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Abstract
This paper introduces a metamodelling technique that employs gradient-enhanced Gaussian process regression (GPR) to
emulate diverse internal energy densities based on the deformation gradient tensor F and electric displacement field D0.
The approach integrates principal invariants as inputs for the surrogate internal energy density, enforcing physical constraints
like material frame indifference and symmetry. This technique enables accurate interpolation of energy and its derivatives,
including the first Piola-Kirchhoff stress tensor and material electric field. The method ensures stress and electric field-free
conditions at the origin, which is challenging with regression-based methods like neural networks. The paper highlights
that using invariants of the dual potential of internal energy density, i.e., the free energy density dependent on the material
electric field E0, is inappropriate. The saddle point nature of the latter contrasts with the convexity of the internal energy
density, creating challenges for GPR or Gradient Enhanced GPR models using invariants of F and E0 (free energy-based
GPR), compared to those involving F and D0 (internal energy-based GPR). Numerical examples within a 3D Finite Element
framework assess surrogate model accuracy across challenging scenarios, comparing displacement and stress fields with
ground-truth analytical models. Cases include extreme twisting and electrically induced wrinkles, demonstrating practical
applicability and robustness of the proposed approach.

Keywords Kriging · Machine learning · Constitutive modelling · Electro active polymers · Electromechanics

1 Introduction

Electro Active Polymers (EAPs) have emerged as a category
of intelligent materials capable of undergoing substantial
changes in shape in response to electrical stimuli [9, 32,
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53–55]. Among these, dielectric elastomers are particularly
noteworthy due to their remarkable actuation capabilities,
encompassing attributes such as light weight, rapid response
times, flexibility, and low stiffness properties. Notably, these
materials can undergo electrically induced substantial strains
(with reported area expansions of up to 1962% [37] as
observed in research conducted at Harvard’s Suo Lab). Their
potential is exceptionally promising, with applications span-
ning bio-inspired robotics [8, 11, 29, 36, 47], humanoid
robotics, and advanced prosthetics [9, 40, 68], as well as
implications for tissue regeneration [48].

The realm of nonlinear continuummechanics has reached
an advanced stage of development, encompassing the varia-
tional formulation, finite element implementation, and prin-
ciples related to the constitutive modeling of EAPs [6, 7, 16,
17, 67]. In the context of the latter, the reversible constitu-
tive model for dielectric elastomers is encapsulated within
the free energy density, contingent upon the deformation
gradient tensor F and the material electric field E0. Com-
plementary to this potential, which exhibits a saddle point
nature, is the internal energy density, contingent upon the
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deformation gradient tensor and the electric displacement
field D0. Building upon this foundation, researchers in [22,
51, 52] introduced an extension of the concept of polycon-
vexity, originally from the field of hyperelasticity [2, 12–14,
64], into this coupled electromechanical scenario. This novel
definition of polyconvexity played a pivotal role in establish-
ing the existence of minimizers in this context for the first
time [65], serving as a sufficient condition for the extension
of the rank-one convexity criterion within electromechanics.

In spite of the considerable inherent potential exhibited
by EAPs, a primary limitation arises from their demand
for a substantial electric field magnitude to induce signifi-
cant deformation, rendering themprone to electromechanical
instabilities or electrical breakdown [4, 57, 70]. To mit-
igate the requirement for high voltage operation, some
researchers propose the adoption of composite materials as
the basis for EAPs. These composites often amalgamate a
low-stiffness, low-permittivity elastomer matrix with stiffer,
higher-permittivity inclusions distributed randomly as fibers
or particles. Experimental investigations have evidenced a
substantial enhancement in the coupled electromechanical
performance of electroactive composites, thereby reduc-
ing the voltage prerequisites for actuation. A noteworthy
development in recent years pertains to rank-one laminate
composite dielectric elastomers [15, 43, 44].

Thedeterminationof themacroscopic constitutive response
of the composite material hinges upon the specific type
of microstructure under consideration. In the case of lam-
inated composite materials, the homogenization challenge
at the microstructure level is governed by a system of non-
linear equations that implicitly establish the microstructural
parameters with respect to the macroscopic strain gradient
tensor and the electric displacement field [15, 21, 58]. In the
case of more intricate microstructures, such as randomly dis-
tributed inclusions embedded within an elastomeric matrix,
the determination of the macroscopic constitutive response
of the composite material necessitates the utilization of com-
putationally intensive homogenization techniques. However,
these methods come with a limitation. EAPs exhibit nonlin-
ear behavior, leading to a non-linear dependency of their
macroscopic response on macroscopic deformations and
electric or magnetic fields. Essentially, this signifies that a
boundary value problem must be solved at the micro level,
considering suitable boundary conditions, for every stress
and electric/magnetic field combination [63].

In the effort to mitigate the high computational demands
associated with methods like computational homogeniza-
tion, recent developments in the realm of nonlinear contin-
uum mechanics have witnessed the emergence of Machine
Learning algorithms. These methods enable the genera-
tion of diverse constitutive models through the utiliza-
tion of data gathered from experimental tests or in-silico
(computational)-based computations. This paper aims to

explore a specific type of Machine Learning technique,
namely Gaussian Process Regression (GPR), to showcase
its viability in approximating the constitutive model of ana-
lytical constitutive models in electromechanics, particularly
within a specific category of composites known as rank-one
laminates. By applying rank-n homogenization principles,
it becomes feasible to derive the homogenized or effective
response of rank-one laminates in an almost analytical man-
ner, without necessitating computational homogenization.
Utilizing in-silico data generated based on this model, the
objective is to create surrogate models capable of replicat-
ing the behavior of the aforementioned types of constitutive
models. This initial focus pertains to simpler scenarios, with
the intention of demonstrating the feasibility and accuracy of
the employed GPR technique. This approach sets the stage
for addressing more complex composite cases in near future
works, eliminating the need for computational homogeniza-
tion and facilitating a computationally efficient evaluation of
their effective behaviour [63].

Artificial Neural Networks (ANNs) have been employed
for learning or discovering constitutive models based on
data generated either in silico or in physical laboratories, as
demonstrated in studies several [10, 20, 31, 38, 39]. Thework
by Klein [31] represents a pioneering effort in the success-
ful application of ANNs for uncovering constitutive laws in
nonlinear electromechanics. Additionally, Gaussian Process
Regression (GPR) has gained traction and found applica-
tion in the development of data-based constitutive models
for moderate strains in soft tissue applications, as shown by
Aggarwal et al. [27]. A distinctive feature GPR compared
to the ANN approach lies in its inherent probabilistic nature.
GPR allows for the specification of prior knowledge, the gen-
eration of a distribution encompassing potential predictive
functions, and the direct calculation of prediction uncertain-
ties [5, 41, 56].Moreover, GPR orKriging offers control over
the degree of interpolation between known points through the
specification of noise in the correlation function [20].

Kriging [33, 46, 62] predicts Gaussian random field val-
ues using observed data from a finite set of points, finding
applications in geostatistics, numerical code approximation,
global optimization, and machine learning [28, 46, 56, 61].
It employs Gaussian distributions to define a joint distribu-
tion based on observations and predictions, utilizing spatially
correlated covariance to weigh observation importance. The
joint distribution conditions on observed data, yielding a pre-
diction distribution characterized by mean and covariance,
facilitating sampling for predictions [49]. This emulator type
has grown popular due to its nonlinear function capture and
statistical output [28, 45], yielding confidence intervals and
adaptive metamodel refinement strategies.

This paper proposes a gradient-enhanced Gaussian pro-
cess regression metamodelling technique for emulating
internal energy densities characterizing soft/flexible EAP
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behavior. The method enforces physical constraints upfront
by incorporating principal invariants as inputs. Gradient
Kriging excels in precise interpolation of energy, first Piola-
Kirchhoff stress tensor. Derivative incorporation reduces
sampling points while maintaining accuracy. In contrast to
neural networks, Kriging’s interpolatory nature precisely
matches stress tensors at sample points, ensuring stress-free
origin compliance.

The structure of this paper unfolds as follows: In Sect. 2,
we establish the foundational concepts by introducing the
essential elements of nonlinear continuum electromechanics,
emphasizing constitutive modeling. Moving forward, Sect. 3
provides a comprehensive and self-contained overview of
Gaussian Process Regression (GPR) or Kriging. Proceed-
ing to Sect. 4, we undertake the calibration of Kriging-
based surrogate models by employing synthetic data derived
from well-established ground truth internal energy densities.
Lastly, Sect. 5 exemplifies the practical application of these
surrogate models within a 3D Finite Element computational
framework. A thorough assessment is conducted to gauge
the precision of these models across diverse and demanding
scenarios, juxtaposing displacement and stress fields against
their corresponding ground-truth analytical model counter-
parts.
Notation Throughout this paper, A : B = AI J BI J , ∀A, B ∈
R
3×3, and the use of repeated indices implies summation.

The tensor product is denoted by ⊗ and the second order
identity tensor by I . The tensor cross product operation
between two artibrary second order tensor A and B entails
[A B]I J = EI PQEJ RS APR BQS . Furthermore, E repre-
sents the third-order alternating tensor. The full and special
orthogonal groups in R

3 are represented as O(3) = {A ∈
R
3×3, | AT A = I} and SO(3) = {A ∈ R

3×3, | AT A =
I, detA = 1}, respectively and the set of invertible sec-
ond order tensors with positive determinant is denoted by
GL+(3) = {A ∈ R

3×3| detA > 0}.

2 Finite strain electromechanics

2.1 Differential governing equations in finite strain
electromechanics

Let B0 denote a subset of three-dimensional Euclidean space
R
3, representing the initial, undeformed state of an Electro

Active Polymer (EAP) material. We postulate the existence
of an injective function φ, which uniquely maps each point
X in the material configuration B0 to a corresponding point
x in the deformed, spatial configuration B ∈ R

3. This map-
ping relationship is mathematically expressed as x = φ(X)

(as illustrated in Fig. 1). Associated with the mapping φ,
we define the deformation gradient tensor F ∈ GL+(3) as
F = ∂Xφ.

