
Stability analysis for nonlinear neutral stochastic
functional differential equation ∗

Huabin Chen1 and Chenggui Yuan2

1Department of Mathematics, School of Mathematics and Computer
Nanchang University, Nanchang 330031, Jiangxi, China

chenhuabin@ncu.edu.cn
2Department of Mathematics, Swansea University, Bay Campus

Swansea, SA1 8EN, UK
c.yuan@swansea.ac.uk

Abstract
In this paper, we provide some sufficient conditions for the existence and uniqueness, the

stochastic stability for the global solution of nonlinear neutral stochastic functional differential
equation. When the drift term and the diffusion term satisfy a locally Lipschitz condition, and
the Lyapunov monotonicity condition has a sign-changed time-varying coefficient, the existence
and uniqueness of the global solution for such equation will be studied by using the Lyapunov-
Krasovskii function and the theory of stochastic analysis. The stability in pth(p ≥ 2)-moment, the
asymptotical stability in pth(p ≥ 2)-moment, and the exponential stability in pth(p ≥ 2)-moment
will be investigated. Three different characterizations for these three kinds of stochastic stability in
moment will be established, which are presented in terms of integration conditions, respectively.
These results have seldom been reported in the existing literature. In addition, the almost surely ex-
ponential stability for the global solution of such equation is also discussed. Some discussions and
comparisons are provided. Two examples are given to illustrate the effectiveness of the theoretical
results obtained.
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1. Introduction

Neutral functional differential equation (NFDE) is a class of functional differential equation,
in which the derivatives of the past history or derivatives of functionals of the past history are in-
volved as well as the present state of the system [1]. Since NFDE has the extensive applications
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in chemical process, aeroelasticity, Lotka-Volterra systems, steam or water pipes, heat exchangers,
partial element equivalent circuits and control of constrained manipulators with delay measure-
ments, many papers, see, e.g. [2-7] and the references therein, have presented the stability analysis,
boundedness, oscillation, and bifurcation of NFDE. When NFDE is subject to the environmental
external disturbances, it can be characterized by neutral stochastic functional differential equation
(NSFDE) [8-9]. Since NSFDE is used in the science and engineering, e.g. computer-chip inter-
face circuitry, distributed networks, population dynamics, and chemical process control, the study
on the dynamical properties was extensively developed. One fundamental issue in the dynamical
properties of NSFDE is placed on the stochastic stability analysis. In [10, 11], when the drift term
and the diffusion term satisfy a globally Lipschitz condition, the Lyapunov-Rauzmikhin theorem
was established to discuss the exponential stability in moment and the asymptotical stability in
moment for NSFDE, respectively. In [12, 13], when the global Lipschitz condition is satisfied for
the drift term and the diffusion term, by using the Lyapunov-Krasovskii function approach and
the theory of stochastic analysis, the exponential stability in moment for NSFDE was discussed
under the Lyapunov monotonicity condition. Over past few decades, the stochastic stability analy-
sis for NSFDE has been well developed, and some results have been presented in [14-21] and the
references therein.

For many practical mathematical models such as stochastic logistic model and stochastic Lotka-
Volterra model, the drift term and the diffusion term don’t satisfy the globally Lipschitz condition,
but the locally Lipschitz condition. Such models are usually characterized by highly nonlinear
stochastic differential equation [22-27]. When the drift term and the diffusion term only satisfy
the locally Lipschitz condition, up to now, there are some works on the existence and uniqueness,
and the stochastic stability of highly nonlinear NSFDE, see [28-30] and the references therein. For
example, in [28, 29], by using the Lyapunov function and the theory of stochastic analysis, the
problems on the existence and uniqueness, and the robustness of general decay stability analysis
of the global solution have been discussed.

On the other hand, in many realistic models, the time-varying system is very universal [31].
This system with its characteristics changing with time is also called variable coefficient system.
For example, a rocket is a typical example of a time-varying system in which its mass will decrease
with time due to fuel consumption; another common example is the manipulator. The moment of
inertia of the joints around the corresponding axis is a complex function of time as an indepen-
dent variable. The stochastic stability for time-varying stochastic functional differential equation
(SFDE) was extensively considered in [32-37] and the references therein. For example, in [32], by
using the Lyapunov-Razumikhin theorem, Peng and Zhang have studied the asymptotical stability
in moment for time-varying SFDE. In [34], when the globally Lipschitz condition holds for the
drift term and the diffusion term, by constructing an auxiliary delay differential equation and the
comparison principle, the stochastic stability in moment of time-varying SFDE was investigated,
which includes the stability in pth(p ≥ 2)-moment, the asymptotic stability in pth(p ≥ 2)-moment
and the exponential stability in pth(p ≥ 2)-moment. In [34], different characterizations of suf-
ficient condition to guarantee these three kinds of stochastic stability in pth(p ≥ 2)-moment for
time-varying SFDE have been presented. In [37], when the drift term and the diffusion term sat-
isfy the locally Lipschitz condition, by using the Lyapunov-Krasovskii function and the theory of
stochastic analysis, the existence and uniqueness, and the stochastic stability for the global so-
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lution of time-varying SFDE were studied. Very recently, when the drift term and the diffusion
term satisfy the globally Lipschitz condition, by using the comparison principle and the proof by
contradiction, the exponential stability in mean square for time-varying NSFDE was investigated
in [21], and one sufficient condition was given in terms of the algebraic inequality.

When the drift term and the diffusion term only satisfy the locally Lipschitz condition and
the Lyapunov monotonicity condition, the existence and uniqueness for the global solution of
time-varying NSFDE is seldom considered in the existing literature. In addition, for functional
differential equation, the state space of the solution is infinite dimension. In the infinite space,
in general, the exponential stability means the asymptotic stability, and vice versa. In [11], the
stability in pth(p ≥ 2)-moment and the asymptotic stability in pth(p ≥ 2)-moment for NSFDE
were analyzed by using the Lyapunov-Razumikhin theorem, but the sign changed time-varying
coefficient is not embodied in the obtained results. In [36], the Lypunov-Razumikhin theorem and
the Lyapunov-Krasovskii theorem were used to analyze the exponential stability in pth(p ≥ 2)-
moment for time-varying SFDE when the Lyapunov monotonicity condition has a sign changed
time-varying coefficient, but the obtained results cannot be used for time-varying NSFDE. To our
knowledge, there are no available results on the existence and uniqueness, and the stability anal-
ysis for the global solution of time-varying NSFDE when the Lyapunov monotonicity condition
has a sign changed time-varying coefficient, let alone have reported different characterizations of
sufficient condition to guarantee these three kinds of stochastic stability in pth(p ≥ 2)-moment for
time-varying NSFDE. Thus, solving these problems is the main motivation in this paper.

In this paper, when the drift term and the diffusion term satisfy the locally Lipschitz condition,
and a sign changed time-varying coefficient exists in the Lyapunov monotonicity condition, we
shall investigate the problems on the existence and uniqueness, the stochastic stability in pth(p ≥
2)-moment for the global solution of time-varying NSFDE. By using the Lyapunov-Krasovskii
function and the theory of stochastic analysis, different characterizations of sufficient conditions
to guarantee the existence and uniqueness, the stability in pth(p ≥ 2)-moment, the asymptotic
stability in pth(p ≥ 2)-moment and the exponential stability in pth(p ≥ 2)-moment for the global
solution of time-varying NSFDE will be presented. The almost surely exponential stability will be
also considered by the nonnegative semimartingale convergence theorem. Finally, two examples
are provided to illustrate the effectiveness of the theoretical results derived.

The contributions in this paper are summarized as follows:
(1) The existence and uniqueness for the global solution of nonlinear NSFDE is investigated, when
a locally Lipschitz condition is satisfied for the drift term and the diffusion term, and a sign-changed
time-varying coefficient is permitted in the Lyapunov monotonicity condition. On this issue, the
Lyapunov monotonicity condition seldom has a sign-changed time-varying coefficient in the exist-
ing literature.
(2) We provide three different characterizations for the stability in pth(p ≥ 2)-moment, the asymp-
totical stability in pth(p ≥ 2) -moment, and the exponential stability in pth(p ≥ 2)-moment of
NSFDE. In this paper, apart from the Lyapunov monotonicity condition, all sufficient conditions
on the existence and uniqueness as well as these three kinds of stochastic stability in pth(p ≥ 2)-
moment are given in integral form.
(3) For time-varying NSFDE, if the time-varying coefficient in the Lyapunov monotonicity condi-
tion is estimated as the constant one, then its important information may be lost, and in particular,
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the sign-changed coefficient is not easily embodied. In this paper, the characteristics of the sign-
changed time-varying coefficient is reflected in the sufficient conditions.
(4) The technique used in this paper differs from the ones proposed for the stability analysis on
time-varying SFDE in this existing literature. The methodology utilized for the latter is not easily
used in this paper. The technique employed in this paper can be also used for analyzing the ex-
istence and uniqueness, the stochastic stability in moment for the global solution of time-varying
NSFDE without the neutral term in our model.

The rest content of this paper is organized as follows. In Section 2, some problems and pre-
liminaries are formulated. Section 3 presents the main results and their proofs. Discussion and
comparison are provided in Section 4. Two examples are given in Section 5.

Notation: Let | · | be the norm of the n-dimensional real Euclidean space Rn. For an n-
dimensional column vector a = col[a1, a2, . . . , an] ∈ Rn, |a| =

√∑n
i=1 |ai|

2. If A is a matrix, its
transpose is denoted by AT . |A| =

√
trace(AT A) is also the trace norm of the square matrix A.

(Ω,F , {Ft}t≥t0 ,P) represents a complete probability space, in which a filtration {Ft}t≥t0 satisfies the
usual conditions. E{·} stands for the expectation operator. Let C([−τ, 0]; Rn) (τ > 0) be the family
of all bounded continuous Rn-valued functions ϕ on [−τ, 0] with norm ‖ϕ‖C = sup{|ϕ(θ)| : −τ ≤
θ ≤ 0}. Lp

Ft0
([−τ, 0]; Rn) (p ≥ 2) denotes the family of all Ft0-measurable C([−τ, 0]; Rn)-valued ran-

dom variable with E‖ζ‖p
C < +∞ for any ζ ∈ Lp

Ft0
([−τ, 0]; Rn). f (·) ∈ L1([t0,+∞); [0,+∞)) implies

that
∫ +∞

t0
f (t)dt < +∞. For any a, b ∈ R, a ∨ b = max{a, b}. Lp([t0,T ];Z) (p ≥ 1) represents the

set of all {Ft}t≥t0-adaptedZ-valued processes X(·) such that
∫ T

t0
|X(t)|pdt < +∞ a.s., whereZ = Rn

or Rn×m.

