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In human-robot interaction studies, trust is often defined as a process whereby a trustor makes themselves vulnerable to a
trustee. The role of vulnerability however is often overlooked in this process but could play an important role in the gaining
and maintenance of trust between users and robots. To better understand how vulnerability affects human-robot trust, we first
reviewed the literature to create a conceptual model of vulnerability with four vulnerability categories. We then performed a
meta-analysis, first to check the overall contribution of the variables included on trust. The results showed that overall, the
variables investigated in our sample of studies have a positive impact on trust. We then conducted two multilevel moderator
analysis to assess the effect of vulnerability on trust, including: 1) An intercept model that considers the relationship between
our vulnerability categories; and 2) A non-intercept model that treats each vulnerability category as an independent predictor.
Only model 2 was significant, suggesting that to build trust effectively, research should focus on improving robot performance
in situations where the users is unsure how reliable the robot will be. As our vulnerability variable is derived from studies of
human-robot interaction and human-human studies of risk, we relate our findings to these domains and make suggestions for
future research avenues.

CCS Concepts: • Human-centered computing → Empirical studies in interaction design; HCI theory, concepts and
models; Laboratory experiments; Field studies; User studies;

Additional Key Words and Phrases: vulnerability, trust, risk, human-robot interaction

1 INTRODUCTION
Robots already play a big part in human society. They autonomously cut our lawns, assist surgeons during
surgery [57], and provide travel information at airports [21]. Indeed, a recent analysis from Oxford Economics
indicated that robots will contribute significantly to economic productivity, with a projected 20 million robots to
be deployed in this sector by 2030 [7]. As robots become more sophisticated and ubiquitous, they will need to
operate effectively alongside people. This is why considerable research effort has been put into examining how to
improve people’s trust in robots (e.g., [15]). With greater trust in robots comes a greater willingness from people
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to share a workspace with their robot assistants, to collaborate with them, which will lead to better outcomes like
increased productivity and team effectiveness. So, understanding the factors that contribute to successful and
harmonious human-robot trust is useful for robot developers and industries seeking robotic solutions. Indeed,
poorly calibrated trust can lead to over-trust or under-trust in robots can put users in danger, or lead to the
rejection of robotic systems (see [23] for a review).

In this review and meta-analysis, we focus on a factor of trust that is often overlooked in the human-robot
interaction (HRI) research literature, the trustor’s vulnerability. Trustor vulnerability refers specifically to the
vulnerability that the person giving the trust (i.e., the user or participants in an HRI experiment) feels, which we
will refer to henceforth as “vulnerability” for simplicity. Vulnerability is considered a key element of trust and
has often been referred to in studies of HRI without direct investigation. Our goal was to study the contribution
of vulnerability to human-robot trust (HRT).

In reviewing the literature of vulnerability, we decided to develop a conceptual model to encapsulate the related
concepts and themes. The model includes different categories of robot interactions, which in turn map onto
different types of risk. Following the development of our conceptual model, we used a moderator meta-analysis
to demonstrate the contribution of our vulnerability model against measured trust outcomes from just under a
decade (January 2011- July 2020) of HRI trust literature. We take this approach as related meta-analysis have
successfully summarised and generated useful insights from HRT research ([14, 15]).

Our results showed that HRI studies of robot performance (our first vulnerability category) were the most
likely to lead to increases in trust. This suggests that effective human-robot collaboration is dependent on the
reliability of the system. However, we also note that more work is required to examine the contribution of the
other vulnerability categories included in our model.

In the following review and meta-analysis we:

• Make a theoretical contribution, by examining the role of vulnerability to human-robot trust.
• Using the literature, create a conceptual model for vulnerability in the context of HRI.
• Run a multilevel moderator meta-analysis, that accounts for the complex dependency structure and

heterogeneity of the HRI studies identified for analysis.
• Compute: 1) A global analysis of the study effect sizes; 2) A moderator analysis with an intercept term

that examined the relationship between vulnerability categories; and 3) A second moderator without an
intercept term that considered each category of vulnerability as an independent predictor of HRT.

• Demonstrate that experiments in which the concept variable was the robot’s performance (vulnerability
category 1) were most likely to lead to trust improvements, thereby indicating the importance of robot
reliability to trust development.

2 BACKGROUND
In the field of HRI, “trust” is often defined in terms of the relationship between the trustor (the person placing
their trust in an other) and the trustee (the person fulfilling the trust request). Take the definition offered by Lee
and See [29], where trust is understood as, “an attitude that an agent (robot or another person) will help achieve
an individual’s goals in a situation characterised by uncertainty and vulnerability”. Similarly, trust has also been
defined as “the willingness of a party to be vulnerable to the actions of another party based on the expectation
that the other will perform a particular action important to the trustor, irrespective of the ability to monitor
or control that other party” [38]. Linking these two oft cited definitions is the theme of trustor vulnerability,
suggesting that trust is not possible without a person putting themselves at the mercy of someone else.

However, there may be something unique about human-robot trust relative to human-human trust that makes
the use of these definitions problematic. For example, relative to human colleagues, large robots are considered
to pose more of a physical threat [46]. The trust that humans give to robots working alongside them on an
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assembly line therefore might be qualitatively different to the type of trust given to other human colleagues nearby.
Similarly, robot’s operating as airport information kiosks may be supplied potentially confidential information
by a traveller; how can the traveller be certain that the disclosed information is going to handled securely?

In the situations described above, the human user or operator makes a conscious decision whether to trust
the robot, despite the uncertainty or ambivalence they might experience. Therefore, taking a closer a look at
how vulnerability has been defined and conceptualised will serve as an initial guide about the features of the
interaction between human trustor and robot trustee that are worth further attention.

According to the Cambridge Online Dictionary, vulnerability can be defined as, “able to be easily hurt, influenced
[sic], or attacked” [5]. So, broadly, vulnerability refers to a person’s susceptibility to physical damage, as well
as how psychologically malleable or impressionable they are. Taking a philosophical approach, Mackenzie [34]
conceptualises vulnerability as “ambivalent potential” because, as humans, we are never quite sure whether the
outcome of our vulnerability is going to be positive or negative. If positive, vulnerability can lead to personal
growth, like learning a new skill. When vulnerability is negative, it can also lead to increased risk and danger.
This interpretation of ambivalence, as a cognitive conflict between negative and positive outcomes, is echoed in
studies of HRI. Seemingly, greater levels of robot autonomy are a source of ambivalence, whereby individuals
report mixed feelings about the benefits and costs of greater robotic automation [54]. So, vulnerability can be
understood in terms of the conflict between positive and negative outcomes, with people and robots.

