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1 Introduction

After the formulation of Maldacena’s conjecture [1] and the refinements in [2, 3], it became a
natural project to extend the idea to Quantum Field Theories [QFTs] that are phenomeno-
logically more appealing than N = 4 Super Yang-Mills. For example, Conformal Field
Theories [CFTs] and QFTs with minimal or no-SUSY, to study the geometric realisation
of phenomena like confinement, symmetry breaking, presence of condensates, etc. Various
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works lead the way on this project: precursors were [4–6], followed by [7–9] and others. The
line of research represented by the papers [10–15] (see [16] for a summary), gave a very
satisfactory geometric understanding of various non-perturbative aspects of a two node quiver
field theory with N = 1 SUSY. A different line of work based on wrapped branes [5, 17–27]
gave a complementary view on the same non-perturbative aspects (see [28–30] for pedagogical
reviews of this line of work). Satisfactorily, strong-coupling effects (for example, confinement,
symmetry breaking, etc) have the same geometric realisation in both lines of work. The last
two lines of research were joined beautifully in the works [31–34], connecting both approaches.

A natural improvement on the previous lines of work (involving only adjoint or bifun-
damental fields) was the inclusion of fields transforming in the fundamental representation
of the gauge group. This was achieved first in the probe approximation, which included
“flavour branes” probing the geometry (not backreacting, a sort of ‘quenched’ approximation).
See [35–40] for some representative papers and a review. This was later improved by including
the backreaction of these sources. The flavour branes were ‘smeared’ in order to solve BPS
ordinary differential equations rather than BPS PDEs. See for example [41–49].

A feature afflicting these models is the following: whenever the high energy behaviour
of the QFT is field theoretical and represented by a deformed 4d CFT, the IR part of the
holographic dual background is singular. This is the case for the models in [7–9] and the
more modern installments [50–52] (finite temperature alleviates the IR issue). On the other
hand, the models with a smooth IR-part of the geometry have a UV regime that is typically
not field theoretical, in the sense that the space is not asymptotically AdS.

Let us now focus on the contents of this paper, that attempts to partially remedy some
of these unwelcomed features.

1.1 General idea of this paper

As anticipated, we attempt to address the undesirable feature mentioned above. With this in
mind, we consider a five dimensional quiver field theory. The QFT preserves eight Poincare
supersymmetries and is balanced. The high energy dynamics leads to a strongly coupled
conformal field theory. Holographically, the description of the five-dimensional fixed point
is given in [53–56].

We then compactify the family of 5d SCFTs on a circle, giving anisotropic VEVs to Tµν

and a global symmetry current. An RG-flow ensues that ends in a four dimensional QFT with
no-SUSY. The holographic dual for this flow across dimensions is in the framework (similar,
but not identical) of solutions recently studied by Anabalón and Ross [57]. A precursor to
these backgrounds can be found in [58] and further elaborations and applications found in
the papers [59–61]. We study holographically various aspects of the family of QFTs. The
contents of this paper are distributed as follows.

In section 2, we present a new family of Type IIB supergravity backgrounds, which
serves as the basis for our study. The main characteristic is that it is smooth everywhere,
except at the position of localised D7 brane sources (flavour branes). We calculate Page
charges, finding that we are working with an array of D5-NS5 and D7 branes (as in the
typical Hanany-Witten [62] set up for five dimensional field theories). The number of branes
present translates, as we discuss below, into the dual linear quiver being balanced.
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In section 3 we present a proposal for the dual QFT. As anticipated, the far UV is
described by a five dimensional family of balanced linear quiver SCFTs. This is compactified
on a circle and deformed by an anisotropic VEV for Tµν and for a global symmetry current,
breaking SUSY. We study aspects of the low energy QFT using holography. Among these:
a monotonic quantity associated with the number of degrees of freedom (we refer to it as
flow-central charge). This quantity indicates the presence of a 4d IR gapped system that
is UV completed by a 5d SCFT.

We also study the behaviour of Wilson loops, that start behaving as in a CFT for small
separation of the non-dynamical quarks, and then this gives place to a confining behaviour.
By finding a suitable QCD string configuration, we make the point that the presence of
localised sources (D7 flavour branes) gives the possibility of screening. The Entanglement
Entropy on a rectangular strip is computed. We relate this quantity with the free energy
of the 5d SCFT, and we study the contribution of the RG-flow to it.

We also propose a way to calculate the Holographic Complexity for these types of flows
across dimensions, away from SCFTs (in the C-V proposal [63]). We find the complexity
to be related to the free energy of the 5d SCFT and have contributions from the flow away
from the fixed point.

Finally, we compute the masses of spin-two excitations on the four dimensional Minkowski
part of the space. The spectrum is of positive masses, giving some evidence that our non-
SUSY QFT is actually stable.

We conclude in section 4. We also give some possible ideas for further study that should
be nice to understand. We have written detailed appendices explaining the calculations
and various technical aspects. We hope these might be useful to colleagues wishing to
work on these themes.

2 The supergravity background

In this section, we describe the new family of supergravity backgrounds studied in this paper
and the associated brane charges. We refer the reader to appendix A for detailed derivations.

The background is parameterised in terms of the coordinates (t, x1, x2, x3, r, ϕ, θ, φ, σ, η),
parameters (c, g̃, µ), functions H(r), f(r), seven functions fi(r, σ, η) and a function V (σ, η).
Setting α′ = gs = 1, we have

ds2
st = f1

[
2g̃2

9 H1/2(r)r2 dx⃗1,3+ 2g̃2

9
H1/2(r)
f(r) dr2+ 2g̃2

9 H(r)−3/2 f(r)dϕ2

+f2
(
dθ2+sinθ2(dφ−A(3)

1 )2
)

+f3
(
dσ2+dη2

)]
(2.1)

f(r) =− µ

r3 + 2
9 g̃

2 r2H(r)2 , H(r) = 1− c2

r3 , A
(3)
1 =A

(3)
1 (r)dϕ=

√
2µ
c

(1− 1
H(r))dϕ,

F
(3)
2 = dA

(3)
1 =

√
2µ
c

H ′(r)
H(r)2dr∧dϕ, C0 = f7, e−2Φ = f6, F5 = 4(G5+∗10G5),

B2 = f4Vol(S̃2)+ 2
9η cosθF (3)

2 , C2 = f5Vol(S̃2)+4∂σ(σV )cosθF (3)
2 .

Vol(S̃2) = sinθdθ∧
(
dφ+A(3)

1 (r)dϕ
)
.
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The physical significance of the parameters is described below. The functions fi(r, σ, η) are:

f1 = 3π
2X2

(
σ2 + 3X4σ∂σV

∂2
ηV

)1/2

, f2 =
X2∂σV ∂

2
ηV

3Λ , f3 =
X2∂2

ηV

3σ∂σV
(2.2)

f6 = 12
3X4(σ2∂σV )(∂2

ηV )(
3X4∂σV + σ∂2

ηV
)2 Λ, f7 = 2

(
∂ηV +

3X4σ∂σV ∂
2
σηV

3X4∂σV + σ∂2
ηV

)
,

f4 = π

2

(
η −

σ∂σV ∂
2
σηV

Λ

)
, f5 = π

2

V −
σ∂σV

(
∂ηV ∂

2
σηV − 3X4∂2

ηV ∂σV
)

Λ

 ,
Λ = 3X4∂2

ηV ∂σV + σ

[(
∂2

ησV
)2

+
(
∂2

ηV
)2
]
, X(r) = 1

H(r)1/4 , V = V (σ, η),

G5 is a differential form defined as

G5 = −4g̃2√2µ
27c r4H ′(r)f1(r, σ, η) dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ d

(
cos θσ2∂σV

)
. (2.3)

The sphere S̃2 is fibered over the ϕ-coordinate. The 2d metric in the (θ, φ) subspace reads

ds2
S̃2 = dθ2 + sin2 θ

(
dφ−A

(3)
1

)2
(2.4)

The circle parametrised by the angle ϕ shrinks smoothly at r = r∗ if we choose its
periodicity to be

ϕ ∼ ϕ+ Lϕ, Lϕ =
8π
(
9r∗5)2 (1 − c2

r∗3

)2

(−8g̃2c4 + 4g̃2r∗6 + 4g̃2c2r∗3 + 27r∗µ)2 ≡ 2π
(2H(r∗)
f ′(r∗)

)2
. (2.5)

The Ricci scalar is bounded for all the range of the radial coordinate [r∗,∞).
In the limit r → ∞, the function H(r) ∼ 1, hence F (3)

2 (r → ∞) ∼ 0. We impose that
A

(3)
1 (r) = 0 at the end of space r = r∗ by performing a large gauge transformation

A
(3)
1 =

√
2µ
c

(
1 − 1

H(r) − 1 + 1
H(r∗)

)
dϕ =

√
2µ
c

(
− 1
H(r) + 1

H(r∗)

)
dϕ (2.6)

Of course, F (3)
2 remains unaltered. Note that as r → ∞ the space approaches AdS6 ×

S̃2(θ, φ) × Σ2(σ, η).
After this gauge transformation, one can calculate the magnetic flux, that is related

to the non-trivial holonomy of the gauge field

Φ = −
∮
A

(3)
ϕ (r = ∞) dϕ = −1

2

∫
F (3)

µνdx
µ ∧ dxν =

√
2µ
c

( 1
H(r∗) − 1

)
Lϕ. (2.7)

Hence, the solution is described by two parameters; µ, c or Lϕ,Φ, the latter being more
natural parametrization from the boundary perspective.1

The two real coordinates, (σ, η) parametrise a two dimensional Riemann surface Σ. To
satisfy the type IIB equations of motion, the ‘potential function’ V (σ, η) should solve a

1Note that there may be more than one background solution for a fixed periodicity Lϕ and a magnetic flux
Φ choice. Therefore choosing a pair of values for the pair Lϕ, Φ in the boundary may not fix a unique µ, c value
in the bulk, leading to different branches of the background solutions. Here we are investigating one of them.

– 4 –



J
H
E
P
0
3
(
2
0
2
4
)
1
6
0

Laplace-like differential equation with appropriate boundary conditions. The differential
equations reads,

∂σ

(
σ2∂σV

)
+ σ2∂2

ηV = 0 . (2.8)

To properly set the Laplace problem, it is convenient to define

V (σ, η) = V̂ (σ, η)
σ

. (2.9)

In terms of V̂ (σ, η) and the initial value function, a density of charge named R(η), the
Laplace problem reads,

∂2
σV̂ + ∂2

η V̂ = 0,

V̂ (σ → ±∞, η) = 0, V̂ (σ, η = 0) = V̂ (σ, η = P ) = 0.

lim
ϵ→0

(
∂σV̂ (σ = +ϵ, η) − ∂σV̂ (σ = −ϵ, η)

)
= R(η). (2.10)

All fields and warping factors depend on the potential V (σ, η) = V̂ (σ,η)
σ with support on

the two-dimensional internal space. It can be shown that with eq. (2.8), all the equations
of motion of the background in eq. (2.1) are satisfied. In appendix A.4, we check the
supersymmetry variations and show that the background is not preserving SUSY. The
stability of the solution should be studied and we leave this for the future.

The configuration of eq. (2.1) describes an infinite family of asymptotically (r → ∞) AdS6
backgrounds in Type IIB. The family is labelled by the function V (σ, η) solving eq. (2.8). At
high energies (for r → ∞), the dual field theory develops a five dimensional fixed point.

The potential function with appropriate boundary conditions, a solution to eq. (2.10),
can be written in a Fourier expansion, as explained in [54]

V (σ,η) = V̂ (σ,η)
σ

, V̂ (σ,η) =
∞∑

k=1
ak sin

(
kπ

P
η

)
e−

kπ
P

|σ|, ak = 1
πk

∫ P

0
R(η)sin

(
kπ

P
η

)
dη.

(2.11)
As we discuss below, the quantisation of Page charges forces the ‘density of charge’ or ‘Rank
function’ to be a convex polygonal,

R(η) =


N1η 0 ≤ η ≤ 1
Nl + (Nl+1 −Nl)(η − l) l ≤ η ≤ l + 1, l := 1, . . . , P − 2
NP−1(P − η) (P − 1) ≤ η ≤ P.