Fig. 1 mapping of material quantities to the spatial quantities

The behavior of the EAP represented by B0 is governed
by the ensuing coupled boundary value problem:

F = ∂Xφ, in B0

DIVP = − f 0, in B0

φ = φ�, on ∂φB0

PN = t0, on ∂tB0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E0 = −∂Xϕ, in B0

DIVD0 = ρ0, in B0

ϕ = ϕ�, on ∂ϕB0

D0 · N = −ω0, on ∂ωB0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)

where the equations on the left correspond to the purely
mechanical physics and those on the right hand side, with
the electrostatics equations. In (1),DIV(•) signifies the diver-
gence with respect to the material coordinates X ∈ B0, while
f 0 represents the force applied per unit volume B0. Dirich-
let boundary conditions for the field φ are imposed on ∂φB0,
and t0 represents a force per unit undeformed area, being
N the outward normal at X ∈ ∂tB0. Furthermore, on the
right hand side of (1) ρ0 represents an electric charge per
unit undeformed volume B0. Dirichlet boundary conditions
are prescribed on ∂ϕB0 for the field ϕ, and ω0 represents
an electric charge per unit undeformed area ∂ωB0, being N
the outward normal at X ∈ ∂ωB0. For both coupled physi-
cal problems, the boundaries where Dirichlet and Neumann
boundary conditions are prescribed satisfy the following

∂B0 = ∂φB0 ∪ ∂tB0

∅ = ∂φB0 ∩ ∂tB0

}
∂B0 = ∂ϕB0 ∪ ∂ωB0

∅ = ∂ϕB0 ∩ ∂ωB0

}

(2)

Finally, P and D0 symbolize the first Piola-Kirchhoff
stress tensor and the material electric displacement field,
respectively. These tensors are interlinked with the defor-
mation gradient tensor F and the material electric field E0

by means of an appropriate constitutive law, as described in
Sect. 2.2.
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2.2 The internal energy density in electromechanics

The constitutive model of the undeformed solid B0 is encap-
sulated in the internal energy density per unit underformed
volume, denoted as

e : GL+(3) × R
3 → R, (F, D0) 	→ e(F, D0) (3)

Taking the derivative of the internal energy density with
respect to both F and D0 gives rise to thefirst Piola-Kirchhoff
stress tensor P and the material electric field E0 as defined
in Eq. (1)

P = ∂Fe(F, D0) E0 = ∂D0e(F, D0) (4)

The internal energy density e(F, D0) is required to adhere
to the principle of objectivity, also known as material frame
indifference. This entails its invariance with respect to rota-
tions Q ∈ SO(3) applied to the spatial configuration, as
follows

e(QF, D0) = e(F, D0) ∀ F ∈ GL+(3), D0 ∈ R
3,

Q ∈ SO(3). (5)

Moreover, the internal energy density must conform to
the material symmetry group G ⊆ O(3), a defining fac-
tor in determining the isotropic or anisotropic attributes of
the underlying material. This requirement can be succinctly
expressed in mathematical terms as follows

e(FQ, QD0) = e(F, D0) ∀ F ∈ GL+(3), D0 ∈ R
3,

Q ∈ G ⊆ O(3). (6)

Furthermore, the internal energy density e(F, D0), along
with the first Piola-Kirchhoff stress tensor P and thematerial
electric field E0, must all vanish when no deformations are
present, i.e.

e(F, D0)|F=I,D0=0 = 0, P(F, D0)|F=I,D0=0 = 0;
E0(F, D0)|F=I,D0=0 = 0. (7)

The conditions in Eqs. (5), (6), and (7) embody essential
physical criteria. Alongside these, there is a requisite for the
internal energy density function to satisfy pertinent math-
ematical criteria. Specifically, the internal energy density
function conventionally adheres to mathematical constraints
rooted in the concept of convexity. One of the simplest con-
ditions is that of convexity of e(F, D0), that is

D2e(F, D0)[δU; δU] = δU • [He] • δU ≥ 0;
∀ {F, D0} ∈ GL+(3) × R

3,

∀δU = {δF, δD0} ∈ R
3×3 × R

3,

(8)

which requires positive semi-definiteness of the Hessian
operator [He], defined as

[He] =
[

∂2FFe ∂2FD0
e

∂2D0F
e ∂2D0D0

e

]

. (9)

However, convexity away from the origin (i.e., F ≈ I ,
D0 ≈ 0) is not practically suitable, as it doesn’t encompass
realistic material behaviors like buckling [2]. An alternative
mathematical constraint is the quasiconvexity of e(F, D0)

[3]. Unfortunately, quasiconvexity is a nonlocal condition
that is challenging, and even infeasible, to verify. An implied
requirement of quasiconvexity is that of generalized rank-
one convexity of e(F, D0). A generalized rank-one convex
energy density satisfies

D2e(F, D0)[δU; δU] = δU • [He] • δU ≥ 0;
∀ {F, D0} ∈ GL+(3) × R

3,

∀δU = {u ⊗ V , V⊥}, u, V ∈ R
3, V⊥ · V = 0

(10)

Remark 1 Notice that the vector V⊥ in (10) is orthogonal to
V . The reason for this choice has its roots in the analysis
of the hyperbolicity of the system of PDEs in (10) in the
dynamic context. In this case, it is customary to express the
fields φ and D0 as a perturbation with respect to equilibrium
states φeq and Deq

0 , respectively, by means of the addition of
travelling wave functions as

φ=φeq+uφ̂(X · V − ct); D0= Deq
0 +V⊥φ̂(X · V − ct)

(11)

where V represents the polarisation vector of the travelling
wave and c the associated speed of propagation of the pertur-
bation with amplitudes u and V⊥. Introduction of the ansatz
for D0 into the Gauss’s law in Eq. (1) reveals that

DIVD0 − ρ0 = DIVDeq
0 − ρ0 + (V⊥ · V ) φ̂′(X · V − ct)

= 0 (12)

and therefore, V⊥ must be orthogonal to V .

Condition (10) is known as the Legendre-Hadamard con-
dition or ellipticity of e(F, D0). It is associated with the
propagation of traveling plane waves in the material, defined
by a vector V and speed c [50]. Importantly, the existence
of real wave speeds ab initio for the specific governing Eq.
in (1) is assured when the electromechanical acoustic tensor
Qac is positive definite, with

[Qac]i j = [̃C]i I j J VI VJ (13)
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with

C̃ = ∂2FFe + ∂2FD0
e
(
∂2D0D0

e
)−1

(V ⊗
(
∂2D0D0

e
)−1

V

V ·
(
∂2D0D0

e
)−1

V
− I
)

∂2D0Fe. (14)

A sufficient and localized condition aligned with the rank-
one condition in (10) is the polyconvexity of e. The internal
energy density is considered polyconvex [2, 22] if a convex
and lower semicontinuous functionW : GL+(3)×GL+(3)×
R

+×R
3×R

3 → R∪+∞ (generally non-unique) is defined
as

e(F, D0) = W(U), U = (F, H, J , D0, d), (15)

where H and J represent the co-factor and determinant of
F, and with the vector d a vector in the spatial configuration,
being the three of them defined as

H = CofF = (detF) F−T = 1

2
(F F) ;

J = detF = 1

6
(F F) : F; d = FD0. (16)

Polyconvexity of the internal energy density entails the
satisfaction of the following inequality

D2
W(U)[δU; δU] = δU • ∂2UUW • δU ≥ 0;

∀ U ∈ GL+(3) × GL+(3) × R
+ × R

3 × R
3,

∀δU ∈ R
3×3 × R

3×3 × R × R
3 × R

3

(17)

2.3 Invariant-based electromechanics

A simple manner to accommodate the principle of objec-
tivity or material frame indifference and the requirement of
material symmetry is through the dependence of the internal
energy density function e(F, D0) with respect to invari-
ants of the right Cauchy-Green deformation gradient tensor
C = FT F and D0. Let I = {I1, I2, . . . , In}, represent the n
objective invariants required to characterise a given material
symmetry group G. Then, it is possible to express the strain
energy density e(F, D0) equivalently as

e(F, D0) = U (I) (18)

Application of the chain rule into Eq. (4) yields the first
Piola-Kirchhoff stress tensor P and the material electric dis-
placement field D0 in terms of the derivatives of U (I) as

P =
n∑

i=1

(
∂Ii U

)
∂F Ii ; E0 =

n∑

i=1

(
∂Ii U

)
∂D0 Ii (19)

2.3.1 Isotropic electromechanics

For the case of isotropy, the invariants required to characterise
this material symmetry group, and the first derivatives of the
latter with respect to F and D0 (featuring in the definition of
P and E0 in (19)) are

I1 := F : F = tr(C), ∂F I1 = 2F,

∂D0 I1 0

I2 := H : H = tr(CofC), ∂F I22H F,

∂D0 I2 0

I3 := J = (detC)1/2, ∂F I3H,

∂D0 I3 0

I4 := D0 · D0, ∂F I40,

∂D0 I4 2D0

I5 := FD0 · FD0 = D0 · CD0, ∂F I52FD0 ⊗ D0,

∂D0 I5 2CD0

(20)

Inserting the expressions in (20) into (19) yields the following
expression for the first Piola-Kirchhoff stress tensor P and
for E0

P =
(
∂I1U

)
2F +

(
∂I2U

)
2H F +

(
∂I3U

)

H +
(
∂I5U

)
2FD0 ⊗ D0

E0 =
(
∂I4U

)
2D0 +

(
∂I5U

)
2CD0

(21)

2.3.2 Transversely isotropic elastromechanics

In the context of transverse isotropy, a preferred direction N
emerges, perpendicular to the material’s plane of isotropy,
imparting anisotropic characteristics. Our focus centers on
the material symmetry groupD∞h [25], where the structural
tensor takes the form N⊗N . This group is distinct from C∞,
also present in transversely isotropicmaterials, characterized
by the structural vector N and encompassing the potential
for piezoelectricity. The D∞h group, beyond the invariants
{I1, I2, I3, I4, I5} in (20), is distinguished by three additional
invariants, detailed below

I6 = FN · FN = tr (CN ⊗ C) ,

∂F I6 = 2FN ⊗ N, ∂D0 I6 = 0

I7 = HN · HN = tr(CofC), ∂F I7 = 2 (HN ⊗ N) F,

∂D0 I7 = 0I8 = (D0 · N)2 ,

∂F I8 = 0, ∂D0 I8 = 2(D0 · N)N

(22)
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In this case, the first Piola Kirchhoff stress tensor P and
the electric field E0 adopt the following expressions

P =
(
∂I1U

)
2F +

(
∂I2U

)
2H F +

(
∂I3U

)

H +
(
∂I5U

)
2FD0 ⊗ D0

+
(
∂I6U

)
2FN ⊗ N +

(
∂I7U

)
2 (HN ⊗ N) F

E0 =
(
∂I4U

)
2D0 +

(
∂I5U

)
2CD0 +

(
∂I8U

)
2(D0 · N)N

(23)

2.4 Application to rank-one laminates

Section 2.3 presented the case of phenomenological inter-
nal energy densities using principal invariants. In composite
materials, computing effective strain energy density requires
homogenization. This section focuses on rank-one laminates,
composed of two constituents perpendicular to N . Rank-n
homogenization theory [15] relates macroscopic F̄, D̄0

1 to
microscopic Fa , Fb, Da

0, D
b
0 as

F̄ = caFa + cbFb; �F� N = 0,

D̄0 = caDa
0 + cbDb

0; �D0� · N = 0,
(24)

where indicesa andb differentiate the constituents and ca and
cb denote their respective volume fractions, with cb = 1−ca .
A possible definition for Fa , Fb, Da

0 and Db
0 compatiblewith

(24) is

Fa (F̄,α
)= F̄+cbα⊗N; Fb (F̄,α

)= F̄−caα⊗N;
Da
0

(
D̄0,α

)= D̄0+cbTNβ; Db
0

(
D̄0,α

)= D̄0 − caTNβ.
(25)

where α ∈ R
3 and β ∈ R

2 represent the mechanical and
electric amplitude vectors, respectively, which need to be
determined. Furthermore, TN = T1 ⊗ E1 +T2 ⊗ E2, being
T1 and T2 any two perpendicular vectors to N , and E1 =
[
1 0
]T

and E2 = [0 1
]T
.

