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1 Introduction

Maldacena presented the AdS/CFT conjecture in [1], and very relevant refinements appeared
in [2, 3]. Various papers elaborated on different aspects of the correspondence. In particular,
the beautiful works [4–6] explored the idea of applying the duality in non-conformal settings.

This lead to the study of different set-ups, exploring the duality in phenomenologically
appealing situations (by this we mean, string backgrounds dual to minimally SUSY or
SUSY-breaking QFTs). There are two well-developed lines of work:

• A very fertile line of work, dealing with a two-node quiver field and deformation/resolution
of the conifold was developed in various works. See, for example [7]–[12].
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• Considering higher dimensional p-branes Dp≥4, with some compact directions, such
that the compactified lower dimensional (low energy) QFT is either non-SUSY or with
small amount of SUSY preserved. See for example [13, 14]–[21].

The papers [22]–[24] make contact between the geometries describing the first and second
lineages of models. The geometric connection implies a relation between the associated
QFTs in each case. The geometrisation of a number of field theoretical aspects was achieved:
confinement, symmetries breaking, glueball and meson like excitations, other non-perturbative
excitations in the field theory and finite temperature aspects, among other things.

In this paper we present new type IIB backgrounds that are examples of the second type
of models. We work with D5 branes, compactify them on circles or two-spheres and generate
new solutions of the Type IIB equations of motion. The solutions are particularly simple,
the dilaton is exactly linear, the radial functions of the circle and two-sphere are analytic.
The backgrounds presented in this paper can be used as starting point for calculations that
in the past gave information about non-perturbative aspects of interesting QFTs. Various
computations are explicit and analytic thanks to the simplicity of the background.

The material in this paper is organised as follows.

• In section 2 we study a new smooth type IIB solutions dual to a (4 + 1) dimensional
QFT with minimal amount of SUSY (or zero SUSY, depending on parameters). This
background is inspired on a kind of solutions recently found by Anabalón and Ross [25],
see also [26]. The UV completion in terms of a Little String Theory (LST) is discussed.
Wilson loops, ’t Hooft loops and Entanglement Entropy are calculated, together with a
quantity that gives and estimate of the number of degrees of freedom as a function of the
energy (density of states). Masses for spin-two glueballs are calculated. Depending on
the parameters of the model we find a spectrum that starts discrete and then becomes
continuous, or is purely continuous (as the energy is increased). A notion of gauge
coupling is defined that is in agreement with the confining behaviour displayed by
Wilson loops and screening behaviour shown by ’t Hooft loops.

• In section 3 we write a new non-SUSY and smooth type IIB solution representing D5
branes wrapping S1 × S2. Whilst the S1 shrinks smoothly, the S2 remains of finite size.
The finite size of the S2 (which is held stable by a meron-type gauge field) is responsible
for certain non-field theoretic behaviour of observables of the QFT. We compare with
the results of section 2.

• Section 4 makes a comparison between models presented in past bibliography and the
models in sections 2 and 3. Depending on the fate (shrinking or stabilised) of the
space the D5 branes wrap, some physical observables turn out to behave differently.
We attempt a geometric classification of these different models. We also discuss the
difference and similarities between SUSY preservation via twisting or via the insertion
of a Wilson line.

• In section 5 we present two new black membrane solutions. They are obtained by
double Wick rotation of the backgrounds in sections 2 and 3. Some aspects of the
thermodynamics are studied.
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• Section 6 gives a summary of our results, conclusions and lines for future research.
Various appendices, written with pedagogical intention, discuss explicit technical details
of the calculations. Hopefully, these are useful to colleagues wishing to work on the
topic.

2 A dual to a (4+1)d confining SUSY QFT

In this section we present a Type IIB background describing a stack of D5 branes that,
in a SUSY preserving fashion, wraps a circle direction, leading to a smooth manifold over
the whole space.

To describe this system we use coordinates [t, x1, x2, x3, x4, φ, r, θ, ϕ, ψ]. We define the left
invariant forms of SU(2), in terms of the coordinates [θ, φ, ψ] that parameterise a three sphere,

ω1 = cosψdθ + sinψ sin θdϕ, ω2 = − sinψdθ + cosψ sin θdϕ, ω3 = dψ + cos θdϕ,

Vol(S3) = 1
8ω1 ∧ ω2 ∧ ω3 = 1

8 sin θdθ ∧ dϕ ∧ dψ. (2.1)

The range of the coordinates in the three sphere is 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ ψ ≤ 4π.
We set the constants α′ = 1, gs = 1. In string frame the background reads,

ds2
st = r

dx2
1,4 + fs(r)dφ2 + Ndr2

r2fs(r)
+ N

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
 ,

F3 = 2NVol(S3) +

√
N

2 Q d (ζ(r)ω3 ∧ dφ) , C2 = N

4 ψ sin θdθ ∧ dϕ+

√
N

2 Qζ(r)ω3 ∧ dφ,

Φ = log(r),
(2.2)

the electric RR 7-form is

F7 = − ⋆ F3 = −dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧

2rdr ∧ dφ+Q

√
N

2 sin θdθ ∧ dϕ


C6 = dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧

r2dφ−Q

√
N

2 cos θdϕ

 .
(2.3)

The background is defined in terms of the functions fs(r), ζ(r) and three parameters
(N , r± or Q,m),

fs(r) = 1− m

r2 − 2Q2

r4 =
(r2 − r2

+)(r2 − r2
−)

r4 , ζ(r) = 1
r2 − 1

r2
+
,

2r2
± = m±

√
m2 + 8Q2. (2.4)

This background is a solution to the equations of motion of Type IIB, summarised in
appendix A. For the parameter m = 0, it can be shown by operating with the SUSY variations
in eqs. (A.7), that there are eight preserved spinors. See appendix B for the details.1

1Niall Macpherson has informed us that the sub-manifold Σ5 = [r, φ, θ, ϕ, ψ] preserves SU(2) structure. We
are thankful for the feedback.
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To calculate the number of five branes, we integrate F3 on the manifold Σ3 = [θ, ϕ, ψ].
Using that

(2π)7−pgsα
′ 7−p

2 NDp =
∫

Σ8−p
F8−p, (2.5)

and setting gs = α′ = 1 we find,

ND5 = 1
4π2

∫
Σ3
F3 = N. (2.6)

Comments on SUSY preservation. Placing a SUSY QFT on a circle and imposing
anti-periodic boundary conditions for the fermions completely breaks SUSY. However, by
inserting a Wilson Loop of a constant gauge field around the S1, spinors get charged under the
U(1) symmetry of the cycle, such that now is possible to preserve some amount of SUSY. This
can be seen explicitly in appendix B.1. The mechanism was recently explained and applied
by Anabalón and Ross [25] (see also [27] and see [28] for a precursor). We explain this below.

The flat D5-brane configuration preserves 16 supercharges which do not depend on the six
flat directions of the D5-branes world-volume. Periodically identifying one of the flat directions
(for example x5) and imposing anti-periodic boundary conditions on this circle completely
breaks SUSY (even when we are not adding the thermal factor of the cigar). By inserting the
Wilson line, the spinor is now charged under translations on the S1, see (B.7). This allows the
supercharges to satisfy the anti-periodic boundary conditions, leading to SUSY preservation.

In order to obtain a 6D QFT that flows to a 5D confining one, we insert a radially
dependent Wilson line for the U(1) symmetry along the S1. This is realised holographically
by the radially dependent fibration of the 3-sphere over the shrinking S1.

Comments on the field theory. We interpret the background in eq. (2.2) as a stack of N
D5 branes. On these five branes, the φ-direction is compactified and fibered over the external
three sphere — this is the effect of the function ζ(r). This fibration is such that some amount
of SUSY is preserved and the space time ends at r = r+ in a smooth fashion (we explain this
in appendix B). The smoothness-condition imposes the periodicity φ ∼ φ+ Lφ to be

Lφ =
2π

√
Nr2

+
(r2

+ − r2
−)

=
√
Nπ

(
1 + m√

m2 + 8Q2

)
. (2.7)

The Ricci scalar for the background of eq. (2.2) is,

R = − 12
Nr

+ 4m
Nr3 − 8Q2

Nr5 , (2.8)

this is bounded as r varies in [r+,∞).
The field theory holographically dual to this background is, when m = 0, a SUSY QFT

in (4 + 1)-dimensions when observed at low energies (the region close to r ∼ r+). At higher
energies the φ-direction decompactifies and the QFT is UV completed by the theory on D5
branes (5+1) dimensional Super Yang-Mills and then, at even higher energies, a Little String
Theory (after S-duality). In fact, whilst the Ricci scalar and other curvature invariants are
bounded in the region of large radial coordinate r, the dilaton grows unbounded. An S-duality
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r

r = r+ S-Duality

D5 NS5

Figure 1. Behaviour of the string coupling constant (blue) and the Ricci scalar (red) as a function of
the holographic coordinate. The two scales of the theory are depicted: at r = r+ the compactification
circle is effectively of zero size and the theory is (4+1)-dimensional. When the string coupling constant
becomes of order one, we S-dualise and the theory is described in terms of the NS5-brane.

to the NS-five brane frame is needed. The effect of the fibration is to introduce a Wilson line
(in the QFT) along the compactified direction φ. In summary, at low energies, the field theory
is (4 + 1) dimensional, apparently gapped and confining (we substantiate these properties in
the forthcoming sections). At higher energies, the theory recovers its (5 + 1) dimensional
character and is UV completed by the theory on NS-five branes, a Little String theory (LST).

We can rescale eΦ → eΦ(r)eΦ0 and F3 → e−Φ0F3, which rescales the Newton constant
but keeps the same equations of motion. We can choose e−Φ0 to be a large integer number.
Hence, the range of the radial coordinate for which eΦ < 1 can be made large (at the same
time, the number of five branes made large and quantised).

The scales at which these different description take over are: E ∼ r+, for the scale that
compactifies to (4 + 1) dimensions. The theory becomes six dimensional when fs(r∗) ∼ 1.
Then, when eΦ ∼ 1 is the scale at which the S-duality is needed and the NS-five brane
description takes over.

In what follows, we calculate various observables associated with the QFT. These display
behaviours that give account of the IR properties of the field theory (like confinement
of quarks, screening of monopoles) and also some of the high energy properties, like the
presence of a minimal length, characteristic of the above mentioned non-local UV-completion.
We also propose a definition of an effective gauge coupling, we discuss how to calculate
the Entanglement Entropy in a strip region, and describe the calculation and spectrum of
spin-two glueballs in the QFT.

2.1 Observables

In this section we calculate various observables using the holographic background in eq. (2.2),
by probing it with various available objects in Type IIB. This produces values characterising
the strongly coupled QFT that we describe above. We start by finding a gauge coupling
of the (4 + 1) QFT.

2.1.1 Gauge coupling

To calculate the gauge coupling of the QFT, we probe the background with a D5 brane
that extends over [t, x1, x2, x3, x4, φ]. We switch on an Abelian gauge field on the brane and
calculate the coefficient in front of the gauge field kinetic term (for a small-field expansion).
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This coefficient in general depends on the radial coordinate, indicating that the gauge coupling
is energy dependent. The general procedure was reviewed in [29] and applied in different
situations. We give a brief account below.

The induced metric on the D5 brane is

ds2
D5,ind = rdx2

1,4 + r
(
fs (r) + 2Q2ζ (r)2

)
dφ2 ,

with determinant

e−Φ
√
− det gD5,ind = r2

(
fs (r) + 2Q2ζ (r)2

)1/2
.

The Born-Infeld action is

SBI = TD5

∫
d6xe−Φ

√
− det (gMN + 2πFMN ) , (2.9)

with gD5,ind = gMNdx
MdxN . When expanded in the weak field limit this leads to,

SBI = TD5

∫
d6xe−Φ

√
− detgD5,ind

(
1− 1

4 (2π)2 FMNFMN

)
,

= TD5r
2
(
fs (r) + 2Q2ζ (r)2

)1/2 ∫
d5xdφ

(
1− 1

4 (2π)2 gMAgNBFABFMN

)
.

Turning on Ftx on the brane (this can be generalised to all the Minkowski directions), we obtain

SBI = TD5r
2
(
fs (r) + 2Q2ζ (r)2

)1/2 ∫
d5xdφ

(
1− 1

4 (2π)2 2gttgxxFtxFtx
)
,

= TD5Lφr
2
(
fs (r) + 2Q2ζ (r)2

)1/2 ∫
d5x

(
1 + 1

2r2 (2π)2 FtxFtx

)
. (2.10)

We have performed the integration over the φ-direction (represented by the factor Lφ above),
to construct the effective (4 + 1)d gauge coupling. We read the gauge coupling,

1
4g2
YM

= 2π2T5Lφ
(
fs (r) + 2Q2ζ (r)2

)1/2
. (2.11)

The asymptotic values of the coupling are

1
g2
YM

=

 8π2T5Lφ

√
1 + 2Q2

r4
+
, r → ∞

0 , r → r+

. (2.12)

We interpret this result as follows: at high energies (large values of r), the gauge coupling
becomes a large constant value. This value is characteristic of the LST. It is the constant
coupling of the LST. Note that the constant part of the Wilson line (the term 2Q2

r2
+

) enters the
coupling above. On the other hand, for low energies, when r ∼ r+, we find a gauge coupling
that grows unbounded. This suggest that the QFT confines at low energies.

