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The mechanical characterization of the oesophagus is essential for
applications such as medical device design, surgical simulations and
tissue engineering, as well as for investigating the organ’s pathophysiology.
However, the material response of the oesophagus has not been established
ex vivo in regard to the more complex aspects of its mechanical behaviour
using fresh, human tissue: as of yet, in the literature, only the hyperelastic
response of the intact wall has been studied. Therefore, in this study, the
layer-dependent, anisotropic, visco-hyperelastic behaviour of the human
oesophagus was investigated through various mechanical tests. For this,
cyclic tests, with increasing stretch levels, were conducted on the layers of
the human oesophagus in the longitudinal and circumferential directions
and at two different strain rates. Additionally, stress-relaxation tests on
the oesophageal layers were carried out in both directions. Overall, the
results show discrete properties in each layer and direction, highlighting
the importance of treating the oesophagus as a multi-layered composite
material with direction-dependent behaviour. Previously, the authors con-
ducted layer-dependent cyclic experimentation on formalin-embalmed
human oesophagi. A comparison between the fresh and embalmed tissue
response was carried out and revealed surprising similarities in terms of
anisotropy, strain-rate dependency, stress-softening and hysteresis, with the
main difference between the two preservation states being the magnitude
of these properties. As formalin fixation is known to notably affect the
formation of cross-links between the collagen of biological materials,
the differences may reveal the influence of cross-links on the mechanical
behaviour of soft tissues.
1. Introduction
The oesophagus is the organ of the upper digestive tract that transports food
and drink, collectively known as the fluid bolus, from the pharynx to the
stomach via a relatively simple but highly effective mechanical process. This
process, called peristalsis, is responsible for the transport of various matters
throughout the body [1–3] and consists of wave-like contractions of the
hollow organs’ muscular wall. For the oesophagus, its primary role of bolus
transport is a result of a combination of the passive and active properties of
the tissue wall [4,5], as well as the interaction of the forces generated with the
hydrodynamic fluid bolus [6]. Therefore, it is crucial to understand each of
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these aspects to assess how they contribute to the function of the oesophagus in both health and disease. Out of these aspects, the
passive properties may be viewed as fundamental, providing the baseline properties that allow transport to take place [4]. Notably,
the oesophagus is made of two main composite layers, the muscularis propria (muscular layer) and the mucosa-submucosa
(mucosal layer), which are thought to individually contribute to the organ’s passive material response [7].

There have been a number of in vivo studies performed on the human oesophagus [8–16], including those that looked at its
passive properties by administrating muscle relaxants, such as atropine and butylscopolamine, to the volunteers in the study
[13,16]. To the best of the authors’ knowledge, Frøkjær et al. [15,16] were the only ones to study the direction-dependent and
layer-dependent behaviour of the human oesophagus. They found, through their in vivo tests on human subjects, that distension
resulted in tension in the circumferential direction, shortening in the longitudinal direction and compression in the radial direction
[16]. Furthermore, they found that material stiffness was lowest at the mucosal (inner) surface and increased throughout the oe-
sophageal wall, while circumferential stress and strain decreased through the wall and were lowest at the outer (muscular) surface
[16]. However, as the mucosal layer is folded in vivo, Frøkjær et al. [15,16] were not able to quantify the discrete behaviour of this
layer, rather its properties in relation to the outer, muscular layer. Additionally, none of the referenced in vivo studies considered
the time- or history-dependent behaviour of the human oesophagus.

The layer-dependent properties of the oesophagus can be established ex vivo due to the fact that it is the only visceral organ that
can be relatively easily separated into its two main layers after explantation through careful cutting of the loose connective tissue
binding the layers together [17,18]. However, as of yet, the passive mechanical properties of the discrete layers of the oesophagus
have not been investigated using fresh, human tissue [19–23], apart from by Tøttrup et al. [24], who tested the behaviour of only
isolated longitudinal and circular smooth muscle from the human oesophagus over three decades ago. There have been many
studies investigating the mechanical properties of different animal oesophagi, including rat [25–28], guinea pig [29,30], porcine
[31–36], rabbit [37,38] and ovine [39,40], with most conducting a layer-dependent analysis [25,26,28,29,31,33–36,38,39]. Now,
animal studies are highly valuable for assessing the direct influence of diseases, e.g. diabetes [41–43], oesophageal varices
[44,45] and irritable bowl syndrome [46], with the use of animal models, and for evaluating interventions, e.g. surgical approaches
[47,48] and medicinal compounds [43,49,50], as they allow for a very controlled environment and, often, a larger sample size
compared with human studies. However, in terms of mechanical behaviour, it has been found that animal soft tissues,
including the gastrointestinal tract, can differ significantly from their human counterparts [51–53]. Therefore, as they may not accu-
rately represent the material response of human tissue, experimental findings from animal studies should not ideally be used
quantitatively for modelling the human oesophagus for applications within medicine [51]. For instance, layer-dependent
models of the human oesophagus provide a means to investigate how a medical device would interact with the different oesopha-
geal layers. However, currently, models developed for devices, such as oesophageal stents, use material parameters determined
from animal experimental data [54,55]. Furthermore, tissue-engineered oesophagi are a promising treatment for diseases
such as atresia [56,57]. For this, the establishment of the passive mechanical properties of the native human oesophagus can be
used to cross-reference the properties of the grown tissue, ensuring the material behaviour is sufficiently close to that of
the native [40]. Moreover, quantification of the viscoelastic properties of human organs can be used to increase the realism
of surgical simulations, by providing a training technique that is both time-dependent and stress–strain-dependent [58,59].
Therefore, to provide insight and mechanical data for these applications, the layer, direction and time-dependent behaviour
of the fresh human oesophagus was explored in this study through a series of increasing stretch-level cyclic tests and
stress-relaxation experiments.