In works studying trust, vulnerability has been understood specifically in terms of the dynamic between the
trustor and the trustee. In Meyer et al. [39], positive vulnerability refers to the trustor or trustee’s willingness to
admit mistakes, such as forgetting to file a document away for a colleague and then confessing to your error later.
Negative vulnerability, on the other hand, refers to a person’s protective or defensive behaviour in response to
threat. An example would be a boss’s overly emotional response to rumours about staff redundancies [39]. So,
vulnerability may also relate to a persons’ willingness to let their guard down, or in other words, their willingness
to be vulnerable. Taking a slightly different angle, Nienaber et al. [42] focus on situational factors, defining
vulnerability as either active or passive. Active vulnerability refers to a situation where a trustor deliberately
discloses private or sensitive information to the trustee, whereas passive vulnerability refers to situations where
the trustor relies on the trustee to perform a certain task. Together, these conceptualisations of vulnerability
suggest it is rooted in a person’s psychological assessment of others, the uncertainty that follows this assessment
(e.g., ambivalent potential), and the setting of the interaction.

The literature of HRI and vulnerability paints a similar picture. A review of HRT by Lewis et al. [30] (p.151)
state that, “…vulnerability is dependent on whether the interaction is: a) reliant on the performance of the robot
in some element of the task (e.g., retrieving an item the participant has moved to complete the task); or b) where
the robot makes a deliberate attempt to get the user/participant to do something (e.g., disclose a secret)”. So,
having reviewed multiple HRI studies of trust, these authors surmised that vulnerability related specifically
to the robots ability to perform a task properly and the robot’s attempts to solicit information or action from
the human trustor. Law and Scheutz [28] also refer to the robot’s reliability and information solicitation, but
add, “…This uncertainty can leave people vulnerable; for example…interacting with large and heavy robots may
cause a person to be physically vulnerable” (p.29). As well as alluding directly to trustor uncertainty in situations
mentioned by Lewis et al. [30], Law and Scheutz [28] specifically mention the physical risks associated with
large robot interactions. Together, these reviews indicate that vulnerability in HRI can be understood in terms of
three factors: 1) the robot’s task efficiency (or reliability); 2) whether the robot attempts to get the user to disclose
information; and 3) the size and potential threat the robot poses. While this information is useful for indicating
HRI specific vulnerabilies, there may be clues from other literary sources as to why they emerge as key features
of vulnerability.

Studies of perceived threat in HRI, for example, offers a lens to better understand why users might feel
vulnerable whilst engaged in a task with a robot. Broadly, these studies refer to related user and robot factors.

ACM Trans. Hum.-Robot Interact.

 



4 • McKenna, et al.

With respect to users, a recent study found that the level of threat people feel towards robots is predicted by
individual differences in mindset flexibly: individuals with a more flexible mindset towards robots were more
likely to engage in a future robot interactions, comparatively to those with a “fixed” mindset [2]. Characteristics
of the robot also play a part, with autonomous robots considered more threatening and less trustworthy compared
to non-autonomous robots, though this is also affected by the appropriateness of the deployment setting [65].
Further, robot appearance is also a key factor to perceived threat. Human-like robot forms (e.g., androids) are
perceived to be more of a threat to people’s jobs [63], and to people’s sense of self and identity [8], to less
human-like robot forms. Large robots are also considered to pose more of a physical threat to other smaller robot
forms [46]. Thus, perceived threat impacts users evaluations of robots, which in turn will impact their sense of
vulnerability. Assessing threat requires an assessment of the trustee, their intentions, and the setting - much like
the vulnerability factors suggested by Law and Scheutz [28].

Moreover, both review articles reflect that self-disclosure (i.e., revealing personal or private information to
the robot) is source of vulnerability in HRI. On this topic, there has been a considerable research effort studying
the different aspects that might lead a person to reveal information to a robot that they might not otherwise.
Robots with expressive faces have shown to be effective at encouraging elderly people to revisit sensitive topics in
conversation [43]. In a study inducing negative mood using a video of the Wenchuan Sichuan earthquake in China
2008, researchers found that participants negative affect could be attenuated effectively after disclosure of their
emotions to a social robot, more so than documenting their feelings in a journal [6]. Similarly, an robotic agent
designed to provide conversation-based stress therapy was able to create a setting suitable for self-disclosure [1].
The type of information solicited by the robot also has an impact on people’s willingness to share information.
Barfield [3] showed that when the content for disclosure is potentially embarrassing, participants are more
willing to disclose this information to other people than a robot agent. In all, these studies demonstrate that
robot’s are effective tools for soliciting information from people, and thus, self-disclosure with a robot a key type
of user vulnerability.

Underpinning much of what has been discussed, is that interacting with a robot involves a degree of risk. Risk
has been defined as, “any consciously or non-consciously controlled behaviour with a perceived uncertainty
about its outcome” [56]. Similarly to Mackenzie [34], risk relates to situational uncertainty, the resolution of
which based on subjective experience. Tying things together, it is possible that this uncertainty stems from the
users assessment of the robot, based on nature of the interaction, how the robot acts, and the setting of the
interaction. It is not surprising, therefore, that some HRI researchers have redefined trust by replacing the term
vulnerability with risk [60].

At a higher level, risk has been described as domain specific, relating to either situational or relational features;
the former refers to perception based on contextual factors, and the latter based on experience [55]. As our
vulnerability literature led us to consider the user’s evaluation of the trustee and the setting as well as the unique
qualities of the trustee, we focused on situational risk definitions and domains. Of the domains suggested by Stuck
et al. [55] we selected those that were evident from the studies identified in our literature review: performance
risk, privacy risk, financial risk, physical risk, and security risk.

• Performance risk: The assessment that task engagement can have negative consequences.
• Privacy risk: The assessment that an activity may compromise the personal information of an individual.
• Financial risk: The assessment that a situation may lead to monetary loss.
• Physical risk: Situations that are judged to be dangerous to a person’s physical health.
• Security risk: The evaluation that an activity could be susceptible to criminal interference.

