range of applications. This leaves ν = 3/2 and ν = 5/2 as the most

commonly used variants of the Matérn function, which are given by eq. 3.21 and

3.22 respectively. These are denotes as Matérn5/2 and Matérn3/2.
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kν=3/2(x,x
′) = σ2

f

(
1 +

√
3r
)
exp

(
−
√
3r
)

(3.21)

kν=3/2(x,x
′) = σ2

f

(
1 +

√
5r +

5

3
r2
)
exp

(
−
√
5r
)

(3.22)

The predicted mean and CI using the Matérn covariance function are shown

in fig. 3.6 for the three values of ν discussed above. The lengthscale is fixed

at l = 1 which highlights how the Matérn function converges towards the RBF

function for larger ν by comparison of fig. 3.5b and 3.6c. The piecewise nature

of the function with ν = 1/2 is also clearly shown.

(a) ν = 1/2 (b) ν = 3/2 (c) ν = 5/2

Figure 3.6: Mean and 95% confidence interval using the Matérn covariance func-
tion for different values of ν .

Other popular covariance functions which aren’t presented here include the

periodic function, which assumes a degree of periodicity to the data, the γ-

exponential functions and the rational quadratic function [124].

In a Bayesian framework, the inference of the posterior distribution is calcu-

lated by eq. 3.23, where the terms in the numerator are the likelihood and prior

(respectively) and the denominator is the marginal likelihood. Note that this is

the same posterior distribution as eq. 3.14 with the addition of the term θ which

were previously omitted.

p(f |X,y, θ) = p(y|X, f , θ)p(f |θ)
p(y|X, θ)

(3.23)

Continuing with the Bayes methodology a probability distribution over all

θ can be created, in what is called the second level inference, see eq. 3.24.

It is similarly composed of a likelihood, prior and marginal likelihood for the

parameter θ. To maximise the second level posterior, one must maximise its

likelihood, p(y|X, θ), which is equal to the marginal likelihood from the first
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level inference (eq. 3.23). This is commonly referred to as a type-II maximum

likelihood estimator.

p(θ|X,y) = p(y|X, θ)p(θ)
p(y|X)

(3.24)

For mathematical convenience, the log of the marginal likelihood is used and

is referred to as the marginal log likelihood (MLL). The MLL is shown in eq.

3.25 where Ky = K+σ2
nI and K is the covariance matrix. As most ML packages

focus on minimising a loss function, it is the negative of the MLL which is used

for training a GPR model.

MLL = log(p(y|X, θ)) = −1

2
yTK−1

y y − 1

2
log |Ky| −

n

2
log 2π (3.25)

The differentiability of a GPR model depends entirely on the differentiability

of the covariance function used [124]. If the covariance function is first order

differentiable, then the model will also be first order differentiable, and so on.

The RBF covariance function is infinitely differentialy, while Matérn3/2 is first

order differentiable and Matérn5/2 is second order differentiable.

To model cases where multiple outputs are required, there are two options

available. The first of these is to train a separate, independent GPR model for

each output and will be referred to as a multi-output GPR (MO-GPR) model

[126]. This approach is flexible as it enables each output to be modelled using

a different covariance function, however this does require training j separate

models, although it is important to note that this process can be performed in

parallel due to their independent nature.

The second option is a multitask GPR (MT-GPR) model, where similarities

between the outputs are learnt during training [126]. The similarities between

any two outputs are stored in a inter-task covariance lookup table, which is used

in conjunction with the standard covariance matrix to make predictions. While

this implementation requires training only a single model, it does assume that

the outputs are correlated to each other, which limits its range of applications.

Note that PyTorch does not include GPR models, therefore the additional

package GPyTorch is required and is what’s been used to perform the analysis in

this section [127].
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3.3 Dimensionality Reduction

In the case of FF surrogate models, the number of outputs are extremely large,

often having to predict the values at tens or hundreds of thousands of nodal

positions. Modelling each of these individually would be infeasible for most ML

algorithms, therefore these are usually compressed using dimensionality reduction

techniques. These are an extremely popular and widely used tool in ML, moving

data from a high-dimensional space to a lower-dimensional space while preserving

certain characteristics of the data. These are a type of unsupervised learning

algorithms, as no labels are assigned to the data points.

In the vast majority of applications, dimensionality reduction is used to re-

duce the number of input features a model has. The most basic reason to do

this is to reduce the data to 2 or 3 dimensions so that is can be visualised and

interpreted more easily. Another reason it is employed is to overcome the curse

of dimensionality [128]. As the number of dimensions grow, the volume of the

hyperspace becomes larger, meaning that the current data becomes more and

more sparse. This curse states that as the number of dimensions grow, the quan-

tity of data required to maintain a consistent result will need to increase at an

exponential rate. Another benefit of reducing the dimensionality is the removal

of any potential multi-collinearity between two variables.

When reducing the number of input features, it is highly unlikely that the

original, high dimensional data would ever need to be recovered. As a result,

certain techniques, such as manifold learning, are unsuitable for the task of data

compression as they are unable to project the data back to its original, higher

dimensional space. This section present two dimensionality reduction techniques

which enable the compressed data to be projected back to its higher dimensional

space; PCA and auto-encoders.

3.3.1 Principal Component Analysis

The PCA algorithm reduces the dimensionality of data by projecting in on to

lower dimensional subspaces. The PCs which data is projected on to are optimal

in terms of retaining the variance in the data. The first PC is that which has

the highest variance when it is projected on to the 1D subspace. Similarly, the

second PC, which is orthogonal to the first, is chosen as that which maximise

the variance on 2D projected data. The PCs which maximise the variance of the

projected data are equal to those which minimise the distance between the data

49



and its projection on to the subspace.

Prior to performing PCA, the data must first be normalised. Normalising is

a process which involves shifting data so that each dimension has a mean of zero

and scaling it to so that each has a standard deviation of 1. Shifting the data

to centre around the origin is intuitive as the PCs, much like the original axes,

travel through the origin.

To understand the PCA algorithm, first the singular value decomposition

(SVD) of a matrix is presented. SVD is a technique which factorises any rectan-

gular m × n matrix, A, into three matrices, U , S and V T , see eq. 3.26. S is a

diagonal, p × p matrix whose entries are the singular values of matrix A where

p is the rank of A, and is usually min(m,n). These singular values are denoted

by si and sorted in descending order such that s1 > s2 > ... > sp. U is a m × p

matrix whose columns are the left singular vectors of A, while V T is a p × n

matrix whose rows are the right single vectors of A. It turns out that the left and

right singular vectors are the eigenvectors of AAT and ATA respectively, while

the singular values are the square root of the eigenvalues, λi =
√
si.

A = USV T (3.26)

Take A to be the matrix of data where each of the m rows is a n-dimensional

sample point, with n >> m in most cases. In the case where the data is centred,

meaning that the mean of each column of A is zero, ATA is the covariance matrix

for the dataset. The diagonal elements of a covariance matrix are the variances

for each variable, the sum of which gives the total variance in the data. The

trace theorem states that the trace of a square matrix is equal to the sum of the

eigenvalues of the matrix, which highlights the connection between variance and

eigenvalues [129].

The entries of S are sorted in descending order, therefore the largest value,

and thus that which contributes most to the overall variance, is the first entry.

This is associated with the first row of V T , which in turn is the first PC. Likewise,

the second PC is the second row of V T and contributes the second most to the

variance, and so on.

Deciding how many PCs to project the data on to is dependent on the appli-

cation. If it is so that the data can be interpreted, then the data will be projected

to 1, 2 or 3 dimensions so that it can be visualised. More often than not, the

data will be projected to a number of dimensions, which ensures that the overall
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variance retained is above a certain threshold. The fraction of data retained by

a projection on the first k PCs is given by eq. 3.27. The fraction of variance to

retain advised in literature vary, however all advise retaining at least 0.99 of the

variance of the original data. This is one of the biggest advantages of using PCA;

as all PCs are identified from the beginning, it allows the number to be increased

if accuracy is insufficient.

θPC =

∑k
j=1 λj∑p
i=1 λi

(3.27)

Projection of the data in to the lower dimensional space is achieved by multi-

plying the high dimensional data by the transpose of V T , which is of course just

V . If k PCs are used, then the reduced form of V , given by Vk, is used to project

A to the lower dimensional space Ak = AVk. Reconstructing this data, which

involves projecting it back in to its original higher dimensional space, is achieved

by Ã = AkV
T
k . If k < p then Ã ̸= A due to this being a lossy compression

algorithm.

An example of the PCA algorithm being used to project 2D data to a 1D

subspace is shown in fig. 3.7a. The dotted line shows the distance between

the original point, A, and reconstructed ones, Ã. θPC = 0.966 of the overall

variance of the data is retained using the 1D encoding of the data. Comparing

this results with the PCA analysis shown in fig. 3.7b highlights the weakness of

the algorithm. As data is projected on to linear subspaces, it performs poorly

when the form of data is non-linear, as it is in this case. As anticipated from the

high errors between the original and reconstructed data, the amount of variance

retained using this projection is θPC = 0.538.

3.3.2 Auto-encoders

Auto-encoders are a special type of ANN algorithm which are used to efficiently

learn a lower dimensional encoding of a dataset. They consist of three parts;

an encoder, a latent space and a decoder, see fig. 3.8. The role of the encoder

is to compress the original, high-dimensional data to an encoded representation,

which is often orders of magnitude smaller than the original. The latent space,

often referred to as the bottleneck, is the encoded representation of the data,

which is the last layer of the encoder and the first layer of the decoder. The

decoder then reconstructs the data to its high-dimensional form from the encoded
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(a) Linear data (b) Non-linear data

Figure 3.7: Projection of 2D data on to 1D subspace using PCA.

representation, which is compared with the ground truth (the input) to assess its

accuracy.

Auto-encoders are used for a variety of tasks, meaning that there are a va-

riety of different types found in the literature. The simplest of these is a MLP

auto-encoder, where the encoder and decoder are fully-connected, feed-forward

MLP models [61]. Convolutional auto-encoders, which use CNNs to represent the

encoder and decoder, are popular for tasks which involve images [62] and time

series data [63]. As this work requires the compression of simulation field data,

an MLP auto-encoder will be sufficient for this task.

As with any MLP model, there are key hyperparameters relating to the archi-

tecture which must tuned. The size of the latent space is the most important of

these, as the ratio of this against the input size dictates the level of compression

achieved by the model. As with any MLP, the number of layers and nodes per

layer will vary, however the bottleneck will almost always be the layer with the

fewest nodes. In general, the number of nodes in each subsequent layer decrease in

the encoder and increase in the decoder. This ensures there aren’t rapid changes

in the sizes of the layers, avoiding issues which this can present.

Since MLPs are able to learn non-linearity between the inputs and outputs,

it means that they are much better suited for data compression tasks than PCA

when the data is non-linear. Using a 2-10-1-10-2 architecture, a much better

reconstruction of the data is achieved on the non-linear dataset, as shown in
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Figure 3.8: Example auto-encoder architecture, where 6D data is compressed to
2D.

fig. 3.9b. For completeness the results of the same auto-encoder on the linear

data set is also included, fig. 3.9a, where a similar linear reconstruction as the

PCA is identified.

Although they are able to outperform PCA in certain circumstances, they do

poses certain drawbacks. Their main disadvantage is that due to the fact that the

input and output layers are usually large, the models consist of a high number

of trainable parameters, which can be time-consuming to train and can be prone

to over fitting. Along with this, changing the level of compression (the size of

the bottleneck) to improve the performance will require training an entirely new

auto-encoder, which would add considerable time to the workflow.
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(a) Linear data (b) Non-linear data

Figure 3.9: Comparison of original and reconstructed 2D data after compression
to 1D using a 2-10-1-10-2 auto-encoder.

3.4 Data Collection Strategies

In order to train a surrogate model, synthetic data from across the parameter

space must be gathered. There are a number of different sampling methods pre-

sented in literature to effectively choose the most informative points. These sam-

pling methods can be divided into two categories; pre-determined and adaptive

sampling.

3.4.1 Pre-determined

Pre-determined sampling, often referred to as one-shot sampling, is where all

points in the parameter space which require evaluation are known from the outset.

This makes them extremely easy to use and straightforward to apply in terms of

their coding.

While there are a variety of different schemes quoted in literature, one require-

ment for this work is that adding new data to the existing data is easy and does

not imbalance its distribution. For example, Latin hypercube sampling (LHS) is

an extremely popular method used to spread data across the parameter space as

evenly as possible. Using the LHS method, however, if an initial set of l points,

denoted by Sl, is deemed to give insufficient accuracy and a larger set of m points

is required, it is the case that Sl ̸⊂ Sm. This means that adding new points to the
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initial dataset becomes more complicated, which means that the LHS method is

not applicable for this work.

Random sampling, which randomly chooses points from across the parameter

space using a uniform distribution, is the simplest of the available schemes. By

using a uniform distribution, each point has the same probability of being chosen,

meaning that each point in the parameter space is treated equally. Due to the

independent nature of drawing from a uniform distribution, it can mean that

certain regions are densely sampled while others are not explored at all. This

behaviour is highlighted in fig. 3.10a, where 30 points in a 2D parameter space

are generated using the random sampling approach.

(a) Random (b) Halton (c) Sobol

Figure 3.10: 30 points in 2D parameter space generated using pre-determined
sampling schemes.

The Halton sequence is a quasi-random, low discrepancy sequence which as-

signs a different co-prime as the base of each dimension [130]. The first 30 points

of the Halton sequence in two dimensions is shown in fig. 3.10b. Here, the first

dimension (x1) uses base 2, while the second dimension (x2) uses base 3. It has

been noted that there is a high degree of correlation between certain higher di-

mensional bases, the first of which are 17 and 19. There are ways to avoid this

issue, such as discounting the first n number of points, with n depending on the

bases used, or by ‘scrambling’ the Halton sequence. More details on this problem

and how it can be avoided can be found in [130].

Another popular low-discrepancy method is the Sobol sequence. The math-

ematics behind this sequence is slightly more complex than that of the Halton

sequence, however fundamentally it uses generative matrices to represent num-

bers for each dimension in binary form (base 2). Similarly to Halton, for higher

dimensions this will also face correlation problems, however it has been shown

that both Sobol and Halton work well up to 10 dimensions [131]. It has been

shown that Sobol and Halton both produce similar levels of accuracy in terms of
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data collection for surrogate models [132].

One drawback of pre-determined sampling is its evenly distributed approach,

meaning that interesting regions of the parameter space are sampled as much as

those which are of less interest, see fig. 3.11. These regions of interest could be

a highly non-linear response, discontinuities or those which are key for a given

application.

Figure 3.11: Inefficient sampling using pre-determined Halton sampling method.

The advantage of pre-determined sampling methods is it allows simulations

to be performed concurrently, as all points are known a priori. If one has the

capability of running multiple simulations simultaneously, such as in VirtualLab,

the time required to collect the data can be reduced considerably.

3.4.2 Adaptive

Adaptive sampling differs from pre-determined sampling in that the next point is

decided using information from the previously gathered points. The true forward
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model is evaluated using this point, which is then added to the pool of gathered

points to inform the next. Most of the adaptive schemes presented in literature

are single selection policies, meaning that only one new point is identified at

each step. This process is summarised in eq. 3.28, where the next point in the

parameter space X is that which maximises the refinement criteria, denoted by

RC.

xm+1 = argmax
x∈X

RC(x) (3.28)

Each adaptive scheme has a different refinement criteria and is what guides the

next point. Refinement criteria are usually composed of two parts; exploration

and exploitation. The aim of exploration is to evenly scan the parameter space

and build up a general understanding of the mapping. Exploitation, on the other

hand, aims to use the knowledge gained from the available observations and place

points in regions which are deemed to be interesting, e.g. those with large errors,

high gradients or optima, for example. Schemes which are exploration only will

spread the points out across the parameter space more evenly, but may miss some

important features, while those which are exploitation only will heavily sample

areas at the expense of poor performance elsewhere.

The most common type of exploration technique is distance-based exploration.

Here, the distance between each of the candidate points and the previously sam-

pled points are calculated, with that which is furthest away from its nearest

neighbour contributing most to the RC. This is summarised in eq. 3.29, which is

commonly referred to as the Monte Carlo intersite-proj-th (MIPT), where x∗ is

the nearest, previously sampled point to x.

RCMIPT (x) = |x− x∗| (3.29)

When a GPR is used for the surrogate model, another explorative technique is

available, which is variance based exploration. As the variance gives a measure of

the uncertainty of the model’s prediction, the candidate point which maximises

this has the biggest impact on the refinement criteria. The simplest of these

schemes is the maximum mean squared error (MMSE), given by eq. 3.30 [133]. As

the variance is based on distance information combined with the covariance kernel,

there is a natural link between distance based and variance based approaches

[134].

57



RCMMSE(x) = σ2 (3.30)

The exploitative component is the more nuanced aspect of adaptive schemes

and the one which has the greater number of options. Geometry based exploita-

tion schemes aim to target regions near certain geometric features which lead to

high errors between the surrogate and original model. These geometric features

could be sudden changes, such as spikes, in the profile which would easily be

missed by exploration only strategies. There are generally two ways to try to

target these areas; by observing the gradients (usually approximated) or looking

at the error, or distance, between the surrogate and original model.

One of the most popular gradient based schemes is the local linear approxima-

tion (LOLA) on Voronoi cells proposed by Crombeq et al. [135]. The previously

sampled points are used as vertices of Voronoi cells, which divide up the pa-

rameter space. For each Voronoi cell the magnitude of the gradient, E, and the

volume, V , are calculated and summed together, see eq. 3.31. Here the volume of

each cell works as the exploration aspect, ensuring no large areas of the parameter

space are without a point, while the gradient gives the exploitation, which are

larger around certain geometric features. Generally, the mid-point of the Voronoi

cell with the largest score is used as the next sampling point.

RCLOLA(x) = E(x) + V (x) (3.31)

While the logic of the LOLA scheme is straight forward, its application can

be very difficult. Discretising high dimensional spaces into Voronoi cells is com-

putationally expensive, meaning that this scheme becomes infeasible when the

number of parameters is large.

Schemes which look at the error between the surrogate and ground truth

model overcome this issue, as they do not require creating Voronoi cells. The

expected improvement for global fit (EIGF) by Lam instead uses the squared error

between the predicted value at the candidate point and the ground truth value

at its nearest neighbour for the exploitation component [136]. The refinement

criteria for the EIGF scheme is shown in eq. 3.32, where S is the surrogate model

and y(x∗) is the value at the nearest, previously sampled point. The exploration

is accounted for using the model variance σ2 at point x however this can easily

be changed to a distance based exploration if the surrogate is not a GPR model.
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RCEIGF (x) = (S(x)− y(x∗))2 + σ2 (3.32)

Another interesting approach to exploitation is query by committee (QBC).

Instead of using a single model to guide the next point, a committee of models

is used, where the location where the biggest difference between the predictions

of the committee members is used. This difference is usually calculated as the

variance between the predictions, shown in eq. 3.33, where {Sc
1, ..., S

c
nc
} are the

nc surrogate models which make up the committee and S̄c is their mean value.

σQBC(x) =
1

nc

nc∑
i=1

(
Sc
i (x)− ¯Sc(x)

)2
(3.33)

The mixed adaptive sampling algorithm (MASA) was developed by Eason and

Cremaschi and uses this QBC variance along with a distance-based exploration

[137]. The refinement criteria for the scheme is shown in eq.3.34, where Dmin =

|c−x∗| with x∗ defined above. The exploration and exploitation components are

each scaled by their respective maximum value measured over the set of candidate

points, denoted by C to ensure both contribute equally to the score.

RCMASA(x) =
Dmin(x)

maxx∈C Dmin

+
σQBC(x)

maxx∈C σQBC

(3.34)

Another popular choice for exploitation is cross validation, where multiple

models are trained using different sub-sets of the training data. One of the

most well-known of these is the leave one out cross validation (LOOCV), which

measures the error using m surrogate models trained by omitting a single point

from the training data, i.e. Xtrain\xi for i = {1, ..,m}. The error between the full

surrogate model and augmented one measures the sensitivity of the loss of data

at a point, and thus aims to sample more in regions with larger errors. These

types of exploitation based schemes are not presented here as they are infeasible

for models with larger numbers of training data, as is used in this work.

Adaptive sampling methods have the advantage of being able to focus on

key areas within the parameter space. This usually results in a reduction in the

number of data points required and/or an improvement in the model accuracy

compared with pre-determined sampling.

One drawback of adaptive sampling is that the collected data is optimal with

regard to the refinement criteria chosen. Using the collected data for another pur-

pose, such as creating a surrogate of an alternative results field calculated during
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the simulation, may lead to poor result. For example, if the adaptive refinement

criteria was based on the temperatures generated by a thermo-mechanical model,

then these data points collected are likely to be suboptimal for the creation of a

surrogate model of the mechanical response of the component, e.g. displacement,

stress, or strain. Along with this, the single selection nature of adaptive schemes

means that high-throughput running of simulations is impossible due to the de-

pendence of the next point on the previous. This means that while they tend to

be more efficient in terms of the number of data points required, they would be

more inefficient with respect to time compared with a pre-determined sampling

strategy used with concurrently running simulations.

It is possible to extend the single selection policies discussed above to multi-

selection policies. Multi-selection policies are where a batch of l > 1 future

sampling points are advised at each iteration. The most common approach for

this is to approximate the ground truth value at the first sampling point using the

surrogate model, temporarily adding this point to the list of previously sampled

points, and then repeating the procedure to identify the next best sampling point.

Once the l best sampling points are identified, they are used to generate the

ground truth values using the simulation and replace the approximated ones.

While this enables the l simulations to be performed concurrently, thus speeding

up the procedure, the need to approximate values detracts from the underlying

purpose of adaptive schemes.

3.5 Chapter Summary

This chapter has presented the methodologies required for generating SV and FF

surrogate models. These methods are the basis for the surrogate models used

for the analysis presented in chapters 6, 7, and 8. This chapter also provided

an example highlighting the different capabilities of the PCA and auto-encoder

techniques for compressing 2D data to 1D.
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Chapter 4

The HIVE Facility

4.1 Introductory Remarks

The first goal of this chapter is to provide more details of the experimental setup

of the HIVE facility. This is essential to establish a computational model of HIVE

which accounts for the different aspects of the experiment. The second goal is

to highlight the current shortcomings of HIVE, specifically the diagnostics which

provide limited insight in to the component’s suitability, and the inaccuracy and

inefficiency in creating a DoPE for a component.

This chapter is structured as follows: firstly, the motivation for establishing

HIVE is provided in section 4.2. Section 4.3 provides a more detailed description

of the HIVE facility and how experiments are performed, while section 4.4 discuses

some common outcomes the HIVE operators aim to deliver during an experiment.

4.2 Motivation

4.2.1 Nuclear Fusion

Fusion is the process of combining two lighter nuclei to create one heavier nucleus,

and powers the Sun and all the stars of the universe. For fusion to occur, two

nuclei must overcome their electrostatic repulsion to one another and move within

close proximity, where the attractive nuclear force enables them to fuse. The

extreme pressure produced by the Sun’s immense gravity means that fusion is

achieved at around 15,000,000 ◦C. Because Earth’s gravitational field is 28 times

weaker than the Sun’s, the reduced pressure means that temperature in excess of

150,000,000 ◦C is needed to achieve fusion. Generating this level of heat is usually
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achieved through a combination of Ohmic heating and neutral beam injection

[138].

Fusion can be achieved using a variety of different fuels, however a mixture of

deuterium and tritium, usually referred to as a D-T reaction, is the most widely

used as it delivers an optimal fusion triple product score [139]. This score is

– unsurprisingly – the product of three factors; the density of ions within the

plasma, the temperature of those ions and the energy confinement time. A D-T

reaction maximises the triple product score for a lower temperature compared

with other fuel mixtures.

Deuterium and tritium are both isotopes of hydrogen, with the former having

two particles in its nucleus (one proton and one neutron) while the latter having

three (one proton and two neutrons). These two fuse to create helium and an

additional neutron, releasing 17.6MeV in the process. This is summarised in fig.

4.1, where 2H and 3H are deuterium and tritium respectively.

Figure 4.1: Deuterium-tritium fusion reaction
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4.2.2 Fusion Devices

The most commonly followed approach for achieving fusion on Earth is through

the use of a tokamak. Tokamaks are characterised by their use of magnetic

coils to generate the necessary magnetic fields to confine a plasma into a torus

(doughnut) shape. When a plasma is achieved, the negatively charged electrons

and the positively charged nucleus become detached from one another, enabling

the plasma to be controlled using a magnetic field. The use of these magnetic

fields ensure that the extremely hot plasma will never come in to contact with the

walls of the tokamak. To generate the necessary magnetic fields, superconducting

magnets are used, whose temperatures can reach as low as -269 ◦C (4 ◦K) in the

cryopump.

The world’s largest tokamak is JET, and has been pioneering fusion for the

past 40 years. In 1997, JET achieved a then world-record peak power output

of 16.1MW from a fusion device, along with a total energy output of 22MJ

achieved over a 5-second period. Commercial fusion devices will require longer

pulse lengths and greater energy outputs, however JET is unable to perform

longer pulse lengths than 5-seconds due to its superconducting magnet configu-

ration. Following an upgrade to its inner wall, JET set a world record in 2021

for the largest total energy output over a sustained period, generating 59MJ of

energy over a 5-second period [140].

To highlight the efficiency of fusion, this 59MJ of energy was achieved using

a plasma fuelled with 0.1mg of tritium and 0.07mg of deuterium, whereby to

produce the same quantity of energy one would require more than 2 kg of coal or

more than 1 kg of natural gas [140].

Due to its size and design, JET will never be able to produce net energy. This

means that its fusion gain factor, Q, which is the ratio of fusion power produced

in a nuclear fusion reactor to the power required to maintain the plasma in steady

state, is less than 1.

Scheduled for completion in 2025, ITER will become the world’s most ex-

pensive and complex science experimental facility [141]. Located in Cadarache,

France, ITER is a tokamak which has been designed using concepts tested out

in JET. ITER is much larger than JET, boasting a major radius of 6.2m, more

than double that of its predecessor (2.96m). This increase in size means that the

total plasma volume of ITER is 840m3, a substantial increase compared with the

100m3 available in JET. Increasing the volume of the plasma greatly improves
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the plasma efficiency, meaning that ITER will be able to demonstrate a fusion

energy gain factor of Q = 10. A conceptual design of the ITER facility is shown

in fig. 4.2.

Figure 4.2: ITER conceptual design [142].

Although ITER will demonstrate net power, it will never supply energy to

the grid. Its main purpose is instead to test and develop technologies, designs,

and diagnostics for use in the next iteration of prototype fusion power plants,

such as the design of the divertor [143]. The plasma is exhausted via a part of

the tokamak known as the divertor, which sits at the bottom of the tokamak, as

highlighted in fig. 4.2. A mock-up of the ITER divertor is shown in fig. 4.3a,

which is made up of 54 cassettes, each weighing 10 tonnes each. These cassettes

consist of 3 main components; an inner and outer vertical target and the dome,

see fig. 4.3b. During steady state operation, the vertical targets must sustain a

heat flux of 10MW/m2 while during the slow transient stage this will increase

to 20MW/m2 [144]. These targets are made up of monoblocks, which consist of

an armour and a pipe which actively cools the component using coolant, see fig.

4.3c.

The design of the ITER monoblocks has been the subject of an international

R&D operation. Initially, the monoblock armour was designed using carbon, how-

ever carbon has extremely high tritium retention rates, making them unsuitable

[145]. Instead, tungsten was chosen as the armour material due to its extremely
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(a) Full assembly showed to scale [144]

(b) Divertor cassette (x3) (c) Monoblock assembly

Figure 4.3: ITER divertor

high melting point and low tritium retention, while the cooling pipes are made of

a copper chromium zirconium alloy. In preparation for the construction of ITER,

the inner wall and divertor of JET was upgraded to an ‘ITER-like-wall’, which

was in place when the world-record 59 MJ pulse was achieved [146].

A key measure for critical components such as the monoblock is the ratio of

mean time to failure (MTTF) and mean time to repair (MTTR). Reduction of

the MTTR will be achieved through the use of robotic maintenance, however

without a large enough MTTF a fusion power plant will never be commercially

viable as large periods of time will be spent with the plant in shut down while

old parts are removed and replaced with new ones.
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4.2.3 HHF Facilities

The design of PFCs, especially those in the divertor, are still a heavily researched

topic as they contribute to a variety of other fusion projects. The demonstration

power plant EU-DEMO will learn from ITER and improve on its design, aiming

to provide between 300 MW and 500 MW of net electricity to the grid during the

2050s [147]. There are also projects investigating the use of spherical tokamaks

for fusion devices. Spherical tokamaks have lower aspect ratios compared with

conventional tokamaks such as JET and ITER. This lower aspect ratio provides

greater plasma stability and higher magnetic fields [148], enabling plasma pulses

to last longer. The spherical tokamak for energy production (STEP) is a proto-

type fusion device which aims to provide net electricity to UK national grid by

2040 [149]. This will build on the knowledge gained from the mega amp spherical

tokamak upgrade (MAST-U) facility currently in operation at UKAEA’s Culham

site [150].

The primary goal of this continued PFC research is to increase their lifespan,

resulting in an improved MTTF. Increasing the lifespan of components can be

achieved in multiple ways. It can use novel designs features, such as the inclusion

of castellations on the plasma facing surface, using newly developed materials and

alloys, or use alternative manufacturing methods, such as additive manufacturing

(AM) [151]. Any newly designed component must be tested to ascertain its

suitability when subjected to the fusion relevant loads.