Let us observe that the Wess-Zumino term for the probe D5 branes is,

SWZ = −TD5

∫ (
C6 − C4 ∧ F2 +

1
2C2 ∧ F2 ∧ F2 −

1
6C0F2 ∧ F2 ∧ F2

)
= −TD5

∫
C6 ,

– 6 –
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Using the expression for C6 in eq. (2.3), we find

SWZ = −r2TD5

∫
dt ∧ dφ ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ,

= −r2TD5Lφ

∫
d5x . (2.13)

Comparing the expression above with the ‘tension’ term in eq. (2.10), we observe that (even
in the case m = 0) this probe is not SUSY preserving. The probe is effectively attracted
towards r+ (the tension is bigger than the charge).

We close this section with some comments motivated by the above material. First, note
that the probe we used is not SUSY. Either there is a different similar D5 probe that is SUSY
or the Coulomb branch of the six dimensional QFT is lifted. It would be interesting to further
study this. Second, note that the naive dimensional analysis, indicating that five dimensional
QFTs should have weakly coupled IR dynamics is not working here. As mentioned, a VEV
for an R-symmetry current might be changing this. Note the same would occur if working
with a Witten-like compactification on a circle (breaking SUSY) for Dp branes with p ≥ 5.

We go back to the point made below eq. (2.12) that the QFT confines. To substantiate
it, we compute the Wilson loop.

2.1.2 Wilson Loops

There is a very developed algorithmic way of computing Wilson loops. The reader interested in
the details should consult the papers [29]–[30]. Here we just summarise the main points briefly.

For observables calculated using branes (usually non-local operators in the dual QFT), it
is usual to arrive (after integrating over some coordinates) to an effective action of the form

S = Teff

∫
dσ
√
F 2(r) +G2(r)r′2. (2.14)

It is customary to define an “effective potential” associated with this effective action. This
encodes some of the asymptotic behaviour of the non-local observable (for example, the
length). The effective potential Veff is

Veff (r) = F (r)
F (r0)G (r)

√
F (r)2 − F (r0)2 . (2.15)

Here r0 is the position in the radial coordinate at which the embedding of the extended
object has a turning point dr

dx |r=r0 = 0. We must impose some condition on Veff , for example
Veff(r → ∞) → ∞, to achieve good asymptotic behaviour of the holographic calculation of
the observables, see [31] for a careful derivation and detailed explanations.

The length of the operator can be calculated by integration of the inverse of Veff ,

L(r0) = 2
∫ ∞

r0

dr

Veff(r)
. (2.16)

The above integral is usually hard to perform analytically. In such cases, an approximate
expression is useful. We denote this approximate expression by L̂. It is given by [32],

Lapp = L̂ (r0) = π
G

F ′

∣∣∣∣
r=r0

. (2.17)

– 7 –
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Similarly, the energy of the observable is calculated as (see [31] for a careful derivation),

E = F (r0)L(r0) + 2
∫ ∞

r0

G(r)
F (r)

√
F 2(r)− F 2(r0)dr − 2

∫ ∞

r+
G(r)dr. (2.18)

The stability of the brane embedding used to get eq. (2.14) is determined by the function

Z (r0) =
d

dr0
L̂ (r0) . (2.19)

It was suggested in [33], that Z (r) < 0 implies the stability of the embedding. Intuitively,
the more the string penetrates into the bulk, the larger L̂app becomes.

Let us now apply the recipe in eqs. (2.14)–(2.19) to our background in eq. (2.2). To
calculate the Wilson loop for non-dynamical quarks in the fundamental representation, we
follow [34, 35] and embed a fundamental string in the configuration,

t = τ , x = σ , r = r (σ) . (2.20)

The Nambu-Goto action is

SNG = TF1Lτ

∫
dσ
√
F 2 +G2r′2 , F = r , G =

√
N√

fs (r)
. (2.21)

The effective potential is

Veff (r) = 1√
N r0

√
r2fs (r)

(
r2 − r2

0
)
. (2.22)

The approximated separation of the quark-anti-quark pair is

L̂QQ (r0) =
√
N π√
fs (r0)

. (2.23)

This expression for L̂QQ (approximating the separation between the quark pair) becomes
divergent in r0 ∼ r+. This suggest a confining behaviour, as the pair can be separated to
arbitrarily large distances. Below we confirm this when we study the dependence of the
energy of the pair, where we find a linear behaviour with the separation. On the other hand,
for r → ∞, when studying the high energy regime, we find that there is a minimal separation
L̂min = π

√
N between the pair. This indicates a non-local behaviour of the QFT, with a

minimal length, associated with the size of little strings.
The stability of this embedding is determined by the function

d

dr0
L̂ (r0) = −

√
N π

2 [fs (r0)]3/2 f
′
s (r0) , (2.24)

= −

√
N πr0

(
r2

0(r2
+ + r2

−)− 2r2
+r

2
−

)
[
(r2

0 − r2
+)(r2

0 − r2
−)
]3/2 , (2.25)

– 8 –
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Figure 2. Left: parametric plot of EQQ(LQQ) in the BPS bound m = 0. Bottom Right: the profiles
of different strings as they explore the bulk. The longer the separation LQQ, the more the string
approaches r0

r+
∼ 1. This is usual of the backgrounds dual to a confining QFT behaviour.

which is always negative for r0 > r+. Consequently the proposed configuration for the Wilson
loop is stable. We can analyse numerically the expressions for the length and the energy
of the Wilson loop, see eqs. (2.16), (2.18). We have,

LQQ = 2r0
√
N

∫ ∞

r0

r dr√
(r2 − r2

0)(r2 − r2
+)(r2 − r2

−)
(2.26)

EQQ = r0LQQ(r0) + 2
√
N
[ ∫ ∞

r0

√
r2(r2 − r2

0)
(r2 − r2

+)(r2 − r2
−)
dr −

∫ ∞

r+

r2 dr√
(r2 − r2

+)(r2 − r2
−)

]
.

It is interesting to notice that these expressions for the Wilson loop for quarks in the
fundamental is exactly the same, up to the replacement

√
8

e2
A+e2

B
→

√
N as that obtained in

equations (4.16) and (4.17) of the paper [29].2 Hence the analytic result for these integrals
and the parametric plot for EQQ(LQQ) given in [29] can be translated. In summary, we
observe a confining behaviour, together with a minimal separation of the quark-antiquark
pair (at large values of r0), that is associated with the scale of the LST. In spite of the field
theory analysed here and that in [29] being qualitatively different, the Wilson loop makes
no difference between these two effective theories constructed using D5 branes. This feature
can only be appreciated using the holographic dual description.

Another interesting observable is the ’t Hooft loop, describing the potential between a
pair of external magnetic monopoles. We study this next.

2.1.3 ’t Hooft loops

If the theory confines electric charges, we expect magnetic monopoles to be screened. We
study the monopole-anti-monopole pair by considering an effective magnetically charged
string. This object is studied by probing the background with a D5 brane that extends in

2This value is the level of the WZW model on the cigar when the sigma model on NS branes is studied.
See section 5 of the paper [29].
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the directions [t, x, φ, θ, ϕ, ψ] and r = r (x). The induced metric is

ds2
D5,ind = r

−dt2+
(
1+ Nr′2

r2fs (r)

)
dx2+fs (r)dφ2+N

4

ω2
1+ω2

2+
(
ω3−

√
8
N
Qζ (r)dφ

)2
 .

When we integrate over the directions φ, θ, ϕ, ψ the effective probe is (1 + 1) dimensional and
carries magnetic charge. The effective action takes the form of eq. (2.14). It reads,

Seff = TD5Lφ16π2
(
N

4

)3/2 ∫
dt

∫
dx
√
r4fs (r) +Nr2r′2 . (2.27)

From eq. (2.27) we identify the functions

F = r2
√
fs (r) , G =

√
Nr . (2.28)

This object has vanishing tension when it approaches r = r+, as F (r) =
√
(r2 − r2

+)(r2 − r2
−).

As a consequence of this, at low energies the monopole anti-monopole pair can be separated at
no energy expense, In contraposition with the Wilson loop, this indicates a screening behaviour.

The effective potential defined in eq. (2.15) is for this probe,

Veff (r) = r√
N r2

0

√
fs (r)
fs (r0)

(
r4fs (r)− r4

0fs (r0)
)
. (2.29)

The approximated separation for the monopole pair L̂MM (r0) is given by

L̂MM (r0) = 2π
√
N

√
fs(r0)

(4fs(r0) + rf ′s(r0))
= π

√
N

√
(r2

0 − r2
+)(r2

0 − r2
−)

2r2
0 − r2

+ − r2
−

. (2.30)

This approximate separation for the monopole pair displays the opposite behaviour to that of
the Wilson loop (quark pair). In fact, there is a maximal separation, achieved when r0 → ∞
and the minimal (vanishing) separation is achieved when r0 ∼ r+.

The function Z (r0) associated to the embedding is

Z (r0) = d

dr0

(
L̂MM (r0)

)
= π

√
N r0

(r2
+ − r2

−)2

(2r2
0 − r2

+ − r2
−)2

√
(r2

0 − r2
+)(r2

0 − r2
−)
. (2.31)

This is always positive, indicating that this embedding of the D5 brane is unstable. This
instability suggest a transition between a connected embedding, like the one studied above,
and a disconnected one. This indicates that the pair of monopoles can be arbitrarily separated
at no energy cost. We conclude that the ’t Hooft loop displays a screening type of behaviour.

We can write the expressions in eqs. (2.16), (2.18). These read,

LMM = 2
√
N(r2

0 − r2
+)(r2

0 − r2
−)

×
∫ ∞

r0

r dr√
(r2 − r2

+)(r2 − r2
−)
[
(r2 − r2

+)(r2 − r2
−)− (r2

0 − r2
+)(r2

0 − r2
−)
]

EMM =
√
(r2

0 − r2
+)(r2

0 − r2
−)LMM (r0)

+ 2
√
N

∫ ∞

r0

r
√
(r2 − r2

+)(r2 − r2
−)− (r2

0 − r2
+)(r2

0 − r2
−)√

(r2 − r2
+)(r2 − r2

−)
dr −

∫ ∞

r+
r dr

 .
(2.32)
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Figure 3. The integrals of the monopole-antimonopole t’ Hooft loop (2.32) can be written in terms
of two parameters λ = −r2

−/r
2
+ and N . All the plots are considering λ = 2.5 and N = 3. Upper

left: plot comparing the exact expression for the monopole separation (2.32) with the approximate
expression L̂MM in (2.30). Upper right: the energy of the t’Hooft loop as a function of the r0 in units
of r+. Bottom left: different profiles of the macroscopic strings as a function of the turn-around point
r0. Bottom Left: plot of the function EMM (LMM ). The upwards concavity ascertains the prediction
that the embedding is unstable.

We analyse these integrals by plotting LMM (r0), comparing it with L̂MM in eq. (2.30),
EMM (r0) and the parametric plot EMM (LMM ). These are displayed in figure 3.

The Wilson and ’t Hooft loops indicate that the background of eq. (2.2) is dual to a (4+1)
dimensional QFT that confines electric charges and screens magnetic ones. An interesting
quantity to study is the density of states (the number of degrees of freedom) in terms of the
energy (the radial coordinate). Below, we calculate an observable that quantifies this.

2.1.4 Density of states, free energy or holographic central charge

In this section we study a quantity that becomes particularly important and well defined in
conformal field theories (our QFT is not conformal). In the conformal case, this quantity
coincides with the free energy or central charge of the CFT (indicating the number of
degrees of freedom in the system). This quantity has been generalised from calculations in
backgrounds with an AdS-factor (dual to CFTs) to generic backgrounds and dilaton, like our
case in the background of eq. (2.2). See [36, 37]. For backgrounds and dilaton of the form,

ds2 = α(r, yi)
(
dx2

1,d + β (r) dr2
)
+ gij

(
r, yi

)
dyidyj , Φ = Φ

(
r, yi

)
. (2.33)

Here yi stands for all the internal coordinates. We define the following quantites

Vint =
∫
dyi
√
e−4Φ det gijα (r, yi)d , H = V 2

int . (2.34)
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The holographic central charge is defined as

chol = dd
β (r)d/2H(2d+1)/2

GN (H ′)d
. (2.35)

For the background in eq. (2.2) we have yi ∈ [φ, θ, ϕ, ψ] with

gijdy
idyj = rfs (r) dφ2 + Nr

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ (r) dφ

)2
 . (2.36)

The functions in eqs. (2.33)–(2.34) are

α
(
r, yi

)
= r , β (r) = N

r2fs (r)
, d = 4 , e−4Φ = 1

r4 . (2.37)

These lead to H = N 2r4fs (r) with N = 2π2
√
N3Lφ, and the holographic central charge is

chol =
256N2N r2fs (r)5/2

GN
[
fs (r) + r

4f
′
s (r)

]4 = 16N2N
GN

[
(r2 − r2

+)(r2 − r2
−)
]5/2

(2r2 − r2
+ − r2

−)4 . (2.38)

This quantity vanishes for r = r+, suggesting a gapped system, in agreement with the
confining behaviour induced from the results of the Wilson and ’t Hooft loops. On the other
hand, for large values of r (at high energies), the quantity diverges quadratically. This is in
agreement with the non-field theoretical UV-completion provided by the LST.

There is another quantity, called cflow defined in [37]. This considers the system as a six
dimensional non-isotropic QFT. The behaviour of cflow is qualitatively similar to the one
described in eq. (2.38), but the divergence at high energies is faster.

