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Summary
Six face-centred finite volume formulations are derived and compared for the
simulation of Stokes flows with spatially varying viscosity. The main difference
between the methods derived is the mixed variable used in the mixed formu-
lation and the use of a weak or strong form in each element using integration
by parts. A brief discussion about the properties of the different methods is pro-
vided, including comments on the computational cost and the symmetry of the
resulting global system of equations. Finally, numerical examples in two and
three dimensions are used to compare the accuracy of all the formulations pre-
sented. The examples include a problem where the methods are employed to
simulate a steep variation of the viscosity, showing the ability to perform these
simulations without using a mesh conforming to a material interface. The per-
formance of different element types and different choices of the stabilisation is
also discussed.
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1 INTRODUCTION

The numerical solution of Stokes flows with spatially varying viscosity is of particular importance in the context of
geophysical applications such as the simulation of mantle convection,1,2 lithosphere deformation 3,4 or magmatic pro-
cesses.5,6 In this context, the predominant numerical techniques employed are the finite difference method 7,8 and the
finite element 9,10 method. Several studies can be found where the performance of different discretisations is com-
pared.11–13 One important requirement for geodynamic modelling is the ability to resolve incompressible flow problems
with large variations of viscosity.14 Discretisation schemes should handle large variations of coefficients while meeting the
Ladyzhenskaya–Babuška–Brezzi (LBB) stability conditions. Moreover, as model parameters are often uncertain 15,16 and
computations are expensive, preference is generally given to low-order schemes. This greatly reduces the choice of numer-
ical discretisations when designing geodynamic modelling tools.13,17 The aim of this contribution is to derive, implement
and test a novel discretisation scheme for solving incompressible Stokes with large and smooth viscosity variations.

In recent years a new class of discontinuous Galerkin (DG) methods, referred to as hybridisable DG methods,18 where
proposed by Cockburn and co-workers. The main objective was to maintain the attractive properties of DG methods
but reducing the overall computational cost associated to DG methods that is induced by the duplication of degrees of
freedom. Since this seminal paper, there have been substantial developments on hybridisable DG methods for Stokes
flows,19–24 including its application to interface problems,25,26 which are relevant in geophysics.27,11 In addition to the
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reduced number of degrees of freedom, when compared to other DG methods, the hybridisable DG method enables the
use of equal order of approximation for velocity and pressure and, under certain conditions, it is possible to devise a
postprocess that produces a super-convergent velocity field.28–30

The face-centred finite volume (FCFV) method, initially proposed in Reference 31, can be seen as a particular case of
the hybridisable DG method with constant degree of approximation for all the variables. The method has been applied
to a variety of problems, including Stokes flows.32–36 In this context, the method allows to build a first-order accurate
approximation of the velocity and the pressure fields as well as the gradient of the velocity, without the need of using a
reconstruction of the gradient. As a result, the method has shown that the accuracy is not sensitive to mesh distortion,
contrary to other finite volume techniques. Recently, the authors extended the original FCFV formulation for Stokes
problems to handle sharp material interfaces with viscosity contrasts of up to 12 orders of magnitude.37

This work presents a family of FCFV methods for the simulation of Stokes flows with spatially varying viscosity. Six
formulations are considered, differing on the choice of the mixed variable and the use of a weak or strong form in each
element by performing integration by parts. The six formulations are discussed and it is found that some of the formula-
tions lead to an identical global system of equations and the only difference between them is the local problem to compute
the mixed variable. In addition, the different choices of the mixed variable are found to lead to important implications
in terms of the solution of the global problem. Some formulations require the computation of integrals of the spatially
varying viscosity field over elements and over element faces (edges in two dimensions), whereas other formulations only
require computing integrals of the viscosity field over the elements. Furthermore, some formulations are found to lead to
a global system of equations that is not symmetric, whereas other formulations are able to maintain the symmetry of the
global system. The formulations are then tested numerically using problems in two and three dimensions with rapidly
varying viscosity fields. The examples also demonstrate the possibility to compute accurate solutions of problems involv-
ing viscosity fields that present steep gradients. The numerical studies presented include mesh convergence analysis and
a discussion about the influence of the numerical integration error, induced by the computation of integrals involving the
viscosity field, on the accuracy of the simulations.

The remainder of the paper is organised as follows. Section 2 briefly recalls the governing equations for a Stokes flow.
In Section 3 the weak formulation of four FCFV methods is presented and the discretisation is detailed in Section 4.
Section 5 discusses the differences between the formulations presented and two variations of the so-called non-scaled
FCFV methods are described. Numerical examples are presented in Section 6. The two-dimensional examples include
mesh convergence studies, a comparison of the accuracy of the formulations presented and a numerical study showing the
influence of the numerical integration error. The conclusions of these studies are used to select the one of the formulations
that is then applied to a three dimensional test case to show the optimal approximation properties of the method. Section 8
summarises the conclusions of the work that has been presented. Appendix A presents further numerical results using
quadrilateral elements and briefly compares the performance of triangular and quadrilateral elements. Finally, Appendix
B presents some further numerical results that illustrate that the selected stabilisation parameter for the HDG formulation
does not have a noticeable influence on the accuracy of the results.

2 GOVERNING EQUATIONS

Let us consider an open bounded domainΩ ∈ Rnsd , where nsd is the number of spatial dimensions. The boundary of the
domain, 𝜕Ω is partitioned into the disjoint Dirichlet and Neumann boundaries ΓD and ΓN respectively.

The strong form of the formulation of the Stokes equation can be written as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−𝛁 ⋅
(
2𝜈𝛁su − pInsd

)
= s in Ω,

𝛁 ⋅ u = 0 in Ω,
u = f on ΓD,

n
(
2𝜈𝛁su − pInsd

)
= g on ΓN ,

(1)

where u(x) is the velocity vector, p(x) is the pressure, 𝜈(x) is the viscosity function, s(x) is the volumetric source, f(x) the
imposed velocity on the Dirichlet boundary, g(x) the imposed traction in the Neumann boundary and n is the outward
unit normal vector to the boundary. This formulation is sometimes referred to as the Cauchy stress formulation of the
Stokes problem.38
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SEVILLA and DURETZ 3 of 30

It is worth noting that the so-called velocity-pressure formulation 38 is only equivalent to the Cauchy stress formulation
when the viscosity is piecewise-constant. Therefore, contrary to previous work by the authors in Reference 37, here only
the Cauchy stress formulation is considered.

3 FCFV WEAK FORMULATIONS

This section details six different FCFV weak forms for the Stokes problem. The formulations differ in the choice of the
mixed variable and the use of a weak or strong form in each element. To simplify the presentation and due to the similarity
between the different formulations, all the details are provided for the derivation of the first weak formulation whereas
the other formulations omit unnecessary details.

3.1 Gradient FCFV weak formulation

3.1.1 Mixed formulation

The domain is partitioned intonel disjoint subdomains and the strong form is written in the broken domain after splitting
the momentum equation in two first-order equations, leading to the mixed strong form

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Le + 𝛁ue = 0 in Ωe, and for e = 1, … ,nel,

𝛁 ⋅
(
𝜈(Le + LT

e ) + peInsd
)
= s in Ωe, and for e = 1, … ,nel,

𝛁 ⋅ ue = 0 in Ωe, and for e = 1, … ,nel,

ue = f on 𝜕Ωe ∩ ΓD,

n
(
𝜈(Le + LT

e ) + peInsd
)
= −g on 𝜕Ωe ∩ ΓN ,

⟦u ⊗ n⟧ = 0 on Γ,
⟦n

(
𝜈(L + LT) + pInsd

)
⟧ = 0 on Γ.

(2)

The last two equations are introduced to enforce the continuity of the velocity and the normal flux across Γ, where Γ
denotes the so-called mesh skeleton, that is, the set of internal faces (edges in two dimensions).

3.1.2 Local and global problems

Following the rationale of previous work on FCFV 31,32,34,33,35 and HDG,19,21,20,39 the problem is split into a set of nel local
problems with Dirichlet boundary conditions and a global problem to compute the hybrid velocity defined on the mesh
skeleton and the mean value of the pressure in each element.

In the local problems, for e = 1, … ,nel, the solution (Le,ue, pe) is written in terms of the unknown hybrid variable
û, namely

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Le + 𝛁ue = 0 in Ωe,

𝛁 ⋅
(
𝜈(Le + LT

e ) + peInsd
)
= s in Ωe,

𝛁 ⋅ ue = 0 in Ωe,

ue = f on 𝜕Ωe ∩ ΓD,

ue = û on 𝜕Ωe ⧵ ΓD.

(3)

As only Dirichlet boundary conditions are considered in the local problems, an extra condition is required to ensure that
the pressure is completely determined. In this work, the extra condition

1
|𝜕Ωe|

⟨pe, 1⟩𝜕Ωe = 𝜌e, (4)

is used, where 𝜌e denotes the mean pressure on the boundary of element Ωe and ⟨p, q⟩𝜕Ωe ∶= ∫𝜕Ωe
pq dΓ.
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4 of 30 SEVILLA and DURETZ

The global problem is introduced to compute the velocity on the mesh skeleton, û, and the mean value of the pressure
in each element, 𝜌e, namely

⎧
⎪
⎨
⎪
⎩

⟦u ⊗ n⟧ = 0 on Γ,
⟦n

(
𝜈(L + LT) + pInsd

)
⟧ = 0 on Γ,

n
(
𝜈(L + LT) + pInsd

)
= −g on ΓN .

(5)

It is worth noting that the first continuity condition in Equation (5) is satisfied automatically because the hybrid variable,
û, is unique on each face, and the Dirichlet boundary condition u = û is imposed in the local problems.