Experimental facilities play an integral part during the design cycle of engi-

neering components. Fig. 4.4 shows the pyramid of tests a component is subjected

to during its design. At the bottom are coupons which are small parts which are

easy to test, and thus are tested frequently. At the top of the pyramid is the full

assembly, which due to its cost to may only get tested once. An example of this

is a bird strike on an aircraft engine. The blades of the engine will be frequently

tested to assess their response to a high impact, however an entire engine will

only be tested a handful of times due to the cost of producing them [152].

Due to the multi-physics nature of fusion, testing PFCs for the whole gamut

of different conditions outside a fusion device is impossible. Instead, compo-

nents such as the monoblock are tested in HHF facilities to assess their thermal

performance.

There are a number of HHF testing facilities which can replicate certain fusion-

related loads. The Magnum-PSI facility, located at the Dutch Institute for Fun-
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Figure 4.4: Pyramid of physical testing.

damental Energy Research, uses a hot, dense plasma guided by superconducting

magnets to heat the target [153]. This replicates the particle fluxes a component

is exposed to in a fusion device and can deliver over 10MW/m2 of surface power

to a component.

Located at the Max Planck institute for plasma physics, GLADIS is equipped

with two hydrogen ion sources to deliver up to 45MW/m2 of surface power to a

component [154]. Its large scale means it can test components which are up to

2m in size, which is useful for testing the entire inner vertical target, which is

1.5m in length [155]. Other facilities where high flux testing takes place are the

ITER divertor test facility and JUDITH II [156], [157].

Scheduled for completion in 2024, the Combined Heating and Magnetic Re-

search Apparatus (CHIMERA) will be the only machine in the world able to test

components under the unique combination of conditions encountered in large

fusion devices, such as ITER [158]. Up to 20MW/m2 of surface power can be

delivered to a component while it is subjected to mechanical loading via a 4 Tesla

magnetic field.

Due to the size and complexity of HHF facilities, their use comes at a substan-

tial cost. This sizeable outlay is acceptable during the latter stages of the design

cycle to confirm a component’s suitability, however during the early stages this
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cost often becomes an obstacle to innovation. The HIVE facility was established

in 2015 to enable early verification of the thermo-fluid performance of PFCs.

Instead of focusing on full component qualification, HIVE focuses on the com-

parison between different concepts and manufacturing methods. The primary

goals of HIVE are [10]:

• Analyse the thermal performance of a component.

• Investigate concepts which employ novel features or materials.

• Provide a comparison between different manufacturing methods.

• Validate computational models.

4.3 Experimental Setup

The HIVE vacuum vessel, inside which components are tested, is shown in fig.

4.5. This vessel has height and diameter of 500 mm, and consists of 6 ports

located around its circumference. Two ports are assigned to vacuum pumping

and monitoring, while the other four provide a range of viewing angles through

windows ranging from 100 mm to 200 mm in diameter. The pressure in the

vessel is reduced to 1E-06mbar during an experiment to protect the experimental

apparatus from the high temperatures subjected to a component.

To perform an experiment, firstly the component is fitted to the mounting

bracket with the pipe attached to the inflow and outflow of the coolant, as shown

in fig. 4.6. Next, the coil design is chosen and is positioned relative to the

component, however it is difficult to accurately measure the exact positioning of

the coil due to the scale of the problem. Once positioned, the lid is then fitted

and bolted to the vacuum vessel, in order for it to be depressurised. Finally, the

parameters relating to the coolant and induction heating system are set.

During an experimental campaign, changing the loading conditions a com-

ponent is subjected to is usually achieved by varying the coolant and induction

heating parameters. This is because these are easily accessible, while changing

the induction coil and/or its positioning requires substantially more effort.
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Figure 4.5: HIVE vacuum vessel

4.3.1 Induction Heating

Induction heating is the process of heating electrically conductive materials, such

as metals, via electromagnetic (EM) induction. An alternating current (AC) is

run through a coil, producing a rapidly changing magnetic field. This varying

field generates electric currents (often referred to as eddy currents) within the

nearby conductor (component in HIVE). These eddy currents are converted in to

a heat source based on the electrical resistivity of a material in a process known

as Joule heating, or resistive heating. The electric resistivity of a material is its

measure of how strongly it opposes the flow of an electric current, with larger

values yielding greater heat generation. An image of an induction coil used in

HIVE is shown in fig. 4.7.

EM induction is a form of volumetric heating, however it’s a surface heat

flux which a component in a fusion device would be subjected to. The current-

carrying layers in the conductor can be found between the surface adjacent to

the coil and a level called the skin depth, d. The formula for the skin depth is

given by eq. 4.1, where ρ is the electrical resistivity of the conductor, f is the

frequency of the current in the coil, µr is the relative magnetic permeability of the

conductor and µ0 is the magnetic permeability of free space in a vacuum, which

69



Figure 4.6: View of vacuum vessel lid from below, showing coil and sample mount-
ing arrangement [159]

is 4π × 10−7 [160]. The magnitude of the eddy currents decreases exponentially

from the coil adjacent surface [161].

d =

√
ρ

πfµ0µr

(4.1)

Since the skin depth is inversely proportional to the current frequency, it can

be made smaller by operating at higher frequencies. Fig. 4.8 shows the skin

depth as a function of the frequency for tungsten, from which the PFCs in ITER

are made. The induction heating system used by HIVE has a frequency range of

50 kHz to 150 kHz, and usually operates around 100 kHz, meaning that the skin

depth would be below 0.5mm. It’s imperative that the skin depth be suitably

small so that thermal loads generated by the induction heating system accurately

replicates the surface heat flux imparted by the plasma.

The magnitude of the induction heating loads are decided using the power

settings on the induction heating system, which has an upper limit of 45 kW.
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Figure 4.7: Induction coil and component prior to testing in HIVE.

This upper limit of 45 kW isn’t the quantity of thermal power which will

be delivered to the component, rather the quantity of power extracted from the

power supply. The quantity of thermal power delivered to the component depends

on the coupling efficiency of the induction coil, given by eq. 4.2. This coupling

efficiency is inversely proportional to the square root of the distance between the

coil and conductor [162]. This means that very small changes in the positioning

of the coil relative to the component in HIVE will have a large effect on the

coupling efficiency and thus the heating power delivered to the component.

Coil efficiency =
Energy transferred to the conductor

Energy delivered to the coil
(4.2)

Although there are correlations available in literature to estimate the coupling
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Figure 4.8: Skin depth of eddy current penetration against frequency for tungsten

efficiency of an induction coil, the sensitivity of the coil placement along with the

presence of immeasurable losses in the system means that these estimates have a

high degree of variability [162].

4.3.2 Active Cooling

Cooling is supplied to HIVE using a closed loop temperature control unit. Through

this the temperature, pressure, and flow rate of the coolant are set. The cooling

rig used in HIVE allows for a flow rate ranging from 5 l/min to 80 l/min, pres-

sure between 0.4MPa and 2MPa, and temperature between 25 ◦C and 200 ◦C,

although these higher temperatures are only achievable when the coolant is also

at high pressure. The coolant input and output are mounted to the removable

lid of the vacuum vessel, as shown in fig. 4.6.

4.3.3 Diagnostics

Unfortunately, the data recorded by HIVE’s diagnostics are limited by operational

constraints. An infrared (IR) camera is used to record the experiment, however

the point of view of the footage is restricted by the location of the portholes in

the vacuum vessel. Along with this, the proximity of the induction coil to the
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component means that the view of the component is obstructed, see fig. 4.9. This

is especially problematic since this inhibits the ability to view the temperature

field on the coil adjacent surface.

Figure 4.9: IR image recorded during HIVE experiment [159]

Thermocouples, which are probes that are joined on to the surface of a compo-

nent, are used to record pointwise measurements of the temperature at a limited

number of locations on the component’s surface. Their accuracy, however, is

highly dependent on the strength of its bond to the component, meaning that

these can be prone to underestimating the true temperature. Fitting these ther-

mocouples to the surface of each component is also very time-consuming process.

There are also 2 pyrometers available to measure surface temperature, how-

ever, similarly to the IR camera, these are located outside the vacuum vessel and

are thus limited by the location of the portholes on the vacuum vessel. More-

over, each pyrometer is only able to record temperatures above 300 and 350 ◦C

respectively, meaning they are unusable for a number of experiments.
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4.4 Desirable Experimental Outcomes

To adequately test a component’s suitability for a fusion device, it is desirable

to subject it to a variety of different loading conditions during its DoPE. As

HIVE is only capable of monitoring a component’s thermal response, this is the

only measure around which the DoPE can currently be constructed. Thus, some

common loading conditions currently requested are;

• Ensure the peak temperature stays below a certain critical tem-

perature such that the component isn’t damaged. It is desirable

for components to be subjected to similar heat loads as those experienced

within a fusion device, however it is essential that the temperature of the

component stays within their service range, and critical that they are below

the melting temperature.

• That a certain temperature is reached within a particular region

of the component. As components tested in HIVE are heat exchanger

components, it is often desirable that a specified temperature be delivered

to a particular region.

• Uniformly heating the coil adjacent surface as much as possible to

avoid hot spots. The heat loads experienced by PFCs in a fusion device

are uniform, with variations occurring over a much larger lengthscale. To

ensure that the components tested in HIVE are suitable, it is essential that

the heating be as uniform as possible to emulate in service conditions.

• Identify power settings to gradually scale up the component tem-

perature. As components in HIVE are commonly made from bonded

metals, it is advisable to heat up the component gradually to specified tem-

peratures. This avoids a scenario where a component is pushed too far and

fails at the first experiment, resulting in no usable experimental data.

Due to HIVE’s limited diagnostics, it’s very difficult to accurately assess

whether these outcomes have been achieved. Currently, HIVE operators use

the data collected from thermocouples to estimate the temperatures at different

locations in the component using their intuition. Given that HIVE is a multi-

physics, highly non-linear experiment, it is extremely unlikely that estimates are

accurate. This is exacerbated by the fact that HIVE predominantly tests compo-

nents with novel features, materials, and manufacturing methods, on which there
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is limited data available to provide the necessary intuition, thus increasing the

level of uncertainty. There is also no means my which to validate these estimates,

making them extremely unreliable.

Since it is the stress state of the component which is of most concern during

the design of PFCs, an ideal set of loading conditions set out in the DoPE would

take this into account. For example, these could include;

• Incrementally increasing the stress in a component. It is beneficial

to know how far a component can be pushed prior to failing to ascertain its

limits.

• Minimising stresses at bonded surfaces. It is essential that compo-

nents do not fail before usable data has been gathered. Minimising the

stress on bonded surface gives component’s the best chance of avoiding

failure.

• For a given component temperature, identify the upper and lower

limit of the maximum stress state. There are often numerous combi-

nations of experimental parameters which will deliver a specified maximum

temperature to a component. Each of these will result in a different maxi-

mum stress in a component, the knowledge of which is extremely useful.

Given that HIVE operators have no method of inferring the stress state of the

component from the sparse thermal experimental data available, delivering these

types of experiments is currently impossible.

4.5 Chapter Summary

This chapter has provided an overview of the HIVE facility, including the moti-

vation behinds its establishment. The details provided on the experimental setup

is essential for the creation of a computational model of HIVE, which will be

discussed in chapter 5.

The discussion surrounding the diagnostics available in HIVE and the way in

which the DoPE is established provides the motivation for the use of ML. ML

offers the opportunity to greatly improve the impact that the HIVE facility has

during the design cycle of a component. Smarter testing would ensure that a

component is more thoroughly tested for a greater variety of loading conditions,

75



the work for which is presented in chapters 6 and 7. Improved insight ensures that

the sparse experimental data is enriched to provide a much better understanding

of the component’s suitability for a fusion device, which is presented in chapter 8.
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Chapter 5

VirtualLab

5.1 Introductory Remarks

The primary aim of this chapter is to provide details on the multi-physics compu-

tational model of HIVE which has been developed for this project. This model has

been created using the VirtualLab package, which has been developed predomi-

nantly by myself as part of this project [43]. VirtualLab is a novel package which

provides more automation to computational engineering workflows, enabling tools

such as ML to be more easily utilised, overcoming many of the challenges outlined

in section 2.5. While an overview of VirtualLab is provided, more detailed infor-

mation including its installation, structure, use, and guidelines for contribution

can be found in the documentation [44]. The documentation also includes six de-

tailed tutorials, which guides new users through the use of VirtualLab showcasing

its flexibility for different workflows and scenarios.

Firstly, section 5.2 provides more details on the VirtualLab package, includ-

ing details on how parameterisation, parallelisation, and portability is achieved.

Following this, section 5.3 provides a detailed explanation of the computational

model created for HIVE, along with its validation against experimental results.

5.2 Package Overview

VirtualLab is a platform which streamlines the production of synthetic data of

physical systems to promote the use of ML algorithms. Central to the vision of

VirtualLab are the three P’s; parameterisation, parallelisation, and portability.

Parameterisation of the workflow enables key variables to be easily changed, mak-
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ing it easier to collect data from across a parameter space. Parallelisation allows

simulations to be performed concurrently, which when deployed on supercomput-

ers enables data to be generated in a fraction of the time. The easy portability

of VirtualLab means that its deployment and use is the same regardless of the

computer system. This ensures that it can be easily used by those in different

teams or organisations.

Written mostly in Python, VirtualLab centres around a class which sets up,

organises and executes the required steps of the workflow. These steps are set

out in a Python script, referred to as a ‘run file’, an example of which is shown

in listing 5.1. This run file is a rather simplistic example which follows a linear

workflow, however more complex workflows can be easily implemented.
1

2 from Sc r i p t s .Common. VirtualLab import VLSetup

3

4 Simulat ion=’ Tens i l e ’

5 Pro j ec t=’ Tuto r i a l s ’

6 Parameters Master=’ TrainingParameters ’

7 Parameters Var=None

8

9 VirtualLab=VLSetup (

10 Simulation ,

11 Pro j ec t )

12

13 VirtualLab . S e t t i ng s (

14 Mode=’ Headless ’ ,

15 Launcher=’ Process ’ ,

16 NbJobs=1)

17

18 VirtualLab . Parameters (

19 Parameters Master ,

20 Parameters Var ,

21 RunMesh=True ,

22 RunSim=True ,

23 RunDA=True )

24

25 VirtualLab .Mesh(

26 ShowMesh=False ,

27 MeshCheck=None )

28

29 VirtualLab . Sim(

30 ShowRes=False )

31

32 VirtualLab .DA()

Listing 5.1: VirtualLab run file

To initiate the class, two inputs are required; the experiment and the project

(line 9 of listing 5.1). The former simply refers to the name of the experiment

for which analysis will be performed, e.g. ‘Tensile’ to perform a tensile test. The

name provided here allows VirtualLab access to the relevant scripts needed to

perform that particular virtual experiment. The project name is the name of the

directory in which the input parameters are found (in the input directory) and

where results will be saved to (in the output directory).
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Once an instance of a class is created, the next step is to use the Settings

attribute to define how one wishes to use VirtualLab (line 13). Here, decisions

are made, such as where the standard output is written to (either the terminal

or to a file) or how parallelisation is achieved. The use of settings is optional,

without which the default values are used.

Next, the Parameters attribute is used to read in the parameterised values

which will be used to run the workflow (line 18). Parameterisation is an integral

part of VirtualLab which is more easily explained once the concept of ‘methods’

have been introduced.

5.2.1 Methods

Methods are routines which perform different aspects of the workflow. In listing

5.1, the methods used are Mesh, Sim and DA (data analysis), which are ubiqui-

tous steps in most engineering workflows. VirtualLab has a variety of different

methods currently implemented;

• Mesh: Routine to create CAD geometries and meshes of components us-

ing SALOME. Visualisation of the created meshes in the GUI is possible by

means of the ShowMesh keyword, allowing the user to visualise the fidelity

of the mesh. This method also has the CheckMesh keyword which gener-

ates the mesh in the GUI, which is useful for debugging any errors which

may arise, such as identifying parts of the geometry which are incorrectly

intersecting one another.

• Sim: Routine which perform the simulation of the experiment. Currently,

this method uses the FE code code aster developed by Electricite de France

(EDF) to perform the necessary analysis. This method has the ShowRes

keyword available to automatically open the generated results in the visual-

isation software ParaViS, which is a customisation of the ParaView package

by EDF.

• ML: This routine uses data extracted from simulations to construct sur-

rogate models using the PyTorch package. A number of useful functions

have been developed to make the construction of SV and FF surrogates

very simple.

• DA: This method is extremely flexible, allowing the user full control over

what analysis to perform. This can include extracting key results from
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simulations for comparison, creating a database of results, capturing images

using ParaViS, or using surrogate models to perform analysis.

• ScanCT: Module which creates simulated X-ray radiographs using the

gVXR package [163].

• Voxelise: Module which converts CAD geometries in to voxelised repre-

sentations using the Cad2Vox package [164].

Each method is itself a Python class, and are defined separately from the Vir-

tualLab parent class but are attached during its initiation. This enables methods

to be easily added and modified by the user, allowing a high degree of customi-

sation and flexibility when using VirtualLab.

5.2.2 Modules

As seen in the above description, most methods use at least one external soft-

ware packages to perform their necessary analysis. In VirtualLab, these external

packages are referred to as ‘modules’, since they can be easily swapped for a dif-

ferent package or a more up-to-date version. This is made possible through the

use of containers. A container image, the term commonly used for an individual

container, communicates with the host system through the use of a container

platform such as Docker, Singularity or Apptainer. While the inside of an image

contains the specific OS and dependencies a code requires, on the outside they are

identical, meaning they can be deployed on any computing environment which

has a container platform installed.

To ensure VirtualLab can be used by those working in any organisation, the

modules currently used are all open-source software (OSS) packages. OSS are dis-

tributed freely, meaning there is no cost whether they are on a personal computer

or a multi-node supercomputers. Along with this, generally speaking OSS pro-

duce better scaling than commercial codes due to their frequent use in academia.

A common drawback faced with OSS is that they are not always well maintained,

meaning that they may become defunct with upgrades to external packages, for

example. Another obstacle is that OSS do not provide formal support in the

same way that commercial software does, although many popular OSS have active

user communities that provide extensive assistance (e.g. OpenFoam, code aster),

while some offer support through a subscription (e.g. GitLab). It is essential,

therefore, that OSS are carefully chosen.
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The modules currently available in VirtualLab are;

• SALOME : SALOME is a pre- and post-processing OSS developed in a part-

nership between EDF and Commissariat a l’energie atomique (CEA), the

French equivalent to UKAEA [165]. SALOME does not contain a numerical

solver, but it provides the computing environment necessary for their inte-

gration. It is programmed using a combination of C++ and python. CAD

geometries are created using its inbuilt GEOM and Shaper modules, with

the latter used to make more complex geometries. Meshing is performed

using the SMESH module, which supports the use of well known meshing

algorithms such as NETGEN.

For post-processing, SALOME has ParaViS in-built, which is an extension

of the ParaView visualisation package to support the MED mesh format

which is preferred by SALOME.

As it is used in-house by both EDF and CEA, it is well maintained and

well documented. Because it has a large network of users, its forums are

frequently used, which is useful for identifying issues.

• code aster : code aster is an open-source FE code with over 40 years of

development [166]. It is developed and maintained by EDF and used as

their in-house solver. It consists of numerous analysis methods, including

mechanical, thermal, acoustic, dynamic, metallurgic and porous media. It

supports more than 400 different types of finite elements, including discon-

tinuous media for modelling cracks and joints, along with over 200 consti-

tutive laws to model a variety of different behaviours. As this code is used

to model components used in EDF’s nuclear energy facilities, its validation

is rigorous, which is demonstrated for more than 2000 benchmark cases.

Although code aster is a terminal-based solver, a GUI is available for specific

versions which have been integrated in to the salome-meca software (e.g.

version 15.6 of code aster is used in salome-meca 2021).

• ERMES : The Electric Regularized Maxwell Equations with Singularities

(ERMES ) is an open-source EM-FE solver developed by Ruben Otin at

UKAEA [167]. Written in C++, ERMES is a benchmarked code and is

efficiently parallelised using OpenMP [168]. It can model a variety of mod-

elling types and BCs and can use up to third order elements.
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Natively, the ERMES solver is integrated in to the pre- and post-processing

software GiD to provide an easy-to-use GUI [169]. This software is a com-

mercial package and is limited in its flexibility and automation capabilities.

To overcome this, an application within VirtualLab has been created which

removes the need for GiD when performing ERMES analysis. ERMES is

launched using text files which contain the necessary information to per-

form analysis, such as the mesh data, BCs and solver parameters. Mesh

information is extracted from the MED file format generated by SALOME,

which is then written in the appropriate format alongside the necessary BCs

required to simulate the EM induction performed in HIVE [170]. Once the

ERMES solver is complete, the results are converted from the ASCII file

format to the MED format so that the results can be visualised in ParaViS.

• Cad2Vox: Cad2Vox is a package developed by Ben Thorpe at Swansea

University to efficiently perform mesh voxelisation on GPU (using CUDA)

or CPU (using OpenMP) for surface and volume meshes [164].

• gVXR: This provides a programming framework for simulating X-ray im-

ages on the graphics processor unit (GPU) using OpenGL [163].

A visualisation of the methods and modules used to perform a tensile test in

VirtualLab is shown in fig. 5.1.

5.2.3 Parameterisation

Parameterisation of the workflow is made possible using the aforementioned

Parameters attribute of the VirtualLab class. Passed to this is Parameters Master

which is a pointer to the variable names and values one wishes to use during the

analysis. In the majority of cases this pointer is the name of a file which stores

the required information, as is the case in listing 5.1 which points to the file

‘TrainingParameters.py’ (defined in line 6).

The contents of ‘TrainingParameters.py’ is shown in listing 5.2. As shown, the

parameter information is communicated to the specific method through the use

of SimpleNamespace, which are effectively an empty Python class that data can

be assigned to [171]. These are a similar construct to Java classes or structure

arrays in Matlab. This means that any data assigned to the namespace Mesh

in available to the method Mesh during its call in the run file. Based on the
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contents of this file, a mesh will be created, and a simulation performed, with no

data analysis carried out (since there is no namespace DA defined in this file).

Figure 5.1: The methods and modules used for the tensile virtual experiment

1 from types import SimpleNamespace as Namespace

2

3 ######## Meshing #########

4 Mesh = Namespace ( )

5 Mesh .Name = ’Notch1 ’ # Name under which t h e mesh w i l l be saved in Meshes d i r e c t o r y .

6 Mesh . F i l e = ’DogBone ’ # Salome python f i l e used to c r e a t e mesh .

7 # Geometric Parameters

8 Mesh . Thickness = 0.003

9 Mesh . HandleWidth = 0.024

10 Mesh . HandleLength = 0.024

11 Mesh . GaugeWidth = 0.012

12 Mesh . GaugeLength = 0.04

13 Mesh . TransRad = 0.012

14 Mesh . HoleCentre = ( 0 . 0 , 0 . 0 )

15 Mesh . Rad a = 0.0005

16 Mesh . Rad b = 0.001

17 # Meshing Parameters

18 Mesh . Length1D = 0.001 # D i s c r e t i s a t i o n a long edge s (1D)

19 Mesh . Length2D = 0.001 # D i s c r e t i s a t i o n on f a c e s (2D)

20 Mesh . Length3D = 0.001 # D i s c r e t i s a t i o n on volumes (3D)

21 Mesh . HoleSegmentN = 30 # Number o f segments f o r h o l e c i r cumfe r ence

22

23 ####### Simu la t i on #######

24 Sim = Namespace ( )

25 Sim .Name = ’ S ing l e ’ # Name under which t h e s imu l a t i o n r e s u l t s w i l l be saved .

26 Sim . As t e rF i l e = ’ Tens i l e ’ # The CodeAster command f i l e can be found in S c r i p t s /$SIMULATION.

27 # Simu la t i on parameters

28 Sim .Mesh = ’Notch1 ’ # The mesh used in t he s imu l a t i o n .

29

30 Sim . Force = 1000000 # Force a p p l i e d in f o r c e c o n t r o l l e d a n a l y s i s .

31 Sim . Mate r i a l s = ’Copper ’ # Mate r i a l component i s made o f .

Listing 5.2: Content of Parameter master file ’TrainingParameters’
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Each namespace has the attributes File and Name attached to it. The at-

tribute File specifies the name of the file used to perform the required analysis.

This file is located in the directory ‘Experiments/#experiment name#/#method

name#’ within the VirtualLab directory ‘Scripts’. For example, the path to the

mesh related scripts for the tensile experiment is ‘Experiments/Tensile/Mesh’,

inside which ‘DogBone.py’ will be found.

This file then uses the other attributes associated with the namespace to

perform analysis. For example, in listing 5.2 the namespace Mesh has attributes

such as Thickness and HandleWidth to specify certain geometric dimensions,

while Length1D specifies the mesh refinement along 1D edges of the CAD model.

The attribute Name is the name under which the analysis will be saved. In

this example, the mesh generated will be saved under the name ‘Notch1’ in the

relevant mesh directory.

As stated above, the parameters do not necessarily need to be in a separate

file, and can be defined directly in the run file. An example of this is shown in

listing 5.3 for the purpose of generating a mesh.
1 from Sc r i p t s .Common. VirtualLab import VLSetup

2 from types import SimpleNamespace as Namespace

3

4 Simulat ion=’ Tens i l e ’

5 Pro j ec t=’ Tuto r i a l s ’

6

7 Mesh = Namespace ( )

8 Mesh .Name = ’Notch1 ’ # Name under which t h e mesh w i l l be saved in Meshes d i r e c t o r y .

9 Mesh . F i l e = ’DogBone ’ # Salome python f i l e used to c r e a t e mesh .

10 # Geometric Parameters

11 Mesh . Thickness = 0.003

12 Mesh . HandleWidth = 0.024

13 Mesh . HandleLength = 0.024

14 Mesh . GaugeWidth = 0.012

15 Mesh . GaugeLength = 0.04

16 Mesh . TransRad = 0.012

17 Mesh . HoleCentre = ( 0 . 0 , 0 . 0 )

18 Mesh . Rad a = 0.0005

19 Mesh . Rad b = 0.001

20 # Meshing Parameters

21 Mesh . Length1D = 0.001 # D i s c r e t i s a t i o n a long edge s (1D)

22 Mesh . Length2D = 0.001 # D i s c r e t i s a t i o n on f a c e s (2D)

23 Mesh . Length3D = 0.001 # D i s c r e t i s a t i o n on volumes (3D)

24 Mesh . HoleSegmentN = 30 # Number o f segments f o r h o l e c i r cumfe r ence

25

26 Parameters Master = Namespace (Mesh=Mesh)

27 Parameters Var=None

28

29 VirtualLab=VLSetup (

30 Simulation ,

31 Pro j ec t )

32

33 VirtualLab . S e t t i ng s (

34 Mode=’ Headless ’ ,

35 Launcher=’ Process ’ ,

36 NbJobs=1)

37

38 VirtualLab . Parameters (

39 Parameters Master ,

40 Parameters Var ,

41 RunMesh=True ,

84



42 RunSim=True ,

43 RunDA=True )

44

45 VirtualLab .Mesh(

46 ShowMesh=False ,

47 MeshCheck=None )

48

49 VirtualLab . Sim(

50 ShowRes=False )

51

52 VirtualLab .DA()

Listing 5.3: Self-contained run file

The advantage of this method is that the run file is self-contained, meaning

that the analysis can be performed using only this single file. This method is also

useful when one needs to perform analysis in an iterative loop, such as adaptive

sampling, for example.

A second, optional parameter pointer, referred to as Parameters Var, can

be used in conjunction with Parameters Master to perform parametric analysis.

The file, which similarly uses namespaces, provides lists of values for parame-

ters one wishes to vary during a DoE and supersede those similarly defined in

Parameters Master.

An example of a Parameters Var file is shown in listing 5.4, which dictates that

two meshes, named ‘Notch2’ and ‘Notch3’, will be created with varying values for

two geometric parameters Rad a and Rad b. The other parameters associated

with Mesh in Parameters Master will be used alongside these to generate the two

meshes. Two simulations will then be performed, ‘ParametricSim1’ and ‘Para-

metricSim2’, which perform the exact same analysis but using the two different

meshes.
1 from types import SimpleNamespace as Namespace

2

3 ######## Meshing #########

4 Mesh = Namespace ( )

5 Mesh .Name = [ ’ Notch2 ’ , ’ Notch3 ’ ]

6 Mesh . Rad a = [ 0 . 0 0 1 , 0 . 0 0 2 ]

7 Mesh . Rad b = [ 0 . 0 0 1 , 0 . 0 0 0 5 ]

8

9 ####### Simu la t i on #######

10 Sim = Namespace ( )

11 Sim .Name = [ ’ ParametricSim1 ’ , ’ ParametricSim2 ’ ]

12 Sim .Mesh = [ ’ Notch2 ’ , ’ Notch3 ’ ]

Listing 5.4: Structure of Parameter var file

Because the parameter files are Python based, the lists of parameter values

in the Parameters Var file can be generated using constructs such as for loops,

thus making it much simpler to define very large numbers of analyses. VirtualLab
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also has an in-built sampling schemes, which are useful to choose points across a

parameter space using a variety of different sampling techniques.

The Parameters attribute also has the capability of ‘switching off’ certain

methods. For example, if one has already generated the necessary meshes previ-

ously, but it is still defined in the parameters file, then instead of deleting this

information one can simply change the RunMesh keyword to False (line 21 in

listing 5.1), resulting in the Mesh method being skipped. Similarly, this method

could be avoided by removing the call to the Mesh method in the run file (lines

25-27 in listing 5.1).