Altogether, our journey to discover what vulnerability means in the context of HRT led us to consider the
role perceived threat, self-disclosure, and risk in greater detail. Rather than proposing a single usable definition
of vulnerability, implemented the knowledge gained in our literature review to create a set of vulnerability
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categories that encapsulated the key themes. Below we describe these vulnerability categories and provide a
graphic for clarity.

2.1 Creation of vulnerability categories
To establish our vulnerability categories, we included the scenarios suggested by Lewis et al. [30] and Stuck et al.
[55]. We were also led by our literature search and review, showing that studies of financial games (e.g., the Trust
Game) were well represented in the literature base, and mapped onto the financial risk category [55]. Risk was
also a prominent feature to HRI studies of vulnerability, we cross-referenced (through experimenter agreement)
the risk categories offered by Stuck et al. [55] onto our vulnerability categories. Our resulting vulnerability
categories are as follows:

(1) When the user must rely on the robot to complete a task and are unsure how competent the robot is.
(2) When the robot asks for sensitive or personal information (not financial) from the user and the user is

unsure how that information is going to be used.
(3) Economic games with a degree of financial risk.
(4) When the user interacts with a large, heavy robot in proximity.
We felt that these categories captured the essence of vulnerability in HRI. As well as being informed by large

literature reviews, that also capture other related factors that might affect research participants decision making
in HRI studies, like perceived threat and self-disclosure. Below we describe the method we adopted to test the
predictive quality of our vulnerability categories, as well as detail each study selected for the analysis, and the
process of conducting a moderator meta-analysis.

3 METHOD
Here, we describe the process we followed to conduct the moderator meta-analysis on the literature.

3.1 Collating the bibliography
We followed a similar procedure to Hancock et al. [15], as their meta-analysis provided a roadmap for navigating
the HRI and trust literature. Our database search included the terms “human-robot interaction” AND “robot” AND
“trust”. The number of records returned were as follows: ScienceDirect (N= 2,974); ACM Digital Library (N =
2,159); IEEE (N = 204); APAPsychInfo (N = 58); APAPsychArticle (N = 18); Applied Science and Technology (N =
16). This generated a total of 5,309 studies. Publication date was set between Jan 2011 - June 2020 as our intention
was to follow up on the meta-analysis of HRT conducted by Hancock et al. [15], which examined all relevant
papers up to the year 2010. We also extended our publication timeframe to June 2020 (rather than January 2020),
to capture articles published in the summer robotics and AI conference run. Study duplicates were removed using
the duplicate omission tools in Mendeley1, and then again using JabRef2.

3.2 Data screening
Initial screening of abstracts was conducted online using the web tool Rayyan QCRI [44]. Rayyan QCRI is designed
for managing and organising large corpus of studies for literature screening. In Rayyan QCRI’s user interface,
article abstracts are identified from the .bib file and enlarged for easy reading. All 5,309 article abstracts were
screened by the first author, who used Rayyan QCRI’s search tool to inspect for; a) the terms “robot”, or “agent”,
or “automation” or the use of “trust” or “trustworthiness” as a dependent variable.

Records that were not empirical (i.e., book chapters, conference workshop invitations) or irrelevant (i.e.,
unrelated topics) were excluded (N = 4,726). Study abstracts that did not clearly state the nature of the interaction,
1https://www.mendeley.com
2https://www.jabref.org
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Fig. 1. Conceptual Mapping Between Vulnerability and Risk. Vulnerability categories inspired by the reflecitons from Lewis
et al. [30] and Law and Scheutz [28], whilst risk categories were selected from Stuck et al. [55] and cross-referenced against
the vulnerability categories through researcher agreement.

the dependent variable(s) or either were marked for further screening. A final round of detailed screening involved
searching the article PDF for the term “trust”. This initial screening process reduced the returned records from
5,313 to 583 (10.97%). At phase two of screening, the first and second authors (both active researchers in the
field of HRI) independently screened the remaining 583 studies. Prior to this screening phase, it was agreed that
inclusion decisions would be based upon assessment of the Abstract and Method sections relevance, and by
searching the document for the term “trust”. Once each author had finished marking each study for inclusion, a
moderation meeting was held, where inclusion conflicts were resolved through discussion. This process resulted
in a final list of 85 articles to be considered for the meta-analysis.

To finish, authors 1 to 4 were assigned a batch (roughly 20 each) of articles from the final list of 85 for data and
study characteristic extraction. With respect to data extraction, studies had to report: 1) the subgroup sample
sizes (sample size per condition); 2) subgroup means; and 3) subgroup standard deviations. Articles that did not
contain enough necessary data to be included in the study were omitted3, bringing the final number of included
studies to 21 (see Figure 2 for the PRISMA flow diagram of study screening). In terms of study characteristics,
we logged information related to the source of the dependent variable and study design (see Table 1). Other
characteristics collected but not included in the present work included robot platform, questionnaire/survey
name, with a view to be used in future related work.

Of the included 21 studies, we calculated 36 effect sizes. In terms of study design, 15 studies were between
subjects (71.4%), 3 were within-subjects (14.3%), and 3 were mixed-design (14.3%). With respect to their dependent

3See Section “Studies Providing Incomplete Data” below for more details.
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Fig. 2. PRISMA Diagram of Literature Review Process. *Author 1 screened the articles for the analysis.

variables, 3 studies (14.3%) measured trust only through objective behavioural measures, 9 studies (42.9%) used a
combination of question items and objective behavioural measurement, and 9 studies (42.9%) used question items
only.

3.3 Vulnerability Categorisation
Our vulnerability categories, their related risk types, and the associated studies are shown in Figure 1. A summary
of the selected studies and the data extracted is provided in Table 1. To assign categories, authors 1 and 2
independently assigned categories to each of the 21 studies. When both authors’ assigned categories matched,
these values were used as the final vulnerability category for the study. For studies where there was a disagreement
between the authors, a moderation meeting was held to discuss each case and to reach an agreement. Often these
disagreements arose because of the broadness of category 1 (‘When the user must rely on the robot to complete
a task and are unsure how competent the robot is’), as there was an element of variable robot performance
in each of the other categories. Thus, category assignment agreement required a nuanced appreciation of the
study characteristics (e.g., if it included a financial incentive), using the vulnerability categories chosen for the
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meta-analysis. For instance, in Lo et al. [33], the performance of the robot varies depending on which navigation
algorithm condition the participants are assigned to, but in the context of the vulnerability categories it was
better suited to category 4 (‘When the user interacts with a large, heavy robot in proximity’).