2.1.5 Entanglement Entropy

A very interesting observable in all QFTs is the Entanglement Entropy (EE). This can be
holographically computed following [38]. For the case of a strip-region of size LEE and for
a confining field theory, it was suggested in [39] that the Entanglement Entropy SEE(LEE)
presents a phase transition as we vary LEE . This proposal was critically analysed in [32]
and more recently in [40, 41]. In these papers, it was found that for gravity backgrounds
dual to confining QFTs with non-local UV completion, the phase transition conjectured
in [39] is absent. If a UV-cutoff is introduced (avoiding the non-local UV completion), the
phase transition is recovered.

The QFT holographically described by the background in eq. (2.2), fits the above
description. The EE on a strip is calculated by computing the area of an eight-manifold
Σ8 that is parametrised by,

Σ8 = [x1, x2, x3, x4, φ, θ, ϕ, ψ], r(x1). (2.39)

ds2
Σ8,st = r

[
dx2

2,3,4 + dx2
1

(
1 + N

r2fs(r)
r′(x1)2

)
+ fs(r)dφ2

+N4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
],
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and then calculating (for an entangling region of size L),

SEE = 1
GN

∫
d8x

√
e−4Φ det gΣ8,st =

16π2N3/2Lx2Lx3Lx4Lφ
8GN

∫ L
2

−L
2

dx
√
F 2(r) +G2(r)r′2.

F = r2
√
fs(r), G(r) =

√
Nr. (2.40)

The expression above fits in the generic effective action in eq. (2.14), hence we can write
integral expressions for the separation and EE following the formulas (2.16), (2.18). Indeed,
we can write an approximate expression for the separation following eq. (2.17), and also
evaluate the function Z(r0) in eq. (2.19), indicating stability or instability of the embedding.

At this point it is useful to observe that the functions F (r) and G(r) that appear in
the study of the EE, eq. (2.40), are the same ones that appear in the study of the ’t Hooft
loop, in eq. (2.28). It follows from this that the approximate expression for the separation
is a monotonic function given in eq. (2.30). This indicates the absence of phase transitions.
The function ZEE(r0) coincides with that in eq. (2.31).

Beyond the use of the approximate expressions, we work with the exact and generic
ones derived in [32]. We find that our EE does not present a phase transition following the
general criterium in [32]. The plots are identical to those in figure 3. There is an instability
of the embedding — positive Z(r0), indicating that in the presence of a cutoff, new ‘short’
configurations appear, leading to the phase transition.

To close this section, we observe that the expressions for the EE obtained in this section,
coincide (up to rescaling by constants) with those derived for the same observable in [29].
This indicates deep relations between the very dissimilar QFTs.

2.1.6 Spin-two glueballs

We consider glueball-like excitations in the confining (4+1) dimensional QFT holographically
described by the background in eq. (2.2). The glueball excitations are studied by performing
a fluctuation of some background field, either Ramond or Neveu-Schwarz in the Type II
action. The nonlinear character of the equations of motion, implies that this fluctuation
sources excitations for other fields in the background. The dynamics is described by linear
second order coupled differential equations for the fluctuations. This is characteristically very
hard to analyse (diagonalise, resolve, find the normal modes and spectra, etc).3

We begin this section by briefly summarising the treatment of a very special kind of
fluctuations which are easy to analyse. The detailed derivations are given in appendix C.

In this section we work in the Einstein frame, because we are studying particle-like
excitations. In Einstein frame, the background metric of eq. (2.2) reads,

ds2
E =

√
r

dx2
1,4 + fs(r)dφ2 + Ndr2

r2fs(r)
+ N

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
 . (2.41)

3A different approach is to study the equation of motion of a probe scalar in the background. It was
recently observed in [42], that a new logarithmic branch of solutions appears in background of the form (2.2).
Whilst we do not refer to these interesting probe scalars as “glueballs”, their study is interesting.
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Consider metric fluctuations of the form

δgµν = e2Ah̄µν , h̄µν =
(
hab(x)ψ̃(y) 0

0 0

)
, (2.42)

this is, metric fluctuations parallel to the flat space. Here xa denotes the flat space coordinates
[t, x1, x2, x3, x4], while yi correspond to all the transverse ones [r, φ, θ, ϕ, ψ]. We work in
the transverse-traceless gauge

haa = 0, ∇ah
a
b = 0. (2.43)

Following the appendix of [43], it is consistent to take δFµνλ = 0, δΦ = 0. In what follows,
we rewrite the Einstein frame background metric as

ds2 = e2A(y⃗)
(
ds2(R1,4) + ĝab(y⃗)dyadyb

)
. (2.44)

Following the treatment in [44], further detailed in appendix C, we find that changing
variables as ψ̃(y) = e−4AΨ(y), the function Ψ(y) solves a Schroedinger-like equation

−□̂yΨ+ V (y)Ψ =M2Ψ, (2.45)

with M2 ≥ 0 and where the effective potential is

V (y) = e−4A□̂ye
4A = e−4A

√
det ĝab

∂a
[√

det ĝabĝab∂be4A
]
. (2.46)

Let us apply these formulas to our background in eq. (2.2), (2.41). The warp factors
and internal metric read,

e4A(y⃗) = r, (2.47)

ĝabdy
adyb = fs(r)dφ2 + Ndr2

r2fs(r)
+ N

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
 .

This gives
√
det ĝab = N2

8r sin(θ). In what follows we focus on glueballs that depend on
the radial coordinate r and the angular coordinate φ as

Ψ(r, φ) = e
i 2π
Lφ

nφΨ(r), n ∈ Z (2.48)

but are not excited in the [θ, ϕ, ψ] directions. The potential in (2.46) is,

V (r) = 1
N
∂r (rfs(r)) , (2.49)

and the Schroedinger-like equation in (2.45) reads

− r

N

d

dr

(
rfs(r)

dΨ
dr

)
+

V (r) + n2

fs(r)

(
2π
Lφ

)2
Ψ(r) =M2Ψ(r). (2.50)

We can move (2.50) to more manageable forms. Moving to the tortoise coordinate ρ by

r = cosh
(

ρ√
N

)√
r2

+ − r2
− tanh2

(
ρ√
N

)
, (2.51)
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which maps r ∈ [r+,+∞[ to ρ ∈ [0,+∞[. Using the change of variables 4 Ψ(r) =
fs(r)−1/4Θ(ρ), leads to the equation (see appendix C.2)

−d
2Θ
dρ2 + Ṽ (ρ)Θ =M2Θ, Ṽ (ρ) =

V (r) + n2

fs(r)

(
2π
Lφ

)2

− r

N
f1/4
s

d

dr

[
rfs

df
−1/4
s

dr

] ∣∣∣∣
r=r(ρ)

.

(2.52)
Explicitly, the effective potential reads

Ṽ (ρ) = 1
N

− 1
N

1
sinh2

(
2ρ√
N

) + n2

N
coth2

(
ρ√
N

)(
1−

r2
−
r2

+
tanh2

(
ρ√
N

))2

, (2.53)

which has the following asymptotic expansions

Ṽ (ρ→ 0) =
(
n2 − 1

4

) 1
ρ2 + 4

3N + n2 2(r2
+ − 3r2

−)
3Nr2

+
+O

(
ρ2
)
,

Ṽ (ρ→ +∞) = 1
N

− n2 2r2
−

Nr2
+
+O

(
e−2N−1/2ρ

)
.

(2.54)

Note that the equation only depends on the parameters r± through the ratio λ = − r2
−
r2

+
.

The potential is unbounded from below when the leading term of the effective potential close to
ρ→ 0 is negative. Requiring a potential that is bounded below leads to a bound in the angular
momentum along the circle n2 ≥ 1. The only excitation for which the effective potential is
unbounded from below is the S-wave. In the later case, the potential near the origin can be
approximated by V ∼ −1/4ρ2, which, as highlighted in [45], needs to be studied carefully.

The previous bound is not enough to guarantee a discrete spectrum of excitations. For
0 ≤ λ ≤ 1 the effective potential has a runaway behaviour (the minimum is at infinity), while
for λ > 1 the potential has a minimum. We have a transition between a spectrum with discrete
states (λ > 1) or without discrete states (λ ≤ 1). Note that λ = 1 is precisely the SUSY point.

In what follows, we study the discrete spectrum of glueballs for λ > 1. Also, note that
the potential (2.53) is invariant under n → −n. Without loss of generality, we consider
n ≥ 1 (we include the n ≤ −1 cases when writing the full solution, see below). Using
the change of variables

z = cosh
(

ρ√
N

)
, (2.55)

which maps the region ρ ∈ [0,∞[ to z ∈ [1,+∞[, we can write the profile of the metric
perturbation e2Aψ̃ = e−2Af

−1/4
s Θ(z)ei

2π
Lφ

nφ = H(z)ei
2π
Lφ

nφ as

H = (z2 − 1)−
n
2
(
z2 + λ(z2 − 1)

) 1
4

×
[
C1z

nλ
2F1

(
a+, a−; c−; z2

)
+ C2z

−nλ
2F1

(
b+, b−; c+; z2

)]
,

(2.56)

4Note that in the tortoise coordinate
√

det(ĝij) =
√
fs(ρ)Vol(S3) and therefore the Sturm-Liouville norm,

see appendix C.1, is

||ψ̄||2 =
∫
dφ dρVol(S3)

√
fs(ρ)

(
fs(r)−1/4Θ(ρ)

)2
=
∫
dφ dρVol(S3)|Θ(ρ)|2.

Therefore, when imposing boundary conditions, it is enough to require Θ(ρ) to be normalisable.
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where
a± = 1

2

(
1− n(λ+ 1)±

√
1−M2N + n2(1 + λ)2

)
,

b± = 1
2

(
1 + n(λ− 1)±

√
1−M2N + n2(1 + λ)2

)
,

c± = 1± λn.

(2.57)

In what follows we consider 0 ≤ M2N < 1 + n2(1 + λ)2. We show below that this
condition leads to a discrete spectrum of states. On the other hand, M2N > 1 + n2(1 + λ)2

leads to a continuous spectrum. We explain the origin of the continuous spectrum in the
following subsection.

We now expand around z → 1 and z → +∞ to find normalisable solutions. At z → 1
we have (see appendix C)

lim
z→1

H = (z2 − 1)
n
2 Γ(−n)

(
C1

Γ(c−)
Γ(a+)Γ(a−)

+ C2
Γ(c+)

Γ(b+)Γ(b−)

)
+ (z2 − 1)−

n
2 Γ(n)

(
C1

Γ(c−)
Γ(c− − a+)Γ(c− − a−)

+ C2
Γ(c+)

Γ(c+ − b+)Γ(c+ − b−)

)
,

(2.58)

while at z → +∞ the expansion reads5

lim
z→+∞

H = z−
1
2−

√
1−M2N+n2(1+λ)2

(
C1

Γ(a− − a+)Γ(c−)
Γ(a−)Γ(c− − a+)

+ C2
Γ(b+ − b−)Γ(c+)
Γ(b+)Γ(c+ − b−)

)
+ z−

1
2 +

√
1−M2N+n2(1+λ)2

(
C1

Γ(a+ − a−)Γ(c−)
Γ(a+)Γ(c− − a−)

+ C2
Γ(b− − b+)Γ(c+)
Γ(b−)Γ(c+ − b+)

)
.

(2.59)

We require the leading term in both cases to vanish. This is, we impose regularity
condition at the origin (z = 1) and the normalisability of the excitations (fast decay at
z → +∞). Let us start with (2.59). In order to make the leading term vanish we impose

C2 = −C1
Γ(a+ − a−)Γ(c−)
Γ(a+)Γ(c− − a−)

Γ(b−)Γ(c+ − b+)
Γ(b− − b+)Γ(c+)

. (2.60)

We now move to (2.58). It might seem that there is an unavoidable divergence due to
the factor of Γ(−n) but we will show that this divergence can be cancelled by a precise choice
of M2 which also sets the leading term to zero.

Since we are considering n ≥ 1, the leading term in (2.58) is the second one. The
coefficient of the leading term in (2.58) is

coeffleading = Γ(c−)
Γ(c− − a−)

( 1
Γ(c− − a+)

− Γ(a+ − a−)
Γ(a+)

Γ(b−)
Γ(b− − b+)

1
Γ(c+ − b−)

)
, (2.61)

We can set the coefficient to zero by imposing c− − a− = −p, with p ∈ N, which leads to
a quantisation condition for the glueball mass provided p satisfies the following bound

p ≤ 1
2 (n(λ− 1)− 1) = pmax. (2.62)

5From here we see that for M2N > 1 + n2(1 + λ)2 both branches are regular at infinity. There is no need
to implement a boundary condition at infinity and hence, no quantisation condition for M2.
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Figure 4. Glueball profile for a particular configuration λ = 6, N = 1, n = 1. Left: radial profile for
the three allowed values of p = 0, 1, 2.. Right: in black the Schroedinger effective potential (2.53) and
in colors the value of the glueball masses associated to the excitations p = 0, 1, 2.

From this is clear that for 0 ≤ λ ≤ 1 does not lead to a discrete spectrum: in that case is
impossible to satisfy p > 0 and p < pmax simultaneously. The same holds for n = 0.