In addition, the free divergence condition in Equation (3) induces the compatibility condition

⟨n ⋅ û, 1⟩𝜕Ωe⧵ΓD + ⟨n ⋅ f, 1⟩𝜕Ωe∩ΓD = 0. (6)

3.1.3 Weak form of the local and global problems

The discrete weak formulation of the local problems reads: for e = 1, … nel, find (Lh
e ,uh

e , ph
e ) ∈ [h(Ωe)]nsd×nsd ×

[h(Ωe)]nsd × h(Ωe) such that

−(G,Lh
e )Ωe + (𝛁 ⋅ G,uh

e )Ωe = ⟨nG, f⟩𝜕Ωe∩ΓD + ⟨nG, ûh
⟩𝜕Ωe⧵ΓD , (7a)

(𝛁q,uh
e )Ωe = ⟨q,n ⋅ f⟩𝜕Ωe∩ΓD + ⟨q,n ⋅ ûh

⟩𝜕Ωe⧵ΓD , (7c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (7d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe). In the above expressions, h(Ωe) denote the space of constant
functions in each element and

(p, q)Ωe ∶= ∫Ωe

pq dΩ, (p,q)Ωe ∶= ∫Ωe

p ⋅ q dΩ, (P,Q)Ωe ∶= ∫Ωe

P ∶ Q dΩ (8)

denote the inner 2(Ωe) products for scalar, vector and tensor valued functions, respectively.
After integrating by parts Equation (7b) again the strong form in each element is recovered, and by introducing the

trace of the numerical normal flux

the weak form of the local problems is: for e = 1, … nel, find (Lh
e ,uh

e , ph
e ) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe) such

that

−(G,Lh
e )Ωe + (𝛁 ⋅ G,uh

e )Ωe = ⟨nG, f⟩𝜕Ωe∩ΓD + ⟨nG, ûh
⟩𝜕Ωe⧵ΓD , (10a)

(
w,𝛁 ⋅ (𝜈Lh

e + 𝜈[Lh
e ]T)

)
Ωe
+ ⟨w, 𝜏euh

e ⟩𝜕Ωe + (w,𝛁ph
e )Ωe = (w, s)Ωe + ⟨w, 𝜏ef⟩𝜕Ωe∩ΓD + ⟨w, 𝜏eûh

⟩𝜕Ωe⧵ΓD , (10b)

(𝛁q,uh
e )Ωe = ⟨q,n ⋅ f⟩𝜕Ωe∩ΓD + ⟨q,n ⋅ ûh

⟩𝜕Ωe⧵ΓD , (10c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (10d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe).
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SEVILLA and DURETZ 5 of 30

Similarly, the following global problem accounting for the transmission conditions and the Neumann boundary
condition, given in Equation (5) is: find ûh ∈ [̂h(Γ ∪ ΓN)]nsd and 𝜌 ∈ Rnel , such that

nel∑

e=1

{
⟨ŵ,n[𝜈Lh

e ]⟩𝜕Ωe⧵ΓD + ⟨ŵ,n[𝜈(Lh
e )T]⟩𝜕Ωe∩ΓI + ⟨ŵ, ph

e n⟩𝜕Ωe⧵ΓD + ⟨ŵ, 𝜏euh
e ⟩𝜕Ωe⧵ΓD − ⟨ŵ, 𝜏eûh

⟩𝜕Ωe⧵ΓD

}
= −

nel∑

e=1
⟨ŵ, g⟩𝜕Ωe∩ΓN ,

(11a)
⟨n ⋅ ûh

, 1⟩𝜕Ωe⧵ΓD = −⟨n ⋅ f, 1⟩𝜕Ωe∩ΓD for e = 1, … ,nel, (11b)

for all ŵ ∈ [̂h(Γ ∪ ΓN)]nsd . In the above expressions, ̂h(S) denote the space of constant functions in S ⊂ Γ ∪ 𝜕Ω and

⟨p̂, q̂⟩𝜕Ωe ∶=
∑

Γi⊂𝜕Ωe
∫Γi

p̂q̂ dΓ, ⟨p̂, q̂⟩𝜕Ωe ∶=
∑

Γi⊂𝜕Ωe
∫Γi

p̂ ⋅ q̂ dΓ (12)

denote the inner 2(Γi) products for scalar and vector valued functions respectively.
To simplify the notation in the next sections, the super-index h, denoting discrete approximations, is omitted.

3.2 Symmetric gradient FCFV weak formulation

3.2.1 Mixed formulation

The process to obtain the weak form of the symmetric gradient formulation is analogous to the one described above for
the gradient FCFV formulation. First, the mixed form is written in the broken domain as

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Le +
(
𝛁ue + 𝛁uT

e
)
= 0 in Ωe, and for e = 1, … ,nel,

𝛁 ⋅
(
𝜈Le + peInsd

)
= s in Ωe, and for e = 1, … ,nel,

𝛁 ⋅ ue = 0 in Ωe, and for e = 1, … ,nel,

ue = f on 𝜕Ωe ∩ ΓD,

n
(
𝜈Le + peInsd

)
= −g on 𝜕Ωe ∩ ΓN ,

⟦u ⊗ n⟧ = 0 on Γ,

⟦n
(
𝜈L + pInsd

)
⟧ = 0 on Γ.

(13)

3.2.2 Weak form of the local and global problems

Without detailing all the intermediate steps, the resulting weak form of the local problems is: for e = 1, … nel, find
(Lh

e ,uh
e , ph

e ) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe) such that

−(G,Lh
e )Ωe + (𝛁 ⋅ [G + GT],uh

e )Ωe = ⟨n[G + GT], f⟩𝜕Ωe∩ΓD + ⟨n[G + GT], ûh
⟩𝜕Ωe⧵ΓD , (14a)

(w,𝛁 ⋅ [𝜈Lh
e ])Ωe + ⟨w, 𝜏euh

e ⟩𝜕Ωe + (w,𝛁ph
e )Ωe = (w, s)Ωe + ⟨w, 𝜏ef⟩𝜕Ωe∩ΓD + ⟨w, 𝜏eûh

⟩𝜕Ωe⧵ΓD , (14b)

(𝛁q,uh
e )Ωe = ⟨q, f ⋅ n⟩𝜕Ωe∩ΓD + ⟨q, ûh ⋅ n⟩𝜕Ωe⧵ΓD , (14c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (14d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe).
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6 of 30 SEVILLA and DURETZ

Similarly, the following global problem accounting for the transmission conditions and the Neumann boundary
condition is: find ûh ∈ [̂h(Γ ∪ ΓN)]nsd and 𝜌 ∈ Rnel such that

nel∑

e=1

{
⟨ŵ,n[𝜈Lh

e ]⟩𝜕Ωe⧵ΓD + ⟨ŵ, ph
e n⟩𝜕Ωe⧵ΓD + ⟨ŵ, 𝜏euh

e ⟩𝜕Ωe⧵ΓD − ⟨ŵ, 𝜏eûh
⟩𝜕Ωe⧵ΓD

}
= −

nel∑

e=1
⟨ŵ, g⟩𝜕Ωe∩ΓN , (15a)

⟨ûh ⋅ n, 1⟩𝜕Ωe⧵ΓD = −⟨f ⋅ n, 1⟩𝜕Ωe∩ΓD for e = 1, … ,nel, (15b)

for all ŵ ∈ [̂h(Γ ∪ ΓN)]nsd .

3.3 Scaled gradient FCFV weak formulation

3.3.1 Mixed formulation

An alternative formulation involves selecting the mixed variable so that the viscosity function does not feature in the
momentum equation. The strong form in the partitioned domain is

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Le + 𝜈𝛁ue = 0 in Ωe, and for e = 1, … ,nel,

𝛁 ⋅
(

Le + LT
e + peInsd

)
= s in Ωe, and for e = 1, … ,nel,

𝛁 ⋅ ue = 0 in Ωe, and for e = 1, … ,nel,

ue = f on 𝜕Ωe ∩ ΓD,

n
(

Le + LT
e + peInsd

)
= −g on 𝜕Ωe ∩ ΓN ,

⟦u ⊗ n⟧ = 0 on Γ,
⟦n

(
L + LT + pInsd

)
⟧ = 0 on Γ.

(16)

It is worth noting that this formulation leads to an identical discrete system when the viscosity is constant, but this is not
the case when the viscosity is a spatially varying function, which is the case of interest in this work.

3.3.2 Weak form of the local and global problems

Without detailing all the intermediate steps, the resulting weak form of the local problems is: for e = 1, … nel, find
(Lh

e ,uh
e , ph

e ) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe) such that

−(G, 𝜈−1Lh
e )Ωe + (𝛁 ⋅ G,uh

e )Ωe = ⟨nG, f⟩𝜕Ωe∩ΓD + ⟨nG, ûh
⟩𝜕Ωe⧵ΓD , (17a)

(
w,𝛁 ⋅ (Lh

e + [Lh
e ]T)

)
Ωe
+ ⟨w, 𝜏euh

e ⟩𝜕Ωe + (w,𝛁ph
e )Ωe = (w, s)Ωe + ⟨w, 𝜏ef⟩𝜕Ωe∩ΓD + ⟨w, 𝜏eûh

⟩𝜕Ωe⧵ΓD , (17b)

(𝛁q,uh
e )Ωe = ⟨q,n ⋅ f⟩𝜕Ωe∩ΓD + ⟨q,n ⋅ ûh

⟩𝜕Ωe⧵ΓD , (17c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (17d)

Similarly, the following global problem accounting for the transmission conditions and the Neumann boundary
condition is: find ûh ∈ [̂h(Γ ∪ ΓN)]nsd and 𝜌 ∈ Rnel such that

nel∑

e=1

{
⟨ŵ,nLh

e ⟩𝜕Ωe⧵ΓD + ⟨ŵ,n[Lh
e ]T⟩𝜕Ωe∩ΓI + ⟨ŵ, ph

e n⟩𝜕Ωe⧵ΓD + ⟨ŵ, 𝜏euh
e ⟩𝜕Ωe⧵ΓD − ⟨ŵ, 𝜏eûh

⟩𝜕Ωe⧵ΓD

}
= −

nel∑

e=1
⟨ŵ, g⟩𝜕Ωe∩ΓN ,

(18a)
⟨n ⋅ ûh

, 1⟩𝜕Ωe⧵ΓD = −⟨n ⋅ f, 1⟩𝜕Ωe∩ΓD for e = 1, … ,nel, (18b)
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SEVILLA and DURETZ 7 of 30

3.4 Scaled symmetric gradient FCFV weak formulation

3.4.1 Mixed formulation

The last formulation considered involves selecting the mixed variable so that the viscosity function does not feature in
the momentum equation. The strong form in the partitioned domain is

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Le + 𝜈
(
𝛁ue + 𝛁uT

e
)
= 0 in Ωe, and for e = 1, … ,nel,

𝛁 ⋅
(

Le + peInsd
)
= s in Ωe, and for e = 1, … ,nel,

𝛁 ⋅ ue = 0 in Ωe, and for e = 1, … ,nel,

ue = f on 𝜕Ωe ∩ ΓD,

n
(

Le + peInsd
)
= −g on 𝜕Ωe ∩ ΓN ,

⟦u ⊗ n⟧ = 0 on Γ,
⟦n

(
L + pInsd

)
⟧ = 0 on Γ.

(19)

It is worth noting that the mixed variable, Le, is directly proportional to the deviatoric stress tensor, 𝜈
(
𝛁ue + 𝛁uT

e
)
.

Therefore it has an obvious physical meaning.