3.3.1 Category 1: When the user must rely on the robot to complete a task and are unsure how competent the robot
is. Of the studies included in the meta-analysis, seven (33.33%) were included in category 1, and included studies
of cooperation, shared control, and robot persuasion. Studies of cooperation included an investigation of user’s
perception of a small robot fitness instructor [36] and a robot railroad game assistant [49]. Experiments studying
shared control between the user and agent control of a drone to complete a set of objectives [62], reaching a
destination in a driving simulation with the option of switching to automated driving [24], and shared control
of a drone in a simulated emergency evacuation [48]. This category also included experiments where a robot
influenced participants’ decision-making, including a card matching game where three robots offered answers
that varied in agreement [47], and a task where the robot’s gaze behaviour was designed to exert pressure on
participants’ final decision in a game of chance [53].

3.3.2 Category 2: When the robot asks for sensitive or personal information from the user and the user is unsure how
that information is going to be used. Four studies of the 21 (19.04%) examined how requesting sensitive or personal
information from the user affected trust. Often these requests for information were interleaved into a task to
build trust prior to making the request. This was the case for a study examining human-robot collaborative LED
circuit building [37] and a task where participants planned future events with an agent [20]. This category also
included a study of alcohol consumption therapy agent, where participants shared personal information about
their drinking habits [32]. In another study, the robot attempted to elicit restaurant preferences from participants
[19]. Lastly, we included a study of participants decision to let a robot in or out of a dormitory [50], as the robot
made a specific request to enter or exit a restricted area.

3.3.3 Category 3: Economic games with a degree of financial risk. Five of the 21 (23.8%) studies came under the
category of economics games involving financial risk. To examine trust, these studies manipulate the sequence of
events in the game, the trustworthy behaviour of the trustee, and the agent/robot presentation. In their study of
trust, Liang and Lee [31] modified the level of risk involved in a human-robot collaborative chance based card
game. In another, robot payouts to participants in the investment game were either fair or unfair [64]. Some
experimenters examined whether priming the reputation of the robot (as either fair or unfair) affected participants
investments in a trust game [12, 13], whilst others examined whether participants displayed the same type of
fairness assessments towards a robot in a virtual environment [11].

3.3.4 Category 4: Interacting with a large, heavy robot in close proximity. Included in the large robot interaction
category were three studies (14.3%). Studies in this category included collaborative tasks where the robot and
human worked together to reach a destination [33], or where a home assistance robot completed a series of tasks
for the participant [52], and where the robot selected items for recycling [27].

3.4 Vulnerability category summary
As a first step to examining the impact of vulnerability in HRI we imputed these categories as a variable in our
meta-analysis of HRT studies. Because little is known about the independence or dependence of these categories
and how risk inter-plays with each, our analysis considered the relationship between and within these categories.
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Table 1. Summary Statistics of Meta-analysis Studies. The summary includes the study authors, sample size (control and
treatment group per effect size), the effect size variable, the assigned vulnerability category, the source of the dependent
variable, and the Hedges g effect sizes. Vulnerability categories: 1 = When the user must rely on the robot to complete a task
and are unsure how competent the robot is; 2 = When the robot asks for sensitive or personal information from the user
and the user is unsure how that information is going to be used; 3 = Economic games with a degree of financial risk; 4 =
Interacting with a large, heavy robot in close proximity.

Author Design Sample
Size

Effect Size Variable Vulner-
ability
Category

DV Source Hedges g

Gao et al. [10] mixed-design 24 Algorithm with
learning vs algo-
rithm without
learning

1 survey/question-
naire items

3.028

George et al. [11] within-subjects 42 Human like avatar
vs robot

3 survey/question-
naire items

-0.142

Hafızoğlu and Sen
[12]

between-subjects 100 Negative reputa-
tion vs positive
reputation

3 behavioural; sur-
vey/questionnaire
items

0.502

Hafızoğlu and Sen
[13]

between-subjects 200 Negative vs posi-
tive past experience
with robot

3 behavioural; sur-
vey/questionnaire
items

0.322

Hafızoğlu and Sen
[13]

between-subjects 115 No past experience
vs positive past ex-
perience; 3rd inter-
action

3 behavioural; sur-
vey/questionnaire
items

0.377

Hafızoğlu and Sen
[13]

between-subjects 115 No past experience
vs positive past ex-
perience; 5th inter-
action

3 behavioural; sur-
vey/questionnaire
items

0.517

Herse et al. [19] between-subjects 48 Preference elicita-
tion vs no prefer-
ence elicitation

2 behavioural; sur-
vey/questionnaire
items

0.113

Hoegen et al. [20] between-subjects 14 No conversational
matching vs high
consideration

2 survey/question-
naire items

0.046

Hoegen et al. [20] between-subjects 16 No conversational
matching vs high
involvement

2 survey/question-
naire items

-0.003

Stanton and
Stevens [53]

mixed-design 25 Averted gaze vs
constant gaze
(females only)

1 behavioural -0.546

Stanton and
Stevens [53]

mixed-design 26 Averted gaze vs sit-
uational gaze (fe-
males only)

1 behavioural 0.143

Kraus et al. [24] between-subjects 11 Voice only vs social
NAO

1 survey/question-
naire items

1.339

Kraus et al. [24] between-subjects 11 Voice only vs non-
social NAO

1 survey/question-
naire items

0.295

Law et al. [27] between-subjects 36 High surprise vs
low surprise

4 behavioural; sur-
vey/questionnaire
items

0.259

Continued on next page
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Table 1 – continued from previous page
Author Design Sample

Size
Effect Size Variable Vulner-

ability
Category

DV Source Hedges g

Liang and Lee [31] between-subjects 48 Descriptive in-
formation vs
user-generated
content (UGC)

3 behavioural -0.280

Liang and Lee [31] between-subjects 48 Descriptive in-
formation vs
robot-generated
content (RGC)

3 behavioural -0.218

Lisetti et al. [32] between-subjects 55 Textual vs non-
empathic

2 survey/question-
naire items

-0.154

Lisetti et al. [32] between-subjects 56 Textual vs em-
pathic

2 survey/question-
naire items

0.657

Lo et al. [33] within-subjects 26 Legible motion vs
user-aware motion
algorithm

4 survey/question-
naire items

0.115

Mann et al. [36] between-subjects 65 Tablet vs robot 1 survey/question-
naire items