The spectrum for the glueball masses reads (notice that this includes the n ≤ −1 cases)

M2 = 1
N

(
1 + n2(λ+ 1)2 − 4(pmax − p)2

)
. (2.63)

On the other hand, noting that (see appendix C) c− − an = a+ + n we have that
a+ = −n − p, so that the factor of 1/Γ(a+) cancels the divergence in Γ(−n) in (2.58).
Furthermore, with this choice for M2, from (2.60) we see that C2 = 0. The solution satisfying
the boundary conditions is

e2Aψ̃ =
⌊pmax⌋∑
p=0

∑
n ̸=0

Cp,ne
i 2πn
Lφ

φ z|n|λ
(
z2 + λ(z2 − 1)

) 1
4

(z2 − 1)
|n|
2

2F1
(
−|n| − p, 1 + p− |n|λ; 1− |n|λ; z2

)
(2.64)

In figure 4 we plot the radial profiles for this functions. The figure also shows the potential
in eq. (2.52) and the masses of the first few glueballs.

2.1.7 On the continuous spectrum

Here we discuss the origin of the continuous spectrum that appears for the spin-2 glueballs
discussed in the previous section. Let us begin by computing the spin-2 glueball spectrum
on the pure D5-brane background, which in Einstein frame reads

ds2
E =

√
r

(
dx2

1,5 +N
dr2

r2 +Nds2(S3)
)

(2.65)

Following appendix C, we rewrite the metric as

ds2
E = e2A

(
dx2

1,5 + ds2
ŷ

)
, ds2

ŷ = N
dr2

r2 +Nds2(S3), e2A =
√
r. (2.66)

Before proceeding with the computation of the glueball solution, let us first go into
the tortoise coordinate by r = eρ, which maps r ∈ [0,+∞[ to ρ ∈ R. The metric in the
transverse space then reads

ds2
ŷ = Ndρ2 +Nds2(S3), e2A(ρ) = e

ρ
2 . (2.67)
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Using (2.46) we have V (ρ) = 1/N . Separating variables Ψ(y) = Θ(ρ)Yℓm, where Yℓm are
the spherical harmonics on the 3-sphere satisfying ∇2

S3Yℓm = −ℓ(ℓ+ 2)Yℓm, then, eq. (2.45)
takes the form

−d
2Θ
dρ2 + [ℓ(ℓ+ 2) + 1]Θ(ρ) =M2NΘ(ρ) (2.68)

This is a Schroedinger-like equation with a constant potential Veff = ℓ(ℓ+2)+1. Defining
E = M2N − ℓ(ℓ + 2) − 1, the solutions of the problem depend on the sign of E (recall
that M2 is always positive) and are

Θ(ρ) =

c1e
i
√
Eρ + c2e

−i
√
Eρ E > 0

c1e
√
−Eρ + c2e

−
√
−Eρ E < 0

(2.69)

For E < 0, imposing regularity at ρ → ±∞ sets c1 = c2 = 0 so that solution is not
relevant. The only solution is the plane wave and we have a continuum of states.

The continuous spectrum for the spin-two excitations of the D5 brane suggests a natural
interpretation for the spectrum we have found in section 2.1.6. In fact, we have there a
spectrum that (for the parameter λ > 1) starts being discrete and then turns continuous.
On the other hand, for 1 ≤ λ the spectrum is solely continuous.

The way to think about this is the following. The size of the compactification circle
φ is according to (2.7),

Lφ

π
√
N

= 1 + m√
m2 + 8Q2 (2.70)

In this expression the quantity π
√
N is the size characteristic of the LST — see for

example, the comment below (2.23).
For m > 0 we have Lφ > LLST , for m < 0 we have Lφ < LLST . The case m = 0 implies

λ = − r2
−
r2

+
= 1, which is the SUSY situation.

In the case Lφ < LLST there are some field theoretical discrete states. The energy of
these states is less than the energy for which little strings take over the dynamics. Hence,
the discrete set of states is followed by a continuous spectrum. This continuum is identified
with the one encountered in the flat D5 brane case.

On the other hand, for Lφ > LLST the little string theory with its continuous spectrum
controls the dynamics at all energies (for this particular spin-two observable).

We propose that this behaviour (a discrete of states, followed by a continuous spectrum)
is characteristic of spin-two fluctuations like the ones considered here, see (2.42), (2.48) in
holographic duals to QFTs constructed based on compactified D5 branes.

This feature should be absent in duals obtained compatifying Dp<5 branes. For example,
the analog glueball in a dual to field theoretical system written in [46] is purely discrete.

We close this section dealing with a dual to a (4 + 1) dimensional confining field theory.
We move to the study of a similar (2 + 1) dimensional QFT.
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3 A dual to a (2+1) dimensional QFT

In this section we present a different solution to the Type IIB equations of motion — written
in appendix A. It describes D5 branes wrapping a two sphere.

We use coordinates [t, x1, x2, µ, r, ϑ, φ, θ1, ϕ1, ψ1]. The coordinates [θ1, ϕ1, ψ1] are used
to parameterise a three sphere, using the left invariant forms defined in eq. (2.1). There is a
cigar-like direction that we parameterise with µ, Minkowski directions (t, x1, x2) and a radial
coordinate r. There is also a two sphere described by (ϑ, φ).

To define the background it is convenient to introduce the following one-forms,

A(1) = sinϑ cosϑ cosφdφ+ sinφdϑ, (3.1)
A(2) = − cosφdϑ+ cosϑ sinϑ sinφdφ, A(3) = − sin2 ϑdφ,

Θ(1) = (ω1 −A(1)), Θ(2) = (ω2 −A(2)), Θ(3) = (ω3 −A(3)),

The one-form A = λA(i)σi is a meron gauge field (a λ-fraction of an instanton). This type
of gauge field has an important role in mechanism of confinement in QCD. Here, we use it
on the holographic dual background. Interesting comments about merons in context similar
to ours can be found in [47]. Note that (A(1))2 + (A(2))2 + (A(3))2 = dϑ2 + sin2 ϑdφ2. In
terms of these definitions the type IIB configuration reads,

ds2
st= r

{
−dt2+dx2

1+dx2
2+
(
1−m

r2

)
dµ2+ 2dr2

r2
(
1−m

r2

)+dϑ2+sin2ϑdφ2+
∑
i

(
Θ(i)

)2
}
,

F3 =2NVol(S3)+N

4 d
[
ω1∧A(1)+ω2∧A(2)+ω3∧A(3)

]
, (3.2)

Φ= log
( 4
N
r

)
,

we can also write the electric F7 flux

C6 =
√
2Nr2

8 dt ∧ dx1 ∧ dx2 ∧ dµ ∧
[
sinϑdϑ ∧ dφ+ f2

]
, (3.3)

f2 = cosϑ Θ(1) ∧Θ(2) + sinϑ sinφ Θ(1) ∧Θ(3) + sinϑ cosφ Θ(2) ∧Θ(3),

F7 = dC6.

This background does not preserve any supercharges, even for m = 0. We can expand
the (µ, r) space around r2 = m by setting r =

√
m+ ζ2 and expanding for small ζ. We find

r

(
1− m

r2

)
dµ2 + 2dr2

r(1− m
r2 )

∼ 4
[
dζ2 + ζ2

2 dµ
2
]
. (3.4)

This implies that we should choose the coordinate µ in the range [0,
√
8π] to avoid conical

singularities.
In this form we have a background that can be though as dual to a (2 + 1)-dimensional

QFT. This field theory is the compactification of (5+1) Super Yang-Mills on S2[θ, φ]×S1[µ],
with the µ-circle shrinking smoothly at small values of the radial coordinate (r ∼

√
m).

It is interesting to discuss two features that differentiate the background in eq. (3.2) and
that in eq. (2.2). The first difference, is the absence of the one form mixing the three sphere
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and the shrinking S1. On the other hand, two coordinates of the five brane are compactified
on a two sphere (ϑ, φ). For this compactification to be possible, the gauge field A(i) in
eq. (3.1) is introduced. This one-form fibres the two-sphere S2[ϑ, φ] over the three sphere
S3[θ1, ϕ1, ψ1]. It is also noticeable that whilst the circle S1[µ] is shrinking, the two sphere is
not. Actually, it has ‘the same size’ as the Minkowski R1,2. The non-shrinking character of
S2[ϑ, φ] is responsible for various physical behaviours that we discuss below. The case m = 0
is singular. In fact, the Ricci scalar for the background in eq. (3.2) is,

R = −6
r
+ 2m

r3 (3.5)

For m = 0 the spacetime reaches r = 0 the Ricci scalar and the dilaton diverge there, the
whole configuration is not trustable (for m = 0). Otherwise, for m > 0 we have an everywhere
smooth space. When the dilaton becomes eΦ ∼ 1, we need to S-dualise, move to the NS-five
brane frame and work with a LST. The analysis is parallel to that in section 2. The only
difference is that the (5 + 1)-d Super Yang-Mills is now compactified on the circle µ and on
the two sphere S2(ϑ, φ). As we mentioned, the two-sphere does not shrink, hence the QFT is
never actually (2 + 1) dimensional. Also, the wrapping on S2 is not SUSY preserving.

Note that the charge quantisation works similarly in this background as in the one
of eq. (2.2), giving

ND5 = 1
4π2

∫
S3
F3 = N. (3.6)

3.1 Observables

We calculate some field theory observables using the background of eq. (3.2). We start
with a probe D5 that extends along [t, x1, x2, µ, ϑ, φ], keeping the rest of the coordinates
fixed. We switch on a gauge field Fµν in the R1,2 directions. We follow now the procedure
explained in section 2.1.1. The induced metric and the Born-Infeld action expanded for
small field are given by,

ds2
ind = r

[
dx2

1,2 + f(r)dµ2 + dθ2 + sin2 θdφ2
]
, f(r) = 1− m

r2 .

SBI ≈ TD5NπLµr
2
√
f(r)

∫
d3x− Nπ

2 TD5Lµ

√
f(r)

∫
d3xF 2

µν . (3.7)

The effective 3d gauge coupling is

1
g2
YM,3N

= 2πTD5Lµ

√
1− m

r2 . (3.8)

This coupling is very large in the IR, that for r2 ∼ m and asymptotes to a constant at high
energies. Note that the singular solution with m = 0 has a constant gauge coupling.

We can calculate the Wess-Zumino term using the C6 in eq. (3.3). As mentioned, the
background is not SUSY. We can nevertheless compare the charge and the tension of the
probe D5 and obtain that they scale similarly for large values of the radial coordinate, but
they are not exactly equal.
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3.1.1 Baryon vertex

We can probe the background with other branes. For example, consider a D3 brane that
extends in [t, θ1, ϕ1, ψ1] (that is, a point particle in the QFT and extends over the S3 associated
with the R-symmetry of the six dimensional dynamics). This probe can be associated with
a baryon vertex. We can switch on a gauge field on this probe, to find that its Born-Infeld
part is given at leading order by

SBI = TD316π2r∗

∫
dt. (3.9)

We have performed the integral over the angles and obtained an action for a point particle.
The tension of this object (in this case, the mass) is finite, as it should be evaluated at
r∗ =

√
m (where this tension is minimised). The Wess-Zumino part of the action (that we

associate with the charge of this particle) is given by

SWZ = −TD3

∫
F2 ∧ C2 = TD3

∫
S3
F3

∫
dtAt = −TD34π2N

∫
dtAt. (3.10)

In summary, we see a particle with charge Q = TD34π2N and mass M = TD316π2r∗ that
propagates in time. This can be identified with a baryon vertex. Note that the action of
fundamental strings emanating from the baryoon vertex should be added to eq. (3.9).

Notice that a similar calculation can be done for the background in eq. (2.2). In fact, in
that case the Baryon vertex is also a D3 brane extended on [t, θ, ϕ, ψ].

3.1.2 Wilson and ’t Hooft loops

Let us now study Wilson and ’t Hooft loops. We follow the usual treatment, already
summarised in section 2.1.2. Consider a fundamental string in the configuration t = τ, x = σ

and r(σ). The Nambu Goto action for such string (after the time integral is performed) is,

SNG = TF1Tτ

∫
dx
√
F 2 +G2r′2, F = r, G =

√
2√

1− m
r2

. (3.11)

We calculate the approximate separation between the quark pair L̂QQ, using eq. (2.17), and
the function Z(r0) defined in eq. (2.19). This last function indicates stability (if negative).
The results are,

Lapp =
πG

F ′
∣∣
r0

=
√
2π r0√

r2
0 −m

, Z = L′
app

∣∣
r0

= −
√
2πm

(r2
0 −m)3/2 < 0. (3.12)

This indicates that the chosen configuration is stable. Also, the separation between the
quark pair diverges in the IR (suggesting confinement) and stabilised towards the UV, to
the value set by the LST. Compare this behaviour with the one obtained in section 2.1.2
for the background of eq. (2.2).

We can write the exact analytic expressions for the quantity Veff , the separation LQQ
and energy EQQ of the quark-antiquark pair, following eqs. (2.15), (2.16), (2.18) respectively.
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These read,

Veff = 1√
2r0

√
(r2 −m)(r2 − r2

0), (3.13)

LQQ(r0) =
√
8r0

∫ ∞

r0

dr√
(r2 −m)(r2 − r2

0)
= 2

√
2F
(
arcsin

(
r0√
m

)
; m
r2

0

)
+ i2

√
2K

(
1− m

r2
0

)

EQQ(r0) = r0LQQ +
√
8

∫ ∞

r0
dr

√
r2 − r2

0
r2 −m

−
∫ ∞

m

rdr√
r2 −m


= r0LQQ(r0) +

√
8r0E

(
m

r2
0

)
−
√
8mE

(
r2

0
m

)
+ 2i

√
8mE

(
1− r2

0
m

)

−
√
8r0E

(
arcsin

(
r0
m

)
; m
r2

0

)
+
√

8
m

(
m− r2

0

)
K
(
r2

0
m

)
− 2ir2

0

√
8
m

K
(
1− r2

0
m

)
.