3.4.2 Weak form of the local and global problems

The resulting weak form of the local problems is: for e = 1, … nel, find (Lh
e ,uh

e , ph
e ) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd ×

h(Ωe) such that

−(G, 𝜈−1Lh
e )Ωe + (𝛁 ⋅ [G + GT],uh

e )Ωe = ⟨n[G + GT], f⟩𝜕Ωe∩ΓD + ⟨n[G + GT], ûh
⟩𝜕Ωe⧵ΓD , (20a)

(w,𝛁 ⋅ Lh
e )Ωe + ⟨w, 𝜏euh

e ⟩𝜕Ωe + (w,𝛁ph
e )Ωe = (w, s)Ωe + ⟨w, 𝜏ef⟩𝜕Ωe∩ΓD + ⟨w, 𝜏eûh

⟩𝜕Ωe⧵ΓD , (20b)

(𝛁q,uh
e )Ωe = ⟨q, f ⋅ n⟩𝜕Ωe∩ΓD + ⟨q, ûh ⋅ n⟩𝜕Ωe⧵ΓD , (20c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (20d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe).
Similarly, the global problem is: find ûh ∈ [̂h(Γ ∪ ΓN)]nsd and 𝜌 ∈ Rnel such that

nel∑

e=1

{
⟨ŵ,nLh

e ⟩𝜕Ωe⧵ΓD + ⟨ŵ, ph
e n⟩𝜕Ωe⧵ΓD + ⟨ŵ, 𝜏euh

e ⟩𝜕Ωe⧵ΓD − ⟨ŵ, 𝜏eûh
⟩𝜕Ωe⧵ΓD

}
= −

nel∑

e=1
⟨ŵ, g⟩𝜕Ωe∩ΓN , (21a)

⟨ûh ⋅ n, 1⟩𝜕Ωe⧵ΓD = −⟨f ⋅ n, 1⟩𝜕Ωe∩ΓD for e = 1, … ,nel, (21b)

for all ŵ ∈ [̂h(Γ ∪ ΓN)]nsd .

4 FCFV DISCRETISATION

To simplify the presentation, let us introduce the following notation for different sets of faces:e ∶= {1, … ,ne
fa} is the

set of indices for all the faces of elementΩe;e ∶= {j ∈ e | Γe,j ∩ ΓD ≠ ∅} is the set of indices for all the faces of element
Ωe on the Dirichlet boundary ΓD; e ∶= {j ∈ e | Γe,j ∩ ΓN ≠ ∅} is the set of indices for all the faces of element Ωe on
the Neumann boundary ΓN ; e ∶= e ⧵e = {j ∈ e | Γe,j ∩ ΓD = ∅} is the set of indices for all the faces of element Ωe
not on the Dirichlet boundary ΓD; e ∶= {j ∈ e | Γe,j ∩ ΓI ≠ ∅} is the set of indices for all the faces of element Ωe on the
interface ΓI .
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8 of 30 SEVILLA and DURETZ

4.1 Gradient formulation

Assuming a constant degree of approximation for all the variables in Equation (10a–d), that is for Le, ue and pe in each
element and for û on each face (edge in two dimensions), the discrete local problems are

− |Ωe|Le =
∑

j∈e

|Γe,j|nj ⊗ fj +
∑

j∈e

|Γe,j|nj ⊗ ûj, (22a)

𝜸e(Le + LT
e ) +

∑

j∈e

|Γe,j|𝜏eue = |Ωe|se +
∑

j∈e

|Γe,j|𝜏efj +
∑

j∈e

|Γe,j|𝜏eûj, (22b)

0 =
∑

j∈e

|Γe,j|nj ⋅ fj +
∑

j∈e

|Γe,j|nj ⋅ ûj, (22c)

pe = 𝜌e, (22d)

for e = 1, … ,nel, where

𝜸e = ∫Ωe

𝛁𝜈dΩ. (23)

It is worth noting that Equation (22c) becomes redundant when using a constant approximation. First, it does
not contain any of the unknowns of the local problem and, second, it coincides with the discrete version of
Equation (11b).

The local problem leads to three uncoupled equations that express Le, ue and pe as functions of the global unknowns,
û and 𝜌e, namely

Le = −|Ωe|
−1Ze − |Ωe|

−1
∑

j∈e

|Γe,j|nj ⊗ ûj, (24a)

ue = 𝛼−1
e 𝜷e + 𝛼−1

e
∑

j∈e

|Γe,j|
(
𝜏eInsd + |Ωe|

−1(𝜸e ⋅ nj)Insd + |Ωe|
−1nj ⊗ 𝜸e

)
ûj, (24b)

pe = 𝜌e, (24c)

where the following auxiliary quantities can be precomputed as they only depend on the data, the stabilisation parameter
and the mesh

𝛼e ∶=
∑

j∈e

|Γe,j|𝜏e, (25a)

𝜷e ∶= |Ωe|se +
∑

j∈e

|Γe,j|𝜏efj + |Ωe|
−1
𝜸e(Ze + ZT

e ), (25b)

Ze ∶=
∑

j∈e

|Γe,j|nj ⊗ fj. (25c)

Similarly, the global problem of Equation (11a,b) becomes

nel∑

e=1

{
ni𝛾i(Le + LT

e ) + |Γe,i|peni + |Γe,i|𝜏eue − |Γe,i|𝜏eûi

}
= −

nel∑

e=1
|Γe,i|gi𝜒e

(i) for i ∈ e, (26a)

∑

j∈e

|Γe,j|nj ⋅ ûj = −
∑

j∈e

|Γe,j|nj ⋅ fj for e = 1, … ,nel, (26b)

where

𝛾i = ∫Γe,i

𝜈dΓ (27)
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SEVILLA and DURETZ 9 of 30

and 𝜒e
is the indicator function of the sete, that is,

𝜒e
(i) =

{
1 if i ∈e

0 otherwise
. (28)

By inserting the expressions of Equations (24a–c) into (26a,b), the global problem, only in terms of the global
unknowns û and 𝜌, is obtained, namely

[
K̂ûû K̂û𝜌

K̂
T
û𝜌 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

. (29)

The vector û contains the value of the hybrid variable on Γ ∪ ΓN and the vector 𝝆 contains the values of the mean pressure
on each element Ωe. The blocks composing the matrix and vector of the global linear system are obtained by assembling
the elemental contributions given by

(K̂ûû)ei,j ∶= |Γe,i|𝛼
−1
e 𝜏e|Γe,j|

(
𝜏eInsd + |Ωe|

−1(𝜸e ⋅ nj)Insd + |Ωe|
−1nj ⊗ 𝜸e

)

− 𝛾i|Ωe|
−1|Γe,j|

[
(ni ⋅ nj)Insd + nj ⊗ ni

]
− |Γe,i|𝜏e𝛿ijInsd , (30a)

(K̂û𝜌)ei ∶= |Γe,i|ni, (30b)

(f̂û)ei ∶= −|Γe,i|𝛼
−1
e 𝜏e𝜷e + 𝛾i|Ωe|

−1ni(Ze + ZT
e ) − |Γe,i|gi𝜒e

(i), (30c)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj, (30d)

for i, j ∈ e.
It is worth emphasising that for a pure Dirichlet problem, an extra condition must be imposed in order to remove

the indeterminacy of the pressure. Following References 21,20, the usual strategy of imposing mean zero pressure on the
whole domain, that is,

nel∑

e=1
|Ωe|𝜌e = 0. (31)

is considered here.

4.2 Symmetric gradient formulation

Following the same procedure described above, the local problem of the symmetric gradient formulation leads to three
uncoupled equations that express Le, ue and pe as functions of the global unknowns û and 𝜌e, namely

Le = −|Ωe|
−1Ze − |Ωe|

−1
∑

j∈e

|Γe,j|(nj ⊗ ûj + ûj ⊗ nj), (32a)

ue = 𝛼−1
e 𝜷e + 𝛼−1

e
∑

j∈e

|Γe,j|
(
𝜏eInsd + |Ωe|

−1(𝜸e ⋅ nj)Insd + |Ωe|
−1nj ⊗ 𝜸e

)
ûj, (32b)

pe = 𝜌e, (32c)

where the following auxiliary quantities are precomputed

𝛼e ∶=
∑

j∈e

|Γe,j|𝜏e, (33a)

𝜷e ∶= |Ωe|se +
∑

j∈e

|Γe,j|𝜏efj + |Ωe|
−1
𝜸eZe, (33b)

Ze ∶=
∑

j∈e

|Γe,j|(nj ⊗ fj + fj ⊗ nj). (33c)
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10 of 30 SEVILLA and DURETZ

Similarly, the global problem of Equation (15a,b) becomes
nel∑

e=1

{
ni𝛾iLe + |Γe,i|peni + |Γe,i|𝜏eue − |Γe,i|𝜏eûi

}
= −

nel∑

e=1
|Γe,i|gi𝜒e

(i) for i ∈ e, (34a)

∑

j∈e

|Γe,j|nj ⋅ ûj = −
∑

j∈e

|Γe,j|nj ⋅ fj for e = 1, … ,nel. (34b)

By inserting the expressions of Equations (32a–c) into (34a,b), the global problem is obtained, namely
[

K̂ûû K̂û𝜌

K̂
T
û𝜌 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

. (35)

The blocks composing the matrix and vector of the global linear system are obtained by assembling the elemental
contributions

(K̂ûû)ei,j ∶= |Γe,i|𝛼
−1
e 𝜏e|Γe,j|

[
𝜏eInsd + |Ωe|

−1(𝜸e ⋅ nj)Insd + |Ωe|
−1nj ⊗ 𝜸e

]

− 𝛾i|Ωe|
−1|Γe,j|

[
(ni ⋅ nj)Insd + nj ⊗ ni

]
− |Γe,i|𝜏e𝛿ijInsd (36a)

(K̂û𝜌)ei ∶= |Γe,i|ni (36b)

(f̂û)ei ∶= −|Γe,i|𝛼
−1
e 𝜏e𝜷e + 𝛾i|Ωe|

−1niZe − |Γe,i|gi𝜒e
(i), (36c)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj. (36d)

4.3 Scaled gradient formulation

Following the same procedure described in the previous section, the local problem leads to three uncoupled equations
that express Le, ue and pe as functions of the global unknowns, û and 𝜌e, namely

Le = −𝜆eZe − 𝜆e
∑

j∈e

|Γe,j|nj ⊗ ûj, (37a)

ue = 𝛼−1
e 𝜷e + 𝛼−1

e
∑

j∈e

|Γe,j|𝜏eûj, (37b)

pe = 𝜌e, (37c)

where

𝜆e =
(

∫Ωe

𝜈
−1dΩ

)−1

(38)

and

𝛼e ∶=
∑

j∈e

|Γe,j|𝜏e, (39a)

𝜷e ∶= |Ωe|se +
∑

j∈e

|Γe,j|𝜏efj, (39b)

Ze ∶=
∑

j∈e

|Γe,j|nj ⊗ fj. (39c)

The global problem of Equation (18a,b) becomes
nel∑

e=1

{
|Γe,i|ni(Le + LT

e ) + |Γe,i|peni + |Γe,i|𝜏eue − |Γe,i|𝜏eûi
}
= −

nel∑

e=1
|Γe,i|gi𝜒e

(i) for i ∈ e, (40a)

∑

j∈e

|Γe,j|nj ⋅ ûj = −
∑

j∈e

|Γe,j|nj ⋅ fj for e = 1, … ,nel. (40b)
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SEVILLA and DURETZ 11 of 30

Inserting the expressions of Equations (37a–c) into (40a,b), the global problem, only in terms of the global unknowns,
û and 𝜌, is obtained, namely

[
K̂ûû K̂û𝜌

K̂
T
û𝜌 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

. (41)

The blocks composing the matrix and vector of the global linear system are obtained by assembling the elemental
contributions given by

(K̂ûû)ei,j ∶= |Γe,i|
{
𝛼
−1
e 𝜏e𝜏e |Γe,j|Insd − 𝜆e|Γe,j|

[
(ni ⋅ nj)Insd + nj ⊗ ni

]
− 𝜏e𝛿ijInsd

}
, (42a)

(K̂û𝜌)ei ∶= |Γe,i|ni, (42b)

(f̂û)ei ∶= |Γe,i|
{
−𝛼−1

e 𝜏e𝜷e + 𝜆eni(Ze + ZT
e ) − gi𝜒e

(i)
}
, (42c)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj, (42d)

for i, j ∈ e.

