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A B S T R A C T

The detection of small surface abnormalities on large complex free-form surfaces represents a significant chal-
lenge. Often surfaces abnormalities are less than a millimeter square in area but, must be located on surfaces of
multiple meters square. To achieve consistent, cost effective and fast inspection, robotic or automated inspection
systems are highly desirable. The challenge with automated inspection systems is to create a robust and accurate
system that is not adversely affected by environmental variation. Robot-mounted laser line scanner systems can
be used to acquire surface measurements, in the form of a point cloud1 (PC), from large complex geometries. This
paper addresses the challenge of how surface abnormalities can be detected based on PC data by considering two
different analysis strategies. First, an unsupervised thresholding strategy is considered, and through an experi-
mental study the factors that affect abnormality detection performance are considered. Second, a robust su-
pervised abnormality detection strategy is proposed. The performance of the proposed robust detection algo-
rithm is evaluated experimentally using a realistic test scenario including a complex surface geometry,
inconsistent PC quality and variable PC noise. Test results of the unsupervised analysis strategy shows that
besides the abnormality size, the laser projection angle and laser lines spacing play an important role on the
performance of the unsupervised detection strategy. In addition, a compromise should be made between the
threshold value and the sensitivity and specificity of the results.

1. Introduction

Quality control is an essential part of all successful manufacturing
operations, with the requirement for 100% inspection of manufactured
items being common place in many industries. A particularly challen-
ging inspection task involves the localisation of surface abnormalities
on large area surfaces; for example, metal surface inspection is an im-
portant step in manufacturing of large and highly sculptured compo-
nents such as car bodies. Localising small surface abnormalities is a
difficult, time consuming and costly task, that must be undertaken to
ensure the car body finish is blemish free following the painting pro-
cess, and important factor for customer satisfaction and perceived
quality. In other applications, early detection of such abnormalities has
an important impact on the operation of critical components subjected
to high stress, such rotating power generation components, where
regular inspections are carried out not only at time of manufacturing,
but also at regular intervals, to ensure reliable operation.

Traditionally, such inspections are carried out by a human expert;

while the human is effective at locating abnormalities, they are subject
to limitations in accuracy, consistency, speed and reliability. Therefore,
strong motivation towards the automation of such surface inspection
tasks has resulted in a range of different machine based inspection
technologies.

Early inspection technology was based on the analysis of camera
images, and many automatic inspection systems utilise colour and
texture analysis of digital images; examples of recent works in this case
are given in [1,2], which focus on the detection of rail defects and
abnormalities on titanium-coated Aluminium surfaces. A good set of
reviews covering less recent research can be found in [3–6]. The lack of
3D local information is one of the main limitations of image based in-
spection systems. Stereo vision systems [7,8] can maintain the 3D lo-
calisation requirement but, are not appropriate for flat surfaces where
there are no prominent features available. Structured light scanners
[9–11] avoid this issue by projecting a pattern of light and dark features
on the target surface.

One highly successful widely available technology, which is
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accurate, contactless and fast, is laser line scanning technology [12,13].
The low weight and compact size of laser line scanners allow them to be
easily integrated with industrial robots to form a flexible inspection
system. By using a robot to scan over a target surface, the laser scanner
is able to acquire dense 3D PCs with micrometre level resolution.
However, while large quantities of data can be quickly collected, the
processing and analysis of this data to yield a robust inspection process
still represents a significant challenge.

A considerable amount of research has been conducted on the use of
laser scanners for automatic inspection in manufacturing applications.
One group of strategies for surface abnormality detection is based on
the use of an existing ideal CAD model. Examples of such strategies can
be found in [14–18]. The dependency on an existing ideal model of the
object is the main issue for CAD-based strategies. Techniques that are
independent of a CAD model include [19], where a noise removal
method was proposed to detect simple deformations in a PC that re-
sembles outliers in a smooth surface. In [20], a technique for PC seg-
mentation based on octree structures and recursive subdivision of the
volume of a 3D mesh was introduced. The subdivision was performed
based on thresholding the standard deviation of surface normal. Both of
these strategies are based on subjective tuning of a threshold parameter.
In [21] enhanced octree-based feature extraction was combined with
segmentation and classification. Deviation in surface normal was also
used as point weights in [22]. The limitations of these methods remain
unclear, in terms of the size of abnormalities that can be detected, given
variable scanner parameters, and PC quality, such as line spacing or
point noise. Such considerations of this technology for the detection of
large abnormalities have been studied in applications such as con-
struction and civil engineering, where abnormalities are a few cm in
sizes on concrete surfaces [23]. Conversely, there are no studies that
have considered the use of laser scanners for relatively shiny metal
surfaces with abnormalities in the µm or mm size domain.