Here, F(ϕ;x),K(x), E(ϕ;x) and E(x) and are given by

F(ϕ;x) =
∫ ϕ

0
dθ

1√
1− x sin2 θ

, K(x) = F
(
π

2 ;x
)
,

E(ϕ;x) =
∫ ϕ

0

√
1−m sin2 θdθ, E(x) = E

(
π

2 ;x
) (3.14)

3.1.3 ’t Hooft loops

We now study ’t Hooft loops. The string between two magnetic monopoles is modelled
using a D5 brane extending in [t, x1, µ, θ1, ϕ1, ψ1], with r(x1) and all other coordinates set
to constant. The action for the effective magnetic string (after integrating over the internal
space) is given by,

Seff = TD5Lµ16π2
∫
dx1

√
F 2 +G2r′2, F = r

√
r2 −m, G =

√
2r. (3.15)

The expressions of the approximate length and the function Z are,

L̂app =
√
2πr

√
r2 −m

2r2 −m
, Z =

√
2m2π

(2r2 −m)2
√
r2 −m

. (3.16)

This suggest that the embedding is unstable. In fact, in agreement with what was discussed
above, the tension of the monopole-anti monopole string vanishes for r →

√
m. This tension

is associated with the function F (r). The instability of the embedding suggest that the
configuration of a monopole pair connected by a magnetic string should be replaced by the
pair moving freely, at no energy expense. In other words, there should be screening of the
monopoles, in agreement with the confinement of the quarks.

3.1.4 Holographic central charge or free energy

Now we compute the holographic central charge of the background in eq. (3.2), in the
conventions that we introduced in (2.33)–(2.35).

d = 2 , α = r , β = 2
r2 −m

, e−4Φ = N4

44r4 . (3.17)
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Figure 5. The integrals of the quark-antiquark Wilson loop (3.13). Upper left: plot comparing the
exact expression for the monopole separation (3.13) with the approximate expression L̂QQ in (3.12).
Upper right: the energy of the Wilson loop as a function of the r0. Bottom left: different profiles of
the macroscopic strings as a function of the turn-around point r0. Bottom Left: plot of the function
EQQ(LQQ).

and

gijdθ
idθj = r

[(
1− m

r2

)
dµ2 + dϑ2 + sin2 ϑdφ2 +

∑
i

(
Θ(i)

)2
]

(3.18)

The functions Vint, H and the holographic central charge are

Vint = N r
√
r2 −m, N = 4π3N2Lµ , chol =

2N r3(r2 −m)3/2

GN (2r2 −m)2 . (3.19)

In line with the confining behaviour indicated by the Wilson and ’t Hooft loops the number
of states vanishes for r ∼

√
m. Hence the system is gapped. On the other hand, for large

energies, the number of states grows unbounded. Note that the growth for large values of the
radial coordinate is the same for this QFT and it is for the QFT dual to the background in
eq. (2.2). In fact, both densities of states, the one in eq. (3.19) and that in eq. (2.38) diverge
similarly. This is not strange as both theories are very similar at high energies.
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3.1.5 Spin-two glueballs

We follow section 2.1.6 and study glueballs of spin-two in this confining and gapped (2 + 1)
dimensional QFT. Indeed, according to eqs. (2.44)–(2.46), we find

ds2
E,int =

√
Nr

2


(
1− m

r2

)
dµ2 + 2dr2

r2
(
1− m

r2

) + dϑ2 + sin2 ϑdφ2 +
∑
i

(
Θ(i)

)2
 ,

e2A =
√
Nr

2 ,
√
det ĝab =

√
2
r

sin θ1 sinϑ, V (r) = 1
2∂r

[
r2 −m

r

]
. (3.20)

When computing the potential above, we consider fluctuations that do not vary on the
3-sphere. Hence, Ψ = Ψ(r, µ). In the tortoise coordinate

r = √
µ cosh

(
ρ

2

)
, (3.21)

which maps r ∈ [
√
m,+∞[ to ρ ∈ [0,+∞[, and considering fluctuations of the form

Ψ(r(ρ), φ) =
(
1− m

r(ρ)2

)− 1
4
e
i nφ√

2 Θ(ρ), (3.22)

from (C.45) we obtain a Schroedinger like equation that reads

−d
2Θ
dρ2 + Ṽ (ρ)Θ =M2Θ, (3.23)

where the effective potential reads

Ṽ (ρ) = 1
4 − 1

4
1

sinh2(ρ)
+ n2

2 coth2
(
ρ

2

)
. (3.24)

This potential has the following asymptotic expansions

Ṽ (ρ→ 0) =
(
2n2 − 1

4

) 1
ρ2 + 1

3(1 + n2) +O(ρ2),

Ṽ (ρ→ +∞) = 1
4(1 + 2n2) +O(ρ−1)

(3.25)

The potential does not dhave a minimum. For different values of n ≥ 1 we find a continuous
spectrum.

4 Comparison between different backgrounds

In this section we study three backgrounds, two of which are already present in the bibliography
and the third one is new. The goal of the section is to compare the UV-behaviour and some
observables computed using the large-r regime of the geometries. Even when the metrics
quoted below present a singular behaviour for small values of the r-coordinate this is not a
concern for us: on the one hand we do not use the small r region in our calculations. Aside
from this, the backgrounds have a smooth “IR completion” that we do not quote in this
section, just to keep the expressions simple.
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As stated, the goal of this section is to make some general observations about the UV-
behaviour of different backgrounds describing compactified five branes. The common feature
is that the five branes wrap a two sphere, with different field theory interpretation. The
outcome being that in some cases, the system is not describing a QFT, but behaviours
characteristic of the Little String are found. As we discuss below this can be diagnosed by
inspecting the dilaton and the fate of the compactification manifold.
In the second part of this section we compare the SUSY preserving mechanism described
in section 2 and in appendix B with the partial topological twist. Although conceptually
different, we highlight their similarities as can be seen from the holographic perspective

4.1 D5-Branes on S2

Let us start by quoting three backgrounds. The first background represents a twisted
compactification of a stack of N D5 brane on a two sphere in the resolved conifold, preserving
four supercharges [13, 14]. Using the left invariant forms defined in eq. (2.1), it reads,

ds2
st = eΦ

[
dx2

1,3 + dr2 + e2h(dα2 + sin2 αdβ2) + 1
4
(
ω2

1 + ω2
2 + (ω3 − cosαdβ)2

)]
,

F3 = N

4
[
sinα dα ∧ dβ ∧ ω3 − ω1 ∧ ω2 ∧ ω3

]
,

e4Φ = e4Φ0+4r

r
, e2h = r (4.1)

We emphasise that whilst the background above is singular at r = 0, the singularity has been
resolved in [13, 14]. We are interested in the comparison with other backgrounds at large
values of r, or analogously, in the UV regime of the QFT dual.

The second background was written in section 4.5 of [48] and reanalysed in [49, 50].
This is a solution proposed to be dual to N = 1 SQCD with gauge group SU(N) and with
Nf = 2N flavours. The QFT is deformed by a higher dimension operator that breaks the
flavour group to the diagonal SU(Nf ). The background reads,

ds2
st = eΦ

[
dx2

1,3 +N

(
dr2 + 1

ξ
dΩ2(θ, φ) +

1
4− ξ

dΩ2(θ̃, φ̃) +
1
4(dψ + cos θdφ+ cos θ̃dφ̃)2

)]
F3 = −N2

[
sin θdθ ∧ dφ+ sin θ̃dθ̃ ∧ dφ̃

]
∧ (dψ + cos θdφ+ cosθ̃dφ̃),

e4Φ = e4Φ0+4r. (4.2)

Here ξ ∈ (0, 4). This is a SUSY solution of the equations of motion of Type IIB in the presence
of back-reacting sources. By this we mean a solution of the equations of motion derived from
the Type IIB action supplemented by (smeared) sources. In fact, one can check that

dF3 = N sin θ sin θ̃ dθ ∧ dφ ∧ dθ̃ ∧ dφ̃.
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The third background reads,6

ds2
st =

N

4 e
Φ
[
−dt2 +

3∑
i=1

dx2
i + dρ2 + dϑ2 + sin2 ϑdφ2 +

∑
i

(
Θ(i)

)2
]

F3 = 2NVol(S3) + N

4 d
[
ω1 ∧A(1) + ω2 ∧A(2) + ω3 ∧A(3)

]
,

e4Φ = 44

N4 e
4ρ√

2

(4.3)

The three backgrounds have a linear dilaton and compactify D5 branes on S2. The first
two (4.1), (4.2) preserve four supercharges, the third one in eq. (4.3) preserves no supercharges.
We can calculate observables as we did in the previous sections.

For the background in eq. (4.1), we calculate a gauge coupling defined using a probe D5
extended on R1,3 and wrapping the manifold θ = α, φ = 2π−β, ψ = ψ∗. The result found is

1
g2
eff,4

= 4πTD5e
2h = 4πTD5r. (4.4)

On the other hand, for the background in eq. (4.2) an analog computation to the one above
finds the gauge coupling to be constant (see [48]),

1
g2

4,effN
∼ 1
ξ(4− ξ) . (4.5)

Similarly, for the background in eq. (4.3), the probe D5 extended on R1,3 and wrapping (θ, φ)
we find a constant gauge coupling, as can be seen from eq. (3.8) in the m → 0 limit. In
summary, we find a similar behaviour for the backgrounds in eqs. (4.2), (4.3), different to
the running behaviour found for the background of eq. (4.1).

We can calculate Wilson loops following the formulas in section 2.1.2. For the background
in eq. (4.1), we have,

F 2(r) = G2(r) = e2Φ(r) = e2Φ0+2r
√
r

, Veff = e−Φ(r0)
√
e2Φ(r) − e2Φ(r0), (4.6)

Lapp = π

Φ′ =
4πr

4r − 1 , Z(r) = − 4π
(4r − 1)2 .

These expressions are not trustable near to r = 0, close to the singularity. We analyse them
for large values of r, indicating a minimal separation that tends to grow as we approach
the interior of the geometry. The negativity of Z(r) indicates that the embedding is stable.
The relevant integrals for the exact expressions,

LQQ(r0) = 2eΦ(r0)
∫ ∞

r0

dr√
e2Φ(r) − e2Φ(r0)

, (4.7)

EQQ = eΦ(r0)LQQ(r0) + 2
∫ ∞

r0
dr

√
e2Φ(r) − e2Φ(r0) − 2

∫ ∞

0
eΦ(r)dr.

6We find this background taking the m → 0 limit and changing r = e
ρ√

2 in eq. (5.25). Similar operations
can be implemented in the background of eq. (3.2), also relabelling µ = x3.

– 26 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
0

0 1 2 3 4 5 6
0

2

4

6

8

10

r0

L
Q
Q

LQQ(r0)

Lapp(r0)

0 1 2 3 4 5

0

5

10

15

20

r0

E
Q
Q

2 4 6 8 10

0

5

10

15

20

LQQ

E
Q
Q

Figure 6. Plots the integrals (4.7) associated to the Wilson loop of the background (4.1) for Φ0 = 0.
Left: comparison between the exact expression and approximated expression for the quark-anti quark
separation. Center: plot of the energy EQQ as a function of r0 Right: plot of the function EQQ(LQQ).
The dotted lines in the center and right panels indicate regions where the numerical integration is not
faithful.

The Wilson loop for the background in eq. (4.2) give the functions,

F 2(r) = G2(r) = e2Φ(r) = e2r, Veff = e−r0
√
e2r.− e2r0 ,

LQQ = π, EQQ = 0. (4.8)

The integrals associated with separation LQQ and Energy EQQ can be explicitly performed,
as shown in [48]. One can check that Lapp = LQQ and Z(r) = 0.

For the background in eq. (4.3) we find

F 2(r) = G2(r) = e
√

2ρ, Veff =
√
e
√

2(ρ−ρ0) − 1. Lapp = constant, Z = 0. (4.9)

Comparing these observables (something similar occurs for other observables), we find that
the phenomenology of the backgrounds (4.2), (4.3) is similar, whilst the background in
eq. (4.1) has a different dynamical behaviour. We observe that in background (4.1) the
dilaton is not exactly linear, whilst it is linear in the other two. Also that for the backgrounds
in (4.2)–(4.3), the sphere is not shrinking. These different features explain the differences
in the ensuing dynamics. Something analogous occurs between the backgrounds in sections
2.1 and 2.2 of the paper [29].

We believe that backgrounds like (4.2)–(4.3) are not representing the dynamics of a four
dimensional QFT. Instead, they reproduce the dynamics of the LST with two directions on
a fixed size two manifold. Notice that something different happens with the backgrounds
of sections 2 and 3 (even when in those backgrounds the compactification manifold is S1).
In those cases there is a direction on the D5 branes that is actually shrinking, by virtue of
the function fs(r) in eq. (2.4) and f(r) = 1 − m

r2 in eq. (3.2).