0.625

Martelaro et al. [37] between-subjects 30 Low robot vulnera-
bility vs high robot
vulnerability

2 survey/question-
naire items

0.642

Martelaro et al. [37] between-subjects 31 Low robot expres-
sivity vs high robot
expressivity

2 survey/question-
naire items

0.489

Salomons et al. [47] between-subjects 30 Not know robot’s
preliminary answer
vs knew robot’s pre-
liminary answer

1 behavioural; sur-
vey/questionnaire
items

1.197

Sanders et al. [48] mixed-design 49 Minimal v contex-
tual

1 survey/question-
naire items

0.176

Sanders et al. [48] mixed-design 49 Minimal v constant 1 survey/question-
naire items

0.394

Sanders et al. [48] mixed-design 49 Contextual vs con-
stant

1 survey/question-
naire items

0.390

Sebo et al. [49] between-subjects 105 Neutral comments
vs vulnerable com-
ments

1 behavioural; sur-
vey/questionnaire
items

0.808

Serena et al. [50] between-subjects 19 Non-food robot vs
food robot

4 behavioural -0.163

Srinivasan et al.
[52]

between-subjects 32 Multiple teleopera-
tors vs autonomous
robot

4 behavioural; sur-
vey/questionnaire
items

-0.588

Srinivasan et al.
[52]

between-subjects 32 Multiple teleopera-
tors vs single tele-
operator

4 behavioural; sur-
vey/questionnaire
items

-0.985

Wong et al. [62] within-subjects 14 Baseline voice vs
male voice

1 behavioural; sur-
vey/questionnaire
items

0.000

Continued on next page
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Table 1 – continued from previous page
Author Design Sample

Size
Effect Size Variable Vulner-

ability
Category

DV Source Hedges g

Wong et al. [62] within-subjects 12 Baseline voice vs fe-
male voice

1 behavioural; sur-
vey/questionnaire
items

0.304

Zanatto et al. [64] between-subjects 59 Unfair for both
players vs unfair
for human player

3 behavioural; sur-
vey/questionnaire
items

0.646

Zanatto et al. [64] between-subjects 60 Unfair for both
players vs Unfair
for robot player

3 behavioural; sur-
vey/questionnaire
items

2.348

Zanatto et al. [64] between-subjects 59 Unfair for both
players vs unfair
for human player

3 behavioural; sur-
vey/questionnaire
items

0.901

Zanatto et al. [64] between-subjects 60 Unfair for both
players vs unfair
for robot player

3 behavioural; sur-
vey/questionnaire
items

0.030

3.5 Effect Size Calculation and Analysis Inclusion Criteria
We followed the guidelines given by Harrer et al. [17] for study inclusion. Hedge’s g was calculated for both
independent and dependent effect sizes. We opted for Hedge’s g as it is an adjusted version of Cohen’s d that
accounts for potential bias due to unequal study sample sizes. As can be seen in Table 1, our effect size sample
sizes varied greatly, with a minimum of 11 and maximum of 200. Furthermore, only two studies in the pooled
literature ([20, 31]) used control group comparisons, and we were confident the use of multilevel meta-analysis
would help to reduce the risk of unit-of-analysis error.

For within-subjects experiments that included non-correlated independent data (e.g., data from different groups),
only the independent data were entered into analysis. For example, in Wong et al. [62] the experimenters analysed
the contribution of same gender or different gender voice pairings between agent and participant performance.
Gender is a quasi-experiment independent variable that generates independent data. So, we extracted data
exclusive to each gender for effect size calculation, including the baseline comparison for each group against the
condition of agent voice gender alignment; i.e., male participant’s control condition (no agent voice) vs male
participant’s alignment with agent voice (male agent voice) and the effect on trust.

For studies with mixed designs, we considered whether the within-subjects variables were of theoretical interest.
Variables that were not related to the robot behaviour (e.g., task complexity) for example were not considered
in favour of comparisons between different robot behaviours. For instance, in Stanton and Stevens [53], we
compared the means between groups across the whole experiment, omitting comparisons of the within-subject’s
variable, task difficulty. For Stanton and Stevens [53], the robot using averted gaze was treated as the control
condition - as suggested by the authors - which was compared against the other two robot gaze conditions,
constant and situational.

3.5.1 Studies Providing Incomplete Data. Some studies did not report all the required statistics for effect size
generation. Among them included the work of Sanders et al. [48], whose subgroup sample size was not reported,
meaning that SMD could not be calculated from the data provided. This is a common problem to meta-analysis,
and various methods have been explored to overcome the loss of data [22]. In the case of Sanders et al. [48], we
entered an estimate of the subgroup sample size value by dividing the total sample by the number of groups
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Table 2. Comparison of Main Meta-analysis model and Model with Influential Cases Removed.

Analysis g 95%CI p 95%PI � 2 95%CI
Main analysis 0.36 0.13—0.59 <0.05 -0.74—1.45 70.3 58.3—78.8
Infl. Cases Removed 0.33 0.19—0.46 <0.001 -0.12—0.78 32.4 0—56.2

(e.g., 73/3). We took this approach based on the work of Kambach et al. [22], who found, through meta-analysis
simulations, that this replacement method is safe from incurring significant statistical alterations to analysis
outcomes [22]. Statistical solutions to boost our study numbers were pursued where necessary.

There were also studies reporting non-parametric tests (e.g., [48]) due to small sample sizes. As these studies
could not satisfy the criteria for standardised mean difference (SMD) calculation, they were also omitted.

4 RESULTS
Themeta-analysis process followed the recommendations fromHarrer et al. [17] for a random effects meta-analysis
and multilevel moderator meta-analysis. A random effect model was chosen to account for different samples,
experimental designs, and dependent variable choice. The multilevel moderator meta-analysis was computed to
examine the moderating effect of vulnerability category on global effect size variance. We analysed vulnerability
in two ways: 1) with an intercept term, to examine the relationship between our vulnerability categories; 2)
without an intercept, to examine the contribution of each vulnerability category to HRT independently.