(2.12)

Note that the variable η is bounded in the interval [0, P ] and σ ranges over the real
axis (−∞,∞).

We now study the behaviour of this family of solutions close to special points in the
geometry of the internal space.

2.1 Behaviour at special points

We investigate the behaviour of the metric and the dilaton as we approach special points.
Specially we will focus on the points η = 0, η = P , σ → ±∞, with r → ∞.

– 5 –
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We start by analysing the metric behaviour on the boundary at η = 0 with identical
results for η = P . We set r → ∞, which implies X(r) → 1. In this boundary, f1 and
f3 are finite. Explicitly,

f2
1 (r → ∞, σ, 0) = 9π2

4

∑∞
k=1

πk
P ak

((
πkσ
P

)2
+ 3|σ|πkσ

P + 3
)
e−

πk|σ|
P

∑∞
k=1 ak

(
πk
P

)3
e−

πk|σ|
P

,

f3(r → ∞, σ, 0) = 1
3

∑∞
k=1 ak

(
πk
P

)3
e−

πk|σ|
P∑∞

k=1 ak

((
πk
P

)2
|σ| + πk

P

)
e−

πk|σ|
P

,

while f2 → η2f3(+∞, σ, 0). Using these results at these boundaries, the metric is

η→ 0 ds2
10 = f1(+∞,σ,0)

(
ds2(AdS6)+f3(+∞,σ,0)(η2ds2(S̃2)+dη2+dσ2)

)
,

η→P ds2
10 = f1(+∞,σ,P )

(
ds2(AdS6)+f3(+∞,σ,P )((η−P )2ds2(S̃2)+dη2+dσ2)

)
.

(2.13)

In the limit r → ∞, A(3)
1 →

√
2µ

cH(r∗)dϕ, hence the fibration of S̃2 on AdS6 is trivial.
The metric is regular in these two limits as it is given by a warped product AdS6 × R4

with generally non-singular warpings. The regularity of the dilaton, being finite, confirms
the regularity of the solution at these boundaries.

Now we consider the limit σ → ±∞, r → ∞. Using eq. (2.11), the leading contribution
to the potential V̂ = σV comes from the mode with k = 1. The asymptotic expansions
needed to study the space-time are,

σV (σ, η) ∼ ∂2
η(σV ) ∼ sin

(
π

P
η

)
e−

π
P
|σ| , σ2∂σV ∼ |σ| sin

(
π

P
η

)
e−

π
P
|σ| , Λ ∼ σ−1e−

2π
P

|σ| .

(2.14)
Making use of these relations and up to constant factors, one has

σ → ±∞ ds2 = |σ|ds2(AdS6) + sin2
(
π

P
η

)
ds2(S2) + dη2 + dσ2. (2.15)

With a similar analysis, the dilaton reads

σ → ∞ e−Φ ∼ e−
π
P
|σ|√

|σ|
. (2.16)

By the change of coordinates |σ| → − log z with z positive and small, the metric and the
dilaton take the form of a (p, q)-five-brane in σ → ±∞, as described in [53].

The behaviour of this family of 6d backgrounds at σ = 0 is characterised by the presence
of singularities in the fluxes, dilaton and metric. We calculate the conserved Page charges
to study these behaviours. As we discuss below, thanks to constraints we imposed on the
Rank function R(η)–that is that the density of charge is a convex polygonal as given in
eq. (2.12), the quantisation conditions for charges are satisfied.

– 6 –
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2.2 Page charges

In this section, we analyse the conserved and quantised Page charges in the background of
eq. (2.1). Below, we find that the restriction on the function R(η) in eq. (2.12) to be a convex,
piece-wise linear function implies the quantisation of the charges.

In our conventions, the volume element of the sphere is Vol(S̃2) = sin θdθ ∧ dφ −
sin θA(3)

1 (r)dθ ∧ dϕ, hence the field strengths read

H3 = dB2 = d
[
f4Vol(S̃2)+ 2

9η cosθF (3)
2
]
= (∂σf4dσ+∂ηf4dη)∧Vol(S̃2)+· · · , (2.17)

F̂1 =F1 = dC0 = ∂σf7dσ+∂ηf7dη+∂rf7dr,

F̂3 =F3−B2∧F1 = d(C2−C0B2) = [∂σ(f5−f7f4)+∂η(f5−f7f4)]∧Vol(S̃2)+· · · .

We have used the definition of the Page fluxes F̂ = F ∧ e−B2 , and we have only kept terms
in the expressions that are relevant for our calculation of the charges.

Setting α′ = gs = 1 we have,

QDp,P age = 1
(2π)7−p

∫
Σ8−p

F̂8−p.

This implies,

QNS5 = 1
4π2

∫
M3

H3, QD7 =
∫

Σ1
F̂1, QD5 = 1

4π2

∫
Σ3
F̂3. (2.18)

The cycles M3,Σ1,Σ3 are defined as,

M3 = [η, S2],with σ → ±∞, r → ∞, Σ1 = [η],with σ = 0 , r → ∞,

Σ3 = [σ, S2],with η = fixed, r → ∞.

We allow the possibility of a large gauge transformation B2 → B2 +∆dΩ2. This does not alter
the charge of NS5 or the D7 brane charge, but it has an effect on the charge of D5 branes.

On the other hand, the field strength F̂5 = F5 − B2 ∧ F3 + 1
2B2 ∧ B2 ∧ F1 does not

induce quantised D3 brane charges as all possible five-cycles are non-compact. Let us analyse
the three possible quantised charges.

NS-5 branes. Calculating explicitly the NS five branes charge, we have

πQNS5 = 1
4π

∫
M3

H3 =
∫
dη∂ηf4(r → ∞, σ → ±∞, η) = f4(∞,±∞, P ) − f4(∞,±∞, 0).

(2.19)
Using the expressions in eqs. (C.5)–(C.6), we find that the number of NS-five branes is

QNS5 = P. (2.20)

Note that both the contribution of the NS-five branes coming from σ = +∞ and σ = −∞
are included. This indicates that P NS-five branes exist in the background.

We could consider another cycle

M ′
3 = [η, θ, ϕ],with r → ∞, σ → ±∞, ,

– 7 –
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with the NS five brane charge,

πQ′
NS5 = 1

4π

∫
M ′

3

H3 = −
∫
dηA

(3)
1 (r = ∞)∂ηf4(r → ∞, σ → ±∞, η)

= −A(3)
1 (r = ∞) (f4(∞,±∞, P ) − f4(∞,±∞, 0)) ,

Q′
NS5 = −A(3)

1 (r = ∞)P. (2.21)

To have this charge quantised, we must quantise the c-parameter appearing in eq. (2.1)—see
eq. (2.6). Notice that the cycle M ′

3 is not topologically S3 but S2 × S1. Now we check
the D7 brane charge.

D7 branes. For the charge of D7 branes, we have,

QD7 =
∫

Σ1
F̂1 =

∫ P

0
dη∂ηf7(∞, 0, η) = f7(∞, 0, P ) − f7(∞, 0, 0). (2.22)

By using the identity in eq. (C.9), we have

QD7 =
(
R′(0) −R′(P )

)
. (2.23)

In the first interval 0 ≤ η ≤ 1 we have R = N1η and in the last interval P − 1 ≤ η ≤ P we
have R = NP−1(P − η), as a result of integer slopes. The number of D7 branes reads

QD7 = (N1 +NP−1). (2.24)

D5 branes. We perform a large gauge transformation on B2 → B2 + ∆Vol(S2). Here
Vol(S2) = sin θdθ ∧ dφ which is well-defined volume element of a sphere S2 in r → ∞ of
our metric. The charge of D5 branes is

πQD5 = 1
4π

∫
Σ3
F3 − (B2 + ∆Vol(S2)) ∧ F1 =

∫ ∞

−∞
dσ∂σ [f5 − f7(f4 + ∆)] =

=
∫ −ϵ

−∞
∂σ[f5 − f7(f4 + ∆)] +

∫ ∞

ϵ
∂σ[f5 − f7(f4 + ∆)]. (2.25)

The quantity f5 − f7(f4 + ∆) needs to be evaluated at σ → ±∞ and σ = ±ϵ then take ϵ→ 0.
The details of calculations are given in eqs. (C.10)–(C.11). The combination f5 − f7(f4 + ∆)
vanishes at σ → ±∞. Hence we only need to calculate

πQD5 = f5 − f7(f4 + ∆)
]−ϵ

ϵ
(2.26)

evaluated at some fixed value of the η-coordinate and r → ∞. Using the expressions in
eqs. (C.9) and (C.11) we find

QD5 = R(η) −R′(η) (η − ∆) . (2.27)

Remind that in each interval, the function R(η) in eq. (2.12) is linear, with integer intercept
and slope, hence QD5 is an integer. In fact, choosing an interval-dependent large gauge
transformation ∆ = k, in the [k, k + 1] interval eq. (2.27) gives

QD5 = Nk. (2.28)

– 8 –
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We interpret this by relating the node in the quiver with gauge group SU(Nk) with the
interval [k, k + 1] of the η-coordinate.

Similar to the discussion in the NS5 charge calculation, one can consider another cycle

Σ′
3 = [σ, θ, ϕ],with η = fixed, r → ∞ ,

with the D5 branes charge,

πQ′
D5 = 1

4π

∫
Σ′

3

F3 − (B2 + ∆Vol(S2)) ∧ F1 = −
∫ ∞

−∞
dσA

(3)
1 (r = ∞)∂σ [f5 − f7(f4 + ∆)] =

= −A(3)
1 (r = ∞) (f5 − f7(f4 + ∆))

]−ϵ

ϵ

Q′
D5 = −A(3)

1 (r = ∞)Nk (2.29)

As above, in order to have this charge quantised charge, one must impose a quantization
condition on the c-parameter in eq. (2.1)—see also eq. (2.6). The cycle Σ′

3 is not topologically
S3 but S2 × S1.

To summarise, in this background, the total number of the branes in the system is given by

QNS5 =P (2.30)

QD7[k,k+1] =R′′(k) = (2Nk−Nk+1−Nk−1), QD7,total = (N1+NP−1) =
∫ P

0
R′′(η)dη,

QD5[k,k+1] =R(η)−R′(η)(η−∆) =Nk , QD5,total =
∫ P

0
R dη.

We will now discuss the associated QFTs. With the presence of branes in our configuration,
specifically, D7 sources, for our background to be trustable, we must consider large values
of P . This ensures that the D7 flavour branes (generating singularities in the background)
are separated enough. In other words, the backgrounds in eq. (2.1) are dual to field theories
that in the UV consist of long linear quivers with sparse flavour groups.

3 Dual field theories and observables

In this section, we discuss the field theories dual to the family of type IIB backgrounds
presented in section 2.

The procedure to determine the holographic dual unfolds as follows. For large values of the
radial coordinate, r → ∞, the backgrounds asymptote to AdS6 as the field X(r → ∞) ∼ 1, the
field A

(3)
1 (r → ∞) ≈ 2√µ

cH(r∗)dϕ, that is a pure gauge field-see eq. (2.6), and F
(3)
2 (r → ∞) ∼ 0.

Due to the presence of fluxes and a non-trivial S2 fibration over the ϕ-coordinate, the AdS6
isometries are altered as we move inside the bulk, towards r∗. This has some resemblance
with the twisted compactifications described in [55, 56] (see also [64]). In the cases studied
in [55, 56], an infinite family of 5d SCFTs, characterized by functions V (σ, η) that satisfy a
Laplace equation, are compactified on a curved manifold. Twisted compactifications were
initially introduced by Witten and comprehensively reviewed in [65]. For studies in different
contexts and details across numerous examples, the reader is referred to [18–27, 66, 67]. In
the present case, the compactification on S1

ϕ does not lead to the preservation of SUSY, as

– 9 –
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Figure 1. A linear quiver. The balancing condition implies Fi = 2Ni −Ni−1 −Ni+1.

massless spinors are not supported in our background (See appendix A.4 for more details).
In this sense, the solution in eq. (2.1) is not a twisted compactification. Also, the manifold
on which we compactify, S1

ϕ, is not curved.
In the present context, we see our backgrounds as providing a holographic representation

of the compactification of five-dimensional QFTs on a circle with a Wilson line added-
represented holographically by the A(3)

1 -fibre in eq. (2.6). The type of backgrounds we work
with belong to a class of recently studied solutions by Anabalón and Ross in [57]. A precursor
to these backgrounds can be found in [58] and further elaborations and applications found
in the papers [59–61].