This paper addresses the problem of abnormality detection on
freeform metal surfaces using PCs generated from a robot mounted
laser scanner. The work is based on the premise that successful ab-
normality detection not only depends on the detection algorithm, but it
also depends on other important factors such as the shape and size of
abnormalities, the quality of the acquired PC and the scan conditions. In
addition, the choice of a supervised or unsupervised strategy can also be
an important factor. For example, an unsupervised detection strategy is
an advantage when enough training samples are not available, data
quality is consistent and a certain amount of error is tolerable; however,
a well-trained supervised detection is preferred when robustness is
important, especially when the data quality is not consistent. Therefore,
this work starts by first systematically demonstrating how PC quality
(e.g. noise and missing points) is a function of scan parameters (e.g.
laser projection angle and line spacing variability). The impact of PC
quality, on the performance of an unsupervised abnormality detection
algorithm is then determined experimentally; showing how perfor-
mance is affected by factors such as PC quality, abnormality size and
threshold parameters.

Then, to achieve a more robust detection process, a supervised ab-
normality detection algorithm is considered, based on a more realistic
scenario. In the scenario considered, the qualities of the measured PCs
are highly inconsistent. This is a result of the target surface which is
significantly curved, and a robot scan path which does not fully match
the surface shape; as a result there are inconsistent laser projection
angles, geometrically dependent variation in lateral line spacing, and
varying noise over the PC. However, despite the significant variation in
PC quality, the proposed supervised algorithm is able to cope with these
issues robustly.

The paper is organized as follows; Section 2 is about the materials
and methods; the equipment setups used for this work and the data sets
collected are described. Section 3 is focused on the theoretical concepts
and calculations related to PC analysis. The experimental results col-
lected to investigate optimum inspection strategies are presented in

Section 4, and finally there is a discussion and conclusion in Sections 5
and 6 respectively.

2. Materials and methods

In this section, data preparation requirements are described for both
the unsupervised algorithm, where experiment condition is controlled,
as well as for the supervised algorithm where more realistic conditions
apply. This includes the artefacts, laser scanners, robot system and re-
constructed PCs. The sources of noise and uncertainties in the PCs are
also explained.

2.1. Artefacts

Two different types of Artefacts were used in this work. One of them
is a planar square shape artefact of 6 × 6 cm size with a 5 × 5 matrix
of abnormalities. The abnormalities are diamond shape cavities. At
each row the abnormalities are similar in size. The diameter of the
abnormalities in the first two rows is approximately 700 µm across, and
then this is reduced to 550 µm, 180 µm and 120 µm in the next three
rows.

The second type of artefacts, are Aluminium curved surface objects.
Two pieces of Aluminium surfaces of around 20 cm length and 10 cm
width with different curvature levels are used. On the surfaces there are
bumps and dents of approximately 700 µm–1mm in diameter.

The large freeform aluminium artefact is representative (in terms of
material and potential defects) of car body panels and similar large
scale highly curved structures. On the other hand, the planar artefact is
intended to present a variety of abnormalities of different sizes; al-
lowing us to draw conclusions on the impact that abnormality size has
on the accuracy of the detection algorithm.

2.2. Laser scanners

Two different laser scanners were used in this work that will be
described in the following sections.

2.2.1. Micro epsilon laser scanner
For the analysis of the planar artefact, a Micro Epsilon 3D profile

sensor, scan control 2900-50 Laser displacement measuring system, was
used. It is an accurate commercial laser scanner, consisting of a laser
light source, a sensor matrix. Fig. 2.1 shows an image of the micro
epsilon sensor that was used. The optical system on the sensor projects
the diffusely reflected light of the laser line onto a highly sensitive
sensor matrix. In addition to distance information (z-axis), the

Fig. 2.1. A Micro Epsilon laser scanner structure (image from Micro Epsilon [24]).
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controller also uses the camera image to calculate the position along the
laser line (x-axis). These measured values are then output in a two-
dimensional coordinate system that is fixed with respect to the sensor
[24]. For this scanner, the number of points in a profile is 1280 and the
adjacent point distances are 7.8 µm. At a middle z range, the resolution
along the x axis is μ40 m and according to the data sheet of the sensor,
the resolution along the z axis is μ4 m.