4.2 Comparison of the SUSY preservation mechanisms

Let us now make a comparative study between the background in eq. (2.2), a dual to
a (4 + 1) confining QFT preserving eight supercharges and another background written
in [13, 14]. This second background is proposed as a dual to (3 + 1) dimensional confining
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QFT with four preserved supercharges. The description above suggest that there are few
commonalities between these solutions. To see some common features, let us quote the
two metrics (a similar analysis can be made for the dilaton and Ramond fields). For the
background in eq. (2.2) we have

ds2
st = r

dx2
1,4 + fs(r)dφ2 + Ndr2

r2fs(r)
+ N

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
 ,

fs(r) =
(r2 − r2

+)(r2 − r2
−)

r4 , ζ(r) = 1
r2 − 1

r2
+
. (4.10)

For the background in [13, 14]. we have

ds2
st = NeΦ(r)

[
1
N
dx2

1,3 + e2h(r)(dθ2 + sin2 θdφ2) + dr2 +

+1
4(ω1 + a(r)dθ)2 + 1

4(ω2 − a(r) sin θdφ)2 + 1
4(ω3 − cos θdφ)2

]
, (4.11)

a(r) = 2r
sinh(2r) , e2h(r) = r coth(2r)− 1

4(a(r)
2 − 1), e−4Φ(r) = 4e−4Φ0+2h(r)

sinh2(2r)
.

The points we wish to emphasise are the following:

• The solution in eq. (4.12) is SUSY thanks to a twisting procedure, namely a mix
between the Lorentz group and the SO(4) R-symmetry group of the D5 brane theory.
See [51, 52] for a detailed account of the twisting in this QFT. The twisting is reflected
by the fibration of the S3(ωi) on the S2(θ, φ). This fibre does not vanish at large values
of the radial coordinate (the far UV of the QFT). The function a(r) takes the form in
eq. (4.12) to allow a smooth ending of the space at r ∼ 0. Close to the end of the space,
the dilaton presents a minimum and the (r, S2) shrinks as flat space. The SU(2)-valued
one form performing the fibre A = −a(r)dθ T 1 + a(r) sin θdφ T 2 + cos θdφ T 3 has zero
curvature at the origin of the space.

• The background in eq. (4.10) preserves SUSY due to a mechanism nicely explained
recently in [25, 27], see also appendix B. Whilst this is not a twisting procedure, it
shares some features with it. In fact, the fibre of the S3 on the S1 does not vanish
for large values of the radial coordinate — by virtue of the 1

r2
+

term in the function
ζ(r). This allows for spinors with anti-periodic boundary conditions to exists in this
configuration. The rest of the one form performing the fibre (the part dependent on
r) is what allows the configuration to have a smooth closure near r ∼ r+. In fact,
the dilaton presents a minimum and the sub-space (r, φ) shrinks as flat space. The
U(1)-valued one form performing the fibre A =

√
8
NQζ(r)dφ, vanish at the end of the

space r = r+.

In other words, whilst both dual QFTs are different, some common features are shared. This
is clear using the holographic (gravitational) description. The common characteristics of
metrics and background fields are more apparent in that language.
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5 Black membranes

In this section we present two new type IIB solutions containing black membranes. These are
obtained by Wick rotating the solutions in sections 2 and 3. In order to study thermodynamics
aspects of the solutions, we use the expressions obtained in [29], where the Noether-Wald
formalism [53] was used to compute the gravitational charges in backgrounds with dilaton
and RR 3-form switched-on. We summarise these results below

5.1 Gravitational charges in F3-dilaton backgrounds

The Noether prepotential for this type of configurations is given by

qµν (ξ) = − 1
κ2

(
∇[µξν] + eΦCλρξ

λFµνρ
)
. (5.1)

By integrating the Hodge dual of the prepotential

Q [ξ] = 1
2
1
8!
√
−gϵµνρ1...ρ8q

µνdxρ1 ∧ · · · ∧ dxρ8 , (5.2)

we can obtain the charges of the configurations by choosing different Killing vector fields ξ. In
order to obtain finite mass and have a well posed action principle we include the boundary term

Sfull = SIIB,bulk +
∫
∂M

d9x
√
−h 1

κ2 (K + Lct) , (5.3)

As usual, the extrinsic curvature is defined in terms of the normal unit outwards vector
nµ to the boundary of the spacetime by

Kµν = hρµh
σ
ν∇ρnσ . (5.4)

In (5.3) Lct stands for the conterterms that depend on intrinsic quantities defined in the
boundary of the spacetime. For asymptotically AdS spacetimes there is a well established
procedure to systematically find the counter terms that accommodate the boundary conditions
for the fields, leading to finite on-shell action, finite charges and an extermum of the action
principle [54–56]. This renormalization procedure relies on the existence of a Fefferman-
Graham expansion of the fields close to the boundary. For asymptotically flat configurations,
as appear in D5 systems [6], the situation is more subtle because instead of having a
boundary manifold, as in the AdS case, one has a family of boundary manifolds [57]. Different
proposals have been made to construct a general family of counterterms for asymptotically
flat spacetimes with intrinsically geometric quantities [58]. However, in presence of matter
fields, such as scalars, one is able to consider a function of the scalar field at the boundary as
a counterterm. We will consider this type of counterterms in what follows. A careful analysis
using the standard holographic renormalisation scheme will be left for future research.

If the background has a timelike Killing t and a rotation generator ψ then, following [53]
the energy, angular momentum and entropy are defined by

E [t] =
∫
∞
(Q [t]− t¬B) , (5.5)

J [ψ] = −
∫
∞
Q [ψ] , (5.6)

S [ξ] = 1
T

∫
H
Q [ξ] , (5.7)
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where ¬ is the contraction operator, B is a 9-form given by

B = − 1
κ2 (K + Lct) ⋆ n , (5.8)

and ξ is the horizon generator

ξ = t+Ωψ. (5.9)

Here, the angular velocity Ω is such that ξ is null at the horizon and also that satisfies
the geodesic equation at the horizon

ξµ∇µξ
ν = κsξ

ν , (5.10)

defining the surface gravity κs that is related to the temperature as T = κs
2π .

For now on we consider the boundary counterterm as

Lct = −e−Φ/4 , (5.11)

which will allows us to renormalize the physical quantities for a fixed value of Φ0 that we
introduce latter.

5.2 Rotating black brane

In this section we study the black membrane solutions constructed from the double analytic
continuation of the background (2.2)

φ→ it , t→ ix5 , Q→ −iQ . (5.12)

For simplicity of the computations we move to Einstein frame where the black membrane
configuration has the following form

ds2
E =

√
r
[
−dv

(
fs (r) dv − 2

√
Nr−1dr

)
+ dx2

5

]
(5.13)

+N
√
r

4

[
dθ2 + sin2 θdϕ+

(
dψ′ + cos θdϕ−

√
8N−1Qζ (r) dv

)2
]
,

F3 = e−
Φ0
2 d

N
4 cos θdψ′ ∧ dϕ+

√
N

2 Qζ (r)
(
dψ′ + cos θdϕ

)
∧ dv

 , (5.14)

Φ = log (r) + Φ0 , (5.15)

f (r) = 1− m

r2 + 2Q2

r4 , r2
± = m

2 ± 1
2

√
m2 − 8Q2 , (5.16)

written in in-going Eddingtong-Finkelstein coordinates defined by

dv = dt+
√
N

rfs (r)
dr , dψ′ = dψ +

√
8Qζ (r)
rfs (r)

dr . (5.17)

We fixed Φ0 = log N2

16 in order to obtain a finite mass. Considering the horizon generator

ξ = t+Ωψ (5.18)
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which is null Killing vector at the horizon located at r = r+ for the following quantities

t = ∂v , ψ = ∂

∂ψ
, Ω =

√
8
N

Q

r2
+
. (5.19)

The mass, angular momentum, entropy and Hawking temperature for the configuration
are given by

M =
N
(
r4

+ + 2Q2)
κ2r2

+
Lx1Lx2Lx3Lx4Lx5π

3 , (5.20)

J =
√
2N3Q

κ2 Lx1Lx2Lx3Lx4Lx5π
3 , (5.21)

S =
4N3/2r2

+
(
r4

+ + 2Q2)(
r4

+ − 2Q2) Lx1Lx2Lx3Lx4Lx5π
4 , (5.22)

T =
r4

+ − 2Q2

2
√
Nπr4

+
. (5.23)

The non-trivial angular momentum indicates that the spacetime is rotating. Note that the
entropy receives a contribution from the F3 term in (5.7) leading an entropy which is not
one-quarter of the horizon area. This is also an indication of the non-triviality of the matter
fields in this configuration. One could try to perform a gauge transformation C2 7→ C2 + dλ1
in order to obtain vanishing C2 at the horizon. A 1-form gauge parameter which does the
job is λ1 = (dψ′ + cos(θ)dϕ)v/r2

0, but it changes the mass of the spacetime because the
gauge parameter does not vanish at infinity.

Another subtlety regarding the charges of this spacetime is that if we insist in considering
the entropy as one-quarter of the horizon area, we find that the following differential relation
between the thermodynamic quantities holds dM = TdS − 2ΩdJ .

For this black hole configuration, the Euclidean on-shell action (5.3) with the countert-
erm (5.11) is finite, but it is zero. This suggests that a detailed analysis on the renormalisation
scheme is needed. We should propose a set of boundary conditions for the fields in the asymp-
totic region such that our black hole configuration belongs to this family. Then we must
ensure that the variation of the fields in this family leads to an extremum of the action
principle. However, even imposing the above condition and having a finite on-shell action,
there is still an ambiguity in the holographic renormalisation procedure reflected in the
fact that one is able to include local and finite counterterms to the renormalised action,
see [59, 60] for a recent discussion. These counter-terms modify the renormalised on-shell
action and hence they must have an effect on the dual-field theory. A careful analysis along
these lines could point out the correct counterterms which lead to charges linked to standard
thermodynamics interpretation and a well posed on-shell action.

5.3 Meron black membrane

As before, here we study the black hole solution obtained by performing a double Wick
rotation of the configuration (3.2). For this we take

t→ ix3, µ→ iτ, (5.24)
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which, after moving to Einstein frame, leads to

ds2
E =

√
Nr

4

−(1− m

r2

)
dτ2 +

3∑
i=1

dx2
i +

2dr2

r2
(
1− m

r2

) + dϑ2 + sin2 ϑdφ2 +
∑
i

(
Θ(i)

)2


F3 = 2NVol(S3) + N

4 d
[
ω1 ∧A(1) + ω2 ∧A(2) + ω3 ∧A(3)

]
,

Φ = log
( 4
N
r

)
.

(5.25)
As in the cigar case, SUSY is not preserved even when m = 0, hence, this solution is
always non-SUSY.

In this case, since the configuration is static, the only non-trivial black-membrane charges
are the ones associated with time translations, namely, the energy and the entropy. Defining
the Killing vector ξ = ∂τ , and noting that Cµνξµ = 0, we see that only the Einstein-Hilbert
action has a non-trivial contribution to the Noether prepotential. However, there is a
non-trivial contribution of the Dilaton in boundary term to obtain a finite mass.

M = N2π2

2
√
2GN

Lx1Lx2Lx3m,

S = N2π3

GN
Lx1Lx2Lx3m,

T = 1
2
√
2π

(5.26)

These quantities satisfy the first law of thermodynamics.

6 Conclusions

To close the paper, this section starts with a summary of the material in this work. Then
we propose some lines of research for future study.

We write four new backgrounds of type IIB, all describing D5 branes. The background
in section 2 is SUSY for some choice of parameters. It describes a QFT in (4 + 1) dimensions,
that is confining, gapped and has a spectrum of spin-two glueballs that is either continuous
or first discrete and then continuos (like the hydrogen atom) as the energy increases.

The background in section 3 is dual to a (2 + 1) dimensional QFT, obtained by compact-
ifying the theory on D5 branes on S2 × S1, being the size of S2 fixed, whilst the size of S1

vanishes close to the end of the space. Whilst Wilson loops suggest a confining behaviour at
low energies, other observables display a non-field theoretic behaviour.

Section 4 is a comparative study between solutions already present in the bibliography
and the solution of sections 2 and 3. The size of the two-sphere, either shrinking or stabilised
towards the end of the space is responsible for the behaviour of some observables. Also
we compared SUSY preservation via topological twist with the insertion of the Wilson line
presented in section 2: the key similarities being the non-vanishing of the fibre at infinity,
and the radially dependent part making the IR regular. Finally, section 5 presents two
asymptotically locally flat black hole backgrounds supported by a logarithmic dilaton and a
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non-trivial RR F3 field. We considered a counterterm depending on the value of the dilaton
field at the boundary leading finite charges computed with the Noether-Wald method and
finite but vanishing on-shell action. Thermodynamic quantities are calculated.

In the future, it would be interesting to study the following topics:

• The SU(2) G-structure of the background of section 2. This may lead to a clearer
picture on the mechanism of SUSY preservation.

• More in depth study of spin two glueball like excitations. What happens when allowing
excitations on S3. Does the continuum part of the spectrum exist for non-s-waves.

• Some of the non-field theoretic behaviour of the models here presented is due to the
high energy (large r) being controlled by a LST. It would be interesting to generalise
these types of solutions to other Dp branes. In particular D4 of D3 branes would lead
to interesting new geometries dual to lower dimensional field theories.

• On this line, it would be of interest to find solutions representing compactification on
circles, that have a large r behaviour asymptotic to AdS-space.