For a considerable amount of time, corpses have been used in the training of medical students on anatomy and surgical tech-
niques [60]. Although the benefits of using surgical simulations for the latter purpose are great, surgical simulation systems are
currently not developed enough in terms of initial system acquisition cost, force-feedback experience and overall realism to be
used widely within the medical population [61,62]. Therefore, cadaveric surgical training is still prominent. An important con-
sideration when using cadavers for this purpose is how they are preserved. There are a number of ways in which this is
possible, including fresh-frozen, formalin fixation and Thiel’s method [63], each with their own advantages and disadvantages.
Formalin is the traditional solution used for embalming, while Thiel’s method is a more recently developed technique that pro-
vides organs with a softer appearance and more realistic colours [64]. It is of value to establish how the cadaver preservation
method affects the mechanical behaviour of soft tissues, providing insight into the experience the medical student will have
and the differences they might expect between training and surgery on living organs [65]. In regard to current preservation process
studies, some have looked into the effect of just Thiel on the mechanical properties of soft tissues [66–68]; however, formalin-
preserved cadavers are still used for medical students’ anatomical and surgical training due to their wider availability, lower
cost, simpler embalming technique and the little effect it has on the functional anatomical knowledge of students when compared
with Thiel [60,65]. Despite this, studies in the literature on the effects of formalin on the material properties of human tissues are
few and their findings contradictory [69,70]. Therefore, the current study hopes to provide more insight into the effects of formalin
on soft tissues by comparing the embalmed cyclic oesophageal tissue results of the authors’ previous studies [22,23] with the fresh
oesophageal tissue results presented here.

To more fully understand the mechanical behaviour of the human oesophagus, the cyclic and stress-relaxation material
response of the two main layers of the organ were investigated in this study; the data of which can be used for insight into the
function of the different oesophageal layers, for modelling the human oesophagus with respect to its individual layers, and for
comparison with the mechanical properties of tissue-engineered oesophagi. To assess the residuals strains of the organ, zero-
stress state analysis was also carried out via the radial cut method. Further to this, quantitative analysis of previously acquired
histological images of the human oesophagus was conducted to provide insight into the relationship between fibre fraction
and the observed material behaviour of the organ’s layers. To this end, fresh and embalmed cyclic results are compared to explore
the influence of formalin fixation on the human oesophagus’ mechanical properties.
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2. Experimental methods
2.1. Sample extraction
The three oesophagi used for mechanical characterization within this study were extracted by means of dissection from fresh
cadavers at the Laboratoire d’Anatomie Des Alpes Françaises, Grenoble, France. After death and before dissection, the cadavers
were stored in a 4°C refrigerated room, and the dissection was performed within 24 h after death.

The precise procedure for dissection can be found in our previous study [22]. However, for Cadaver 3, an extra step was carried
out in order to consider the axial prestretch of the human oesophagus. For this, three sections 5 cm apart were marked in situ on
the organ’s thoracic region using a dissolvable ink pen. After excision, the lengths of these sections were measured. The difference
in length of the sections between the oesophagus’ in situ and ex vivo state was then used to calculate the average (mean) axial
prestretch of the thoracic region of the organ.

Once removed from the cadavers, the oesophagi were examined by a medical professional and were deemed healthy. After-
wards, they were taken immediately for sample preparation for the mechanical tests. This study was performed in compliance
with French regulations on post-mortem testing, and the protocol was approved by the Ethics, Scientific and Educational Com-
mittee of Grenoble Alpes University (CESP de Centre Don du Corps). Due to constraints regarding time and the number of
tests carried out, all tests were conducted within 5 days of dissection, during which, other than when being used for testing,
the tissue was stored in physiological saline solution (0.9% NaCl) at 4�C.

2.2. Histology
Histological analysis was carried out in our previous studies using oesophagi retrieved from cadavers that had been embalmed
with formalin solution (ARTHYL) injected into the carotid artery and drained from the jugular vein [22,23]. Samples with a thick-
ness of 3 μm were taken from the transversal and longitudinal planes of the oesophagus with its layers intact. The slides were
stained with either Sirius Red, to see all types of muscular and collagen fibres, with Haematoxylin Eosin Saffron (HES), to high-
light the nucleic acids and connective tissue (among other collagen), or with Orcein, to show the elastin fibres. Histological images
were then taken, an example of which can be seen in Durcan et al. [22,23], and were processed in this study to quantify the per-
centage collagen and elastin fibre content in each plane and layer. These fibres were chosen due to their influence in the mechanical
behaviour of soft tissues [71].

Firstly, the images were manually segmented to allow the fibre content of the different layers to be determined. Next, ImageJ
[72] was used to process the images and estimate the percentage collagen content from the Sirius Red and HES images, and the
percentage elastin content from the Orcein images. For this, the non-tissue background was removed from the images, the contrast
was increased, and the area of the whole tissue region was evaluated. Then, the area of colour specific to the fibre of interest was
determined. Finally, the percentage fibre content was calculated by dividing the fibre area by the area of the whole tissue region
and multiplying the answer by 100. This was repeated for each layer in the longitudinal and transversal histological images.

The final fibre contents were calculated as a mean percentage taken from images from three sections along the thoracic region
(top, middle and bottom) across two oesophagi retrieved from cadavers of similar ages to those investigated in this study.

2.3. Uniaxial tensile testing
2.3.1. Sample preparation
Upon excision from the human cadavers, the oesophagi were first gently rinsed through the lumen using saline. They were then
carefully cleaned of any excess connective tissue and separated into their three main regions (cervical, thoracic and abdominal), as
seen in figure 1a. At this point, samples were cut for zero-stress state analysis from the oesophagus of Cadaver 3, the protocol of
which is described in §2.4. As the region-dependent tensile properties were not being considered in this study, only the thoracic
region was used for mechanical testing. This region was chosen for consistency as it comprises the vast majority of the organ and
contains a mix of both striated and smooth muscle [73].

Next, the thoracic region of each oesophagus was fully separated into its two main layers. For this, firstly a longitudinal incision
was made along the length of the region, cutting through only the muscularis propria layer. This incision allowed access to the
connective tissue between the layers, which was then very carefully cut to dissect the two layers. An image taken during
the layer separation process can be seen in figure 1b, while the fully separated layers can be seen in figure 1c. Once
separated, the mucosa-submucosa layer was cut along its longitudinal length and unravelled. The layers were then examined visu-
ally to determine if any damage, i.e. cuts penetrating partially or fully into the tissue layers, had been incurred during separation,
of which there had not. Immediately prior to testing, samples approximately 22.00 × 4.10 mm (length ×width) were cut in both the
longitudinal and circumferential directions. In between tests, the tissue layers were stored in physiological saline solution at 4°C.
The samples were brought to room temperature before testing.