2.2.2. Custom made laser scanner
For the scan of the two curved shape Aluminium objects, a custom

made laser scanner consisting of a Flexpoint MVnano, 450 nm, 1mW,
30° fan angle, focusable laser and a Basler acA1600-20 gm GigE camera
was used. Choosing a triangulation angle of 35° and a stand-off distance
of 110mm, the scanner resolution is calculated to be 84 µm/pixel (X
direction, along the laser line) and 146 µm/pixel (Z direction, depth).
This can be improved by fitting across the imaged laser line width,
achieving sub-pixel resolution, as done by using the Halcon library [25]
at the time of PC extraction (see Data sets in Section 2.3.2). The number
of points per scan line is about 800. Therefore, the resolution of the
custom laser scanner is less than the micro epsilon commercial laser
scanner, adding an extra challenge to the detection problem for the
curved aluminium surfaces.

2.2.3. Robot
For testing both types of laser scanners, they were mounted on a

Fanuc LR Mate 200 iC industrial robot arm, driven by a R-30/A Mate
controller. Fig. 2.2 shows the Fanuc robot with the mounted custom
made laser scanner. Moving the scanners with the robot arm over an
object allowed a surface scan to be done, with a resolution in Y direc-
tion defined only by the robot motion.

In the case of the curved Aluminium objects, the robot path was
chosen such that the laser scanner was almost normal and at the same
stand-off distance to the target surface. This allowed scanning of the
large objects with substantial curvature and height variation, without
losing laser scanner data due to exceeding the working distance of the
scanner, or due to signal loss occurring at high angles (attributed to
light scattering and back-reflection). However, this path was generated
from the estimated target geometry, obtained via interpolation of a few
sample points; as a consequence, the scanning path might not always
accurately follow the object surface, resulting in sub-optimal data
quality, especially due to the highly curved surfaces. Additionally, the
scan was performed with fixed step size in the Y direction (dY), re-
sulting in potentially varying lateral line spacing (Li) on a curved object
(See Fig. 2.3, constant dY, varying Li). The scan steps (dY) were 500 µm
for the less curved Aluminium object (L-L) and 250 µm for the highly
curved one (HeH).

The scan step (dY) was 50 µm in scanning of the planar artefact.
This high resolution allows subsampling the scan lines to repeat the
analysis for different resolution levels of lateral line spacing. The angle
between the laser and the surface normal was varied in the range of
0°–25° in steps of 5° in scanning experiments of the planar artefact. This

angular variation influences the PC quality, which will be explained
further in Section 2.4.

2.3. Data sets

In order to generate a 3D representation of the scanned objects, the
2D laser profiles acquired by the camera sensor should be used. In
addition, the camera, laser and robot calibration information as well as
the 3D transformations related to the robot movement during the scan
are utilised.

2.3.1. Planar artefact data
The resulting 2D profiles of scan lines from the Micro Epsilon

scanner are transformed into the robot coordinate system using a 3D
hand-eye homogenous transformation matrix (the transformation from
laser scanner to robot end-effector) and also the unique transformations
from robot end-effector to robot base for each scan line. Fig. 2.4 shows
the results of the reconstructed surfaces for six different projection
angles. On the top right of each plot, a zoomed area around

< < − < <μ x μ μ y μ459 m 460 m, 81 m 80 m is illustrated. It can be seen
that the resulting PCs quality degrades severely for the last two angles
and is poor at 15°. More explanations about PC quality and its relation
to the projection angle will be given in Section 2.4. Due to the high
resolution of these scans none of the abnormalities can be seen in
Fig. 2.4. Fig. 2.5 shows the enlarged abnormalities of different sizes for
the first three projection angles that have better PC qualities. These
abnormalities mostly form a gap in scan lines. Although all abnormal-
ities are clearly representing a gap in the scan lines, it is clear from the
image that recognizing them from the PC is a significant challenge,
especially for the smaller sizes. Fig. 2.6 compares the abnormalities of
different sizes over the PC at a 5° projection angle. The two smallest
abnormalities are indistinguishable from the normal regions.