5.2.4 Portability

So that VirtualLab can be a widely used tool, it is essential that it can be eas-

ily deployed on a variety of different operating systems. As discussed in section

5.2.2, the external software packages associated with VirtualLab are placed in

containers, meaning that they can be used on any system with a suitable con-

tainer platform. To reduce the number of requirements on the user’s system,

the python dependencies required for the VirtualLab package are also placed in a

container, which is referred to as the ‘manager’ container. The benefit of this ap-

proach is it fixes the version of python and its dependent packages to those which

are known to work, avoiding inevitable issues when using it with more recent,

untested, versions. This ensures that reproducibility of results is much simpler

using VirtualLab, which is a key component of scientific data management.

While the steps of the workflow are executed inside the manager container,

analysis will also need to be carried out by external packages. This is achieved

using a ‘server’ on the host system, which waits to receive commands from the

manager container regarding which external software should be triggered. For

example, once the workflow reaches the stage where code aster is required, the

necessary information is sent to the server, which then launches the code aster

container to perform the necessary analysis. Once complete, the server passes

the necessary information back to the manager to continue working through the

workflow. The communication between the server and the various containers is

achieved using the Python socket module, which is a low-level network interface

[172].

The socket module is a built-in module, meaning that only a standard in-

stallation of Python or Anaconda is required on the user’s system, along with a
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suitable container platform and git. This means that VirtualLab is extremely easy

to deploy, and has been demonstrated for a variety of different Linux operating

systems on both personal computers and clusters at different organisations. Al-

though not currently implemented, the setup of VirtualLab means that extending

it to use on Windows or Mac operating systems is straightforward, and something

which is considered as future work.

A slight drawback of this approach is that placing software in containers will

require more storage than if they were installed on the host directly, due to certain

container related requirements. Given that computers have large quantities of

storage available these days, this is unlikely to be a limiting factor in its use.

5.2.5 Parallelisation

Parallel computing is a type of computation in which many calculations or pro-

cesses are carried out simultaneously [173]. Its use, coupled with huge advance-

ments in the computational power, has enabled the creation of large, extremely

complex computational models that would previously have been thought impos-

sible. Some examples are simulations which model the impact of defects such as

inclusions and porosity in a component [174], modelling the movement of traffic

through cities [175] and simulations of blood flow through arterial networks [176].

Parallelisation can be achieved in two ways. The first is characterised by the

running of a single instance of a program, where computations are performed

among the available processors, and is commonly referred to as HPC. This re-

quires the need for a method of communicating between the different processors,

such as message passing interface (MPI), and is usually used for larger problems

which are subdivided between processors. The second involves running multi-

ple, independent instances of a program over multiple processors simultaneously.

Their independence means there is no need for communication between each

processor and is used in scenarios where the same program is run with varying

inputs. This is occasionally referred to as high throughput computing, but most

of the time it’s also referred to as HPC. It’s also possible to use both forms in

conjunction, e.g. if 10 instances of a program were required and 40 cores (or pro-

cessors) were available, then it would be beneficial to perform the 10 instances

and allowing each instance 4 cores to perform its parallelisation.

InVirtualLab, numerous analyses can be defined in advance using Parameters Var

and is a typical example of a high throughput computing problem. Fortunately,
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implementing this is much simpler than classical HPC parallelisation, as it doesn’t

require detailed knowledge of the program to identify the aspects which would

benefit from parallelism. VirtualLab uses the Python packages pathos and pyina

for this purpose [177], [178]. Pathos provides a consistent interface of the map

and apply functions native to Python for several popular parallel libraries, such

as threading [179], multiprocessing [180] and Parallel Python [181]. Pyina ex-

tends these functionalities for multi-node application, which is achieved through

the use of MPI or job scheduling systems for clusters, such as slurm [182], [183].

To assess the performance of VirtualLab’s parallelisation, 32 identical simu-

lations of the engineering tensile test were performed on the Sunbird computer

cluster [184]. Shared between Swansea University and Aberystwyth University,

Sunbird is a 126 node cluster, each of which having 40 cores and 384GB of random

access memory (RAM).

Using 2,4,8,16 and 32 cores, simulations are performed in parallel with the

quantity equal to the number of cores (set with NbJobs in Settings). Fig. 5.2

shows that VirtualLab’s pathos implementation gives excellent scaling, matching

closely with a perfect linear scaling, which is referenced using a dashed line.

The method used for parallelisation is defined using the Launcher argument in

Settings. The slight deviation from perfect scaling is attributed to the overhead

required to initiate the different processes.

The same analysis was conducted using pyina’s MPI routine, which is shown

in fig. 5.3. For simplicity, this analysis was performed using a single node. As

shown, the scaling here is poor, with a large deviation from the perfect scenario.

One potential cause for this is that the manager process (often termed the master)

is also a worker, meaning that on top of distributing jobs to the other processes

(termed as slaves) and checking on their status’s, it also must complete a job itself.

This is confirmed by looking at the code aster log file for the first simulation (the

one assigned to master), which shows that the time taken to perform the analysis

is much higher compared with the others.

Fortunately, pyina has the capability of restricting the master process to en-

sure it isn’t also a worker. This, however, means that an additional core would

be needed, e.g. if one wanted to perform all 32 simulations concurrently then

33 cores would be required as one is used by the manager. The scaling using an

independent master is shown in fig. 5.4, which shows much better levels of scaling

compared with fig. 5.3, although the need for the additional core for an indepen-

dent manager means that perfect scaling would be impossible. Unsurprisingly,
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there is a larger overhead required to set up the MPI processes compared with

pathos’ multiprocessing.

Figure 5.2: Comparison of VirtualLab scaling using pathos multiprocessing (-o-)
with perfect scaling (–)

Figure 5.3: Comparison of VirtualLab scaling using pyina MPI (without indepen-
dent master) (-o-) with perfect scaling (–)
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Figure 5.4: Comparison of VirtualLab scaling using pyina MPI (with independent
master) (-o-) with perfect scaling (–)

5.3 HIVE Simulation

Modelling a multi-physics system such as HIVE is complex and requires the use

of multiple modelling techniques. This section looks at the variety of modelling

methods used and their integration with one another. Fig. 5.5 provides a visual-

isation of the boundary conditions in the HIVE simulation and their reference to

the specific sections.

Figure 5.5: Visualisation of experimental parameters (green) and boundary con-
ditions (red) for the HIVE simulation.
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5.3.1 Component Geometry

The majority of components tested in HIVE are made up of three parts; a pipe,

block, and tile (or armour). The work presented here and in chapters 6, 7 and

8 are performed on a titanium heat exchanger component designed as part of a

project between Swansea University and UKAEA. An engineering drawing of the

component is shown in fig. 5.6, with the respective dimensions given in table 5.1.

The component mainly focused on in this is made of a single piece of titanium,

meaning there are no joins between the pipe and the block, and the block and

the tile. Chapter 8 will look at a component where the tile and block are two

separate parts bonded together.

Figure 5.6: Engineering drawing of titanium component used in analysis.

Dimension Magnitude (mm)
lblock 45
wblock 45
hblock 35
ltile 45
wtile 45
htile 10
lpipe 200
dpipe 12.7
tpipe 4.15

Table 5.1: Dimensions of titanium component.
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5.3.2 Induction Heating Model

Michael Faraday first demonstrated EM induction in 1831, with James Maxwell

formulating this idea into the Maxwell-Faraday equation, see equation 5.1 [185].

This combined with the Gauss’s law for electricity (eq. 5.2), Gauss’s law for

magnetism (eq. 5.3) and Ampere’s law (eq. 5.4) complete the governing set of

equations which describe modern EM theory, known as the Maxwell equations

[186]. In these equations E is the electric field, B is the magnetic field, J is the

electric current density, ρc is the electric charge density, ε0 is the permittivity of

free space and µ0 is the permeability of free space.

∇× E = −∂B
∂t

(5.1)

∇ · E =
ρc
ε0

(5.2)

∇ ·B = 0 (5.3)

∇×B = µ0(J+ ε0
∂E

∂t
) (5.4)

In ERMES the FE method is applied to the ‘double-curl’ Maxwell equations,

which is derived by taking the curl of equation 5.4 and 5.1 . Unlike many EM

FE solvers, ERMES results are calculated at the nodes instead of the commonly

used edge elements, because these can produce singularities due to ill-conditioned

matrices [167].

Performing analysis of HIVE’s induction heating system using ERMES firstly

requires a mesh of the component, the induction coil and the surrounding vacuum.

The design of the induction coil and positioning has a huge effect on the coupling

efficiency, and thus heating delivered to the component. This work will perform

analysis using two different coil designs, referred to as coil A and coil B, which

are shown in fig. 5.7.

The positioning of the coil relative to the component can be specified using

6 degrees of freedom; 3 translational and 3 rotational, see fig. 5.5. Once the

coil design and positioning are specified, a conformal mesh of the vacuum which

surrounds both the coil and component is generated using SALOME.

Next, information relating to the analysis is required. BCs, such as parts of

the geometry which are treated as perfect electrical conductors, must be assigned,

along with the material properties of the component and induction coil. Along
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(a) Coil A (aerial) (b) Coil A (side)

(c) Coil B (aerial) (d) Coil B (side)

Figure 5.7: Coil designs considered for HIVE analysis.

with this, the material properties of the component are required, with EM analysis

requiring values for the ρ, µr and electric permittivity, εr of a material.

The frequency and magnitude of the current in the coil is also required, how-

ever as discussed in section 4.3, the induction heating system used at UKAEA

only measures the power it draws from the power supply, not the magnitude

of the current. To accurately measure the magnitude of the current, the CWT

Rogowski coil and RS PRO 2205A oscilloscope have been incorporated into the

HIVE facility, enabling the values of the current and frequency to be measured

near the induction coil terminal [187], [188].

A Rogowski coil is a wound coil which encloses a current carrying wire, which

in this case the induction coil input terminal. The alternating current in the

input terminal creates an alternating magnetic field, which induces a voltage

in the Rogowski coil. The output of the Rogowski coil is integrated using an

oscilloscope to retrieve the sinusoidal profile of the voltage. Each oscilloscope has

a sensitivity value which describes how the integrated voltage is proportional to

the current in the enclosed wire. The oscilloscope used has a coil sensitivity of

2mV/A.
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An example of the information collected using the Rogowski coil is shown in

fig. 5.8a, where the inputs to the induction heating system were for a frequency

of 101.3 kHz and power of 1kW. Taking into account the sensitivity of the oscillo-

scope, a plot of the current is shown in fig. 5.8b. This shows that the magnitude

of the current is around 100 A, and also confirms that the frequency demanded

by the induction heating system is correct, as each period takes around 10µs, as

expected.

(a) Voltage (b) Current

Figure 5.8: AC profiles recorded using Rogowski coil and oscilloscope.

As the coils used by HIVE are asymmetric, the ERMES analysis is performed

in two stages. First, an electrostatic analysis is performed to determine the field J

in the induction coil, followed by a full wave analysis which uses this to calculate

the fields E, B and J in the component.

The heating delivered to a component results from the Joule heating, the

differential form of which is given by eq. 5.5. This is the quantity of power which

is delivered to a component per unit volume. Because ERMES is a linear solver,

the solution fields for E, J and B all scale linearly with the magnitude of the

current. As Joule heating is the product of E and J this field is proportional to

the square of the magnitude of the current in the coil.

dP

dV
= E · J(W/m3) (5.5)

As discussed in section 4.3, the skin depth for most components tested in HIVE

is less than 0.5mm, therefore it is essential that this region of the component be

well discretised. Due to the need for a conformal mesh of the surrounding vacuum,

a global refinement of the component’s mesh will substantially increase the time

taken to produce the result. This not only increases the time taken to perform

the FE analysis due to the increased number of degrees of freedom of the model,
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but meshing the finer conformal mesh is also time-consuming.

Prior to refining the mesh, it is important to note that, when using a standard

CAD geometry, singularities will arise at sharp corners using ERMES. This is a

well known issue in FE analysis, where a certain value will diverge towards infinity

at sharp corners as the mesh refines [189]. There are a handful of ways in which

this can be dealt with, the most common of which is the inclusion of a fillet at

the corner [190]. A fillet is parameterised by a radius which effectively smooths

the corner, an example of which is shown in fig. 5.9 which has been added to the

CAD of the tested component.

Figure 5.9: Mesh of fillet added to face adjacent to coil.

A comparison of the ERMES results generated with and without a fillet is

shown in fig. 5.10. Note that this analysis has been performed at the lower

frequency of 10 kHz in order that the magnitude of the skin depth is larger to

highlight the difference.

(a) Sharp corner. (b) Filleted corner.

Figure 5.10: Reduction in peaks at corners by introducing fillet to coil adjacent
surface.
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Fig. 5.11 shows how the maximum Joule heating value reduces three-fold by

removing the sharp corners for a variety of mesh sizes. The frequency for this

and all remaining ERMES analyses are performed using the usual coil frequency

of 101.3 kHz.

Figure 5.11: Maximum Joule heating value for fillet and non-fillet geometry versus
mesh size.

As the inclusion of the fillet will inevitably lead to increasing the number

of elements in the mesh, the first course of action is to investigate the mesh

fidelity in this region. The power delivered to the component can be calculated

by multiplying the volume of the elements by its corresponding Joule heating

value and summing over all elements. As this is the key result extracted from

ERMES analysis, this is what the mesh refinement will be judged against.

As the fillet is a non-physical feature, it is important that its inclusion does

not affect the overall results. Due to the scale of the components considered, a

maximum fillet radius of 0.5mm is imposed, with SALOME enforcing a lower

bound of 0.1mm. The power delivered to the component using the minimum

and maximum fillet sizes are shown in fig. 5.12a, highlighting that a smaller

fillet size increases the number of nodes substantially for only a very marginal

improvement in the result. Therefore, the fillet size of 0.5mm is advised. The

next consideration is the level of discretisation on the fillet. Fig. 5.12b shows the

change in power when using 1, 3, 5 and 10 elements to discretise the fillet, with

5 providing the best compromise between accuracy and computational expense.
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(a) Fillet size. (b) Fillet discretisation.

Figure 5.12: Refinement of mesh at the fillet.

As the current carrying layers are only present in the 0.5mm below the coil

adjacent surface, it is sufficient to refine the mesh on this surface only. Smaller

2D elements here will ensure smaller 3D elements in the region directly beneath

the surface, as required. Fig. 5.13 shows the results for three different mesh sizes

on this surface; 0.5mm, 0.3mm and 0.2mm, which equates to around 1, 2 and

3 elements through the anticipated skin depth region, respectively. These results

indicate that a mesh size of 0.2 mm, yielding 2 elements in the skin depth, are

required to model the current carrying region with sufficient accuracy.

Figure 5.13: Mesh discretisation on surface adjacent to coil.
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Combining each aspect of the mesh refinement results in a reduction in the

mesh size by a factor of 3 compared with just applying a global refinement on

the tile, as shown in fig. 5.14.

Figure 5.14: Reduction in mesh size using refinement algorithm compared with
global tile refinement.

5.3.3 Coolant Model

The ability to model complex fluid flows has improved greatly with the advent

of CFD. CFD’s use is ubiquitous in a number of industries, including aerospace,

automotive, marine and biology [191]–[194]. While it is an extremely useful tool

to gauge key flow properties, it is computationally intensive, partly down to the

mesh fineness required for accurate modelling of turbulent boundary layers.

Although the water travelling through the pipe in HIVE is a 3-dimensional,

highly pressurised and turbulent flow, modelling its behaviour using CFD is un-

necessary due to a large amount of research having been conducted in to the heat

transfer properties of cooling pipes for a variety of different applications. These

have shown that this problem can be simplified to a 1D problem defined using a

boiling curve, which measures the heat flux, q, between the coolant and the pipe

as a function of the wall (pipe) temperature, Twall. An illustration of the boiling
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Figure 5.15: Boiling curve of water at 1 atm (0.1 MPa) [195].

curve of water at 1 atm is shown in fig. 5.15, where the different boiling regimes

are highlighted.

Using experimental data, a number of correlations have been presented in

literature to predict the quantity of this heat flux. These correlations gener-

ally depend on properties of the coolant, the geometry of the pipe and the wall

temperature.

For the application of heat transfer, it is essential that the Twall stays below

the critical heat flux (CHF) temperature TCHF . Above this temperature are the

undesirable transition and film boiling regimes, which are characterised by the

presence of large quantities of vapour between the wall and the fluid, thus dra-

matically reducing the heat transfer between the two. As a result, the correlations

presented here are for the convection and nucleate boiling regimes of the boiling

curve.

In order to model the coolant for different regimes requires a range of coolant

properties, such as the saturation temperature, thermal conductivity and dy-

namic and kinematic viscosity of the fluid. The International Association for

the Properties of Water and Steam (IAPWS) is an organisation established to

provide internationally accepted formulation for the properties of water and light
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and heavy steam [196]. IAPWS97 [197] is a Python package which calculates key

properties of a fluid for a given temperature, pressure and velocity, which are all

known quantities set by HIVE operators.

When Twall is lower than the saturation (boiling) temperature, Tsat, of the

coolant, it is in the single phase regime. This can be broken down in to two

distinct categories; natural convection, where any fluid motion is achieved by

natural means (such as buoyancy effect), and forced convection, when the fluid

motion is driven by external means such as a pump or fan, like it is in HIVE.

During the forced convection regime q is calculated by multiplying the heat

transfer coefficient (HTC), h, by the difference between Twall and the bulk tem-

perature of the coolant, Tcoolant, see eq. 5.6.

q = h(Twall − Tcoolant) (5.6)

The HTC can be calculated using eq. 5.7, where Nu is the Nusselt number

of the flow, k is the thermal conductivity of the fluid and lpipe is the length of

the pipe. The thermal conductivity of the fluid is available via the IAPWS97

package, while the pipe length for HIVE is a known quantity (lpipe in table 5.1).

The Nusselt number, which is a dimensionless number that measures the ratio of

convective to conductive heat transfer, is unknown and must be estimated.

h = Nu
k

lpipe
(5.7)

A number of correlations are quoted in literature which estimate the value of

the Nusselt number using other flow properties. In 1930 Dittus and Boelter pro-

posed eq. 5.8, which is written in terms of the Reynolds number, Redpipe , and the

Prandtl number, Pr [198]. The Reynolds number is a commonly used dimension-

less number which provides a ratio between the inertial and viscous forces within

the fluid. The subscript to Redpipe signals that the diameter of the pipe, dpipe, is

used as the reference length. Similarly, the Prandtl number is dimensionless and

measures the ratio of momentum diffusivity to thermal diffusivity. The range of

conditions for which this correlation is valid are also included.
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Nu =0.023Re
4/5
dpipe

Pr2/5

0.6 ≤Pr ≤ 160,

Redpipe ≥ 10, 000,

lpipe
dpipe

≥ 10

(5.8)

When the difference between Twall and Tcoolant is large, the Dittus-Boelter

correlation shows poor results, with some stating that it is only valid for a dif-

ference of 6 ◦C [199]. Sieder and Tate accounted for this by including a viscosity

correction factor, which is the ratio of the viscosity at the bulk temperatures, µ,

and wall temperature, µwall, as shown in eq. 5.9 [200]. The other terms in this

correlation are the same as that of Dittus-Boelter, but with minor changes to ex-

ponents and scaling factors. The inclusion of the viscosity correction factor also

ensures that this correlation is applicable for a wider range of Prandtl numbers.

It is advised that all properties of eq. 5.9, other than µ and µwall be evaluated

at the film temperature, Tfilm, which is the average of Twall and Tcoolant[199].

Nu =0.027Re
4/5
dpipe

Pr1/3(
µ

µwall

)0.14

0.7 ≤Pr ≤ 16700,

Redpipe ≥ 10, 000,

lpipe
dpipe

≥ 10

(5.9)

The predicted heat fluxes using the Dittus-Boelter and Sieder-Tate correla-

tions are shown in fig. 5.16 for water at 0.5MPa and 30 ◦C. As anticipated, the

difference between the two becomes more evident at larger wall temperatures

due to the viscosity correction factor included by Sieder-Tate. The heat flux

transferred to the coolant increases for larger flow velocities, as expected.

The nucleate boiling regime is characterised by the fluid beginning to evapo-

rate at the surface of the pipe. For small positive values of ∆Tsat = Twall − Tsat,

the single phase correlations defined in eq. 5.8 and 5.9 are still valid. As this value

increases, the fluid at the surface begins to evaporate, creating bubbles. This has

the beneficial property of mixing the fluid, thus improving its heat transfer ca-

pabilities. Initially these bubbles will collapse after detaching from the surface,

however as ∆Tsat increases through this regime the bubbles begin to coalesce into

jet streams and in turn become slugs of vapour.
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Figure 5.16: Forced convection heat flux calculated using the Dittus-Boelter and
Sieder-Tate correlations for flow velocity of 3 m/s.

To accurately model the nucleate boiling regime, the conditions required to

first achieve it must be deduced. This is referred to as the onset of nucleate

boiling (ONB) and there are a number of correlations available in literature which

estimate the heat flux required to achieve it. The most commonly used correlation

is that of Bergles and Rohsenow, which is given by eq. 5.10, where Pcoolant is the

coolant pressure and TONB the ONB temperature [201]. Note that their original

formulation measured pressure in bar, however this formulation has been scaled

by a factor of 10 so that it is measured in MPa.

qONB = 1082(10Pcoolant)
1.156(1.8(Twall − TONB))

2.16
(10Pcoolant)

0.0234

0.1 ≤Pcoolant ≤ 13.8
(5.10)

By equating the ONB correlation to the forced convection correlation, the

wall temperature required to achieve this phenomenon is deduced. Above this

temperature the flow is in the nucleate boiling regime, and must be modelled

accordingly. A good review of the nucleate boiling correlations available in the
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literature can be found in [202].

For this work, the correlation developed by the Japan Atomic Energy Research

Institute (JAERI) is used, which is given by eq. 5.11 [203]. Note that the factor

of 106 converts qNB to W/m2C to match with the other correlations defined in

this section. This correlation has been chosen because good agreement is shown

against experimental results for a range of coolant properties similar to those

available to HIVE [203], [204].

qNB = 106 exp
Pcoolant

8.6

(
Twall − TONB

25.72

)3

30 ≤Tcoolant ≤ 80,

0.5 ≤Pcoolant ≤ 1.6

(5.11)

To ensure a smooth transition between the forced convection and nucleate

boiling regimes, an asymptotic model is used. These models contain heat fluxes

from both forced convection, qFC , and nucleate boiling, qNB. The asymptotic

model used in this work is that of Bergles-Rohsenow shown in eq. 5.12 [201].

By observation when Twall = TONB, q = qFC , and as the temperature increases

qNB dominates qFC , meaning that q → qNB as desired. The smooth transition

between the two is shown in fig. 5.17.

q = qFC

(
1 +

qNB

qFC

(
1− qONB

qNB

)2
)1/2

(5.12)

The final consideration for the boiling curve is the estimation of the CHF,

denoted by qCHF . This value dictates the maximum amount of heat flux a cooling

system can extract, which is achieved when Twall = TCHF . Due to the sudden

drop in heat flux for temperatures above this value, ensuring the wall temperature

is below TCHF is a critical safety issue.

Because of the complexity of the physics which occur at the CHF, most corre-

lations found in literature require a variety of coolant properties to predict qCHF .

Inasaka et Nairai modified the Tong 68 correlation to improve its accuracy and

extend its application to a wider range of pressures, including those used by HIVE

[205], [206]. The equation for this correlation is given in eq. 5.16, where xex is the

vapour quality at the tube exit measured using the specific isobaric heat capacity,

Cp, and the latent heat of evaporation, Hfg. The value for qCHF is measured using

the mass velocity, G, and the viscosity measured at the saturation temperature,
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Figure 5.17: Asymptotic model of Bergles-Rohsenow for smooth transitioning
between the forced convection and nucleate boiling regimes.

µsat. In the original Tong correlation C = CTong, whereas the modified Tong

includes eq. 5.15.

xex = − Cp

Hfg

(Tsat − Tcoolant) (5.13)

CTong = 1.76− 7.433xex + 12.222x2ex (5.14)

C = CTong

(
1− 52.3 + 80xex − 50x2ex

60.5 + (Pcoolant × 10−5)1.4

)
(5.15)

qCHF = Hfg
CG0.4µ0.6

sat

d0.6pipe

(5.16)

Combining this correlation with those calculated for the convection and nu-

cleate boiling regimes results in a boiling curve of the expected heat flux for the

range of admissible wall temperatures, which is shown in fig. 5.18.

Using these curves, it is possible to assess the effects that varying the three

coolant parameters adjustable in HIVE will have. As anticipated, increasing

the fluid velocity equates to a substantial increase in the heat flux absorbed by

the coolant, see fig. 5.19. To extract 2MW/m2 of heat, the wall temperature for

coolant pumped at 7 m/s is about half that of 1 m/s, however lower temperatures
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Figure 5.18: 1D boiling curve generated using forced convection and nucleate
boiling correlations.

on the pipe may not be desirable as this creates a larger thermal gradient, which

can lead to increased stresses.

As shown in fig. 5.20, varying the coolant pressure has no effect on the

forced convection regime, however it does increase the values of TONB and TCHF .

This enables larger quantities of heat to be extracted by the coolant, which is

desirable in cases where components are loaded with more extreme thermal loads.

As expected, fig. 5.21 confirms that increasing the coolant temperature results

in a reduction in the heat flux.

5.3.4 Thermo-mechanical Model

The thermo-mechanical model of HIVE is generated using code aster and uses

the results generated by the induction heating and coolant models. This work is

interested in the steady-state behaviour of the components tested in HIVE, since

these are the conditions they will be subjected to for long periods in a fusion

device. As a result, this model ignores the transient nature of the experiment,

reducing the computation time substantially.

Including the effects of the coolant is simple, as the boiling curve is applied

to the surface of the pipe as a temperature dependent heat flux. The one simpli-
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Figure 5.19: Variation in heat flux extracted by coolant pipe by varying the
velocity.

Figure 5.20: Variation in heat flux extracted by coolant pipe by varying the
pressure.
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Figure 5.21: Variation in heat flux extracted by coolant pipe by varying the
temperature.

fication made in this regard is that the temperature increase of the coolant along

the pipe is ignored. That is, as the coolant travels along the pipe its tempera-

ture increases due to heat transferred from the component, however this change

is negligible for a component with such a short path length and as such can be

ignored.

Incorporating the Joule heating field produced by ERMES within code aster

is achieved by means of a heat source BC. Heat sources applied in code aster

can be temperature dependent, or temporally and spatially dependent. Due to

their dependence on the geometry of the induction coil, the Joule heating profiles

generated are irregular, meaning they cannot be represented as a function of the

spatial coordinates x, y and z. This means that accurately applying the Joule

heating loads can only be achieved by applying them to each element individually,

which is extremely challenging.

Firstly, it requires that each volume element of the mesh be represented as

an individual mesh group. Not only does this substantially increase the time

taken to generate the component mesh and the ERMES mesh, but also rapidly

increases the size of the file describing the mesh because of all the additional

information regarding the groups. For example, even a very coarse mesh of the

component has 144,855 volume elements, meaning that assigning each of these as
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an individual group would inflate the size of the mesh from 5.1 Mb to 130 Mb.

Secondly, code aster is poorly suited for dealing with problems where a mesh

has a huge number of groups. For example, it took more than 3.5 hours for

code aster to read in the aforementioned coarse mesh and over 4 hours to write

the results to file. It also took over 4.5 hours to apply the Joule heating BC to each

individual group. These time scales are more stark considering it takes only 10 s to

solve the system of equations to calculate the temperature field (thermal analysis)

and 20 s for the displacement, stress, and strain field (mechanical analysis). The

likely cause of these time intensive operations is the use of inefficient search and

sort algorithms to process the large quantities of data required for a problem such

as this [207]. Note that the times quoted here used a single core on the Sunbird

computer cluster.

Clearly, performing analysis in this manner is infeasible, therefore two different

approaches were considered to address this issue; thresholding and clustering. The

idea of thresholding is to only apply loads to the elements which have the greatest

impact on the results. Given that the majority of the eddy currents are subjected

to a very small region of the component, it is time-consuming and unnecessary

to apply the Joule heating load to each of the 144,855 elements. Instead, the

Joule heating loads are sorted in descending order, adding them until a certain

percentage value of the total power is delivered.

By following the thresholding approach, the number of elements required can

be reduced substantially. As is shown in fig. 5.22, to get 99% of the power

56,062 elements are needed, which is less than 40% of the 144,855 elements in the

mesh. To ensure the anticipated power is delivered to the component, the values

assigned to the 56,062 elements would be scaled by a factor of 1/0.99.

Unfortunately, the thresholding approach still yields large computation times,

see table 5.2. While there is a reduction in the time compared with the full

simulation, it is still high considering the size of the problem. It also leads to

errors of up to 2% compared with the full simulation. Thresholding also has the

undesirable feature of increasing the number of groups required with the size of

the mesh, meaning it would be unusable for numerous cases.

The second approach avoids this issue by clustering similarly valued Joule

heating values together in to a pre-defined, k number of groups using the k-

means algorithm [208]. k-means is an iterative algorithm which aims to minimise

the variance within each cluster. Each iteration consists of two steps; assignment

and update. During the first step, each data point is assigned to the closest of
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Figure 5.22: Power delivered to component using the most influential elements,
with 90%, 99% and 99.9% thresholds highlighted.

the k cluster centroids, which are initially randomly chosen. The second step

is then to update the cluster centroids, which is calculated as the average of all

the points assigned to each cluster. This procedure is repeated until there is no

further change to the value of the cluster centroids. An example of the use of the

k-means algorithm for a 2D problem is shown in fig. 5.23 where 30 data points

are clustered in to 2 and 3 groups.