These five-dimensional linear quivers approach a conformal fixed point at high energies.
The UV-SCFT is deformed by introducing operators that describe the compactification.

In addition, a QFT Wilson line, holographically implemented by the field A(3)
1 in eq. (2.6),

is switched on in the QFT. The insight provided by our geometries in eqs. (2.1)–(2.2) is that
at lower energies relative to the finite size of the compact space S1

ϕ, the field theories undergo
a transition to non-conformal field theories in (3 + 1) dimensions.

The five dimensional CFTs that we compactify describe the strongly coupled dynamics
(at high energies) of linear (balanced) quiver field theories, as those in figure 1. The function
V (σ, η) is uniquely determined by the numbers N1, N2, . . . , NP and F1, . . . , FP . In fact, these
numbers determine the function R(η), which using eq. (2.11) determines V (σ, η).

These UV conformal points are deformed by relevant operators. One can read the
dimension of these operators from the near-AdS6 expansion of the gauged supergravity metric

— see appendix A for the details of such six dimensional system and appendix B for details
of the near boundary analysis.

The parameters µ, c control the subleading modes of the metric, scalar field X and
the gauge field in the asymptotic expansions. Hence, they are interpreted as VEVs of
the corresponding dual operators on the field theory side. The asymptotic expansions are
presented in detail in the appendix B. The gauge field A

(3)
1 introduces a VEV for a global

symmetry current in the dual theory. The field X leads to the VEV of an operator of
dimension three. The VEVs are,

⟨J⟩ = −3c√µ, ⟨OX⟩ = c2

4 , (3.1)

respectively (we have set g̃ =
√

9
2 in this section). The field A

(3)
1 couples to a background

global symmetry current in the boundary. This can be interpreted as a background Wilson

– 10 –
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Figure 2. Structure of the 5d SCFTs under RG flow.

loop insertion in the QFT. The VEV for the components of the boundary stress tensor are,

⟨Ttt⟩ = −µ, ⟨Txixi⟩ = µ, ⟨Tϕϕ⟩ = 4µ. (3.2)

Note that the energy density of the solution is negative in the case of positive µ. The VEVs
in the compact ϕ-direction and the other flat xi-directions are different, hence the insertion
is anisotropic. These relevant operators trigger an RG flow, which ends in a set of gapped
4d QFTs dual to the backgrounds at hand. In figure 2, we depict the field theory structure
described here under the RG flow.

In the next sections we calculate various observable quantities of the QFT. Starting with
a quantity called holographic central charge in section 3.1. The holographic central charge is
defined to measure the number of degrees of freedom (or the Free Energy) of these strongly
coupled lower dimensional QFTs. As we find below, the result is described in terms of a
function of the energy scale and transcendental functions of the parameters in the quiver,
revealing the non-perturbative character of the QFTs.

3.1 The holographic central charge

In this section, we calculate the holographic central charge, a quantity that gives a measure
of the number of degrees of freedom (number of states) along the flow. Following [68, 69],
we start defining the quantity at conformal points and explicitly compute it in a couple of
examples of our type IIB family of geometries. This contains information about the free
energy or the number of degrees of freedom in the strongly coupled 5d CFT.

After studying the conformal UV we present the central charge along the flow, originally
defined in [68]. Being applicable to geometries describing flows, its main characteristic is
that it is constant at both ends of the flow.

– 11 –
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3.1.1 The holographic central charge at fixed points (r → ∞)

We briefly summarise the holographic central charge formalism. Consider a (d+1) dimensional
QFT dual to a background, with metric and dilaton of the form,

ds2 = α(r, θ⃗)
(
dx2

1,d + β(r)dr2
)

+ gij(r, θ⃗)dθidθj , Φ(r, θ⃗). (3.3)

One calculates Vint, a weighted version of the internal volume defined below, and with this,
the central charge,

Vint =
∫
dθ⃗
√

det[gij ]e−4Φαd, Ĥ = V 2
int,

chol = dd

GN
βd/2 Ĥ

2d+1
2

(Ĥ ′)d
(3.4)

We follow the above procedure for the UV fixed point solution, the AdS6 backgrounds arising
as r → ∞ which are dual to the far UV limit of our QFTs. We set d = 4 in eqs. (3.3), (3.4)
and choose Poincaré coordinates for AdS6. Comparing with eq. (2.1) in the limit of large-r
and after obvious coordinates redefinitions, we find,

ds2(AdS6) = r2dx2
1,4+ dr2

r2 , α= f1(σ,η)r2, β= 1
r4 , d= 4 (3.5)

gijdθ
idθj = f1f2dS̃

2+f1f3(dσ2+dη2), Vint =N r4, N =
∫
dθ dφ dσ dη sinθ f4

1 f2f3f6.

Using eq. (3.4) and the functions fi(r → ∞, σ, η) and X(r → ∞) = 1 in eq. (2.2), gives
the holographic central charge,

chol = 1
16GN

N , (3.6)

GN = 8π6, N = 33π5
∫ P

0
dη

∫ ∞

−∞
dσ σ3∂σV ∂

2
ηV. (3.7)

Examples. Now, we present two case study examples. In each case we write the rank
function R(η), the Fourier coefficient ak and the Potential V̂ (σ, η) in eq. (2.11). We show the
associated 5d quiver field theory and calculate the holographic central charge.

Let us first consider a gauge theory called T̃N,P . The gauge theory in the IR is described
by the quiver

N 2N 3N . . . PN(P-1)N

The rank function corresponding to this quiver is,

R(η) =

Nη 0 ≤ η ≤ (P − 1)
N(P − 1)(P − η) (P − 1) ≤ η ≤ P.

– 12 –
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The coefficient ak and the potential V̂ (σ, η) defined in eq. (2.11) are,

ak = (−1)k+1NP
3

k3π3 sin
(
kπ

P

)
. (3.8)

V̂ = NP 3

2π3 Re
(
Li3

(
−e−

π
P

(|σ|+i+iη)
)
− Li3

(
−e−

π
P

(|σ|−i+iη)
))

. (3.9)

Using eq. (3.6), the holographic central charge for this theory reads

chol = N2P 6

8π10

(
2ζ(5) − Li5

(
e

2πi
P

)
− Li5

(
e−

2πi
P

))
. (3.10)

This result is trustable for long quivers. Thus, we take the P → ∞ limit and to the leading
order we find,

chol = N2P 4

2π8 ζ(3) +O

( logP
P 2

)
. (3.11)

The presence of ζ(3) indicates the intrinsically non-perturbative character of this quantity
and of the associated 5d SCFT. This result can be reproduced with a Matrix Model approach
as shown in [70–73].

We investigate a second example, known as the +P,N theory. The rank function is given by,

R(η) =


Nη 0 ≤ η ≤ 1
N 1 ≤ η ≤ (P − 1)
N(P − η) (P − 1) ≤ η ≤ P.

This is equivalent to a linear quiver field theory,

N N . . . NN

P-1

The values of the Fourier coefficients ak and potential V̂ (σ, η) are calculated using eq. (2.11).
We find

ak = NP 2

k3π3 sin
(
kπ

P

)(
1+(−1)k+1

)
, (3.12)

V̂ = NP 2

2π3 Re
(
Li3

(
e−

π
P

(|σ|−iη+i)
)
−Li3

(
−e−

π
P

(|σ|−iη+i)
)

+Li3
(
−e−

π
P

(|σ|−iη−i)
)

−Li3
(
e−

π
P

(|σ|−iη−i)
))

.

The holographic central charge is

chol = N2P 4

32π10

(
31ζ(5) + 8Li5

(
−e

2πi
P

)
+ 8Li5

(
−e−

2πi
P

)
− 8Li5

(
e

2πi
P

)
− 8Li5

(
e−

2πi
P

))
.

chol ∼
7N2P 2

4π8 ζ(3) +O

( logP
P 2

)
. (3.13)
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Figure 3. The holographic central charge with parameters c = 1, µ = 1.

Central charge along the flow. Now, let us compute the central charge for the solution
in eq. (2.1), dual to a 5 dimensional CFT compactified on a circle flowing to a gapped QFT.

We set d = 3 in eq. (3.4). Note that this treats the QFT as if it were (3+1) dimensional.
Comparing eqs. (2.1) and (3.3), we find,

α(r) = f1(σ,η)2g̃2

9 H1/2(r)r2, β(r) = 1
r2f(r) , (3.14)

ds2
int = gij(r, θ⃗)dθidθj = f1

[2g̃2

9 H−3/2 f(r)dϕ2+f2

(
dθ2+sinθ2(dφ−A(3)

1 )2
)

+f3
(
dσ2+dη2)] ,

Vint =N r3
√
f(r), N =

∫
dϕ dθ dφ dσ dη (sinθ f4

1 f2f3f6),

Computing N explicitly we find,

N =
(

2g̃2

9

)2

33π5Lϕ

∫ P

0
dη

∫ ∞

−∞
dσ σ3∂σV ∂

2
ηV. (3.15)

This leads to the expression for the holographic central charge,

chol = N
8GN

(f(r)2r3)
(f(r) + r/6f ′(r))3 (3.16)

where GN = 8π6. In figure 3 we have an example plot for the holographic central charge
chol as a function of the radial coordinate.

In the limits of eq. (3.16) for r → ∞ and r → r∗, we find

8GN

N
chol =


243

128g̃2 r +O(1/r) r → ∞
1944r∗7(−12c2g̃2r∗2+12g̃2r∗5−9µ)2

(4c4g̃2−20c2g̃2r∗3+16g̃2r∗6−27r∗µ)3 (r − r∗)2 +O(r − r∗)3 r → r∗

This quantity is divergent at large energies, pointing to a UV completion in terms of a
5-dimensional system. In other words, the infinite tower of Kaluza-Klein modes for the S1

ϕ

– 14 –
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compactification of the QFT are seen by this quantity as a divergent number of degrees
of freedom as we explore higher energies. Also, the central charge in eq. (3.16) vanishes
for f(r∗) = 0, signalling a gapped system.

Note that the factor N defined in eq. (3.15) contains, aside from constants, the same
integral found in the strictly conformal case — see eq. (3.7). The physical intuition behind
this is that the degrees of freedom of the 5d UV conformal theory proportional to the quantity
N in eq. (3.7) get ‘weighted’ by the volume of the compactified manifold. This matches with
the picture advocated in [67]–see also [74]. In other words, the free energy of the system
along the flow has a contribution coming from the flow itself (the r-dependent part of chol)
and a contribution coming from the UV SCFT (the factor N ) in eq. (3.16).

Due to compactification on the circle, we choose d = 3 in eq. (3.16), instead of d = 4.
The central charge at the UV limit is linearly divergent. The four-dimensional observable
does not capture the five-dimensional conformal UV completion.

The divergence of the free energy towards the UV is expected. Massive fields that
originate from the Kaluza-Klein compactification on the circle S1

ϕ generically have a mass
inversely proportional to the size of the circle and are frozen at lower energies. When flowing
towards the UV, these massive fields are excited, the number of these KK modes grows
with energy and causes the divergence of the central charge. A similar phenomena was also
observed and explained in [64, 75].

In the next section, we calculate a different quantity called the ‘flow central charge’,
which remedies this deficiency and is sensitive to the existence of both the IR-gapped QFT
and the UV fixed points. It is also monotonic, so it can be used as a measure of the number
of degrees of freedom (density of states) for the flow across dimensions.

3.2 The flow-central charge: a monotonic c-function for the flow across
dimensions

For the case in which the QFT presents a flow across dimensions (a QFT anisotropic in
space), we consider a more elaborated definition of the central charge. This was presented
in [68]. Consider the metric and dilaton of the form,

ds2 = −α0dt
2 + α1dy

2
1 + α2dy

2
2 + . . .+ αddy

2
d + Πd

i=1(α1 . . . αd)
1
d b(r)dr2+

gij(dθi −Ai
1)(dθj −Aj

1), Φ(r, θ⃗). (3.17)

For the case studied here, we set d = 4 to deal with a five dimensional (t, x1, x2, x3, ϕ)
anisotropic system. We intend to define a quantity that is monotonous along the flow and
that detects the fixed point in the UV limit together with the gapped character of the IR.
Following [68], One defines for our background in eq. (2.1),

ds2
int = α1dy

2
1 + α2dy

2
2 + . . .+ αddy

2
d + gij(dθi −Ai

1)(dθj −Aj
1), Φ(r, θ⃗). (3.18)

gij(dθi −Ai
1)(dθj −Aj

1) = f1
[
f2
(
dθ2 + sin θ2(dφ−A3

1)2
)

+ f3
(
dσ2 + dη2

)]
.