2.3.2. Experimental set-up
Once cut, the rectangular samples were secured within the grips using the following procedure: first, the samples were laid on the
base grips and back support of a special device designed to set up soft tissue samples within the grips, as seen in figure 2a. Next,
the samples were flattened and aligned as centrally as possible upon the grips. This step often took some time due to the very soft
and sticky nature of the tissue. Then, the upper grips were placed on the base grips and the screws tightened using a torque limiter
set at 0.5 Nm, to prevent the samples slipping during testing and for consistency across the different samples. After this, the long
screws situated either side of the grips, as shown in figure 2a, were tightened to create an assembly in which the soft sample could
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Figure 2. (a) Sample positioned on the support ready to be secured within the grips. (b) Machine set-up. (c) A sample loaded within the machine.
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Figure 1. (a) Separation of the oesophagus into its three main regions (cervical, thoracic and abdominal). (b) Dissection of the two main oesophageal layers.
(c) Fully separated layers of the human oesophagus showing the unravelled muscularis propria on the left and the tubular mucosa-submucosa on the right.
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be moved and set up in the mechanical testing machine, an MTS Criterion model C41 (MTS Systems, Minnesota). The assembly
was used to position the sample within the machine, as seen in figure 2b, by attaching the lower portion of the assembly directly to
it and then the upper portion to a highly sensitive 25 N load cell. Once secured within the machine, the long screws situated either
side of the grips were loosened to release the assembly. The back support holding the tissue sample in place was then removed.
The final set-up of a sample within the machine prior to commencement of the tests can be seen in figure 2c. At this point, the
width and thickness of the sample were measured at three separate points along its length using callipers, and the average
(mean) was used for the calculation of stress (§2.3.5). Tensile deformation was employed via upward traction of the upper grip
attached to the crosshead and load cell while the lower grip remained fixed.
2.3.3. Stress-relaxation tests
To investigate the relaxation response and equilibrium stress of each layer of the oesophagus, stress-relaxation tests were con-
ducted, in which the samples were stretched at a rate of 100% s�1 and held initially for 20min for the first trial of all layers
and directions. The remaining trials were then held for 15min as the drop in stress during the first trials between the 20 and
15min mark was only 2%. Due to the limited number of samples available from a single human oesophagus, the stress-relaxation
tests were conducted in the form of multi-step tests to extract the greatest amount of information from a single sample. The longi-
tudinal samples for both layers were stretched in increments of 5% deformation and the circumferential samples were stretched in
increments of 10% deformation. The tests were stopped once the samples had ruptured. These strain steps were chosen to ensure at
least four relaxation steps were completed in each direction before the samples ruptured and, thus, that the equilibrium stress-
stretch curve for each direction could be established. They were decided based on the results of the authors’ previous studies
on embalmed oesophageal tissue [22,23]. All tests were carried out at ambient temperature and conducted under a uniaxial tensile
test condition. The samples were kept moist during the tests via routine spraying with physiological saline solution.
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Figure 3. Drawing illustrating the location of the circumferential zero-stress state analysis samples.
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2.3.4. Cyclic tests
Cyclic tests were performed in the form of increasing stretch-level cyclic tests with two cycles per level. This form of test was
chosen over a single cycle or a single deformation-level cyclic test to be able to observe the most phenomena while testing the
fewest samples. Deformation levels of 10–70% in increments of 10% (stretch levels of 1.1–1.7 with increments of 0.1) were
chosen for all samples. The cyclic tests were conducted at two different strain rates, 1% s�1 and 10% s�1, to explore any rate-
dependent behaviour of the tissue. An average of seven tests per oesophagus, layer, direction and strain rate were conducted.
Again, all tests were carried out at ambient temperature and conducted under a uniaxial tensile test condition, and the samples
were kept moist during testing via routine spraying with physiological saline solution.

2.3.5. Mechanical characterizations
In this study, the stress is expressed in terms of nominal stress (i.e. first Piola–Kirchhoff stress), which is defined as

P ¼ F
A0

, ð2:1Þ

where F is the applied force and A0 is the cross-sectional area of the undeformed sample. The experimental strain is expressed in
terms of stretch, λ, and is defined as λ = l/l0, where l and l0 are the current and initial lengths of the sample, respectively. Stretch
relates to the nominal strain by 1 ¼ l� 1.

2.4. Zero-stress state
2.4.1. Sample preparation
The axial prestretch of the oesophagus from Cadaver 3 was measured as described in §2.1. To determine the oesophageal speci-
men’s residual circumferential strains, ring-like segments were cut from four different locations along the length of the specimen,
as seen in figure 3. At each location, two samples approximately 2mm in length were retrieved. The proximal segment at each
location was used to investigate the opening angle and residual strains of the intact wall, while the more distal segment was
used for layer-dependent analysis (figure 3). To separate the layers of the rings, careful cutting was administered to the connective
tissue binding the layers together, while keeping both the layers in their ring-like forms.

2.4.2. Experimental set-up and protocol
A circumferential zero-stress state analysis was conducted as per the protocol outlined in Liu & Fung [74]. The ring-like segments
were all submerged in physiological saline solution at room temperature in individual containers. Photographs were taken at this
point to be able to determine the dimensions of the samples in the no-load state, as illustrated in figure 4a. All images were taken
using a Pentax K-5 camera with a 50mm lens. The segments were then cut radially using surgical scissors while still submerged in
the solution. Photographs were taken immediately after the samples were cut, then again at 0.5, 1, 2, 3, 4, 5 and 24 h to assess
the time evolution of the opening of the sector. The opening angle, θ, as defined in figure 4b, was then measured for all the
open segment images.
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Figure 4. Schematic diagram showing the no-load state (a) and the zero-stress state (b) of a ring segment, including the definition of the opening angle, θ.
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2.4.3. Measurement of circumferential residual strains
The residual circumferential strains were initially measured in terms of Green’s strain using the change in wall dimensions
between the no-load and the zero-stress state. The following equations were used to calculate the residual Green’s strain at the
inner and outer surfaces, respectively:

ei ¼ ðci,n=ci,zÞ2 � 1
2

ð2:2Þ

and

eo ¼ ðco,n=co,zÞ2 � 1
2

, ð2:3Þ

where ci,n and ci,z are the circumference of the inner surface at the no-load and zero-stress state, respectively, and co,n and co,z are the
circumference of the outer surface at the no-load and zero-stress state, respectively. The definitions of these quantities can be seen
schematically in figure 4. The stretch relates to Green’s strain by e = (λ2− 1)/2.