How well the cluster centroids represent the original data is measured using

the inter-cluster variance, or inertia, as it is commonly known. The formula for

Nb. Read Setting Writing Total sim. Max.
groups mesh (s) BCs (s) results (s) time (s) err (%)

Full 144855 13133 17034 15657 45876 N/A
Thresh.

56063 1521 2035 1541 5135 1.17
(99%)
Cluster 100 < 1 < 1 < 1 34 0.83
Cluster 1000 1 2 1 37 0.019
Cluster 10000 51 74 57 215 0.0018

Table 5.2: Comparison of thresholding and clustering for reducing simulation
time.
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(a) 2 clusters (b) 3 clusters

Figure 5.23: 30 2D points (o) assigned to cluster centres (x) using the k-means
algorithm.

the inertia, I, of a dataset X = {x1, ..., xn} clustered in to k groups is given in

eq. 5.17, where cj is the centroid of cluster j which has nj points assigned to it.

The i-th point of this cluster is denoted by xji.

I =
k∑

j=1

nj∑
i=1

|xji − cj|2 (5.17)

There is a clear trade-off between reducing the inertia and increasing the

number of clusters used. One method to choose the number of clusters is the

‘elbow’ method, which involves plotting the inertia scores and choosing the point

at which the score levels out. Another, less interactive method is by using the

goodness of variance fit (GVF) score, which scales the inertia by the sum of

squares of the dataset, as shown in eq. 5.18. This metric is used in the Jenks

natural breaks method, which pre-dates the k-means algorithm and is simply its

1D equivalent [209].

GV F = 1− I∑n
i=1

∣∣xi −X
∣∣2 (5.18)

When the number of clusters is equal to n then each point will have its own,

individual cluster whose centroid coincides with that point, resulting in an inertia

value of 0 and a GFV of 1. On the other hand, the inertia attains its maxima

when there is a single cluster, and is equal to the sum of squares. Since this is

the denominator of the GVF score, this imposes a lower bound of 0 on its value.

The GVF value for the examples shown in fig. 5.23a and 5.23b are 0.3227 and
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0.8043, respectively. Increasing the number of clusters to 4 (not pictured) will

only increase the GFV to 0.8321. While visually it is clear that the data is best

clustered in to 3 groups, the GVF score confirms this.

For HIVE, simulations were performed where the 144,855 Joule heating values

were clustered in to 100, 1,000, and 10,000 clusters. Each of these 3 have GVF

scores of greater than 0.9999, highlighting an excellent fit. The results for the

clustering analysis are also shown in table 5.2. Using as little as 100 clusters yields

more accurate results than the 99% thresholding along with orders of magnitude

speed up in the computational time. Increasing to 1,000 clusters results in an

order of magnitude improvement in the accuracy for almost no time penalty.

Using 10,000 groups improves the accuracy slightly but increases the computation

time exponentially. This increase is likely due to code aster reaching a limit in

terms of its memory allocation, with the need to load and unload data frequently.

Clearly, clustering is the better approach for incorporating the ERMES load-

ing condition in to code aster. All further analysis carried out in this work clusters

the Joule heating loads in to 1,000 groups, which is performed using the SciKit

Python package due to its improved scalability compared with PyTorch’s imple-

mentation [210].

For the mechanical model, the component is constrained at the inlet and

outlet of the pipe using the 3-2-1 method to avoid over constraining the part

[211]. The displacement, stress, and strain fields of the component result from

the thermal expansion of the component due to the temperature field. The effect

of the coolant pressure on the pipe is ignored, which is a reasonable assumption

considering the comparably low pressures.

In this workflow, the three FE simulations are weakly coupled, since they are

solved independently of one another. For example, the ERMES simulation is

performed without any knowledge of the temperature field, meaning that values

for the temperature dependent material properties are taken for a generic refer-

ence value. Ideally, these would be strongly coupled, meaning that changes in

the material properties arising from the temperature field and stress state would

be reflected in the EM results, and vice versa.

There are a couple of ways in which this approximation could be improved,

such as an iterative loop which passes the results back and forth until there is

no further change, or performing a number of ERMES simulations for different

temperature reference points, enabling the Joule heating loads to be applied as

temperature dependent heat sources. For this work, however, the current im-
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plementation of a single ERMES simulation feeding in to a single code aster

simulation to calculate the temperature field and resulting mechanical field is

deemed sufficiently accurate.

The procedure for the HIVE simulation is shown in fig. 5.24 as part of the

wider workflow for surrogate model generation.

Figure 5.24: Workflow for virtual HIVE experiment and surrogate model gener-
ation.

5.3.5 Model Validation

In October 2022, 12 different heat exchanger components were tested in HIVE

to assess the impact of known and unknown defects. Externally, each looked

identical to the component shown in fig. 5.6, however many had voids machined

in to the tile part of the component to assess their impact. Presented here are

the results for the ‘baseline’ component, which is the solid titanium component

with no voids and no bonds between the pipe, block, and tile. These experiments

were carried out using coil A (fig. 5.7a for reference).

Unfortunately, it proved to be infeasible to bond the thermocouples to the

component’s external surface, therefore the thermocouple data was unavailable

for validation. Instead, the terminals of the coil were shifted so that a side on view
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of the component was visible to the IR camera. For reference, fig. 5.25 shows the

tested component through one of the other portholes of the vacuum vessel. Along

with this, a small thermal mirror was placed behind the component so that the

IR camera would record some data on the opposite, back face in addition to the

front face.

Figure 5.25: View of titanium component through a porthole

Using the IR software, regions of interest (ROI) on the front and back face are

established, which are shown in fig. 5.26. Over these ROIs, the maximum tem-

perature and average temperature are recorded over time. The ROI on the front

face covers the entire face, making it simple to compare against the simulation

results. The back facing ROI is slightly more ambiguous, especially in regard to

the average, as it only covers a nondescript part of the back side. As a result,

the accuracy of the model will be compared with the average and maximum tem-

perature data recorded on the front face, and the maximum temperature data on

the back side once steady state has been achieved.
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Figure 5.26: IR camera and the ROIs to record data.

A matrix of loading conditions were set up to validate the model. These

include varying the coolant temperature from low (25 ◦C) to high (75 ◦C), and the

induction heating power from 1 kW to 1.6 kW. Table 5.3 defines the parameters

which vary over the four experiments, along with the coil frequency and current

data recorded using the Rogowski coil.

Name
Coolant Induction Coil Coil

temp. (◦C) power (kW) freq. (kHz) current (A)
Exp. 1 25 1.0 100.215 103.93
Exp. 2 25 1.6 100.23 175.73
Exp. 3 75 1.0 100.23 104.23
Exp. 4 75 1.6 100.22 171.6

Table 5.3: Parameters varied for the HIVE experiments.

The data collected from the 4 experiments are shown along with the equiv-

alent simulation data and the percentage error in table 5.4. There is excellent

agreement between the two, especially on the two metrics extracted from the more

well-defined front face ROI. The errors are slightly larger regarding the maximum

temperature on the back face ROI, however one reason for this could be that the

true max. temperature isn’t actually being recorded in this ROI.
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Name
Front max. Front avg. Back max.

Exp. Sim. Err Exp. Sim. Err Exp. Sim. Err
(◦C) (◦C) (%) (◦C) (◦C) (%) (◦C) (◦C) (%)

Exp. 1 115 115.32 0.28 54.9 56.54 2.99 120 125.35 4.46
Exp. 2 250 262.1 4.84 105 111.03 5.74 261 285.84 9.52
Exp. 3 154 159.43 3.53 99.3 103.67 4.4 159 168.45 6.26
Exp. 4 273 286.7 5.02 141 150.32 6.61 283 308.38 8.97

Table 5.4: Comparison of experimental and simulation results recorded over the
two ROIs.

5.4 Chapter Summary

This chapter has presented the computational model of HIVE, which will be

used to generate synthetic data for the construction of surrogate models in the

following three chapters. This chapter discussed the solutions identified to cer-

tain challenges which were encountered during the development of this model.

These included developing a tool which enabled ERMES to be used without re-

lying on a commercial pre- and post-processing package, and identifying a way

to more efficiently apply Joule heating loads to the thermo-mechanical model,

which resulted in orders of magnitude speed up for almost no loss of accuracy.

The developed model showed good accuracy compared with experimental results,

with a maximum error of less than 10%.

The main novelty of this chapter is the VirtualLab package which has been

presented. This package provides the framework to create fully automated work-

flows for computational engineering applications, and enables a variety of different

software packages to be easily incorporated through the use of containers. Con-

tainers also enable the VirtualLab python package to be easily portable from one

system to another, while also improving the reproducibility of data generated

by the workflow. The techniques used to achieve high throughput parallelisa-

tion were also presented, highlighting excellent scaling on both single-node and

multi-node problems.
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Chapter 6

Optimisation of Hardware

Configuration

6.1 Introductory Remarks

The goal of this chapter is to showcase the ease in which VirtualLab can generate

and analyse data, providing insight relating to the HIVE facility without the need

for prior knowledge.

There are a number of desirable ways in which a component in HIVE can

be tested, with some of the most popular requests outlined in section 4.4. This

chapter will focus on one of these; the uniformity in which heat loads are applied

to a component. Often, however, the goal is not simply just to maximise the

uniformity of the heating profile, but instead to do this subject to the fact that

a certain power is also delivered to the component (a constrained optimisation

problem). This example has been chosen first, as the heating profile subjected

to the component only depends on a subset of the experimental parameters,

specifically those relating to the design and positioning of the induction coil.

As a result, the surrogate models presented here will have fewer inputs, making

them faster to train, and making their use in optimisation algorithms easier to

comprehend.

Firstly, section 6.2 presents the theory of how a uniform profile is defined for

this work. Following this, the accuracy of both GPR and MLP for the generation

of SV surrogate models is discussed in section 6.3. Here, a comparison of different

sampling strategies will also be presented. Section 6.4 presents the use of both

GPR and MLP for the construction of 2D FF surrogate models of the coil ad-
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jacent surface, where the accuracy of the PCA and autoencoders dimensionality

reduction techniques are analysed. The performance of MLP algorithms without

the use of dimensionality reduction is also presented. Section 6.5 then presents

results for the inversely informed coil configuration and the possible insight this

methodology can provide.

6.2 Profile Variation

In order to optimise the coil configuration with respect to the uniformity of the

heating profile, first a method of quantifying the uniformity, or conversely varia-

tion, in the heating profile is required. As the induction heating is essentially a

heat flux, it is only necessary to consider the profile on the coil adjacent surface.

One method of measuring the variation in this profile is the standard deviation

of the Joule heating values. This, however, was found to be problematic as

this quantity varies drastically with changes to the mesh refinement. Instead, a

method was devised which looked at the gradient for each surface element when

taking into account the Joule heating values. The Joule heating is added to the

coordinates of an element in the direction of the unit normal to the surface, n̄o,

giving a new, augmented triangle. Taking the cross product of two vectors which

make up any of the 3 edges of the triangle returns the vector na, whose direction

is normal to the surface and magnitude is proportional to the area of the triangle.

The variation of that element is calculated as the magnitude of the cross product

of na and n̄o, as shown in eq. 6.1. This value is calculated for all elements which

make up the coil adjacent surface and summed to give an overall value of the

variation across the surface.

V ariation =| n̄o × na | (6.1)

For example, consider a triangle with vertices at (0, 0, 0), (1, 0, 0) and (0, 1, 0)

whose unit normal is n̄o = (0, 0, 1). The Joule heating values for the three corners

are 4, 2 and 6, respectively, giving the coordinates of the new triangle as (0, 0, 4),

(1, 0, 2) and (0, 1, 6). This augmented triangle element and the original are shown

in fig. 6.1. The vectors (1, 0,−2) and (0, 1, 2) make up the edges from vertex 1

to 2 and 1 to 3 respectively. The cross product of these is na = (2,−2, 1), which

when input in to eq. 6.1 with n̄o gives the variation for this element as 2
√
2. If

the Joule heating values were the same for the three corners of the triangle, then
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the variation is zero as na and n̄o are parallel.

An example of how the variation score varies for different profiles is shown in

fig. 6.2 for a 1D case.

Figure 6.1: Original (blue) and augmented triangular element.

(a) Variation = 0 (b) Variation = 20 (c) Variation = 200

Figure 6.2: 1D representation of the change in variation score with different
function profiles
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6.3 SV Surrogate Models

As discussed in section 5.3.2, for each coil there are 6 degrees of freedom (DoFs)

which specify its positioning; displacement in the x, y, and z direction, denoted

by xd, yd and zd, and rotation with respect to each axis, denoted by θ, ϕ and ψ,

see fig. 5.5 for reference.

The effect of varying zd is well understood in terms of the coils coupling

efficiency (section 5.3.2). Moving the coil closer to the component will increase

the power delivered, however it also results in a more non-uniform heating profile.

The converse is true when moving the coil further away. The effect of varying the

remaining DoFs, particularly when combined, is too complex for human intuition

alone.

While ϕ will vary due to the tightening of the bolts which join the component

to the coolant pipe, θ and ψ vary only slightly, therefore for simplicity these values

are assumed to be zero for this investigation. This reduces the problem down to

4 DoFs, with an additional discrete DoF dependent on the coil design chosen.

Therefore, the surrogate models required for this section will have 4 inputs (the

DoFs) and 2 outputs (the power and variation). As this problem relates to the

Joule heating profile imparted on to the component, only data from the ERMES

simulation is required. Calculating the power delivered to the component from

this is simple and was outlined in section 5.3.2, while the variation is calculated

using eq. 6.1.

To create surrogate models, data from across the 4D parameter space must

be generated. The bounds for the four dimensions of the parameter space are

shown in table 6.1, where the translational DoFs are measured in metres and

rotational DoF in degrees. These values ensure a variable behaviour across the

parameter space whilst ensuring that no combination would be infeasible, e.g.

the coil touching a component. The reference point where (xd,yd,zd) = (0,0,0) is

shown in fig. 6.3.

DoF Lower bound Upper bound
xd -5E-03 5E-03
yd -15E-03 15E-03
zd 3E-03 6E-03
ϕ -5E+00 5E+00

Table 6.1: Parameter space considered for analysis.
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2,000 points were chosen from across the parameters space using the Halton

sequence, which were used to generate the training data, with a further 500 points

chosen using random sampling for the test data. This data was collected using

VirtualLab deployed on the Sunbird supercomputer, where 120 cores (3 nodes)

were used, taking 324 minutes in total.

The results for coil A are presented here, however surrogate models for coil

B have also been generated and will be used for the analysis in section 6.5. The

performance of the surrogate models in this and the following two chapters are

validated against the synthetic data collected using the computational model.

Figure 6.3: Reference point for where (xd,yd,zd) = (0,0,0) along with frame of
reference.

6.3.1 MLP

The most challenging aspect of using an MLP, or indeed any ANN algorithm,

is deciding its architecture. There is no currently agreed upon best practice for

the number of layers or number of neurons one should include in a model. Many

researches use previously successful architectures with little scientific basis other

than intuition. Some advise increasing and then decreasing the number of neurons

as the layers move from input to output, while others advise keeping the number

of neurons fixed [212]. It is often seen, however, that the number of nodes in a
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layer is of base 2, which helps speed up the parallelisation of the computations

[213].

Fortunately, VirtualLab makes it easy to train multiple architectures in paral-

lel to more quickly assess their performance. The various architectures are defined

using the parameters file, allowing models to be created in an automated way.

The architectures considered for this work, made up of 2 and 3 hidden layers,

and are shown in table 6.2.

Architecture Nb. parameters
MLP1 4-32-8-2 442
MLP2 4-32-32-2 1282
MLP3 4-64-16-2 1394
MLP4 4-8-16-8-2 338
MLP5 4-16-64-16-2 2242
MLP6 4-32-32-32-2 2338
MLP7 4-32-128-16-2 6482

Table 6.2: MLP architectures

The activation function chosen for these models is swish (eq. 3.10), which is

chosen due to its continuous differentiability and comparable performance with

the commonly used leaky ReLU [214]. This model was trained for a maximum of

1,000 epochs, with training terminated if the model is deemed to be overfitting

(see section 3.2.1). An epoch is a common ML term for the number of times the

training data is iterated over during training. Along with this, a common batch

size of 32 was used. All relevant hyperparameters used to train the models are

given in table 6.3.

Training size 2,000
Activation function Swish

Batch size 32
Epochs 1,000

Test-train split 0.2
Loss function LSE
Optimiser Adam (0.005)

Table 6.3: Hyperparameters for MLP SV surrogate model.

As the performance of an MLP model can vary drastically depending on the

initial weights, 10 differently initiated models are trained for each architecture.

This enables a fair comparison between the different architectures by removing
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the variability of the initial weights. The mean nRMSE value for the 10 models for

each architecture is shown in fig. 6.4a, along with the best and worst performing

highlighted using the error bars.

The first thing to note is the variability in performance depending on the

initial weights. For some models, the error is three times smaller for the best

performing compared with the worst (i.e. MLP2). There also seems to be very

limited improvement by increasing the number of hidden layers from 2 to 3.

Comparing MLP1 with MLP2 and MLP5 with MLP6 shows that models with

an equal number of weights in each layer tend to perform better. Comparison

between the values for the test data and the training data shows that the models

generalise well and do not over-fit the data.

(a) MLP (b) GPR

Figure 6.4: nRMSE on test and train datasets for different model types.

6.3.2 GPR

For the GPR based surrogate model, three different covariance kernel functions

are considered; the RBF kernel along with the Matérn kernel with µ = 3/2 and

µ = 5/2, denoted as Matérn3/2 and Matérn5/2 respectively. The RBF kernel

is considered very general and good starting point when there is no assumed

knowledge about the data [124]. The two Matérn kernels are chosen as these are

similar to the RBF, but are able to fit more rapidly changing functional forms.

A MT-GPR (multi-task) and MO-GPR (multi-output) model are trained for

each covariance kernel to compare the performance of each type. As GPR requires

a matrix inversion based on the number of observations in the test dataset, the
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models are initially trained using only the first 200 observations from the data

collected in section 6.3.1.

Training these models only require tuning 6 model parameters; 4 relating to

the length scales (one for each DoF), the output scale and noise parameter. As a

result, only a single model is trained for each type of GPR models.

Because the ERMES simulation is deterministic there is no noise in the data,

therefore the initial noise value is set to 1×10−5 to avoid bad optima. Although it

is possible to fix the noise value to zero, this would likely lead to poor performance

as it would lead to over-fitting.

To allow for a fair comparison between the GPR and MLP models, the nRMSE

is evaluated for the same test dataset used in section 6.3.1, with the results shown

in fig. 6.4b.

The performance on the multi-output models are notably superior to the

multi-task version, likely due to a lack of correlation between the two outputs.

The models using the Matérn3/2 kernel is the worst performing due to over-fitting

of the training data, as confirmed by the very low nRMSE value on the training

data. This could be rectified by placing a lower bound on the value of the noise

when using the Matérn3/2 kernel. The multi-output models for all three kernels

outperform even the best MLP model, which is impressive considering that an

order of magnitude fewer observations have been used to train the respective

models.

Looking at the makeup of the nRMSE values for the GPR models highlights

a difference in the modelling of the power and variation values. Using the RBF

kernel, over 80% of the nRMSE value is contributed to by the variation, with

both Matérn kernels also showing a similar imbalance. The likely reason for this

is that the variance is a less smooth, more rapidly changing profile compared

with that of the power, making it a more challenging output to predict. This

provides some insight as to why the MLP performs worse than the GPR, since

both outputs share the majority of the weights of the model and are thus trying

to predict drastically different profiles. The variation output contribution for the

MLP models is between 55% and 62% of the total nRMSE, confirming that the

model is sacrificing accurately modelling the power to better predict the variation.

In terms of their training time, the GPR models each take around 1minute

to train, with very little difference between the three kernels. Similarly, the

smallest MLP (MLP1 and MLP4) takes around 1minute, however the largest

model (MLP7) takes in the region of 10–15 minutes. These times have been
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recorded on the sunbird cluster.

The above GPR models discussed thus far use 200 observations, however there

is more data available to assess whether the model performance can be improved.

Fig. 6.5 shows the nRMSE for the power and variation for a variety of training

dataset sizes, ranging from 100 to 800. With regard to the power, there is limited

improvement when using more than 300 observations, while for the variation the

score continues to decrease, albeit slowly, until the end, with the Matérn5/2 the

best performing kernel. Using the RBF kernel for the power and the Matérn5/2

kernel for the variation using a training dataset of 500 observations results in an

average nRMSE value of 4.4E-03 for both outputs using the test dataset, which

is a substantial improvement over the MLP models using a quarter of the data.

(a) Power

(b) Variation

Figure 6.5: Test nRMSE value for models with different kernels trained using
varying number of training observations.
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6.3.3 Comparison of Sampling Schemes

As discussed in section 3.4, the data collection strategy chosen has a significant

impact on the accuracy of the model. The work presented in this section thus

far used data collected via the pre-determined Halton sequence. This section will

compare this with a model generated using adaptive sampling strategies. Since

GPR was considerably the best performing surrogate model, only this method

will be investigated.

As the SV surrogate model considered here has two outputs, the first consid-

eration is how to combine them in to a single value, from which the next sampling

point will be chosen. The GPR models presented in this section struggled to ac-

curately predict the variation, therefore the next sampling point will be chosen

solely on this output, with the power ignored.

The initial model is trained using the first 40 observations of the training data

used in section 6.3.1 and 6.3.2 (10 for each dimension of the parameter space).

The performance of two adaptive schemes are assessed; the MMSE and EIGF, the

theory for which are discussed in section 3.4. To take advantage of VirtualLab’s

parallelisation, the next sampling points are collected in batches of 20. Fig. 6.6

shows the nRMSE for the variation model using data collected via the Halton

sequence and the two adaptive schemes.

Figure 6.6: Comparison of pre-determined and adaptive sampling

The initial poor performance of the adaptive scheme is due to many of the

earlier observations being assigned to the boundary of the parameter space. For

example, of the first 20 points chosen by the scheme, 16 are on the corners of

the 4D hyperspace, with the remaining 4 on the edges of the domain. When
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there are a total of 200 training observations, the EIGF scheme becomes the best

performing, however after this all three are nearly indistinguishable.

While the adaptive model does result in a very marginal improvement over the

pre-determined for training dataset sizes of over 500 observations, being limited

to running 20 simulations at a time meant that collecting the additional 460

observations (500 minus initial 40) here took longer than collecting the 2000

observations did using the pre-determined Halton sampler (120 at a time).

The use of adaptive sampling schemes, however, can be extremely useful,

especially if the goal is to search for a specific value, e.g. global minima. The

improved accuracy of the models near these important features often comes at

the cost of reduced accuracy elsewhere. Much of the work in this thesis requires

knowledge of inverse solutions throughout the parameter space, therefore the

Halton scheme is better suited for this application.

6.4 FF Surrogate Models

While the variation score modelled in the previous section is useful for optimi-

sation purposes, it is also beneficial to view the Joule heating profile which will

be delivered to the coil adjacent surface (from which the variation score can be

deduced). This section investigates the accuracy of MLP and GPR models in pre-

dicting this 2D profile compared with that generated using the FE model. This

will enable HIVE operators to quickly visualise the profile the coil will impart on

the component to help with their decision-making.

The data required to train the surface models are extracted from the previ-

ously performed simulations. There are 10,093 nodes which make up the mesh of

the coil adjacent surface, with values for each needing to be predicted using a ML

model. As discussed previously, modelling this number of outputs using the GPR

algorithm requires reducing the dimensionality of the data. This section will in-

vestigate the use of both the PCA and auto-encoder algorithms for this purpose.

The use of MLPs with and without the use of data compression algorithms are

also presented. The work of this section uses the data generated by the Halton

sequence.
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6.4.1 Dimensionality Reduction

PCA is an extremely popular tool for reducing the dimensionality of data. The

most common method of choosing the number of PCs is based on the retention of

variance in the data, as outlined in eq. 3.27, with 99% or 99.9% popular choices.

This work presents a novel method for choosing the number of PCs based on the

reconstruction error of the test dataset.

Since PCA is a lossy compression algorithm, reconstructing the data will

invariably disagree with the original representation. Using the training data,

the 2,000 PCs are identified, with fig. 6.7 showing the reconstruction error for

the training and test dataset. The reconstruction error is the nRMSE between

the original and reconstructed dataset. What this highlights is while the error

continues to decrease for the training dataset, it plateaus for the test dataset. This

is because with the 2,000 PCs the training data can be perfectly reconstructed,

as this is the data used to identify the PCs. This is not true for the test dataset,

with the original data never perfectly reconstructed. As a result, using increasing

numbers of PCs to represent the data will only result in improvements in the

accuracy of the training data, which is superfluous.

Figure 6.7: Reconstruction error on the training and test dataset for increasing
number of PCs.
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A more efficient approach is to choose the number of PCs for which there is

only a limited improvement in the test reconstruction error thereafter (conver-

gence of the reconstruction error). There are many ways to define convergence,

however in this work it is defined as the point at which the percentage change

in the loss is smaller than 1% for 3 consecutive points. 74 PCs is required to

reach this convergence threshold, which is also highlighted in fig. 6.7, yielding an

nRMSE value of 1.81E-03 on the test dataset. In terms of retaining variance in

the data, 9 PCs are needed to retain 99%, 19 for 99.9% and 59 for 99.99%, which

have nRMSE values of 1.62E-02, 6.07E-03 and 2.18E-03, respectively.

If all 2,000 PCs are used, the reconstruction error is 8.42E-04. While this is

a reduction of around 50% in the reconstruction error compared with using 74

PCs, it requires training an additional 1926 outputs, which would far outweigh

any potential benefit in terms of the accuracy.

To analyse the performance of autoencoders in compressing the data, two

different architectures were considered. The first compresses the data down to 100

dimensions using the architecture 10093-1024-100-1024-1093. Given the number

of nodes in the input and output layer, it is only feasible to have a single hidden

layer in the encoder and decoder. The size of 1024 was chosen as it has base 2

and is around an order of magnitude different from the two layers either side of

it. Even so, this model still has over 20 million weights. A second model which

compresses the data to 500 dimensions was also considered, the architecture of

which is 10093-2048-500-2048-10093 and has over 43 million weights.

The nRMSE for the test data reconstructed using the first model is 1.43E-02,

which is an order of magnitude worse than the PCA when it uses fewer (74)

dimensions to compress the data. Along with this, training this autoencoder

took around 30 minutes, whereas performing the PCA analysis takes a matter

of seconds. The second model, which in theory should perform better since the

encoded data is represented by 500 dimensions instead of 100, performs sub-

stantially worse. This is likely due to the model being caught in a bad optima,

however it is infeasible to train multiple models to overcome this due to the long

training time, with this second model taking over 50 minutes.

Given its simplicity and low reconstruction error, the PCA algorithm will be

used to reduce the dimensionality on all full field surrogate models used in this

work.
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6.4.2 MLP

One of the advantages of MLPs is their ability to produce models which have

numerous outputs. This means that it is not strictly necessary to reduce the

size of the output for an MLP model, although doing so would allow a smaller

model with fewer trainable parameters, thus reducing the training time. In this

section, the performance of two different types of MLPs are investigated; one

which compresses the output using PCA and another which maps to the original,

full output. To distinguish between them, the former will be referred to as a

PCA-MLP, and the latter the Full-MLP.

Three different architecture of hidden layers are considered for both model

types; a single hidden layer with 512 nodes, 2 hidden layers each with 64 nodes,

and one with 3 hidden layers with 16, 64 and 256 from the input to the output.

All of these models will have the same 4 inputs as those in the previous section,

while the number of outputs will depend on the model type. The Full-MLP will

have 10,093 nodes in the output layer, while the PCA-MLP model will have 74

nodes in the output layer, which is then be reconstructed to 10,093 using the

PCA algorithm.

As in section 6.3.1, 10 differently initiated models are trained for each archi-

tecture to allow a fair comparison between each. Again, the entire dataset of

2000 observations is used to train both types of MLPs, while the other hyperpa-

rameters associated with the model and its training are the same as that used in

section 6.3.1, see table 6.3. Again, the generality of all models, both MLP and

GPR, are measured using the test dataset consisting of 500 observations.

The nRMSE values for the Full-MLP models are shown in table 6.4, while the

PCA-MLP models are shown in table 6.5.

Architecture Nb. Weights Train nRMSE Test nRMSE Training
time (m)

4-512-10093 5,180,269 8.2103E-03 8.6481E-03 68:51
4-64-64-10093 660,525 8.1520E-03 8.9601E-03 10:01

4-16-64-256-10093 2,611,709 5.9031E-03 6.5751E-03 32:17

Table 6.4: Full-MLP FF surrogate model accuracy.

In terms of the Full-MLP models, the deeper model performs best, even

though it has around half the number of trainable parameters compared with

the shallowest model. This improved performance could be attributed to the

gradual geometrical increase in the size of the layers, as opposed to the larger
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jump seen in the first. Comparing the scores on the test and train data show

that all models generalise well.

For the PCA-MLP models, the first point to note is that, by compressing

the output layer, the number of trainable parameters associated with the model

reduces by around two orders of magnitude. As expected, this has a large effect

on the time taken to train these models. These models, however, perform worse

than their full-field counterpart, although the difference is not surprising given

the difference in model sizes. Comparison of the train and test nRMSE values

again confirm that the models are not overfitting the data.