We form the combination,

Vint =
∫

X

√
det[gint]e−4Φ, Ĥ = V 2

int. (3.19)
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Figure 4. The flow-central charge with c = 1, µ = 1.

The integral is over the manifold X consisting of the internal space gij . The holographic
central charge along the flow — called cflow below, is

cflow = dd

GN
b(r)d/2 Ĥ

2d+1
d

Ĥ ′d
. (3.20)

Using d = 4 to work with five-dimensional anisotropic QFT one has,

α0 = α1 = α2 = α3 = 2g̃2

9 f1(σ, η)H(r)1/2r2, α4 = 2g̃2

9 f1(σ, η) f(r)
H(r)3/2 ,

b(r) = H(r)1/2

f(r)5/4r3/2 , Vint = N r3
√
f(r), Ĥ = N 2r6f(r).

cflow =
(2

3

)4 N
GN

H(r)r4f(r)2(
f(r) + rf ′(r)

6

)4 , (3.21)

with N given in eq. (3.15). In figure 4 we have an example plot for the flow-central charge.
We find that the flow central charge is monotonic. In SUSY cases studied previously [55,

56, 68], this quantity was shown to be monotonic using the BPS equations. For our background,
although it is non-BPS, this is still the case. The quantity cflow properly detects the UV fixed
point and the IR gapped character of the theory by showing zero degrees of freedom at r = r∗.

We now study a different observable of the QFT, Wilson loops.

3.3 Wilson loops

In this section, we calculate Wilson loop expectation values in QFT to test the proposed mass
gap and confinement/screening at low energies. We start giving a summary of the general
formalism to compute Wilson loops in holographic QFTs, following the methods of [76, 77].
The generic methods are relevant for the study of other probes that reduce to an effective
action in the background, like Entanglement Entropy or ’t Hooft loops. See also [60].

For a background of the form

ds2 = −gttdt
2 + gxxdx⃗

2 + grrdr
2 + gijdθ

idθj . (3.22)
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With gtt, gxx, grr depending only on the radial coordinate r, we propose a string embedding,
which has a Nambu-Goto action of the form,

t = τ, x = x(γ), r = r(γ).

SNG = TF 1

∫
dτdγ

√
gtt(r)gxx(r)x′2 + gtt(r)grr(r)r′2. (3.23)

The embedding is parameterised in terms of (τ, γ) chosen as the worldsheet coordinates.
Following [77], the equations of motion for the string moving in this background read

dr

dγ
= ±dx

dγ
Veff (r) . (3.24)

The ‘effective potential’ is defined in [77] as,

Veff (r) = F (r)
CG (r)

√
F 2 (r) − C2 , F 2 (r) = gttgxx, G2 (r) = gttgrr, (3.25)

in which the constant C = F 2x′
√

F 2x′2+G2r′2
can be obtained from the equations of motion.

If one fixes the coordinate as x(γ) = γ one can find eq. (3.24) from the conserved
‘Hamiltonian’ with the relation C = F (r0). Here, r0 is the turning point of the string
embedded in the background, satisfying r′(γ) = 0. We fix the gauge in this way in what
follows and choose C = F (r0) from here on.

We observe that in this formalism, we have an open string whose endpoints are at a
D-brane, placed at r → ∞. Dirichlet boundary conditions are chosen for the string at r → ∞
by imposing Veff |r→∞ ∼ ∞ The separation between the two ends of the string can be thought
of as the separation between a quark-antiquark pair. The energy between the pair of quarks
is calculated from the Nambu-Goto action. There is a regularisation procedure implemented
by subtracting the energy of two non-dynamical strings extended along the whole range of
the radial coordinate [r∗,∞), which subtracts the rest mass of the quark-antiquark pair.

The string takes a U-shape in the bulk. The separation and energy can be written in
terms of the distance from the position of the turning point of the string r0, by

LQQ (r0) = 2
∫ +∞

r0

dz

Veff(z) , (3.26)

EQQ (r0) =F (r0)LQQ (r0)+2
∫ +∞

r0
dz
G(z)
F (z)

√
F (z)2−F (r0)2−2

∫ +∞

r∗
dz G(z) . (3.27)

Conditions for confinement or screening, finite or infinite quark separation, are given in [77].
Now we will apply the mentioned general treatment to our background in eq. (2.2). Assuming
the string embedding in the Σ plane to set at constant value (σ, η) = (σ∗, η∗), we pick
coordinates t = τ, x = γ, r = r(γ). One has

ds2
ind = 2g̃2

9 f1(r, σ∗, η∗)
(
−H(r)1/2r2dτ2 +H(r)1/2r2

(
1 + r′(γ)2

r2f(r)

)
dγ2

)
, (3.28)

SNG = TF 1

∫
dτdγ

√
det[gαβ ],= TF 1T

2g̃2

9

∫
dγ
√
F 2 +G2r′2, (3.29)
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Figure 5. The length of the string between quark anti-quark pair and the energy with c = 1, µ = 1.

with function definitions

F (r) =
√
H(r)f1(r, σ∗, η∗)r2 G(r) =

√
H(r)
f(r) f1(r, σ∗, η∗)r. (3.30)

For the effective potential one has

Veff =
√
f(r)r

f1(r0, σ∗, η∗)
√
H(r0)r2

0

√
f1(r, σ∗, η∗)2H(r)r4 − f1(r0, σ∗, η∗)2H(r0)r4

0. (3.31)

By expanding effective potential close to r0 = r∗, Veff ∼ (r−r∗), indicating that LQQ diverges
as r0 approaches r∗, see the paper [77]. This can be taken as a possible indication of the
confining behaviour in our dual QFT. We analyse this below in more detail.

To investigate the low energy behaviour of the QFT and to check for confinement (or
screening), we analyse the expressions for the length and the energy of the quarks pair. From
eqs. (3.26)–(3.27), we read the length of the quark-antiquark pair and its energy to be

LQQ (r0) = f1(r0, σ
∗, η∗)

√
H(r0)r2

0×∫ ∞

r0

1√
f1(r, σ∗, η∗)2H(r)r4 − f1(r0, σ∗, η∗)2H(r0)r4

0
√
f(r)r

dr , (3.32)

EQQ (r0) = F (r0)LQQ (r0) + 2
∫ ∞

r0
dr

√
f1(r, σ∗, η∗)2H(r)r4 − f1(r0, σ∗, η∗)2H(r0)r4

0√
f(r)r

−

2
∫ ∞

r∗
dr

√
H(r)
f(r) f1(r, σ∗, η∗)r . (3.33)

The integrals can not be performed analytically and are calculated with numerical methods.
In figure 5, a plot for the length of the string between the quark anti-quark pair and the

energy as a function of this length for certain parameter values is provided. The resulting
configurations for the embedding of the string with c = 1, µ = 1 with different separation
lengths are presented in figure 6. These show the conventional behaviour of the confining
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Figure 6. Embedded string profile for Wilson loop calculations with c = 1, µ = 1.

QFTs. We have chosen σ∗ = 0 and η∗ fixed. Using identities in appendix C, we see that
the function f1(r, σ, η) is r-independent, hence there are significant simplifications in the
calculation. The value of η∗ is directly related to the gauge node with which the Wilson
is associated (See [78] and references therein).

Note that the concavity of the energy curve EQQ as a function of LQQ is downwards,
indicating the stability of the embedded probe string configuration of eq. (3.23). Note also
that for the large LQQ, the energy grows linearly, suggesting a confining behaviour. Below,
we discuss a phenomenon not captured by the string configuration studied in this section.
The existence of this configuration is related to the presence of sources (flavour branes) in
this family of backgrounds.

3.3.1 Screening
Massless flavour quarks are present in our dual QFT setups. In fact, for every kink in the
convex, piece-wise linear rank function R(η), we encounter a flavour group, a set of D7 branes
localised in the η-direction, as indicated in eq. (2.30).

The presence of these favour groups makes the screening phenomenon possible. This
can indeed happen by creating a pair of flavour quarks that break the flux tube between
the inserted heavy probe quark and the anti-quark pair.

Even if the Wilson loop is associated with a gauge node without flavour groups attached,
there can be a chain of interactions across the quiver that finally excites the flavour quarks.
Studying this proposal rigorously requires the insertion of a probe string in bulk, which
has the possibility to extend not only in spatial x1 and r directions but also in η direction,
being related to the gauge node in the quiver.

In general, the configuration is parameterised in terms of (τ, γ). The induced metric reads

t= τ, x=x(γ), r= r(γ), η= η(γ). (3.34)

ds2
ind =

(
2g̃2

9

)
f1(r,σ∗,η)

[
−H(r)1/2r2dτ2+dγ2

(
H(r)1/2r2x′2+ H(r)1/2

f(r) r′2+ 9f3(r,σ∗,η)
2g̃2 η′2

)]
.
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After integration over 0 ≤ τ ≤ T , the Nambu-Goto action reads,

SNG = TTF 1

∫
dγ
√
F 2x′2 +G2r′2 + S2η′2, (3.35)

F 2 =
(

2g̃2

9

)2

f2
1 (r, σ∗, η)H(r)r4, G2 =

(
2g̃2

9

)2

f2
1 (r, σ∗, η)H(r)r2

f(r) ,

S2 =
(2g̃

9

)
f2

1 (r, σ∗, η)f3(r, σ∗, η)H(r)1/2r2.

This action should be minimised to learn if a configuration extending on the η-direction can
reach the closest flavour group. This is a complicated problem that we leave for future study.

Here, we pursue a simpler analysis that captures the essence of the calculation. We
insert a probe string picking t = τ, η = γ with other coordinates fixed. We calculate the
Nambu-Goto action for this embedding, assuming that the string goes from a chosen node at
η = η∗ to some other node containing flavour degrees of freedom.

If the energy of this configuration is lower than the conventional Wilson loop expectation
value calculated in the previous section, the new solution takes over, and there is a phase
transition to this new solution. This predicts the breaking of the flux tube when the separation
between the probe quark anti-quark pair implies an energy cost that is enough to create
the dynamical quark pair.

We then consider a configuration with x = x0, r = r̄ and σ∗ = 0. For this config-
uration, we find

ds2
ind = −2g̃2

9 f1(r̄, σ∗, η)H(r̄)1/2r̄2dτ2 + f1(r̄, σ∗, η)f3(r̄, σ∗, η)dη2, (3.36)

SNG = TF 1

∫
dτdγ

√
det[gαβ ],= TF 1T

∫
dη

√
S2. (3.37)

We choose σ∗ = 0 and using the relations in appendix C, one has the simplified results

f2
1 (r̄, σ∗, η) = 9π2

4X4

(
3X4σ∂σV + σ2∂2

ηV

∂2
ηV

)
, f3(r̄, σ∗, η) =

X2∂2
ηV

3σ∂σV
. (3.38)

f2
1 f3 = 3π2

4X2

(
σ∂2

ηV

∂σV
+ 3X4

)
|σ∗=0 ≃ 9π2

4 X2(r̄), S2 ≃ π2

2 g̃
2r̄2.

Hence we have

SNG = TF 1T
πg̃√

2
r̄

∫
dη, (3.39)

which minimises when r̄ = r∗. The integration in η is from η∗ (the gauge group for which we
compute the Wilson loop) to the desired η = ηF position with flavour branes. Hence, there
are fixed energy configurations that take over and are the preferred configuration relative
to the embedding presented in the previous subsection. We interpret this as screening due
to the presence of the dynamical fundamental fields.