4.4 Scaled symmetric gradient formulation

Following the same procedure described above, the local problem of the symmetric gradient formulation leads to three
uncoupled equations that express Le, ue and pe as functions of the global unknowns, û and 𝜌e, namely

Le = −𝜆eZe − 𝜆e
∑

j∈e

|Γe,j|(nj ⊗ ûj + ûj ⊗ nj), (43a)

ue = 𝛼−1
e 𝜷e + 𝛼−1

e
∑

j∈e

|Γe,j|𝜏eûj, (43b)

pe = 𝜌e, (43c)

where

𝛼e ∶=
∑

j∈e

|Γe,j|𝜏e, (44a)

𝜷e ∶= |Ωe|se +
∑

j∈e

|Γe,j|𝜏efj, (44b)

Ze ∶=
∑

j∈e

|Γe,j|(nj ⊗ fj + fj ⊗ nj). (44c)

Similarly, the global problem of Equation (21a,b) becomes

nel∑

e=1

{
|Γe,i|niLe + |Γe,i|peni + |Γe,i|𝜏eue − |Γe,i|𝜏eûi

}
= −

nel∑

e=1
|Γe,i|gi𝜒e

(i) for i ∈ e, (45a)

∑

j∈e

|Γe,j|nj ⋅ ûj = −
∑

j∈e

|Γe,j|nj ⋅ fj for e = 1, … ,nel. (45b)

By inserting the expressions of Equations (43a–c) into (45a,b), the global problem, only in terms of the global
unknowns, û and 𝜌, is obtained, namely

[
K̂ûû K̂û𝜌

K̂
T
û𝜌 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

, (46)
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12 of 30 SEVILLA and DURETZ

where the vector û contains the value of the hybrid variable on Γ ∪ ΓN and the vector 𝝆 contains the values of the mean
pressure on each element Ωe. The blocks composing the matrix and vector of the global linear system are obtained by
assembling the elemental contributions given by

(K̂ûû)ei,j ∶= |Γe,i|
{
𝛼
−1
e 𝜏e𝜏e|Γe,j|Insd − 𝜆e|Γe,j|

[
(ni ⋅ nj)Insd + nj ⊗ ni

]
− 𝜏e𝛿ijInsd

}
(47a)

(K̂û𝜌)ei ∶= |Γe,i|ni (47b)

(f̂û)ei ∶= |Γe,i|
{
−𝛼−1

e 𝜏e𝜷e + 𝜆e|Ωe|
−1niZe − gi𝜒e

(i)
}
, (47c)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj. (47d)

5 CRITICAL DISCUSSION

Two variations of the non-scaled gradient and symmetric gradient FCFV formulations are also considered. They are
derived by performing only one integration by parts of the term containing the mixed variable L in Equations (7b) and
(14b), respectively. This variation leads to the same discrete FCFV formulation but with a different definition of the
coefficient 𝜸e, namely

𝜸̂e = ∫
𝜕Ωe

𝜈ndΓ. (48)

This variation is not applicable to the scaled formulations because the viscosity does not appear in the momentum
equation, but in the equation associated to the mixed variable.

The resulting global system of the gradient FCFV formulation, given by Equation (30a–d), is identical to the one
derived for the symmetric gradient FCFV formulation, given by Equation (36a–d). Therefore, the only difference between
the two formulations is the local problem associated to the mixed variable. Analogously, the global system of the scaled
gradient FCFV formulation, given by Equation (42a–d), is identical to the one derived for the scaled symmetric gradient
FCFV formulation, given by Equation (47a–d).

The global system of equations associated to the non-scaled FCFV formulations is not symmetric. The term 𝛾i,
involving the integration of the viscosity field on the element faces, breaks the symmetry of the block K̂ûû defined in
Equations (30a) and (36a). In contrast the global system of the scaled FCFV formulations maintains the symmetry even
with a variable viscosity coefficient.

It is worth noting that the original FCFV formulation, presented in Reference 31, for Stokes flow problems with
constant viscosity is recovered from the non-scaled gradient formulation of Section 3.1. When considering a constant
approximation for the mixed variable, the first term of Equation (10b) vanishes, leading to the original FCFV formula-
tion. Results, not reported here for brevity, show that the original formulation does not lead to satisfactory results when
applied to problems with variable viscosity. The coupling of the velocity and the gradient of the velocity provided by the
first term of Equation (10b) is crucial to obtain a formulation suitable for problems with variable viscosity.

In the context of problems with constant viscosity, there is no difference between using a scaled or non-scaled
FCFV formulation. However, for problems with variable viscosity, the resulting formulations are different. Not only
the scaled formulation leads to a symmetric system, but it also seems, a priori, more efficient. The scaled formulations
only require the approximation of element integrals involving the viscosity field, whereas the non-scaled formulations
require both the approximation of element and face integrals involving the viscosity. As it will be shown using numer-
ical examples, a good approximation of these integrals is crucial to obtain the optimal approximation properties of the
FCFV methods.

6 NUMERICAL EXAMPLES

Three numerical examples in two and three dimensions are considered to test the optimal approximation properties of
the different FCFV formulations presented in this work. The accuracy and rate of convergence under mesh refinement
are compared for the primal, mixed and hybrid variables.
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SEVILLA and DURETZ 13 of 30

The two-dimensional examples are also used to illustrate the need of using high order numerical quadratures when
the viscosity present steep and localised gradients, whereas for other cases it shows that some of the FCFV formulations
can lead to optimal results without the need of high order quadratures.

In all the numerical examples, the stabilisation parameter, 𝜏e, is selected as

𝜏e =
𝜅

𝓁
max{𝜈(xe), 1}, (49)

where xe denotes the centroid of the elementΩe, the parameter 𝜅 is taken as 10 unless otherwise stated and 𝓁 is a charac-
teristic length, taken as 1 in the problems considered. Numerical experiments are included to demonstrate the suitability
of this choice for a variety of problems.

It is worth noting that the stabilisation is limited using the maximum between 𝜈(xe) and one to ensure that for problems
where the viscosity is nearly zero, enough stabilisation is introduced.

The accuracy of the numerical solution is assessed by measuring the relative error of the velocity, pressure, gradient
tensor in the 2(Ω) norm and the hybrid velocity in the 2(Γ) norm, namely

𝜖u =
||u − u⋆||2(Ω)

||u⋆||2(Ω)
, 𝜖p =

||p − p⋆||2(Ω)

||p⋆||2(Ω)
, 𝜖L =

||L − L⋆||2(Ω)

||L⋆||2(Ω)
, 𝜖û =

||û − u⋆||2(Γ)

||u⋆||2(Γ)
, (50)

where the superscript⋆ denotes the analytical solution and the2(Ω) norm for scalar, vector and tensor valued functions
is the norm induced by the scalar products in Equation (8).

To compute the domain integrals that are involved in the evaluation of 𝜖u, 𝜖p and 𝜖L, a high order quadrature in
each triangle is employed. Similarly, to compute the integrals on the mesh skeleton that are involved in the evaluation
of 𝜖û, a high order quadrature is used. This is done to ensure that the variation of the analytical solutions is properly
captured.

A formal a priori error analysis of the methods proposed in this work can be performed by using the projection pro-
posed in Reference 40. For the stabilisation selected here, independent on the element size and satisfying the properties
stated in Reference 40, the main result of this work applies, meaning that the error for all the variables is expected to be
(h). It is worth noting that following the analysis of Reference 40 for the methods in this work requires that the error
introduced by the numerical integration of the variable viscosity is bounded by the spatial discretisation error.

6.1 The SolKz test: Exponential variation of the viscosity field

The first example considers the domain Ω = [0, 1]2 and the viscosity given by

𝜈(x) = exp(2Bx2), (51)

where the parameter B is used to control the viscosity variation. In this example, B is taken equal to 6.9, as in Reference
41, to produce a variation of the viscosity in the domain of six orders of magnitude. The flow is driven by a source
term s(x) = 𝜌(x)g, with 𝜌(x) = cos(3𝜋x1) sin(2x2) and g = (0,−1)T . Dirichlet boundary conditions, corresponding to the
analytical solution, derived in Reference 42, are imposed in whole boundary of Ω.

Five triangular meshes are considered to perform the convergence studies. The meshes are generated by splitting into
four triangles structured grids of quadrilateral elements. The number of elements in the five meshes is 256, 1024, 4096,
16,384 and 65,536 respectively. The first three meshes are shown in Figure 1.

The numerical solution computed with the scaled symmetric gradient FCFV formulation is shown in Figures 2 and 3
for the first and last mesh, respectively. The results illustrate the increase in resolution of the velocity field features near
the bottom boundary as the mesh is refined.

The error and rate of convergence of the error of the hybrid variable û, the primal variable u, the pressure p and the
mixed variable L is shown in Table 1 for the different FCFV formulations proposed in Section 4.

When employing the non-scaled FCFV formulations, the elemental integrals involving the viscosity are evaluated
using a quadrature with a single integration point, namely 𝜸e ≈ |Ωe|𝛁𝜈(xe), where xe is the centroid of the element. Simi-
larly, the boundary integrals involving the viscosity are evaluated using a single integration point, namely 𝛾i ≈ |Γe,i|𝜈(xe,i),

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7450 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 30 SEVILLA and DURETZ

(A) (B) (C)

F I G U R E 1 First three triangular meshes used for the two dimensional examples. (A) Mesh 1. (B) Mesh 2. (C) Mesh 3.

(A) (B) (C) (D)

F I G U R E 2 SolKz: Numerical solution on the first mesh using the scaled symmetric gradient FCFV formulation. (A) u1. (B) u2. (C)
||u||. (D) p.