Architecture Nb. Weights Train nRMSE Test nRMSE Training
time (m)

4-512-74 40,522 1.1420E-02 1.2458E-02 01:47
4-64-64-74 9,290 3.1738E-02 4.0155E-02 01:18

4-16-64-256-74 36,826 2.0900E-02 2.2609E-02 01:44

Table 6.5: PCA-MLP FF surrogate model accuracy.

As is standard practice for ML models, all inputs, and outputs have been

scaled to the range [0,1] to avoid a mismatch in the magnitude of the gradients,

thus speeding up training. Doing so, however, means that during the update of

the weights, the error on all outputs are considered equal. For most MLP models

this is perfectly reasonable, however for the PCA-MLP this approach is unwise,

as it is more important to accurately model the more dominant PCs than those

which contribute less to the overall prediction. One way to improve this is by

weighting the outputs in terms of their importance.

Since the PCs identified using the PCA algorithm are optimal in terms of

retaining variance in the data, it follows that the more dominant PCs will span

a larger range. This is confirmed in fig. 6.8, where the range of data for each

PC is plotted. As a result, not normalising the outputs naturally encodes the

importance of the more dominant PCs. The PCA-MLP models were trained

again without normalising the data in the output layer, with the results shown

in table 6.6. The accuracy of these models is similar to the Full-MLP, with

two of the three models returning a lower nRMSE value, but for the same low

computational cost as the PCA-MLP.
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Figure 6.8: Range of data on each principal component

Architecture Nb. Weights Train nRMSE Test nRMSE Training
time (m)

4-512-74 40,522 5.2170E-03 5.9145E-03 01:39
4-64-64-74 9,290 6.8840E-03 7.5769E-03 01:19

4-16-64-256-74 36,826 8.3239E-03 8.9146E-03 01:46

Table 6.6: Non-normalised PCA-MLP FF surrogate model accuracy.

With the best performing model identified, the surrogate Joule heating profile

on the coil adjacent surface can now be visualised. Using an example from the

test dataset, fig. 6.9a shows the 2D profile on the coil adjacent surfaces generated

by the ERMES simulation, while fig. 6.9b shows the profile generated by the

surrogate model. Fig. 6.9c shows the difference between the two, highlighting a

maximum error of 94.3W/m3, which is less than a 3% error.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 6.9: Comparison between the FE model and MLP model for the Joule
heating profile on the coil adjacent surface.
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6.4.3 GPR

Similar to section 6.3.2, only 500 of the 2,000 available training data will be used

to generate the FF surrogate using GPR. A separate PCA analysis was conducted

using these 500 observations, with 71 PCs required to achieve the desired level of

convergence, three fewer than that used for the MLP.

As highlighted previously, the more dominant PCs - those linked to higher

eigenvalues - capture more generalized features of the underlying data, giving

them a smoother profile. The less dominant PCs identify more specialised fea-

tures, which are noisier and thus have a more rapidly changing profile. The

drastically different profiles over the PCs mean it is unsuitable to model these

using the multi-task GPR, and instead only the multi-output GPR algorithm is

used. Similar to the section 6.3.2, 3 different models are trained which use the

RBF, Matérn5/2 and Matérn3/2 kernel on all outputs, the accuracy of which are

shown in table 6.7.

Kernel Train nRMSE Test nRMSE Training time(m)
RBF 1.8996E-03 6.1062E-03 13:35

Matérn5/2 2.0169E-03 3.5367E-03 12:42
Matérn3/2 1.7030E-03 3.8334E-03 12:05

Table 6.7: GPR FF surrogate model accuracy.

The first thing to note is that both Matérn models outperform all three MLP

models (table 6.6), with RBF outperforming two of them. A potential reason

for the poorer performance of the RBF kernel is due to its smooth profile being

unable to generalise well for the noisier PCs. This is confirmed in fig. 6.10, where

the nRMSE for the test and train data is plotted for each PC, highlighting the

overfitting for the latter PCs. The Matérn3/2 kernel overfits the data slightly

more than Matérn5/2, which is unsurprising given its sharper profile.

One way to improve the overfitting shown by all three models would be to

increase the lower bound on the noise associated with these outputs. Caution

should be taken with this approach, as applying this to the more dominant PCs

will likely worsen their performance, which in turn would worsen the overall model

performance. As a result, no lower bound on the noise will be enforced as the

model performance is deemed sufficiently accurate.
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Figure 6.10: nRMSE for each PC used in RBF GPR model

As all 71 outputs have been modelled using the 3 different kernels, the best

performing model for each PC could be used to give the best overall model.

Choosing those which give the lowest test loss results in an overall loss of 3.4848e-

03, which is only marginally better than the 3.5367e-03 for the Matérn5/2 kernel.

Given the additional effort involved in using a model with different kernels for

each output, the modest reduction in nRMSE is not worth it.

Fig. 6.11 shows a comparison of the Joule heating profile predicted by the

ERMES simulation and the surrogate model for the same testcase as that used

for fig. 6.9. The maximum error using the GPR model is 82.3W/m3, down from

94.3W/m3 for the MLP model, which is expected given the improvement in the

model accuracy.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 6.11: Comparison between the FE model and Matérn5/2 GPR model for
the Joule heating profile on the coil adjacent surface.

To draw comparison between the FF surrogate models presented in this section

with the SV surrogate models from section 6.3, the variation score is calculated

from the output of the FF surrogate using eq. 6.1. For the Matérn5/2 GPR
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model, the nRMSE measured on the test dataset is 6.850E-03, which is less than

that for the best performing SV surrogate model, which was 7.153E-03. For the

best performing MLP model, the nRMSE for the prediction of the variation is

9.9294E-03.

As GPR has shown to be the best method, a second surrogate model has

been trained using data collected from the FE model using coil B. Again, this

data was collected using the Halton sequence, where 500 observations have been

collected for training. The same parameter space was used for collecting this

data as was used for coil A, see table 6.1. The nRMSE on the test dataset (200

observations) is 3.0929E-03, which is similar to that for coil A. A comparison of

the Joule heating profile generated by the ERMES simulation and the surrogate

model is shown in fig. 6.12.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 6.12: Comparison between the FE model and Matérn5/2 GPR model for
the Joule heating profile on the coil adjacent surface (Coil B).

6.5 Experiment Insight

This section uses the surrogate models generated in section 6.3 and 6.4 to solve

the inverse problems faced by HIVE, and to provide a greater insight of what

behaviours are possible.

6.5.1 Identifying Extrema

Knowledge of the extrema within the parameter space is extremely useful to

assist with decision-making. These extrema are the combination of the 4 DoFs

which minimise and maximise the values of the power and variation. Using the

MultiSLSQP package presented in section 2.4.3, 100 different initial points are

used to identify the minima and maxima for both outputs within the parameter

space. As discussed in section 2.4, while using more initiated points will increase
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the likelihood of identifying the global optima, it is not guaranteed. For this 4D

hyperspace, 100 differently initiated points is deemed sufficient.

The values of the DoFs for the four extrema cases estimated using the surro-

gate model for coil A are shown in table 6.8. These inverse solutions are useful

to provide a ‘sanity check’ for the methodology given our intuition about the

problem. As expected, the power attains its maxima when the coil is as close to

the component as possible (zd = 3.00E− 03), while it attains its minima when it

is at its furthest (zd = 6.00E − 03).

Output Extrema xd yd zd ϕ

Power
Min. -5.00E-03 1.50E-02 6.00E-03 2.24E-01
Max. 3.52E-03 -1.74E-03 3.00E-03 -5.00E+00

Variation
Min. -5.00E-03 1.50E-02 6.00E-03 5.00E00
Max. -1.75E-03 -1.84E-03 3.00E-03 -5.00E+00

Table 6.8: Inversely informed coil parameters which minimum & maximum the
power and variation using the GPR surrogate model for coil A.

The inverse solutions provided in table 6.8 are used as inputs in to an ERMES

simulation, with the resulting power and variation values calculated and compared

with those predicted by the surrogate model. These are summarised in table 6.9,

where excellent agreement is shown in predicting the values at the extrema, with

0.51% the largest percentage error. The predictions for the variation tend to be

largest, which is unsurprising given that this is a more rapidly changing function.

Note that these and all other ERMES simulations in this section were performed

using a current in the coil of 300 A, unless otherwise stated.

Power (W) Variation
Surrogate FE Err. Surrogate FE Err.

(◦C) (◦C) (%) (◦C) (◦C) (%)

Power
Min. 221.06 222.01 0.02 45.22 44.99 0.51
Max. 525.61 526.44 0.16 94.37 94.42 0.05

Variation
Min. 222.18 22.29 0.05 44.12 44.08 0.09
Max. 515.07 515.80 0.14 97.10 97.41 0.32

Table 6.9: Comparison of power and variation predicted using the GPR surrogate
model and FE simulation at inversely informed extrema (coil A).
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Fig. 6.13a shows the placement of the coil with respect to the component

which delivers the maximum quantity of power. The resulting Joule heating

profile on the coil adjacent surface with coil A placed at this location is shown in

fig. 6.13b, which was generated using the ERMES simulation.

(a) Coil placement. (b) Joule heating profile.

Figure 6.13: Max. power extrema.

The same analysis was performed for coil B, with the values for the power

and variation at the four extrema given in table 6.10. The power delivered to

the component and the magnitude of the variation are both less using coil B

compared with coil A. This is unsurprising, as coil A was designed with the goal

of improving the coupling efficiency of the induction heating system, which it has

achieved.

Output Extrema Power (W) Variation

Power
Min. 94.72 21.64
Max. 231.44 35.90

Variation
Min. 129.46 18.63
Max. 207.54 55.25

Table 6.10: Power and variation predicted using the GPR surrogate model at
inversely informed extrema (coil B).

As discussed in section 5.3.2, the Joule heating is proportional to the square of

the current in the coil. Since the power and variation are both linear functions of

the Joule heating field, these both are also proportional to the square. Therefore,

by increasing the current for coil B by a factor of 1.5 (up to 450 A) the values of

both power and variation will increase by a factor of 2.25, resulting in values of

power and variation which are similar to those for coil A with a current of 300 A.

It would have taken a number of experiments for HIVE operators to learn the
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different power scales required for coil A and coil B, however through the use of

surrogate models, this difference is more easily measurable.

6.5.2 Creating a Performance Envelope

More often than not, experiments in HIVE will aim to find a balance between the

power and variation. There are numerous combination of the 4 DoFs which will

deliver a certain power to the component, i.e. the multiple solutions to the inverse

problem. Each combination will impart a different Joule heating profile on to the

component, and thus have different variation scores. To better emulate fusion

like conditions, it is desirable to have the heating as uniform as possible. This

can be achieved by placing an equality constraint on the power while minimising

the variation using the MultiSLSQP package.

Table 6.11 shows the coil configurations which minimise the variation (best)

and maximise it (worst) while ensuring the at least power 400W is delivered to

the component using coil A.

xd yd zd ϕ Variation
Best -3.00E-03 -4.27E-03 4.35E-03 5.00E+00 6.93E+01
Worst -4.71E-03 -1.44E-02 3.00E-03 -5.00E-03 8.74E+01

Table 6.11: Best & worst configuration for delivering 400 W of power to the
component (coil A).

Repeating this process and fixing the power to values ranging from the min-

imum, 221.06 W, to the maximum, 525.61, yields an envelope of the variation

available for the different powers, which is shown in fig. 6.14. This envelope al-

lows the user to identify the different ways in which the component can be loaded,

allowing more informed decisions to be made.

The same analysis was conducted for coil B, where the power ranges from

213.12 W to 520.74 W (the min. and max. value when the current is 450 A). The

envelope for coil B is displayed in fig. 6.15, along with the envelope for coil A for

ease of comparison. Interestingly, power and variation seem to be less correlated

for coil B compared with coil A. coil B is able to provide more uniform heating

to the component than coil A for the majority of the power range. That said,

doing so will require a 50% increase in the power supply due to its poor coupling

efficiency.
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Figure 6.14: Envelope of possible outcomes for power and variation using coil A

Figure 6.15: Performance envelopes for coil A (300 A) and coil B (450 A)

138



6.6 Chapter Summary

This chapter has shown how ML can provide a great deal of insight regarding

the HIVE experiment without the need for any prior knowledge or experience.

1000 simulations (500 for each coil) are sufficient to train surrogate models to

perform this analysis, all in less than two hours using the VirtualLab package

(using 120 cores). As the workflow is entirely automated, this can be scheduled

to run overnight, with the analysis ready for the following day of testing. This

would enable HIVE to test components much more rapidly and avoid unneces-

sary experiments. The contents of the VirtualLab run file necessary to create

the surrogate models and perform this analysis is shown in listing A.1 in the

appendices.

While the analysis carried out in this chapter have been for two coils which are

actually used in experiments, it can just as easily be performed for conceptual coil

designs. This would enable their relative strengths, weaknesses, and performance

envelope to be identified before manufacturing, saving both time and money.

VirtualLab makes generating surrogate models extremely easy, whether it’s

SV or FF surrogates. This means that the user doesn’t require knowledge of

the ML algorithms itself, enabling those who are unfamiliar with this field to

still take advantage of the opportunity they provide. This chapter discussed the

generation of 2D FF surrogate models, with the PCA algorithm shown to be

much more dependable than auto-encoders for the task of data compression. A

novel approach to choosing the number of PCs to retain was also presented, along

with guidance on how to use PCA with MLPs for improved performance. This

chapter also showed that FF surrogates are able to outperform SV surrogates in

predicting key performance indicators of a simulation, with the former able to

more accurately predict the variation of the heating profile.
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Chapter 7

Smarter Component Testing

7.1 Introductory Remarks

This chapter builds on the knowledge of the previous chapter through the devel-

opment of more complex FF surrogate models to assist the generation of more

informative DoPEs. As outlined in section 4.4, a comprehensive DoPE requires

identifying experimental parameters which deliver various thermal and stress out-

comes to specific parts of the component. This means that not only does the

surrogate model need to predict the behaviour throughout the 3D component,

but also requires more inputs than those of the previous chapter, since a greater

number of experimental parameters affect the thermal and stress state of the

component.

The combined use of two FF surrogate models enables smarter testing by

taking into account the stress state of the component during an experiment. This

is something which the operators of HIVE currently have no means of inferring,

but is essential in informing the next iteration of the component design. The use

of surrogates is not only more accurate, fast, and robust, they also remove the

need for inefficient trial & error during experiments and operator knowledge of

the facility.

The use of 3D FF surrogate models for SAO purposes is believed to be a novel

contribution to the field, as is the combination of two such models for solving con-

strained optimisation problems. The outline of this chapter is as follows; firstly,

section 7.2 presents the different surrogate models developed for predicting the

temperature field and Von Mises stress field throughout the component, along

with their accuracy compared with the computational model of HIVE. Following
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this, these surrogate models are used to identify experimental parameters which

make up a more comprehensive DoPE, an example of which can be found in sec-

tion 7.3.3. In section 7.4, the surrogate models are used to assess the sensitivity

of the experimental parameters with regard to the thermal and stress behaviour

of the component, highlighting their versatility to a broader range of tasks. Here,

it is shown that the parameter sensitivity which would be inferred from thermo-

couple data does not necessarily translate to quantities such as the maximum

temperature. Finally, section 7.5 showcases the flexibility of the developed Vir-

tualLab workflow for DoPE construction by performing the same analysis on a

new, multi-material component geometry.

7.2 FF Surrogate Models

As shown in section 5.3.3, changing the temperature of the coolant and its velocity

through the pipe will affect the overall component behaviour, however, changing

the coolant pressure does not significantly affect the amount of heat which will be

extracted from the component. Instead, higher coolant pressure enables higher

coolant temperatures to be used. For this work high coolant temperatures (in

excess of 100 ◦C) are not considered, therefore the coolant pressure is fixed at 0.5

MPa for this analysis.

This means that for a given coil design, there are 7 experimental parameters

which impact the component’s behaviour. The ranges for the 4 DoFs relating

to the coil configuration are the same as those used in chapter 6. The coolant

temperature, Tcoolant ranges from 30 ◦C to 80 ◦C, the flow rate of the coolant

ranges from 5 l/min to 55 l/min which for the given pipe diameter of 12.7 mm

equates to a coolant velocity, Vcoolant, ranging between 0.6578 m/s and 7.2363

m/s. The current in the coil, I, ranges from 100 A to 600 A. For reference, a

summary of the parameter space is given in table 7.1.

Choosing the same ranges for the coil configuration DoFs as the previous

chapter means that the previously performed ERMES simulations are still valid.

VirtualLab makes it easy to perform particular sections of the workflow and com-

bining them with previously generated data. This means that the data required

to perform this analysis only requires performing the 1D coolant analysis and the

code aster thermo-mechanical simulation.

This is another example of where using pre-determined sampling strategies

are beneficial. As the data hasn’t been collected for a specific goal, it is useable
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Parameter Lower bound Upper bound
xd -5.00E-03 5.00E-03
yd -1.50E-02 1.50E-02
zd 3.00E-03 6.00E-03
ϕ -5.00E+00 5.00E+00

Tcoolant 3.00E+01 8.00E+01
Vcoolant 6.58E-01 7.24E+00
I 1.00E+02 6.00E+02

Table 7.1: Parameter space considered for design of physical experiments.

for a wider range of applications, whereas an adaptive data sampling approach

would likely have biased the data collection to a specific region, reducing its global

accuracy.

Values from the next 3 dimensions of the Halton sequence are used to vary

the values for the coolant temperature, coolant velocity and coil current. The

surrogate models generated in this chapter use 500 observations for training and

200 for testing the generality of the model.

7.2.1 Temperature Field

To generate a surrogate of the 3D temperature field, denoted by Tsurr, the tem-

perature at all 90,432 nodes of the mesh must be modelled. Similar to the FF

surrogate model in section 6, the number of PCs used is the number required

for convergence of the reconstruction error on the test dataset. For this dataset,

this is achieved using 95 PCs, which are modelled using the MO-GPR algorithm,

with the RBF, Matérn5/2 and Matérn3/2 covariance kernel functions again used

to assess the performance of each.

The nRMSE values for surrogates of the temperature field for coil A and coil

B are shown in table 7.2. For both coils, the RBF kernel gives the lowest score,

with the other two suffering a little more from overfitting. The nRMSE scores

for all models suggest they are sufficiently accurate for the intended application.

To visualise their accuracy, a comparison of the temperature profile calculated

by the best performing surrogate model (RBF) and the code aster FE simulation

is shown in fig. 7.1 for coil A and fig. 7.2 for coil B. Both simulations are

conducted using the same set of experimental parameters given in table 7.3 for

the two different coil designs.
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kernel Test nRMSE Train nRMSE

Coil A
RBF 1.48E-03 4.61E-04

Matérn5/2 1.54E-03 1.09E-04
Matérn3/2 2.42E-03 7.84E-05

Coil B
RBF 1.41E-03 3.94E-04

Matérn5/2 1.53E-03 4.64E-05
Matérn3/2 2.53E-03 3.84E-05

Table 7.2: Accuracy of temperature surrogate model, Tsurr, using different ker-
nels.

The nRMSE for these two cases are 4.11E-03 and 4.94E-03, which is larger

than the average value over the entire test dataset. Even on a worse performing

example, the largest percentage error between the two is less than 1%, highlighting

very good agreement. This is confirmed in fig. 7.1c and fig. 7.2c, where the

maximum absolute temperature difference is 1 ◦C.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 7.1: Comparison between the FE model and RBF GPR model for the 3D
temperature profile (coil A).

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 7.2: Comparison between the FE model and RBF GPR model for the 3D
temperature profile (coil B).
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Parameter Value
xd 4.34E-04
yd -6.65e-03
zd 4.27E-03
ϕ 3.45E+00

Tcoolant 5.58E+01
Vcoolant 4.41E+00
I 1.14E+02

Table 7.3: Input parameters for example shown in fig. 7.1 and fig. 7.2

7.2.2 Von Mises Stress Field

While there are a number of different mechanical metrics by which to judge a

component’s performance, the most commonly used is the Von Mises stress. The

Von Mises stress, σVM , is a function of the stress tensor, used to predict whether

a ductile material will yield or not. The formula for the Von Mises stress is given

by eq. 7.1, where σxx, σyy and σzz are the normal stresses and σxy, σyz and σzx

are the shear stresses.

σVM =

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
yz + σ2

zx)

2
(7.1)

The benefit of using the Von Mises stress is that the surrogate model, denoted

by VMsurr, will only need to predict a scalar value at each node, instead of

a field made up of normal and shear stresses. To achieve convergence of the

reconstruction error, 72 PCs are required, which are again modelled using the

three different kernels. The results for each kernel for the two different coils are

shown in table 7.4.

kernel Test nRMSE Train nRMSE

Coil A
RBF 1.76E-02 6.57E-03

Matérn5/2 1.61E-02 4.53E-03
Matérn3/2 1.63E-02 4.09E-03

Coil B
RBF 2.19E-02 7.96E-03

Matérn5/2 2.08E-02 5.02E-03
Matérn3/2 2.12E-02 4.68E-03

Table 7.4: Accuracy of Von Mises surrogate model, VMsurr, using different ker-
nels.
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The first thing to note is that this surrogate model is not as accurate as that

of the temperature field, with the nRMSE values around an order of magnitude

worse for both coils. The reason for this is that the PCA algorithm is unable

to reconstruct the Von Mises data to the same level of accuracy as it did the

temperature data. This is highlighted in fig. 7.3, where the reconstruction error

for the temperature data is nearly two orders of magnitude lower than it is for

the Von Mises data. One reason for this could be that the Von Mises stress is six

stress components combined in to one (see eq. 7.1), which could make it noisier

and thus more difficult to accurately project on to linear subspaces.

Figure 7.3: Reconstruction error v the number of PCs used for the temperature
and Von Mises data (test dataset).

This means that the accuracy of the Von Mises surrogate model will never be

as accurate as the temperature profile using the PCA algorithm. Due to the size of

the input and output layer, training an autoencoder is infeasible due to it having

many hundreds of millions of weights, with no guarantee of an improvement in

accuracy, as was seen in section 6.4.1.

The corresponding Von Mises stress fields to the temperature profiles shown

in fig. 7.1 and 7.2 are shown in fig. 7.4 and 7.5 respectively. The predicted Von

Mises field has been generated using the Matérn5/2 kernel, as this was the best

performing of the three. Even though the surrogate model of the Von Mises field
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is not as accurate as the temperature field, the largest absolute error is still only

around 2MPa, equating to around a 7% error. This is still deemed sufficiently

accurate for this application, especially considering that an FE simulation of

HIVE takes around 15minutes while the surrogate model takes less than 2 seconds

to generate the stress field.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 7.4: Comparison between the FE model and RBF GPR model for the 3D
temperature profile (coil A).

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 7.5: Comparison between the FE model and RBF GPR model for the 3D
temperature profile (coil B).

7.3 Constructing a DoPE

7.3.1 Temperature Related

The first task is to identify the experimental parameters which will ensure the

maximum temperature for a component reaches a certain value. This is achieved

using eq. 7.2, where T ∗ is the desired temperature and P is the parameter space

where admissible solutions are searched.

x∗ = argmin
x∈P

(max(Tsurr(x))− T ∗)2 (7.2)
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When components are tested for this purpose in HIVE, it is often beneficial to

gradually heat the component. This not only provides the client - those who have

designed the component under testing - with data for different loading conditions,

but also potentially avoids scenarios where no usable data is collected because

of component failure, e.g. debonding at the interface of two materials. This is

achieved by identifying the experimental parameters which deliver a certain lower

temperature to the component, and then gradually increasing the power delivered

to the induction heating system.

In this example, the component is to be initially heated up to achieve a max-

imum temperature of 300 ◦C, which is then gradually increased to 700 ◦C in

increments of 100 ◦C.

All 7 experimental parameters affect the temperature profile of the component,

therefore there are numerous combination of these which will deliver the desired

behaviour. Fig. 7.6 shows four of the different temperature profiles which deliver

a maximum temperature of 300 ◦C, which have been generated using the surrogate

model using inverse solutions generated from eq. 7.2.

(a) Profile 1 (b) Profile 2

(c) Profile 3 (d) Profile 4

Figure 7.6: Example of temperature profiles which deliver a maximum tempera-
ture of 300 ◦C.

147



For simplicity, the most desirable heating profile is chosen, which in this case is

deemed to be Profile 4 (fig. 7.6d). The experimental parameters used to achieve

this temperature profile are shown in table 7.5. The next step is to identify

the current which will deliver 400 ◦C. This is again achieved using eq. 7.2, with

T ∗ = 400 and all experimental parameters other than the coil current staying fixed

at the values given in table 7.5. This ensures that only the coil current will need

to be updated during the incremental loading of the component. The estimate

current required to deliver 400 ◦C is 208.19 A, increasing from the 168.02 A

required to deliver the maximum temperature of 300 ◦C.

Parameter Value
xd 3.86E-03
yd -2.62E-03
zd 2.87E-03
ϕ 4.26E+00

Tcoolant 6.65E+01
Vcoolant 5.14E+00
I 1.68E+02

Table 7.5: Chosen experimental parameters to deliver 300 ◦C to a component.

The same procedure is followed for 500 ◦C, 600 ◦C and 700 ◦C, with the

resulting currents given in table 7.6. The non-linearity of the experiment is again

highlighted here, with an increase of 40 A required to increase the maximum

temperature from 300 ◦C to 400 ◦C, but only an increase of 35 A to increase from

600 ◦C to 700 ◦C.

Temperature (◦C) Coil current (A)
300 168.02
400 208.19
500 246.14
600 282.63
700 317.88

Table 7.6: Coil current required to reach increasing maximum temperatures.
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Verification of these inverse solutions is achieved by performing an FE sim-

ulation using the advised experimental parameters. The simulated temperature

field for the 300 ◦C experimental parameters is shown in fig. 7.7a and for the

700 ◦C experimental parameters in fig. 7.8a. The first thing to note is that the

maximum temperature for both simulations are extremely close to what was de-

sired, with less than a 1 ◦C difference for both examples. Alongside these are the

temperature field predicted by the surrogate model (fig. 7.7b and 7.8b) and the

absolute difference between the two (fig. 7.7c and 7.8c), highlighting very good

agreement with a maximum error of 3.5 ◦C.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 7.7: Validation of inverse solution to deliver a maximum temperature of
300◦C.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 7.8: Validation of inverse solution to deliver a maximum temperature of
700◦C.

7.3.2 Stress Related

The previous example only considered the temperature profile of the component

when deciding the best experimental parameters to choose, however using the

surrogate Von Mises stress field model a second metric by which to choose the

appropriate parameters is available. Instead of choosing those which gives the
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‘best’ looking temperature profile, it is possible to choose the experimental pa-

rameters which stresses the component in a certain way, such as minimising or

maximising stresses, along with delivering a desirable thermal response.

The previous example showed there are numerous temperature profiles which

delivered a maximum temperature of 300 ◦C to the component, however each of

these will yield a drastically different Von Mises stress profile. Fig. 7.9 shows the

corresponding Von Mises stress field for the temperature fields shown in fig. 7.6,

showing that for these four examples alone, the maximum Von Mises stress the

component is subjected to ranges from 93MPa to 110MPa.

(a) Profile 1 (b) Profile 2

(c) Profile 3 (d) Profile 4

Figure 7.9: Corresponding Von Mises stress fields to the temperature profiles
shown in fig. 7.6.

Often it will be desirable to heat a component to reach a certain temperature

but by minimally stressing the component. This will require identifying a set of

experimental parameters which ensures that the maximum temperature in the

component reaches T ∗, while also minimising the maximum Von Mises stress a

component is subjected to. This is summarised as the constrained optimisation

problem outlined in eq. 7.3.
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x∗ = argmin
x∈P

(max(VMsurr(x)))

s.t max(Tsurr(x)) = T ∗
(7.3)

Using the MultiSLSQP package to solve this problem with T ∗ = 300 provides

a set of experimental parameters, given in table 7.7, which has a maximum Von

Mises stress of 69 MPa. Performing the same analysis with the goal of maximising

the objective instead results in a Von Mises stress profile with a maximum value

of 115 MPa, nearly double that of the lower bound. Again, the experimental

parameters used to achieve it are shown in table 7.7. The temperature and Von

Mises stress profile for these experimental parameters is shown in fig. 7.10 and

7.11 for the minimum and maximum Von Mises cases respectively.

(a) Temperature (b) Von Mises

Figure 7.10: Profiles which minimisethe maximum Von Mises stress of a compo-
nent heated to 300 ◦C.

(a) Temperature (b) Von Mises

Figure 7.11: Profiles which maximisethe maximum Von Mises stress of a compo-
nent heated to 300 ◦C.
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Parameter Min. Max.
xd -5.00E-03 9.81E-04
yd 1.50E-02 8.53E-03
zd 3.00E-03 4.49E-03
ϕ -5.00E+00 6.41E-01

Tcoolant 4.77E+01 3.00E+01
Vcoolant 6.58E-01 6.99E+00
I 1.48E+02 1.97E+02

Table 7.7: Experimental parameters which minimise and maximise the maximum
Von Mises stress of a component heated to 300 ◦C.

Similarly to the work carried out for the power and variation in the previous

chapter, a plot of the component’s maximum Von Mises stress range versus its

maximum temperature can be constructed. This is shown in fig. 7.12, where the

upper and lower bounds of the maximum Von Mises stress are shown for both

coil A and coil B for maximum component temperatures ranging between 300 ◦C

and 700 ◦C. In this regard, both coils perform very similarly, with coil A having

a slightly smaller range of values.