2. Problem formulation and preliminaries

Consider the following nonlinear NSFDE:

d[x(t) −D(xt)] = f (t, x(t), xt)dt + g(t, x(t), xt)dB(t), t ≥ t0, (1)

with the initial value xt0 = φ = {φ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft0

([−τ, 0]; Rn) (p ≥ 2) . For any
t ∈ [t0,+∞), xt = {x(t + θ) : −τ ≤ θ ≤ 0} can be considered as a C([−τ, 0]; Rn)-valued stochastic
process. x(t) = col[x1(t), x2(t), . . ., xn(t)] ∈ Rn denotes the state vector. D(·) : C([−τ, 0]; Rn) →
Rn, f (·, ·, ·) : [t0,+∞) × Rn × C([−τ, 0]; Rn)→ Rn, and g(·, ·, ·) : [t0,+∞) × Rn × C([−τ, 0]; Rn) →
Rn×m are Borel measurable. Let x(t, t0, φ) be the solution of NSFDE (1). For simplicity, x(t) =

x(t, t0, φ) and x̃(t) = x(t) −D(xt).
Definition 2.1 ([9]): An Rn-valued stochastic process x(t) on t0 − τ ≤ t ≤ T is said to be a

solution of NSFDE (1) with the initial value xt0 = φ = {φ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft0

([−τ, 0]; Rn), if it
has the following properties:
(i) it is continuous and {xt}t∈[t0,T ] is Ft-adapted;
(ii) f (·, x(·), x·) ∈ L1([t0,T ]; Rn) and g(·, x(·), x·) ∈ L2([t0,T ]; Rn×m);
(iii) xt0 = φ and for any t ∈ [t0,T ], x(t) satisfies

x(t) −D(xt) = x(t0) −D(xt0) +

∫ t

t0
f (s, x(s), xs)ds +

∫ t

t0
g(s, x(s), xs)dB(s).
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A solution x(t) is said to be unique if any other solution x̄(t) is indistinguishable from it, that is,
P{x(t) = x̄(t), for all t ∈ [t0 − τ,T ]} = 1.

Definition 2.2 ([9]): Let x(t) (t ∈ [t0−τ, %∞) be a continuous Ft-adapted Rn-valued local stochas-
tic process, where %∞ is a stopping time. It is said to be a local solution of NSFDE (1) with the
initial value xt0 = φ = {φ(θ) : −τ ≤ θ ≤ 0} ∈ Lp

Ft0
([−τ, 0]; Rn), if xt0 = φ and for any t ≥ t0,

x(t ∧ %k) −D(xt∧%k) = x(t0) −D(xt0) +

∫ t∧%k

t0
f (s, x(s), xs)ds +

∫ t∧%k

t0
g(s, x(s), xs)dB(s)

holds, where {%k}k≥1 is a nondecreasing sequence of finite stopping time such that %k ↑ %∞ a.s.
Moreover, if lim supt→%∞ |x(t)| = ∞ whenever %∞ < ∞ a.s., it is said to be maximal local solution
and %∞ is the explosion time. A maximal local solution x(t) (t ∈ [t0 − τ, %∞) is said to be unique if
for any other maximal local solution x̄(t) (t ∈ [t0 − τ, %̄∞), we have %∞ = %̄∞ a.s. and x(t) = x̄(t) for
all t ∈ [t0 − τ, %̄∞) a.s.

Denote Γ([−τ, 0]; (0,+∞)) by the family of all Borel measurable bounded nonnegative func-
tions η(·) on [−τ, 0] such that

∫ 0

−τ
η(θ)dθ = 1 [9]. For NSFDE (1), three hypotheses are stated as

follows:
Hypothesis I: There exists a function K(·) ∈ L1([t0,+∞); [0,+∞)) such that for any t ≥ t0,

p ≥ 2, φ, ϕ ∈ C([−τ, 0]; Rn), | f (t, φ(0), φ)− f (t, ϕ(0), ϕ)|p∨|g(t, φ(0), φ)−g(t, ϕ(0), ϕ)|p ≤ K(t)(|φ(0)−
ϕ(0)|p + ‖φ − ϕ‖

p
C
), f (t, 0, 0) = 0, and g(t, 0, 0) = 0.

Hypothesis II: For any integer m ≥ 1, there exists a function Km(·) ∈ L1([t0,+∞); [0,+∞))
such that for any t ≥ t0, p ≥ 2, φ, ϕ ∈ C([−τ, 0]; Rn) with |φ(0)| ∨ |ϕ(0)| ∨ ‖φ‖C ∨ ‖ϕ‖C ≤ m,
| f (t, φ(0), φ) − f (t, ϕ(0), ϕ)|p ∨ |g(t, φ(0), φ) − g(t, ϕ(0), ϕ)|p ≤ Km(t)(|φ(0) − ϕ(0)|p + ‖φ − ϕ‖

p
C
),

f (t, 0, 0) = 0, and g(t, 0, 0) = 0.
Hypothesis III: There exists a constant κ ∈ (0, 1) and a function η(·) ∈ Γ([−τ, 0]; (0,+∞)) such

that for any φ, ϕ ∈ C([−τ, 0]; Rn), and p ≥ 2, |D(φ) − D(ϕ)|p ≤ κp
∫ 0

−τ
η(θ)|φ(θ) − ϕ(θ)|pdθ, and

D(0) = 0.
Remark 1: Under Hypothesis II and Hypothesis III, similar to Lemma 3.2 in [38], the existence

and uniqueness of the maximal trivial solution for NSFDE (1) can be guaranteed. The detailed
methodology used in the proof can be also seen in [15, 16].

In [9], under Hypothesis I and Hypothesis III, the existence and uniqueness of the trivial so-
lution for NSFDE (1) can be checked. The detailed proof refers to Theorem 2.2 (pp. 204-209,
[9]). Under Hypothesis I with K(t) ≡ K, and Hypothesis III, in [10-20] and their references
therein, the stochastic stability in pth(p ≥ 2)-moment for NSFDE (1) has been discussed by us-
ing the Lyapunov Razumikhin theorem, the Lyapunov-Krasovskii functional and the Lyapunov-
Krasovskii function, respectively. In [11], by using the Lyapunov Razumikhin theorem, the sta-
bility in pth(p ≥ 2)-moment and the asymptotic stability in pth(p ≥ 2)-moment for NSFDE have
been considered. By using the comparison principle and the proof of contradiction, the exponential
stability in mean square for NSFDE (1) was analyzed in [21], where Hypothesis I and Hypothesis
III are satisfied for the drift term, the diffusion term and the neutral term, respectively. In [33,
34], the stability in pth(p ≥ 2)-moment, the asymptotic stability in pth(p ≥ 2)-moment and the
exponential stability in pth(p ≥ 2)-moment for time-varying SFDE have been discussed. How-
ever, when a sign-changed time-varying coefficient is permitted in the Lyapunov monotonicity
condition, and Hypothesis II and Hypothesis III are satisfied, the results derived in [10-20, 21, 33,
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34] cannot be applied to guarantee the stability in pth(p ≥ 2)-moment, the asymptotic stability in
pth(p ≥ 2)-moment and the exponential stability in pth(p ≥ 2)-moment for the global solution of
NSFDE (1). The main reasons are stated as follows:
(i) in [10-20], the sign-changed time-varying coefficient is not embodied in the obtained results.
In general, the methodology for analyzing the stability of autonomous differential equation is not
easily generalized for non-autonomous differential equation, when there is a sign-changed time-
varying coefficient. Besides, the neutral term exists in NSFDE (1), which can make this general-
ization more complicated.
(ii) in [21], the obtained results are only concerned with the exponential stability in mean square
for NSFDE (1), and the Lyapunov monotonicity condition does not permit a sign-changed time-
varying coefficient (see Theorem 4.1 in Section 4). The stability in pth(p ≥ 2)-moment and the
asymptotic stability in pth(p ≥ 2)-moment are not discussed in [21]. In this paper, when the
Lyapunov monotonicity condition has a sign-changed time-varying coefficient, we will give three
different characterizations of sufficient conditions to guarantee the stability in pth(p ≥ 2)-moment,
the asymptotic stability in pth(p ≥ 2)-moment and the exponential stability in pth(p ≥ 2)-moment
for NSFDE (1), see Theorems 3.2-3.4 in Section 3;
(iii) Three different characterizations of sufficient conditions on the stability in pth(p ≥ 2)-moment,
the asymptotic stability in pth(p ≥ 2)-moment and the exponential stability in pth(p ≥ 2)-moment
for time-varying SFDE have been presented in [33, 34]. However, to our knowledge, since the
neutral term and the stochastic perturbation coexist in NSFDE (1), the generalizations of those re-
sults and methodologies on analyzing the stochastic stability from SFDE to NSFDE are generally
difficult. In this paper, the methodology used differs from the ones given in [33, 34].

Note that in this paper, f (·, ·, ·) and g(·, ·, ·) in NSFDE (1) don’t satisfy Hypothesis I, but Hy-
pothesis II. In order to discuss the existence and uniqueness, and the stochastic stability in mo-
ment of the global trivial solution for NSFDE (1), we need one Lyapunov monotonicity condition.
To state this condition in our main theorem, one notation is presented as follows. Denote by
C1,2([t0,+∞) × Rn; [0,+∞)) the family of all continuous nonnegative functions V(t, φ(0)) defined
on [t0,+∞) × Rn, such that they have continuously once and twice derivatives with respect to first
variable and second variable, respectively. For any given V(·, ·) ∈ C1,2([t0,+∞) × Rn; [0,+∞)),
LV(·, ·, ·) : [t0,+∞) × Rn × C([−τ, 0]; Rn) −→ R is defined by

LV(t, φ(0), φ) = Vt(t, φ(0) −D(φ)) + VT
x (t, φ(0) −D(φ)) f (t, φ(0), φ)

+
1
2

trace[gT (t, φ(0), φ)Vxx(t, φ(0) −D(φ))g(t, φ(0), φ)],

where Vt(t, φ(0) −D(φ)), Vx(t, φ(0) −D(φ)) and Vxx(t, φ(0) −D(φ)) are given in [9].
Definition 2.3 ([9, 11]): The trivial solution of NSFDE (1) is said to be:

(a) stable in pth(p ≥ 2)-moment, if for any ε > 0, there exists δ = δ(t0, ε) > 0 satisfying that for
t ≥ t0, E{|x(t)|p} ≤ ε, whenever φ ∈ Lp

Ft0
([−τ, 0]; Rn) and E‖φ‖p

C
< δ;

(b) asymptotically stable in pth(p ≥ 2)-moment, if it is stable in pth(p ≥ 2)-moment, and for
any ε′ > 0, there exists T = T (φ, ε′) > 0 satisfying that for any t ≥ T , φ ∈ Lp

Ft0
([−τ, 0]; Rn),

E{|x(t)|p} ≤ ε′;
(c) exponentially stable in pth(p ≥ 2)-moment, if there exist two positive constants M and α such
that for any t ≥ t0, and the initial value φ ∈ Lp

Ft0
([−τ, 0]; Rn) such that E{|x(t)|p} ≤ ME{supθ∈[−τ,0] |φ(θ)|p}e−α(t−t0);
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(d) almost surely exponentially stable, if for any initial value φ ∈ L
p
Ft0

([−τ, 0]; Rn) such that

lim supt→+∞
log(|x(t)|)

t < 0, a.s.
In particular, when p = 2, the trivial solution of NSFDE (1) is said to be stable in mean square,

asymptotically stable in mean square and exponentially stable in mean square, respectively.
Here, we recall the four lemmas for the sequel use.
Lemma 2.4 ([9]): Let p ≥ 2, then

|φ(0)|p ≤
|φ(0) −D(φ)|p

(1 − κ)p−1 +
|D(φ)|p

κp−1 ,

for any φ ∈ C([−τ, 0]; Rn).
Lemma 2.5 ([9]): Let p ≥ 2, then

|φ(0) −D(φ)|p ≤ (1 + κ)p−1(|φ(0)|p + |D(φ)|p),

for any φ ∈ C([−τ, 0]; Rn).
Lemma 2.6 ([39]): Let χ(·) be a nonnegative function defined on [t0,∞). If χ(·) is Lebesgue

integrable and uniformly continuous on [t0,∞), then limt→∞ χ(t) = 0.
Lemma 2.7 (Convergence theorem of nonnegative semi-martingales [9, 15-16]): Let A1(t) and

A2(t) be two continuous adapted increasing processes on t ≥ t0 with A1(t0) = A2(t0) = 0 a.s. Let
M(t) be a real-valued continuous local martingale withM(t0) = 0 a.s. Let ξ be a nonnegative Ft0

random variable such that E{ξ} < ∞. Define

X(t) = ξ + A1(t) − A2(t) +M(t), for t ≥ t0.