4.1 Influence and outlier analysis
Before proceeding with the meta-analysis, we conducted tests of study influence, outlier analysis, and respective
plots were generated to determine the effects sizes to be included in the final analysis. Studies were considered
outliers when the upper bound of 95% CI was lower than the lower bound of pooled effect CI (i.e., minuscule
effects) and when the lower bound of the 95% CI was higher than the upper bound of the pooled effect confidence
interval (i.e., extremely large effects). Four effect sizes were excluded based on these criteria: one from Zanatto
et al. [64], one from Gao et al. [10], and two from Srinivasan et al. [52]. We report both the Main Meta-analysis
Model (including outliers) and our Influential Cases Removed Meta-analysis model for comparison. Results from
the analysis excluding influential cases is presented in the Forest plot (see Figure 3).

As you can see in Table 2, the � 2 value reduced from 70.3% to 32.4% following the removal of influential cases.
� 2 represents the heterogeneity of effect sizes between studies in the sample, with lower � 2 values indicating
lower effect size heterogeneity. To improve our meta-analysis inferences, we proceeded with a model that omitted
influential cases and with a lower � 2 (though this practice is controversial in meta-analysis; see [59] for a discussion
on influential and outlier case treatment in meta-analysis).

4.2 Multilevel Moderator Meta-analysis Model composition
Data were analysed in R [45] using the “metafor”[58] and “dmetar” [18] packages, following the analysis process
outlined by Harrer et al. [17].Themodels outlined in the analysis are three-level models to account for dependence
introduced by study authors (e.g., collecting data from multiple sites, multiple comparisons to a control group,
using different dependent variables to measure trust).

Our multilevel meta-analysis model was specified as follows:

• Hedges g was provided as the calculated effect size.
• We imputed the variance of the calculated effect sizes by taking the squared standard error of the effect size.

ACM Trans. Hum.-Robot Interact.

 



A Meta-analysis of Vulnerability and Trust in Human-Robot Interaction • 13

Fig. 3. A forest plot of the studies included after removal of influential cases. The plot details each study’s effect size (Hedges
g) and 95% CI.

• We imputed the study author name as the random effect (or random intercept). By doing so, the model
assumed unique intercepts per study. In the model specification, we assume that individual effect sizes are
nested within studies.

• Regression coefficients were tested using a method similar to Knapp-Hartung.
• The Restricted Maximum-Likelihood (REML) method was adopted to estimate the model parameters.

For the full multilevel meta-analysis script, see the file “data_analysis.R” in the project’s OSF repository here.
We imputed a random intercept that considered the independence of both study author (“studlab”) and each

individual effect size in the analysis (“ef_num”). We used the restricted maximum likelihood (REML) model fitting
procedure for meta-analysis, as recommended by [26].

To decide whether to include the nested individual effect sizes in the analysis, we compared the three-level or
two-level models (or simple random effects model). This model comparison analysis indicated that the two-level
model was more accurate. The two-level model was significant, showing that effect size Hedges g = 0.331 (95%CI:
0.19-0.47; p < 0.001).

To progress to the moderator analysis, we added our vulnerability variable as the model moderator. The results
from our two-level meta-analysis modelling with moderator variable are shown in Table 3.
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Table 3. Multilevel meta-analysis with vulnerability categories as amoderator variable. Coefficients represent the vulnerability
categories: 1 = When the user must rely on the robot to complete a task and are unsure how competent the robot is; 2 =
When the robot asks for sensitive or personal information from the user and the user is unsure how that information is
going to be used; 3 = Economic games with a degree of financial risk; and 4 = Interacting with a large, heavy robot in close
proximity.

Moderator analysis model
Intercept Included Intercept Excluded

Coefficient Studies Effect sizes Est. [SE] Est. [SE]
1 7 15 0.49[0.16]* 0.49[0.13]***
2 4 7 0.26[0.19] 0.26[0.20]
3 5 10 0.27[0.22] 0.26[0.14].
4 3 3 0.13[0.19] 0.13[0.29]
Intercept Included model output: QM(3) = 2.19, p = 0.53.
Intercept Excluded model output: QM(4) = 18.60, p < 0.001.
Significance codes: *** = p < 0.001; ** = p < 0.01; * = 0.05; . = p < 0.1.

4.3 Moderator analysis of Vulnerability
To assess the contribution of our vulnerability category to HRT we conducted a random-effects multilevel
moderator meta-analysis.

We ran a moderator meta-analysis, including an intercept and excluding an intercept. For moderator meta-
analysis including the intercept, the intercept assumes that the average effect size is meaningful, even in the
absence of the moderator. Excluding the intercept on the other hand assumes that the moderator has a direct
effect on the effect size, and that there is no meaningful average effect without the moderator. In other words, the
inclusion of an intercept assumes some kind of relationship between the moderator as a whole and the average
effect size, whereas the model without an intercept assumes that the moderators independently modify the effect
size, but not as a single grouped moderator.

We took this approach because vulnerability is not a well-defined concept, and it is possible that people react to
the different scenarios included in our vulnerability categories uniquely, that cannot be captured through a single
moderator variable. Thus, our analysis indicated whether to conceptualise vulnerability as a single construct, or
as a set of independent categories.

Results from Model 1 (Intercept Included) indicate that the omnibus test of all levels of vulnerability category
was non-significant, QM(3) = 2.19, p = 0.53, and therefore, that levels 1 to 4 of vulnerability category did not
differ significantly to one another. Model 2 (Intercept Excluded) examines the contribution of each level of
Vulnerability category as a predictor variable. This model was significant, QM(4) = 18.60, p < 0.001, thus, each
level of vulnerability category independently has a significant effect on HRT (see 3 for analysis results).

5 DISCUSSION
This meta-analysis is the first of its kind to examine the contribution of vulnerability to trust in HRI. To do so,
we defined four vulnerability categories based on related HRT review reflections [28, 30], that encapsulated the
related concepts of perceived threat [8, 46, 65], self-disclosure [1, 3, 6, 43], and risk [55].

Prior to examining the predictive value of vulnerability, we ran a global meta-analysis of the studies identified
from the screening process. We found a positive global effect of the independent variables investigated in studies
of trust and HRI. A variety of variables were studied, including the robot’s voice [24], gaze behaviour [53],
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locomotion style [33], and interaction style [37] (for a full list of the HRI variables tested, see Table 1). That is,
despite the range and variety of approaches taken by researchers, studies of HRT tend to indicate improvements
in trust. However, it is also important to note that some effect sizes were negative [11, 20, 31, 32, 50, 52, 53],
indicating that not all approaches resulted in improved trust as intended. Future work can refer to the effect sizes
and study details provided here to make more informed choices about their robot or agent design.