Figure 7.12: Envelope of performance of maximum Von Mises stress versus max-
imum temperature within the component.
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7.3.3 DoPE Example

The two inverse problems discussed in this section thus far are just two examples

of desirable results one would like to achieve from an experiment in HIVE. There

are, however, numerous other desirable experiments which may need to be per-

formed to qualify a component’s suitability or verify the computational model,

for example. Below is an example list of different experimental outcomes which

are desired when testing a component.

1. Delivering the maximum temperature.

2. Delivering the maximum Von Mises stress.

3. Achieving 100 ◦C in the pipe while minimising the component’s maximum

temperature.

4. Delivering the minimum Von Mises while achieving 300 ◦C in the compo-

nent.

5. Delivering the most uniform heating profile while also ensuring at least

500 ◦C is delivered to the component

The experimental parameters required to achieve these results are shown in

table 7.8, which also briefly describes the expected behaviour. Experiment 1 is

that which delivers the behaviour defined in point 1 in the list immediately above.

For this sample, the maximum temperature is the infeasible number of 2045 ◦C,

about double that of the melting point of titanium.

Certain experiments are useful as a sanity check for the method. For example,

to achieve experiment 3 it is logical that the optimal solution is to get the pipe as

hot as possible using the coolant parameters. This is highlighted in the results,

where the coolant temperature is at its maximum (80 ◦C) and the velocity at its

minimum (0.658m/s), thus allowing the pipe to reach 100 ◦C with the maximum

component temperature only needing to reach 140.14 ◦C.

This framework makes it easy to construct a much more insightful and varied

DoPE than previously possible using the currently available data in HIVE and

human intuition. This enables a much more comprehensive suite of tests to be

performed, allowing better characterisation of a component to assist the next

iteration of the design cycle.
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7.4 Parameter Sensitivity

Prior to testing a component in HIVE, it is useful to understand the sensitivity of

the component’s response to changes in the experimental parameters. Performing

parameter sensitivity analysis is much easier and faster when surrogate models

are available. Here, the value for one parameter is varied across its range while the

others remain fixed, enabling its impact to be isolated. In the analysis carried out

below, the values for the fixed parameters are set to the mid-pint value of their

individual range, e.g. the coolant temperature is fixed at 55 ◦C, the mid-point

between 30 and 80 ◦C. For brevity, the sensitivity of experimental parameters is

only detailed for coil A, however similar behaviour was observed for coil B.

Until now, the effect of varying HIVE’s parameters on the result have been

measured by observing the changes to the thermocouple data collected during

the physical experiment. To emulate this, a point on the side of the component

(where thermocouples would usually be attached) is chosen, where temperature

data is predicted using the surrogate model. Fig. 7.13a to 7.19a plots the change

in temperature at this point with the varying of each experimental parameter. As

expected, decreasing the distance between the coil and the component increases

the temperature (fig. 7.15a), as does increasing the coil current (fig. 7.19a). Even

these relatively simplistic curves demonstrate the nonlinearity of the problem,

whereby decreasing the coolant temperature by 50 ◦C only reduces the measured

point temperature by around 30 ◦C. A similar temperature change is observed

when increasing the coolant velocity from its minimum up to its maximum.

(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.13: Sensitivity to changes in x displacement (xd)

Having a surrogate model presents the opportunity to also quickly monitor

how the maximum temperature is affected by changes to the experimental pa-

rameters, which is shown in fig. 7.13b to 7.19b. The first thing to note is the

difference in the profiles between the point measurement and maximum tempera-
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(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.14: Sensitivity to changes in y displacement (yd)

(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.15: Sensitivity to changes in z displacement (zd)

(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.16: Sensitivity to changes in rotation around y-axis (ϕ)

(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.17: Sensitivity to changes in coolant temperature (Tcoolant)
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(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.18: Sensitivity to changes in coolant velocity (Vcoolant)

(a) Temperature (TC) (b) Temperature (max.) (c) Von Mises (max.)

Figure 7.19: Sensitivity to changes in coil current (I)

ture for certain variables, namely xd, yd and ϕ. It’s also unsurprising that changes

to zd and I have a much bigger impact on the maximum temperature as opposed

to the point measurement. While the coolant temperature and velocity have sim-

ilar profiles to that seen previously, the effect that each one has on the maximum

temperature is less balanced, with increasing Vcoolant having a much greater effect

than decreasing Tcoolant.

Interestingly, increasing the current by a factor of 6 - which leads to 36 times

more power delivered to the sample - only leads to around an order of magnitude

increase in the temperature. This is caused by the non-linearity of the prob-

lem, specifically the dependence of the pipe wall temperature on the amount of

heat extracted by the coolant and the non-linear material properties used in the

simulation.

This type of insight would take a significant amount of time for a new oper-

ator of HIVE to develop. Additionally, these relationships may be different for

components with different geometries or made with different materials. These

types of issues are avoided using this methodology, allowing insight to be gained

in a much faster and more robust manner.

As HIVE’s current setup has no way of measuring the mechanical perfor-
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mance of a component, there is no understanding of the effect that changing

experimental parameters has on the stress state of a component. Using the sur-

rogate model of the Von Mises stress field, the sensitivity of stresses with respect

to the experimental parameters at any point in the component can be observed.

The first thing to note is the differing impacts that certain parameters have

on the maximum temperature and maximum Von Mises stress of the component.

For example, varying the value of yd from -0.015 to 0.015 only has a modest

impact on the maximum temperature, however this has a much greater impact

on the Von Mises stress, see fig. 7.14c. Similarly, the coolant velocity, which had

a bigger impact on the maximum temperature than the coolant temperature did,

has a smaller impact than it in terms of the maximum Von Mises stress.

This is extremely useful, previously immeasurable, knowledge to the operators

of HIVE. Having a thorough understanding of how the experiment parameters

affect the temperature and stress at any point in the component can greatly help

during a component’s experimental campaign. Previously, understanding of only

a limited part of this insight would have been available, and would have taken

several months of testing to appreciate.

7.5 Alternative Component

To demonstrate this workflow and the power of VirtualLab, this same analysis is

performed for a different component. The component in question was designed

as part of the Additive Manufacturing Aiming towards Zero Waste and Efficient

Production on High-Tech Metal Products (AMAZE) project [215], and consists

of a copper pipe and block with a tungsten tile. This design has a block which is

longer than the tile, as shown in fig. 7.20.

7.5.1 Surrogate Models

For this analysis 1400 simulations were performed, 700 each for coil A and coil B,

with 500 of these observations used for training and the remaining 200 reserved

for testing the model. The parameter space the data was collected in is the same

as that used for the titanium sample, see table 7.1. 12 GPR FF surrogate models

were trained, 6 for each coil design, 3 for the temperature field and 3 for the

Von Mises field for models using the RBF, Matérn5/2 and Matérn3/2 covariance

kernels.
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Figure 7.20: CAD of AMAZE component tested in HIVE

The 1400 simulations and surrogate models were generated using the sunbird

cluster, where 100 cores were used to generate the data and perform the analysis in

under three hours. This job was set to run overnight, meaning that the surrogate

models were ready by the morning to assess their performance. The accuracy

of the temperature surrogate models is shown in table 7.9, with the Von Mises

surrogates shown in table 7.10.

Similarly to the titanium component, the RBF model is the most accurate

with regard to the temperature field. Interestingly, the Von Mises surrogate mod-

els are much more accurate than for the titanium component (table 7.4), which

is attributed to the lower reconstruction error for this data (6.21E-04) compared

with the previous (1.81E-03, see fig. 7.3). For both coils, the performance of the

RBF and Matérn5/2 kernels are comparable.

kernel Test nRMSE Train nRMSE

Coil A
RBF 3.04E-03 2.13E-03

Matérn5/2 3.41E-03 1.73E-04
Matérn3/2 4.10E-03 1.73E-05

Coil B
RBF 2.50E-03 2.01E-03

Matérn5/2 2.63E-03 1.94E-03
Matérn3/2 3.66E-03 1.94E-03

Table 7.9: nRMSE of temperature surrogate models of the AMAZE component.
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kernel Test nRMSE Train nRMSE

Coil A
RBF 6.24E-03 3.80E-03

Matérn5/2 6.36E-03 3.74E-03
Matérn3/2 7.28E-03 3.63E-03

Coil B
RBF 8.78E-03 5.03E-03

Matérn5/2 8.12E-03 4.45E-03
Matérn3/2 9.25E-03 4.38E-03

Table 7.10: nRMSE of the Von Mises stress surrogate models of the AMAZE
component.

7.5.2 DoPE

Using the best performing surrogate models, the DoPE for the AMAZE compo-

nent can be constructed. The desired experiments for this component are those

outlined in section 7.3.3, however certain modifications have been made due to

infeasible temperatures. As tungsten has a much lower electrical resistivity than

titanium, much less heat is generated for this component. This is highlighted in

table 7.11, where it is shown that the maximum temperature this component can

reach for the given parameter space is 169.06 ◦C (experiment 1), over an order

of magnitude less than for the titanium component. Interestingly, the maximum

stress of this component (348.61MPa, experiment 2) is not much less than the

titanium component (512.98MPa). This could be due to increased stresses due

to different thermal expansion of the materials.

Satisfying experiment 3 is also possible, where again the coolant temperature

is at the maximum temperature along with its velocity at the lowest value. Un-

like the titanium component, zd cannot be at its furthest point away from the

component (6.00E-03) as this would not deliver the sufficient heating loads to the

component to reach 100 ◦C within the pipe. Due to the lower maximum possible

temperature of the component, the desired temperature for experiment 4 and 5

has been changed to 100 ◦C (from 300 ◦C and 400 ◦C respectively).
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7.6 Chapter Summary

This chapter has demonstrated that the use of FF surrogate models can provide

a much more comprehensive DoPE for a component in HIVE compared with the

current approach. Previously, experimental parameters were estimated based on

the sparse thermal experimental data of the previous experiment, however by

using surrogate models it is possible to identify the parameters which deliver a

certain temperature and/or stress to any part of the component. Along with

being faster, more robust and accurate, this method also reduces the reliance

on operator’s previous experience. For example, it would have taken several

attempts for a HIVE operator to learn the difference in the quantity of power

a tungsten component requires in comparison with a titanium one, however by

using surrogate models this is achieved without the need to perform a single

physical experiment.

The automated workflow developed using VirtualLab means that this entire

analysis can be performed in a matter of hours, which is hugely beneficial for

HIVE to test components in a high throughput manner. This also removed the

need for inefficient trial & error approaches to estimating experimental parame-

ters, something which is not only time-consuming but also costly. Coupling in this

reduced testing time with the smarter DoPE means that experiments in HIVE

provide much greater understanding of a component’s strengths and limitations,

thus enabling more informed decisions to be made during the next iteration of

the design cycle.

This chapter also highlighted the alternative ways in which the generated

surrogate models can be used to gain insight. Section 7.4 highlighted that the

sensitivity of parameters learnt from simulated thermocouple data, which is the

only measure which HIVE operators currently have, are often underestimated

compared with the maximum temperature of the component. Moreover, the

Von Mises stress surrogate model was able to provide parameter sensitivity for a

metric which HIVE operators currently have no method of inferring. Previously,

understanding of only a limited part of this insight would have been available,

and would have taken several months of testing to appreciate.

The contents of the VirtualLab run files necessary to create the temperature

and Von Mises surrogate models and perform the inverse analysis can be found

in listings A.2 and A.3 in the appendices.
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Chapter 8

Enhancing Sparse Experimental

Data

8.1 Introductory Remarks

Currently, HIVE has no method of using the sparse experimental data to infer

more insightful properties about a component, such as the maximum temperature

of the component or its stress state. As a result, only limited understanding of

a component’s suitability is currently gained from each experiment. As outlined

in section 1.2.2, many problems in engineering which use proxy measurements

require highly controlled environments and geometries, however given the com-

plexity of the HIVE experiment and variations in component geometry this is

not possible. This chapter demonstrates a novel approach to solving the proxy

measurement problem through the use of surrogate models, enabling a limited

amount of pointwise temperature data to be used to infer the temperature and

stress field throughout the component. This knowledge enables far more informed

decisions to be made during the design cycle of the component, thus speeding up

their development (due to fewer number of iterations required).

As outlined in section 4.3.3, the diagnostics in HIVE are limited, with only a

few thermocouples available to collect pointwise surface temperature data, there-

fore it is essential that these provide as much insight as possible. This chapter

also investigates the optimisation of sensor placement in HIVE, which is a novel

contribution to the IHTP field as outlined in the work of Tamaddon-Jahrromi et

al. [23].
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The outline of this chapter is as follows; firstly, section 8.2.1 will provide a

proof of concept of the ability to use thermocouple data to infer the temperature

and stress field throughout the component. Following this, section 8.2.3 uses

gradient-free optimisation algorithms to reduce the number of thermocouples re-

quired by identifying their optimal location. Following this, section 8.3 will show

that the thermocouple data can also be used to estimate uncertain properties

of the component. Here, the thermal contact conductance between two bonded

surfaces is investigated, where it is shown that encoding prior knowledge of the

experiment in the methodology can substantially improve its accuracy.

8.2 Thermocouple Informed Temperature Field

In certain circumstances, the temperature at thermocouple locations extracted

from the simulation won’t equate to those recorded by the experiment. This could

be due to differences in the component performance resulting from its manufac-

ture, e.g. defects, different material properties, or errors in the simulation due

to the use of incorrectly estimated parameters. Even in these circumstances, the

full temperature field throughout the component can still be inferred by using

the inverse solution given by eq. 8.1 and using it as the input in to the compu-

tational (or surrogate) model. In this equation, T TC(i)

exp is the data recorded by

the i-th thermocouple during the experiment (i = {1, .., NTC}) and T TC(i)

surr is the

temperature predicted at the location of that thermocouple using the surrogate

model.

x∗ = argmin
x∈P

NTC∑
i=1

(T TC(i)

surr (x)− T TC(i)

exp )2 (8.1)

As discussed in section 5.3.5, thermocouples could not be bonded to the sur-

face of the components, meaning that this experimental data is unavailable. In-

stead, the values for T TC
exp are extracted from the temperature field generated by

a simulation, i.e. using simulated experimental data. The advantage of this ap-

proach is that the temperature field which this method is trying to predict is

known (from the simulation), meaning that its accuracy can be measured. This

would not have been possible using actual experimental data. Also, simulated

experimental data is faster and easier to produce, and enables a wide variety of

different loading conditions from across the parameter space to be tested.

The value of T TC(i)

surr is calculated as a linear combination of the temperatures
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at the nodes of the surface element which the thermocouple is located within.

Therefore, given that the outputs of Tsurr are differentiable with respect to its

inputs, then it follows that T TC
surr are similarly differentiable. As a result, eq. 8.1

can be solved using the MultiSLSQP package.

8.2.1 Proof of Concept

In this proof of concept, 7 thermocouples are attached to 7 different surfaces of

the component. As previously discussed, thermocouples can’t be placed on the

coil adjacent surface, and the two surfaces of the block where the pipe intersects

are also unsuitable due to difficulty in joining thermocouples there. Therefore,

thermocouples are joined to the mid-point of the 4 surfaces that make up the

sides of the tile along with 3 surfaces of the block, 2 on the front and back facing

sides and 1 on the base, see fig. 8.1.

(a) TC(1) (b) TC(2) and TC(5)

(c) TC(3) (d) TC(4) and TC(6)

(e) TC(7)

Figure 8.1: Location of 7 thermocouples on the surface of a component.
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Surface Positioning parameters

TC(1) Tile Side 1 (0.5,0.5)
TC(2) Tile Side 2 (0.5,0.5)
TC(3) Tile Side 3 (0.5,0.5)
TC(4) Tile Side 4 (0.5,0.5)
TC(5) Block Side 2 (0.5,0.5)
TC(6) Block Side 4 (0.5,0.5)
TC(7) Block Base (0.5,0.5)

Table 8.1: Description of 7 thermocouple locations.

A description of the thermocouple placement used in this example is given in

table 8.1, where each location is described by the surface it is attached to and its

positioning on that surface. This positioning is described using 2 parameters over

the range [0,1], one for each direction of the 2D surface, with (0.5,0.5) placing the

thermocouple at the centre of its respective surface. The origin for each surface

is the corners closest to the origin of the coordinate system.

A simulation is performed using the experimental parameters given in table

8.2, with the resulting temperature field shown in fig. 8.2. The temperatures at

the 7 thermocouple locations are extracted from this simulation and are given in

table 8.3.

Parameter Simulation
xd -6.83E-04
yd 1.32E-02
zd 5.45E-03
ϕ -1.64E+00

Tcoolant 4.16E+01
Vcoolant 1.21E+00
I 4.02E+02

Table 8.2: Experimental parameters used for testcase.

Using the data given in table 8.3 as T TC
exp in eq. 8.1 yields several sets of

viable experimental parameters, each resulting in the desired temperature at

the thermocouple location, highlighting the non-uniqueness of inverse problems.

Because of correlation between certain input parameters, there are a number of

different combinations of experimental parameters which will yield the exact same

temperature profile. For example, increasing the thermal loading effect by moving

the coil closer to the component can be offset by reducing the power delivered to

the induction heating system.
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Figure 8.2: FE simulated temperature profile using parameters in table 8.2

Temperature (◦C)

T TC(1)

exp 331.46

T TC(2)

exp 418.23

T TC(3)

exp 664.84

T TC(4)

exp 493.90

T TC(5)

exp 203.27

T TC(6)

exp 203.42

T TC(7)

exp 201.96

Table 8.3: Simulated experimental data.

As it’s the predicted field which is of interest and not the experimental param-

eters themselves, only those which give distinct temperature profiles are retained

as inverse solutions. For this work, two temperature fields are considered distinct

if the average percentage difference between the temperature values at the nodes

of each is greater than 2.5%. This metric has been devised by observing different

temperature profiles and analysing their level of difference. As a result of this,

there are 4 distinct temperature profiles which match the recorded thermocouple

data, all of which are shown in fig. 8.3 along with their error from the desired

temperature profile (which was shown in fig. 8.2). The experimental parameters

to achieve these four profiles are given in table 8.4.

These have been generated by using the surrogate and simulated experimental

data to identify the 7 admissible BCs, which are used to generate full tempera-

ture field profiles for each using the surrogate model. From these, only distinct

temperature profiles are retained along with the BCs needed to achieve them.
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Parameter Profile 1 Profile 2 Profile 3 Profile 4
xd -6.89E-04 -6.81E-04 -7.29E-04 -1.57E-03
yd 1.31E-02 1.30E-02 1.32E-02 1.33E-09
zd 5.09E-03 4.97E-03 5.37E-03 5.91E-03
ϕ -1.55E+00 -1.53E+00 -1.46E+00 3.18E-01

Tcoolant 3.93E+01 3.18E+01 4.96E+01 5.90E+01
Vcoolant 1.10E+00 8.20E-01 2.04E+00 6.95E+00
I 3.89E+02 3.85E+02 4.01E+02 4.23E+02

Table 8.4: Experimental parameters used for testcase.

In terms of the temperature profile through the block and tile of the com-

ponent, all four profiles are very similar. The reason that these are considered

distinct profiles is because of the different temperatures along the pipe, caused by

the different coolant temperatures estimated by the optimiser. The value of the

coolant ranges from 31.8 ◦C to 59 ◦C, with these differences offset by changes to

the coolant velocity, meaning that the same quantity of energy would be extracted

from the component.

As discussed in section 4.3, the coolant parameters are measured at the inflow

to the vacuum vessel, therefore there is a high level of confidence about what

the temperature in the pipe actually is. This can be encoded in to the search

for admissible temperature fields be fixing the value of the coolant temperature

to that used to generate the experimental data during the optimisation routine.

This means that in this example, Tcoolant was assumed to be 41.6 ◦C (see table

8.2) and wasn’t able to change while searching for the inverse solution given by

eq. 8.1. This idea will be discussed in more detail in section 8.2.4.

Adding in this extra criteria reduces the number of admissible solutions to one,

which is shown in fig. 8.4. There is very good agreement between the predicted

temperature field and the desired temperature field ( shown in fig. 8.2), with a

maximum absolute error of less than 3 ◦C, equating to an error of less than 0.5%.

The Von Mises stress profile based on these inversely informed experimental

parameters is shown in fig. 8.5 alongside the stress profile predicted using the FE

model and the absolute error difference between them. Again, excellent agreement

is shown, with a maximum error of less than 1%.

This demonstrates that this method can take sparse experimental data col-

lected by HIVE and use it to inform the temperature and stress profile throughout

the component. This provides substantially more insight and understanding of

the component, helping inform better decision-making during its design cycle.
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(a) Temperature profile 1 (b) Absolute difference for profile 1

(c) Temperature profile 2 (d) Absolute difference for profile 2

(e) Temperature profile 3 (f) Absolute difference for profile 3

(g) Temperature profile 4 (h) Absolute difference for profile 4

Figure 8.3: Different admissible temperature fields predicted by the GPR sur-
rogate model using 7 thermocouple measurements and their error from the FE
model (fig. 8.2)

169



(a) Temperature profile (b) Absolute difference from FE model

Figure 8.4: The only admissible temperature field predicted by the GPR surrogate
model using 7 thermocouple measurements and known Tcoolant along with its error
from the FE model (fig. 8.2)

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 8.5: Comparison between the FE model and inversely informed surrogate
model for the Von Mises stress profile using seven temperature measurements.

8.2.2 Thermocouple Sensitivity

As joining thermocouples to the component is a time-intensive task, it is beneficial

to reduce the number required. Doing so not only saves money by freeing up the

time of the HIVE operators for other tasks, but also enables a higher throughput

of component testing, thus speeding up the design cycle of the component in

question.

Consider the same example as the previous section but with only 3 thermo-

couples; TC(2), TC(5) and TC(7). With fewer known temperature values from

thermocouples, there are more admissible temperature fields which fit the data.

In this case, there are 5 different temperature profiles which match the data

recorded at the thermocouple locations, four of which are shown in fig. 8.6. On

the other hand, choosing TC(2), TC(3) and TC(6) results in fewer (3) admissible

temperature fields.

Clearly this is just a single testcase, however to gain an unbiased measure of

how informative a set of thermocouples are for informing the full temperature
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(a) Temperature profile 1 (b) Temperature profile 2

(c) Temperature profile 3 (d) Temperature profile 4

Figure 8.6: Example of four different admissible temperature profiles when only
three thermocouples are used.

field a larger number of testcases will need to be considered. The suitability

of a configuration of thermocouples, denoted as C = {TC(1), ..., TC(NTC)}, is

calculated using eq. 8.2, whereMi is the number of admissible temperature fields,

which is averaged over 10 randomly selected scenarios from across the parameter

space.

LTC(C) =
1

10

10∑
i=1

Mi(C) (8.2)

Using this definition, for C = {TC(2), TC(5), TC(7)} the value of LTC is 5.6,

while for C = {TC(2), TC(3), TC(4)} this value is 3.3.

8.2.3 Sensor Placement Optimisation

The sensitivity of the placement of thermocouples to the number of temperature

fields naturally raises the question of their optimal configuration. To achieve this,

a thermocouple configuration C∗ must be identified which minimises the value of

LTC . Clearly, this objective function is not differentiable, meaning that solving

this optimisation problem will require using the gradient-free genetic algorithm

To enable the genetic algorithm to be used in this context, the configuration
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of the thermocouples must be encoded as a genetic sequence. The positioning of

a thermocouple is characterised by the name of the surface and two parameters

relating to its placement on said surface. The latter two of these do not require

encoding as these are continuous values in the range from 0 to 1, however the 7

surfaces must be represented as integer values instead of strings. With reference

to table 8.1, ‘Tile side 1’ is encoded as 1 up to ‘Block base’ encoded as 7. This

means that the combination of the three thermocouples given in table 8.5 would

be encoded as (2, 0.8, 0.2, 6, 0.1, 0.1, 7, 0.4, 0.9)

Surface Positioning parameters

TC(1) Tile Side 2 (0.8,0.2)
TC(2) Block Side 4 (0.1,0.1)
TC(3) Block Base (0.4,0.9)

Table 8.5: Example of three thermocouple locations.

In genetic algorithms, the evaluation of the loss function for a member of the

population is usually termed as their fitness value. For this problem, the optimal

fitness value is 1, giving a natural lower bound to the optimisation algorithm.

The hyperparameters of the genetic algorithm are summarised in table 8.6.

A population size of 30 is chosen, as this is mid-point of the range of 20 to 40

advised by Grefenstette in [216]. The 6 fittest members of the population are used

to produce the offspring of the next generation, with this value chosen as 20%

of the entire population size. Choosing to carry the parents forward to the next

generation means that 24 new offspring will be produced for each new generation.

Population size 30
Crossover probability 1
Mutation probability 0.05

Number of parents retained 10
No. generations 50

Table 8.6: Genetic algorithm parameters used for analysis.

Since the parents genes will be retained in the next generation, the crossover

probability is chosen as 1 to ensure that all offspring will differ from their parents.

This is supported by Grefenstette, stating that population sizes such as these

benefit from high crossover probabilities. The advised mutation probability of

0.05 is used, meaning that for a genetic sequence of 9 chromosomes like the

above, there is a 37% (1− (1− 0.05)9) probability of mutation in an offspring.
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The genetic algorithm is performed for a maximum of 50 generations, however

if a fitness value of 1 is identified for a member of the population, or if there is

no improvement in the best fitness value for 10 generations, the algorithm will

terminate to reduce computational expense.

A number of different attempts of this optimisation algorithm were performed

with alternatively seeded initial population, with best scoring combination given

in table 8.7, with their placement on the component shown in fig. 8.7. The best

value for the objective (fitness) function (eq. 8.2) is 1.4, with the evolution of the

best fitness value with each generation shown in fig. 8.8

Surface Positioning parameters

TC(1) Tile Side 1 (0.7195, 0.5077)
TC(2) Tile Side 3 (0.8173, 0.2861)
TC(3) Tile Side 3 (0.2269, 0.5513)

Table 8.7: Optimal combination of three thermocouples.

Figure 8.7: Visualisation of the 3 optimally placed thermocouples.

Figure 8.8: Evolution of fitness value with each generation
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Although this is an optimal configuration, a fitness value of more than 1

means there are certain cases where more than 1 distinct temperature field was

identified. As a result, using only 3 thermocouples to record data is too few a

number. Performing the same optimisation routine again for the placement of

4 thermocouples results in a number of combinations which deliver the desired

fitness value of 1, one of which is summarised in table 8.8. In scenarios where

there are a number of combinations which perform equally well, then it is sensible

to choose the combination which is the most logistically feasible to achieve.

Surface Positioning parameters

TC(1) Tile Side 1 (0.6007, 0.8659)
TC(2) Tile Side 3 (0.7311, 0.1611)
TC(3) Tile Side 4 (0.9835, 0.0794)
TC(4) Block Base (0.8070, 0.3944)

Table 8.8: Optimal combination of four thermocouples.

It’s important to highlight that there is a degree of sensitivity to the placement

of the parameters, especially for the case when three thermocouples are used.

Adding an element of Gaussian noise (mean zero and standard deviation 0.02) to

the placements of the optimal locations results in an increase in the number of

admissible fields from the optimal 1.4 to 1.8. Performing the same analysis for 4

thermocouple case would still result in an optimal score of 1, however.

8.2.4 Including Prior Knowledge

Until this point, the only assumed knowledge has been the temperature at the

NTC thermocouple locations and the temperature of the coolant. It was shown in

section 8.2.1 that adding the knowledge of the Tcoolant had a big impact in terms

of the number of admissible temperature fields.

There are certain parameters which HIVE operators have a high level of con-

fidence for, such as the temperature of the coolant, while there are others which

are harder to accurately measure, such as the coil positioning. This knowledge

can be encoded in the search for an inverse solution by limiting the range where

admissible solutions are sought. These ranges are decided based on the level of

confidence the HIVE operator has about the experimental parameter at hand.

If an operator believes the value for the i-th parameter, pi, is around ti, then

solutions for this parameter can be sought in the range [ti − ri,ti + ri], where the
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value of ri is decided based on the level of confidence. The range [ti−ri,ti+ri] is a
subspace of the global range of admissible solutions, denoted as [pLi ,p

U
i ], where p

L
i

and pUi are the upper and lower bound of the parameter space for pi, respectively.

In this work, the value of ri is defined using eq. 8.3, where ci is the level

of confidence the operator has about the value of the parameter. For example,

consider the scenario where the HIVE operator believes the value for zd is 0.004

and is 70% confident about it. Given that the size of the parameters space is

0.003, then the range in which solutions are sought for zd during the optimisation

step is [0.0031,0.0049] instead of [0.003,0.006]. If the confidence level was 50%

then the range would be [0.003,0.0055], since the lower bound of 0.0025 is smaller

than the lower bound of the parameter space.

ri = (pUi − pLi )(1− ci) (8.3)

A set of example levels of confidence for each of the experimental parameters

based on knowledge about the operation of HIVE is given in table 8.9. Due to the

scale of the dimensions and orientations relating to the coil configuration, accurate

measurements are difficult, meaning that these four parameters are assigned 70%

confidence. The 100% confidence for Tcoolant is equivalent to fixing the value

during the optimisation routine, since ri in eq. 8.3 would be zero, as was outlined

in section 8.2.1. The coolant velocity is recorded by the cooling system, however

since this is located further away from the vacuum vessel, there is a little more

uncertainty regarding its accuracy. Since the Rogowski coil measures the current

on the outside of the vacuum vessel, a lower confidence is prescribed to account

for any potential losses which may occur.

Confidence
xd 70%
yd 70%
zd 70%
ϕ 70%

Tcoolant 100%
Vcoolant 80%
I 80%

Table 8.9: Confidence levels for experimental parameters.
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Using the optimal configuration of 3 thermocouples from section 8.2.3 (table

8.7) along with these levels of confidence results in a LTC score of 1. Furthermore,

even when adding Gaussian noise the placement values at the same level of 0.02

the number of admissible fields is still 1. Not only is adding this confidence to

the framework useful in that it reduces the number of thermocouples required,

but also allows for more variability in terms of their positioning.