2.3.2. Aluminium objects data
The curved shape Aluminium objects were scanned using the

custom made laser scanner. Both objects contain distinct features, such
as dents and bumps of about 700 µm–1mm in diameter as shown in
Fig. 2.7(a). In both cases, identical laser scanner settings were used, but
the step size (dy) was changed, this was 500 µm and 250 µm for the L–L
and HeH samples respectively. Subsequent laser line extraction and
object reconstruction was performed using the Halcon image processing
software library [25]. As each laser scanner image was taken, it was
transformed into the robot base coordinated system that was chosen as
a common coordinate system. Fig. 2.8 shows the two PCs and some of
the abnormalities. As can be seen, the line spacing is not constant in
both PCs due to the reasons explained in Section 2.2.3. The line spacing
variability Li is shown as boxplots of the space between adjacent lines in
Fig. 2.7(b). In addition, a ratio is computed as
( = = …r , i 1, ,NPC

max( L )
min( L )

i
i

) and NPC is the number of lines of a PC.
≈−r 1.488L L and ≈−r 10.31H H which also indicates the level of spacing

variation in each case. Based on the line spaces and the abnormality
sizes in Fig. 2.7(a), it is clear that an abnormality should be coincident
with at least two or three lines in most parts of the PCs. However, theyFig. 2.2. The custom made laser scanner setup mounted on a Fanuc robot arm.

Fig. 2.3. The inconsistent line spacing due to the curved shape path.
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might be missed if they are located on those few number of outlying
lines with more than 1mm spacing.

2.4. Noise and uncertainties

Generally, in a laser scanner system, there are different sources of
inaccuracy that can result in uncertainty in a PC; for example, reflection
from surface (depending on the type of surface) or on sharp edges due

to the blooming effect, environmental effects such as light condition or
dust, shadowing that might occur when a part of the object lies in the
path from the projected laser line to the camera or systematic range
error due to the difference in reflectivity of the surfaces elements [26].
These effects result in gaps and holes in a PC due to partial reflections.
However, by appropriate choice of the laser-camera positions and their
angle to the surface normal, and by controlling the environmental
conditions, these effects can be alleviated.

Fig. 2.4. The planar artefact scans for different projection angles. On the top right of each plot, a zoomed area around the central part of the PCs is illustrated.

Fig. 2.5. Representation of various sizes of abnormalities at 0°, 5° and 10° projection angle.
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In addition, any scanning process parameter that vary the CCD laser
image properties such as aliasing effects and speckle effects [26] can be
considered as a factor that can influence the PC quality [27]. One of the

factors that reduce the noise is the choice of threshold value used for
laser line segmentation from the image profiles. A high threshold value
might cause useful data be incorrectly discarded. On the other hand, a
low value, can safely keep all the line points, but might result in a
noisier PC, especially in some local region. In the case of the Micro-
Epsilon sensor, this threshold is fixed at 128 for the manual mode that is
used for this work. In the case of custom-made laser scanner, the
threshold is adjusted slightly lower to 100, when developing the re-
construction program in Halcon. Due to these low value thresholds,
noise removal strategies are employed in this work to reduce the effect
of noise.

Another important uncertainty factor is related to the angle between
the camera and surface normal at the laser incident point (αc); the angle
between the laser rays and surface normal, which is called the projec-
tion angle (αp); and the angle between the laser and camera, which is
actually +α α( )c p . The camera-laser angle is usually fixed in a laser
scanner set-up. It is reported that the optimal angle for the latter is 90°,
and for each of αc and αp is 0° [26]. These constraints are contradictory
and a compromise in their values should be considered. For example,
given a set-up with fixed +α α( )c p , a reduction in αp, means an in-
crease in αc. In our work, the use of a Micro Epsilon commercial laser

Fig. 2.6. From left to right, abnormalities in about 120 µm, 180 µm, 570 µm, and 700 µm sizes at 5° projection angle are visualised over the PC. The red patches show the abnormalities
and the blue points are the surrounding normal areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2.7. (a) The local abnormalities on the Aluminium object. (b) Boxplots of the lateral
line spaces ( Li) for the two PCs. The central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points and
the red crosses are outliers. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2.8. 3D Plots of the two PCs of Aluminium objects and the sample abnormal regions (the axes units are in mm). The lateral line spacing (Li) is not constant.
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scanner means it is not possible to control these angles. Therefore, we
consider the set-up as a black box and apply a data driven strategy to
find the best angle for abnormality detection. For this aim, the pro-
jection angle is varied as described in Section 2.3.1. As shown in
Fig. 2.4 the variation in αp, has great impact on the quality of PC.
Computational analysis of the resulting PCs quality will be described in
Section 3.1.1 and also the obtained results together with abnormality
detection performance as a function of the projection angle will be
shown in Section 4.1. In the case of the custom made laser scanner, the
camera-laser angel is 35° and the laser was almost orthogonal to the
surface during the scans, i.e. αp≈ 0.