The findings frommultilevel moderatormeta-analysis show that, when treated as a set of independent categories,
studies of robot performance (i.e., vulnerability category 1) significantly predict trust. One way to interpret
this finding is that the sense of vulnerability induced in the included studies was such that it did not adversely
affect the user’s trust rapport or intention to trust the robot. Taking a closer look at the variables investigated in
vulnerability category 1 and relating it them to the concepts covered in the literature may serve to unpack this
claim.

Vulnerability category included studies “when the user must rely on the robot to compete a task and are unsure
how competent the robot is”. So, vulnerability relates to the user’s assessment of the robot’s reliability in this
category, and the uncertainty experienced in this process. There were a few studies that modified the robots
behaviour, including a robot with a user aware locomotion algorithm [10], a robot with varying gaze movements
during a game of chance[53], altering the robot’s voice [24, 62], and varying the robot’s dialogue during a
collaborative task [48, 49]. These manipulations are geared toward enhancing user’s experience, by designing
and testing behaviour that is more familiar to user’s; behaviours that are more socially attuned that could reduce
the sense of uncertainty, and therefore, participants sense of vulnerability. As such, it is not surprising that the
increased anthropomorphic features included in these experiment led to increases in trust [41].

Other studies in this category focused on the robot’s form [36] and the user’s prior knowledge [47]. It could be
argued that the presence of a small exercise robot was considered a suitable deployment for a robot of that form,
thereby leading to more positive appraisals without perceived threat [46]. In the second study, the manipulation of
users prior knowledge perhaps poses the biggest threat to trust, as the sense of uncertainly could have adversely
affected their vulnerability. What the result does indicate, is users’ evaluations of a robot are more positive when
their task is disambiguated with the supply of relevant information.

Generally, these HRI studies are designed to challenge users’ expectations and confidence in the robot. A clue
to why they were the most likely to lead to trust can be found by evaluating the experimental manipulations
against the concepts and themes highlighted in our vulnerability review. Firstly, according to Nienaber et al. [42],
these studies deal with passive vulnerability, whereby the trustor is beholden to the performance of the trustee.
“Passive” is useful term here, as, in each study, there was no intention to manipulate the threat posed by the
robot, or to solicit information from users. Perhaps it is because these studies focused mainly on the preformative
features of the robot in the task that improvements in trust were found.

Taking this forward, perhaps the best way to develop trustworthy systems is to focus on performance related
vulnerabilities. That is, user’s trust in the robot is closely linked to their assessment of the robot’s ability to
complete a task. The study characteristics provided above suggest that this assessment of performance and the
trust that follows can be affected by the robots behaviour and physical design. In light of this, stakeholders
seeking effective robot solutions should focus on the preformative aspects of their system, and take inspiration
from the different characteristics highlighted in the literature. For instance, robots operating in close quarters
with humans would benefit from user aware navigational systems to build trust.

Moving on, the findings show an effect approaching significance for the contribution of vulnerability category
3, “Economic games with a degree of financial risk”, to trust. It is possible that more research on the topic may
eventually demonstrate statistical significance, so we discuss further. A significant result would indicate that
people have a tendency to put their trust in a robot during a financial exchange. In these tasks, the robot’s
generosity is often manipulated, whereby it gives either a large or small payout to the human or robot player (e.g.,
see [64]). In western societies, trust in banks is considered a vital component to running an effective economy
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[9]. So, it is conceivable that westerners view the sharing and competition for financial resources as culturally
appropriate relative to more collectivist cultures [51]. Experiments with financial games and robots may represent
an extension of this normalisation, represented as a tendency towards trusting others in financial transactions.
Indeed, Malle and Ullman [35] indicate that trust can be understood in terms of competence and benevolence,
whereby users willingness to take financial risks with a robot could be a result of their perceived benevolence of
the robot. One way to unpack this further would be to conduct a cross-cultural HRI study between cultures with
unique views on financial economics.

Taking the results at face-value would indicate that participants’ vulnerability in economic games is not
conducive to building trust with robots. Indeed, the inclusion of a monetary incentive can change the dynamic of
an interaction, fostering a more competitive interaction between agents [64]. Even the mere risk of losing money
to a robot could have elevated a participant’s sense of uncertainty and perceived risk to a critical point, more
so than experiments without monetary incentive. Future work with unobtrusive objective measures of threat
perception (e.g., galvanic skin response, heart rate data) may serve to clarify the role of financial risk in user
vulnerability.

Regarding our vulnerability categories 2, “When the robot asks for sensitive or personal information from the
user and the user is unsure how that information is going to be used”, and 4 “Interacting with a large, heavy
robot in close proximity”, our moderator analysis suggest that earning trust in these scenarios to be particularly
challenging.

Studies included in vulnerability category 2 were unique in that the robot or agent involved tried to solicit either
personal or private information from the participant. As discussed in the introduction, robots are particularly
good at earning the trust of users [1], with other experiments showing that they can solicit personal information
from the elderly [43], from people who have just been exposed to traumatic video footage [6], and also, that the
type of information disclosed plays a part in participants trust evaluation [3]. Firstly, they often involved an initial
phase of trust building followed by sensitive information requests [32, 37] or socially challenging information
requests (e.g., to choose a alternate restaurant for a prospective customer) [19]. So, perhaps trust was harder to
maintain because, in these type of experiments, the participants feel exposed because they are uncertain about
how the information they have supplied is going to judged and handled. In experiments where trust was initially
build, participants may have felt a sense of betrayal, as the robot disguised it’s intentions to gather personal
information as goodwill. Those who were happy to share their experiences with the robot must have judged that
the ambivalent potential [34] of the interaction leaned more towards positive rather than a negative outcome.
It would be interesting to see how these self-disclosure judgements vary in the population (the MDMT [35]
scale could do this), as well as how the content of the conversation (e.g., something embarrassing or traumatic)
interacts with this process. For now, our results seem to indicate that self-disclosure with a robot does not readily
lead to increases in trust, indicating that the vulnerability experienced negatively impacts user’s evaluations of
the robot or agent.