A summary of the improvement in the objective function, LTC , through the

use of the genetic algorithm and including prior knowledge of the experiment, is

highlighted in fig. 8.9.

Figure 8.9: Improvement in admissible field objective function LTC through the
use of optimisation and inclusion of confidence.

To highlight this methodology, a FE simulation is performed where the tem-

perature values at the three thermocouples (positions given in table 8.7) are

extracted and are given in table 8.10. These are used along with the confidence

about the system to calculate an inverse solution, which is passed to the surrogate

models for the temperature and Von Mises stress, which are shown in fig. 8.10

and 8.11 respectively.

Temperature (◦C)

T TC(1)

exp 549.54

T TC(2)

exp 896.17

T TC(3)

exp 953.97

Table 8.10: Simulated experimental thermocouple data at locations given in table
8.7.
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(a) FE model (b) Surrogate model (c) Absolute difference

Figure 8.10: Comparison between the FE model and inversely informed surrogate
model for the Temperature profile using only three temperature measurements
and additional prior knowledge of the experiment.

(a) FE model (b) Surrogate model (c) Absolute difference

Figure 8.11: Comparison between the FE model and inversely informed surrogate
model for the Von Mises stress profile using only three temperature measurements
and additional prior knowledge of the experiment.

There is a high degree of accuracy in terms of the temperature profile, with

a maximum error of 2%, meaning that this can still be accurately predicted

using as few as 3 thermocouples. There are slightly larger errors for the Von

Mises stress field compared with that shown in section 8.2.1, meaning that to

accurately predict this a larger number of thermocouples may still be required.

In this example, however, the maximum Von Mises stress of the component is

still accurately predicted, with 350MPa using the inversely informed surrogate

compared with the 359MPa predicted by the simulation.

8.2.5 Optimisation with Constraints

This implementation of the thermocouple optimisation makes it extremely easy

to place constraints on not only what surfaces the thermocouples can be attached

to, but also where on that surface they can be placed. For example, consider a

scenario where thermocouples can’t be attached to the tile. This means that

there are only three available surfaces where the thermocouples can be attached;

Block Side 2, Block Side 4 and Block Base. Furthermore, it’s preferable for the
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thermocouples not to be placed too close to the edges of the surface, therefore the

range for the two placement parameters are limited to the range [0.2,0.8], instead

of the range [0,1] used in the previous example.

Performing the optimisation routine subject to these constraints for the three

thermocouple case without using results in the configuration given in table 8.11,

highlighting that the constraints are satisfied with each positioning parameter

within the designated range. This combination yields a fitness score of 2.4, which

is, as expected, greater than the fitness score of 1.4 achieved for the unconstrained

problem (section 8.2.3) . This highlights the importance of collecting data from

the tile, where the larger thermal loads are located.

Surface Positioning parameters

TC(1) Block Side 2 (0.6179, 0.3717)
TC(2) Block Side 2 (0.3254, 0.4539)
TC(3) Block Side 4 (0.2448, 0.5308)

Table 8.11: Optimal combination of three thermocouples, subject to constraints.

For the 4 thermocouple problem, it is still possible to identify a combination

of thermocouples which yield a fitness score of 1 subject to these constraints. The

placement of these 4 thermocouples are summarised in table 8.12, and are also

visually represented in fig. 8.12.

Surface Positioning parameters

TC(1) Block Side 2 (0.7510,0.2548)
TC(2) Block Side 2 (0.4782,0.5013)
TC(3) Block Side 4 (0.3450,0.2573)
TC(4) Block Base (0.3882,0.2284)

Table 8.12: Optimal combination of four thermocouples, subject to constraints.

This is an extremely powerful and useful method of identifying the most ef-

ficient locations to gather data. Rather than depending on previous experience

and selecting similar thermocouple locations, this methodology can identify an

optimal arrangement on a case by case basis, greatly improving the efficiency of

the data collected and ultimately the insight from each experiment.
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Figure 8.12: Visualisation of the 4 optimally placed thermocouples, subject to
constraints.

8.3 Estimating Unknown Quantities

The focus of the work thus far has been on using surrogate models to identify

experimental parameters for collecting the most valuable data. However, it can

also be used to identify values for uncertain parameters. For example, when per-

forming a simulation, a number of parameters used in the model may be assumed

values taken from literature. One example of this are the material properties used

in FE analysis. The properties of a material are evaluated experimentally using

material science experiments, however due to subtle differences in their granular

structure, the material properties calculated for each specimen will be different

due to the treatment of discrete mechanics as continuous mechanics through ho-

mogenisation. To remove this variability, the material properties are calculated

as the average value over many tested specimens, resulting in a statistically most

likely value.

Prescribing a single value to parameters such as these can lead to inaccuracies

between the simulation and the real world outcome. This section will investigate

how surrogate models can be used to predict the values of uncertain parameters

from sparse experimental data. The focus here will be on estimating a parameter

with a high degree of uncertainty; the thermal contact conductance of a bonded

surface.
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8.3.1 Thermal Contact Conductance

Thermal contact conductance is the study of heat conduction between thermally

variable bodies in contact with one another. When two solid bodies are in contact,

heat will transfer from the hotter body to the colder one. If the bond between

these two bodies is perfect, then the temperature on the interface of one body

would be the exact same as that on the interface of the second. In practice,

bonds between surfaces are never perfect, meaning there is a discontinuity at the

interface, as shown in fig. 8.13, where q is the heat flux through the interface.

Figure 8.13: Effect of thermal contact conductance for heat in a 1D bar [217].

This imperfect heat transfer is caused by surface roughness, which is micro-

scopic asperities and depressions that deviate from an otherwise smooth surface,

see fig. 8.14. This means that the actual area of contact is much smaller than

what is perceived. Along with the surface roughness, the actual contact area

depends on the pressure between the contacting parts (which is the result of the

method used to join the parts), the hardness of the materials and the temperature.

The thermal contact conductance coefficient (TCCC), denoted as hc, indicates

the heat conductivity which takes place between two contacting bodies and is

related to the heat flux and temperature drop, see eq. 8.4. A TCCC value of

zero indicates no transfer of heat across the contact, while as hc → ∞ means the
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contact behaves more and more like a perfect heat exchange with ∆Tcontact → 0.

q = hcAcontact∆Tcontact (8.4)

Figure 8.14: Restriction of heat flow through an interface formed by two surfaces
[217].

Modelling the impact of contact surfaces is crucial when dealing with materials

that have a high thermal conductivity, such as metals. Consider the 1D problem,

where a bar of length L has its two ends heated and fixed to 20◦C and 100◦C,

respectively. The bar is made up of two smaller bars, both of which have length

l = 0.5, thermal conductivity k = 1 and a continuous cross-sectional area, A.

Solving this as a 1D FE problem, the temperature on the two interfaces, T2 and

T3 are given by eq. 8.5, highlighting the link between the thermal conductivity

and TCCC. This also demonstrates that if hc = 0, then T2 = TA and T3 = TB,

while as hc → ∞ T2 → T3 → (TA + TB)/2.

T2 =
k
hcl
TA + (TA + TB)

k
hcl

+ 2

T3 =
k
hcl
TB + (TA + TB)

k
hcl

+ 2

(8.5)

The majority of components tested in HIVE will have contact surfaces, either

between the tile and the block, the block and the pipe, or both. In addition

to this, there are numerous novel conceptual designs being investigated not dis-

cussed in this work which include additional features. Given that the components

tested in HIVE typically have relatively high thermal conductivities, accurately

modelling the effects of the contact surfaces is essential. While TCCC values are

available in literature, these are generally for popular materials under specific,

well characterised conditions. For example, while the TCCC value for a bond
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between copper and copper can be found, it is unavailable for less commonly

used materials, such as a tungsten or beryllium. Along with this, the manufac-

turing process for fusion relevant components may not necessarily be comparable

to those in other industries.

A number of correlations to estimate the value of hc have been defined in

literature [217]. Since the TCCC depends on a variety of factors, however, these

correlations are complex and composed of a number of quantities. Many of these

quantities, such as the surface roughness, the micro hardness of materials and the

contact pressure, are hard to quantify, especially for novel materials or bonding

methods, or have a large degree of variability, making the estimating of TCCC

value for a specific bond within a component extremely difficult.

Using experimental data recorded by HIVE, the TCCC value can be esti-

mated, much like the experimental parameters were in the previous section using

surrogate models. This information can then be used to perform more accurate

simulations, enabling a better understanding of the component’s performance.

8.3.2 Surrogate Model

This analysis is carried out on a component with a single bonded surface between

the tile and the block, where the bond is no longer treated as a perfect conductor.

Externally, the component is identical to that used for the previous analysis (fig.

5.6).

The surrogate model required for this work will have 8 inputs; the 7 exper-

imental parameters used previously and the TCCC for the contacting surface.

The parameter range for the first 7 are the same as that used previously (table

7.1), however choosing an appropriate range for the TCCC can be a challenge

as its value can range from 0 to infinity. Again, consider the 1D example given

by eq. 8.5. If the range of TCCC was chosen as [1,10], then deviation in the

interface temperature from a perfect heat exchange as a percentage would vary

from 6.06% to 33.33%, which is a substantial change. On the other hand, if the

range was chosen as [100,1000] its impact would be between 0.07% and 0.66%,

making it very difficult to distinguish from a perfect heat exchange.

It is desirable to identify a range whereby the upper bound behaves similarly

to the perfect heat exchange, and the lower bound provides a noticeable change to

the component’s performance. Following a sensitivity analysis, the range of values

for this component has been identified as [2000,20000], with the temperature

182



(a) Temperature profile, hc = 2000 (b) Difference from PHE, hc = 2000

(c) Temperature profile, hc = 20000 (d) Difference from PHE, hc = 20000

Figure 8.15: The effect of TCC for the upper and lower bound of the parameter
space.

profiles and difference from the perfect heat exchange for this upper and lower

bound shown in fig. 8.15. For the ‘worst’ case scenario, there is a 50 ◦C increase

in the peak temperature compared with the perfect heat exchange case, which

equates to around a 15% increase. For the ‘best’ case scenario, the change is

only 6 ◦C, making its behaviour is nearly identical to the perfect heat exchange

case. As a result, it is believed that the likely effect of the bonded surface will be

within these two ranges.

To train the surrogate model 500 observations are used, with 200 reserved

for testing the model. Table 8.13 shows the nRMSE for the models generated

using the three different covariance kernel functions, which highlights that the

RBF model is the best performing. A comparison of a simulation and the TCCC

surrogate model using the RBF kernel is given in fig. 8.16.
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(a) FE model (b) Surrogate model (c) Absolute difference

Figure 8.16: Comparison of TCC temperature surrogate model with simulation.

Test nRMSE Train nRMSE
RBF 2.66E-03 1.03E-03

Matérn5/2 2.75E-03 1.11E-04
Matérn3/2 4.08E-03 7.96E-05

Table 8.13: Accuracy of temperature surrogate models with TCCC (coil A).

8.3.3 Inversely Informed Parameters

Similarly to the work of the previous section, the experimental parameters which

result in the required temperatures at the thermocouple locations are calculated

using eq. 8.1. While the previous section was interested in the temperature

field resulting from the inverse solution, this time it’s the accuracy of the inverse

solution relating to the TCCC parameter which is of interest.

Unfortunately, the bonded component failed during the experiment due to

debonding at the interface, therefore no experimental data was available for this

component. As a result, T TC
exp in eq. 8.1 will again use data extracted from

simulations. Similar to the previous section, this approach has the benefit of

knowing the exact TCCC value which was used in the simulation, thus providing

the ability to measure the accuracy of that estimated TCCC value.

For simplicity, the 7 thermocouples placed at the centre point of the seven

admissible surfaces are used, see table 8.1. A histogram of the error percentages

between the inversely predicted TCCC and the value used in the simulation is

shown in fig. 8.17 for each of the 200 observations which make up the test dataset.
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Figure 8.17: Histogram of percentage error between inverse predicted TCCC and
value used in the simulation for 200 different cases.

This shows that this method is reasonably accurate in terms of predicting the

TCCC, where an absolute percentage error of less than 10% is achieved for 20%

of the cases and less than 30% error for 47.5% of the cases. There are, however,

a high number of cases where the inverse solution is poor, with 33% of cases

resulting in an absolute percentage error of more than 50%. Although not shown

in this plot, the largest absolute percentage error over the 200 test cases is over

600%.

The reason for this inaccuracy is due to the non-uniqueness of the inverse

solution. Consider the temperature profile shown in fig. 8.18a, which has been

generated using the parameters given in the first column of table 8.14. The

temperatures at the 7 thermocouple locations (given in table 8.15) have been

used in eq. 8.1 to provide the inversely informed parameters, which are given in

the second column of 8.14.
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(a) FE model (b) Surrogate model (c) Absolute difference

Figure 8.18: Example of non-uniqueness of experimental parameters where seven
thermocouples are used.

Simulation Inversely informed
xd 4.34E-04 2.56E-03
yd -6.65E-03 -6.53E-03
zd 4.27E-03 3.10E-03
ϕ 3.45E+00 -1.56E-01

Tcoolant 5.58E+01 5.64E+01
Vcoolant 4.41E+00 5.85E+00
I 1.14E+02 1.05E+02
hc 5.09E+03 1.97E+04

Table 8.14: Comparison between the parameters used as inputs to the simulation
and those estimated using temperature at 7 thermocouple locations.

The temperature profile generated using these inversely informed parame-

ters matches well with the temperature field from the simulation, with only a

maximum absolute temperature difference of 3 ◦C see fig. 8.18c. However, the

inputs for both are very different, especially for the TCCC which is around 4

times larger than that used in the simulation. This change is counterbalanced by

changes in the other parameters, such as ϕ and zd. This is another example of

non-uniqueness of inverse problems.

Following a similar approach to that of section 8.2.4, the parameter space in

which admissible solutions is reduced based on prior knowledge on the experi-

mental parameters. Using the same confidence levels as those given in table 8.9

results in a substantial improvement in the prediction of the TCCC, see fig. 8.19.

Now, 40% of all cases have an absolute relative error of less than 10%, with only

5% of cases having an error of greater than 50%.
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Temperature (◦C)

T TC(1)

exp 150.91

T TC(2)

exp 152.68

T TC(3)

exp 125.56

T TC(4)

exp 133.16

T TC(5)

exp 75.67

T TC(6)

exp 71.85

T TC(7)

exp 90.61

Table 8.15: Temperature at 7 thermocouple locations (table 8.1) for temperature
profile shown in fig. 8.18a.

Figure 8.19: Histogram of percentage error between inverse predicted TCCC with
confidence and value used in the simulation for 200 different cases.

Improvements could be made in the accuracy of these predictions by increasing

the confidence regarding certain measurements. The reduction gained here is

based on how HIVE currently operates, however the addition of new tools such

as a 3D scanner to accurately measure the positioning of the coil in relation

to the component could increase the confidence considerably, thus leading to

improvements in the prediction for the TCCC.
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8.4 Chapter Summary

This chapter has demonstrated how even extremely sparse experimental data for

a highly complex use case can be enriched through the use of ML to provide sub-

stantially more insight. This was firstly demonstrated by using the experimental

data to infer more useful measures of the component’s performance while sub-

jected to fusion like loads. Following this, it was shown that the same data can

be used to infer hard to measure, highly variable properties of the component.

The key novelties of this chapter are; firstly, the use of surrogate models to

solve a highly complex proxy measurement problem. It was shown that knowl-

edge of the temperature on the component’s surface at a handful of pointwise

location can be used to infer the Von Mises stress throughout the component,

thus providing a much better understanding of the component’s strengths and

weaknesses. The second novelty is the use of the genetic algorithm to optimise the

sensor placement, thus resulting in the need for fewer sensors, which can speed

up the time taken to perform tests.

The contents of the VirtualLab run files necessary to estimate the temperature

and Von Mises stress field from the thermocouple data can be found in listing

A.4 in the appendices. This file also contains the necessary steps to perform the

thermocouple sensitivity analysis and subsequent placement optimisation.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis has presented the development and application of FF surrogate models

of multi-physics, FE simulations to greatly improve the impact of the HIVE

facility on the design of PFCs. As discussed in the introduction, both the goals

of smarter testing and enhanced component insight could be achieved by solving

inverse problems, which were reviewed in chapter 2, and is a predominant theme

in chapters 6 - 8.

The performance of a variety of different supervised learning algorithms and

dimensionality reduction techniques have been presented for the construction of

2D and 3D FF surrogate models. GPR coupled with PCA proved to be not

only the best performing modelling strategy but also the easiest to implement

due to their small number of hyperparameters. In chapter 6 it was shown that

FF surrogates actually perform better than the SV surrogate does in accurately

predicting the value of the single valued output.

Chapter 7 showed that FF surrogate models for the temperature and stress

fields of the component can provide much more insightful DoPEs, enabling a much

more varied and targeted suite of experiments to be performed. This smarter

testing removes the need for previous experience and intuition of the HIVE facility

and avoids performing unnecessary experiments by no longer employing a trial &

error approach.

These surrogate models were also used to enrich the sparse experimental data

currently generated by HIVE, where in chapter 8 they enabled the full temper-

ature and stress field to be predicted using as little as 3 surface temperature
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measurements. This provides a much better understanding of the components

tested in HIVE, enabling more informed decisions to be made during the next it-

eration of the design cycle. Given the highly nonlinear nature of the problem, this

is a powerful demonstration of the potential benefits for the developed methodol-

ogy. Along with this, it was also demonstrated that this sparse data can be used

to estimate uncertain quantities in the problem, with the TCCC was estimated

to within 30% accuracy for 78% of cases when experiment specific knowledge was

included.

The VirtualLab package developed is not only beneficial to the HIVE operators

and its clients, but also has the potential to help a number of people in the

computational engineering field. Given a lack of workflow orchestration tools

in the field, its fully-autonomous makeup means that it could be an extremely

valuable tool. Along with this, its ability to generate vast quantities of synthetic

data in a fraction of the time and use it to train surrogate models with little to no

knowledge of supervised learning algorithms, is extremely powerful. Moreover, its

use of containers and open-source software means that it is extremely portable,

enabling anyone to benefit from it.

For the HIVE operators, the automation, and speed which VirtualLab per-

forms this analysis means that components can be tested in a high throughput

manner, ensuring that HIVE satisfies the demand for the facility. As the Virtu-

alLab platform is open-source, this setup is easily shared with clients, enabling

them to perform their own explorative work at no additional cost. This provides

clients a better understanding of HIVE, enabling them to make more informed re-

quests during an experimental campaign and gain more insight from the gathered

experimental data.

Leading on from this, there is huge potential to extend this work to larger scale

facilities such as CHIMERA. This facility adds complexity to HIVE through the

inclusion of magnetic fields to mechanically load components, along with the use

of non-conventional fluid coolants. Similarly to HIVE, the presence of numerous

physical loads means that it becomes inherently more difficult to extract the

desired quantity and quality of data from an experiment. This framework can

similarly be used to ensure that the most valuable data from the experiment

is collected. Moreover, as aspects are still yet to be decided for CHIMERA,

this framework could be used to identify optimal configurations or placement of

sensors a priori.

This framework is not limited to fusion experimental facilities only, but in fact
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any kind of experimental facility. The construction of DoPEs is commonplace for

any experimental facility, while in most cases there will be certain properties

which are immeasurable using the available sensors. The generic nature of cou-

pling simulation data with ML means that much of the work carried out is easily

transferable, with only domain specific knowledge required to improve the accu-

racy of the results.

An overview of the workflow for an experimental facility using the framework

developed during this PhD is shown in fig 9.1. The different stages of the process

have been referenced to sections in this thesis.

Figure 9.1: Workflow for an experimental facility using the framework developed
during this project.
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9.2 Developed Packages and Impact

This section provides an overview of the packages developed during this thesis

and their contribution to other projects.

9.2.1 MultiSLSQP

The extension of SciPy’s SLSQP algorithm to a multi-start method has enabled

the inverse modelling analysis used in this work to be performed in a fraction of

the time. Harnessing the use of tensor multiplication reduces the computational

burden of performing tasks individually. This is especially useful in scenarios

where these tasks are computationally intensive, such as matrix inversion, where

MultiSLSQP resulted in a time reduction of 96% for a reasonably simplistic prob-

lem.

9.2.2 VirtualLab

The VirtualLab package has been central to the work carried out in this thesis [43].

It is an extremely powerful and adaptable package which enables automation of

even the most complex workflows. Its parameterised nature means that setting

vast numbers of simulations in advance is easy, while its near perfect scaling

allows this data to be collected in a fraction of the time. Its in-built ML method

enables the generated synthetic data to be used to train surrogate models with

little to no prior knowledge of the algorithms.

The use of containerisation makes its installation simple, regardless of the

operating system or architecture. This has facilitated development of workflows

on local PCs with ‘production runs’ to generate vast volumes of data moved to

supercomputers, with little more effort than syncing a few python scripts. Placing

external software packages into containers not only makes it simple to upgrade

to newer versions or add new ones, it also and avoids any potential conflicts that

may arise between them.

The structure of VirtualLab makes contributing new experiments, methods,

modules, and analysis extremely easy. This has been highlighted by the ease

in which VirtualLab is used in a number of other research projects at Swansea

University and other research facilities, an overview of which are given below.
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Tensile Test

Tensile testing is a standard engineering and materials science experiment to

investigate the mechanical properties of a material [218]. A tensile specimen

with a standardized geometry is subjected to uniaxial loading along its length

until failure. As shown in fig. 9.2, both ends of a specimen are clamped with the

tension created as the two ends are pulled apart. This loading can be applied in

two ways; through a constant force rate, where the strain in the component is

measured, or a constant strain rate, where the force needed to achieve a measured

strain is recorded.

Figure 9.2: Rectangular ‘dog-bone’ specimen used during tensile test

Through this test, the ultimate tensile strength is measured, along with the

reduction in cross-sectional area and maximum elongation. From these measure-

ments key material properties can be deduced, such as its elastic modulus, which

dictates a material resistance to elastic deformation, its yield strength, which

determines when a material deforms plastically, and its tensile strength, which

is the load under which the material will break. It also provides information

relating to the strain-hardening characteristics of a material.

Generally, two different styles of tensile specimens are used; one with a round

cross-sectional area and another with a rectangular cross-sectional area. Fig.

9.2 shows the latter of these, which is commonly referred to as a ‘dog bone’ on

account of its wider end and narrower midsection.

The research undertaken at Swansea University is looking at the effect that
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microscopic defects, such as porosities or inclusions, created during the manu-

facturing of the component has on the mechanical material properties. Prior to

testing, the dog bone specimens undergo computerised tomography (CT) scans

to detect these microscopic defects. From this data, a high fidelity mesh is gen-

erated which accounts for these defects, which can be used in computational

models. This can be thought of as modelling the ‘as manufactured’ component

instead of the ‘as designed’ component (CAD), which results in more accurate

modelling of its behaviour [219].

The impact of these unknown, microscopic defects are compared with larger,

known defects in the component. These known defects come in the form of elliptic

holes included in the component design. Fig. 9.3 shows the stress field of a purely

elastic simulation for 4 CAD-based components subjected to uniaxial force of 100

kN.

The 4 specimens are; one with no defect (fig. 9.3a), one with a circular hole

(fig. 9.3b), one with an elliptic hole (fig. 9.3c) and finally one with a circular

hole off-centre (fig. 9.3d). Unsurprisingly, it’s the specimen with an elliptic hole

which is subjected to the most severe stresses.

(a) Specimen 0 (b) Specimen 1

(c) Specimen 2 (d) Specimen 3

Figure 9.3: Stress field for purely elastic simulation
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Laser Flash Analysis

Laser flash analysis is an experiment used to measurement the thermal properties

of a material. In this experiment, a short laser pulse heats the ‘front’ surface of

a disc-shaped component, with the resulting temperature rise on the opposing

‘bottom’ face measured as a function of time using a detector. An illustration of

this is shown in fig. 9.4a alongside an image of the machine which conducts the

experiment 9.4b.

The data recorded by the detector is used to measure the thermal diffusivity of

a material. The thermal diffusivity, α, is calculated using the empirical correlation

given by eq. 9.1 where L is the thickness of the sample (highlighted in fig. 9.4a)

and t0.5 is the half rise time, which is half of the time needed to reach the peak

temperature on the bottom surface.

α =
0.1388L2

t0.5
(9.1)

(a) Experiment illustra-
tion

(b) LFA machine

Figure 9.4: LFA experiment
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A material’s thermal diffusivity measures the transfer rate of heat between

two points. The faster the temperature rise reaches the bottom face, the higher

the thermal diffusivity of the material. From the thermal diffusivity the thermal

conductivity, k, of a material can be deduced using eq. 9.2, where Cp and ρ are

the specific heat and density of the material, respectively.

k = αCpρ (9.2)

The work carried out at Swansea University using the LFA experiment is

similar to that of the tensile test, but instead investigates the effect of microscopic

defects on the material’s thermal properties. Again VirtualLab has been used to

construct both CAD and image based simulations.

As the component is briefly subjected to a laser pulse, the LFA experiment

is a transient problem and must be modelled as such. The time discretisation

for the simulation is defined in the parameters file, shown in listing 9.1, where

the initial temperature, InitTemp, time step sizes, dt, and the parameter which

decides whether the time discretisation is implicit or explicit Theta are shown.

The makeup of dt specifies that two different sizes of time steps will be used; the

first 50 will calculate the solution every 0.00002 seconds, once they are completed

the next 100 will calculate the solution every 0.0005 seconds. The other attributes

of Sim shown in this listing are used to define material properties and BCs of the

problem.
1 Sim = Namespace ( )

2 Sim . As t e rF i l e = ’ Disc Lin ’

3 Sim .Mesh = ’Mesh1 ’

4

5 Sim . Energy = 5.32468714

6 Sim . LaserT= ’Trim ’

7 Sim . LaserS = ’Gauss ’

8

9 Sim . Mate r i a l s = ’Copper ’

10

11 Sim .HTC = 0

12 Sim .ExtTemp = 20

13

14 Sim . InitTemp = 20

15 Sim . dt = [ ( 0 . 0 0002 , 5 0 , 1 ) , ( 0 . 0005 ,100 ,2 ) ]

16 Sim . Theta = 0 .5

Listing 9.1: Content of Parameter master file for LFA experiment
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Ideally the profile of the last pulse would be uniform, however in practice its

magnitude is greater at the centre. As a result, it is modelled as a 2D Gaussian

profile over the top surface. Fig. 9.5 shows the temperature field calculated by

the CAD-based simulation after 0.001 s, with a uniform laser pulse used for the

simulation shown in fig. 9.5a and a Gaussian profile used for fig. 9.5b

(a) Uniform laser pulse (b) Gaussian laser pulse

Figure 9.5: Temperature profile of CAD based LFA simulation after 0.001s

Irradiation Damage

As highlighted in section 4.2.1, during a fusion reaction, a neutron is released to

the plasma, which interacts with the PFCs on the inner wall of the fusion de-

vice. Over time, exposure to neutrons degrades a material, worsening its material

properties in a process known as irradiation damage. This is likely to have a large

effect on the lifespan of many components in a fusion device.

Modelling the effects of irradiation damage is extremely complex since neu-

trons interact with precipitates and dislocation loops in the material makeup, see

fig. 9.6. VirtualLab is used as part of a EUROfusion fellowship to predict the

long term material properties of component’s subjected to neutron damage. This

requires using a number of external modules, including OpenMC, MoDElib and

Paramak alongside code aster. The workflow for modelling the effects of neutron

damage is shown in fig. 9.7, highlighting that VirtualLab is capable of dealing

with highly complex and specialised cases.
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Figure 9.6: Microscopic features which neutrons interact with.

Figure 9.7: Workflow used for irradiation damage modelling
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9.3 Future Work

9.3.1 Experimental Data

The work presented in chapter 8 required experimentally collected thermocouple

data, which was unfortunately unavailable. While the simulated experimental

data used provided certain benefits in terms of the ability to quantify its accuracy,

this would have been a more powerful demonstration using actual experimental

data. Once suitable experimental data is available, this method could be applied

to it.

9.3.2 Design Optimisation

The framework shown in fig. 9.1 shows the potential of optimising the design

of the component in an automated way. The information gathered from the

surrogate model, such as maximum stresses in the component during various

loading cases, can be fed back to the parameterised design iteratively until an

optimally designed component is produced.

9.3.3 Time-series Forecasting

This work has focused on the steady-state behaviour of components due to a fo-

cus on their ‘in-service’ condition. However, additional knowledge can be gleaned

from the transient data recorded prior to achieving steady state, including devel-

oping capabilities for improved life-cycle assessment of real time feedback control.

Extension of this work to the transient regime would likely require generating

surrogate models with an alternative ML algorithm which is able to cope with

large quantities of sequential data. RNNs shown huge promise in this regard,

having already demonstrated strong results for a variety of different engineering

problems [65]–[68].

9.3.4 Proxy Measurements

As discussed in chapter 1, the use of proxy measurements are common in a wide

variety of experiments, where the property of interest is difficult to measure. The

ability shown in this work in identifying properties of interest using extremely

sparse data for a highly complex, multi-physics problem paves the way for a large

amount of further research.
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This framework could be used for alternative component geometries to those

currently specified for standardised testing of coupons, such as in a tensile test and

LFA. Doing so would provide a baseline for the framework against a standardised

facility. This, however, would be invaluable for investigate advanced manufactur-

ing methods such as additive manufacturing or composite materials, where the

inhomogeneous meso-structure is an integral part of the behaviour. Furthermore,

it enables estimating extremely localised and internal behaviours in component

scale testing, where otherwise only broad observations may be possible due to

experimental limitations.