If X(t) is nonnegative, then {limt→∞ A1(t) < ∞} ⊂ {limt→∞ X(t) < ∞} ∩ {limt→∞ A2(t) < ∞}
a.s., where C ⊂ D a.s. means P(C ∩ Dc) = 0. In particular, if limt→∞ A1(t) < ∞ a.s., then, with
probability one, limt→∞ X(t) < ∞, limt→∞ A2(t) < ∞, and −∞ < limt→∞M(t) < ∞. That is, all of
these three processes X(t), A2(t) andM(t) converge to finite random variables.

3. Main results

In this section, firstly, the existence and uniqueness of the global trivial solution for NSFDE
(1) is discussed as follows.

Theorem 3.1: Assume that Hypotheses II-III hold. Suppose that there exist one Lyapunov-
Krasovskii function V(·, ·) ∈ C1,2 ([t0,+∞) × Rn; [0,+∞)), two functions λ0(·) : [t0 − τ,+∞)→ R,
λ1(·) : [t0 − τ,+∞) → [0,+∞) with λ1(t) ≤ λ̃1 (t ≥ t0), a function η̃(·, ·) : [t0,+∞) × [−τ, 0] →
[0,+∞) with η̃(t, s) ≤ η̃′, and two constants ci > 0 (i = 1, 2) such that
(H1) for any t ≥ t0, x ∈ Rn, and p ≥ 2,

c1|x|p ≤ V(t, x) ≤ c2|x|p;

(H2) for any t ≥ t0, φ ∈ C([−τ, 0]; Rn), and p ≥ 2,

LV(t, φ(0), φ) ≤ λ0(t)V(t, φ(0) −D(φ)) + λ1(t)|φ(0)|p +

∫ 0

−τ

η̃(t, θ)|φ(θ)|pdθ;
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(H3) there exists a constant M̄ such that for any t ≥ t0,∫ t

t0
λ̃(s)ds ≤ M̄,

where λ̃(t) = λ0(t)+
λ1(t)+

∫ 0
−τ
η̃(t,θ)dθeς

c1(1−κ)p−1(1−κeς) , κeς ∈ (0, 1), and ς = supt≥t0 supθ∈[−τ,0]

{∫ t

t+θ

[
−λ0(s)−

λ1(s)+
∫ 0
−τ
η̃(s,θ)dθ

c1(1−κ)p

]
×ds

}
< +∞. Then, for any initial value φ ∈ Lp

Ft0
([−τ, 0]; Rn), NSFDE (1) has a unique global trivial

solution on [t0,+∞).
Proof : From Hypotheses II-III, for any initial value φ ∈ Lp

Ft0
([−τ, 0]; Rn), Lemma 3.2 [38]

checks that there exists a unique maximal local trivial solution x(t) of NSFDE (1) on [t0 − τ, %∞),
where %∞ is the explosion time. In order to guarantee the global trivial solution of NSFDE (1), we
only need to demonstrate that %∞ = ∞ a.s.

For any φ ∈ Lp
Ft0

([−τ, 0]; Rn), there exists a sufficiently large integer l0 > 0 satisfying ‖φ‖C < l0.
For any l ≥ l0, define one stopping time as follows:

ρl = inf{t ∈ [t0, %∞) : |x(t)| ≥ l},

where inf ∅ = ∞, with ∅ being the empty set. It is seen that ρl is increasing as l → ∞ and
ρl → ρ∞ ≤ %∞ a.s. If ρ∞ = ∞ a.s., then %∞ = ∞ a.s., which implies that the trivial solution x(t) of
NSFDE (1) is global. This is equivalent to prove that for any t > t0, P{ρl ≤ t} → 0 as l→ ∞.

By using the Itô formula to the Lyapunov-Krasovskii function e−
∫ t

t0
λ̃(s)dsV(t, x̃(t)) (t ≥ t0), we

have

e−
∫ t∧ρl

t0
λ̃(s)dsV(t ∧ ρl, x̃(t ∧ ρl)) = V(t0, x̃(t0)) +

∫ t∧ρl

t0
e−

∫ s
t0
λ̃(s)ds[LV(s, x(s), xs) − λ̃(s)V(s, x̃(s))]ds

+

∫ t∧ρl

t0
e−

∫ s
t0
λ̃(s)dsVT

x (s, x̃(s))g(s, x(s), xs)dB(s).

Taking the expectation on the preceding equality, it yields from (H1) and (H2) that for any
t ≥ t0,

E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x̃(t ∧ ρl)|p}

≤
E{V(t0, x̃(t0))}

c1
+

1
c1
E
{∫ t∧ρl

t0
e−

∫ s
t0
λ̃(u)du[LV(s, x(s), xs) − λ̃(s)V(s, x̃(s))]ds

}
≤
E{V(t0, x̃(t0))}

c1
+

1
c1
E
{∫ t∧ρl

t0
e−

∫ s
t0
λ̃(u)du[λ1(s)|x(s)|p +

∫ 0

−τ

η̃(s, θ)|x(s + θ)|pdθ]ds
}

≤
E{V(t0, x̃(t0))}

c1
+

1
c1
E
{∫ t

t0
e−

∫ s∧ρl
t0

λ̃(u)du[λ̃1|x(s ∧ ρl)|p + η̃′
∫ 0

−τ

|x(s ∧ ρl + θ)|pdθ]ds
}

=
E{V(t0, x̃(t0))}

c1
+
λ̃1

c1

∫ t

t0
E{e−

∫ s∧ρl
t0

λ̃(u)du
|x(s ∧ ρl)|p}ds

+
η̃′

c1

∫ t

t0

∫ 0

−τ

E{e−
∫ s∧ρl

t0
λ̃(u)du
|x(s ∧ ρl + θ)|p}dθds

≤
E{V(t0, x̃(t0))}

c1
+
λ̃1

c1

∫ t

t0
E{e−

∫ s∧ρl
t0

λ̃(u)du
|x(s ∧ ρl)|p}ds

+
η̃′eς

c1

∫ t

t0

∫ 0

−τ

E{e−
∫ s∧ρl+θ

t0
λ̃(u)du
|x(s ∧ ρl + θ)|p}dθds. (2)
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From Lemma 2.4, we have

|x(t ∧ ρl)|p ≤ κ
∫ 0

−τ

η(θ)|x(t ∧ ρl + θ)|pdθ +
|x̃(t ∧ ρl)|p

(1 − κ)p−1 . (3)

From (2) and (3), it yields that for any t ≥ t0,

E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t ∧ ρl)|p} ≤

c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}
c1(1 − κ)p−1

+κeς
∫ 0

−τ

η(θ)E{e−
∫ t∧ρl+θ

t0
λ̃(u)du
|x(t ∧ ρl + θ)|p}dθ

+
λ̃1

c1(1 − κ)p−1

∫ t

t0
E{e−

∫ s∧ρl
t0

λ̃(u)du
|x(s ∧ ρl)|p}ds

+
η̃′eς

c1(1 − κ)p−1

∫ t

t0

∫ 0

−τ

E{e−
∫ s∧ρl+θ

t0
λ̃(u)du
|x(s ∧ ρl + θ)|p}dθds. (4)

Besides, for any t ∈ [t0 − τ, t0], E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t ∧ ρl)|p} ≤ ME{supθ∈[−τ,0] |φ(θ)|p}, where M ≥ 1.

Now, we will prove that for any t ≥ t0 − τ,

E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t ∧ ρl)|p} ≤ M′

εe
c(t−t0), (5)

where M′
ε = max

{
cc2(1+κ)p−1(1+κp)E{supθ∈[−τ,0] |φ(θ)|p}+ε

λ̃1+η̃′τeς , (ME{supθ∈[−τ,0] |φ(θ)|p} + ε)esupt∈[t0−τ,t0]

∫ t0
t λ̃(s)ds

}
(ε >

0) and c > 0 is suitably chosen such that κeς +
λ̃1+η̃′τeς

cc1(1−κ)p−1 = 1. Obviously, for any t ∈ [t0 − τ, t0],
inequality (5) holds.

If inequality (5) is not satisfied for any t ≥ t0, then there exists t > t0 such that E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t∧

ρl)|p} > M′
εe

c(t−t0). Letting t∗ = inf{t > t0 : E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t ∧ ρl)|p} > M′

εe
c(t−t0)}. Consequently,

we have

E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t ∧ ρl)|p} ≤ M′

εe
c(t−t0), t ∈ [t0, t∗), (6)

and

E{e−
∫ t∗∧ρl

t0
λ̃(s)ds
|x(t∗ ∧ ρl)|p} = M′

εe
c(t∗−t0). (7)

But, from (4) and (6), it follows

E{e−
∫ t∗∧τl

t0
λ̃(s)ds
|x(t∗ ∧ ρl)|p}

≤
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1 − κ)p−1 + κeς
∫ 0

−τ

η(θ)E{e−
∫ t∗∧ρl+θ

t0
λ̃(u)du
|x(t∗ ∧ ρl + θ)|p}dθ

+
λ̃1

c1(1 − κ)p−1

∫ t∗

t0
E{e−

∫ s∧ρl
t0

λ̃(u)du
|x(s ∧ ρl)|p}ds

+
η̃′eς

c1(1 − κ)p−1

∫ t∗

t0

∫ 0

−τ

E{e−
∫ s∧ρl+θ

t0
λ̃(u)du
|x(s ∧ ρl + θ)|p}dθds

≤

[c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}
c1(1 − κ)p−1 −

λ̃1 + η̃′τeς

cc1(1 − κ)p−1 M′
ε

]
+

[
κeς +

λ̃1 + η̃′τeς

cc1(1 − κ)p−1

]
M′

εe
c(t∗−t0).
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From the choices of M′
ε and c, we have c2(1+κ)p−1(1+κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1−κ)p−1 −
λ̃1+η̃′τeς

cc1(1−κ)p−1 M′
ε < 0. Further-

more, E{e−
∫ t∗∧τl

t0
λ̃(s)ds
|x(t∗ ∧ ρl)|p} < M′

εe
c(t∗−t0), which contradicts with (7). Thus, for any t ≥ t0 − τ,

inequality (5) holds. As ε→ 0+ in (5), it gives that for any t ≥ t0 − τ,

E{e−
∫ t∧ρl

t0
λ̃(s)ds
|x(t ∧ ρl)|p} ≤ M′ec(t−t0), (8)

where M′ = max
{

cc2(1+κ)p−1(1+κp)E{supθ∈[−τ,0] |φ(θ)|p}
λ̃1+η̃′τeς ,ME{supθ∈[−τ,0] |φ(θ)|p}esupt∈[t0−τ,t0]

∫ t0
t λ̃(s)ds

}
.