2.5. Experimentation of embalmed tissue
Previous works by the authors consisted of cyclic experimentation of embalmed human cadaveric oesophagi [22,23]. The same
protocol as outlined in §2.3.4 was used for the tests, allowing for a direct comparison between the preservation states. In the pres-
ent study, the fresh tissue cyclic results were compared with the embalmed tissue results for each layer, direction and strain rate.

2.6. Statistical analysis
Often, a mean is used to describe the average result of a certain quantity. However, this should only be used if the dispersion of the
quantity follows a normal distribution. Therefore, initially, tests were carried out to determine if the quantities of interest in this
study were normally distributed. For this, a Shapiro–Wilk test was conducted using IBM SPSS Statistics (v. 27.0) [75] with a sig-
nificance level, α, of α = 0.05. The distribution was considered normal if p > 0.05. If this was the case, a mean value would be used
to represent the quantity. If, however, the quantity was not normally distributed, tests would be carried out to see if its dispersion
followed a Fréchet distribution: for this, R statistical software was used [76]. Fréchet distribution was used previously by the
authors as (i) it was found that Young’s modulus of all the embalmed tissue results followed this right-skewed distribution
[22,23], and (ii) Fréchet distribution is suitable for the application of material properties [77]. The non-normally distributed
data was tested for a Fréchet distribution with α = 0.05, meaning that if p > 0.05, the quantity follows the distribution. In this
case, the mode of the Fréchet distribution provides the most representative value, and so if a quantity followed this distribution,
the mode would be used for its analysis. To establish differences between groups, an independent non-parametric test was used in
the form of the Mann–Whitney U test due to the often non-normal distribution of the data.
3. Results
3.1. Demographics
A total of three fresh oesophagi were tested in this study. The length of the oesophagi from Cadavers 1, 2 and 3 were approxi-
mately 24, 28 and 26 cm, respectively. The demographics of the patients and the tests conducted using each oesophagus are
outlined in table 1.

3.2. Histological analysis of the human oesophagus
A qualitative description of the elastin and collagen content of the muscularis propria and mucosa-submucosa can be found in
Durcan et al. [22] and Durcan et al. [23], respectively. Here, the histological images were processed to approximate the amount
of collagen and elastin in each layer and direction of the human oesophagus. As both the Sirius Red and HES stains display
the collagen of the tissue, the Sirius Red images were analysed first to determine the percentage of collagen in each layer and direc-
tion. Then, the transverse sections of the HES images were analysed to validate the percentage of collagen estimated using
the Sirius Red images. The validation was successful with only a 5% difference between the two percentages for the mucosa-
submucosa, and a 12% difference between the two collagen content values for the muscularis propria. The results of the
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Figure 5. Collagen (a) and elastin (b) content in the different layers and planes of the human oesophagus determined through histological image analysis.

Table 2. Number of stress-relaxation tests per layer, per direction, per cadaver.

layer direction step in strain (%) cadaver tests total

muscularis propria longitudinal 5 2 5 n = 10

3 5

circumferential 10 2 5 n = 9

3 4

mucosa-submucosa longitudinal 5 2 5 n = 10

3 5

circumferential 10 2 5 n = 10

3 5

Table 1. Patient demographics and the tests conducted on each cadaveric specimen.

cadaver sex height (cm) weight (kg) age (years) type of tests

1 female 144 42 96 cyclic

2 male 185 78 89 cyclic, stress-relaxation

3 male 170 100 97 cyclic, stress-relaxation, zero-stress state
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percentage collagen in each layer and plane determined from the Sirius Red images can be found in figure 5a. The results of the
Orcein image analysis can be seen in figure 5b. As there was only one stain that highlighted the elastin fibres of the tissue, there
could be no validation of the elastin content calculation.
3.3. Stress-relaxation results
3.3.1. Variation in experimental samples and statistical analysis
The total number of stress-relaxation tests conducted per layer, per direction and per cadaver can be found in table 2. Many factors
can contribute towards the dispersion seen among experimental data of soft biological tissues, including heterogeneity of the
tissue, different levels of moisture, fluctuations in ambient temperature and variations in sample dimensions. The variations in
width and thickness of the stress-relaxation samples are displayed in table 3.

To establish the time-independent behaviour of the oesophageal layers, the equilibrium stress-stretch points for each test
were recorded. There was variability in these points between the different tests for each direction and layer. To obtain the
average equilibrium stress-stretch points, outlying tests were removed (maximum two per layer, per direction) and the mean
was calculated using the remaining values. These values were then used to plot the equilibrium stress-stretch curve to
determine the time-independent response of each layer and direction of the human oesophagus under large deformation, i.e.
its hyperelastic behaviour.