(A) (B) (C) (D)

F I G U R E 3 SolKz: Numerical solution on the fifth mesh using the scaled symmetric gradient FCFV formulation. (A) u1. (B) u2. (C)
||u||. (D) p.

where xe,i is the centroid of the element edge. Analogously, when the scaled FCFV formulations are employed, the integral
involving the viscosity is evaluated using a single integration point, namely 𝜆e ≈ |Ωe|𝜈−1(xe).

The results clearly show that the four non-scaled formulations do not provide convergence of any variable as
the mesh is refined. In contrast, the scaled formulations provide optimal, (h), convergence on the hybrid velocity,
the velocity and the pressure. If the symmetric gradient is considered as mixed variable, optimal convergence is also
observed in the mixed variable, whereas suboptimal convergence is observed when the mixed variable is the velocity
gradient.
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SEVILLA and DURETZ 15 of 30

T A B L E 1 SolKz: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for the different FCFV
formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 2.0273 — 2.1762 — 0.5352 — 0.7435 — 0.7572 —

2 2.5035 −0.3 2.5600 −0.2 0.4977 0.1 0.7766 −0.1 0.7700 0.0

3 2.8912 −0.2 2.9158 −0.2 0.4788 0.1 0.8115 −0.1 0.7953 0.0

4 3.1403 −0.1 3.1519 −0.1 0.4698 0.0 0.8387 0.0 0.8190 0.0

5 3.2823 −0.1 3.2880 −0.1 0.4657 0.0 0.8560 0.0 0.8349 0.0

Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe
𝜈ndΓ

1 2.0055 — 2.1539 — 0.5339 — 0.7432 — 0.7566 —

2 2.4957 −0.3 2.5521 −0.2 0.4972 0.1 0.7761 −0.1 0.7696 0.0

3 2.8888 −0.2 2.9133 −0.2 0.4786 0.1 0.8114 −0.1 0.7951 0.0

4 3.1396 −0.1 3.1512 −0.1 0.4697 0.0 0.8387 0.0 0.8189 0.0

5 3.2821 −0.1 3.2878 −0.1 0.4657 0.0 0.8560 0.0 0.8349 0.0

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.1891 — 0.4037 — 0.2102 — 0.3038 — 0.1881 —

2 0.0928 1.0 0.1948 1.1 0.1084 1.0 0.2607 0.2 0.0963 1.0

3 0.0464 1.0 0.0955 1.0 0.0548 1.0 0.2528 0.0 0.0486 1.0

4 0.0233 1.0 0.0473 1.0 0.0275 1.0 0.2532 0.0 0.0244 1.0

5 0.0117 1.0 0.0235 1.0 0.0138 1.0 0.2545 0.0 0.0122 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with one integration point.

Next, the same convergence study is repeated, but high order numerical quadratures are used to compute the
integrals involving the viscosity. The results, shown in Table 2, demonstrate the importance of using an accurate numerical
integration of the viscosity in the non-scaled formulations. The four non-scaled formulations show optimal convergence
of the hybrid velocity, the velocity and the pressure. Similar to the scaled formulation, only when the symmetric gradi-
ent is considered as the mixed variable, optimal convergence in all variables is achieved. It is also worth noting that the
scaled formulation does not benefit from using a higher order numerical quadrature as the results are almost identical to
the ones shown in Table 1.

This example shows important benefits of using the scaled formulation, in particular the scaled symmetric gradient
formulation. This is the only approach that provides optimal convergence with the lowest order numerical quadrature.
In addition, this formulation only requires elemental integrals of the inverse of the viscosity field, rather than integrals
over faces or elemental integrals of the gradient of the viscosity. Finally, with a lower computational cost it, the scaled
formulations provide a slightly more accurate results on the pressure field and the same accuracy on the rest of variables,
when compared to the non-scaled formulations.

To further investigate the origin of the differences between the formulations considered, the numerical integration
error is studied. The non-scaled formulation using the strong form in each element requires the computation of two
integrals involving the viscosity, namely 𝜸e, given by Equation (23), and 𝛾i, given by Equation (27). The non-scaled for-
mulation with one integration by parts also requires two integrals, but both on the element boundaries, namely 𝜸̂e, given
by Equation (48), and 𝛾i. Finally, the scaled formulations only require the computation of one integral on the elements,
namely 𝜆e given by Equation (38).

The numerical integration error as a function of the characteristic element size is represented in Figure 4 for quadra-
tures of order one and two. The error is defined as the maximum relative difference, for all the elements, between the
exact value of the integral and the approximation using a numerical quadrature. The results, show as expected an iden-
tical error for the computation of the element integrals 𝜸e and 𝜆e. This is due to the analytical expression of the viscosity
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16 of 30 SEVILLA and DURETZ

T A B L E 2 SolKz: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for the different
FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 0.1983 — 0.4564 — 0.3277 — 0.4225 — 0.3372 —

2 0.0951 1.1 0.2247 1.0 0.1666 1.0 0.2539 0.7 0.1806 0.9

3 0.0470 1.0 0.1112 1.0 0.0842 1.0 0.1846 0.5 0.0932 1.0

4 0.0234 1.0 0.0553 1.0 0.0424 1.0 0.1591 0.2 0.0472 1.0

5 0.0117 1.0 0.0276 1.0 0.0213 1.0 0.1504 0.1 0.0237 1.0

Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe
𝜈ndΓ

1 0.1983 — 0.4564 — 0.3278 — 0.4226 — 0.3372 —

2 0.0951 1.1 0.2247 1.0 0.1666 1.0 0.2539 0.7 0.1806 0.9

3 0.0470 1.0 0.1112 1.0 0.0842 1.0 0.1846 0.5 0.0932 1.0

4 0.0234 1.0 0.0553 1.0 0.0424 1.0 0.1591 0.2 0.0472 1.0

5 0.0117 1.0 0.0276 1.0 0.0213 1.0 0.1504 0.1 0.0237 1.0

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.1893 — 0.4009 — 0.2118 — 0.3061 — 0.1917 —

2 0.0928 1.0 0.1943 1.0 0.1086 1.0 0.2612 0.2 0.0971 1.0

3 0.0464 1.0 0.0954 1.0 0.0548 1.0 0.2529 0.0 0.0488 1.0

4 0.0233 1.0 0.0472 1.0 0.0275 1.0 0.2532 0.0 0.0245 1.0

5 0.0117 1.0 0.0235 1.0 0.0138 1.0 0.2545 0.0 0.0122 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with three integration
point in each element and two integration points on each edge, respectively.

(A) (B)

F I G U R E 4 SolKz: Numerical integration error, for quadratures of order 1 and 2, as a function of the characteristic element size for the
four integrals involving the viscosity. (A) Order 1. (B) Order 2.

being an exponential function. The numerical integration error for the integrals of the viscosity over the edges, 𝜸̂e and 𝛾i,
is similar to the error of the element integrals when a quadrature of order one is used, and much lower when a quadrature
of order two is employed.

Further numerical experiments with the non-scaled FCFV formulations were performed, where a quadrature of order
two is used for approximating 𝛾i and a quadrature of order one is used for the approximation of 𝜸e or 𝜸̂e. The results, not
reported here for brevity show that the non-scaled formulations did not exhibit the optimal rate of convergence under
mesh refinement, indicating that the factor preventing the non-optimal convergence is the inaccuracy in the computation
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SEVILLA and DURETZ 17 of 30

of 𝜸e or 𝜸̂e. For the non-scaled gradient formulation this might be surprising as with an accurate computation of 𝛾i the
dominant numerical integration error, when approximating 𝜸e, is identical to the numerical integration error of the scaled
formulations, when approximating 𝜆e. However, there is an important difference between the two formulations that can
be observed in the entries of the matrix K̂ûû of the global system. The matrix of the non-scaled formulations, given in
Equation (30a), features the term 𝜸e multiplied by the stabilisation parameter 𝜏e. In contrast, the matrix of the scaled
formulation, given in Equation (42a), does not contain the term 𝜆e multiplied by the stabilisation parameter. Given the
high values of the stabilisation parameter, which is a multiple of the viscosity, a small variation in 𝜸e translates into a
large variation in some entries of the global matrix in the non-scaled formulations, whereas this is not the case for the
scaled formulation. As an example, when considering the second mesh, the maximum relative difference between the
approximation of 𝜸e and 𝜆e with quadratures of order one and two is 3.4 × 10−3. This translates into a maximum relative
difference in the entries of the global matrix of 81.6% in the case of the non-scaled formulation, but only 0.4% in the case
of the scaled formulation.

Appendix A considers the same numerical example using quadrilateral meshes. For this example the results show
that quadrilateral elements are able to provide optimal convergence in all the variables, even for the non-symmetric
formulations. In terms of the accuracy, the performance of triangular meshes is shown to be superior for this example.

It is worth noting that the stabilisation parameter defined in Equation (49) induces a different stabilisation in an
element edge as seen from the two elements sharing this edge. A different definition of the stabilisation parameter that
ensures a unique stabilisation in an element edge has also been considered. The results, presented in Appendix B show
that the accuracy and convergence are not influenced by this choice.

For purpose of reproducibility, an application of the scaled symmetric gradient FCFV formulation to the SolKz test is
available via the open source Julia package (https://github.com/tduretz/FCFV_NME23).

6.2 Manufactured solution with a steep viscosity layer

The next example considers a viscosity field that presents a steep layer. The objective is to show the potential of the
proposed approach to resolve an interface-type variation of the viscosity without the use of meshes that are fitted to the
interface and without the need of an interface condition, as done in Reference 37.

The problem, taken from Reference 43, considers a viscosity field given by

𝜈(x) = 𝜈2 − (𝜈2 − 𝜈1)
{

1 − exp
[
−1013((x1 − 1∕2)10 + (x2 − 1∕2)10)]}

, (52)

where 𝜈1 = 1 and 𝜈2 = 10−4.
The analytical velocity field is given by

u(x) = 1000
[
x2

1x2
2(x1 − 1)4(5x2

2 − 8x2 + 3), −2x1x3
2(3x1 − 1)(x1 − 1)3(x2 − 1)2

]T
, (53)

and the exact pressure is

p(x) = 𝜋2[x1x2
2 cos(2𝜋x2

1x2) − x2
1x2 sin(2𝜋x1x2)

]
+ 1∕8. (54)

The same meshes employed in the previous example are considered here. Figure 5A shows the viscosity field in loga-
rithmic scale. A detailed view of the viscosity field and two meshes near the region that presents the steep viscosity layer
is shown in Figure 5B,C, clearly illustrating that the mesh is not aligned with the very steep gradient of the viscosity
field. In fact, for the first mesh considered in this study, the viscosity field varies four orders of magnitude within a single
triangular element.