By using the Chebyshev’s inequality, from (8), we have

P{ρl ≤ t} ≤
E
{
e−

∫ t∧ρl
t0

λ̃(s)ds
|x(t ∧ ρl)|p

}
inf{s∈[t0,t]}×{|x|≥l}

[
|x|pe−

∫ s
t0
λ̃(u)du

]
≤

M′eM̄+c(t−t0)

inf{s∈[t0,t]}×{|x|≥l}{|x|p}
, (9)

where (H3) is used
As l → ∞ in (9), we have P{ρ∞ ≤ t} = 0. Since t > t0 is arbitrary, P{ρ∞ < ∞} = 0, which

implies that ρ∞ = ∞ a.s., that is, %∞ = ∞ a.s. It means that NSFDE (1) almost surely has a unique
global solution x(t) on [t0,∞). �

Remark 2: (H2) is a Lyapunov monotonicity condition. This condition can take many different
forms, which have been commonly seen in [12-16, 19-21, 23, 27-30, 32-35] and the references
therein. It is seen that the conditions satisfied for λ̃(t) will be given in Theorem 3.2, Theorem 3.3
and Theorem 3.4, respectively, which are also suitable in (H3), see Remark 3.

Theorem 3.2: Suppose that all but condition (H3) of Theorem 3.1 are satisfied. Moreover, if
π = supt≥t0{

∫ t

t0
λ̃(s)ds} < +∞, where λ̃(t) is given in Theorem 3.1, then the global trivial solution of

NSFDE (1) is stable in pth(p ≥ 2)-moment.
Proof : For NSFDE (1), by using the Itô formula to the Lyapunov-Krasovskii function

e−
∫ t

t0
λ0(s)dsV(t, x̃(t)), for any t ≥ t0, we have

e−
∫ t

t0
λ0(s)dsV(t, x̃(t)) = V(t0, x̃(t0)) +

∫ t

t0
e−

∫ s
t0
λ0(u)du[LV(s, x(s), xs) − λ0(s)V(s, x̃(s))]ds

+

∫ t

t0
e−

∫ t
t0
λ0(s)dsVT

x (s, x̃(s))g(s, x(s), xs)dB(s)

≤ V(t0, x̃(t0)) +

∫ t

t0
e−

∫ s
t0
λ0(u)du[λ1(s)|x(s)|p +

∫ 0

−τ

η̃(s, θ)|x(s + θ)|pdθ]ds

+

∫ t

t0
e−

∫ s
t0
λ0(u)duVT

x (s, x̃(s))g(s, x(s), xs)dB(s),

where condition (H2) is used.
Taking the mathematical expectation on the preceding inequality and using condition (H1) in

turn, it follows that for any t ≥ t0,

E{|x̃(t)|p} ≤
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1
e
∫ t

t0
λ0(s)ds
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+
1
c1

∫ t

t0
e
∫ t

s λ0(u)duλ1(s)E{|x(s)|p}ds

+
1
c1

∫ t

t0
e
∫ t

s λ0(u)du
∫ 0

−τ

η̃(s, θ)E{|x(s + θ)|p}dθds. (10)

From Lemma 2.4, we have

E{|x(t)|p} ≤
E{|x̃(t)|p}
(1 − κ)p−1 +

E{|D(xt)|p}
κp−1

≤
E{|x̃(t)|p}
(1 − κ)p−1 + κ

∫ 0

−τ

η(θ)E{|x(t + θ)|p}dθ. (11)

By substituting (10) into (11), it yields that for any t ≥ t0,

E{|x(t)|p} ≤
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1 − κ)p−1 e
∫ t

t0
λ0(s)ds

+ κ

∫ 0

−τ

η(θ)E{|x(t + θ)|p}dθ

+
1

c1(1 − κ)p−1

∫ t

t0
e
∫ t

s λ0(u)duλ1(s)E{|x(s)|p}ds

+
1

c1(1 − κ)p−1

∫ t

t0
e
∫ t

s λ0(u)du
∫ 0

−τ

η̃(s, θ)E{|x(s + θ)|p}dθds, (12)

and for any t ∈ [t0 − τ, t0], E{|x(t)|p} ≤ M̄E{supθ∈[−τ,0] |φ(θ)|p}, where M̄ ≥ 1.
For any ε > 0, define one constant

M̂ε = max
{c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p} + ε

c1(1 − κ)p−1(1 − κeϑ)
, [M̄E{ sup

θ∈[−τ,0]
|φ(θ)|p} + ε]esupt∈[t0−τ,t0]

∫ t0
t λ̃(s)ds

}
.(13)

In order to obtain the desired results, we only need to prove that for any t ≥ t0 − τ,

E{|x(t)|p} ≤ M̂εe
∫ t

t0
λ̃(s)ds

, (14)

where λ̃(t) = λ0(t) +
λ1(t)+

∫ 0
−τ
η̃(t,θ)dθeς

c1(1−κ)p−1(1−κeς) .
Now, note that from the definition of M̂ε in (13), it yields that for any t ∈ [t0−τ, t0], (M̄E{supθ∈[−τ,0] |φ(θ)|p}

+ε)e
∫ t0

t λ̃(s)ds ≤ M̂ε. Moreover, (M̄E{supθ∈[−τ,0] |φ(θ)|p} + ε)e
∫ t0

t0−τ
λ̃(s)ds

≤ M̂εe
∫ t

t0−τ
λ̃(s)ds. Hence,

M̄E{supθ∈[−τ,0] |φ(θ)|p} + ε ≤ M̂εe
∫ t

t0
λ̃(s)ds. Then, inequality (14) is satisfied for any t ∈ [t0 − τ, t0].

If inequality (14) does not hold for all t > t0, then there exists some t satisfying t > t0 and

E{|x(t)|p} > M̂εe
∫ t

t0
λ̃(s)ds. Letting t̂∗ = inf{t > t0 : E{|x(t)|p} > M̂εe

∫ t
t0
λ̃(s)ds
}. Therefore,

E{|x(t)|p} ≤ M̂εe
∫ t

t0
λ̃(s)ds

, t ∈ [t0 − τ, t̂∗), (15)

and

E{|x(t̂∗)|p} = M̂εe
∫ t̂∗

t0
λ̃(s)ds

. (16)
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On the other hand, from (12) and (15), it gives

E{|x(t̂∗)|p} ≤
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1 − κ)p−1 e
∫ t̂∗

t0
λ0(s)ds

+ κ

∫ 0

−τ

η(θ)E{|x(t̂∗ + θ)|p}dθ

+
1

c1(1 − κ)p−1

∫ t̂∗

t0
e
∫ t̂∗

s λ0(u)duλ1(s)E{|x(s)|p}ds

+
1

c1(1 − κ)p−1

∫ t̂∗

t0
e
∫ t̂∗

s λ0(u)du
∫ 0

−τ

η̃(s, θ)E{|x(s + θ)|p}dθds

≤
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1 − κ)p−1 e
∫ t̂∗

t0
λ0(s)ds

+ κeϑM̂εe
∫ t̂∗

t0
λ̃(s)ds

+
M̂εe

∫ t̂∗

t0
λ0(s)ds

c1(1 − κ)p−1

∫ t̂∗

t0
λ1(s)e

∫ s
t0

[λ̃(u)−λ0(u)]duds

+
M̂εeϑe

∫ t̂∗

t0
λ0(s)ds

c1(1 − κ)p−1

∫ t̂∗

t0

∫ 0

−τ

η̃(s, θ)dθe
∫ s

t0
[λ̃(u)−λ0(u)]duds

=
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1 − κ)p−1 e
∫ t̂∗

t0
λ0(s)ds

+ κeϑM̂εe
∫ t̂∗

t0
λ̃(s)ds

+M̂ε(1 − κeϑ)e
∫ t̂∗

t0
λ0(s)ds

∫ t̂∗

t0
e
∫ s

t0
[λ̃(u)−λ0(u)]du[λ̃(s) − λ0(s)]ds

=

[c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}
c1(1 − κ)p−1 − M̂ε(1 − κeϑ)

]
e
∫ t̂∗

t0
λ0(s)ds

+M̂εe
∫ t̂∗

t0
λ̃(s)ds

. (17)

From the definition of M̂ε in (13) again, we have

c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}
c1(1 − κ)p−1 − M̂ε(1 − κeϑ)

≤
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p}

c1(1 − κ)p−1 −
c2(1 + κ)p−1(1 + κp)E{supθ∈[−τ,0] |φ(θ)|p} + ε

c1(1 − κ)p−1

< 0. (18)

Substituting (18) into (17) yields that E{|x(t̂∗)|p} < M̂εe
∫ t̂∗

t0
λ̃(s)ds, which contradicts with (16).

Therefore, inequality (14) holds for any t ≥ t0 − τ. As ε→ 0+ in (14), we have

E{|x(t)|p} ≤ M̂e
∫ t

t0
λ̃(s)ds

, (19)

for any t ≥ t0−τ, where M̂ = max
{

c2(1+κ)p−1(1+κp)E{supθ∈[−τ,0] |φ(θ)|p}
c1(1−κ)p−1(1−κeϑ) , M̄E{supθ∈[−τ,0] |φ(θ)|p}esupt∈[t0−τ,t0]

∫ t0
t λ̃(s)ds

}
.

For any ε > 0, φ ∈ Lp
Ft0

([−τ, 0]; Rn), there exists δ > 0 such that E{supθ∈[−τ,0] |φ(θ)|p} < δ

and max
{

c2(1+κ)p−1(1+κp)
c1(1−κ)p−1(1−κeϑ) , M̄esupt∈[t0−τ,t0]

∫ t0
t λ̃(s)ds

}
δeπ < ε. Thus, from (19), for any t ≥ t0, we have

E{|x(t)|p} < ε, which implies that NSFDE (1) is stable in pth(p ≥ 2)-moment. �

Theorem 3.3: Suppose that all but condition (H3) of Theorem 3.1 hold. Moreover, if
∫ ∞

t0
λ̃(s)ds =

−∞, then the global trivial solution of NSFDE (1) is asymptotically stable in pth(p ≥ 2)-moment.
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Proof : If
∫ ∞

t0
λ̃(t)dt = −∞, then supt≥t0

∫ t

t0
λ̃(s)ds < +∞, which means that NSFDE (1) is stable

in pth(p ≥ 2)-moment.
In addition, for any ε′ > 0, there exists T ′ = T ′(φ, ε′) > t0 such that for any t > T ′, and

φ ∈ L
p
Ft0

([−τ, 0]; Rn), e
∫ t

t0
λ̃(s)ds

< ε′

M̂
. Therefore, from (19), it gives that for any t > T ′, E{|x(t)|p} < ε′,

which further means that NSFDE (1) is asymptotically stable in pth(p ≥ 2)-moment. �

Theorem 3.4: Suppose that all but condition (H3) of Theorem 3.1 hold. Moreover, if there exist
two constants M̌ ∈ R and γ > 0 such that for any t > t0,

∫ t

t0
λ̃(s)ds ≤ M̌ − γ(t − t0), then the global

trivial solution of NSFDE (1) is exponentially stable in pth(p ≥ 2)-moment.
Proof : From (19), we have

E{|x(t)|p} ≤ M̂eM̌e−γ(t−t0), (20)

for any t ≥ t0 − τ. Hence, NSFDE (1) is exponentially stable in pth(p ≥ 2)-moment. �

Remark 3: π = supt≥t0{
∫ t

t0
λ̃(s)ds} < ∞ in Theorem 3.2 implies that for any t ≥ t0,

∫ t

t0
λ̃(s)ds ≤ π.