Table 3. Mean ± population standard deviation of the sample dimensions for the stress-relaxation experiments.

muscularis propria mucosa-submucosa

width (mm) thickness (mm) width (mm) thickness (mm)

longitudinal 4.2 ± 0.3 1.8 ± 0.5 4.0 ± 0.2 0.8 ± 0.2

circumferential 4.1 ± 0.3 1.9 ± 0.4 3.9 ± 0.2 0.6 ± 0.3
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Figure 7. Mean equilibrium stress-stretch curves obtained from the multi-step stress-relaxation experiments of the human oesophageal muscular (a) and mucosal
(b) layers in the longitudinal and circumferential directions, including shaded areas showing the sample standard deviations.
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3.3.2. Stress-relaxation behaviour
The multi-step stress-relaxation behaviour of fresh human oeosphageal tissue was found to be different depending on the
layer and direction. An example of a typical stress-time response can be seen for the longitudinal mucosal layer in figure 6.
The mean equilibrium stress-stretch curve for each layer and direction can be found in figure 7, including the standard
deviations. In the longitudinal direction, the mucosa-submucosa reveals a substantially greater equilibrium stress for a certain
stretch compared with the muscularis propria, particularly from 1.1 stretch onwards. In the circumferential direction, the
behaviour of the two layers is similar until 1.4 stretch, at which point the muscularis propria becomes slightly stiffer than
the mucosa-submucosa. Then, after 1.6 stretch, the stress of the mucosa-submucosa increases exponentially compared
with the muscularis propria. For both layers, the equilibrium stress is greater in the longitudinal direction than in the circumfer-
ential direction. The equilibrium stress-stretch results reveal that the time-independent behaviour of the human oesophagus is both
layer- and direction-dependent.



Table 4. Number of cyclic tests per layer, per direction, per strain rate, per cadaver.

layer direction strain rate cadaver tests total

muscularis propria longitudinal 1% s�1 1 7 n = 20

2 10

3 3

10% s�1 1 5 n = 20

2 10

3 5

circumferential 1% s�1 1 5 n = 20

2 10

3 5

10% s�1 1 5 n = 20

2 10

3 5

mucosa-submucosa longitudinal 1% s�1 1 5 n = 20

2 10

3 5

10% s�1 1 6 n = 20

2 10

3 4

circumferential 1% s�1 1 5 n = 20

2 10

3 5

10% s�1 1 3 n = 20

2 10

3 7

Table 5. Mean ± population standard deviation of the sample dimensions for the cyclic experiments across both strain rates (1% s�1 and 10% s�1).

muscularis propria mucosa-submucosa

width (mm) thickness (mm) width (mm) thickness (mm)

longitudinal 4.1 ± 0.4 2.0 ± 0.4 4.2 ± 0.2 0.9 ± 0.2

circumferential 4.1 ± 0.4 2.4 ± 0.4 4.1 ± 0.3 0.7 ± 0.1
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3.4. Cyclic results
3.4.1. Variation in experimental samples and statistical analysis
The total amount of cyclic tests conducted on the fresh oesophageal layers per direction, strain rate and cadaver can be found in
table 4, while table 5 shows the means and standard deviations of the sample thicknesses and widths. Across the three cadavers,
there was variation between the tests completed for each layer, direction and strain rate, particularly for the mucosa-submucosa
samples. These variations can be visualized in figure 8. It should be noted that, when analysing the results, only one test condition
(specific layer, direction and strain rate) showed a significant correlation between days since dissection and maximum stress of the
samples, with no significant correlation being found for any of the other seven test conditions (statistical analysis conducted using
Spearman rank-order correlation); therefore, it was assumed that time since dissection did not play a substantial role in the
variability between samples, for which the heterogeneity inherent to soft tissues was thought to be much more influential.

To quantify the variability of the data and to deduce the most representative curve, 11 features (characteristics) were extracted
from λ = 1.1 of all the cyclic experimental data. This cycle was chosen as it allowed for comparison across all layers, directions and
strain rates, as well as between the embalmed and fresh tissue. The characteristics include Young’s modulus of the first loading
curve, Young’s modulus of the second loading curve, the hysteresis of the first cycle, the hysteresis of the second cycle, the differ-
ence between the two hystereses, the rupture stretch, λrup, the maximum stress, Pmax, and the areas under the loading and
unloading curves for both the first and second cycle of λ = 1.1; the definitions of which can be seen in figure 9. The distributions
of all these features were established by first testing if they were normally distributed using a Shapiro–Wilk test in SPSS. If the
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characteristic was normally distributed for a certain layer, direction and strain rate, the mean of the value would be taken as the
most representative. Next, if the distribution was not normal, the characteristic would be tested to see if it followed a Fréchet dis-
tribution. It was found that all non-normally distributed characteristics followed a Fréchet distribution (p-values of which will be
presented for the distribution of E1 in §4): therefore, the mode of the Fréchet distribution for these characteristics was taken as the
most representative value. Then, the mean or mode of each characteristic was compared with the characteristic values of each indi-
vidual test. The test with the highest number of characteristics close to the mean or mode was chosen to represent the behaviour of
the specific layer, direction and strain rate. These experimental curves were used for analysis of the cyclic behaviour of the fresh
human oesophageal layers and will be presented in the subsequent graphs; the anatomical destinations of which can be seen in
figure 10. Additionally, the differences between groups were measured regarding all the aforementioned characteristics of the λ =
1.1 cycles using a Mann–Whitney U test due to not all characteristics being normally distributed.

3.4.2. Presentation of cyclic results
As described in §2.3.4, the cyclic tests were carried out with two cycles per stretch level, and both cycles have been presented here.
Moreover, the longitudinal samples ruptured before λ = 1.7, therefore only the full cycles have been presented for this direction, i.e.
the complete cycles undergone before the samples ruptured.

3.4.3. Cyclic stress–strain behaviour
Figure 11 shows the rate-dependent cyclic results of the muscularis propria and mucosa-submucosa in the longitudinal and circum-
ferential directions. Both layers present highly anisotropic behaviour, with greater stiffness and earlier rupture in the longitudinal
directions compared with the circumferential directions. Strain rate-dependent behaviour is also apparent with an increase in
strain rate resulting in an increase in stiffness for both layers and directions. Figure 12 presents a layer comparison for the 10% s�1

results. In the longitudinal direction, past 1.07 stretch, the stress of the mucosa-submucosa is much higher than that of the muscular
layer. The mucosal layer also ruptures earlier than the muscularis propria in this direction. While the difference in stiffness between
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Figure 10. Anatomical destination of the experimental samples retrieved through statistical analysis to represent the cyclic behaviour of the human oesophageal
layers, where C1, C2 and C3 denote Cadavers 1, 2 and 3, respectively.
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the two layers is not as great for the circumferential direction compared with the longitudinal direction, it can be seen that after 1.4
stretch the stiffness of the mucosa-submucosa layer is greater than the muscularis propria. Permanent deformations of the cyclic
results were also found to be layer-dependent in that therewas greater permanent set in the mucosa-submucosa than the muscularis
propriawhen comparing across each direction. To determine this, the inelastic strains present after each cyclewere plotted against the
previous maximum stretch the samplewas subjected to (see Durcan et al. [23] for more detail); the graphs of which will be presented
later in §4. The results of the statistically significant layer differences, strain rate differences and direction differences in terms of the 11
characteristics (§3.4.1) can be seen in tables 7–9 in the appendix, respectively.