In appendix D we consider a string that stretches in the η-direction as x is increased. We
find a phase transition when the turn-around position η0 approaches the location of the flavour
group. The connected U -type configuration in η has a finite length. This analysis should be
extended to the string embedded in the r, η directions. We leave this for future work.
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3.4 Entanglement entropy

For QFTs with a string theory dual, the Entanglement Entropy (EE) between two regions
can be calculated with the prescription presented in [79, 80]. The method is based on
finding a minimal eight-dimensional surface in the gravity side such that the boundary of
this surface is coincident with the boundary of the two entangled regions. We divide the
space into two regions, one of them a region in the shape of a strip of length LEE and the
other its complement. The entanglement entropy between these two regions is calculated
in [79–81] by minimising

SEE = 1
4GN

∫
Σ8
d8σ

√
e−4Φ det[gind]. (3.40)

There can be different eight surfaces that minimise SEE in eq. (3.40). Hence, there is a
possibility for phase transitions among different extremal surfaces. In [81], it was proposed
that the presence of a phase transition in the EE can be a criterion for confinement. This
proposal was critically analysed in more detail in [82, 83]. In these papers, it was found
that phase transitions can be absent in certain confining models and that non-confining
models can display a phase transition.

Following [79, 80], and keeping in mind the generalised treatment of [81, 82], we calculate
the entanglement entropy of a strip-like region of the QFT. This is accomplished by computing
the area of the eight-surface [x1, x2, x3, ϕ, θ, φ, σ, η] with r = r(x1) in the background of
section 2. The induced metric on the eight-surface and the entanglement entropy are,

ds2
st = f1

2g̃2

9

[
H(r)1/2 r2

( (
1+ r′2

r2f(r)

)
dx2

1+dx2
2+dx2

3

)
+H(r)−3/2 f(r)dϕ2

]
+f1f2dΩ̃2+f1f3(dσ2+dη2). (3.41)

√
e−4Φdet[g8] =

√
f8

1 f
2
2 f

2
3 f

2
6 sin2 θ

2g̃2

9

4
f(r)r6

(
1+ r′2

r2f(r)

)
,

SEE = 1
4GN

∫
d8x

√
e−4Φ det[g8] = N̂

∫ L

−L
dx

√
r6f(r)

(
1+ r′2

r2f(r)

)
. (3.42)

We defined,

N̂ = 33π5

4GN
LyLzLϕ

(
2g̃2

9

)2 ∫ P

0
dη

∫ ∞

−∞
dσ σ3∂σV ∂

2
ηV. (3.43)

From eq. (3.25), we read

F (r) = r3
√
f(r), G(r) = r2. (3.44)

Following the conserved Hamiltonian technique, as in the Wilson loop calculation summarised
in eqs. (3.22)–(3.27), we minimise the SEE . The entanglement entropy must be regularised
by subtracting the volume of the two eight-surfaces starting from infinity and ending at the
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Figure 7. LEE and entanglement entropy respective to L with c = 1, µ = 1.

end of the space r∗. Then, we find the length of the interval and the entanglement entropy
by computation of the regulated area of the surface that turns around at r0,

LEE (r0) = 2r3
0

√
f(r0)

∫ ∞

r0

dr

r
√
f(r)

√
r6f(r) − r6

0f(r0)
, (3.45)

SEE (r0) = N̂
∫ ∞

r0

r5√f(r)√
r6f(r) − r6

0f(r0)
dr − N̂

∫ ∞

r∗
r2dr. (3.46)

These integrals can not be performed analytically, so we rely on numeric calculations.
The resulting plot for c = 1, µ = 1 is presented in figure 7. From the left panel in figure 7, one
realizes that LEE is not a monotonous function, but actually going from a vanishing value
at r0 = r∗ to asymptotically zero at r0 → ∞. This behaviour generates the possibility of a
phase transition. Indeed, the conditions for the emergence of a phase transition according
to [82] are satisfied. More specifically equations (2.26)-(2.29) of [82] imply j = 3 permitting
a phase transition.

One can also check that by setting c = 0, µ = 0, which takes our solution back to AdS6
solution, LEE does have a monotonic behaviour, and the phase transition disappears. In this
case, the integrals in eqs. (3.46) can be performed explicitly, finding LEE ∼ 1

r0
and SEE ∼ N̂

L3
EE

.
The right panel of figure 7 for SEE(r0) in terms of LEE shows a downwards concavity

indicating that the configuration is stable. This plot also includes the disconnected solution,
which is renormalised to zero. After the phase transition, the disconnected solution is
preferred by the system. In view of the content of section 3.3.1, one should consider more
involved eight-surfaces than the one considered below eq. (3.40), along the lines of allowing,
for example r(x1, η). We leave this for future work.

3.5 Holographic complexity

We start with a very brief review of the concept of complexity in QFTs. Then, following [84], we
present a proposal for the calculation of this quantity holographically, using the backgrounds
of eq. (2.1). We focus on the proposal known as the CV conjecture.
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The quantum computational complexity is defined as a measure of the minimum number
of elementary gates one needs in a quantum circuit to construct a generic state in the Hilbert
space starting from a specified reference state. In [85], Susskind conjectured a relation
between the bulk geometry and the dual boundary state, proposing that the complexity
of the dual boundary state can be related to the time-dependent geometry of the region
behind the horizon of an AdS black hole.

The conjecture posited in [63] refines the previous idea by suggesting that the computa-
tional complexity of the boundary state at a specific time (on a designated spacelike slice of
the boundary) is correlated with the volume of a maximal spacelike slice in the bulk, ending
on the specified boundary slice. This is referred to as the CV conjecture.

In this line of thought, one specifies some spatial slice Σ on the boundary of the spacetime.
The complexity C of a pure state |Ψ⟩ of a holographic field theory on this patch will be given
by the volume of a co-dimension one slice B in bulk. This submanifold in the bulk, whose
volume obeys some maximal condition, has its boundary on Σ.

CV ∝ V (B)
GNlAdS

. (3.47)

For discussions about divergences appearing in the holographic complexity calculation, the
reader is referred to [84].

A simple example of the calculation is to consider vacuum AdS6 in Poincaré coordinates,

ds2 = ℓ2

r2dr
2 + r2

ℓ2

(
−dt2 + dx⃗2

4

)
, (3.48)

which is dual to a CFT in a flat space. The maximal volume slice with boundary at fixed
time t = 0 is the surface in the bulk with volume

V (B) =
∫
dr d4x

√
h = Vx⃗

ℓ3

∫ rM

0
r3dr = Vx⃗

4ℓ3 r
4
M , (3.49)

where Vx⃗ is the coordinate volume in the x⃗4 non compact directions which reflects an IR
divergence. Thus, the complexity calculated following the CV prescription is,

CV ∝ Vx⃗

4G6ℓ4
r4

M . (3.50)

This result is proportional to the volume of the space on which the field theory is formulated
and proportional to the power of the UV-cutoff, reflecting a UV divergence.

We can lift the AdS6 background to type IIB, as explained in appendix A, see also [55, 56]
and [86]. The lifted type IIB background is given by that in eq. (2.1), in the special case
X(r) = 1, H(r) = 1, A(3)

1 = 0 and the parameters c = µ = 0. The constant time-slice has
a nine-dimensional line element and dilaton given by,

ds2
9 = f1

(2g̃2

9

)
r2dx⃗2

3 +
(

2g̃2

9

)2

r2dϕ2 + dr2

r2 + f2dΩ2 + f3(dη2 + dσ2)

 , e−4Φ = f2
6 .
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A proposal to calculate the complexity. We now propose a way to calculate the
complexity in this case (notice that we are in the case of zero temperature). We define
the complexity as the volume of the nine-manifold weighted by the dilaton and the global
conformal factor A (with A = f1 in this case), according to

CV ∝ 1
GN,10

∫
dx9

√
e−4Φdet[g9]

A
. (3.51)

Calculating explicitly we find

∫
dx9

√
e−4Φdet[g9]

A
= 4πVx⃗

(
2g̃2

9

)5/2 [∫
dσdηf4

1 f2f3f6

] ∫ rM

0
r3dr,

CV ∝ 33π5

GN,10

(
2g̃2

9

)5/2

Vx⃗

( ∫
dσdησ3∂σV ∂

2
ηV
)
r4

M . (3.52)

Let us analyse this result. First, note that the factor
( ∫

dσdησ3∂σV ∂
2
ηV
)

appears also
in the holographic central charge and the Entanglement Entropy — see eqs. (3.7), (3.21)
and (3.43). This implies that the complexity is proportional to the number of degrees of
freedom of the UV CFT, and depends on the parameters defining the UV quiver (see the
examples in section 3.1.1).

Importantly, this factor combined with the volume of the two sphere and the ten-
dimensional Newton constant GN,10 produce the Newton constant in six dimensions G6, in
correspondence with eq. (3.50). The divergence with the UV-cutoff rM is the same (as it is
the IR divergence associated with Vx⃗), when computed both in the reduced and in the lifted
backgrounds. Note that this result heavily relies on the definition in eq. (3.51), importantly
including the quotient by the overall conformal factor A.

We test our proposal for the complete background in eq. (2.1)–in this case, with the r-
dependent functions X(r), H(r), A(3)

1 and the non-vanishing parameters c, µ. This background
deforms the CFT5 as we discussed above, into a confining four dimensional QFT at low
energies. Applying the prescription in eq. (3.51) to the metric and dilaton in eq. (2.1), we find

e−4Φdet[g9]/A= (2g̃2/9)5f8
1 f

2
2 f

2
3 f

2
6 r

6
√
H

CV ∝ 1
GN,10

∫
dx9
√
e−4Φdet[g9]/A= 33π5

GN,10

(
2g̃2

9

)5/2
VolR3 Lϕ

(∫
dσdησ3∂σV ∂

2
ηV
)∫ rM

r∗
drr3H1/4,

(3.53)

where VolR3 is the volume for the 3 flat directions (x1, x2, x3).
The above analysis, relating the complexity with the central charge of the UV CFT5

is applicable to this expression. Note also that the UV behaviour in terms of the cutoff
rM is similar to that in eq. (3.52), but the behaviour coming from the IR part of the
background is different from the one in the CFT case. If we computed the complexity in
the six dimensional solution that lifts to the background in eq. (2.1)–see appendix A we
obtain the same

∫ rM
r∗ drr3H1/4 factor.

Note that the complexity in eq. (3.53), has a UV contribution coming from the upper
end of the integral. This is proportional to r4

M , matching the behaviour encountered in the
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pure AdS6 case of eq. (3.52). Interestingly, there is a contribution from the IR part of the
geometry. This is proportional to a Hypergeometric function evaluated at r∗. In this way,
the mass gap scale enters in the complexity. This is similar to the findings of [87]. It is
interesting to compare the complexity calculated in eq. (3.52) with that in eq. (3.53) as this
gives an idea of the complexity of formation, along the lines of [88]. It would be interesting
to calculate the other definitions of complexity to perform comparisons as those in [88].

It is worth mentioning that in [89, 90], authors introduced an infinite family of observables
in asymptotically AdS space defined on codimension-one slices of the geometry, being equally
viable candidates for a dual of complexity. All of these observables display the features
desired for the dual of the complexity. Our proposal can be studied further to understand
whether it fits in this general picture.

3.6 Spin-two glueballs

For the four-dimensional QFT described holographically by the background in eq. (2.1), we
use the six-dimensional reduction in eq. (A.11) to investigate glueball-like excitations. The
glueball excitations are analysed by studying fluctuations of background fields in the 6d
action. The equations of motion are highly nonlinear and coupled, implying that any given
fluctuation may excite fluctuations for other fields in the background. The dynamics for
the small fluctuations are governed by linear and coupled second-order coupled differential
equations which are very challenging to solve.

Here we consider a special subset of fluctuations which are easier to deal with. We
briefly introduce and summarise the procedure for analysing the special kind of fluctuations
following [91]. It is useful also to refer to appendix C in the paper [61].

The background metric in the eq. (A.11) is,

ds2
6 = H(r)1/2

(
r2 dx2

1,3 + f(r)−1 dr2
)

+H(r)−3/2 f(r) dϕ2 (3.54)

with functions f(r) and H(r) defined in eq. (2.1). We aim to study metric fluctuations
of the form

δgµν = e2Ah̄µν , h̄µν =
(
hab(x)ψ̃(y) 0

0 0

)
. (3.55)

Here the metric fluctuations are parallel to the flat subspace, xa denoting the flat space-
time coordinates (t, x1, x2, x3), while yi corresponding to the directions (r, ϕ). We use the
transverse-traceless gauge

ha
a = 0, ∇ah

a
b = 0. (3.56)

As shown in [91], it is consistent to take vanishing fluctuations for other fields. From
here on, we rewrite the background metric as

ds2 = e2A(y⃗)
(
ds2(M4) + ḡab(y⃗)dyadyb

)
. (3.57)
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The M4 is maximally symmetric space dx2
1,3, which is the four dimensional Minkowski space.