Remark 2 Notice that in Eq. in (25), although it might seem
a priori not intuitive, the definition of Fa in terms of cb and
vice-versa (and also for Da

0 and Db
0) is necessary in order to

comply with Eq. (24). The first of these two equations entails

caFa + cbFb = ca
(
F̄ + cbα ⊗ N

)

+cb
(
F̄ − caα ⊗ N

)
=
(
ca + cb

)

︸ ︷︷ ︸
=1

F̄ = F̄ (26)

1 We could continue using the notation F and D0 for the macroscopic
deformation gradient tensor and electric displacement, respectively.
However, we prefer to adhere to the traditional convention in homogeni-
sation theory [4, 24, 59],wheremacroscopic fields are generally referred
to as average fields, for which the bar symbol on top of these fields can
be used, hence the notation F̄, D̄0.

which is clearly satisfied, and the second

�F� N

=
(
Fa − Fb

)
N =

((
F̄ + cbα ⊗ N

)
−
(
F̄ − caα ⊗ N

))

N = (cb − ca)α ⊗ (N × N)
︸ ︷︷ ︸

=0

= 0 (27)

which is also satisfied. The same derivations and conclu-
sions are obtained when considering Da

0 and Db
0 as in (25).

The determination of α and β can be done by postulating
the effective energy e(F̄, D̄0) as

e
(
F̄, D̄0

) = argmin
α,β

{ê (F̄, D̄0,α,β
)},

ê
(
F̄, D̄0,α,β

) = caea
(
Fa (F̄,α

)
, Da

0

(
D̄0,β

) )

+ cbeb
(
Fb (F̄,α

)
, Db

0

(
D̄0,β

) )
.

(28)

The stationary conditions of ê with respect to α and β

yield

Dê [δα] = cacb
(
Pa − Pb

)
: (δα ⊗ N) = 0∀δα

�⇒ �P�N = 0;
Dê [δβ] = cacb

(
Ea
0 − Eb

0

)
· (TNδβ) = 0∀δβ

�⇒ TN
T �E0� = 0.

(29)

which represent two nonlinear vector equations from which
{α,β} can be obtained. Finally, computation of {α,β} per-
mits to obtain the effective first Piola-Kirchhoff stress tensor
and electric field as

P=ca Pa+cbPb; Pa =∂Fa e
(
Fa (F̄,α

)
, Da

0

(
D̄0,β

) )
,

Pb = ∂Fb e
(
Fb (F̄,α

)
, Db

0

(
D̄0,β

) )

E0 = caEa
0 + cbEb

0;
Ea
0 = ∂Da

0
e
(
Fa (F̄,α

)
, Da

0

(
D̄0,β

) )
,

Eb
0 = ∂Db

0
e
(
Fb (F̄,α

)
, Db

0

(
D̄0,β

) )

(30)

3 Gaussian process predictors

In the realm of computer experiments, metamodelling or
surrogate modelling entails substituting a resource-intensive
model or simulator U = M (I) with a computationally effi-
cient emulator M̂ (I). Both the simulator and emulator share
the same input space DI ⊆ R

n and output space DU ⊆ R.
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In our context,M represents the response of an actual inter-
nal energy density U , dependent on principal invariants I
(as discussed in Sect. 2.3). Thus, we replace the common
input field x with I and the output y with U . As the internal
energyU is scalar, the theoretical developments presented in
this paper exclusively pertain to scalar outputs. Our approach
employs Kriging models [30, 60], also known as Gaussian
Process (GP) modelling. Succinctly, the key components of
this method will be detailed in Sects. 3.1–3.3.

3.1 Gaussian process based prediction

GP modelling assumes that the outputU = M (I) is charac-
terised by

U = g(I) · β + Z(I), (31)

where, g(I) · β signifies the prior mean of the Gaussian
Process (GP), representing a linear regression model over a
specific functional basis gi , i = 1, . . . , p ∈ L2(DI , R). The
subsequent component, denoted as Z(I), characterizes a GP
with a zero mean, a constant variance σ 2

U , and a stationary
autocovariance function, defined as follows

C(I, I
′
) = σ 2

UR(I, I
′
, θ), (32)

where R is a symmetric positive definite autocorrelation
function, and θ , the vector of hyperparameters. In this work
we employ the Gaussian kernel for the definition of R,
defined as

R(I, I
′
, θ) = exp

( n∑

k=1

−θk

∣
∣
∣Ik − I

′
k

∣
∣
∣
2
)

(33)

The construction of a Kriging model consist of the two-
stage framework described in the upcoming Sects. 3.2 and
3.3.

3.2 The conditional distribution of the prediction

The Bayesian prediction methodology assumes that obser-
vations gathered in the vector

U =
[
U (I (1)),U (I (2)), . . . ,U (I (m))

]T

The observed values, including any unobserved U (I),
constitute a realization of a random vector adhering to a
parametric joint distribution. This section seeks to derive
a stochastic prediction for this unobserved quantity by
harnessing this statistical interdependence. The Gaussian
assumption for Z(I) in Eq. (31) and the linear regression

model’s nature enable the inference that the observation vec-
tor U is also Gaussian, characterized by

U ∼ N(Gβ, σ 2
U R), (34)

being G and R the regression and correlation matrices,
defined as

Gi j = g j (I(i)), i = 1, . . . ,m, j = 1, . . . , p, (35)

and

Ri j = R(I(i), I( j), θ) i = 1, . . . ,m, j = 1, . . . ,m. (36)

Likewise, a new randomvector, encompassing theobserved
set U alongside any unobserved value U (I), follows a joint
Gaussian distribution, presented as

{
U

U (I)

}

∼ N
({

G
g(I)T

}

β, σ 2
U

[
R r(I)

r(I)T 1

])

, (37)

where g(I) is the vector of regressors evaluated at I and r(I)
is the vector of cross-correlations between the observations
and prediction given by

ri (I) = R(I(i), I, θ) i = 1, . . . ,m. (38)

Assuming that the autocovariance function given by Eq.
(32) is known, the conditional distribution of the prediction
Û (I) = U (I)|U is governed by the Best Linear Unbiased
Predictor (BLUP) theorem [62]. As per BLUP, the unob-
served quantityU (I) = M (I) in the prior model of Eq. (31)
follows a Gaussian distribution, represented by the Gaussian
random variable Û with a specific mean:

μÛ (I) = g(I) · β̂ + r(I) · R−1
(
U − Gβ̂

)
, (39)

and variance

σ 2
Û

(I) = σ 2
U

(
1 − r(I) · R−1r(I) + u(I) ·

(
GT R−1G

)−1
u(I)

)
, (40)

where

β̂ =
(
GT R−1G

)−1
GT R−1U, (41)

is the generalised least-squares estimate of the underlying
regression problem, and

u(I) = GT R−1r(I) − g(I). (42)

For those readers unfamiliar with the previous derivations,
we suggest consulting the comprehensive treatment offered
in Reference [18], which provides a thorough elucidation of
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the foundational mathematical principles and methodologies
involved.

3.3 Joint maximum likelihood estimation of the GP
parameters

In the previous sections, we operated under the assumption
of a known autocovariance function. However, the specifics
of the correlation functionsR(I, I

′
, θ) and the variance value

σ 2
U are typically not known in advance. In this study, we pre-

define the correlation function type (specifically we make
use of Gaussian kernels in (33) [18]), and the determination
of hyperparameters θ and variance σ 2

U is achieved using the
observation dataset via the technique ofmaximum likelihood
estimation (MLE). The outcome of this process yields the
empirical best linear unbiased predictors (EBLUP) [62]. The
estimation of GP parameters involves solving the following
minimization problem

{
β∗, σ 2

U
∗
, θ∗} = arg min

β,σ 2
U ,θ

L (U |β, σ 2
U , θ), (43)

where L (U |β, σ 2
U , θ) is the opposite log-likelihood of the

observations U with respect to its multivariate normal distri-
bution given by

L (U |β, σ 2
U , θ) = 1

2σ 2
U

(U − Gβ)T R(θ)−1(U − Gβ)

+m
2 log(2π) + m

2 log(σ
2
U ) + 1

2 log(|R(θ)|). (44)

The MLE of β and σ 2
U are obtained from the first order

optimality conditions ofL (U |β, σ 2
U , θ), namely

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂βL = 1

σ 2
U

GT R−1 (Gβ − U) = 0;

∂
σ 2
U
L = 1

2σ 2
U

(

m −
(
U − Gβ

)
· R−1

(
U − Gβ

)

σ 2
U

)

= 0;
(45)

from which the following optimal values can be obtained

β∗(θ) =
(
GT R(θ)−1G

)−1
GT
(
R(θ)

)−1
U;

σ 2
U

∗
(θ) = 1

m

(
U − Gβ∗(θ)

)
·
(
R(θ)

)−1 ·
(
U − Gβ∗(θ)

)
.

(46)

Substituting β∗(θ) and σ 2
U

∗
(θ) into the log-likelihood

function (44) enables it to be re-written as

L (U |β∗, σ 2
U

∗
, θ) = m

2
+ m

2
log(2π)

+ m

2
log
(
σ 2
U

∗
(θ)
)

+ 1

2
log
(
|R(θ)|

)

= m

2
log(ψ(θ)) + m

2
(log(2π) + 1),

(47)

where the reduced likelihood function has been introduced
as

ψ(θ) = σ 2
U

∗
(θ)|R(θ)|1/m . (48)

This entails that the minimisation problem in Eq. (43) is
equivalent to

θ∗ =argmin
θ

ψ(θ), s.t . [θ ]i ≥0 i = {1, 2, · · · , n}
(49)

Unfortunately, an analytical solution for the optimal
hyperparameters θ ∈ R

n is unavailable. Instead, a numer-
ical minimization approach is typically employed. In our
research, we employ the box-min algorithm [69].

3.4 Gradient-enhanced Gaussian-process based
prediction

In addition to function observations, leveraging output
derivatives concerning input variables is possible, aiming to
enhance predictor accuracy. This gives rise to what is termed
Gradient Enhanced Kriging in the literature [23, 35], in con-
trast to the conventionalKriging detailed in Sects. 3.1–3.3. To
establish a gradient-enhanced predictor, the observation vec-
tor is extended to encompass derivatives of the strain energy
density U concerning its input variables I, resulting in:

U =
[
U (1), . . . ,U (m), ∂IU

(1), . . . , ∂IU
(m)
]T

, (50)

where

U (i) = U (I (i)) ∂IU
(i) =

[
∂I1U

(i), . . . , ∂InU
(i)
]T

. (51)

To interpolate both the variable and its gradient at any
unobserved location, the extension of the correlation matrix
R is necessary to incorporate the correlation between the
variable and its gradient, formulated as

R =
[
RUU RUU ′
RT
UU ′ RU ′U ′

]

, (52)

where RUU is the correlation matrix presented in (36) for
the non-gradient case. RUU ′ includes the partial derivatives
of R according to

RUU ′

=
⎡

⎢
⎣

∂I(1)R(I(1), I(1), θ) . . . ∂I(m)R(I(1), I(m), θ)
...

. . .
...

∂I(1)R(I(m), I(1), θ) . . . ∂I(m)R(I(m), I(m), θ)

⎤

⎥
⎦ , (53)
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given

∂I( j)R(I(i), I( j), θ)

=
[

∂R(I(i), I( j), θ)

∂ I ( j)
1

,
∂R(I(i), I( j), θ)

∂ I ( j)
2

, . . . ,
∂R(I(i), I( j), θ)

∂ I ( j)
n

]T

. (54)

The submatrix RU ′U ′ contains the second derivatives

RU ′U ′ =

⎡

⎢
⎢
⎣

∂2
I(1)I(1)

R(I(1), I(1), θ) . . . ∂2
I(1)I(m)R(I(1), I(m), θ)

.

.