When
∫ ∞

t0
λ̃(s)ds = −∞ in Theorem 3.3 holds, supt≥t0{

∫ t

t0
λ̃(s)ds} < +∞ is satisfied. If

∫ t

t0
λ̃(s)ds ≤

M̌ − γ(t − t0) (M̌ ∈ R, γ > 0) in Theorem 3.4 holds, then we have M̌ = supt≥t0{
∫ t

t0
λ̃(s)ds} < ∞.

Therefore, when (H3) in Theorem 3.1 is replaced with π = supt≥t0{
∫ t

t0
λ̃(s)ds} < ∞ in Theorem 3.2,∫ ∞

t0
λ̃(s)ds = −∞ in Theorem 3.3, and

∫ t

t0
λ̃(s)ds ≤ M̌ − γ(t − t0) (M̌ ∈ R, γ > 0) in Theorem

3.4, respectively, it is concluded that the existence and uniqueness of the global trivial solution for
NSFDE (1) can be guaranteed.

Remark 4: In Theorem 3.2, Theorem 3.3 and Theorem 3.4, we provide different characteriza-
tions for the stability in pth(p ≥ 2)-moment, the asymptotical stability in pth(p ≥ 2) -moment,
and the exponential stability in pth(p ≥ 2)-moment of the global trivial solution for NSFDE (1),
respectively.

∫ t

t0
λ̃(s)ds ≤ M̌ − γ(t − t0) implies that

∫ ∞
t0
λ̃(s)ds = −∞, and

∫ ∞
t0
λ̃(s)ds = −∞

means that supt≥t0{
∫ t

t0
λ̃(s)ds} < +∞, respectively. However, they don’t work in reverse. Besides,

the sign-changed time-varying coefficient λ0(t) is well embodied in these three different sufficient
conditions.

Lemma 3.5: Suppose that all conditions in Theorem 3.4 are satisfied with |λ0(t)| ≤ λ̃0, then we
have ∫ ∞

t0
eε(t−t0)|x(t)|pdt < +∞, a.s., (21)

∫ ∞

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt < +∞, a.s., (22)

and ∫ ∞

t0
eε(t−t0)

∫ 0

−τ

|x(t + θ)|pdθdt < +∞, a.s., (23)

where ε ∈ (0, γ ∧ 1
τ

log(1/κ)) with γ > 0 being the exponential decay determined in Theorem 3.4.
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Proof : For any T ≥ t0 + τ and θ ∈ [−τ, 0], it implies from (H1) that∫ T

t0+τ

eε(t−t0)E{V(t + θ, x̃(t + θ))}dt

≤
c2

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)E{|x(t + θ)|p}dt + c2κ

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(u)E{|x(t + θ + u)|p}dudt

≤
c2M̂eM̌eετ

γ − ε

[ 1
(1 − κ)p−1 + κeγτ

]
,

where Lemma 2.4 and inequality (20) are used.
Consequently, when T → ∞ in the preceding inequality, we have∫ ∞

t0+τ

eε(t−t0)E{V(t + θ, x̃(t + θ))}dt ≤
c2M̂eM̌eετ

γ − ε

[ 1
(1 − κ)p−1 + κeγτ

]
< ∞. (24)

By utilizing the Itô formula, it follows from (H2) and (20) that for any t1, t2 ∈ [t0 + τ,∞)
(t2 > t1), and θ ∈ [−τ, 0],

E{V(t2 + θ, x̃(t2 + θ))} − E{V(t1 + θ, x̃(t1 + θ))}

=

∫ t2+θ

t1+θ

E{LV(s, x(s), xs)}ds

≤ M̂eM̌[λ̃0c2(1 + κ)p−1(1 + κp) + λ̃1 + η̃eγτ]
∫ t2+θ

t1+θ

e−γ(s−t0)ds

≤ M̂eM̌[λ̃0c2(1 + κ)p−1(1 + κp) + λ̃1 + η̃eγτ]eγτe−γ(t1−t0)(t2 − t1),

where Lemma 2.5 is used.
Furthermore, for any θ ∈ [−τ, 0], we have

|eε(t2−t0)E{V(t2 + θ, x̃(t2 + θ))} − eε(t1−t0)E{V(t1 + θ, x̃(t1 + θ))}|

≤ |eε(t2−t0) − eε(t1−t0)|E{V(t2 + θ, x̃(t2 + θ))} + eε(t1−t0)

×|E{V(t2 + θ, x̃(t2 + θ))} − E{V(t1 + θ, x̃(t1 + θ))}|

≤ c2εeε(ζt1 ,t2−t0)|t2 − t1|E{|x̃(t2 + θ)|p} + M̂eM̌[λ̃0c2(1 + κ)p−1(1 + κp) + λ̃1 + η̃τeγτ]|t2 − t1|

≤

[(
κ +

1
(1 − κ)p−1

)
c2εe2γτ + M̂eM̌[λ̃0c2(1 + κ)p−1(1 + κp) + λ̃1 + η̃τeγτ]

]
|t2 − t1|,

where ζt1,t2 ∈ (t1, t2), and Lemma 2.5 is used.
Therefore, it implies that

lim
t2→t1

eε(t2−t0)E{V(t2 + θ, x̃(t2 + θ))} = eε(t1−t0)E{V(t1 + θ, x̃(t1 + θ))},

is satisfied for any θ ∈ [−τ, 0].
Then, by using Lemma 2.6, it yields that for any θ ∈ [−τ, 0],

lim
t→∞

eε(t−t0)E{V(t + θ, x̃(t + θ))} = 0,

holds.
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By using the Fubini theorem, it follows from (24) that for any θ ∈ [−τ, 0], E
{∫ ∞

t0+τ
eε(t−t0)V(t +

θ, x̃(t + θ))dt
}
< ∞, which implies that∫ ∞

t0+τ

eε(t−t0)V(t + θ, x̃(t + θ))dt < ∞ a.s.

which follows from (H1) that ∫ ∞

t0+τ

eε(t−t0)|x̃(t + θ)|pdt < ∞ a.s. (25)

Therefore, from (25), we have∫ ∞

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x̃(t + θ)|pdθdt < ∞, a.s. (26)

For any T > t0 + τ and θ ∈ [−τ, 0], from Lemma 2.4, it yields that∫ T

t0+τ

eε(t−t0)|x(t + θ)|pdt

≤
1

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)|x̃(t + θ)|pdt +
1
κp−1

∫ T

t0+τ

eε(t−t0)|D(xt+θ)|pdt

≤
1

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)|x̃(t + θ)|pdt + κ

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(u)|x(t + θ + u)|pdudt

≤
1

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)|x̃(t + θ)|pdt + κeετ
∫ T

t0
eε(t−t0)

∫ 0

−τ

η(u)|x(t + u)|pdudt. (27)

Multiplying η(θ) on both sides of inequality (27), and then integrating from −τ to 0, it follows
which further obtains∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x(t + θ)|pdθdt

≤
1

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x̃(t + θ)|pdθdt + κeετ
∫ T

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt.

Hence, we have∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x(t + θ)|pdθdt ≤
1

(1 − κ)p−1(1 − κeετ)

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x̃(t + θ)|pdθdt

+
κeετ

1 − κeετ

∫ t0+τ

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt,

where κeετ ∈ (0, 1) is used.
Consequently, it yields∫ T

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt
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=

∫ t0+τ

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt +

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x(t + θ)|pdθdt

≤
1

(1 − κ)p−1(1 − κeετ)

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

η(θ)|x̃(t + θ)|pdθdt

+
1

1 − κeετ

∫ t0+τ

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt, a.s. (28)

When T → ∞ in (28), inequality (26) implies that the inequality (22) is obtained.
Similar to the derivation process of inequality (25), we can obtain∫ ∞

t0
eε(t−t0)|x̃(t)|pdt < ∞, a.s. (29)

By using Lemma 2.4 again, it yields from (22) and (29) that∫ ∞

t0
eε(t−t0)|x(t)|pdt

≤
1

(1 − κ)p−1

∫ ∞

t0
eε(t−t0)|x̃(t)|pdt +

1
κp−1

∫ ∞

t0
eε(t−t0)|D(xt)|pdt

≤
1

(1 − κ)p−1

∫ ∞

t0
eε(t−t0)|x̃(t)|pdt + κ

∫ ∞

t0
eε(t−t0)

∫ 0

−τ

η(θ)|x(t + θ)|pdθdt < ∞, a.s.

which means that the inequality (21) is also satisfied.
Taking the integration from −τ to 0 on both sides of inequalities (25) and (27), respectively, we

have ∫ ∞

t0+τ

eε(t−t0)
∫ 0

−τ

|x̃(t + θ)|pdθdt < ∞, a.s. (30)

and ∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

|x(t + θ)|pdθdt

≤
1

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

|x̃(t + θ)|pdθdt + κτeετ
∫ T

t0
eε(t−t0)

∫ 0

−τ

η(u)|x(t + u)|pdudt, a.s.(31)

From (31), it follows from Lemma 2.4 that T > t0 + τ,∫ T

t0
eε(t−t0)

∫ 0

−τ

|x(t + θ)|pdθdt

=

∫ t0+τ

t0
eε(t−t0)

∫ 0

−τ

|x(t + θ)|pdθdt +

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

|x(t + θ)|pdθdt

≤

∫ t0+τ

t0
eε(t−t0)

∫ 0

−τ

|x(t + θ)|pdθdt +
1

(1 − κ)p−1

∫ T

t0+τ

eε(t−t0)
∫ 0

−τ

|x̃(t + θ)|pdθdt

+κτeετ
∫ T

t0
eε(t−t0)

∫ 0

−τ

η(u)|x(t + u)|pdudt, a.s. (32)
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which implies from (22) and (30) that as T → ∞ in (32),∫ ∞

t0
eε(t−t0)

∫ 0

−τ

|x(t + θ)|pdθdt < ∞, a.s.

The inequality (23) can also be obtained. �

Theorem 3.6: Assume that all conditions of Lemma 3.5 hold, then the global trivial solution of
NSFDE (1) is almost surely exponentially stable.