3.5. Opening angle and residual strains
The average axial stretch of the oesophagus from Cadaver 3 from its ex vivo state to its in situ position was found to be 1.06, mean-
ing that the human oesophagus in vivo is under a slight axial tension compared with its zero-stress state. For the circumferential
zero-stress state analysis, the time-dependent investigation showed that most of the creep of the samples occurred between 0 and
0.5 h, however, that some slow creep occurred until 24 h. Therefore, the opening angle and residual strain measurements presented
here are from the photographs taken at 24 h. The opening angle varies along the length of the oesophagus, and between the differ-
ent layers, as can be seen in figure 13a. The results reveal that there is a greater opening angle in the mucosa-submucosa layer than
the muscularis propria along the majority of the oesophagus apart from in the abdominal region. The circumferential residual
strains, as displayed in figure 13b, show that while the layers are intact, the mucosa-submucosa of the thoracic region is mainly
under compression (dashed green line), whereas the muscularis propria is fully in tension (dashed red line). The values in
figure 13b are the average of both thoracic locations investigated. The residual strains of the separated layers (solid coloured
lines) show the typical inner surface under compression, outer surface in tension relationship. The magnitude of these residual
strains do not differ much between the separated layers, which is similar to the finding of Zhao et al. [78] for the pig oesophagus.
4. Comparison of fresh and formalin-embalmed tissue
In the authors’ previous studies, cyclic experimentation was carried out on the two main layers of the oesophagus using organs
retrieved from formalin-embalmed cadavers [22,23]. The same experimental protocol was used as in this study, allowing for a
direct comparison between the fresh and embalmed preservation states.

The same characteristics as outlined in §3.4.1 were compared between the embalmed and fresh cyclic results for each layer,
direction and strain rate using the Mann–Whitney U test. It was found that for almost all of the characteristics considered, the
magnitude was statistically higher for the embalmed tissue compared with the fresh tissue, the results of which can be found
in table 10 in the appendix. The rupture stretch, however, was statistically higher for the fresh tissue compared with the embalmed
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tissue. Table 6 presents the average Young’s modulus for the 1% s�1 cyclic results for both fresh and embalmed tissue, revealing a
greater increase in stiffness caused by embalming for the mucosa-submucosa compared with the muscularis propria.

Figure 14 shows that when the axes are scaled accordingly, the anisotropic properties across the preservation states are similar. The
anisotropy of stiffness and nonlinearity of each direction, as well as the degree of hysteresis and stress-softening, remain relatively
consistent despite the change in magnitude of these phenomena between the embalmed and fresh tissue, suggesting that, apart
from rupture stretch, embalming proportionally increases the mechanical properties of oesophageal tissue. It should be noted that



Table 6. Mode and range of Young’s modulus for each layer and direction from the first cycle (E1) of the 1% s�1 cyclic fresh and formalin-embalmed results,
and p-values for testing if the distribution of Young’s moduli followed a Fréchet distribution (embalmed results as previously reported in Durcan et al. [22,23]).
Young’s modulus of the fresh circumferential muscularis propria did not follow a Fréchet distribution and was normally distributed, therefore, for this layer,
direction and preservation state, the mean, standard deviation and p-value for the Shapiro–Wilk test are presented.

layer direction pres. state mode (kPa) range (kPa) p-value

muscularis propria longitudinal fresh 7.94 2.67–20.7 0.722

embalmed 32.2 6.0–266 0.367

circumferential fresh mean: standard deviation: normally distributed:

3.45 ±0.99 0.141

embalmed 16.1 3.7–81.5 0.808

mucosa-submucosa longitudinal fresh 8.36 2.57–24.8 0.926

embalmed 93.5 25.8–331 0.247

circumferential fresh 1.89 0.83–3.52 0.858

embalmed 38.4 21.2–47.5 0.783
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due to the limit of the sensor and the softness of the preservation state, there was more noise at lower stretches with the fresh tissue
compared with the embalmed tissue, particularly for the mucosa-submucosa layer in the circumferential direction (figure 14c).

Thedifferences in permanent set (defined in §3.4.3)were also analysed between the fresh and embalmed tissue cyclic results. Figure 15
shows a comparison between the permanent deformations of the two preservation states. It can be seen that the degree of damage of the
fresh circumferential muscular layer was almost identical to that of the embalmed circumferential muscular layer, while the fresh
longitudinal muscle, longitudinal mucosa and circumferential mucosa all had greater permanent set than their embalmed equivalents.
5. Discussion
The experimental findings of this study provide new insight into the passive mechanical behaviour of the fresh human oesophagus,
particularly regarding its layer- and time-dependent properties. The results established the human oesophagus as an anisotropic,
visco-hyperelastic material with discrete properties within each layer. Moreover, zero-stress state analysis revealed residual strains
in the no-load state of the tissue. Furthermore, determination of the collagen and elastin content of each layer and direction from pre-
viously acquired histological images [22,23] showed a greater collagen and elastin content in the mucosa-submucosa than the
muscularis propria across both directions, which is in line with similar studies on animal tissue [37].