.
. . .

.

.

.

∂2
I(m)I(1)

R(I(m), I(1), θ) . . . ∂2
I(m)I(m)R(I(m), I(m), θ)

⎤

⎥
⎥
⎦ ,

(55)

where

∂2I(i)I( j)R(I(i), I( j), θ)

=
⎡

⎢
⎣

∂2
I(1)I(1)

R(I(i), I( j), θ) . . . ∂2
I(1)I(m)R(I(i), I( j), θ)

...
. . .

...

∂2
I(m)I(1)

R(I(i), I( j), θ) . . . ∂2
I(m)I(m)R(I(i), I( j), θ)

⎤

⎥
⎦ .

(56)

Similarly the vector of cross-correlations between the
observations and the prediction is extended as follows

r(I) =
[
R(I, I(1), θ),

. . . ,R(I, I(m), θ), ∂I(1)R(I, I(1), θ), . . . , ∂I(m)R(I, I(m), θ)
]T

.

(57)

Once these adaptations have been made, the revised def-
initions for the respective quantities can be inserted into the
descriptions provided in Sects. 3.2 and 3.3. To begin, let us
revisit the mean prediction

μÛ (I) = g(I) · β̂ + r(I) · R−1
(
U − Gβ̂

)
, (58)

and the variance

σ 2
Û

(I) = σ 2
U

(
1 − r(I) · R−1r(I) + u(I) ·

(
GT R−1G

)−1
u(I)

)
,

(59)

with

β∗(θ) =
(
GT R(θ)−1G

)−1
GT
(
R(θ)

)−1
U;

σ 2
U

∗
(θ) = 1

n(1 + m)

(
U − Gβ∗(θ)

)
·
(
R(θ)

)−1 ·
(
U − Gβ∗(θ)

)
;

(60)

(a) (b)

Fig. 2 a Convex nature of the strain energy density e(F, D0) and b
saddle point nature of the free energy density Ψ (F, E0) in the vicinity
of F ≈ I and E0 ≈ 0

and

G(I) =
[
GU

GU ′

]

; GU =

⎡

⎢
⎢
⎣

(
g(I(1))

)T

...
(
g(I(m))

)T

⎤

⎥
⎥
⎦ ;

GU ′ =

⎡

⎢
⎢
⎣

(
∂I(1) g(I(1))

)T

...
(
∂I(m) g(I(m))

)T

⎤

⎥
⎥
⎦ . (61)

Finally, the optimal hyperparameters are achieved bymin-
imizing the log-likelihood function.

L (U |β∗, σ 2
U

∗
, θ) = m(1 + n)

2
log(ψ(θ))

+ m(1 + n)

2
(log(2π) + 1).

(62)

Remark 3 The conceptual framework presented in Sects. 2
and 3 has been constructed around the internal energy den-
sity e(F, D0). Yet, intertwined with this formulation, lies
the ability to define its corresponding dual, referred to as the
free energy density, symbolized as Ψ (F, E). This duality is
established through the subsequent Legendre transformation
(Fig. 2)

Ψ (F, E) = − sup
E0

{D0 − e(F, D0)} (63)

The free energy density Ψ (F, E0) imposes distinct con-
vexity constraints compared to its dual counterpart e(F, D0).
As a consequence, in the proximity of F ≈ I and E0 ≈ 0,
it assumes the character of a saddle point function, exhibit-
ing convexity with respect to F while displaying concav-
ity concerning E0. This divergence in convexity/concavity
attributes in the context of bothmechanics and electro physics
can introduce challenges in the application of Kriging or
Gradient Enhanced Kriging interpolation models that rely
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on invariants of F and E0 (i.e., free energy-based Kriging),
as opposed to those formulated in terms of F and D0 (i.e.,
internal energy-based Kriging). Notably, our observations
underscore that an internal energy-focused approach yields
markedly superior outcomes compared to the utilization of
the free energy density methodology.

Remark 4 ApplyingKriging andGradient EnhancedKriging
techniques (discussed in Sects. 3.1 to 3.4) can be criticized
due to the need to include strain energy values (U ) at each
observation or training point. This constraint limits their suit-
ability for datasets from physical experiments, unlike those
from in-silico or numerical sources, the paper’s focus. Quan-
tifying energy measurements poses challenges in such cases.
Yet, the Gradient Enhanced Kriging excels in adaptability,
accommodating cases with a single observation (F = I)
where U often equals zero. Here, derivative information at
this point, combined with derivatives from other points, can
be seamlessly integrated. This tailored approach is elaborated
in Appendix C.

3.5 Derivatives of strain energy density for Gradient
Enhanced Kriging

As detailed in Sect. 3.4, the gradient-enhanced Kriging
method incorporates both the internal energy density U and
its derivatives concerning the invariants I = I1, I2, . . . , In .
In cases involving isotropy or transverse isotropy within
material symmetry groups, coupled with a principal invari-
ant approach (see Sect. 2.3), addressing the derivatives of U
with respect to I becomes imperative. While obtaining these
derivatives for analytical energies like those derived from
aMooney–Rivlin model is straightforward, intricate internal
energy densities arising from complex homogenization tech-
niques in composites (e.g., rank-one laminates in Sect. 2.4)
may lack readily available derivatives. In such scenarios,
deriving these derivatives from thefirst Piola-Kirchhoff stress
tensor P and the electric field E0 can be undertaken using
conventional linear algebra principles. To facilitate this, let’s
revisit the invariant-based expressions for P and E0 in (19),
conveniently restated below

P =
(
∂I1U

)
V 1 + · · · +

(
∂InU

)
V n

E0 =
(
∂I1U

)
W1 + · · · +

(
∂InU

)
Wn

(64)

where

V i = ∂F Ii ; W i = ∂D0 Ii . (65)

Let us introduce now the following notation

A =
[
P̂
E0

]

; Wi =
[
Û i

W i

]

, i = {1, . . . , n} (66)

where P̂ ∈ R
9 and Û i ∈ R

9 represent the vectorised
expressions for both P and U i . This entails that A can be
conveniently written in terms of Wi as

A =
(
∂I1U

)
W1 + · · · +

(
∂InU

)
Wn (67)

In (67), Wi can be understood as the linear independent

vectors of a basis, whilst
(
∂Ii U

)
represent the coordinates

of A along the vectors Wi , (i = {1, . . . , n}). As standard
in basic courses of linear algebra, given A, the coordinates(
∂Ii U

)
can be obtained through projection of the latter over

the n vector of the basis, which yields the following linear
system of equations

⎡

⎢
⎢
⎢
⎣

A · W1

A · W2
...

A · Wn

⎤

⎥
⎥
⎥
⎦

= M

⎡

⎢
⎢
⎢
⎣

∂I1U
∂I2U

...

∂InU

⎤

⎥
⎥
⎥
⎦

,

[M]i j = Wi · W j , i, j = {1, . . . , n} (68)

Remark 5 By examining the algebraic system of equations
presented in (68), it becomes feasible to ascertain the
conditions under which a solution for {∂I1U , . . . , ∂InU }, rep-
resenting the components of A with respect to the basis
{W1, . . . ,Wn}, can be derived. Notably, the solvability of
(68) (i.e., the linearity independence of {W1, . . . ,Wn})
hinges on the determinant of the system, which must not
equal zero. Ill-conditioning in the equation system (68) can
stem from several factors: identical principal stretches of
deformation (found in both isotropic and transverse isotropic
models), alignment of principal deformation directions with
the preferred direction of transverse isotropy, or alignment of
D0 with one of the principal directions of F. To rectify this
numerical issue, we propose a perturbation approach, intro-
ducing slight variations to the identical principal stretches
and amisalignment of the coinciding principal directionwith
the preferred direction. This ensures solvability of (68).

3.5.1 Noise regularisation

In cases of substantial training data and the incorporation of
derivative information into the training strategy (e.g., in the
context of gradient-enhancedKriging), the correlationmatrix
R defined inEq. (52) can become ill-conditioned. Tomitigate
this issue, a customary practice is to introduce regularization
by augmenting the correlation matrix with a diagonal matrix
as follows: [19, 49, 66]

R =
[
RUU + ε1 Im×m RUU ′

RT
UU ′ RU ′U ′ + ε2 Im·n×m·n

]

, ε1, ε2 ∈ R
+ (69)

123



Computational Mechanics

While our paper primarily highlights the interpolation
properties of this technique, we consistently employ suf-
ficiently small values of ε1 and ε2 to mitigate potential
challenges. It is noteworthy, as elucidated in Remark 3, that
Kriging and its gradient counterpart can achieve interpolation
when R remains unregularized, specifically for ε1 = ε2 = 0.
However, when ε1 �= 0 and ε2 �= 0, and in the extreme sce-
nario of both parameters assuming larger values, Kriging
transitions from an interpolation technique to a regression
technique. Thus enabling to filter noisy data.

To illustrate this technique we explore the performance
of Gradient-Enhanced Kriging in a regression context, par-
ticularly when confronted with severely ill-conditioned cor-
relation matrices arising from noise-contaminated data. To
elucidate this aspect, we employ two designated training
samples, denoted as:

– Unperturbed sample training sample devoid from noise
in the output variables, including the values of the
energy Ψ (F) = U (I1, I2, I3, I5) and its derivatives
{∂I1U , ∂I2U , ∂I3U , ∂I5U }, where the ground-truth con-
stitutive model from which these data have been gener-
ated in-silico corrrespondswith theMooney–Rivlin/ideal
dielectric model described in Appendix A.

– Noisy sample this training sample has been obtained by
perturbing the deterministic sample according to:

Ũ = U + N(0, σU ); ∂̃Ii U = ∂Ii U + N(0, σ∂Ii U
),

i = {1, 2, 3, 5} (70)

with

σU = 0.2 · mean(U ); σ∂Ii U
= 0.2

·mean(∂Ii U ), i = {1, 2, 3, 5} (71)

In both datasets, Fig. 3 illustrates the performance of inter-
polation and regression based approaches. In the case of the
unperturbed sample (see Fig. 3a and b), Kriging prefectly
reproduces the training data points (represented by circles).
Conversely, in the noisy sample, Kriging strives to replicate
the perturbed and irregular data to the greatest extent possi-
ble. Discrepancies observed at certain points, resulting in the
ill-conditioning of the correlation matrix and subsequently
the loss of interpolation properties. Notably, it is evident
that the condition number of the matrix R experiences a
substantial increase when dealing with the noisy sample, as
illustrated in Fig. 3c. This observation aligns with expecta-
tions and raises concerns regarding the predictive accuracy
of Kriging between training points, potentially leading to
undesired oscillations.

Alternatively,wehave explored a regression-basedmethod-
ology, as detailed in [19, 49]. In this context, the regu-
larization parameters {ε1, ε2} are treated as supplementary
hyperparameters. Consequently, both sets of hyperparame-
ters, namely {θ1, θ2, θ3} and {ε1, ε2}, are optimized through

the minimization of the reduced likelihood function ψ( �̃θ)

θ̃
∗ = argminθ̃ ψ(̃θ), s.t . [̃θ ]i ≥ 0 i = {1, 2, · · · , 5}

(72)

where the augmented set of hyperparameters is defined as
θ̃ = {θ1, θ2, θ3, ε1, ε2}. Applying this approach to only the
the noisy sample yields the outcomes depicted in Fig. 3. The
values of {ε1, ε2} are determined to strike a balance between
the interpolation and regression properties of the Kriging
response. Naturally, the response does not precisely match
the noisy data, thereby avoiding the introduction of undesir-
able oscillations caused by data perturbations (see Fig. 3f).