Comparing eq. (3.54) with eq. (3.57), we find

e2A(y⃗) = r2
√
H(r), (3.58)

ḡabdy
adyb = f(r)

r2H2(r) dϕ
2 + 1

r2f(r)dr
2.

This gives
√

det ḡab = 1
r2H(r) .

By introducing the change of variable ψ̃(y) = e−2AΨ(y), as suggested in [91], the new
function Ψ(y) solves a Schroedinger-like equation

− ¯
yΨ + V (y)Ψ = M2Ψ, (3.59)

with the potential defined as

V (y) = e−2A ¯
ye

2A = e−2A

√
det ḡab

∂a

[√
det ḡabḡ

ab∂be
2A
]
. (3.60)

After applying this formalism to the background in eq. (3.54) we focus on the glueballs
that depend on the radial direction r and the angular coordinate ϕ as,

Ψ(r, ϕ) = e
i 2π

Lϕ
nφΨ(r), n ∈ Z, (3.61)

with the potential in eq. (3.60) as,

V (r) =
√
H(r)∂r

(
f(r)
H(r)∂r(r2

√
H(r))

)
. (3.62)

The equation in (3.59) reads,

−r2H(r)∂r

(
f(r)
H(r)∂rΨ(r)

)
+

V (r) + n2r2H2(r)
f(r)

(
2π
Lφ

)2
Ψ(r) = M2Ψ(r). (3.63)

Following [61] we move to the tortoise coordinate dρ = dr

r
√

f(r)
and use the change of

variables Ψ(ρ) =
(

f(ρ)
ρ2H2(ρ)

)−1/4
Θ(ρ) leading to the equation,

−d
2Θ
dρ2 +Ṽ (ρ)Θ =M2Θ, (3.64)

Ṽ (ρ) =
(
V (r)+n2r2H2(r)

f(r)

( 2π
Lφ

)2
+r2H(r) d

dr

[
f(r)
H(r)

d

dr

(
f(ρ)

ρ2H2(ρ)

)−1/4])∣∣∣∣
r=r(ρ)

.

(3.65)

This needs to be evaluated in the new ρ coordinate. The potential after simplification is

Ṽ (ρ) =

−3r2f ′(r)2 + 4rf(r)
(
rf ′′(r) + 3f ′(r) + 4

(
2πn
Lφ

)2
r3H(r)2

)
+ 12f(r)2

16r2f(r)2

 ∣∣∣∣
r=r(ρ)

.

(3.66)
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Figure 8. The effective potential Ṽ (ρ) plotted for n = 0 (left) and n = 2 (right) with c = 1, µ = 1.

The effective potential plotted for different values of n is provided in figure 8.
We use the midpoint determinant method to numerically find the solutions of the eq. (3.63)

as described in [92]. We search for solutions that obey the correct boundary conditions in the
r1 = r∗ and r2 ≡ r → ∞ boundaries. These solutions may exist only for specific values of M2.

For a second-order differential equation, the solution is characterised by its value and its
derivative at a chosen point. One can form the vector (Ψi,Ψ′

i) in each boundary and evolve
them numerically in the r direction, hence they can be evaluated at other positions. Here
Ψ1(r) will be the solution obtained from the boundary conditions in the boundary at r1, etc.
If for a particular value of M2 one can find a solution that interpolates between the desired
boundary conditions in the r1 and r2, this value of M2 will be an eigenvalue of the equation.
To perform the analysis, we form a matrix by putting the solution vectors (Ψi,Ψ′

i), coming
from the r1 and r2 boundaries, next to each other. A certain value of M2 will be an eigenvalue
if and only if the determinant of this matrix, evaluated at some meeting point, is zero.

The spectra of fluctuations for different values of n, c and µ are plotted in figure 9.
The fluctuations have positive mass, indicating that there is no tachyonic instability in the
background as long as these specific spin-two fluctuation modes are considered.

3.6.1 A stable background?

Whilst the spectrum of masses for spin-two glueballs considered in the previous section gives
positive values for M2, this is hardly a proof of the stability of our backgrounds defined
in eqs. (2.1)–(2.10).

In this paper, we do not study the stability of our backgrounds, but we will write some
comments in this section.

A complete fluctuation analysis of our system is a very daunting task involving fluctuating
all the Ramond and NS fields, and also the action of the localised flavour branes. It may be
a good idea to restrict the number of fluctuating modes. This can be done by studying a
reduction of 10d background to 6d-SU(2) gauged supergravity as explained in appendix A.
We can study fluctuations in six dimensions, keeping “less” fields.

In this six-dimensional context, we can attempt to write first-order equations (solving the
second-order counterparts). Even when these are not the usual BPS equations (associated
with SUSY). If this succeeds, one can attempt a “fake-supergravity” type argument for
stability; see [93] and references therein.
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Figure 9. The spectrum of spin-two fluctuations. Top Left: variation of c parameter with µ = 1.
Top Right: variation of µ parameter with c = 1. Bottom: variation of n with c = 1, µ = 1.

We wish to close with an argument used in a similar context [94]. Our QFT is a gapped
system. Indeed, as argued in section 3.1, the quantity cflow, vanishes in the far IR; hence,
there is a mass gap — see below eq. (3.21). Our deformation of the SUSY background (the
solution for r → ∞), is not small. At best, one can think that the solution is stable for
large values of r as it is nearly BPS. This argument can not be continued to the r ∼ r∗

region, as the deformation from CFT5 dual background is large. On the other hand, at
smaller values of r as the dual QFT is gapped, one may expect that a small fluctuation in
the background will not have a negative mass.

In summary, the study of fluctuations over our solution is a theme of interest that we
plan to work on in the future.

4 Conclusions

Let us begin with a brief summary of the contents of this paper.
We started in section 2 presenting a new family of non-SUSY supergravity backgrounds

in Type IIB. The backgrounds asymptote to AdS6 × S2 × Σ2 for large values of the radial
coordinate and a smooth manifold for small values of r. The family of backgrounds is smooth,
except close to the location of the branes. The Page charges indicate an array of D5-NS5-D7
branes, typical of Hanany-witten set ups associated with five dimensional N = 2 field theories.

In section 3 we proposed a family of field theories dual to the family of backgrounds in
section 2. These are strongly coupled N = 1 (eight Poincare SUSYs) five dimensional SCFTs
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that spontaneously compactify on a circle giving VEvs to a symmetry current and to the
energy momentum tensor. We indicate a way to calculate the number of states in the QFT,
obtaining a monotonic quantity that is vanishing in the IR (suggesting a gapped system) and
asymptotes to the free energy of the five dimensional SCFT at high energies.

Wilson loops and Entanglement Entropy give indications of a behaviour interpolating
between conformal-confining-screening.

We gave a proposal to calculate the Holographic Complexity of our system. This proposal
shows the usual divergences, together with the contribution of the 5d SCFT and the influence
of the IR gap-scale.

Masses of spin-two fluctuations on the Minkowski4 directions are computed. They all
have positive mass, hence do not destabilise the background.

In the future, it would be interesting to learn more about:

• The transition between conformal-confining-screening. In particular study Wilson loops
in more generic configurations, as suggested above r(x) and η(x) should be studied.
Similarly, the Entanglement Entropy should be studied with an eight surface that shows
dependence r(x1, η, σ). These lead to interesting numerical problems.

• It should be interesting to study all other small fluctuations of the background, or
at least study them in the reduced 6d gauged supergravity system. Ascertaining the
positivity of the masses of these fluctuations is important. Otherwise, to prove the
positivity of any fluctuation.

• It is interesting to find a solution like ours (with an IR end of the space), preserving some
amount of SUSY. This would put us in a more direct relation with the Anabalón-Ross
systems. Some of the formalisms developed could be used.

• It would be interesting to use the procedure in this paper to find holographic duals to
deformations of SCFTs in different dimensions.

• In section 3.2, we found a monotonic c-function that interpolates between the gapped
four dimensional IR and the conformal and SUSY UV five dimensional fixed point. It
is of interest to understand how other recently proposed c-functions [75, 102] work in
this case. There may be some unity in these different definitions.

• By Wick rotating our solutions, as explained in appendix A.2 one finds Black branes
after lifting to Type IIB. The study of the properties of these black objects is of interest.

• Our system contains the backreaction of localised D7 flavour branes. The calculation
of meson masses in the present family of backgrounds is of interest. Specifically, in
the line of the works [95, 96], it is interesting to search for light mesonic states being
candidates for the Higgs particle in the framework of the Composite Higgs models.

• It would be interesting to understand from the viewpoint of the five dimensional brane
web the deformation by VEVs in eqs. (3.1)–(3.2). Similarly, if Matrix Model methods
could calculate some observables along the RG flow, this would be very interesting.

We hope to report on some of these in the near future.
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A The supergravity background origin

In this appendix, we describe the procedure to obtain the background in eq. (2.1). These
solutions are found in 6d Romans gauged supergravity [98], then uplifted to Type-IIB
solutions. Below, we explain the details of this procedure.

A.1 Six dimensional Romans F4 supergravity

Here we review the content of six dimensional Romans’ F4 gauged supergravity [98]. The
bosonic content of this supergravity, besides the vielbein, is a real scalar field X, a non-
Abelian SU(2) gauge field Ai with field strength

F i = dAi + 1
2ϵ

ijkAj ∧Ak, (A.1)

a three-form

F3 = dA2 , (A.2)

and an Abelian gauge field A1 with curvature

F2 = dA1 + 2
3 g̃A2 . (A.3)

g̃ is a coupling parameter in the 6d theory.
We write the bosonic part of the Lagrangian,

L = R ∗6 1 + 4∗6dX ∧ dX
X2 − g̃2

(2
9X

−6 − 8
3X

−2 − 2X2
)
∗6 (A.4)

+ 1
2X

4 ∗6 F3 ∧ F3 −
1
2X

−2
(
∗6F2 ∧ F2 + 1

g̃2 ∗6 F
i ∧ F i

)
− 1

2Ã2 ∧
(
dA1 ∧ dA1 + 2

3 g̃dA1 ∧A2 + 4
27 g̃

2A2 ∧A2 + 1
g̃2F

i ∧ F i
)
.

The equations of motion read

d(X4 ∗6 F3) = 1
2F2 ∧ F2 + 1

2g̃2F
i ∧ F i + 2

3 g̃X
−2 ∗6 F2, (A.5)

d(X−2 ∗6 F2) = −F2 ∧ F3 (A.6)
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D(X−2 ∗6 F
i) = −F3 ∧ F i (A.7)

d(X−1 ∗6 dX) = 1
4X

4 ∗6 F3 ∧ F3 −
X−2

8

(
∗6F2 ∧ F2 + 1

g̃2 ∗6 F
i ∧ F i

)

− g̃2
(1

6X
−6 − 2

3X
−2 + 1

2X
2
)
∗6 1. (A.8)

Here, D is defined as the SU(2) gauge-covariant derivative. Its action on a differential
form Ci is defined by

DCi = dCi + ϵijkA
j ∧ Ck . (A.9)

The Einstein’s equations are

Rµν = 4X−2∂µX∂νX + g̃2
( 1

18X
−6 − 2

3X
−2 − 1

2X
2
)
gµν + X4

4

(
F3 µ · F3 ν − 1

6gµνF
2
3

)

+ X−2

2

(
F2 µ · F2 ν − 1

8gµνF
2
2

)
+ X−2

2g̃2

(
F i

2 µ · F i
2 ν − 1

8gµν(F i
2)2
)
. (A.10)

With Fµ = ιµF being the contraction with the vector ∂µ, F · G = Fµ1...µpG
µ1...µp , and

F 2 = F · F .
The fermionic part of the Lagrangian is written in [98]. Setting all matter fields to zero

A2 = A1 = Ai = 0 and X = 1 leads to a simple solution. The metric is AdS6 with radius
R2 = 2

9 g̃
2 and the solution preserves eight Poincaré supercharges.