The equilibrium stress-stretch behaviour and the cyclic results revealed the longitudinal direction to be stiffer than the circum-
ferential direction for both layers of the oesophagus. The circumferential direction also ruptured at a much higher strain than the
longitudinal direction for both layers. These behaviours may be related to the oesophagus’ physiological function where more
compliance is required in the circumferential direction due to distensions caused by fluid boli of varying size, while greater
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stiffness in the longitudinal direction supports the function of the longitudinal muscle fibres in carrying out longitudinal shorten-
ing during peristalsis, which reduces the work needed by the circular muscle fibres to move the bolus [79]. Microstructurally, there
was greater collagen in the longitudinal direction compared with the circumferential direction, and greater elastin in the circum-
ferential direction than in the longitudinal direction for both the mucosal and muscular layers. This histological distribution may
explain the anisotropic behaviour of the tissue, as collagen is associated with withstanding tensile loads [80] and elastin allows soft
tissues to undergo repetitive loading [81]. The layer-dependent differences also correlate with the histological findings and the role
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that collagen plays in the mechanical behaviour of soft tissues [71]. Furthermore, the nonlinear response of the tissue layers is
associated with the function of the oesophagus in that compliance it required at low stretches to allow for the passage of the
bolus, while stiffening occurs at higher stretches to impede over-dilatation. It is thought that the muscularis propria supports
the majority of the load at low intraluminal pressures, while the mucosa-submucosa stiffens quickly when the diameter of the
oesophagus is approximately double its undeformed size [7,25]. This is inline with the cyclic results presented here in that, in
the circumferential direction, the mucosa-submucosa strain hardens at a higher stretch than the muscular layer, as well as, at
high stretches, is stiffer than the muscular layer. In vivo, the mucosa-submucosa layer is folded and so would only undergo the
circumferential loads experienced in the tension experiments carried out here once the layer was distended so far that it unfolded.
At this point, the higher stiffness of the mucosa-submucosa would take the load and prevent over-dilatation of the organ.

The main ex vivo studies on the human oesophagus conducted uniaxial tensile tests on the intact tissue wall [19,20]. Vanags et al.
[20], who studied the direction-dependent behaviour of the organ, found the mechanical properties of the human oesophagus to be
anisotropic, following the same relationship as the findings of this study: the stress and Young’s modulus were greater in the longi-
tudinal direction, while the strain the tissue could be subjected to before rupture was higher in the circumferential direction. They
also investigated the effect of age on themechanical properties of the humanoesophagus [20]. From their findings, it could be expected
that Young’smoduli for the oesophagus determined in this studymight be greater than for younger oesophageal tissue due to the high
ages of the cadavers tested (table 1). Furthermore, Vanags and coworkers [20] conducted distension tests of oesophagiwith their layers
intact to explore the organ’s mechanism of rupture; however, they did not present any stress–strain plots of their results [20].

Sommer et al. [39] studied the mechanical behaviour of ovine oesophagi and carried out tests with a variety of loading modes.
They found the inflation-extension behaviour of ovine oesophagi with their layers intact to be direction-dependent, with the longi-
tudinal direction being stiffer than the circumferential direction. This finding agrees with the other inflation-extension tests
conducted on intact oesophagi from rats [42] and rabbits [38], as well as the results of this study. Comparing the layer-dependent
uniaxial tension results of ovine oesophagi from Sommer et al. [39] with those presented here, there was similar maximum stress in
the longitudinal direction across both layers, and a similar strain hardening for the muscular layer. However, for the mucosal layer,
strain hardening occurred at 1.4 stretch for the ovine oesophagi compared with around 1.1 stretch for the human oesophagi in this
study. The circumferential direction of both layers proved to be a lot stiffer for ovine tissue compared with human tissue despite
conducting their tests at a slower strain rate: the maximum stress found for ovine oesophagus in this direction was in the range of
200–350 kPa, while in the current study was around 10–40 kPa. Similar layer-dependent, uniaxial tensile tests were carried out by
Yang et al. [31] on porcine oesophagi, for which the stress in both directions was substantially higher than in this study. While they
found the longitudinal direction to be stiffer than the circumferential direction, strain hardening across both layers occurred later in
the longitudinal direction and earlier in circumferential direction compared with the current study, suggesting porcine oesopha-
geal tissue to be less direction-dependent than human tissue. These differences could be due to differences in the species’ digestive
systems [51], as well as slight variations in the experimental technique and set-up [82].

Layer-dependent distension tests of animal oesophagi performed ex vivowere found to agreewith the results of this study in that,
particularlyat higher strains, themucosa-submucosawas stiffer than themuscularis propria [26,28,36,37,42,83]. This, however, differs
from the findings of Frøkjær et al. [16] who performed in vivo distension tests on healthy humans. They found the stiffness of the oe-
sophagus to be lowest at the inner, mucosal surface across all strains. This discrepancy is thought to be due to the fact that mucosal
layer is folded in vivo and somost of the stiffness during the tests would be provided by themuscular layer [16]. Therefore, the results
of the current study can be used to develop material models of the oesophagus which take into account the discrete behaviour of the
layers, while the findings of Frøkjær and coworkers [16] would be ideal in contributing towards the validation of finite-element
models of the human organ [84]. While it may be expected that, due to the high ages of cadavers tested in this study [20] and the
ex vivo test condition [85], the stiffness of the fresh oesophageal tissue tested here would be a lot greater than that found by Frøkjær
et al. [16], this was not the case, with Young’s moduli (from volunteers with an average age of 37 years) being well within the same
order of magnitude: 1.9–3.5 versus 2.5–5 kPa, respectively. Despite the similarities in Young’s moduli between in vivo oesophageal
findings and the uniaxial tensile results presented here, the distension behaviour of the human oesophagus is of great interest due
to it being a tubular organ undergoing distensions in vivo. Therefore, future experiments of inflation-extension tests on the separated
layers of the human oesophagus, as well as the intact wall, should be performed in order to study, quantify and model its material
behaviour in more a physiological-like way. Furthermore, an increase in individual oesophagi tested and the testing of younger
tissue would provide a more thorough understanding of the mechanical response of the human oesophagus across the wider popu-
lation. Additionally, due to the low number of samples per test condition from a statistical point of view, the sample size might not be
large enough to properly establish the differences in characteristics between the various strain rates, layers, directions and preser-
vation states. Therefore, a greater sample size in terms of oesophageal specimens as well as individual samples would increase the
overall robustness of the statistical analysis and the conclusions drawn. It should be noted that another limitation of this study is
that the muscular layer samples were taken from any point within the thoracic region, and were not differentiated based on compo-
sition of smooth or striated muscle tissue, which is known to vary along the length of the region [73]. This assumption was taken to
reduce the number of variables investigated. However, as there are fundamental differences inmicrostructural arrangement between
smooth and striated muscle, smooth muscle may be more elastic than striated muscle [86], and, in turn, properties such as rupture
stretch and permanent set could increase and decrease, respectively, as onemoves from the proximal to the distal end of the oesopha-
geal muscular layer. Therefore, in future experimental studies on the human oesophagus, the impact of the varying ratios of striated
and smooth muscle throughout the organ on its mechanical behaviour should be considered and investigated.