Figure 6 shows the numerical solution using the scaled symmetric gradient FCFV formulation on the coarsest mesh.
Some artifacts in the central part of the domain can be clearly observed, denoting that the mesh is too coarse to capture
the effects of the source induced by such a steep gradient of the viscosity field.

The numerical solution on the finest mesh, displayed in Figure 7, shows smooth velocity and pressure fields with no
artifacts in the central part of the domain. In this mesh, the variation of four orders of magnitude on the viscosity field
occurs over 14 triangular elements.
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18 of 30 SEVILLA and DURETZ

(A) (B) (C)

F I G U R E 5 Steep layer viscosity: Viscosity field in logarithmic scale, showing two detailed views of the variation of the viscosity in the
elements of the first two meshes. (A) 𝜈(x). (B) Mesh 1. (C) Mesh 2.

(A) (B) (C) (D)

F I G U R E 6 Steep layer viscosity: Numerical solution on the first mesh using the scaled symmetric gradient FCFV formulation. (A) u1.
(B) u2. (C) ||u||. (D) p.

(A) (B) (C) (D)

F I G U R E 7 Steep layer viscosity: Numerical solution on the fifth mesh using the scaled symmetric gradient FCFV formulation. (A) u1.
(B) u2. (C) ||u||. (D) p.

The results of the mesh convergence study for all the different FCFV formulations and by using a quadrature with
one integration point to compute the integrals involving the viscosity, are shown in Table 3.

In this example, not only the non-scaled FCFV formulations do not display the expected rate of convergence in all
the variables, but also the scaled FCFV formulations. More precisely, for the scaled symmetric gradient formulation,
sub-optimal convergence is observed in the pressure.

The same convergence study is next performed by increasing the order of the quadratures employed to compute the
element and edge integrals involving the viscosity. The results, in Table 4, show that all formulations recover the expected
rate of convergence in the velocity and pressure fields. The formulations with the mixed variable being the gradient of the

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7450 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SEVILLA and DURETZ 19 of 30

T A B L E 3 Steep layer viscosity: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for
the different FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 2.2594 — 2.3008 — 0.8724 — 0.4915 — 0.4793 —

2 3.1873 −0.5 3.2104 −0.5 0.5438 0.7 0.3517 0.5 0.3161 0.6

3 3.9232 −0.3 3.9356 −0.3 0.3215 0.8 0.2650 0.4 0.1884 0.7

4 4.4051 −0.2 4.4115 −0.2 0.1997 0.7 0.2312 0.2 0.1053 0.8

5 4.6861 −0.1 4.6894 −0.1 0.1427 0.5 0.2243 0.0 0.0576 0.9

Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe
𝜈ndΓ

1 2.2694 — 2.3109 — 0.8885 — 0.4905 — 0.4779 —

2 3.1956 −0.5 3.2187 −0.5 0.5624 0.7 0.3514 0.5 0.3157 0.6

3 3.9228 −0.3 3.9351 −0.3 0.3207 0.8 0.2651 0.4 0.1884 0.7

4 4.4050 −0.2 4.4115 −0.2 0.1998 0.7 0.2312 0.2 0.1053 0.8

5 4.6861 −0.1 4.6894 −0.1 0.1427 0.5 0.2243 0.0 0.0576 0.9

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.1535 — 0.1309 — 0.9702 — 0.3043 — 0.1976 —

2 0.0821 0.9 0.0721 0.9 0.5586 0.8 0.2489 0.3 0.1081 0.9

3 0.0432 0.9 0.0370 1.0 0.2874 1.0 0.2331 0.1 0.0551 1.0

4 0.0220 1.0 0.0187 1.0 0.1764 0.7 0.2294 0.0 0.0281 1.0

5 0.0111 1.0 0.0094 1.0 0.1325 0.4 0.2290 0.0 0.0142 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with one integration point.

velocity, convergence is not observed in the mixed variable, whereas suboptimal convergence in the symmetric gradient
is observed for all the non-scaled formulations. It is worth noting that, again, the scaled symmetric gradient formulation
is the only one that provides optimal convergence in all the variables.

A study of the numerical integration error is performed to further analyse the differences between the different for-
mulations and the differences with respect to the previous example. The numerical integration error as a function of
the characteristic element size is represented in Figure 8 for quadratures of order one and two. Contrary to the previous
example, the more abrupt change of the viscosity profile poses a challenge when performing the numerical integration
on meshes that do not account for the high gradients of the viscosity profile. It can be clearly observed that the numerical
integration errors with quadratures of order one are between one and two orders of magnitude higher, when compared
to the previous example. When a quadrature of order two is used, the numerical integration error is several orders of
magnitude higher than in the previous example.

The results show that in this example, the main reason for not obtaining the optimal rate of convergence with a
quadrature of order one is that the numerical integration error becomes higher than the spatial discretisation error. In
this example, with a viscosity field showing a steep gradient, a quadrature of order two is enough in order to ensure that
the numerical integration error is below the spatial discretisation error.

This example demonstrates the possibility of solving interface-type Stokes problems with mesh not fitted to the
interface. Using the scaled symmetric gradient formulation an optimal rate of convergence is observed in all the vari-
ables when employing a quadrature of order two to compute 𝜆e. It is worth noting that the cost of computing 𝜆e
with a high order quadrature is negligible when compared to the cost of assembling and solving the global system of
equations. In addition, the use of a high order quadrature does not induce a higher use of memory as the value 𝜆e
can be precomputed for all the elements and stored in a vector whose dimension does not depend on the order of the
quadrature used.
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20 of 30 SEVILLA and DURETZ

T A B L E 4 Steep layer viscosity: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for
the different FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 0.1563 — 0.1286 — 0.9481 — 0.2933 —- 0.1985 –

2 0.0835 0.9 0.0681 0.9 0.5032 0.9 0.2459 0.3 0.1083 0.9

3 0.0432 1.0 0.0351 1.0 0.2596 1.0 0.2323 0.1 0.0597 0.9

4 0.0220 1.0 0.0178 1.0 0.1319 1.0 0.2293 0.0 0.0365 0.7

5 0.0111 1.0 0.0090 1.0 0.0665 1.0 0.2289 0.0 0.0250 0.5

Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe
𝜈ndΓ

Mesh 𝜖û rû 𝜖u ru 𝜖p rp 𝜖L(L = −𝛁u) rL 𝜖L(L = −2𝛁su) rL

1 0.1561 — 0.1285 — 0.9476 — 0.2926 — 0.1984 —

2 0.0835 0.9 0.0681 0.9 0.5033 0.9 0.2460 0.3 0.1083 0.9

3 0.0432 0.9 0.0351 1.0 0.2596 1.0 0.2324 0.1 0.0597 0.9

4 0.0220 1.0 0.0178 1.0 0.1319 1.0 0.2293 0.0 0.0365 0.7

5 0.0111 1.0 0.0090 1.0 0.0665 1.0 0.2289 0.0 0.0250 0.5

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.1606 — 0.1465 — 0.9627 — 0.2958 — 0.2008 —

2 0.0827 1.0 0.0703 1.1 0.5341 0.8 0.2486 0.3 0.1092 0.9

3 0.0432 0.9 0.0373 0.9 0.2641 1.0 0.2329 0.1 0.0552 1.0

4 0.0220 1.0 0.0187 1.0 0.1349 1.0 0.2294 0.0 0.0281 1.0

5 0.0111 1.0 0.0094 1.0 0.0679 1.0 0.2290 0.0 0.0142 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with three integration
point in each element and two integration points on each edge, respectively.

This approach might be particularly attractive in transient problems with moving interfaces, as it will enable the
solution on a fixed mesh, whereas a formulation that requires a fitted mesh, needs to perform constant local re-meshing
to ensure that the interface is captured by the mesh. With the proposed technique, only the vector containing the values
of 𝜆e would need to be recomputed each time step.

6.3 Stokes flow in a spherical shell

The last example considers a three-dimensional Stokes flow in a spherical shell. The problem has an analytical solution,
presented in Reference 44, which is recalled here using spherical coordinates (r, 𝜃, 𝜙). The inner and outer radii of the
spherical shell are taken as R1 = 0.5 and R2 = 1 respectively, and the viscosity field is given by

𝜈(r) = r4
. (55)

The exact velocity vector field in spherical coordinates is

u(r, 𝜃, 𝜙) = [F(r) cos(𝜃), G(r) sin(𝜃), G(r) sin(𝜃)]T , (56)

where

F(r) = 2
r2

(
𝛼

4r4 −
𝛽

3
r3 − 1

)

, G(r) = 𝛼

r7 + 𝛽r, (57)
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SEVILLA and DURETZ 21 of 30

(A) (B)

F I G U R E 8 Steep layer viscosity: Numerical integration error, for quadratures of order 1 and 2, as a function of the characteristic
element size for the four integrals involving the viscosity. (A) Order 1. (B) Order 2.

(A) (B) (C)

F I G U R E 9 First three tetrahedral meshes used for the Stokes flow in a spherical shell. (A) Mesh 1. (B) Mesh 2. (C) Mesh 3.

and the exact pressure field is given by

p(r, 𝜃, 𝜙) = 4
r
𝜈(r)F(r) cos(𝜃). (58)

In the above expressions, the constants 𝛼 and 𝛽 are defined as

𝛼 = 4R4
1R4

2

R3
2 − R3

1

R7
2 − R7

1
, 𝛽 = −3

R4
2 − R4

1

R7
2 − R7

1
. (59)

Four unstructured tetrahedral meshes are considered to perform a mesh convergence study. The number of elements
in the four meshes is 2223, 18,474, 148,734 and 1,203,063 respectively, leading to a global system of equations of dimension
14,781, 126,021, 1,027,779 and 8,366,694 respectively. The first three meshes are shown in Figure 9.

The numerical solution computed with the scaled symmetric gradient FCFV formulation on the finest mesh is shown
in Figure 10.

Table 5 summarises the results of the mesh convergence study. The optimal rate of convergence is observed in all vari-
ables, confirming the correct implementation and the optimal approximation properties of the scaled symmetric gradient
FCFV formulation for three dimensional problems with variable viscosity.
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22 of 30 SEVILLA and DURETZ

(A) (B) (C)

(D) (E)

F I G U R E 10 Stokes flow in a spherical shell: Numerical solution on the finest mesh using the scaled symmetric gradient FCFV
formulation. (A) u1. (B) u2. (C) u3. (D) ||u||. (E) p.

T A B L E 5 Stokes flow in a spherical shell: Error of the hybrid velocity, velocity, pressure and mixed variable, and rates of convergence,
for the scaled symmetric gradient FCFV formulation.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L rL

1 0.5030 — 0.4314 — 2.7830 — 0.3777 —

2 0.2881 1.0 0.2407 1.1 1.0807 1.7 0.2005 1.2

3 0.1572 0.9 0.1258 0.9 0.3589 1.6 0.1118 0.9

4 0.0872 0.9 0.0641 1.1 0.1339 1.6 0.0638 0.9

7 DISCUSSION

Among the different FCFV formulations presented here, the scaled symmetric gradient FCFV formulation appears as
the clear choice. On the one hand, the use of the symmetrised velocity gradient tensor ensures the global symmetry of
the discrete problem. On the second hand, the viscosity scaling explicitly introduces the deviatoric stress tensor in the
definition of the mixed variable.