Let us now discuss a specific solution to this six dimensional system.

A.2 The background in 6d Romans supergravity

We study a background which has a nontrivial background metric, supported by only a single
component of the SU(2) Yang-Mills fields F (3)

2 and a dilaton [99],

ds2
6 = −H(r)−3/2 f(r) dt2 +H1/2 (f(r)−1 dr2 + r2 dx⃗2

4) ,

ϕ = 1√
2 logH(r) , A3

1 =
√

2(1 −H(r)−1)
√
µ

c
dt ,

f(r) = − µ

r3 + 2
9g

2 r2H(r)2 , H(r) = 1 + c2

r3 ,

where the dilaton ϕ is related to the X field by X = e
− 1

2
√

2
ϕ. There are two free parameters

µ and c appearing in the solution.

A.3 Double wick rotation

After performing a double wick rotation on internal coordinates as t → iϕ, ϕ → it and
analytic continuation of the c parameter we have our new background:

ds2
6 = H1/2 (f(r)−1 dr2 + r2 (−dt2 + dx2

1 + dx2
2 + dx2

3)) +H(r)−3/2 f(r) dϕ2 , (A.11)

ϕ = 1√
2 logH(r) , A3

1 =
√

2(1 −H(r)−1)
√
µ

c
dϕ ,

f(r) = − µ

r3 + 2
9g

2 r2H(r)2 , H(r) = 1 − c2

r3 ,
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By compactifying the ϕ coordinate, as the result of the term H(r)−3/2 f(r) dϕ2 in the
metric, the ϕ coordinate can shrink to zero size at the roots of f(r). One needs to consider
r∗, the largest positive root of f(r) and pick an appropriate period for this cycle to have a
smoothly closing geometry in the (r, ϕ) plane which is done in eq. (2.5).

A.4 SUSY variations

Here, we study the supersymmetric properties of our background. The fermionic content
of the Romans gauged supergravity are four gravitini ψµ i and four spin 1/2 fields χi. The
SUSY variations for these fermionic degrees of freedom with only SU(2) gauge field and
the dilaton turned on, is

δχi =
( 1√

2
γµ ∂µϕ+Aγ7

)
ϵi + 1

2
√

2
γµν (Ĥµν) j

i ϵj , (A.12)

δψµ i = (∇µ + T γµ γ7) ϵi +
(
g AI

µ (T I) j
i − 1

4
√

2
(γ νρ

µ − 6 δ ν
µ γρ)(Ĥνρ) j

i

)
ϵj , (A.13)

where A, T , and Ĥ are defined as

A ≡ 1
4
√

2

(
g e

ϕ√
2 − g e

−3ϕ√
2

)
, T ≡ − 1

8
√

2

(
g e

ϕ√
2 + g/3 e

−3ϕ√
2

)
, (A.14)

(Ĥµν) j
i ≡ e−

ϕ√
2
(
γ7 F

I
µν (T I) j

i

)
. (A.15)

The gauge-covariant derivative Dµ acting on the Killing spinor is

Dµ ϵi = ∇µ ϵi + g AI
µ (T I) j

i ϵj , (A.16)

with
∇µϵi ≡

(
∂µ + 1

4 ω
αβ

µ γαβ

)
ϵi . (A.17)

Indices α, β are tangent space (flat) indices, while µ, ν are space-time indices. By inspection,
we realize that our solution in the previous section does not preserve any SUSY unless µ = 0
and c = 0 which leads us to the pure AdS6 background.

A.5 Uplift to Type IIB

It is shown in [54, 86] that solutions to 6d Romans supergravity possess an uplift to an
infinite family of solutions in Type IIB supergravity. Our solution with nontrivial metric,
dilaton and SU(2) field lifts to a configuration in type IIB given by,

ds2
st = f1

(
ds2

6 + f2ds
2(S̃2) + f3ds

2(R2)
)

(A.18)

C0 = f7, e−2Φ = f6, F5 = 4(G5 + ∗10G5),

B2 = f4Vol(S̃2) − 2
9ηy

iF i ,

C2 = f5Vol(S̃2) − 4∂σ(σV )yiF i .
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Here ds2
6 is defined in terms of the 6d gauged supergravity background metric as

ds2
6 = 2g̃2

9 ds2
gauged sugra. (A.19)

The functions fi read:

f1 = 2
3X2

(
σ2 + 3X4σ∂σV

∂2
ηV

)1/2

, f2 =
X2∂σV ∂

2
ηV

3Λ , f3 =
X2∂2

ηV

3σ∂σV
(A.20)

f6 = (18)2 3X4(σ2∂σV )(∂2
ηV )(

3X4∂σV + σ∂2
ηV
)2 Λ, f7 = 18

(
∂ηV +

3X4σ∂σV ∂
2
σηV

3X4∂σV + σ∂2
ηV

)
,

f4 = 2
9

(
η −

σ∂σV ∂
2
σηV

Λ

)
, f5 = 4

V −
σ∂σV

(
∂ηV ∂

2
σηV − 3X4∂2

ηV ∂σV
)

Λ

 ,
Λ = 3X4∂2

ηV ∂σV + σ

[(
∂2

ησV
)2

+
(
∂2

ηV
)2
]
.

S̃2 sphere is fibered over the 6d spacetime,

Vol(S̃2) = ϵijkyiDyj ∧Dyk, ds2
S̃2 = DyiDyi, (A.21)

where yi are the embedding coordinates of the sphere S2 and can be chosen as

y1 = sin θ sinφ1, y2 = sin θ cosφ1, y3 = − cos θ. (A.22)

The symbol D represents the covariant derivative

DCi = dCi + ϵijkA
j ∧ Ck . (A.23)

G5 is a differential form:

G5 = − 2
3X2 (∗6F

i) ∧D(yiσ2∂σV ) . (A.24)

The 10d metric after simplifying the eq. (A.21) reads

ds2
st = f1

(
ds2

6 + f2(dθ2 + sin θ2(dφ1 −A)2) + f3(dσ2 + dη2)
)

(A.25)

Following the procedure, the reader can check that the full configuration in eq. (2.1) arises.

A.6 Uplift to massive Type IIA

In the body of the paper, we have worked with the Type IIB lift of the solution in eq. (A.11).
We can also lift this solution to massive Type IIA theory. The background for our solution
reads [99]

dŝ2
10 =(sin ξ)

1
12 X

1
8
[
∆

3
8 ds2

6 + 2g−2 ∆
3
8 X2 dξ2 + 1

2g
−2 ∆− 5

8 X−1 cos2 ξ
3∑

i=1
(σi − g Ai)2

]
,

F̂(4) = −
√

2
6 g−3 s1/3 c3 ∆−2 U dξ ∧ ϵ(3) −

√
2g−3 s4/3 c4 ∆−2X−3 dX ∧ ϵ(3)

+ 1√
2g

−2 s1/3 c F
(3)
2 ∧ h3 ∧ dξ − 1

2
√

2g
−2 s4/3 c2 ∆−1X−3 F

(3)
2 ∧ h1 ∧ h2 (A.26)

eϕ̂ =s−5/6 ∆1/4X−5/4 F0 = m =
√

2
3 g ,

– 33 –



J
H
E
P
0
3
(
2
0
2
4
)
1
6
0

where

∆ ≡ X cos2 ξ +X−3 sin2 ξ ,

U ≡ X−6 s2 − 3X2 c2 + 4X−2 c2 − 6X−2 . (A.27)

σi are left-invariant 1-forms on S3, satisfying dσi = −1
2ϵijk σ

j ∧ σk and hi ≡ σi − g Ai
(1),

ϵ(3) ≡ h1 ∧ h2 ∧ h3. We have used the shorthand notation s = sin ξ and c = cos ξ. The mass
parameter m of the massive type IIA theory is related to the gauge coupling g by m =

√
2

3 g.
The reason the Type IIB lift is chosen in the body of the paper, is the ability to work

with an infinite family of backgrounds- one member of the family for each function V (σ, η).
Besides, the dual field theory picture of the lift in massive IIA (involving O8 planes and an
exceptional group ENf +1 global symmetry) is less clear than the one presented in the body
of the paper, based on unitary gauge and flavour groups.

Finally, we worked with the Type IIB lift because the massive IIA background contains
an overall warp factor that vanishes at ξ = 0, with a divergent dilaton at the same point.
The supergravity is not a good approximation close to ξ = 0 and the calculations exploring
that region in the context of massive Type IIA are not trustable.

B Near boundary expansions

In this appendix, we analyse the expansion of our background metric and fields near the
r → ∞ boundary to study the deformations at the UV fixed point of the dual field theory.
We perform this in the 6d supergravity system discussed in appendix A. The QFT data that
we need are the operators turned on by these deformations, and their vacuum expectation
value. Since the boundary metric couples to the boundary stress-energy tensor, the vacuum
expectation values of this tensor can be obtained from the asymptotics of the background
metric and other coupled scalars. Following [100, 101], the bulk metric near the boundary
of an asymptotically AdS background takes the form,

ds2 = 1
r2 (dr2 + gij(x, r)dxidxj) (B.1)

in some appropriately chosen coordinate system with radial direction r. These are the
so-called Fefferman-Graham coordinates and the boundary is located at r → 0. The tensor
gij(x, r) can be written as

gij(x, r) = g(0)ij + rg(1)ij + r2g(2)ij + . . . (B.2)

One can find the coefficients g(k)ij , k > 0 from Einstein’s equations. We introduce the new
coordinate ρ = r2. In these coordinates we have

ds2 = Gµνdx
µdxν = dρ2

4ρ2 + 1
ρ
gij(x, ρ)dxidxj , (B.3)

g(x, ρ) = g(0) + · · · + ρd/2g(d) + h(d)ρ
d/2 ln ρ+ . . .

Near the boundary, different fields in the background have an asymptotic expansion
of the form

F(x, ρ) = ρm
(
f(0)(x) + f(2)(x)ρ+ · · · + ρn(f(2n)(x) + log ρf̃(2n)(x)) + . . .

)
(B.4)
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The equations of motion are second-order differential equations in ρ, hence two independent
solutions can be found. The asymptotic behaviours for these solutions are chosen to be
ρm and ρm+n.

The boundary field f(0) multiplying the leading term, ρm, is interpreted as the source
for the dual operator inserted in the field theory. The coefficient f(2n) is associated with
the 1-point function of the corresponding operator.

In our case, the boundary is five-dimensional. Following [101], the expectation value for
the boundary stress-energy tensor, after performing holographic renormalisation, reads

⟨Tij⟩ = 5l4g(5)ij (B.5)

where l is AdS radius related to the cosmological constant as Λ = −10
l2 and we set 16πGN ≡ 1.

The metric in eq. (A.11) is not in the required form of eq. (B.1). We perform some
coordinate transformations. First we take r → 1/z which brings the boundary from r → ∞
to z → 0,

ds2
6 =H(z)1/2

( 1
f(z)z4 dz

2+ 1
z2 (−dt2+dx2

1+dx2
2+dx2

3)
)

+H(z)−3/2 f(z)dϕ2 . (B.6)

Now we expand the metric components near z → 0 and perform a coordinate change z → r̄(z)
to bring the metric to the Fefferman-Graham form, at least asymptotically up to the required
order. The coordinate change with its inverse is (setting g̃ =

√
9
2 for simplicity)

r̄(z) = z + c2z4

4 + µz6

10 +O
(
z7
)
, (B.7)

z(r̄) = r̄ − c2r̄4

4 + µr̄6

10 +O
(
r̄7
)
. (B.8)

The expansion of time and space components of the metric in this coordinate system will be

gtt(r̄) = − 1
r̄2 − µr̄3

5 +O
(
r̄4
)
, (B.9)

gxixi(r̄) = 1
r̄2 + µr̄3

5 +O
(
r̄4
)
, (B.10)

gϕϕ(r̄) = 1
r̄2 − 4µr̄3

5 +O
(
r̄4
)
. (B.11)

Hence, one can read the VEVs for boundary stress-energy tensor using eq. (B.5),

⟨Ttt⟩ = −µ, ⟨Txixi⟩ = µ, ⟨Tϕϕ⟩ = 4µ (B.12)

One can also find an asymptotic expansion for the X and A
(3)
1 in this background

X(r̄) − 1 = c2r̄
2 + c3r̄

3 − 11c2
2/2r̄4 + 1/2(c2c2 − 6c2c3)r̄5 +O

(
r̄6
)
, (B.13)

A
(3)
1 (r̄) = a0 + a3r̄

3 +O
(
r̄6
)
. (B.14)

By comparing to our solution’s expansion in eq. (A.11)

X(r̄) − 1 = c2

4 r̄
3 +O

(
r̄6
)
, (B.15)

A
(3)
1 (r̄) = −3c√µr̄3 +O

(
r̄6
)
, (B.16)
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we realize that the subleading modes in the expansions are turned on, hence

⟨J⟩ = −3c√µ, ⟨OX⟩ = c2

4 . (B.17)

X leads to the insertion of an operator of dimension three operator with the quoted VEV
and A

(3)
1 couples to a background global R-symmetry current in the boundary which can

be interpreted as a background Wilson loop insertion in the QFT.