4 Calibration of Kriging and Gradient
Enhanced Kriging predictors

4.1 Design of Experiments

In this section, we present the procedure used for generating
synthetic data, utilizing a diverse set of ground truth con-
stitutive models. The internal energy densities and material
parameters for these models can be found in A. To acquire
the dataset, we adhere to the procedure outlined in [34],
extended to the coupled context of electromechanics. The
deformation gradient tensor F is parameterized via a chosen
set of deviatoric directions, amplitudes, and Jacobians (J ,
i.e., the determinant of F). The process of generating sample
points for deviatoric directions, amplitudes, and Jacobians is
elucidated in Algorithm 1. Similarly, the electric displace-
ment D0 is also parametrised in terms of unitary directions
and amplitudes. Concerning the deviatoric directions for
F, denoted as VF we formulate them using a spherical
parametrization inR

5, precisely representing these directions
using five pertinent angular measures (φ1, φ2, φ3, φ4, φ5 ∈
[0, 2π ] × [0, π ] × [0, π ] × [0, π ] × [0, π ]) within this
5-dimensional space. For the directions employed for the
parametrisation of D0, denoted as V D0 , these are created
using a spherical parametrization in R

3, using as angular
measures (θ, ψ) ∈ [0, 2π ] × [0, π ], namely

V i
F =

⎡

⎢
⎢
⎢
⎢
⎣

cosφi
1

sin φi
1 cosφi

2
sin φi

1 sin φi
2 cosφi

3
sin φi

1 sin φi
2 sin φi

3 cosφi
4

sin φi
1 sin φi

2 sin φi
3 sin φi

4

⎤

⎥
⎥
⎥
⎥
⎦

; 1 ≤ i ≤ nV ;
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Fig. 3 Performance of
regression-based
Gradient-Enhanced Kriging. a,
b interpolation using an
unperturbed training sample; c,
d interpolation using a perturbed
training sample; e, f Regression
using a perturbed training
sample

V i
D0

=
⎡

⎣
cos θ i sinψ i

sin θ i sinψ i

cosψ i

⎤

⎦ ; 1 ≤ i ≤ nV (73)

Once the sample is generated following Algorithm 1, the
reconstruction of the deformation gradient tensor F and of
D0 becomes possible at each of the sampling points. This

reconstructionprocess is demonstrated inAlgorithm2,where
� represents the basis for symmetric and traceless tensors
(refer to Appendix B for details on �).
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Fig. 4 Evolution of metric ÊP
for both ordinary and Gradient
with the number of training of
infill points for: a
Mooney–Rivlin/ideal dielectric
(MR/ID); b rank-one laminate
composite model (ROL)

Algorithm 1 Pseudo-code for sample generation
1: Set the number of amplitudes, directions and determinants:

{n t F , nV , n J , n t D0 };
2: Initialise the vector of amplitudes and determinants:

t F = [0, ..., tFmax]n t F ×1; J = [Jmin, ..., Jmax]n J×1;
t D0 = [0, ..., D0max]n t D0 ×1.

3: Initialise a vector of Latin Hypercube Sampled angles: φ1 =
[0, 2π ]nV×1, θ = [0, 2π ]nV×1;

4: Initialise three vectors of Latin Hypercube Sampled angles:
φ2,...,4 = [0, π ]nV×1; ψ = [0, π ]nV×1

5: Construct the directions, V F , using an extended Spherical
parametrisation in R

5 - detailed in (73);
6: Construct the directions, V D0, using Spherical parametrisation-

detailed in (73);
7: Evaluate the deformation gradient tensors, F and D0- detailed in

Algorithm 2;
8: Evaluate the invariants, energy U , P and E0;
9: Get derivatives ∂Ii U according to Eq. (68);

Algorithm2Pseudo-code for construction of the set of defor-
mation gradient tensors and electric displacement fields
1: for i = 1 : nV do
2: for j = 1 : nJ do
3: for k = 1 : n tF do

4: F = J 1/3j exp
(
[t F]k

[∑5
m=1[V i

F]m�m

])
;

5: for l = 1 : n t D0 do

6: D0 = [t D0 ]lV i
D0
;

7: end for
8: end for
9: end for
10: end for

4.2 Calibration andValidation

The synthetic data, generated as per Sect. 4.1, calibrates
Kriging and Gradient Enhanced Kriging surrogates, follow-
ing principles in Sect. 3. To assess surrogate accuracy at
non-observation points, generated evaluation points mirror
the procedure in Sect. 4.1. These points test the model per-
formance but are not part of calibration. For validation, a
substantial validation set of 10, 000 data points is used.

This density ensures assessment of the smaller calibration
set’s accuracy. Validation comprehensively evaluates the sur-
rogate model’s performance, verifying its reliability and
generalizability.

The calibration and validation process has been carried
across a diverse range of constitutive models. These include:
(a) Mooney–Rivlin/ideal dielectric model (MR/ID); (b)
Arruda-Boyce/ideal dielectric (AB/ID) (see Reference [1]);
(c) Gent/ideal dielectric (Gent/ID); (d) Quadratic Mooney–
Rivlin/ideal dielectric (QMR/ID); (e) Yeoh/ideal dielectric
(Yeoh/ID); (f) Rank-one laminate composite (ROL). Specific
expressions for strain energy densities and material parame-
ters are available in A. For eachmodel, 2 training datasets are
generated, each containing N = {45, 100} training points.
Kriging and Gradient Enhanced Kriging models are cali-
brated for all 6 ground truth models within each training set.
Results include mean squared error (R2(P) and R2(E0)) for
first Piola-Kirchhoff stress tensor P and E0, and values of
ÊP and ÊE0 , defined below

ÊP = max

(
‖P Ani − PKr i‖

‖P Ani‖
,

)

;

ÊE0 =max

(
‖EAn

0
i −EKr

0
i‖

‖EAn
0

i‖
,

)

i ={1, · · · , n=10, 000},

(74)

are presented in Table 1 (for N = 45 training points) and 2
(for N = 100 training points). In Eq. (74), ||A|| denotes the
Frobenius norm of A, n is the number of experiments, P Ani

and PKr i represent the analytical and Kriging-predicted first

Piola-Kirchhoff stress tensors, respectively. Similarly, EAn
0

i

and EKr
0

i
represent the analytical and Kriging-predicted

material electric field, respectively.
The findings of the analysis, as presented in Tables 1 and 2,

offer insights into the performance of Kriging and Gradient
Enhanced Kriging techniques. In both tables, the achieved
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Table 1 R2(P), R2(E0), ÊP
and ÊE0 for all six models for
number of training points
N = 45, for both Kriging and
Gradient Enhanced Kriging

Model Ordinary Kriging Gradient Kriging
R2 (‖P‖) ÊP R2 (‖P‖) ÊP

R2 (‖E0‖) ÊE0 R2 (‖E0‖) ÊE0

AB/ID 0.8614 1.75 1 2.17 × 10−2

0.9999 3.03 × 10−2 1 4.74 × 10−3

Gent/ID 0.5495 2.83 1 1.08 × 10−2

0.9999 2.21 × 10−2 1 1.71 × 10−3

Yeoh/ID 0.9999 1.03 × 10−1 1 2.97 × 10−2

0.9997 2.66 × 10−2 1 8.10 × 10−2

MR/ID 0.9798 1.11 1 2.42 × 10−2

1 2.06 × 10−2 1 2.78 × 10−3

QMR/ID 0.9975 1.60 × 10−1 1 1.49 × 10−2

1 8.05 × 10−3 1 8.34 × 10−3

ROL 0.1295 3.20 0.8871 1.20

0.9806 2.13 × 10−1 0.9987 5.11 × 10−2

Table 2 R2(P), R2(E0), ÊP
and ÊE0 for all six models for
number of training points
N = 100, for both Kriging and
Gradient enhanced Kriging

Model Ordinary Kriging Gradient Kriging
R2 (‖P‖) ÊP R2 (‖P‖) ÊP

R2 (‖E0‖) ÊE0 R2 (‖E0‖) ÊE0

AB/ID 0.9985 3.82 × 10−1 1 1.9 × 10−3

1 5.62 × 10−4 1 1.51 × 10−4

Gent/ID 0.9999 2.55 × 10−1 1 1.25 × 10−3

1 1.06 × 10−3 1 2.15 × 10−4

Yeoh/ID 1 1.62 × 10−2 1 5.68 × 10−3

1 2.1 × 10−2 1 1.18 × 10−2

MR/ID 0.9984 2.66 × 10−1 1 1.38 × 10−3

1 9.34 × 10−4 1 1.46 × 10−4

QMR/ID 1 1.45 × 10−2 1 9.96 × 10−4

1 2.32 × 10−3 1 1.69 × 10−3

ROL 0.8456 1.85 0.9955 1.82 × 10−1

0.9971 2.84 × 10−1 0.9998 2.27 × 10−2

R2(P) and R2(E0) values are notably high, approaching
unity, signifying an impressive level of accuracy in predict-
ing the first Piola–irchhoff stress tensor. This is true for all the
models except for the rank-one laminate composite material,
where the performance of the ordinary Kriging approach is
extremely poor. Furthermore, under the consideration of the
alternative metric, specifically ÊP , ÊE0 , Gradient Enhanced
Kriging demonstrates a significantly superior accuracy, con-
sistently yielding values approximately an order of magni-
tude smaller compared to the Kriging counterpart.

For comprehensive understanding, Fig. 4 depicts the evo-
lution of the ÊP metric for both conventional and Gradient
Enhanced Kriging methodologies. This illustration pertains
to two specific constitutivemodels considered in Tables 1 and
2, namely the Mooney–Rivlin/ideal dielectric model and the
rank-one laminate composite model. Notably, as the number

of training points increases, theGradient Enhanced technique
adeptly diminishes this metric, substantiating its efficacy.
On the contrary, the ordinary Kriging method is incapable
of decreasing the metric ÊP as the number of infill points
increases.

These observations emphasize the distinct advantage of
adopting the Gradient Enhanced technique, as it facilitates
precise predictions of the first Piola-Kirchhoff stress tensor
P and of the material electric field E0 even when operat-
ing with an considerably small number of training points.
This characteristic positions Gradient Enhanced Kriging as
an exceedingly expedient and efficacious alternative in com-
parison to the conventional Kriging methodology.

Remark 6 AppendixA contains thematerial parameters used
in each of the constitutive models (MR/ID, AB/ID, Gent/ID,
QMR/ID, Yeoh/ID, ROL) considered for calibration of their
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respective Kriging and Gradient Krigind predictors. Notice
that the values of thesematerial parameters do not correspond
with those of typical dielectric elastomers such as the VHB
4910 by 3M. It is importante to emphasize that our Kriging
and Gradient Kriging predictors are flexible to deal with any
realistic value of material constants, and in particular, those
typical of the popular VHB 4910. These materials exhibit a
large disparity between the values of mechanical constants
and electrical constants. For instance, the shear modulus μ

and electric permittivity ε of VHB 4910 material [26] take
values of approximatelyμ ≈ 103−105 (Pa) and ε ≈ 10−11−
10−12 (F/m).