9.3.5 VirtualLab

The VirtualLab platform is open source and freely available for others to use

and, ideally, contribute to. There is currently a growing body of work from al-

ternative research projects which will need to be integrated for others to benefit

from. The flexibility which VirtualLab offers coupled with its ease of installation

and contribution means that there is huge potential for this platform to be used

for almost any engineering workflow. This has already been highlighted by the

diverse projects and workflows which VirtualLab is already involved with. Ex-

tension of this package for use with efficiently parallelised simulation codes, such

as code aster with MPI, ParaFEM or MOOSE, would enable its use in projects

where the focus is on problems with large numbers of DoFs.
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Appendix A

VirtualLab run files

This appendix includes the VirtualLab run files which are used to perform the

analysis in chapter 6, 7 and 8. These are also included in the VirtualLab docu-

mentation and make up part of the tutorials [43], [44].

1 #!/ usr / b in / env python3

2

3 import r eque s t s

4 import os

5 from types import SimpleNamespace as Namespace

6 from Sc r i p t s .Common. VirtualLab import VLSetup

7

8

9 CoilType = ’ Pancake ’

10 ModelType = ’GPR’ # t h i s can be GPR or MLP

11 CreateModel = True

12 PVAnalysis = True

13

14 # ====================================================================

15 # Setup Vi r tua lLab

16 VirtualLab=VLSetup ( ’HIVE ’ , ’ ML analysis ’ )

17

18 VirtualLab . S e t t i ng s ( Launcher=’ s e qu en t i a l ’ ,NbJobs=1,Mode=’ t ’ )

19

20 # ====================================================================

21 # check data has been crea t ed , i f not download i t

22 DataFi le = ’{} c o i l /PowerVariation . hdf ’ . format ( CoilType )

23 i f not VirtualLab . InPro j e c t ( DataFi le ) :

24 DataFi l eFu l l = ”{}/{}” . format ( VirtualLab . GetProjectDir ( ) , DataFi le )

25 print ( ”Data doesn ’ t ex i s t , so downloading . ” )

26 r = reque s t s . get ( ’ https :// zenodo . org / record /8300663/ f i l e s /PowerVariation . hdf ’ )

27 os . makedirs ( os . path . dirname ( DataFi l eFu l l ) , e x i s t o k=True )

28 with open( DataFi leFul l , ’wb ’ ) as f :

29 f . wr i t e ( r . content )

30

31 # ====================================================================

32 # Create ML model

33 i f ModelType==’MLP’ and CreateModel :

34 # Create t h r e e MLP models w i th d i f f e r e n t a r c h i t e c t u r e s and compare t h e i r per formance

35 main parameters = Namespace ( )

36 var parameters = Namespace ( )

37

38 ML = Namespace ( )

39 ML. F i l e = ( ’NN Models ’ , ’MLP hdf5 ’ )

40 ML. TrainingParameters = { ’ Epochs ’ : 1000 , ’ l r ’ : 0 . 0 5}
41 ML. TrainData = [ DataFile , ’ Features ’ , [ [ ’ Power ’ ] , [ ’ Var ia t ion ’ ] ] , { ’ group ’ : ’ Train ’ } ]

42 ML. Val idat ionData = [ DataFile , ’ Features ’ , [ [ ’ Power ’ ] , [ ’ Var ia t ion ’ ] ] , { ’ group ’ : ’ Test ’ } ] #

data used to monitor f o r o v e r f i t t i n g

43 ML. Seed = 100 # i n i t i a l w e i g h t s o f MLP are randomised so t h i s ensure s r e p r o d u c a b i l i t y
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44 main parameters .ML = ML

45

46 Arch i t e c tu r e s = [ [ 3 2 , 3 2 ] , [ 1 6 , 3 2 , 1 6 ] , [ 8 , 1 6 , 8 , 4 ] ] # the h idden l a y e r s o f t h e MLP

47 ML = Namespace (Name = [ ] , ModelParameters = [ ] )

48 for a r ch i t e c t u r e in Arch i t e c tu r e s :

49 ML. ModelParameters . append ({ ’ Arch i t e c tu re ’ : a r c h i t e c t u r e })

50 a r c h s t r = ’ ’ . j o i n (map( str , a r c h i t e c t u r e ) ) # conve r t a r c h i t e c t u r e to s t r i n g and save

under t h a t name

51 ML.Name . append ( ”PV/{}/MLP/{}” . format ( CoilType , a r c h s t r ) )

52 var parameters .ML = ML

53

54 DA = Namespace ( )

55 DA.Name = ”Analys i s /{}/PowerVariation /MLP Compare” . format ( CoilType ) # r e s u l t s w i l l be

saved to same d i r e c t o r y as b e f o r e

56 DA. F i l e = [ ’ PowerVariation ’ , ’MLP compare ’ ]

57 DA.MLModels = var parameters .ML.Name # use the models d e f i n e d e a r l i e r

58 DA. TestData = [ DataFile , ’ Features ’ , [ [ ’ Power ’ ] , [ ’ Var ia t ion ’ ] ] , { ’ group ’ : ’ Test ’ } ] # unseen

data to ana l y s e per formance

59 main parameters .DA = DA

60

61 VirtualLab . Parameters ( main parameters , var parameters )

62

63 # gene ra t e MLP models

64 VirtualLab .ML( )

65 # ana l y s e per formance o f MLP model

66 VirtualLab .DA()

67

68 e l i f ModelType==’GPR’ and CreateModel :

69 # Create t h r e e GPR models each w i th d i f f e r e n t k e r n e l s and compare t h e i r per formance

70 main parameters = Namespace ( )

71 var parameters = Namespace ( )

72

73 # parameters used to g ene ra t e model

74 ML = Namespace ( )

75 ML. F i l e = ( ’GPR Models ’ , ’GPR hdf5 ’ )

76 ML. TrainingParameters = { ’ Epochs ’ : 1000 , ’ l r ’ : 0 . 0 5}
77 ML. TrainData = [ DataFile , ’ Features ’ , [ [ ’ Power ’ ] , [ ’ Var ia t ion ’ ] ] , { ’ group ’ : ’ Train ’ } ]

78 main parameters .ML = ML

79

80 GPR kernels = [ ’RBF ’ , ’ Matern 1 . 5 ’ , ’ Matern 2 . 5 ’ ]

81 ML = Namespace (Name = [ ] , ModelParameters = [ ] )

82 for ke rne l in GPR kernels :

83 ML. ModelParameters . append ({ ’ k e rne l ’ : k e rne l })

84 ML.Name . append ( ”PV/{}/GPR/{}” . format ( CoilType , ke rne l ) )

85 var parameters .ML = ML

86

87 # parameters used to compare models

88 DA = Namespace ( )

89 DA.Name = ”Analys i s /{}/PowerVariation /GPR Compare” . format ( CoilType )

90 DA. F i l e = [ ’ PowerVariation ’ , ’GPR compare ’ ]

91 DA.MLModels = var parameters .ML.Name # use the models d e f i n e d above

92 DA. TestData = [ DataFile , ’ Features ’ , [ [ ’ Power ’ ] , [ ’ Var ia t ion ’ ] ] , { ’ group ’ : ’ Test ’ } ] # unseen

data to ana l y s e per formance

93 main parameters .DA = DA

94

95 VirtualLab . Parameters ( main parameters , var parameters )

96

97 # gene ra t e GPR models

98 VirtualLab .ML( )

99 # compare accuracy o f t h e t h r e e models

100 VirtualLab .DA()

101

102 e l i f CreateModel :

103 raise ValueError ( ”Unknown ModelType ’{} ’ . t h i s must e i t h e r be ’GPR’ or ’MLP” . format (

ModelType ) )

104

105 # ====================================================================

106 # cr e a t e per formance enve l op e o f power v e r s u s v a r i a t i o n

107 i f PVAnalysis :

108 i f ModelType==’GPR’ :

109 DA = Namespace ( )

110 DA.Name = ”Analys i s /{}/PowerVariation /GPR Analysis” . format ( CoilType )

111 DA. F i l e = [ ’ PowerVariation ’ , ’ Insight GPR ’ ]
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112 DA.MLModel = ”PV/{}/GPR/Matern 2 . 5 ” . format ( CoilType ) # chose a s i n g l e model t o ga in

i n s i g h t from

113 main parameters = Namespace (DA=DA)

114

115 e l i f ModelType==’MLP’ :

116 DA = Namespace ( )

117 DA.Name = ”Analys i s /{}/PowerVariation /MLP Analysis” . format ( CoilType )

118 DA. F i l e = [ ’ PowerVariation ’ , ’ Insight MLP ’ ]

119 DA.MLModel = ”PV/{}/MLP/32 32 ” . format ( CoilType ) # chose a s i n g l e model t o ga in

i n s i g h t from

120 main parameters = Namespace (DA=DA)

121

122 VirtualLab . Parameters ( main parameters )

123

124 VirtualLab .DA()

Listing A.1: Run file used to perform coil configuration optimisation
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1 #!/ usr / b in / env python3

2

3 import r eque s t s

4 import os

5 from types import SimpleNamespace as Namespace

6 from Sc r i p t s .Common. VirtualLab import VLSetup

7

8 CoilType=’ Pancake ’

9 PCA Analysis = False

10 ModelType = ’GPR’ # t h i s can be GPR or MLP

11 CreateModel = True

12 Inve r s eAna ly s i s = True

13

14 GUI = True

15

16 # ====================================================================

17 # Setup Vi r tua lLab

18 VirtualLab=VLSetup ( ’HIVE ’ , ’ ML analysis ’ )

19

20 VirtualLab . S e t t i ng s ( Launcher=’ s e qu en t i a l ’ ,NbJobs=1,Mode=’ t ’ )

21

22 # ====================================================================

23 # check data has been c r e a t e d

24 DataFi le = ’{} c o i l /TempNodal . hdf ’ . format ( CoilType )

25 i f not VirtualLab . InPro j e c t ( DataFi le ) :

26 print ( ”Data doesn ’ t ex i s t , so downloading . This may take a whi le ” )

27 # download data

28 DataFi l eFu l l = ”{}/{}” . format ( VirtualLab . GetProjectDir ( ) , DataFi le )

29 r = reque s t s . get ( ’ https :// zenodo . org / record /8300663/ f i l e s /TempNodal . hdf ’ )

30 os . makedirs ( os . path . dirname ( DataFi l eFu l l ) , e x i s t o k=True )

31 with open( DataFi leFul l , ’wb ’ ) as f :

32 f . wr i t e ( r . content )

33 # download mesh

34 r = reque s t s . get ( ’ https :// zenodo . org / record /8300663/ f i l e s /HIVE component .med ’ )

35 os . makedirs ( VirtualLab .Mesh . OutputDir , e x i s t o k=True )

36 with open( ”{}/HIVE component .med” . format ( VirtualLab .Mesh . OutputDir ) , ’wb ’ ) as f :

37 f . wr i t e ( r . content )

38

39 # ====================================================================

40 # c a l c u l a t e r e c o n s t r u c t i o n e r r o r vs t h e number o f p r i n c i p a l components

41 i f PCA Analysis :

42 DA = Namespace ( )

43 DA.Name = ’ Analys i s /{}/ Inve r s eSo lu t i on T /PCA Sens i t iv i ty ’ . format ( CoilType )

44 DA. F i l e = ( ’MLtools ’ , ’ PCA Sens i t iv i ty ’ )

45 DA. TrainData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Train ’ } ]

46 DA. TestData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Test ’ } ]

47

48 main parameters = Namespace (DA=DA)

49

50 VirtualLab . Parameters ( main parameters ,RunDA=PCA Analysis )

51

52 VirtualLab .DA()

53

54 # ====================================================================

55 # Create ML model

56 i f ModelType==’MLP’ and CreateModel :

57 # Create MLP model

58 main parameters = Namespace ( )

59

60 ML = Namespace ( )

61 ML.Name = ’ Temperature /{}/MLP’ . format ( CoilType )

62 ML. F i l e = ( ’NN Models ’ , ’MLP PCA hdf5 ’ )

63 ML. TrainingParameters = { ’ Epochs ’ : 1000 , ’ l r ’ : 0 . 005}
64 ML. TrainData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Train ’ } ]

65 ML. Val idat ionData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Test ’ } ]

66 ML. ModelParameters = { ’ Arch i t e c tu re ’ : [ 8 , 1 6 , 8 ] }
67 ML. Seed = 100 # i n i t i a l w e i g h t s o f MLP are randomised so t h i s ensure s r e p r o d u c a b i l i t y

68 ML. Metric = { ’ nb components ’ :20}
69 main parameters .ML = ML

70

71 VirtualLab . Parameters ( main parameters )

72

73 # gene ra t e GPR models
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74 VirtualLab .ML( )

75

76 e l i f ModelType==’GPR’ and CreateModel :

77 # Create GPR model

78 main parameters = Namespace ( )

79

80 ML = Namespace ( )

81 ML.Name = ’ Temperature /{}/GPR’ . format ( CoilType )

82 ML. F i l e = ( ’GPR Models ’ , ’GPR PCA hdf5 ’ )

83 ML. TrainingParameters = { ’ Epochs ’ : 1000 , ’ l r ’ : 0 . 0 5}
84 ML. TrainData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Train ’ } ]

85 ML. ModelParameters = { ’ k e rne l ’ : ’ Matern 2 . 5 ’ , ’ min noise ’ : 1 e−8, ’ n o i s e i n i t ’ : 1 e−6}
86 ML. Metric = { ’ nb components ’ :20}
87 main parameters .ML = ML

88

89 VirtualLab . Parameters ( main parameters )

90

91 # gene ra t e GPR models

92 VirtualLab .ML( )

93

94 e l i f CreateModel :

95 raise ValueError ( ”Unknown ModelType ’{} ’ . t h i s must e i t h e r be ’GPR’ or ’MLP” . format (

ModelType ) )

96

97 # ====================================================================

98 # Use model t o perform an a l y s i s

99 i f Inve r s eAna ly s i s :

100 main parameters = Namespace ( )

101

102 DA = Namespace ( )

103 i f ModelType==’GPR’ :

104 DA.Name = ’ Analys i s /{}/ Inve r s eSo lu t i on T /GPR’ . format ( CoilType )

105 DA. F i l e = ( ’ I nve r s eSo lu t i on ’ , ’ AnalysisT GPR ’ )

106 DA.MLModel = ’ Temperature /{}/GPR’ . format ( CoilType )

107 e l i f ModelType==’MLP’ :

108 DA.Name = ’ Analys i s /{}/ Inve r s eSo lu t i on T /MLP’ . format ( CoilType )

109 DA. F i l e = ( ’ I nve r s eSo lu t i on ’ , ’ AnalysisT MLP ’ )

110 DA.MLModel = ’ Temperature /{}/MLP’ . format ( CoilType )

111

112 DA.MeshName = ’HIVE component ’ # name o f t h e mesh used to g ene ra t e t h e a n a l y s i s ( s ee

Da t aCo l l e c t . py )

113 DA. TestData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Test ’ } ]

114 # cr e a t e comparison p l o t s f o r t h e f o l l o w i n g i nd e x e s o f t h e t e s t d a t a s e t . This can be any

number ( s ) from 0 to 299 ( t h e s i z e o f t h e t e s t d a t a s e t )

115 DA. Index = [ 2 ]

116 # so l v e i n v e r s e prob lem f o r r ea ch in g s p e c i f i c t empera ture

117 DA. DesiredTemp = 600

118 DA.PVGUI = GUI

119 main parameters .DA = DA

120

121 VirtualLab . Parameters ( main parameters )

122

123 VirtualLab .DA()

Listing A.2: Run file used to identify temperature related invserse solutions
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1 #!/ usr / b in / env python3

2 ’ ’ ’

3 This s c r i p t demons t ra t e s how the data c o l l e c t e d in Da taCo l l e c t . py

4 can be used to c r e a t e 3D su r r o g a t e models o f t h e t empera ture and

5 Von Mises s t r e s s f i e l d s , which can be used to i d e n t i f y i n v e r s e s o l u t i o n s .

6

7 This s c r i p t assumes t h a t t empera ture s u r r o g a t e models have a l r e a d y been genera ted , s ee

8 I n v e r s e So l u t i o n T . py f o r more d e t a i l s on t h i s .

9 ’ ’ ’

10

11 import r eque s t s

12 import os

13 from types import SimpleNamespace as Namespace

14 from Sc r i p t s .Common. VirtualLab import VLSetup

15

16

17 CoilType=’ Pancake ’

18 PCA Analysis = False

19 ModelType = ’GPR’ # t h i s can be GPR or MLP

20 CreateModel = True

21 Inve r s eAna ly s i s = True

22

23 GUI = True

24

25 # ====================================================================

26 # Setup Vi r tua lLab

27 VirtualLab=VLSetup ( ’HIVE ’ , ’ ML analysis ’ )

28

29 VirtualLab . S e t t i ng s ( Launcher=’ s e qu en t i a l ’ ,NbJobs=1,Mode=’ t ’ )

30

31 # ====================================================================

32 # check data has been c r e a t e d

33 DataFi le = ’{} c o i l /VMNodal . hdf ’ . format ( CoilType )

34 i f not VirtualLab . InPro j e c t ( DataFi le ) :

35 print ( ”Data doesn ’ t ex i s t , so downloading . This may take a whi le ” )

36 # download data

37 DataFi l eFu l l = ”{}/{}” . format ( VirtualLab . GetProjectDir ( ) , DataFi le )

38 r = reque s t s . get ( ’ https :// zenodo . org / record /8300663/ f i l e s /VMNodal . hdf ’ )

39 os . makedirs ( os . path . dirname ( DataFi l eFu l l ) , e x i s t o k=True )

40 with open( DataFi leFul l , ’wb ’ ) as f :

41 f . wr i t e ( r . content )

42

43 # ====================================================================

44 # c a l c u l a t e r e c o n s t r u c t i o n e r r o r vs t h e number o f p r i n c i p a l components

45 i f PCA Analysis :

46 DA = Namespace ( )

47 DA.Name = ’ Analys i s /{}/ InverseSolut ion VM/PCA Sens i t iv i ty ’ . format ( CoilType )

48 DA. F i l e = ( ’MLtools ’ , ’ PCA Sens i t iv i ty ’ )

49 DA. TrainData = [ DataFile , ’ Features ’ , ’ VonMises ’ ,{ ’ group ’ : ’ Train ’ } ]

50 DA. TestData = [ DataFile , ’ Features ’ , ’ VonMises ’ ,{ ’ group ’ : ’ Test ’ } ]

51

52 main parameters = Namespace (DA=DA)

53

54 VirtualLab . Parameters ( main parameters )

55

56 VirtualLab .DA()

57

58 # ====================================================================

59 # Create ML model

60 i f ModelType==’MLP’ and CreateModel :

61 # Create MLP model

62 main parameters = Namespace ( )

63

64 ML = Namespace ( )

65 ML.Name = ’VonMises/{}/MLP’ . format ( CoilType )

66 ML. F i l e = ( ’NN Models ’ , ’MLP PCA hdf5 ’ )

67 ML. TrainingParameters = { ’ Epochs ’ : 1000 , ’ l r ’ : 0 . 005}
68 ML. TrainData = [ DataFile , ’ Features ’ , ’ VonMises ’ ,{ ’ group ’ : ’ Train ’ } ]

69 ML. Val idat ionData = [ DataFile , ’ Features ’ , ’ VonMises ’ ,{ ’ group ’ : ’ Test ’ } ]

70 ML. ModelParameters = { ’ Arch i t e c tu re ’ : [ 8 , 1 6 , 8 ] }
71 ML. Seed = 100 # i n i t i a l w e i g h t s o f MLP are randomised so t h i s ensure s r e p r o d u c a b i l i t y

72 ML. Metric = { ’ nb components ’ :20}
73 main parameters .ML = ML
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74

75 VirtualLab . Parameters ( main parameters )

76

77 # gene ra t e GPR models

78 VirtualLab .ML( )

79

80 e l i f ModelType==’GPR’ and CreateModel :

81 # Create GPR model

82 main parameters = Namespace ( )

83

84 ML = Namespace ( )

85 ML.Name = ’VonMises/{}/GPR’ . format ( CoilType )

86 ML. F i l e = ( ’GPR Models ’ , ’GPR PCA hdf5 ’ )

87 ML. TrainingParameters = { ’ Epochs ’ : 1000 , ’ l r ’ : 0 . 0 5}
88 ML. TrainData = [ DataFile , ’ Features ’ , ’ VonMises ’ ,{ ’ group ’ : ’ Train ’ } ]

89 ML. ModelParameters = { ’ k e rne l ’ : ’ Matern 2 . 5 ’ , ’ min noise ’ : 1 e−8, ’ n o i s e i n i t ’ : 1 e−6}
90 ML. Metric = { ’ nb components ’ :20}
91 main parameters = Namespace (ML=ML)

92

93 VirtualLab . Parameters ( main parameters )

94

95 # gene ra t e GPR models

96 VirtualLab .ML( )

97

98 # ====================================================================

99 # Use models (Von Mises and tempera ture ) to perform an a l y s i s

100 i f Inve r s eAna ly s i s :

101 main parameters = Namespace ( )

102

103 DA = Namespace ( )

104 i f ModelType==’GPR’ :

105 DA.Name = ’ Analys i s /{}/ InverseSolut ion VM/GPR’ . format ( CoilType )

106 DA. F i l e = ( ’ I nve r s eSo lu t i on ’ , ’AnalysisVM GPR ’ )

107 DA.MLModel T = ’ Temperature /{}/GPR’ . format ( CoilType )

108 DA.MLModel VM = ’VonMises/{}/GPR’ . format ( CoilType )

109 e l i f ModelType==’MLP’ :

110 DA.Name = ’ Analys i s /{}/ InverseSolut ion VM/MLP’ . format ( CoilType )

111 DA. F i l e = ( ’ I nve r s eSo lu t i on ’ , ’AnalysisVM MLP ’ )

112 DA.MLModel T = ’ Temperature /{}/MLP’ . format ( CoilType )

113 DA.MLModel VM = ’VonMises/{}/MLP’ . format ( CoilType )

114

115 DA.MeshName = ’HIVE component ’ # name o f t h e mesh used to g ene ra t e t h e a n a l y s i s ( s ee

Da t aCo l l e c t . py )

116 DA. TestData = [ DataFile , ’ Features ’ , ’ VonMises ’ ,{ ’ group ’ : ’ Test ’ } ]

117 # cr e a t e comparison p l o t s f o r t h e f o l l o w i n g i nd e x e s o f t h e t e s t d a t a s e t . This can be any

numbers up to 300 ( t h e s i z e o f t h e t e s t d a t a s e t )

118 DA. Index = [ 2 ]

119 DA. DesiredTemp = 600

120 DA.PVGUI = GUI

121 main parameters .DA = DA

122

123 VirtualLab . Parameters ( main parameters )

124

125 VirtualLab .DA()

Listing A.3: Run file used to identify Von Mises related invserse solutions
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1 #!/ usr / b in / env python3

2 ’ ’ ’

3 This s c r i p t demons t ra t e s how the t empera ture f i e l d s u r r o g a t e

4 model g ene ra t ed in I n v e r s e S o l u t i o n . py can be used to p r e d i c t

5 t h e t empera ture f i e l d t h roughou t t h e component from a hand fu l o f

6 s u r f a c e thermocoup l e measurements .

7 ’ ’ ’

8

9 from types import SimpleNamespace as Namespace

10 from Sc r i p t s .Common. VirtualLab import VLSetup

11

12 CoilType=’ Pancake ’

13 ModelType = ’MLP’ # t h i s can be GPR or MLP

14 Est imateFie ld = True

15 S e n s i t i v i t y = False

16 Optimise = False

17

18 GUI = True

19

20 # ====================================================================

21 # Setup Vi r tua lLab

22 VirtualLab=VLSetup ( ’HIVE ’ , ’ ML analysis ’ )

23

24 VirtualLab . S e t t i ng s ( Launcher=’ s e qu en t i a l ’ ,NbJobs=1,Mode=’ t ’ )

25

26 DataFi le = ’{} c o i l /TempNodal . hdf ’ . format ( CoilType ) # data a l r e a d y downloaded f o r p r e v i o u s

a n a l y s i s

27

28 # ====================================================================

29 # I d e n t i f y t h e f u l l t empera ture f i e l d u s ing on l y t h e the rmocoup l e s data

30 # and c r e a t e p l o t s comparing t h i s w i th t h e s imu l a t i o n

31 i f Est imateFie ld :

32 main parameters = Namespace ( )

33

34 DA = Namespace ( )

35 DA.Name = ’ Analys i s /{}/Thermocouple /{}/ Est imateFie ld ’ . format ( CoilType , ModelType )

36 DA. F i l e = ( ’ Thermocouple ’ , ’ Fu l lF i e ldEs t imate {} ’ . format (ModelType ) )

37 DA.MLModel = ’ Temperature /{}/{} ’ . format ( CoilType , ModelType )

38 DA.MeshName = ’HIVE component ’ # name o f t h e mesh used to g ene ra t e t h e a n a l y s i s ( s ee

Da t aCo l l e c t . py )

39 DA. TestData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Test ’ } ]

40 # cr e a t e comparison p l o t s f o r t h e f o l l o w i n g i nd e x e s o f t h e t e s t d a t a s e t . This can be any

numbers up to 300 ( t h e s i z e o f t h e t e s t d a t a s e t )

41 DA. Index = [ 7 ]

42 # Locat ion o f t he rmocoup l e s

43 DA. ThermocoupleConfig = [ [ ’ Ti leSideA ’ , 0 . 5 , 0 . 5 ] ,

44 [ ’ Ti leFront ’ , 0 . 5 , 0 . 5 ] ,

45 [ ’ Ti leSideB ’ , 0 . 5 , 0 . 5 ] ,

46 [ ’ TileBack ’ , 0 . 5 , 0 . 5 ] ,

47 [ ’ BlockFront ’ , 0 . 5 , 0 . 5 ] ,

48 [ ’ BlockBack ’ , 0 . 5 , 0 . 5 ] ,

49 [ ’ BlockBottom ’ , 0 . 5 , 0 . 5 ] ]

50 DA.PVGUI = GUI

51 main parameters .DA = DA

52

53 VirtualLab . Parameters ( main parameters )

54

55 VirtualLab .DA()

56

57 # ====================================================================

58 # Show the s e n s i t i v i t y o f t h e r e s u l t s t o t h e p lacement o f t h e the rmocoup l e s

59 i f S e n s i t i v i t y :

60 main parameters = Namespace ( )

61

62 DA = Namespace ( )

63 DA.Name = ’ Analys i s /{}/Thermocouple /{}/ S e n s i t i v i t y ’ . format ( CoilType , ModelType )

64 DA. F i l e = ( ’ Thermocouple ’ , ’ S e n s i t i v i t y {} ’ . format (ModelType ) )

65 DA.MLModel = ’ Temperature /{}/{} ’ . format ( CoilType , ModelType )

66 DA.MeshName = ’HIVE component ’ # name o f t h e mesh used to g ene ra t e t h e a n a l y s i s ( s ee

Da t aCo l l e c t . py )

67 DA. TestData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Test ’ } ]

68 DA. CandidateSur faces = [ ’ Ti leSideA ’ , ’ Ti leSideB ’ , ’ Ti leFront ’ , ’ TileBack ’ , ’ BlockFront ’ , ’

BlockBack ’ , ’ BlockBottom ’ ]
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69 DA. NbThermocouples = 4

70 DA. NbConfig = 5 # number o f random combina t ions o f thermocoup le p lacement s to t e s t

71 DA.PVGUI = GUI

72 main parameters .DA = DA

73

74 VirtualLab . Parameters ( main parameters )

75

76 VirtualLab .DA()

77

78 # ====================================================================

79 # Optimise t h e l o c a t i o n o f t h e the rmocoup l e s

80 i f Optimise :

81 NbThermocouple = 4

82

83 main parameters = Namespace ( )

84

85 DA = Namespace ( )

86 DA.Name = ’ Analys i s /{}/Thermocouple /{}/Optimise {} ’ . format ( CoilType , ModelType ,

NbThermocouple )

87 DA. F i l e = ( ’ Thermocouple ’ , ’ Optimise {} ’ . format (ModelType ) )

88 DA.MLModel = ’ Temperature /{}/{} ’ . format ( CoilType , ModelType )

89 DA.MeshName = ’HIVE component ’ # name o f t h e mesh used to g ene ra t e t h e a n a l y s i s ( s ee

Da t aCo l l e c t . py )

90 DA. TestData = [ DataFile , ’ Features ’ , ’ Temperature ’ ,{ ’ group ’ : ’ Test ’ } ]

91 DA. CandidateSur faces = [ ’ Ti leSideA ’ , ’ Ti leSideB ’ , ’ Ti leFront ’ , ’ TileBack ’ , ’ BlockFront ’ , ’

BlockBack ’ , ’ BlockBottom ’ ]

92 DA. NbThermocouples = NbThermocouple

93 DA. GeneticAlgorithm = { ’NbGen ’ : 5 , ’NbPop ’ : 20 , ’NbExample ’ : 5 , ’ seed ’ :100}
94 DA.PVGUI = GUI

95 main parameters .DA = DA

96

97 VirtualLab . Parameters ( main parameters )

98

99 VirtualLab .DA()

Listing A.4: Run file used to estimate full temperature and stress field using

thermocouple data and optimise their location
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