• Some of the solutions are constructed using a meron gauge field. It would be interesting
to probe these backgrounds with two-D5 branes. This leads to an SU(2) charged scalar
in the presence of a meron. This might lead to fermionic excitations constructed in terms
of bosons. The QFT dual to this effect (Jackiw, Rebbi, Hasenfratz, ’t Hooft [61, 62])
would be interesting to understand.

• Further analysis on the renormalisation scheme for asymptotically locally flat configu-
ration with non-trivial matter fields is required in order to construct a consistent and
non-trivial on-shell action.

• For the SUSY solution in section 2, various supersymmetric observables can be computed.
It would be interesting to study the (in)dependence of these observables on the size of
the S1

φ that shrinks. In the present case, techniques like those developed in [63] may
become relevant.

We hope to report on these and other issues in the near future.
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A Type IIB: a summary of equations and conventions

In this work we consider background in the Metric-Dilaton−H3 − F3 sector of type IIB.
The action is

SIIB = 1
2κ2

∫
d10x

√
−g

[
e−2Φ

(
R+ 4∂µΦ∂µΦ− 1

2 |H3|2
)
− 1

2 |F3|2
]

(A.1)

with equations

∇2Φ− ∂µΦ∂µΦ+ 1
4R− 1

8 |H3|2 = 0 , (A.2)

d
(
e−2ΦH3

)
= 0 , (A.3)

d ⋆ F3 = 0 , (A.4)

Rµν + 2∇µ∇νΦ− 1
2 |H3|2µν −

e2Φ

2

(
|F3|2µν −

1
2gµν |F3|2

)
= 0 , (A.5)

We have denoted

|Fp|2 = 1
p!Fµ1...µpF

µ1...µp , |Fp|2µν = 1
(p− 1)!Fµσ1...σp−1F

σ1...σp−1
ν . (A.6)

The SUSY transformations for fermions are

δλ = 1
2

(
̸ ∂Φ+ 1

2 ̸ H3σ3 −
1
2e

Φ ̸ F3σ1

)
ϵ ,

δΨµdx
µ = dϵ+ 1

4

(
ωabΓab +

1
2Hµabdx

µΓabσ3 +
eΦ

2 ̸ F3σ1Γµdxµ
)
ϵ (A.7)

where

̸ Fp =
1
p!Fa1...apΓa1...ap ,

for any p-form. Also we use the fact that the killing spinor in type IIB can be written as

ϵ =
(
ϵ1
ϵ2

)
, (A.8)

where ϵ1 and ϵ2 are 32-components spinors.
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B SUSY of the background in eq. (2.2)

In what follows we use the following representation of the Dirac matrices

Γ0 = iσ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3,

Γ1 = σ1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3,

Γ2 = −I2 ⊗ σ1 ⊗ σ3 ⊗ σ3 ⊗ σ3,

Γ3 = −I2 ⊗ σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3,

Γ4 = I2 ⊗ I2 ⊗ σ1 ⊗ σ3 ⊗ σ3,

Γ5 = I2 ⊗ I2 ⊗ σ2 ⊗ σ3 ⊗ σ3,

Γ6 = −I2 ⊗ I2 ⊗ I2 ⊗ σ1 ⊗ σ3,

Γ7 = −I2 ⊗ I2 ⊗ I2 ⊗ σ2 ⊗ σ3,

Γ8 = I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ σ1,

Γ9 = I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ σ2,

(B.1)

where (σ1, σ2, σ3) are Pauli matrices and I2 is the 2 × 2 identity matrix.

B.1 SUSY on the NS5-Brane and anti-periodic boundary conditions

Let us first quickly review how SUSY in the pure NS5-brane background, that is

ds2
st = dx2

1,5 +
Ndr2

r2 + N

4
(
ω2

1 + ω2
2 + ω2

3

)
,

H3 = 2NVol(S3),
Φ = − log(r),

(B.2)

recall that

ω2
1 + ω2

2 = dθ2 + sin2(θ)dϕ2, ω3 = dψ + cos(θ)dϕ. (B.3)

using the following choice of vielbeins

e0 = dt, em = dxm, e6 =
√
N

r
√
fs(r)

dr,

e7 =
√
N

2 dθ, e8 =
√
N

2 sin(θ)dϕ, e9 =
√
N

2 ω3

(B.4)
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where m = 1, . . . , 5, we find the SUSY spinor to be

ϵ1 =



c1 e
iψ2 + c2 e

−iψ2

0
0

c1 e
iψ2 − c2 e

−iψ2

0
0
0
0
0
0
0
0

c3 e
iψ2 + c4 e

−iψ2

0
0

c3 e
iψ2 − c4 e

−iψ2

0
0
0
0

c5 e
iψ2 + c6 e

−iψ2

0
0

c5 e
iψ2 − c6 e

−iψ2

c7 e
iψ2 + c8 e

−iψ2

0
0

c7 e
iψ2 − c8 e

−iψ2

0
0
0
0



, ϵ2 =



0
0
0
0
0

c9 e
i
2 (θ+ϕ) + c10 e

i
2 (θ−ϕ)

c9 e
i
2 (−θ+ϕ) − c10 e

i
2 (−θ−ϕ)

0
0

c11 e
i
2 (θ+ϕ) + c12 e

i
2 (θ−ϕ)

c11 e
i
2 (−θ+ϕ) − c12 e

i
2 (−θ−ϕ)

0
0
0
0
0
0

c13 e
i
2 (θ+ϕ) + c14 e

i
2 (θ−ϕ)

c13 e
i
2 (−θ+ϕ) − c14 e

i
2 (−θ−ϕ)

0
0
0
0
0
0
0
0
0
0

c15 e
i
2 (θ+ϕ) + c16 e

i
2 (θ−ϕ)

c15 e
i
2 (−θ+ϕ) − c16 e

i
2 (−θ−ϕ)

0



, (B.5)

which has 16 independent solutions, as expected.
If we take one of the field theory directions to be compact x5 → φ̄ (with φ̄ ∼ φ̄+ 2π)

and take anti-periodic boundary conditions for the spinor in φ̄, we see that none of the spinor
components satisfy this boundary conditions, so that SUSY is completely broken.

There is a way of preserving some amount of SUSY: in the above parametrisation of
the 3-sphere there is an explicit U(1) isometry along ψ. Replacing

ψ → ψ + α φ̄, (B.6)
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then the spinor components that include ψ will be shifted to e±i
ψ
2 → e±

i
2 (ψ+α φ̄). Note that

this is not a coordinate transformation: we are allowing α to take any possible values, not
necessarily the one that respects the periodicity of ψ. This “shift” by φ̄ corresponds to the
insertion of a Wilson Loop in the boundary theory.

Imposing anti-periodic boundary conditions in φ̄ fixes α = ±1. After boundary conditions
are imposed the spinor reads

ϵ1 =



c1 e
i
2 (ψ±φ̄) + c2 e

− i
2 (ψ±φ̄)

0
0

c1 e
i
2 (ψ±φ̄) − c2 e

− i
2 (ψ±φ̄)

0
0
0
0
0
0
0
0

c3 e
i
2 (ψ±φ̄) + c4 e

− i
2 (ψ±φ̄)

0
0

c3 e
i
2 (ψ±φ̄) − c4 e

− i
2 (ψ±φ̄)

0
0
0
0

c5 e
i
2 (ψ±φ̄) + c6 e

− i
2 (ψ±φ̄)

0
0

c5 e
i
2 (ψ±φ̄) − c6 e

− i
2 (ψ±φ̄)

c7 e
i
2 (ψ±φ̄) + c8 e

− i
2 (ψ±φ̄)

0
0

c7 e
i
2 (ψ±φ̄) − c8 e

− i
2 (ψ±φ̄)

0
0
0
0



, ϵ2 = 0. (B.7)

In this way, by charging the spinor under the compact field theory directions, we manage
to preserve half of the supersymmetries. SUSY in the case where the coordinate φ̄ shrinks
to zero works in the exact same way. We present this now.
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B.2 SUSY on 4+1

We now move to the study of the SUSY variations on (2.2). As before we work on the
S-dual frame

ds2
st = dx2

1,4 + fs(r)dφ2 + Ndr2

r2fs(r)
+ N

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
 ,

H3 = 2NVol(S3) +

√
N

2 Qd (ζ(r)ω3 ∧ dφ) ,

Φ = − log(r),

(B.8)

We choose the vielbein basis

e0 = dt, el = dxl, e5 =
√
fs(r)dφ, e6 =

√
N

r
√
fs(r)

dr,

e7 =
√
N

2 dθ, e8 =
√
N

2 sin(θ)dϕ, e9 =
√
N

2

(
ω3 −

√
8
N
Qζ(r)dφ

)
,

(B.9)

where now l = 1, . . . , 4. The background in eq. (2.2) is BPS when m = 0. The most general
solution of the Killing spinor equation is

ϵ1 = Ω(r)
r


ϵ
(1)
1
ϵ
(2)
1
ϵ
(3)
1
ϵ
(4)
1

 , ϵ2 = 0⃗ , (B.10)

where ϵ(i)1 are 8 component spinors given by

ϵ
(1)
1 =



c1 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c2 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0
0

c1 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c2 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0

− r2
√

2Q

(
1 +

√
1− 2Q2

r4

)c1 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c2 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
r2

√
2Q

(
1 +

√
1− 2Q2

r4

)c1 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c2 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0



(B.11)
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ϵ
(2)
1 =



0

1
Ω2(r)

c3 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c4 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
1

Ω2(r)

c3 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c4 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0

− r2
√

2QΩ2(r)

(
−1 +

√
1− 2Q2

r4

)c3 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c4 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0
0

r2
√

2QΩ2(r)

(
−1 +

√
1− 2Q2

r4

)c3 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c4 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)



(B.12)

ϵ
(3)
1 =



0

1
Ω2(r)

c5 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c6 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
1

Ω2(r)

c5 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c6 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0

− r2
√

2QΩ2(r)

(
−1 +

√
1− 2Q2

r4

)c5 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c6 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0
0

r2
√

2QΩ2(r)

(
−1 +

√
1− 2Q2

r4

)c5 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c6 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)



(B.13)
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ϵ
(4)
1 =



c7 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c8 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0
0

c7 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c8 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0

− r2
√

2Q

(
1 +

√
1− 2Q2

r4

)c7 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
+ c8 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
r2

√
2Q

(
1 +

√
1− 2Q2

r4

)c7 e

i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
− c8 e

− i
2

(
ψ+ 2

√
2Q√

Nr2
+
φ

)
0



(B.14)

where ci are integration constants and

Ω(r) =

1−
√
1− 2Q2

r4

1 +
√
1− 2Q2

r4


1
4

. (B.15)

In order to see the connection with the spinor in the previous section, first recall that
when m = 0 we have r2

+ =
√
2|Q|, so that

i

2
2
√
2Q√
Nr2

+
φ = isign(Q) φ√

N
, (B.16)

also recall that φ ∼ φ
√
Nπ. Defining φ̄ = 2√

N
φ, we recover what we had in the next section,

that is, the dependence of the spinor on φ̄ is of the form

ϵ ∼ e
i
2 (ψ±φ̄), (B.17)

so that the spinor is anti-periodic in φ̄.

C Spin-two fluctuations. Detailed derivations

In this appendix we review some general formulas for spin-2 fluctuations, previously obtained
in [44]. We adapt those result to have the macroscopic space to be (p+ 1)-dimensional.

The equations of motion of Type IIB Supergravity in Einstein frame, only with F3
flux are given by

Rµν = 1
2∂µΦ∂νΦ+ gse

Φ

4

(
FµλρF

λρ
ν − 1

12gµνFλρσF
λρσ
)
, (C.1)

∇2Φ = gse
Φ

12 FµνλF
µνλ, (C.2)

∂µ
(√

geΦFµνλ
)
= 0, (C.3)

∂[µFνλρ] = 0 (C.4)
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In what follows we will consider a spacetime of the following form

ds2
10D = e2A(r)ds2(Mp+1) + gij(yk)dyidyk,

F3 = 1
3!fijk(y)dy

i ∧ dyj ∧ dyk,

Φ = Φ(y)

(C.5)

where Mp+1 is a space of constant curvature. We will split the 10D indexes in the following way

a, b = 0, 1, . . . , p
i, j = y1, . . . , y9−p.