The enormous gap between the material constants of both
physics (i.e. mechanics and electric physics) can ultimately
pose challenges for the accurate calibration of the Krig-
ing predictor (i.e. yielding ill-conditioning of the correlation
matrix R (36)) or of any other type of machine learning tech-
nique. In order to remedy this, instead of considering the data
generated by the model with such material constants, and
in particular, the first Piola-Kirchhoff stress tensor P , the
material electric field E0 and the material electric displace-
ment D0, we can alternatively perform the calibration with
their dimensionless counterparts, P̃ , Ẽ0 and D̃0 (notice that
the deformation gradient tensor F is already dimensionless),
respectively, defined as

P̃ = P
μ

, Ẽ0 =
√

ε

μ
E0, D̃0 = D0√

εμ
. (75)

Remark 7 With regards to the rank-one laminate material, in
our previous publications (see Reference [42]), we demon-
strated that whenever each of the phases a, b of the rank-one
laminate comply with the polyconvexity condition (15), and
therefore with the ellipticity condition (10), the solvability
of α and β in (29) is always guaranteed. This entails that at
microscopic level there is no apparent difficulty. However,
the homogenised response of phases which are elliptic indi-
vidually does not necessarily inherit this desirable property,
and can indeed exhibit loss of ellipticity. We have not dis-
carded this situation for the calibration of the Kriging and
Gradient Kriging predictors, and in fact, some points within
the data generated violate the ellipticity condition (at the
macroscopic level). Despite this, the predictors can handle
these situations.

5 Numerical three-dimensional examples

The analysis in Sect. 4 strongly supports the superiority of
gradient enhanced Kriging over its energy-only counterpart,
which lacks first derivatives. Inspired by these promising
results, the primary objective of this section entails the
seamless integration of gradient enhanced Kriging models

into an in-house Finite Element computational framework.
This assimilation endeavors to establish the accuracy and
efficacy of these metamodels through meticulous juxtapo-
sition with the Finite Element solutions provided by their
respective ground truth counterparts. Specifically, this eval-
uation embraces intricate and exacting scenarios including
complex bending and wrinkling, thus furnishing a robust
appraisal of themetamodels’ performancewithin demanding
contexts.

5.1 Electrically induced bending example: isotropic
ground truthmodel

The inaugural exemplification within the Finite Element
domain revolves around a cantilever beam configuration, as
illustrated in Fig. 5. The geometric attributes and bound-
ary conditions underpinning this scenario are succinctly
elucidated in Fig. 5. Pertaining to the discretization frame-
work, tri-quadratic Q2Finite Elements have been judiciously
employed to effectuate the interpolation of the displacement
field.

In this illustrative instance, we examine a Mooney–
Rivlin/ideal dielectric model (as expressed in Eq. (76)) as the
ground truth internal energy density. We adopt the material
parameters specified in Table 3. Upon subjecting the sys-
tem to a voltage differential �V

√
ε/μ1 = 0.5 (see Table

3 for the value of μ1), the ensuing deformation is depicted
in Fig. 6a and b for the ground truth Mooney–Rivlin model
and its gradient enhanced Kriging counterpart, respectively.
Evident congruity emerges between both figures. This con-
gruence is also manifest in the contour plot of σ13, where σ

denotes the Cauchy stress tensor, i.e., σ = J−1PFT . These
consistent parallels serve to affirm the precision and robust-
ness of the gradient enhanced Kriging models, signifying
their potential in effectively capturing the intricate behavior
of the underlying physical systems.

Fig. 5 Electrically induced actuation. Geometry and boundary condi-
tions. Beam fixed at X1 = 0. {a, b, c} = {120, 10, 1} (mm)
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Fig. 6 Electrically induced
actuation: a Mooney–Rivlin
ground truth model; b isotropic
Gradient Enhanced Kriging
counterpart. Contour plot
distribution of σ13/μ1 (see
Table 3 for the value of μ1)

Fig. 7 Complex electrically induced actuation. Geometry and electri-
cal boundary conditions. Displacements fixed at X1 = 0. {a, b, c} =
{120, 10, 1} (mm). Electrodes highlighted with colour green (two
regions in the lowest surface across the thickness and one region on
the top surface) and red colour (one region in the mid surface across the
thickness)

5.2 Complex electrically induced bending example:
rank one laminate ground truthmodel

The second example considers the same cantilever beam
as in the preceding section, subjected to a more complex
set of boundary conditions for the electric potential ϕ. This
can be seen in Fig. 7. Pertaining to the discretization frame-
work, tri-quadratic Q2Finite Elements have been judiciously
employed to effectuate the interpolation of the displacement
field.

In this instance, we consider a more complex constitu-
tive model in comparison to the precedent section, where the
selection encompassed an isotropic ground truth model. Our
present investigation is directed towards a rank-one laminate
composite ground truth model. The homogenized internal
energy governing this model is encapsulated within Eq. (81),
while the associated material parameters are cataloged in
Table 9. Upon the imposition of a voltage gradient denoted

as �V
√

εa/μa
1 = 2.5 across the electrodes (see Table 9 for

the value of μa
1 and εa), the intricate phenomenon of electri-

cally induced bending is explored for both the ground truth
and Gradient Enhanced Kriging models. The outcomes of
this analysis are presented in Fig. 8, effectively showcasing
the marked concordance evident in the electrically induced
deformations, as well as the alignment in stress distributions,
between the two models.

For a more comprehensive evaluation of the electrically
induced deformation in the context of both models (the
isotropic ground truth model and its corresponding coun-
terpart developed using the Gradient Enhanced Kriging
approach), an enhanced comparative perspective is available
in Fig. 9. This representation serves to underscore the notable
concurrence observed between the deformation predictions
of the two models.

5.3 Electrically induced wrinkles: rank one laminate
ground truthmodel

The last example considers the geometry and boundary
conditions shown in Fig. 10. This example has been previ-
ously analysed in other works by the authors [43, 44]. The
squared plate is completely fixed in its borders. The voltage
is grounded at the maximum value of coordinate X3 whilst
a surface charge ω0 = 220/

√
μa
1ε

a (Q·mm−2) (see Table
9 for the value of μa

1 and εa) is applied at the minimum
value of coordinate X3. The Finite Element discretisation
considers Q2 (tri-quadratic) hexahedral Finite Elementswith
80 × 80 × 2 elements in X1, X2 and X3 directions.

The primary objective of this illustrative instance is to
assess the precision of the Gradient Enhanced Krigingmodel
within scenarios characterized by the emergence of wrinkles
induced through electrical stimuli. In a specific context, our
focus centers on employing the rank-one laminate model,
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Fig. 8 Complex electrically
induced actuation. Contour plot
distribution of σ13/μ

a
1 for

various of �V
√

μa
1/ε

a (see
Table 9 for the value of μa

1 and
εa): a Rank-one laminate
composite ground truth model; b
Transversely isotropic Gradient
Enhanced Kriging counterpart

Fig. 9 Complex electrically induced actuation for various values of
�V . Isotropic ground truth model represented by meshed domain. Gra-
dient Enhanced Kriging counterpart represented by magenta domain

as defined by Eq. (81), as the baseline model representing
ground truth.

The pertinent material parameters integral to this model
can be found in Table 9. Upon the application of an elec-
tric charge denoted as ω0, the progression of electrically
induced wrinkles is portrayed in Fig. 11, these predictions
being furnished by the Gradient Enhanced Kriging model
across a spectrum of escalating ω0 values. In addition, this
figure represent the evolution of the displacement along Z
or X3 direction of points A and B (see Fig. 11) predicted by
both ground truth and Gradient Enhanced Kriging (Emula-

Fig. 10 Electrically induced wrinkles. Geometry and boundary condi-
tions. Squared platewith side 0.06 (m) and thickness 1 (mm).Maximum
applied surface charge ω0 = 20/

√
μ1ε1 (Q·mm−2) (see Table 9 for the

value ofμa
1 and εa). Volumetric force of value 9.8×10−2 (N/m3) action

in along X3 axis (in the positive direction)

tor) models, showing a clear similarity between the paths of
both models.

Crucially, Fig. 12 offers a side-by-side comparison of
the wrinkles projected by the rank-one laminate composite
model, serving as the veritable benchmark, and its concomi-
tant representation through the Gradient Enhanced Kriging
methodology. Evidently, the congruence between the pat-
terns of electrically induced wrinkling is remarkable, further
corroborated by the similarity observed in the distribution
of stress patterns as depicted in the contour plots of both
models.
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Fig. 11 Electrically induced wrinkles. Wrinkling patterns for various
values of surface charge �ω0, being � the load factor. Top row: results
predicted by the transversely isotropic Grandient Enhanced Kriging
model, calibrated against rank-one laminate composite ground truth

model. The graphics represent the evolution of the displacement along
Z or X3 direction of points A and B predicted by both ground truth and
Gradient Enhanced Kriging (Emulator) models

Fig. 12 Electrically induced
wrinkles. Contour plot
distribution of σ13/μ

a
1 (see

Table 9 for the value of μa
1) for

� = 0.1. a Rank-one laminate
composite ground truth model;
b transversely isotropic Gradient
Enhanced Kriging model

6 Concluding Remarks

This manuscript introduced an innovative metamodelling
technique that leverages gradient-enhanced Gaussian Pro-
cess Regression or Kriging to emulate a diverse range
of internal energy densities. The methodology seamlessly
incorporates principal invariants as input variables for the
surrogate internal energy density, thereby enforcing crucial

physical constraints such as material frame indifference and
symmetry. This advancement has facilitated precise interpo-
lation not only of energy values, but also their derivatives,
including the first Piola–Kirchhoff stress tensor and mate-
rial electric field. Furthermore, it ensures stress and electric
field-free conditions at the origin, a challenge typically
encountered when employing regression-based methodolo-
gies like neural networks.

123



Computational Mechanics

Table 3 Material parameters
used with the
Mooney–Rivlin/ideal dielectric
model

Parameter μ1 μ2 λ ε

Value 0.5 0.5 5 1

The research has indicated the inadequacy of utilizing
invariants derived from the dual potential of the internal
energy density, particularly the free energy density. The
inherent saddle point nature of the latter diverges from the
convex nature of the internal energy density, engendering
complexities formodels based onGPRorGradient Enhanced
GPR that rely on invariants of F and E0 (free energy-based
GPR). This is contrasted with models formulated using F
and D0 (internal energy-based GPR).