The fact that this scheme preserves the symmetry of the global system of equation is a notable advantage. This enables
the use of efficient sparse-direct solvers for linear systems 45 and will facilitate the design of efficient solutions strategies
for non-linear problems.46 The scaled symmetric gradient FCFV formulation was shown to perform reliably on both tri-
angular and quadrilateral elements, which are common choices in geodynamic modelling. While unstructured triangular
meshes allow to honour material interfaces and dynamically adapt meshes to flow patterns,45,37,47 structured quadrilat-
eral meshes are popular for their relative algorithmic simplicity and efficiency on parallel supercomputers.13,48,49 The
latter can also offer some degree of geometrical flexibility when combined with Arbitrary-Lagrangian-Eulerian formu-
lations 50 or adaptative mesh refinement.51,8 Since the proposed FCFV formulations can handle both types of elements
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SEVILLA and DURETZ 23 of 30

while remaining efficient and stable, it could become a method of choice for future geodynamic simulation codes.36 More-
over, the FCFV formulation also offers an adequate incorporation of internal boundaries, such as velocity discontinuities
or surface tension, which often arise in the study of seismotectonics52 or magmatic processes.27

Besides achieving first order convergence of primal variables (velocity and pressure), the mixed variable (deviatoric
stress tensor) also exhibits first-order convergence, with both triangular and quadrilateral elements. This property is cru-
cial as it will allow for reliable implementations of non-linear stress-dependent rheologies such as plasticity. The latter is
essential to model the emergence of tectonic plates in convection models 53 or the fault-related structures in the deforming
lithosphere.54 Future developments will focus on the extension of FCFV towards the incorporation of complex rheolog-
ical models 55 and the implementation in the context of GPU and multi-GPU computing.56 Besides steady geophysical
flow, the findings of this work will be relevant for the simulation of turbulent incompressible flows where the viscosity is
a spatially varying quantity.57

8 CONCLUDING REMARKS

This work presents six different FCFV formulations to solve problems governed by the Stokes equations with spatially
varying viscosity. The formulations differ in the definition of the mixed variable and the use of a weak or strong form in
each element. A brief comparison of the different methods shows that only in some cases the resulting global system of
equations is symmetric.

Contrary to existing FCFV formulations for the Stokes problem with constant viscosity, the use of an accurate
quadrature to compute the integrals involving the varying viscosity is found to be crucial to obtain the optimal approxi-
mation properties of the methods. In addition, a comparison between triangular and quadrilateral elements shows that
quadrilateral elements are less sensitive to the numerical integration error.

Two-dimensional examples are considered to compare the accuracy and rate of convergence of the six FCFV for-
mulations. The results show that when the numerical error associated to the numerical integration is below the error
of the spatial discretisation, first order convergence is observed for all methods when the mixed variable is the sym-
metric gradient of the velocity. When considering formulations with the mixed variable being the gradient of the
velocity, the optimal convergence of the mixed variable is not displayed in triangular meshes, whereas it is exhibited
when using quadrilateral elements. The results also show that the most efficient and accurate approach is the so-called
scaled symmetric gradient FCFV formulation, where the mixed variable is related to the deviatoric stress tensor. Not
only the result are more accurate and less sensitive to numerical integration errors, but also this formulation only
requires computing the integral of the viscosity within an element and not over element faces (edges in two dimen-
sions). A three-dimensional example is also used to confirm the optimal convergence properties of the scaled symmetric
gradient FCFV.
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APPENDIX A. QUADRILATERAL ELEMENTS

This section considers the two-dimensional examples of Sections 6.1 and 6.2 solved using quadrilateral meshes. Five
structured grids are considered, where the coarsest mesh has 16 × 16 elements and the finest mesh has 256 × 256
elements.

A.1 The SolKz test: Exponential variation of the viscosity field
The solution of the SolKz test case is considered here with meshes of quadrilateral elements. The error and rate of con-
vergence of the error of the hybrid variable û, the primal variable u, the pressure p and the mixed variable L is shown in
Table A1 for the different FCFV formulations proposed in Section 4.

Following the strategy employed in Section 6.1, for the non-scaled FCFV formulations, the elemental integrals involv-
ing the viscosity are evaluated using a quadrature with a single integration point, namely 𝜸e ≈ |Ωe|𝛁𝜈(xe), where xe is
the centroid of the element. Similarly, the boundary integrals involving the viscosity are evaluated using a single integra-
tion point, namely 𝛾i ≈ |Γe,i|𝜈(xe,i), where xe,i is the centroid of the element edge. Analogously, when the scaled FCFV
formulations are employed, the integral involving the viscosity is evaluated using a single integration point, namely
𝜆e ≈ |Ωe|𝜈−1(xe).
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26 of 30 SEVILLA and DURETZ

T A B L E A1 SolKz: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for the different
FCFV formulations with quadrilateral meshes.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 1.6201 — 2.0944 — 0.5890 — 0.6779 — 0.7520 —

2 1.7412 −0.1 1.9508 0.1 0.3888 0.6 0.6199 0.1 0.6650 0.2

3 1.8387 −0.1 1.9322 0.0 0.3898 0.0 0.6348 0.0 0.6524 0.0

4 1.9226 −0.1 1.9663 0.0 0.4015 0.0 0.6799 −0.1 0.6846 −0.1

5 1.9834 0.0 2.0045 0.0 0.4086 0.0 0.7179 −0.1 0.7188 −0.1

Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe
𝜈ndΓ

1 1.6122 — 2.0891 — 0.5815 — 0.6785 — 0.7531 —

2 1.7371 −0.1 1.9470 0.1 0.3868 0.6 0.6198 0.1 0.6651 0.2

3 1.8372 −0.1 1.9308 0.0 0.3891 0.0 0.6347 0.0 0.6523 0.0

4 1.9222 −0.1 1.9659 0.0 0.4014 0.0 0.6799 −0.1 0.6845 −0.1

5 1.9832 0.0 2.0044 0.0 0.4085 0.0 0.7179 −0.1 0.7187 −0.1

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.7924 — 1.2260 — 0.7150 — 0.7093 — 0.5277 —

2 0.5162 0.6 0.7469 0.7 0.4132 0.8 0.4216 0.8 0.3170 0.7

3 0.3147 0.7 0.4323 0.8 0.2308 0.8 0.2349 0.8 0.1803 0.8

4 0.1844 0.8 0.2415 0.8 0.1236 0.9 0.1249 0.9 0.0974 0.9

5 0.1038 0.8 0.1308 0.9 0.0644 0.9 0.0646 1.0 0.0509 0.9

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with one integration point.

In terms of the convergence rates, the four non-scaled formulations do not provide convergence of any variable as
the mesh is refined, which is the same behaviour observed for triangular meshes. The scaled formulations provide opti-
mal convergence, (h), convergence on all the variables. It is worth noting that when using triangular meshes, optimal
convergence of the mixed variable was only observed when using the symmetric gradient formulation.

To further compare the results between triangular and quadrilateral meshes, the same convergence is repeated by
employing a higher order numerical quadrature to compute the integrals involving the variable viscosity. The error and
rate of convergence of the error of the hybrid variable û, the primal variable u, the pressure p and the mixed variable L is
shown in Table A2.

Similar to the behaviour observed with triangular meshes, the non-scaled formulations now show optimal conver-
gence of the hybrid velocity, the velocity and the pressure. For the mixed variable, almost optimal convergence rates are
observed for both choices of the mixed variable, contrary to the case of triangular meshes, when only the symmetric for-
mulations showed the optimal convergence rate of the mixed variable. Similarly, for the scaled FCFV formulation, all
variables exhibit an optimal convergence, even for the non-symmetric formulation.

In summary, the use of quadrilateral meshes enable to provide optimal convergence of both the gradient of the velocity
field and the symmetric gradient of the velocity field. In contrast only the symmetric formulations are able to provide
optimal convergence of the mixed variable when using triangular meshes.

In terms of the accuracy, it can be clearly observed that triangular meshes offer a superior performance. To com-
pare the results, it should be noted that the i-th mesh of triangular elements contains the same number of elements as
the i + 1-th mesh of quadrilateral elements. As an example, comparing the results of Tables 2 and A2, it can be seen that
the accuracy of the hybrid velocity computed in the first triangular mesh is comparable to the accuracy obtained in the
fourth quadrilateral mesh. For the velocity, pressure and symmetric gradient of the velocity, the accuracy obtained in
the first triangular mesh is similar to the accuracy obtained in the third quadrilateral mesh. This implies that the size of
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SEVILLA and DURETZ 27 of 30

T A B L E A2 SolKz: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for the different
FCFV formulations with quadrilateral meshes.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 0.8535 — 1.4037 — 1.5719 — 0.7202 — 0.7812 —

2 0.5790 0.6 0.8732 0.7 0.8450 0.9 0.5585 0.4 0.5959 0.4

3 0.3581 0.7 0.5046 0.8 0.4128 1.0 0.3839 0.5 0.4101 0.5

4 0.2083 0.8 0.2793 0.9 0.2005 1.0 0.2427 0.7 0.2609 0.7

5 0.1157 0.8 0.1499 0.9 0.0996 1.0 0.1442 0.8 0.1558 0.7

Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe
𝜈ndΓ

1 0.8535 — 1.4037 — 1.5717 — 0.7202 — 0.7812 —

2 0.5790 0.6 0.8732 0.7 0.8450 0.9 0.5585 0.4 0.5959 0.4

3 0.3581 0.7 0.5046 0.8 0.4128 1.0 0.3839 0.5 0.4101 0.5

4 0.2083 0.8 0.2793 0.9 0.2005 1.0 0.2427 0.7 0.2609 0.7

5 0.1157 0.8 0.1499 0.9 0.0996 1.0 0.1442 0.8 0.1558 0.7

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.7800 — 1.1984 — 0.6974 — 0.6852 — 0.5231 —

2 0.5141 0.6 0.7434 0.7 0.4106 0.8 0.4178 0.7 0.3167 0.7

3 0.3144 0.7 0.4319 0.8 0.2306 0.8 0.2344 0.8 0.1805 0.8

4 0.1844 0.8 0.2414 0.8 0.1237 0.9 0.1249 0.9 0.0975 0.9

5 0.1038 0.8 0.1308 0.9 0.0644 0.9 0.0646 1.0 0.0509 0.9

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with four and two
integration points, respectively.

the system to be solved with quadrilateral elements is approximately five times larger. For the numerical examples con-
sidered here, where the system is solved using a direct method on a single processor, the calculation using quadrilateral
elements requires approximately six times more CPU time, compared to the computation using triangular meshes to
obtain the same accuracy.