Vulnerability category 4 relates specifically to the additional vulnerability point raised by Law and Scheutz
[28], suggesting that large robots pose a unique physical danger to users. Whilst this summary might generalise
people’s impressions of large robots, a recent survey study has indicated that people consider large robots to
be less safe [46]. It is perhaps not surprising therefore, that studies of trust including large robots failed to
demonstrate a positive impact on user’s trust. What is interesting about this finding, is that the studies included
in this category were all collaborative. So, there is an argument to be made that trust should have been evidenced
in this category given the robot’s benevolence (e.g., [35]); to aid the user’s efforts in completing a task. Supporting
this point is the qualitative work by Hannibal [16], indicating that robotics experts feel that the risks posed by
robots are understated by researchers, with the possible dangers involved frequently downplayed, e.g., that too
few researchers acknowledged the physical risks robots posed. It may also explain why many authors in this
domain employ Wizard of Oz type experiments, where the researcher controls the navigation and/or behaviour’s
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of the robot for safety reasons. In summary, it appears that the risk of physical harm posed by large, heavy
robots makes the development of trust difficult. The vulnerability that individual’s experience in these types of
interactions have a negative impact on their assessment of the robot. Perhaps at this moment in time, we are not
quite ready to be fully trusting of large robots, but our level of perceived threat (e.g., [65]) will adapt over time to
accept them as suitable for certain roles; much like the way other large machinery came to be accepted during
the industrial revolution [40].

A methodological reflection from our study is that vulnerability category 1 studies were the most popular in
our sample. One way to explain this trend is that studies of performance risk are most often pursued in HRI
research. This may be because of the challenges associated with the other risk categories. As Hannibal [16]
demonstrated in their work, there is concern amongst robot researchers about studies that involve a degree of
physical risk (in the present work this included the studies [27, 33, 50, 52]). Guidelines for HRI studies with the
risk of harmful robot-to-human collisions suggest inclusion of a fail-safe mechanism to stop the robot, or to have
an operator supervise and assume control of the robot if necessary (e.g., through a Wizard of Oz setup [61]). As
such, the additional safety protocols and staff required for studies with a physical risk may encourage researchers
to opt for safer HRI experiments. Moving forward, a set of guidelines for safe HRI research of trust would give
researchers more confidence to pursue studies with a degree of physical risk, whilst also equipping university
ethics boards with the knowledge to evaluate proposals fairly.

With respect to the implication of these findings in the context of HRT, we show that vulnerability, when
operationalised, can offer some unique insights to trust development between humans and robots. Prior to
our work, most studies in HRI provided a definition of trust built on the assumption that the trustor makes
themselves vulnerable to the trustee for trust to be gained (e.g., see [29, 38]). Like Hannibal [16], we show that
vulnerability is a multi-faceted concept that encapsulates perceived threat, issues with self-disclosure, and risk.
Moving forward, we recommend that HRI researchers studying trust think carefully about their experimental
scenario will affect their user’s vulnerability. Is the robot threatening in any way? Does it suit the deployment
setting? Do participants perceive the robot to be benevolent, or not? What can be done to make a large robot
appear safer? These are just a few suggestions future designers and researchers should take into consideration.

On vulnerability and risk in HRI, we show how the two are related, and ultimately, the physical risk in HRI
poses a future challenge for trust building. This is especially important, as hype often overshadows reality in
popular discourse about robots [25] and AI (e.g., the threat posed by ChatGPT; [4]). The uneven number of
studies and effect sizes across our vulnerability categories suggests more needs to be done, with emphasis on
studies of physical risk in HRI. Further, many studies did not report adequate data for meta-analysis inclusion,
and researchers should also be mindful of this going forward.

Presently, we are developing a survey in which naive robot users will evaluate the human trustor’s vulnerability
and situational risk from a series of recently conducted human-robot trust studies. In doing so, we will establish
how people view the experiments being conducted in the field of HRI, in terms of the user’s vulnerability and
risks. The data will also implicitly indicate (by virtue of examining vulnerability and risk) scenarios that are
threatening. Such information will help inform the design of future robots and AI, so that these technologies may
be perceived more positively, where there were previous concerns from the public.

An important limitation to note is that our approach could be viewed as subjective rather than objective. The
development of our vulnerability categories relied heavily on the descriptive reflections offered by Lewis et al.
[30], Law and Scheutz [28], and Stuck et al. [55]. Because both vulnerability and risk are ill-defined concepts, we
decided that the safest route to proceed in the development of our categorisation of vulnerability was to take
inspiration from well-researched and informed review articles. And, whilst there were other definitions to choose
from (e.g., Nienaber et al. [42] definition of vulnerability) we opted for the most contextually relevant works.
In light of this, we recommend researchers in the field consider our categories as a starting point for further
investigation of the vulnerabilities and risks people experience in HRI. Our aforementioned follow-up survey
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study will glean further insights to people’s perception of trustor vulnerabilities and the risks involved, validating
our vulnerability categories empirically.

Furthermore, our process of vulnerability category assignment for our meta-analysis moderator variable could
have been more methodologically and statistically rigorous. Recruiting researchers blind to the nature of the study
to assign the categories to our study sample, and then calculating inter-rater reliability, would have improved the
objectiveness of the vulnerability category assignment process. We will adopt these measures in future moderator
meta-analysis work.

6 CONCLUSION
The present paper used a multilevel meta-analysis to determine the contribution of a new vulnerability variable to
trust development from a set of identified studies. Our analysis indicated that multilevel moderator meta-analysis
can be used to further probe the nature of trust in HRI, with studies of robot performance emerging as a unique
phenomenon in trust development, relative to our other vulnerability categories. That is, the robot’s ability to
perform a task was the most likely to lead to gains in trust, relative to the other categories of vulnerability
outlined.

The work marks an important theoretical development, whilst demonstrating the utility of multilevel moderator
analysis for the examination of potentially relevant variables.

Broadly, the work suggests that vulnerability can be operationalised and deployed meaningfully as a predictor
variable, despite its lack of coherence as a concept. In light of our findings, we recommend researchers in the
field give careful consideration to user vulnerability in the design of their human-robot trust studies.
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7 APPENDIX

7.1 R code for Meta-analysis model
All R scripts can be found on Open Science Framework (OSF).
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Fig. 4. Influence diagnostics.

Fig. 5. Baujat Plot.
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Fig. 6. Effect size omissions.

Fig. 7. �2 variance from effect size omission.
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