C Some useful identities

In this appendix we mention some useful identities mostly derived in [54] and extend them.
We consider the potential defined by eq. (2.11) and the relations,

V̂ =
∞∑

k=1
ak sin

(
kπη

P

)
e−

kπ|σ|
P , (C.1)

∂σV̂ = −
∞∑

k=1
ak

(
kπ

P

)
sg(σ) sin

(
kπη

P

)
e−

kπ|σ|
P ,

∂ηV̂ =
∞∑

k=1
ak

(
kπ

P

)
cos

(
kπη

P

)
e−

kπ|σ|
P ,

∂σ∂ηV̂ = −
∞∑

k=1
ak

(
k2π2

P 2

)
sg(σ) cos

(
kπη

P

)
e−

kπ|σ|
P ,

∂2
η V̂ = −

∞∑
k=1

ak

(
k2π2

P 2

)
sin
(
kπη

P

)
e−

kπ|σ|
P ,

∂2
σV̂ =

∞∑
k=1

ak

(
kπ

P

)(
kπ

P
− δ(σ)

)
sin
(
kπη

P

)
e−

kπ|σ|
P .

Also,

∂σV = σ∂σV̂ − V̂

σ2 , ∂ηV = ∂ηV̂

σ
, ∂2

ηV =
∂2

η V̂

σ
(C.2)

∂σ∂ηV = σ∂η∂σV̂ − ∂ηV̂

σ2 , ∂2
σV = 2V̂ − 2σ∂σV̂ + σ2∂2

σV̂

σ3 .

These results are used extensively in the study of the behaviour of the potentials and field
strengths as needed in the Page charges calculations in section 2.2.

C.1 The field B2

We will use the identities above (C.1)–(C.2), to study the B2 field in r → ∞ limit. In this
limit X(r) ∼ 1 and hence the expressions for functions fi simplify. Ignoring the volume of
the two-sphere Vol(S2) = sin θdθ ∧ dϕ, the expression is,

2
π
B2 = η − (σ∂σV )(∂σ∂ηV )

Λ = η − (σ2∂σV̂ − σV̂ )(σ∂σ∂ηV̂ − ∂ηV̂ )
Λσ4 .

σ4Λ = σ
[
(σ∂σ∂ηV̂ − ∂2

η V̂ )2 + (∂2
η V̂ )(3σ∂σV̂ − 3V̂ − σ2∂2

σV̂ )
]

(C.3)

Replacing the expansions in eqs. (C.1) we find

σ4Λ = σ
(
M2 + NS

)
,
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M =
∞∑

k=1
ak

(
k2π2

P 2

)(
sin
(
kπη

P

)
+ |σ| cos

(
kπη

P

))
e−

kπ|σ|
P ,

N =
∞∑

k=1
ak

(
k2π2

P 2

)
sin
(
kπη

P

)
e−

kπ|σ|
P ,

S =
∞∑

k=1
ak sin

(
kπη

P

)
e−

kπ|σ|
P

(
3 + 3kπ|σ|

P
+ k2π2σ2

P 2

)
.

For σ → ±∞ one can check that we have

σΛ = a2
1e

−2 π|σ|
P
π4

P 4 . (C.4)

Hence, for B2 the result is,

2
π
B2 − η = PQ

Λσ4 , (C.5)

P =
∞∑

k=1
ak sin

(
kπη

P

)
σe−

kπ|σ|
P

(
1 + kπ|σ|

P

)
,

Q =
∞∑

k=1
ak cos

(
kπη

P

)(
kπ

P

)
e−

kπ|σ|
P

(
1 + kπ|σ|

P

)
.

Evaluating the field in the limit σ → ∞ we have

B2(±∞, η) = f4(±∞, η) = π

2

[
η − P

π
sin
(
πη

P

)
cos

(
πη

P

)]
. (C.6)

In r → r∗ case, X(r) ̸= 1, so eq. (C.4) will be modified to

σΛ = a2
1e

−2 π|σ|
P
π4

P 4

(
X(r∗)4 cos2

(
πη

P

)
+ sin2

(
πη

P

))
P 4, (C.7)

which does not lead to a quantized NS5 charge — see section 2.2.

C.2 The field C0

In r → ∞, X(r) ∼ 1, we have the expression,

C0
2 = ∂ηV + σ∂σ∂ηV

1 + σ∂2
ηV

3∂σV

=
∞∑

k=1
ak cos

(
kπη

P

)
e−

kπ|σ|
P

[
kπ

Pσ
−

kπ
P σ + k2π2

P 2 sgn(σ)
1 + C

B

]
, (C.8)

C = σ2
∞∑

k=1
ak

(
k2π2

P 2

)
sin
(
kπη

P

)
e−

kπ|σ|
P , B = 3

∞∑
k=1

ak sin
(
kπη

P

)
e−

kπ|σ|
P

(
1 + kπ|σ|

P

)
.

One can check that at σ = ϵ for small ϵ — and using 2πkak = −Pck one has

C0(0, η) = f7(0, η) = 9
∞∑

k=1
ck

(
kπ

P

)
cos

(
kπη

P

)
= 9∂ηR(η). (C.9)

In the r = r∗ case, it can be shown in a similar manner that the same result is obtained
and the X(r) dependence drops in this calculation.
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C.3 The combination C2 − B2C0

We now investigate the expression appearing in the calculation of the Page charge for D5
branes in the limit r → ∞. One can check that the same result applies to r → r∗. Ignoring
the volume of the two-sphere we have,

C2 −B2C0
4 = V − η∂ηV + σ∂σV − ησ∂η∂σV

1 + σ∂2
ηV

3∂σV

. (C.10)

σ(C2 −B2C0)
4 = V̂ − η∂ηV̂ +

σ∂σV̂ − ησ∂η∂σV̂ − V̂ + η∂ηV̂

1 + σ2∂2
η V̂

3σ∂σV̂ −3V̂


=

∞∑
k=1

ak

[
sin
(
kπη

P

)
−
(
kπη

P

)
cos

(
kπη

P

)]
e−

kπ|σ|
P

(
1 −

1 + kπ|σ|
P

1 + C
B

)
.

C,B have been introduced in eq. (C.8). We now have,

(C2 −B2C0)
]σ=−ϵ

σ=ϵ
= f5 − f7f4

]σ=−ϵ

σ=ϵ
= 8

∞∑
k=1

ak
kπ

P

[
sin
(
kπη

P

)
−
(
kπη

P

)
cos

(
kπη

P

)]
.

After a large gauge transformation and making use of eq. (C.8) we find,

(C2 − (B2 + ∆)C0)
]σ=−ϵ

σ=ϵ
= f5 − f7(f4 + ∆)

]σ=−ϵ

σ=ϵ
=

8
∞∑

k=1
ak
kπ

P

[
sin
(
kπη

P

)
−
(
kπ

P

)
cos

(
kπη

P

)(
η − 9∆

2

)]
. (C.11)

D String embedding in the η direction

In this appendix, we study the embedding of a string which can be extended in t, x1 and
η directions of our background in the eq. (2.1) to further study the screening scenario in
the dual QFTs. Following the formulation in the subsection 3.3.1, for a general string
configuration parameterised in terms of (τ, γ) possibly extended in t, x1, r and η the Nambu-
Goto action reads,

SNG = TTF 1

∫
dγ
√
F 2x′2 +G2r′2 + S2η′2, (D.1)

F 2 =
(

2g̃2

9

)2

f2
1 (r, σ∗, η)H(r)r4, G2 =

(
2g̃2

9

)2

f2
1 (r, σ∗, η)H(r)r2

f(r) ,

S2 =
(2g̃

9

)
f2

1 (r, σ∗, η)f3(r, σ∗, η)H(r)1/2r2.

Now we assume embedding at a fixed radial coordinate:

t = τ, x1 = γ, r = r̄, η = η(x1). (D.2)

This action should be minimised to understand if a configuration extending in the η-direction
can reach the closest flavour group. Further generalization will be the generic configuration,
which can stretch freely in both r and η, which we leave for a later study.
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For r = r̄ and σ∗ = 0, we find

SNG = TF 1

∫
dτdγ

√
det[gαβ ],= TF 1T

∫
dη
√
F 2 + S2η′2. (D.3)

Using the relations in appendix C, one has the simplified results

f2
1 (r̄, σ∗, η) = 9π2

4X4

(
3X4σ∂σV + σ2∂2

ηV

∂2
ηV

)
, f3(r̄, σ∗, η) =

X2∂2
ηV

3σ∂σV
. (D.4)

f2
1 f3 = 3π2

4X2

(
σ∂2

ηV

∂σV
+ 3X4

)
|σ∗=0 ≃ 9π2

4 X2(r̄), S2 ≃ π2

2 g̃
2r̄2.

f2
1 (r̄, σ∗, η) = 9π2

4X4

(
3X4σ∂σV + σ2∂2

ηV

∂2
ηV

)
|σ∗=0 ≃ 27π2

4
−V̂
∂2

η V̂
,

F 2 ≃ 27π2

4

(
2g̃2

9

)2 −V̂ (0, η)
∂2

η V̂ (0, η)
H(r̄)r̄4.

Hence we have (with g̃ =
√

9
2)

SNG = TF 1T

∫ √√√√27π2

4
−V̂ (0, η)
∂2

η V̂ (0, η)
H(r̄)r̄4 + π2

2 g̃
2r̄2η′2 dη. (D.5)

We intend to analyse this action for a specific Rank function. We take the example presented
in eq. (3.8). The rank function corresponding to the quiver is,

R(η) =

Nη 0 ≤ η ≤ (P − 1)
N(P − 1)(P − η) (P − 1) ≤ η ≤ P.

With the potential V̂ (σ, η)

V̂ = NP 3

2π3 Re
(
Li3

(
−e−

π
P

(|σ|+i+iη)
)
− Li3

(
−e−

π
P

(|σ|−i+iη)
))

. (D.6)

We will set N = 1, P = 10 to perform the numerical analysis. We assume that the quark-
antiquark pair is inserted in the first gauge node corresponding to the boundary condition
for the string being in η∗ = 1. The string is supposed to go inside the bulk in the η direction
up to a point η0 and return back, forming a U-shape embedding. Following the analysis
of eqs. (3.26), (3.27) we have

Veff (η) = F (η)
F (η0)S (η)

√
F 2 (η) − F 2 (η0) , (D.7)

LQQ (η0) = 2
∫ η0

η∗

dz

Veff(z) , (D.8)

EQQ (η0) = F (η0)LQQ (η0) + 2
∫ η0

η∗
dz
S (z)
F (z)

√
F (z)2 − F (η0)2 . (D.9)

The resulting plots for the separation of quark-antiquark pair and their energy are provided
in figure 10. Only r dependence in the energy function appears from S which minimizes in
r̄ = r∗. There are two η0 values for the same separation function LQQ. The energy increases
by separating the quark and anti-quark pair as the embedded string is going deeper inside
the η direction, but the solution becomes unstable for the larger η0.
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Figure 10. The length of the string between the quark anti-quark pair and the energy with
the choice c = 1, µ = 1. The length is redefined to be L̄QQ = LQQ/( 27π2

4 H(r̄)r̄4) and energy as
ĒQQ = EQQ/(S(r̄)).
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