Numerical examples within a 3D Finite Element frame-
work have been thoughtfully incorporated, rigorously assess-
ing the accuracy of surrogate models across intricate scenar-
ios. The comprehensive analysis juxtaposing
displacement and stress fields with ground-truth analytical
models encompasses situations involving extreme bending
and electrically inducedwrinkles, thus showcasing the utility
and accuracy of the proposed approach.
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A Constitutive Models

A.1 Mooney–Rivlin/ideal dielectric elastomermodel

The internal energy density for this model is:

U (I1, I2, I3, I5) = μ1
2 (I1 − 3) + μ2

2 (I2 − 3)

− (μ1 + 2μ2) ln (I3) + λ
2 (I3 − 1)2 + 1

2ε
I5
I3

(76)

and the material parameters used are

A.2 Quadratic Mooney–Rivlin/ideal dielectric
elastomermodel

The internal energy density for this model is:

U (I1, I2, I3, I5) = μ1

2
(I1)

2 + μ2

2
(I2)

2

−6 (μ1 + 2μ2) ln (I3) + λ

2
(I3 − 1)2 + 1

2ε

I5
I3

(77)

and the material parameters used are (Table 4)

Table 4 Material parameters
used with the quadratic
Mooney–Rivlin/ideal dielectric
model

Parameter μ1 μ2 λ ε

Value 0.5 0.5 5 1

A.3 Gent/ideal dielectric elastomermodel

The internal energy density for this model is:

U (I1, I3, I5) = −μ

2
Jm ln

(

1 − I1 − 3

Jm

)

− μln (I3) + λ

2
(I3 − 1)2 + 1

2ε

I5
I3

(78)

and the specific values for the material parameters used are
(Table 5)

A.4 Yeoh/ideal dielectric elastomermodel

The strain energy density for this model is:

U (I1, I3, I5) = C10 (I1 − 3)

+ C20 (I1 − 3)2 + C30 (I1 − 3)3

− 2C10ln (I3) + λ

2
(I3 − 1)2 + 1

2ε

I5
I3

(79)

and the material parameters used are (Table 6):

A.5 Arruda-Boyce/ideal dielectric elastomermodel

The internal energy density for this model is:

U (I1, I3, I5) = a1

(

β (I1) λc (I1) − a2ln

(
sinh (β (I1))

β (I1)

))
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Table 5 Material parameters
used with the gent/ideal
dielectric model

Parameter μ Jm λ ε

Value 1 19 5 1

Table 6 Material parameters used with the Yeoh/ideal dielectric model

Parameter C10 C20 C30 λ ε

Value 1 1 1 5 1

Table 7 Material parameters used with the Arruda–Boyce/ideal dielec-
tric model

Parameter a1 a2 λ ε

Value 2.1899
√
6 4.9159 1

Table 8 Material parameters used with the transversely isotropic/ideal
dielectric model

Parameter μ1 μ2 μ3 λ α β ε N

Value 0.5 0.5 7.5 5 2 2 1 1√
3

[
1 1 1

]T

− Aln (I3) + 1

2
λ (I3 − 1)2 + 1

2ε

I5
I3

(80)

where

λc (I1) =
√
1

3

√
I1; L−1 (x) = 3x − x3

1 − x2
;

β (I1) = L−1
(

λc (I1)

a2

)

The material parameters used in the model are (Table 7):

A.6 Transversely Isotropic/ideal dielectric elastomer
model

The internal energy of the this model is:

U (I1, I2, I3, I5, I6, I7)

= μ1

2
(I1 − 3) + μ2

2
(I2 − 3) − (μ1 + 2μ2 + μ3) ln (I3)

+ λ

2
(I3 − 1)2 + μ3

2α
(I6)

α + μ3

2β
(I7)

β + μ3

2

(
1

2α
+ 1

2β

)

+ 1

2ε

I5
I3

The material parameters used for this model are (Table 8):

A.7 Rank-One Laminate

We consider Mooney–Rivlin and ideal dielectric internal
energy densities for the individual phases a and b within

Table 9 Material parameters used with the rank one laminate model

Parameter μa
1 μa

2 λa α β fm fe c

Value 0.5 0.5 5 π/4 π/4 2 2 0.6

this composite (refer to Sect. 2.4), namely

Ua (I a1 , I a2 , I a3 , I a5
) = 1

2
μa
1

(
I a1 − 3

)

+ 1

2
μa
2

(
I a2 − 3

)− (μa
1 + 2μa

2

)
ln
(
I a3
)

+ 1

2
λa
(
I a3 − 1

)2 + 1

2εa
I a5
I a3

Ub
(
I b1 , I b2 , I b3 , I a5

)
= 1

2
μb
1

(
I b1 − 3

)

+ 1

2
μb
2

(
I b2 − 3

)
−
(
μb
1 + 2μb

2

)
ln
(
I b3

)

+ 1

2
λb
(
I b3 − 1

)2 + 1

2εb
I b5
I b3

(81)

being the effective strain energy Ψ
(
F̄, D̄0

)

e
(
F̄, D̄0

) = argmin
α,β

{ê (F̄, D̄0,α,β
)};

ê
(
F̄, D̄0,α,β

) = caea
(
Fa (F̄,α

)
, Da

0

(
D̄0,β

) )

+ cbeb
(
Fb (F̄,α

)
, Db

0

(
D̄0,β

) )
,

(82)

with

ea
(
Fa (F̄,α

)
, Da

0

(
D̄0,β

) )

= Ua (I a1 , I a2 , I a3 , I a5
) ; eb

(
Fb (F̄,α

)
, Db

0

(
D̄0,β

) )

= Ub
(
I b1 , I b2 , I b3 , I b5

)
(83)

where {I a1 , I a2 , I a3 , I a5 } and {I b1 , I b2 , I b3 , I b5 } represent the
principal invariants of Fa , Fb, Da

0 and Db
0 related to the

macroscopic deformation gradient tensor F̄ and D̄0 through
Eq. (25). The material parameters used for this composite
material are found below (Table 9):

where the mechanical and electrical contrasts fm and fe
are defined as

fm = μb
1

μa
1

= μb
2

μa
2

= λb

λa
; fm = εb

εa
(84)

andwith the vector of lamination N spherically parametrised
in terms of α and β according to

N = [cos θ sinψ sin θ sinψ cosψ
]
. (85)
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B Basis for Symmetric Traceless Second
Order Tensors

�1 =
√
1

6

⎡

⎣
2 0 0
0 −1 0
0 0 −1

⎤

⎦ �2 =
√
1

2

⎡

⎣
0 0 0
0 1 0
0 0 −1

⎤

⎦ �3 =
√
1

2

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦

(86)

�4 =
√
1

2

⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ �5 =
√
1

2

⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ (87)

C Gradient-enhanced Gaussian-process
based prediction using a single
observation point in the strain energy

The gradient enhanced Kriging approach, described in
Sect. 3.4, can be particularised to the case when there is
only one observation point for energy, whilst still retaining
n observation points for the derivatives of the energy with
respect to invariants. In order to particularise this approach
to this scenario, the vector of observations U is now defined
as

U =
[
U (1)∂IU

(1), . . . , ∂IU
(m)
]T

, (88)

where

U (1) = U (I (1)) ∂IU
(i) =

[
∂I1U

(i), . . . , ∂InU
(i)
]T

. (89)

The correlation matrix R is similar to that in (52), with
the same block structure, namely

R =
[
RUU RUU ′
RT
UU ′ RU ′U ′

]

, (90)

with RUU = R(I1, I1, θ). RUU ′ includes the partial deriva-
tives of R according to

RUU ′ = [∂I(1)R(I(1), I(1), θ) . . . ∂I(m)R(I(1), I(m), θ)
]
,

(91)

given

∂I( j)R(I(i), I( j), θ)

=
[

∂R(I(i), I( j), θ)

∂ I ( j)
1

,
∂R(I(i), I( j), θ)

∂ I ( j)
2

, . . . ,
∂R(I(i), I( j), θ)

∂ I ( j)
n

]T

.

(92)

The submatrix RU ′U ′ exactly the same as that in (55)-
(56). Similarly the vector of cross-correlations between the
observations and the prediction is extended as follows

r(I) =
[
R(I, I(1), θ), ∂I(1)R(I, I(1), θ), . . . , ∂I(m)R(I, I(m), θ)

]T
.

(93)

Once these adaptations have been made, the new defini-
tions for the various quantities can be substituted into the
definitions detailed in Sects. 3.2 and 3.3. To start with, recall
the mean prediction

μÛ (I) = g(I) · β̂ + r(I) · R−1
(
U − Gβ̂

)
, (94)

and the variance

σ 2
Û

(I) = σ 2
U

(
1 − r(I) · R−1r(I) + u(I) ·

(
GT R−1G

)−1
u(I)

)
,

(95)

with

β∗(θ) =
(
GT R(θ)−1G

)−1
GT
(
R(θ)

)−1
U;

σ 2
U

∗
(θ) = 1

1 + nm

(
U − Gβ∗(θ)

)
·
(
R(θ)

)−1 ·
(
U − Gβ∗(θ)

)
;
(96)

and

G(I) =
[
GU

GU ′

]

; GU = g(I(1)); GU ′ =

⎡

⎢
⎢
⎣

(
∂I(1) g(I(1))

)T

.

.

.
(
∂I(m) g(I(m))

)T

⎤

⎥
⎥
⎦ .

(97)

References

1. Arruda EM, Boyce MC (1993) A three-dimensional constitutive
model for the large stretch behavior of rubber elastic materials. J
Mech Phys Solids 41:389–412

2. Ball JM (1976) Convexity conditions and existence theorems in
nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403

3. Ball JM (2002) Geometry, mechanics and dynamics, chapter some
open problems in elasticity. Springer, Berlin, pp 3–59

4. Bertoldi K, Gei M (2011) Instabilities in multilayered soft
dielectrics. J Mech Phys Solids 59(1):18–42

5. Bishop Christopher M (2006) Pattern recognition and machine
learning. Springer, New York

6. Bustamante R (2009) Transversely isotropic non-linear electro-
active elastomers. Acta Mech 206(3–4):237–259

7. Bustamante R, Dorfmann A, Ogden RW (2009) On electric body
forces andMaxwell stresses in nonlinearly electroelastic solids. Int
J Eng Sci 47(11–12):1131–1141

123



Computational Mechanics

8. Cao J, Qin L, Liu J, Ren Q, Foo CC, Wang H, Lee HP, Zhu J
(2018) Untethered soft robot capable of stable locomotion using
soft electrostatic actuators. Extreme Mech Lett 21:9–16

9. Carpi F, De Rossi D (2007) Bioinspired actuation of the eyeballs
of an adroid robotic face: concept and preliminary investigations.
Bioinspiration Biomimetics 2:50–63

10. Chen P, Guilleminot J (2022) Polyconvex neural networks for
hyperelastic constitutive models: A rectification approach. Mech
Res Commun 125:103993

11. ChenY,ZhaoH,Mao J,ChirarattananonP,HelblingEF,HyunNSP,
Clarke David R, Wood RJ (2019) Controlled flight of a microrobot
powered by soft artificial muscles. Nature 575:324–329

12. Ciarlet P (2010)Existence theorems in intrinsic nonlinear elasticity.
Journal des mathématiques pures et appliqués 94:229–243

13. Ciarlet PG (1988) Mathematical elasticity. Volume 1: three dimen-
sional elasticity

14. Dacorogna B (2008) Direct methods in the calculus of variations.
Springer

15. deBotton G, Tevet-Deree L, Socolsky EA (2007) Analysis and
applications to laminated composites. Electroactive heterogeneous
polymers. Mech Adv Mater Struct 14:13–22

16. Dorfmann A, Ogden RW (2005) Nonlinear electroelasticity. Acta
Mech 174(3–4):167–183

17. Dorfmann A, Ogden RW (2006) Nonlinear electroelastic deforma-
tions. J Elast 82(2):99–127

18. Dubourg V (2011) Adaptive surrogate models for reliability
analysis and reliability-based design optimization. PhD thesis,Uni-
versite Blaise Pascal - Clermont II

19. Forrester A, Sobester A, Keane A (2008) Engineering design via
surrogate modelling: a practical guide. Wiley, Chichester

20. (2022) Fuhg JN, Marino M, Bouklas N (2022) Local approximate
Gaussian process regression for data-driven constitutive models:
development and comparisonwith neural networks. ComputMeth-
ods Appl Mech Eng 388, 114217