(C.6)

We consider metric fluctuations of the form

δgµν = e2Ah̄µν , h̄µν =
(
hab(x)ψ(y) 0

0 0

)
, (C.7)

i.e. metric fluctuations parallel to the macroscopic space M. We work in the transverse-
traceless gauge

haa = 0, ∇ah
a
b = 0. (C.8)

Note that this conditions are expressed in the macroscopic space, but due to the form of
the ansatz, they also can be written as a 10D condition

hµµ = 0, ∇µh
µ
ν = 0. (C.9)

As showed in [44], with this choice of fluctuation, it is consistent to take

δFµνλ = 0, δΦ = 0 (C.10)

since any fluctuation of those field will not source the fluctuation (C.7).
First, we study the variation of the energy-stress tensor. For the configurations of

interest the later is given by

Tµν = 1
2

(
∂µΦ∂νΦ− 1

2gµν(∂Φ)
2
)
+ gse

Φ

4

(
FµλρF

λρ
ν − 1

3!gµνFλρσF
λρσ
)
. (C.11)

Within the configurations of the form (C.5)

T cc = (p+ 1)
(
1
4(∂Φ)

2 + gse
Φ

24 FλρσF
λρσ

)
, (C.12)

so that with perturbations of the form (C.7) we have

δTµν = 1
p+ 1T

c
cδgµν . (C.13)

For (µ, ν) = (a, b) Einstein’s equations give

Rab −
1
2gabR = Tab (C.14)
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and tracing over a, b we get

Raa −
(p+ 1)

2 R = T aa (C.15)

From where we can write the (µ, ν) = (a, b) components of (C.13) as

δTab =
1

p+ 1R
c
cδgab −

1
2Rδgab (C.16)

We now turn to the variation of Einstein’s equations. From the Ricci tensor variation
we have

δRµν = 1
2
(
∇λ∇µδg

λ
ν +∇λ∇νδg

λ
µ −∇2δgµν

)
(C.17)

Note that since δgµν is transverse

[∇λ,∇µ] δgλν = Rλσλµδg
σ
ν −Rσνλµδg

λ
σ (C.18)

is equivalent to

∇λ∇µδg
λ
ν = Rσµδg

σ
ν −Rσνλµδg

λ
σ. (C.19)

Then we have

δRµν = 1
2
(
Rσµδg

σ
ν −Rσνλµδg

λ
σ +Rσνδg

σ
µ −Rσµλνδg

λ
σ −∇2δgµν

)
(C.20)

In what follows, we rewrite the background metric as

ds2 = e2A
(
ds2(Mp+1)) + e−2Ads2

Int

)
= e2Ad̂s

2
, (C.21)

so that it takes the form of a Weyl rescaling of the metric d̂s2 of a product space. Since
we are dealing with a Weyl rescaling we can use

Γλµν = Γ̂λµν +
(
δλν∂µA+ δλµ∂νA− ĝµν∂

λA
)
,

Rµνλρ = R̂µνλρ − δµλ ĝνρ(∂A)
2 + δµρ ĝνλ(∂A)2 + . . . ,

Rµν = R̂µν − ĝµν
(
□̂A− 8(∂A)2

)
+ . . .

(C.22)

from where

∇λδgµν = e2A
(
∇̂λh̄µν − h̄λν∂µA− h̄λµ∂νA

)
, (C.23)

and after a bit of algebra

∇λ∇λδgµν = □̂h̄µν + 8∂σA∇̂σh̄µν − 2h̄µν(∂A)2 (C.24)

we also use

Rσµδg
σ
ν = R̂σµh̄

σ
ν − h̄µν

(
□̂A− 8(∂A)2

)
,

Rσνλµδg
λ
σ = R̂σνλµh̄

λ
σ + h̄µν(∂A)2

(C.25)
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Finally, (C.20) reads

δRµν = 1
2
(
R̂σµh̄

σ
ν + R̂σν h̄

σ
µ − 2h̄µν

(
□̂A− 8(∂A)2

)
− 2R̂σνλµh̄λσ − □̂h̄µν − 8∂σA∇̂σh̄µν

)
,

(C.26)
Now we use the fact that d̂s2 is a product space and that the macroscopic space is

of constant curvature

R̂abcd = k (ĝacĝbd − ĝadĝbc) ,
Rab = kpĝab

(C.27)

then

δRab =
1
2
(
2k(p+ 1)h̄ab − 2h̄ab

(
□̂A− 8(∂A)2

)
− □̂h̄ab − 8∂σA∇̂σh̄ab

)
(C.28)

Also, note that

δ(gµνR) = δgµνR+ gµνδg
λρRλρ + gµνg

λρδRλρ (C.29)

The second and third term do not contribute since δgµν is traceless. Then, specialising
to (µ, ν) = (a, b)

δ(gabR) = δgabR (C.30)

Putting everything together, from the variation of Einstein’s equations

δRab −
1
2Rδgab = δTab, (C.31)

we have
1
2
(
2k(p+ 1)h̄ab − 2h̄ab

(
□̂A− 8(∂A)2

)
− □̂h̄ab − 8∂σA∇̂σh̄ab

)
= 1
p+ 1R

c
cδgab. (C.32)

Finally, by noting that in our ansatz

Rcc = e−2A(p+ 1)
(
kp− □̂A− 8(∂A)2

)
, (C.33)

we can write (C.32) as

2kh̄ab − □̂h̄ab − 8∂σA∇̂σh̄ab = 0. (C.34)

Writing h̄ab in terms of hab and ψ leads to

2khabψ − ψ□̂xhab − hab□̂yψ − 8hab∂iA∇̂iψ = 0 (C.35)

Suppose that hab satisfies

□̂xhab − λhab = 0, (C.36)

Then (C.35)

(2k − λ)habψ − hab□̂yψ − 8hab∂iA∇̂iψ = 0 (C.37)

from where (here we define M2 = λ − 2k)

□̂yψ + 8ĝij∂iA∂jψ +M2ψ = 0 (C.38)
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C.1 Change of variables

We will check the two changes of variables used in [44]. First we rewrite (C.38) in terms
of gij = e2Aĝij

e(1−p)A 1
√
g
∂i
(√

ge(p+1)Agij∂jψ
)
+M2ψ = 0. (C.39)

From here, a well defined Sturm-Liouville norm

||ψ||2 =
∫
d9−py

√
det(gij) e(p−1)A|ψ|2, (C.40)

leads to the a positiveness condition for M2

M2||ψ||2 = −
∫
d9−pyψ∂i

(√
det(gij)e(p+1)Agij∂jψ

)
=
∫
d9−py

√
det(gij)e(p+1)A(∂ψ)2 ≥ 0,

(C.41)
provided ∫

d9−py ∂i

(
ψ
√
det(gij)e(p+1)Agij∂jψ

)
= 0, (C.42)

which is satisfied by imposing Dirichlet or Neumann boundary conditions.
Another useful change of variables is ψ = e−4AΨ, which leads to

□̂yΨ+Ψe4A□̂ye
−4A − 32Ψĝij∂iA∂jA+M2Ψ = 0. (C.43)

Noting that

−e4A□̂ye
−4A + 32ĝij∂iA∂jA = e−4A□̂ye

4A (C.44)

we can write (C.43) in a Schroedinger like form

−□̂yΨ+ V (y)Ψ =M2Ψ, (C.45)

where the effective potential is given by

V (y) = e−4A□̂ye
4A. (C.46)

Note that in terms of Ψ and ĝij , (C.41) takes the form (here we use
√
det(gij) =

e(9−p)A
√
det(ĝij) and |ψ|2 = e−8A|Ψ|2)

||ψ||2 =
∫
d9−py

√
det(ĝij) |Ψ|2, (C.47)

C.2 Schroedinger like equation

Note that although (C.45) has the form of a Schroedinger equation, the Laplace operator
can still contain first derivatives of Ψ. Here we show how to obtain an equation that only
contains second derivatives of the function. This is achieved by using a change of variables
and a tortoise coordinate for the radial direction.
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In what follows we consider internal spaces of the form

ds2
Int = f(r)dΩ2

d +
dr2

g(r) + ds2(M̃8−p−d), (C.48)

where Ω2
d is a d-dimensional compact space and M̃8−p−d is a (8− p− d)-dimensional space,

possibly including fibrations over Ωd. We will denote the unfibered version as M8−p−d, and
we assume that the fibration is such that Vol(M̃8−p−d) = Vol(M8−p−d). Also, we assume
A = A(r).

In what follows we will consider metric fluctuations that only depend on Ωd and r, that
is, we take the S-wave M8−p−d. Then

□̂yΨ = 1
f(r)

d
2 g(r)−

1
2

d

dr

(
f(r)

d
2 g(r)

1
2
dΨ
dr

)
+ 1
f(r)∇

2
ΩΨ, (C.49)

with ∇2
Ω the Laplace operator in Ωd. By using the tortoise coordinate dρ = dr/

√
g(r) and

using the change of variables

Ψ = f(r)−
d
4 Θ(ρ)Yl(Ω), (C.50)

with Yl(Ω) the eigenfunction of ∇2
Ω, i.e. ∇2

ΩYl = −l(l + d− 1), we can write (C.45) as

−d
2Θ
dρ2 + Ṽ (ρ)Θ(ρ) =M2Θ(ρ), (C.51)

where the effective potential Ṽ is given by

Ṽ (ρ) =
(
V (r) + l(l + d− 1)

f(r) − g(r)
1
2

f(r)
d
4

d

dr

(
f(r)

d
2 g(r)

1
2
d

dr

(
f(r)−

d
4
))) ∣∣∣∣

r=r(ρ)
. (C.52)

C.3 Glueball spectrum in the (4+1)d confining theory

We start from (2.41). For this case we have

e4A(y⃗) = r, ds2(Mp+1) = dx2
1,4, (C.53)

ĝabdy
adyb = fs(r)dφ2 + Ndr2

r2fs(r)
+ N

4

ω2
1 + ω2

2 +
(
ω3 −

√
8
N
Qζ(r)dφ

)2
 .

We identify dΩ2
d = dφ2, hence d = 1. From (C.45) and (C.52) we have

−d
2Θ
dρ2 + Ṽ (ρ)Θ = m2Θ, Ṽ (ρ) =

V (r) + j2

fs(r)

(
2π
Lφ

)2

− r

N
f1/4
s

d

dr

[
rfs

df
−1/4
s

dr

] ∣∣∣∣
r=r(ρ)

.

(C.54)
Explicitly, the effective potential reads

Ṽ (ρ) = 1
N

− 1
N

1
sinh2

(
2ρ√
N

) + n2

N
coth2

(
ρ√
N

)(
1−

r2
−
r2

+
tanh2

(
ρ√
N

))2

. (C.55)
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In order to solve the Schroedinger equation, it is convenient to perform the change
of variables

z = cosh
(

ρ√
N

)
, (C.56)

which maps the region ρ ∈ [0,∞[ to z ∈ [1,∞[, which leads to the following equation for
the radial profile

−
(
z2 − 1

) d2Θ
dz2 − z

dΘ
dz

+
(
1− 1

4
1

z2(z2 − 1) + n2
(
z2 + λ(z2 − 1)

)2
z2(z2 − 1)

)
Θ(z) = NM2Θ(z) .

(C.57)
This equation is solved in terms of hypergeometric functions as

Θ(z) = (z2 − 1)
1
4−

n
2
(
z2 + λ(z2 − 1)

) 1
4

×
[
C1z

nλ
2F1

(
a+, a−; c−; z2

)
+ C2z

−nλ
2F1

(
b+, b−; c+; z2

)]
.

(C.58)

where
a± = 1

2

(
1− n(λ+ 1)±

√
1−M2N + n2(1 + λ)2

)
,

b± = 1
2

(
1 + n(λ− 1)±

√
1−M2N + n2(1 + λ)2

)
,

c± = 1± λn.

(C.59)

In order to impose boundary conditions, we need the full radial profile of the metric
fluctuation. Recall that δgµν = e2Ah̄µν = e2Ahab(x)ψ(r, φ), and also that ψ = e−4AΨ =
e−4Af

− 1
4

s Θei
2π
Lφ

nφ, so that the complete radial profile is

e2Aψ = (z2 − 1)−
n
2
(
z2 + λ(z2 − 1)

) 1
4

×
[
C1z

nλ
2F1

(
a+, a−; c−; z2

)
+ C2z

−nλ
2F1

(
b+, b−; c+; z2

)] (C.60)

To impose boundary conditions at z = 1 and z → +∞ we use the following Kumar
identities for the hypergeometric functions

2F1 (a, b; c; z) = Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− z)c−a−b 2F1 (c− a, c− b; c− a− b+ 1; 1− z)

+ Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)(1− z)c−a−b 2F1 (a, b; a+ b− c+ 1; 1− z)

, (C.61)

2F1 (a, b; c; z) = Γ(b− z)Γ(c)
Γ(b)Γ(c− a)(−z)

−a
2F1

(
a, a− c+ 1; a− b+ 1; 1

z

)
+ Γ(a− b)Γ(c)

Γ(a)Γ(c− b)(−z)
−b

2F1

(
b, b− c+ 1;−a+ b+ 1; 1

z

). (C.62)

These are convenient since they allow us to center the Hypergeometric functions at
zero (recall that 2F1 (a, b; c; 0) = 1) when expanding a around the z = 1 and z → +∞.
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Using (C.61) and expanding (C.60) around z = 1 we obtain

lim
z→1

e2Aψ̃ = (z2 − 1)
n
2 Γ(−n)

(
C1

Γ(c−)
Γ(a+)Γ(a−)

+ C2
Γ(c+)

Γ(b+)Γ(b−)

)
+ (z2 − 1)−

n
2 Γ(n)

(
C1

Γ(c−)
Γ(c− − a+)Γ(c− − a−)

+ C2
Γ(c+)

Γ(c+ − b+)Γ(c+ − b−)

)
,

(C.63)
while for z → +∞ we use (C.62) the expansion reads

lim
z→+∞

e2Aψ̃ = z−
1
2−

√
1−M2N+n2(1+λ)2

(
C1

Γ(a− − a+)Γ(c−)
Γ(a−)Γ(c− − a+)

+ C2
Γ(b+ − b−)Γ(c+)
Γ(b+)Γ(c+ − b−)

)
+ z−

1
2 +

√
1−M2N+n2(1+λ)2

(
C1

Γ(a+ − a−)Γ(c−)
Γ(a+)Γ(c− − a−)

+ C2
Γ(b− − b+)Γ(c+)
Γ(b−)Γ(c+ − b+)

)
.

(C.64)
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