It was once assumed that the no-load state of human tissues was also its stress-free state. However, it was determined that since
unloaded, ring-like cross-sectional segments of the arterial wall sprung open upon a radial cut, there must exist residual stresses
and strains within arteries [87–90]. Since then, residual strains and stresses have been found in different tissues of the human body,
including aortic valve leaflets [91] and the ureter [92]. Outside of this work, however, only the residual strains present in rabbit
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[37,38,93], rat [26,27,83], porcine [36,78] and guinea pig [29,30,94] oesophagi have been determined.Gregersen et al. [94] found that the
inclusion of residual strains within the guinea pig oesophagus provided more accurate strain measures at its luminal surface, while
Holzapfel et al. [95] found that residual stresses in arteries gaveway to amore homogenized stress distribution throughout the arterial
wall. The zero-stress state analysis in this study showed there to be circumferential residual strains and axial prestretch in the oesopha-
gus’no-load state [93], therefore, these shouldbe consideredwhen conducting finite-elementmodelling of the humanoesophagus [96].
In this study, however, only the residual strains of the oesophagus from Cadaver 3 were considered. Therefore, for a more robust
quantification of the human oesophageal residual strains, more specimens should be taken into account.

The results presentedhere regarding the effects of embalmingon the humanoesophagusmaybeusedbymedical students to adjust
their expectationswhen performing practice surgery on cadavers fixed in formalin. It can be seen from the results that the type of non-
linearbehaviour is comparable, particularly in regard to the oesophageal layers’ anisotropic relationshipandpoint of strain-hardening,
however, that the degree of stiffness across the twopreservation states is different.When cutting into embalmed tissue, for instance, the
initial stiffness would be approximately four times higher for themuscular layer and 16 times higher for themucosa-submucosa layer
compared with fresh tissue. Additionally, embalmed tissue may rupture at a lower strain, particularly the muscular layer.

Asmentioned in §1, the findings in the literature on the effects of formalin preservation on themechanical properties of soft tissues
are contradictory. The understanding of Hohmann et al. [69] is that the cross-links formed between the collagen molecules caused by
formalin solution increases the stiffness of tissues, while Girard et al. [70] believes there is a balance between partial denaturing of col-
lagen and the formation of collagen cross-links, with partial denaturing of the fibres explainingwhy they found a decrease in stiffness
for formalin-preserved tissue when compared with fresh tissue. In the current study, the increase in stiffness caused by embalming
agreeswith the conclusion ofHohmann et al. [69], implying that the cross-links formedby formalinmaybemore predominant in affect-
ing the mechanical properties of human soft tissues than the partial denaturing of collagen [70]. The fact that the stiffness increase
between the fresh and embalmed tissue is greater for the more collagen-rich layer, the mucosa-submucosa, further supports the
theory that the formation of collagen cross-links causes the difference in stiffness observed between the two preservation states.

When comparing the same stretch levels for each layer and preservation state at 1% s�1 (figure 14), it can be seen that the cyclic
behaviour of the oesophageal layers in terms of stiffness, hysteresis and stress-softening in the longitudinal and circumferential direc-
tions is verysimilar between the two states,with themaindifference being the vast change inmagnitudeof thesemechanical properties
(see table 10 in the appendix).Now, the investigation into the influence of collagen cross-links is becoming increasingly popularwithin
the literature [97–101]; this includes the recent development of materials models that take into account collagen cross-link density and
orientation [102,103]. It is known that an increase in cross-links leads to an increase in tensile strength [104–106]; however, does the
relationship between embalmed and fresh tissue seen in this study suggest that the density of collagen cross-links has a much greater
influence on themechanical behaviour of soft tissues thanwas once thought, including its viscoelastic and stress-softening properties?
If the behaviour between the two directions is the same, with just the magnitude of properties increasing with increasing cross-links
causedbyembalming, could theproperties that are seen, even in the fresh tissue, be heavily influencedby the orientationanddensityof
cross-links? Furthermore, thedegree bywhich thepermanent set decreased from the fresh tissue to the embalmed tissuewas correlated
with the amount of collagen in each layer and direction. Themore collagen in a specific layer and direction, the greater the decrease in
permanent deformations of the embalmed tissue compared with the fresh tissue. Could this mean that an increase in collagen cross-
links causes a resistance to permanent set?Mass spectrometry should be conducted to contrast the collagen cross-link density between
fresh and embalmed tissue to determine more concretely if they are the main reason for the differences in properties seen [99].
6. Conclusion
The findings of this study present a novel understanding of the layer-dependent mechanical behaviour of the human oesophagus. The
results presented here are key in comprehending the relationship between the organ’s material properties and physiological function.
They also provide experimental data that can be used in a multitude of biomedical engineering applications, for example, to model the
behaviourof the tissue layers to help improve thedesign ofoesophageal stents.Overall, the stress–strain response of theoesophaguswas
found to be highly anisotropic, with greater stiffness and earlier rupture in the longitudinal direction comparedwith the circumferential
direction for both layers. Regarding the oesophagus’ layer-dependent behaviour, at higher strains and across both directions, the
mucosa-submucosawas stiffer than the muscularis propria. Additionally, the study explored how embalming impacts the material be-
haviour of the oesophagus. Formalin fixation was found to increase the degree of stiffness, hysteresis and stress-softening significantly
when compared with fresh tissue. This was proposed to be due to an increase in collagen cross-links brought about by the formalin
solution. Further research into the effects of embalming, alongwith aquantificationof their density,mayshedmore light on the influence
of collagen cross-links on the overall mechanical behaviour of human soft tissues. Future work by the authors includes constitutively
modelling the experimental data presented here to provide a set of material parameters that may be used directly by the readers.
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