21. Gei M, Springhetti R, Bortot E (2013) Performance of soft dielec-
tric laminated composites. Smart Mater Struct 22:1–8

22. Gil AJ, Ortigosa R (2016) A new framework for large strain
electromechanics based on convex multi-variable strain ener-
gies: variational formulation andmaterial characterisation.Comput
Methods Appl Mech Eng 302:293–328

23. Han ZH, Görtz S, Zimmermann R (2013) Improving variable-
fidelity surrogate modeling via gradient-enhanced kriging and a
generalized hybrid bridge function. Aerosp Sci Technol 25:177–
289

24. Henann DL, Chester SA, Bertoldi K (2013) Modeling of dielectric
elastomers: design of actuators and energy harvesting devices. J
Mech Phys Solids 61(10):2047–2066

25. Horak M, Gil AJ, Ortigosa R, Kruzík M (2023) A polycon-
vex transversely-isotropic invariant-based formulation for electro-
mechanics: stability, minimisers and computational implementa-
tion. Comput Methods Appl Mech Eng 403:115695

26. Hossain M, Vu DK, Steinmann P (2015) A comprehensive charac-
terization of the electro-mechanically coupled properties of VHB
4910 polymer. Arch Appl Mech, 85

27. Aggarwal A, Jensen BS, Pant S, Lee CH (2023) Strain energy den-
sity as a Gaussian process and its utilization in stochastic finite
element analysis: application to planar soft tissues. Comput Meth-
ods Appl Mech Eng 404:115812

28. Jones DR (2001) A taxonomy of global optimization methods
based on response surfaces. J Global Optim 21:345–383

29. Jordi C, Michel S, Fink E (2010) Fish-like propulsion of an airship
with planar membrane dielectric elastomer actuators. Bioinspira-
tion Biomimetics 5:1–9

30. Kleijnen JPC (2009)Krigingmetamodeling in simulation: a review.
Eur J Oper Res 192:707–716

31. Klein DK, Ortigosa R, Martínez-Frutos J, Weeger O (2022)
Finite electro-elasticity with physics-augmented neural networks.
CMAME 400:1–33

32. Kofod G, Sommer-Larsen P, Kornbluh R, Pelrine R (2003) Actu-
ation response of polyacrylate dielectric elastomers. J Intell Mater
Syst Struct 14(12):787–793

33. Krige DG (1951) A statistical approach to some basic mine valu-
ation problems on the witwatersrand. J South Afr Inst Min Metall
52(6):119–139

34. Kunc O, Fritzen F (2019) Finite strain homogenization using a
reduced basis and efficient sampling. Math Comput Appl 24:1–28

35. Laurent L, LeRicheR, SoulierB,BoucardP-A (2019)Anoverview
of gradient-enhanced metamodels with applications. Arch Comput
Methods Eng 26:61–106

36. Li G, Chen X, Zhou F, Liang Y, Xiao Y, Cao X, Zhang Z, Zhang
M, Baosheng W, Yin S, Yi X, Fan H, Chen Z, Song W, Yang W,
Pan B, Hou J, Zou W, He S, Yang X, Mao G, Jia Z, Zhou H, Li T,
Shaoxing Q, Zhongbin X, Huang Z, Luo Y, Xie T, Jason G, Zhu
S, Yang W (2021) Self-powered soft robot in the mariana trench.
Nature 591:66–71

37. Li T, Keplinger C, Baumgartner R, Bauer S, YangW, Suo Z (2013)
Giant voltage-induced deformation in dielectric elastomers near the
verge of snap-through instability. J Mech Phys Solids 61(2):611–
628

38. LinkaK,HillgärtnerM,AbdolaziziKP,AydinRC, ItskovM,Cryon
CJ (2021)Constitutive artificial neural networks:A fast and general
approach to predictive data-driven constitutive modeling by deep
learning. J Comput Phys 429:1–17

39. LinkaK,HillgartnerM,AbdolaziziKP,AydinRC, ItskovM,Cyron
CJ (2021) Constitutive artificial neural networks: a fast and general
approach to predictive data-driven constitutive modeling by deep
learning. J Comput Phys 429:110010

40. Tongqing L, Shi Z, Shi Q, Wang TJ (2016) Bioinspired bicip-
ital muscle with fibre-constrained dielectric elastomer actuator.
Extreme Mech Lett 6:75–81

41. Marden John I (2015) Multivariate statistics: old school. CreateS-
pace Independent Publishing

42. Marín F, Martínez-Frutos J, Ortigosa R, Gil AJ (2021) A con-
vex multi-variable based computational framework for multilay-
ered electro-active polymers. Comput Methods Appl Mech Eng
374:113567

43. Marín F, Martínez-Frutos J, Rogelio O, Gil Antonio J (2021) A
convex multi-variable based computational framework for multi-
layered electro-active polymers. CMAME 374:1–42

44. Marín F, Rogelio Ortigosa J, Martínez-Frutos Antonio JG (2022)
Viscoelastic up-scaling rank-one effects in in-silico modelling of
electro-active polymers. CMAME 389:1–44

45. Martínez-Frutos J, Herrero D (2016) Kriging-based infill sampling
criterion for constraint handling in multi-objective optimization. J
Global Optim 64:97–115

46. Matheron G (1962) Traité de géostatistique appliquée. Editions
Technip

47. Nguyen CT, Phung H, Nguyen TD, Jung H, Choi HR (2017)
Multiple-degrees-of-freedomdielectric elastomer actuators for soft
printable hexapod robot. Sens Actuators, A 267:505–516

48. Ning C, Zhou Z, Tan G, Zhu Y, Mao C (2018) Electroactive poly-
mers for tissue regeneration: developments and perspectives. Prog
Polym Sci 81:144–162

49. Ollar J, Mortished C, Jones R, Sienz J, Toropov V (2017) Gradient
based hyper-parameter optimisation for well conditioned kriging
metamodels. Struct Multidiscip Optim 55:2029–2044

50. Ortigosa R, Gil A (2016) A new framework for large strain elec-
tromechanics based on convex multi-variable strain energies: Con-
servation laws, hyperbolicity and extension to electro-magneto-
mechanics. Comput Methods Appl Mech Eng 309:202–242

123



Computational Mechanics

51. Ortigosa R, Gil AJ (2016) A new framework for large strain elec-
tromechanics based on convex multi-variable strain energies: Con-
servation laws, hyperbolicity and extension to electro-magneto-
mechanics. Comput Methods Appl Mech Eng 309:202–242

52. Ortigosa R, Gil AJ (2016) A new framework for large strain elec-
tromechanics based on convexmulti-variable strain energies: Finite
element discretisation and computational implementation. Comput
Methods Appl Mech Eng 302:329–360

53. Pelrine R, Kornbluh R, Joseph J (1998) Electrostriction of polymer
dielectrics with compliant electrodes as a means of actuation. Sens
Actuators, A 64(1):77–85

54. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electri-
cally actuated elastomers with strain greater than 100 %. Science
287(5454):836–839

55. Pelrine R, Kornbluh R, Pei Q, Stanford S, Oh S, Eckerle J, Full
RJ, Rosenthal MA, Meijer K (2002) Dielectric elastomer artifi-
cial muscle actuators: toward biomimetic motion. Smart Structures
and Materials 2002: Electroactive Polymer Actuators and Devices
(EAPAD). volume 4695. International Society for Optics and Pho-
tonics, SPIE, pp 126–137

56. Rasmussen C, Williams C (2006) Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press,
Cambridge, MA

57. Rudykh S, Bhattacharya K, deBotton G (2012) Snap-through actu-
ation of thick-wall electroactive balloons. Int J Non-Linear Mech
47:206–209

58. Rudykh S, Bhattacharya K, deBotton G (2014) Multiscale insta-
bilities in soft heterogeneous dielectric elastomers. Proc R Soc A
470:20130618

59. Rudykh S, deBotton G (2011) Stability of anisotropic electroactive
polymers with application to layered media. ZAMP 62:1131–1142

60. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and
analysis of computer experiments. Stat Sci 4:409-435

61. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and
analysis of computer experiments. Stat Sci 4(4):409–423

62. Santner T, Williams B, Notz W (2003) The design and analysis of
computer experiments. Springer series in Statistics. Springer

63. Schroder J, Keip MA (2012) Two-scale homogenization of elec-
tromechanically coupled boundary value problems. Comput Mech
50:229–244

64. Schröder J, Neff P, Balzani D (2005) A variational approach for
materially stable anisotropic hyperelasticity. Int J Solids Struct
42:4352–4371

65. Silhavy M (2018) A variational approach to nonlinear electro-
magneto-elasticity: Convexity conditions and existence theorems.
Math Mech Solids 23(6):907–928

66. TikhonovAN,ArseninVY (1977) Solutions of Ill-posed problems.
Winston, Washington

67. Vu DK, Steinmann P, Possart G (2007) Numerical modelling of
non-linear electroelasticity. Int J Numer Meth Eng 70(6):685–704

68. Wang Y, Zhu J (2016) Artificial muscles for jaw movements.
Extreme Mech Lett 6:88–95

69. Xiaojian W, Yuan Y et al (2020) Boxmin: a fast and accurate
derivative-free algorithm for black-box optimization. IEEE Trans
Cybernet 50(2):503–515

70. Zhang J, Zhao F, Yang JZ, Yijun Z, Xiaoming C, Bo L, Nan Z,
Gang N, Wei R, Zuoguang Y (2020) Improving actuation strain
and breakdown strength of dielectric elastomers using core-shell
structured cnt-al2o3. Composit Sci Technol 200:108393

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Learning nonlinear constitutive models in finite strain electromechanics with Gaussian process predictors
	Abstract
	1 Introduction
	2 Finite strain electromechanics
	2.1 Differential governing equations in finite strain electromechanics
	2.2 The internal energy density in electromechanics
	2.3 Invariant-based electromechanics
	2.3.1 Isotropic electromechanics
	2.3.2 Transversely isotropic elastromechanics

	2.4 Application to rank-one laminates

	3 Gaussian process predictors
	3.1 Gaussian process based prediction
	3.2 The conditional distribution of the prediction
	3.3 Joint maximum likelihood estimation of the GP parameters
	3.4 Gradient-enhanced Gaussian-process based prediction
	3.5 Derivatives of strain energy density for Gradient Enhanced Kriging
	3.5.1 Noise regularisation


	4 Calibration of Kriging and Gradient Enhanced Kriging predictors
	4.1 Design of Experiments
	4.2 Calibration and Validation

	5 Numerical three-dimensional examples
	5.1 Electrically induced bending example: isotropic ground truth model
	5.2 Complex electrically induced bending example: rank one laminate ground truth model
	5.3 Electrically induced wrinkles: rank one laminate ground truth model

	6 Concluding Remarks
	Acknowledgements
	A Constitutive Models
	A.1 Mooney–Rivlin/ideal dielectric elastomer model
	A.2 Quadratic Mooney–Rivlin/ideal dielectric elastomer model
	A.3 Gent/ideal dielectric elastomer model
	A.4 Yeoh/ideal dielectric elastomer model
	A.5 Arruda-Boyce/ideal dielectric elastomer model
	A.6 Transversely Isotropic/ideal dielectric elastomer model
	A.7 Rank-One Laminate


	B Basis for Symmetric Traceless Second Order Tensors
	C Gradient-enhanced Gaussian-process based prediction using a single observation point in the strain energy
	References