A.2 Manufactured solution with a steep viscosity layer
To assess if the conclusions obtained are problem-dependent, the second two dimensional test case with a manufactured
solution of Section 6.2 is solved using quadrilateral meshes. The convergence results using low and higher order numerical
quadratures are reported in Tables A3 and A4, respectively.

The results of Table A3 show that all formulations are slightly less sensitive to using a low order quadrature, with
the scaled FCFV formulation showing optimal convergence even with a quadrature with one integration point. This
behaviour was not observed with triangular meshes and higher order quadratures where required for the methods to
display the optimal convergence rates.

When using higher order quadratures, all FCFV formulations show the optimal rate of convergence in all the variables,
including the approaches where the gradient of the velocity is considered as mixed variable. This behaviour was also
observed in the previous numerical example, and it confirms that quadrilateral elements are able to provide optimal
convergence of the mixed variable, even if the non-symmetric formulations are considered.

In this example the accuracy obtained using quadrilateral meshes is very similar to the accuracy obtained with trian-
gular meshes. In fact, when comparing the results for the same number of degrees of freedom, it is concluded that using
quadrilateral meshes is beneficial in this example. However, it is worth noting that this is mainly attributed to the very
localised variation of the viscosity and the use of global error norms to quantify the error.
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28 of 30 SEVILLA and DURETZ

T A B L E A3 Steep layer viscosity: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence
for the different FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 0.8646 — 0.9746 — 1.2164 — 0.5883 — 0.5952 —
2 1.5243 −0.8 1.5812 −0.7 0.5406 1.2 0.3981 0.6 0.4029 0.6
3 2.0832 −0.5 2.1127 −0.4 0.2096 1.4 0.2419 0.7 0.2455 0.7
4 2.4788 −0.3 2.4941 −0.2 0.1384 0.6 0.1367 0.8 0.1387 0.8
5 2.7205 −0.1 2.7284 −0.1 0.1124 0.3 0.0730 0.9 0.0742 0.9
Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe

𝜈ndΓ

1 0.8604 — 0.9711 — 1.2917 — 0.5891 — 0.5959 —
2 1.5484 −0.8 1.6067 −0.7 0.7265 0.8 0.3968 0.6 0.4007 0.6
3 2.0821 −0.4 2.1115 −0.4 0.2098 1.8 0.2421 0.7 0.2457 0.7
4 2.4787 −0.3 2.4941 −0.2 0.1391 0.6 0.1367 0.8 0.1387 0.8
5 2.7205 −0.1 2.7284 −0.1 0.1125 0.3 0.0730 0.9 0.0742 0.9

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.2601 — 0.2705 — 2.1316 — 0.3565 — 0.3714 —

2 0.1588 0.7 0.1818 0.6 1.1073 0.9 0.2320 0.6 0.2029 0.9

3 0.0790 1.0 0.0820 1.1 0.5564 1.0 0.1147 1.0 0.1076 0.9

4 0.0425 0.9 0.0455 0.9 0.3054 0.9 0.0661 0.8 0.0560 0.9

5 0.0221 0.9 0.0238 0.9 0.1821 0.7 0.0351 0.9 0.0289 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with three integration
point in each element and two integration points on each edge, respectively.

T A B L E A4 Steep layer viscosity: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence
for the different FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 0.2501 — 0.2649 — 1.7726 — 0.3401 — 0.3562 —
2 0.1431 0.8 0.1470 0.8 1.0266 0.8 0.1893 0.8 0.1999 0.8
3 0.0768 0.9 0.0778 0.9 0.5466 0.9 0.1008 0.9 0.1065 0.9
4 0.0397 1.0 0.0400 1.0 0.2818 1.0 0.0520 1.0 0.0550 1.0
5 0.0202 1.0 0.0203 1.0 0.1439 1.0 0.0263 1.0 0.0280 1.0
Non-scaled FCFV formulations with 𝜸̂e = ∫𝜕Ωe

𝜈ndΓ

1 0.2501 — 0.2649 — 1.7726 — 0.3401 — 0.3562 —
2 0.1431 0.8 0.1470 0.8 1.0266 0.8 0.1893 0.8 0.1999 0.8
3 0.0768 0.9 0.0778 0.9 0.5466 0.9 0.1008 0.9 0.1065 0.9
4 0.0397 1.0 0.0400 1.0 0.2818 1.0 0.0520 1.0 0.0550 1.0
5 0.0202 1.0 0.0203 1.0 0.1439 1.0 0.0263 1.0 0.0280 1.0

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.2520 — 0.2791 — 1.7011 — 0.3476 — 0.3561 —

2 0.1455 0.8 0.1498 0.9 1.0798 0.7 0.1980 0.8 0.2051 0.8

3 0.0794 0.9 0.0836 0.8 0.5446 1.0 0.1119 0.8 0.1075 0.9

4 0.0425 0.9 0.0454 0.9 0.2864 0.9 0.0638 0.8 0.0560 0.9

5 0.0221 0.9 0.0238 0.9 0.1505 0.9 0.0347 0.9 0.0289 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with three integration
point in each element and two integration points on each edge, respectively.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7450 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SEVILLA and DURETZ 29 of 30

APPENDIX B. CHOICE OF THE STABILISATION PARAMETER

This section present the results of considering a different stabilisation parameter for the two-dimensional example of
Section 6.1.

The stabilisation is selected as

𝜏e,i =
𝜅

𝓁
max{𝜈(x̂e,i), 1}, (B1)

where x̂e,i is the centroid of the face Γe,i and, as done in the previous experiments, 𝜅 = 10 and 𝓁 = 1. For the SolKz test,
the results of the convergence study are displayed in Table B1 when using quadratures with one integration point for
computing the integrals involving the viscosity. It is worth noting that the scaled symmetric gradient formulation displays
again the optimal convergence in all variables, even with the lowest order possible quadrature.

Increasing the accuracy of the numerical integration allows recovering the optimal convergence of the non-scaled
formulations, as shown in Table B2. By comparing the results of Tables 2 and B2 it is apparent that the different choice of
the stabilisation does not provide any advantage. The definition of Equation (49) is preferred as it involves less evaluations
of the viscosity field, just one per element, rather than one per element edge (face in three dimensions).

T A B L E B1 SolKz: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for the different
FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 2.0386 — 2.1823 — 0.5460 — 0.7457 — 0.7586 —

2 2.5072 −0.3 2.5622 −0.2 0.4998 0.1 0.7772 −0.1 0.7707 0.0

3 2.8921 −0.2 2.9162 −0.2 0.4791 0.1 0.8116 −0.1 0.7955 0.0

4 3.1405 −0.1 3.1520 −0.1 0.4698 0.0 0.8387 0.0 0.8190 0.0

5 3.2824 −0.1 3.2880 −0.1 0.4657 0.0 0.8560 0.0 0.8349 0.0

Non-scaled FCFV formulations with 𝜸e = ∫𝜕Ωe
𝜈ndΓ

1 2.0162 — 2.1595 — 0.5449 — 0.7453 — 0.7579 —

2 2.4993 −0.3 2.5542 −0.2 0.4992 0.1 0.7768 −0.1 0.7702 0.0

3 2.8897 −0.2 2.9137 −0.2 0.4789 0.1 0.8114 −0.1 0.7953 0.0

4 3.1398 −0.1 3.1513 −0.1 0.4698 0.0 0.8386 0.0 0.8190 0.0

5 3.2822 −0.1 3.2878 −0.1 0.4657 0.0 0.8560 0.0 0.8349 0.0

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.1901 — 0.4020 — 0.2178 — 0.3062 — 0.1908 —

2 0.0933 1.0 0.1949 1.0 0.1101 1.0 0.2608 0.2 0.0969 1.0

3 0.0465 1.0 0.0956 1.0 0.0552 1.0 0.2528 0.0 0.0488 1.0

4 0.0233 1.0 0.0473 1.0 0.0276 1.0 0.2532 0.0 0.0245 1.0

5 0.0117 1.0 0.0235 1.0 0.0138 1.0 0.2545 0.0 0.0122 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with one integration
point. The stabilisation is given by Equation (B1).
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30 of 30 SEVILLA and DURETZ

T A B L E B2 SolKz: Error of the hybrid velocity, velocity, pressure and mixed variable and rates of convergence for the different
FCFV formulations.

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝛁u) rL 𝝐L(L = −2𝛁su) rL

Non-scaled FCFV formulations with 𝜸e = ∫Ωe
𝛁𝜈dΩ

1 0.1972 — 0.4570 — 0.3362 — 0.4148 — 0.3364 —

2 0.0949 1.1 0.2258 1.0 0.1688 1.0 0.2486 0.7 0.1804 0.9

3 0.0469 1.0 0.1116 1.0 0.0848 1.0 0.1809 0.5 0.0932 1.0

4 0.0234 1.0 0.0554 1.0 0.0425 1.0 0.1570 0.2 0.0472 1.0

5 0.0117 1.0 0.0276 1.0 0.0213 1.0 0.1493 0.1 0.0237 1.0

Non-scaled FCFV formulations with 𝜸e = ∫𝜕Ωe
𝜈ndΓ

1 0.1972 — 0.4569 — 0.3362 — 0.4148 — 0.3364 —

2 0.0949 1.1 0.2258 1.0 0.1688 1.0 0.2486 0.7 0.1804 0.9

3 0.0469 1.0 0.1116 1.0 0.0848 1.0 0.1809 0.5 0.0932 1.0

4 0.0234 1.0 0.0554 1.0 0.0425 1.0 0.1570 0.2 0.0472 1.0

5 0.0117 1.0 0.0276 1.0 0.0213 1.0 0.1493 0.1 0.0237 1.0

Mesh 𝝐û rû 𝝐u ru 𝝐p rp 𝝐L(L = −𝝂𝛁u) rL 𝝐L(L = −2𝝂𝛁su) rL

Scaled FCFV formulations

1 0.1906 — 0.3957 — 0.2187 — 0.3089 — 0.1944 —

2 0.0933 1.0 0.1939 1.0 0.1102 1.0 0.2613 0.2 0.0977 1.0

3 0.0466 1.0 0.0954 1.0 0.0552 1.0 0.2529 0.0 0.0490 1.0

4 0.0233 1.0 0.0473 1.0 0.0276 1.0 0.2532 0.0 0.0245 1.0

5 0.0117 1.0 0.0235 1.0 0.0138 1.0 0.2545 0.0 0.0123 1.0

Note: The elemental and boundary integrals involving the viscosity, namely 𝜸e, 𝜸̂e, 𝛾i and 𝜆e are evaluated using a quadrature with three integration
point in each element and two integration points on each edge, respectively. The stabilisation is given by Equation (B1).
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