Proof : By using the Itô formula to the Lyapunov-Krasovskii function eε(t−t0)V(t, x̃(t)), where ε
is determined in Lemma 3.5, for any t ≥ t0, we have

eε(t−t0)V(t, x̃(t)) = V(t0, x̃(t0)) +

∫ t

t0
eε(s−t0)[εV(s, x̃(s)) +LV(s, x(s), xs)]ds +M(t)

≤ V(t0, x̃(t0)) + [c2(ε + λ̃0)(1 + κ)p−1 + λ̃1]
∫ t

t0
eε(s−t0)|x(s)|pds

+c2(ε + λ̃0)(1 + κ)p−1κp
∫ t

t0
eε(s−t0)

∫ 0

−τ

η(θ)|x(s + θ)|pdθds

+η̃′
∫ t

t0
eε(s−t0)

∫ 0

−τ

|x(s + θ)|pdθds +M(t)

= ξ0 +A(t) +M(t), (33)

where Lemma 2.5 is used, ξ0 = V(t0, x̃(t0)), A(t) = [c2(ε + λ̃0)(1 + κ)p−1 + λ̃1]
∫ t

t0
eε(s−t0)|x(s)|pds +

c2(ε+ λ̃0)(1 + κ)p−1κp
∫ t

t0
eε(s−t0)

∫ 0

−τ
η(θ)|x(s + θ)|pdθds + η̃′

∫ t

t0
eε(s−t0)

∫ 0

−τ
|x(s + θ)|pdθds, andM(t) =∫ t

t0
eε(s−t0)VT

x (s, x̃(s))g(s, x(s), xs)dB(s).
Note that ξ0 is a nonnegative bounded Ft0-measurable random variable,A(t) < ∞ a.s. is guar-

anteed from (21)-(23), andM(t) is a local continuous martingale withM(t0) = 0. By using Lemma
2.7, it implies from (33) that for any t ≥ t0,

lim sup
t→∞

eε(t−t0)V(t, x̃(t)) < ∞ a.s.

Thus, there exists a finite positive random variable ζ′ satisfying

V(t, x̃(t)) ≤ ζ′e−ε(t−t0) a.s. on t ≥ t0. (34)

Furthermore, from (H1) and (34), it follows that for any t ≥ t0,

|x̃(t)|p ≤
ζ′

c1
e−ε(t−t0) a.s.

The remaining proof can be seen in Theorem 3.3 in [14] and Theorem 3.2 in [15]. The detailed
derivation process is omitted for brevity. �

When (H1) holds and η̃(t, θ) = λ2(t)η(θ) in (H2), for NSFDE (1), one result is presented as
follows:

Corollary 3.7: Assume that Hypotheses II-III hold. Suppose that there exist one Lyapunov
function V(·, ·) ∈ C1,2 ([t0,+∞) × Rn; [0,+∞)), three functions λ0(·) : [t0 − τ,+∞) → R, λi(·) :
[t0 − τ,+∞) → [0,+∞) with |λ0(t)| ≤ λ̃0 (λ̃0 > 0), λi(t) ≤ λ̃i (t ≥ t0, λ̃i > 0, i = 1, 2), a function
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η(·) ∈ Γ([−τ, 0]; (0,+∞)), and two constants ci > 0 (i = 1, 2) such that (H1) in Theorem 3.1 holds,
and (H2) in Theorem 3.1 is replaced by
(H′2) for any t ≥ t0, φ ∈ C([−τ, 0]; Rn), and p ≥ 2,

LV(t, φ(0), φ) ≤ λ0(t)V(t, φ(0) −D(φ)) + λ1(t)|φ(0)|p + λ2(t)
∫ 0

−τ

η(θ)|φ(θ)|pdθ.

Then, for any initial value φ ∈ Lp
Ft0

([−τ, 0]; Rn), we have

(i) if there exists a constant M̆ such that for any t ≥ t0,
∫ t

t0
λ̂(s)ds ≤ M̆, where λ̂(t) = λ0(t) +

λ1(t)+λ2(t)eς̂

c1(1−κ)p−1(1−κeς̂) , κe
ς̂ ∈ (0, 1), and ς̂ = supt≥t0 supθ∈[−τ,0]

{∫ t

t+θ

[
−λ0(s) − λ1(s)+λ2(t)

c1(1−κ)p

]
ds

}
< +∞, then

NSFDE (1) has a unique global solution on [t0,+∞);
(ii) if π̂ = supt≥t0{

∫ t

t0
λ̂(s)ds} < +∞, then the global trivial solution of NSFDE (1) is stable in

pth(p ≥ 2)-moment;
(iii) if

∫ ∞
t0
λ̂(s)ds = −∞, then the global trivial solution of NSFDE (1) is asymptotically stable in

pth(p ≥ 2)-moment;
(iv) if there exist two constants M̂ ∈ R and β̂ > 0 such that for any t ≥ t0,

∫ t

t0
λ̂(s)ds ≤ M̂ − β̂(t− t0),

then the global trivial solution of NSFDE (1) is exponentially stable in pth(p ≥ 2)-moment and
almost surely exponentially stable.

Corollary 3.8: Assume that Hypothesis I and Hypothesis III hold. Suppose that there exist one
Lyapunov function V(·, ·) ∈ C1,2 ([t0,+∞)×Rn; [0,+∞)), three functions λ0(·) : [t0 − τ,+∞)→ R,
λi(·) : [t0 − τ,+∞) → [0,+∞) (i = 1, 2), and two constants ci > 0 (i = 1, 2) such that (H1) in
Theorem 3.1 holds, and (H2) in Theorem 3.1 is replaced by
(H′′2 ) for any t ≥ t0, φ ∈ C([−τ, 0]; Rn), and p ≥ 2,

E{LV(t, φ(0), φ)} ≤ λ0(t)E{V(t, φ(0) −D(φ))} + λ1(t)E{|φ(0)|p} + λ2(t) sup
θ∈[−τ,0]

E{|φ(θ)|p}.

Then, for any initial value φ ∈ Lp
Ft0

([−τ, 0]; Rn), we have

(i) if π̂ = supt≥t0{
∫ t

t0
λ̂(s)ds} < +∞, where λ̂(t) is given in Corollary 3.7, then the global trivial

solution of NSFDE (1) is stable in pth(p ≥ 2)-moment;
(ii) if

∫ ∞
t0
λ̂(s)ds = −∞, then the global trivial solution of NSFDE (1) is asymptotically stable in

pth(p ≥ 2)-moment;
(iii) if there exist two constants M̂ ∈ R and β̂ > 0 such that for any t ≥ t0,

∫ t

t0
λ̂(s)ds ≤ M̂ − β̂(t− t0),

then the global trivial solution of NSFDE (1) is exponentially stable in pth(p ≥ 2)-moment;
(iv) moreover, if there exist three constants λ̃0 > 0, λ̃i > 0 (i = 1, 2) such that |λ0(t)| ≤ λ̃0 and
λi(t) ≤ λ̃i, then the global trivial solution of NSFDE (1) is almost surely exponentially stable.

WhenD(·) = 0, NSFDE (1) becomes the following SFDE:

dx(t) = f (t, x(t), xt)dt + g(t, x(t), xt)dB(t), t ≥ t0, (35)

with the initial value xt0 = φ = {φ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft0

([−τ, 0]; Rn).
Similar to the proofs given in Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4 and The-

orem 3.6, for SFDE (35), we have
Corollary 3.9: Assume that Hypothesis II holds. Suppose that there exist one Lyapunov func-

tion V(·, ·) ∈ C1,2 ([t0,+∞) × Rn; [0,+∞)), one function λ0(·) : [t0 − τ,+∞)→ R, with |λ0(t)| ≤ λ̃0
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(λ̃0 > 0), a function η̄(·, ·) : [t0,+∞) × [−τ, 0] → [0,+∞) with η̄(t, s) ≤ η̄′ (η̄′ > 0), and two
constants ci > 0 (i = 1, 2) such that
(H̃1) for any t ≥ t0, x ∈ Rn, and p ≥ 2,

c1|x|p ≤ V(t, x) ≤ c2|x|p;

(H̃2) for any t ≥ t0, φ ∈ C([−τ, 0]; Rn), and p ≥ 2,

LV(t, φ(0), φ) ≤ λ0(t)V(t, φ(0)) +

∫ 0

−τ

η̄(t, θ)V(t + θ, φ(θ))dθ.

Then, for any initial value φ ∈ Lp
Ft0

([−τ, 0]; Rn), we have

(i) if there exists a constant M̌ such that for any t ≥ t0,
∫ t

t0
λ̄(s)ds ≤ M̌, where λ̄(t) = λ0(t) +∫ 0

−τ
η̄(t, θ)dθeς̄, and ς̄ = supt≥t0 supθ∈[−τ,0]

{∫ t

t+θ
[−λ0(s)−

∫ 0

−τ
η̄(s, θ)dθ]ds

}
< +∞, then SFDE (35) has

a unique global solution on [t0,+∞);
(ii) if π̄ = supt≥t0{

∫ t

t0
λ̄(s)ds} < +∞, then the global trivial solution of SFDE (35) is stable in

pth(p ≥ 2)-moment;
(iii) if

∫ ∞
t0
λ̄(s)ds = −∞, then the global trivial solution of SFDE (35) is asymptotically stable in

pth(p ≥ 2)-moment;
(iv) if there exist two constants M̄ ∈ R and β̄ > 0 such that for any t ≥ t0,

∫ t

t0
λ̄(s)ds ≤ M̄ − β̄(t− t0),

then the global trivial solution of SFDE (35) is exponentially stable in pth(p ≥ 2)-moment and
almost surely exponentially stable.

Corollary 3.10: Assume that all conditions of Corollary 3.9 hold with η̄(t, θ) = λ1(t)η(θ), λ1(·) :
[t0−τ,+∞)→ [0,+∞) and λ1(t) ≤ λ̃′1 (λ̃′1 > 0) in (H̃2), then for SFDE (35), then the results given in
Corollary 3.9 can be guaranteed with λ̄(t) = λ0(t) + λ1(t)eς̃ and ς̃ = supt≥t0 supθ∈[−τ,0]{

∫ t

t+θ
[−λ0(s) −

λ1(s)]ds} < +∞.
Corollary 3.11: Assume that Hypothesis I holds. Suppose that there exist one Lyapunov func-

tion V(·, ·) ∈ C1,2 ([t0,+∞) × Rn; [0,+∞)), two functions λ0(·) : [t0 − τ,+∞) → R, and λ1(·):
[t0 − τ,+∞) → [0,+∞), and two constants ci > 0 (i = 1, 2) such that (H̃1) in Corollary 3.9 holds
and (H̃2) in Corollary 3.9 is replaced by
(H̃′2) for any t ≥ t0, φ ∈ C([−τ, 0]; Rn), and p ≥ 2,

E{LV(t, φ(0), φ)} ≤ λ0(t)E{|φ(0)|p} + λ1(t) sup
θ∈[−τ,0]

E{|φ(θ)|p},

Then, for any initial value φ ∈ Lp
Ft0

([−τ, 0]; Rn), we have

(i) if π̄ = supt≥t0{
∫ t

t0
λ̄(s)ds} < +∞, where λ̄(t) is given in Corollary 3.10, then the global trivial

solution of SFDE (35) is stable in pth(p ≥ 2)-moment;
(ii) if

∫ ∞
t0
λ̄(s)ds = −∞, then the global trivial solution of SFDE (35) is asymptotically stable in

pth(p ≥ 2)-moment;
(iii) if there exist two constants M̄ ∈ R and β̄ > 0 such that for any t ≥ t0,

∫ t

t0
λ̄(s)ds ≤ M̄ − β̄(t− t0),

then the global trivial solution of SFDE (35) is exponentially stable in pth(p ≥ 2)-moment;
(iv) moreover, if there exist two positive constants λ̃′0, λ̃′1 > 0 such that |λ0(t)| ≤ λ̃′0 and λ1(t) ≤ λ̃′1,
then the global trivial solution of SFDE (35) is almost surely exponentially stable.
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4. Discussion and comparison

Note that when f (·, ·, ·) and g(·, ·, ·) satisfy the globally Lipschitz condition, the results given
in Theorem 3.2, Theorem 3.3, Theorem 3.4, Theorem 3.6, and the results (ii)-(iv) presented in
Corollary 3.7 also hold.

For NSFDE (1), in [21], when the globally Lipschitz condition holds for f (·, ·, ·) and g(·, ·, ·),
Ngoc has obtained one valuable result presented as follows:

Theorem 4.1 ([21]): Assume that there exist κ ∈ (0, 1), a Borel measurable function η(·) ∈
Γ([−τ, 0]; (0, +∞)), two locally bounded Borel-measurable functions γ(·) : [t0,+∞) → R, ζ(·, ·) :
[t0,+∞) × [−τ, 0]→ [0,+∞) such that for any t ≥ t0 and φ ∈ C([−τ, 0]; Rn),

|D(φ)|2 ≤ κ2
∫ 0

−τ

η(s)|φ(s)|2ds (36)

and

2(φ(0) −D(φ))T f (t, φ(0), φ) + |g(t, φ(0), φ)|2 ≤ γ(t)|φ(0) −D(φ)|2 +

∫ 0

−τ

ζ(t, s)|φ(s)|2ds. (37)

If for any t ≥ t0, inequality

γ(t) +
1

(1 − κe
βτ
2 )2

∫ 0

−τ

ζ(t, θ)e−βθdθ ≤ −β, (38)

holds for some β ∈ (0,−2
τ

ln κ), then the trivial solution of NSFDE (1) is exponentially stable in
mean square.

Inequality (36) is Hypothesis III with p = 2. When V(t, φ(0) − D(φ)) = |φ(0) − D(φ)|2 in
Theorem 3.1, condition (H2) with λ0(t) = γ(t) and λ1(t) = 0 is inequality (37). In order to guarantee
that inequality (38) holds, the value of γ(t) is less than zero. Hence, in Theorem 4.1, γ(t) ∈ R
cannot be guaranteed. In [21], the exponential stability in mean square for NSFDE (1) was only
discussed. In Theorems 3.1-3.4, when f (·, ·, ·) and g(·, ·, ·) satisfy Hypothesis II, the existence and
uniqueness, the stability in pth(p ≥ 2)-moment, the asymptotic stability in pth(p ≥ 2)-moment
and the exponential stability in pth(p ≥ 2)-moment for the global solution of NSFDE (1) have
been considered, respectively, and three different characterizations of the sufficient conditions on
these three kinds of stochastic stability in moment have been provided.

When for any φ ∈ C([−τ, 0]; Rn), f (t, φ(0), φ) = f0(t, φ(0)) + f1(t, φ) and g(t, φ(0), φ) = g(t, φ) in
NSFDE (1) with f0(·, ·) : [t0,+∞) ×Rn→ Rn and f1(·, ·) : [t0,+∞) × C([−τ, 0]; Rn)→ Rn satisfying
the globally Lipschitz condition, in [10, 13], Mao have taken the lead study on the stochastic
stability in moment for NSFDE (1), and developed two pioneering works as follows.

Theorem 4.2 ([10]): Suppose that there exists κ ∈ (0, 1) such that for any φ ∈ C([−τ, 0]; Rn),

E|D(φ)|2 ≤ κ2 sup
θ∈[−τ,0]

E|φ(θ)|2. (39)

Assume that there exists two constants λ1 > 0, λ2 > 0 such that for any t ≥ t0, and φ ∈

C([−τ, 0]; Rn),

2E{(φ(0) −D(φ))T [ f0(t, φ(0)) + f1(t, φ)] + |g(t, φ)|2} ≤ −λ1E{|φ(0)|2} + λ2 sup
θ∈[−τ,0]

E{|φ(θ)|2}. (40)
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Then, the trivial solution of NSFDE (1) is exponentially stable in means square provided that
κ ∈ (0, 1

2 ) and λ1 >
λ2

(1−2κ)2 .
Theorem 4.3 ([13]): Assume that inequality (36) in Theorem 4.1 is satisfied, and there exist

two constants λ1 > λ2 ≥ 0, and a Borel measurable function η(·) ∈ Γ such that for any t ≥ t0, and
φ ∈ C([−τ, 0]; Rn),

2(φ(0) −D(φ))T [ f0(t, φ(0)) + f1(t, φ)] + |g(t, φ)|2 ≤ −λ1|φ(0)|2 + λ2

∫ 0

−τ

η(s)|φ(s)|2ds. (41)

Then the trivial solution of NSFDE (1) is exponentially stable in mean square.
Since λ1 > λ2 and inequality (41) are sharper than λ1 >

λ2
(1−2κ)2 and inequality (40), respectively,

compared with the results in [10], the results obtained in [13] are conservative. If condition (H′′2 )
in Corollary 3.8 is further estimated as inequality (40) or inequality (41), then the important in-
formation of time-varying parameters λi(t) (i = 0, 1, 2) in Corollary 3.8 may be lost. On the other
hand, since the time-varying parameter λ0(t) is sign-changed, it is very difficult that inequality (40)
and inequality (41) are estimated from condition (H′2) in Corollary 3.8, respectively.

For SFDE (35), in [34], when the globally Lipschitz condition holds for f (·, ·, ·) and g(·, ·, ·), Li
has obtained the following useful results:

Theorem 4.4 (see Theorems 3.1-3.3 in [34]): Assume that there exist a Lyapunov-Krasovskii
function V(·, ·) ∈ C1,2([t0,+∞) × Rn; [0,+∞)), two constants c1 > 0, c2 > 0, two functions
λ0(·) : [t0,+∞)→ [−a,+∞) (a > 0), λ1(·) : [t0,+∞)→ [0,+∞) such that
(A1) for any t ≥ t0, and x ∈ Rn, c1|x|p ≤ V(t, x) ≤ c2|x|p;
(A2) for any t ≥ t0, and φ ∈ C([−τ, 0]; Rn), E{LV(t, φ(0), φ)} ≤ λ0(t)E{V(t, φ(0))}+λ1(t) supθ∈[−τ,0] E{V(t+
θ, φ(θ))}.

Then, for any initial value φ ∈ Lp
Ft0

([−τ, 0]; Rn), we have

(i) if supt≥t0

∫ t

t0
λ̃(s)ds < +∞, where λ̃(t) = λ0(t) + λ1(t)eaτ, then the trivial solution of SFDE (35) is

stable in pth(p ≥ 2)-moment;
(ii) if limt→∞

∫ t

t0
λ̃(s)ds = −∞, then the trivial solution of SFDE (35) is asymptotically stable in

pth(p ≥ 2)-moment;
(iii) if there exist two positive constantsσ and ν such that for any k ∈ N,

∫ t∗+(k+1)ν

t∗+kν
[λ0(s) + λ1(s)]ds ≤

−σ holds for some t∗ ≥ t0, then the trivial solution of SFDE (35) is exponentially stable in
pth(p ≥ 2)-moment.

Since λ0(·) : [t0,+∞)→ [−a,+∞) (a > 0) and λ1(·) : [t0,+∞)→ [0,+∞), supt≥t0 supθ∈[−τ,0]{
∫ t

t+θ
[−λ0(s)

−λ1(s)]ds} ≤ aτ. In Theorem 4.4, when the condition in (iii) holds, there exist two constants M̄ ∈ R
and β̄ > 0 such that for any t ≥ t0,

∫ t

t0
λ̃(s)ds ≤ M̄− β̄(t− t0). The detailed reasoning process is given

with Theorem 3.3 in [34]. Thus, the sufficient conditions in Theorem 4.4 are more conservative
than ones given in Corollary 3.11.

For SFDE (35), in [33], Wu et al have derived the following valuable results:
Theorem 4.5 (see Theorems 1-2 in [33]): Assume that there exist a Lyapunov-Krasovskii

function V(·, ·) ∈ C1,2([t0,+∞) × Rn; [0,+∞)), two constants c1 > 0, c2 > 0, two functions
λ0(·) : [t0,+∞)→ R, λ1(·) : [t0,+∞)→ [0,+∞) such that
(A1) for any t ≥ t0, and x ∈ Rn, c1|x|p ≤ V(t, x) ≤ c2|x|p;
(A2) for any t ≥ t0, and φ ∈ C([−τ, 0]; Rn), E{LV(t, φ(0), φ)} ≤ λ0(t)E{V(t, φ(0))}+λ1(t) supθ∈[−τ,0] E{V(t+
θ, φ(θ))}.
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Then, for any initial value φ ∈ Lp
Ft0

([−τ, 0]; Rn), we have

(i) if supt≥t0+τ

∫ t

t0+τ
λ̂(s)ds < +∞, where λ̂(t) = λ0(t) + λ1(t)eς and supθ∈[−τ,0] supt≥t0+τ

∫ t

t+θ
[−λ0(u) −

λ1(u)]du ≤ ς, then the trivial solution of SFDE (35) is stable in pth(p ≥ 2)-moment;
(ii) if

∫ ∞
t0+τ

λ̂(s)ds = −∞, then the trivial solution of SFDE (35) is asymptotically stable in pth(p ≥
2)-moment;
(iii) if there exists a positive constant ε such that supt≥t0+τ

∫ t

t0+τ
[λ̂(s) + ε]ds < +∞, then the trivial

solution of SFDE (35) is exponentially stable in pth(p ≥ 2)-moment.
It is seen that if conditions (i), (ii) and (iii) in Theorem 4.5 hold, then all conditions in Corollary

3.11 are also satisfied, respectively. Besides, Theorem 4.5 was obtained by using the comparison
principle and the Lyapunov-Krasovskii function, when the globally Lipschitz condition is satis-
fied for f (·, ·, ·) and g(·, ·, ·). In this paper, one new methodology is provided, which can analyze
the stability in pth(p ≥ 2)-moment, asymptotical stability in pth(p ≥ 2)-moment and exponential
stability in pth(p ≥ 2)-moment for time-varying SFDE (35), and present three different character-
izations of the sufficient conditions on these three kinds of stochastic stability in moment when the
Lyapunov monotonicity condition also has a time-varying sign-changed coefficient.

5. Examples

Example 5.1: Let B(t) be a scalar Brownian motion on (Ω,F , {Ft}t≥0,P). Consider one dimen-
sional NSFDE:

d[x(t) −D(xt)] = f (t, x(t), xt)dt + g(t, x(t), xt)dB(t), t ≥ 0, (42)

with the initial value x0(θ) = φ(θ) (θ ∈ [−1, 0]), φ ∈ L2
F0

([−1, 0]; Rn). For any θ ∈ [−1, 0],
xt(θ) = x(t + θ). In (42), it is assumed that D(·) : C([−1, 0]; R) → S , f (·, ·, ·) : [0,+∞) × R ×
C([−1, 0]; R)→ R, and g(·, ·, ·) : [0,+∞) × R × C([−1, 0]; R)→ R with

D(φ) = 0.1
∫ 0

−1
η(θ)φ(θ)dθ,

f (t, φ(0), φ) = (0.75 sin2(t) − 0.6)φ(0) − 0.1 sin2(t)φ3(0)

+cos2(t)D(φ) + 0.1 sin2(t)φ2(0)D(φ),

and

g(t, φ(0), φ) = 0.2 sin(t)φ(0),

where η(·) ∈ Γ([−1, 0]; (0,+∞)).
For NSFDE (42), one Lyapunov function is V(t, x) = x2. Then, the Lyapunov monotonicity

condition is estimated as

LV(t, φ(0), φ) = 2[φ(0) −D(φ)][(0.75 sin2(t) − 0.6)φ(0) − 0.1 sin2(t)φ3(0) + cos2(t)D(φ)

+0.1 sin2(t)φ2(0)D(φ)] + 0.04 sin2(t)φ2(0)

≤ [1.5 sin2(t) − 1.2]|φ(0) −D(φ)|2 + [0.19 + 0.21 cos2(t)]|φ(0)|2

+[0.15 + 0.25 cos2(t)]|D(φ)|2

= λ0(t)|φ(0) −D(φ)|2 + λ1(t)|φ(0)|2 + λ2(t)
∫ 0

−1
η(θ)|φ(θ)|2dθ,
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where λ0(t) = −0.45−0.75 cos(2t), λ1(t) = 0.295+0.105 cos(2t), and λ2(t) = 0.00275+0.00125 cos(2t).
Hence, we have ς̂ = supt≥0 supθ∈[−1,0]

{∫ t

t+θ

[
−λ0(s)−λ1(s)+λ2(t)

(1−κ)p

]
ds

}
= supt≥0 supθ∈[−1,0]{

∫ t

t+θ
[−0.0824θ+

0.6188 cos(2s + θ
2 ) sin( θ2 )]ds} = 0.3790, and 0.1eς̂ = 0.14608. Thus, λ̂(t) = λ0(t) +

λ1(t)+λ2(t)eς̂

(1−κ)p−1(1−κeς̂) =

−0.061 − 0.611 cos(2t). Furthermore, for any t ≥ 0,
∫ t

0
λ̂(s)ds = −0.061t − 0.305 sin(2t) ≤

0.305 − 0.061t. In addition, supt≥0{
∫ t

0
λ̂(s)ds} ≤ 0.305 and

∫ ∞
0
λ̂(t)dt = −∞. Thus, all condi-

tions in Corollary 3.7 are satisfied. Hence, It is concluded from Corollary 3.7 that NSFDE (42)
has a unique global solution x(t) on [0,+∞), which is stable in mean square, asymptotically sta-
ble in mean square, exponentially stable in mean square and almost surely exponentially stable,
respectively.

Example 5.2: One coupled system consisting of a mass-spring-damper (MSD) model and a
pendulum was analyzed in [40]. The pendulum is taken to be physical structure, and the MSD is
numerically modeled. An actuator is taken to a transfer system. The mathematical expression of
the system is NDDEs, which are written as

Mz̈(t) + cż(t) + kz(t) + mz̈(t − τ0) = 0 (43)

on t ≥ 0, where M, c, k are the mass, stiffness and damping of a mass-spring-damper model, m is
the mass of a pendulum with M = 1, c = 2, k = 3 and m = 0.05, τ0 = 0.05 is the constant delay,
and z(t), ż(t), z̈(t) denote the position, velocity and acceleration of MSD model at time t. If this
physical model is affected by the external force, then Eq. (43) is further described as

Mz̈(t) + cż(t) + kz(t) + mz̈(t − τ0) + F(t) = 0 (44)

on t ≥ 0, where F(t) denotes the external force subject to the environmental noise, which is
characterized by

F(t) = σ1(t, z(t), z(t − τ0), z(t), z(t − τ0), zt, żt) + σ2(t, z(t), ż(t))Ḃ(t)

where Ḃ(t) is a scalar white noise (i.e. B(t) is a scalar Brownian motion),

σ1(t, z(t), z(t − τ0), ż(t), ż(t − τ0), zt, żt)

= a1 cos2(t)z(t) + a2 sin2(t)
∫ 0

−τ1

η(θ)ż(t + θ)dθ + sin2(t)[3z(t) + 2ż(t)]3
∫ 0

−τ1

η(θ)|z(t + θ)|2dθ

+0.2 sin2(t)[3z(t) + 2ż(t)]2ż(t − τ0)
∫ 0

−τ1

η(θ)|z(t + θ)|2dθ

+ cos2(t)[3z(t) + 2ż(t)]ż2(t − τ0)
∫ 0

−τ1

η(θ)|ż(t + θ)|2dθ + 0.2 cos2(t)ż3(t − τ0)
∫ 0

−τ1

η(θ)|ż(t + θ)|2dθ,

and

σ2(t, z(t), ż(t)) = a3 sin(t)z(t) + a4 sin(t)ż(t),

where η(·) ∈ Γ([−τ1, 0]; (0,+∞)) (τ1 > 0).
Let x1(t) = z(t) and x2(t) = ż(t), Eq. (44) can be written as a two-dimensional NSFDE:

d[x(t) −D(xt)] = f (t, x(t), xt)dt + g(t, x(t), xt)dB(t), (45)
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where x(t) = col[x1(t), x2(t)],

D(xt) = Dxt(−τ) = Dx(t − τ0),

f (t, x(t), xt) =

[
f1(t, x(t), xt)
f2(t, x(t), xt)

]
, g(t, x(t), xt) =

[
g1(t, x(t), xt)
g2(t, x(t), xt)

]
,

with f1(t, x(t), xt) = x2(t), g1(t, x(t), xt) = 0,

D =

[
0 0
0 −0.05

]
,

f2(t, x(t), xt) = −2x1(t) − 3x3(t) − a1 cos2(t)x1(t) − 1.5a2 sin2(t)
∫ 0

−τ1

η(θ)x1(t + θ)dθ

−a2 sin2(t)
∫ 0

−τ1

η(θ)x2(t + θ)dθ − sin2(t)[3x1(t) + 2x2(t)]3
∫ 0

−τ1

η(θ)|x1(t + θ)|2dθ

−0.02 sin2(t)[3x1(t) + 2x2(t)]2x2(t − τ0)
∫ 0

−τ1

η(θ)|x1(t + θ)|2dθ

− cos2(t)[3x1(t) + 2x2(t)]x2
2(t − τ0)

∫ 0

−τ1

η(θ)|x2(t + θ)|2dθ

−0.02 cos2(t)x3
2(t − τ0)

∫ 0

−τ1

η(θ)|x2(t + θ)|2dθ,

and

g2(t, x(t), xt) = −a3 sin(t)x1(t) − a4 sin(t)x2(t).

Since matrix A =

[
0 1
−2 −3

]
can be diagonalized, there exists a matrix G =

[
1 −1
−1 2

]
with

G−1 =

[
2 1
1 1

]
such that G−1AG =

[
−1 0
0 −2

]
, and Q = (G−1)TG−1 =

[
5 3
3 2

]
. Then, for

NSFDE (45), the Lyapunov-Krasovskii function is chosen as V(t, x) = xT Qx (x ∈ R2), and the
Lyapunov monotonicity condition is estimated as

LV(t, x(t), xt) ≤ [−2 + 4|a1| cos2(t)]V(t, x(0) − Dx(t − τ0)) + [0.25 + |a2| sin2(t)

+
√

[4(a3 − a4)2 + 9(a3 − 2a4)2][(a3 − a4)2 + (a3 − 2a4)2] sin2(t)]|x(t)|2

+[0.25 + 0.3162|a2| sin2(t)]|x(t − τ0)|2 + 0.3162|a2| sin2(t)
∫ 0

−τ1

η(θ)|x(t + θ)|2dθ,

where and in the sequel, |x|2 = xT Qx.
When a1 = 0.55, a2 = −0.1, a3 = 0.2, and a4 = 0.1, we have

LV(t, x(t), xt) ≤ [−2 + 2.2 cos2(t)]V(t, x(t) − Dx(t − τ0)) + [0.25 + 0.12 sin2(t)]|x(t)|2

+[0.25 + 0.0316 sin2(t)]|x(t − τ0)|2 + 0.0316 sin2(t)
∫ 0

−τ1

η(θ)|x(t + θ)|2dθ

= λ0(t)V(t, x(t) − Dx(t − τ0)) + λ1(t)|x(t)|2 + λ2(t)|x(t − τ0)|2 + λ3(t)
∫ 0

−τ1

η(θ)|x(t + θ)|2dθ.
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where λ0(t) = −0.9 + 1.1 cos(2t), λ1(t) = 0.31 − 0.06 cos(2t), λ2(t) = 0.2658 − 0.0158 cos(2t), and
λ3(t) = 0.0158 − 0.0158 cos(2t).

Then, when τ1 = 0.09, τ = max{τ0, τ1} = 0.09. Furthermore, we have ς̂ = supt≥0 supu∈[−0.09,0]{
∫ t

t+u
[−λ0(υ)−∑3

l=1 λl(υ)
(1−κ)p ]dυ} = supt≥0 supu∈[−0.09,0] [1.0534 cos(2t + u) sin(u) − 0.0653(−u)] ≈ 0.1006, where κ =

|Q
1
2 DQ−

1
2 | = 0.1581, and for any t ≥ 0,

∫ t

0
λ̂(s)ds ≤ 0.9633 − 0.0055t holds, with κeς̂ = 0.1748 ∈

(0, 1) and λ̂(t) = λ0(t) +
λ1(t)+

∑3
l=2 λl(t)eς̂

c1(1−κ)(1−κeς̂) . Besides, supt≥0{
∫ t

0
λ̂(s)ds} ≤ 0.9633 and

∫ ∞
0
λ̂(t)dt = −∞.

Therefore, all conditions in Corollary 3.7 hold. Hence, it is concluded from Corollary 3.7 that
NSFDE (45) has a unique global solution x(t) on [0,+∞), which is stable in mean square, asymp-
totically stable in mean square, exponentially stable in mean square and almost surely exponen-
tially stable, respectively.

6. Conclusion

In this paper, we investigated the problems on the existence and uniqueness, the stability
in pth(p ≥ 2)-moment, the asymptotic stability in pth(p ≥ 2)-moment, the exponential sta-
bility in pth(p ≥ 2)-moment and the almost surely exponential stability of the global solution
for highly nonlinear neutral stochastic functional differential equation, when the drift term and
the diffusion term satisfy the locally Lipschitz condition and the Lyapunov monotonicity condi-
tion, respectively. The Lyapunov monotonicity condition has a sign-changed time-varying coeffi-
cient. The methodology proposed is the Lyapunov-Krasovskii function and the theory of stochas-
tic analysis. We provided different characterizations of sufficient conditions on the stability in
pth(p ≥ 2)-moment, the asymptotic stability in pth(p ≥ 2)-moment, and the exponential stabil-
ity in pth(p ≥ 2)-moment for highly nonlinear neutral stochastic functional differential equation.
These results have not been reported in the available literature. The almost surely exponential
stability for the global solution of such equation was analyzed by using the nonnegative semi-
martingale convergence theorem. Some discussions and comparisons on the main results between
some related works and this paper have been presented. Two examples have been provided to
illustrate the effectiveness of the theoretical results obtained.
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