3. Data analysis

In this section, the analysis steps of the unsupervised approach,
using the planar artefact to generate well controlled data will be ex-
plained first. Then, the proposed supervised strategy for the more rea-
listic data scenario, using the curved surfaces, will be described com-
prehensively.

3.1. Unsupervised analysis

In this section, first the quality evaluation analysis for the planar
artefact PCs will be described. Thereafter, the unsupervised abnorm-
ality detection strategy will be explained step by step. This strategy is
used for the analysis of planar artefact data, with systematic variations
in the threshold value, abnormality size, line space resolution and laser
projection angle.

3.1.1. Computational analysis of PC quality
Different factors for the evaluation of PC quality have been reported

in literature [28,29]. In this paper, the PC quality is evaluated based on
completeness and noise. For the completeness measure, the idea used in
[30] is considered. The number of missing data points over all the PC
lines is divided by the total number of data points over the PC, in-
cluding the valid data points and the missing ones. A missing data point
is a point in the extracted lines in which, one of the 2D values is not
measured properly, due to reflection, camera viewing angle or any
other noise factors.

=Missing Ratio
I missing points

I total points
( )

( )

The other quality factor that is computed is noise. It is measured as
the standard deviation of the Euclidean distances of all points and their
corresponding points on a locally fitted surface. For this aim, PCs are
divided into patches of 2× 2mm and then, each patch is fitted to a
plane surface. A limit of 20 points is considered for fitting a patch to a
surface. That means that the patches with less than 20 points were not
considered for noise evaluation. Since the acquired PCs in different
projection angles vary in the number of total data points, the standard
error of Euclidean distances is also computed to cancel the effect of the
number of data points in the noise comparison.

3.1.2. Pre-processing
In order to alleviate the problem of low amplitude systematic noise

and remove the outliers around the PCs, a smoothing filter is used for
the data obtained from the Micro Epsilon. The MATLAB “pcdenoise”
function was used. This function removes outlier points. A point is an
outlier if the average distance to its k-nearest neighbours is above the
specified threshold. In this work, k is chosen as four and the threshold is
one standard deviation from the mean of the average distances.

3.1.3. Unsupervised abnormality detection
As seen in Fig. 2.5, the abnormalities of the planar artefact form

gaps over the scan lines. Therefore, for abnormality detection, the

Euclidean distances between the adjacent points i, j in each line is
computed, dij and the points are assigned to the abnormal class Cabnormal

if their distances are more than a threshold (see Eqs. (3.1) and (3.2)).
Otherwise, they are assigned to the normal class Cnormal.

= − + − + −d x x y y z z( ) ( ) ( )ij i j i j i j
2 2 2

(3.1)

⎧
⎨⎩

> ∈
∈

if d threshold i j C
else i j C

,
,

ij abnormal

normal (3.2)

In this work, a PC obtained by the Micro Epsilon scanner consists of
more than 1.5 million data points. To reduce the scale of the abnorm-
ality detection problem, the PC is subdivided into groups that each
represent a surface patch of 2 × 2mm. In this way rather than con-
sidering data on a point by point basis, and the abnormality detection
decision is made for each individual patch.

Due to the flat structure of the planar artefact, the lateral line
spacing (Li) and the step sizes (dy) are equal in this case. Since we are
interested to see how the resolution in lateral spacing between the lines
affects the abnormality detection, subsampling of the lines is performed
at =sp [1, 2, 3, 4, 5] levels. As mentioned in Section 2.2.3, the line
spacing resolution dY is 50 µm for the planar artefact. For each line
spacing, the detection process is repeated based on different thresholds.
The threshold values are varied based on the diameter of the abnorm-
alities μ μ μ μ{700 m, 550 m, 180 m, 120 m} divided by two. Since the
first two rows of the abnormality matrix have similar sizes, just one of
them is considered.

3.1.4. Performance evaluation
The performance of this unsupervised binary classification is eval-

uated based on the performance of abnormality detection. In addition,
from a manufacturing point of view, the most important factor is to
detect the abnormalities, or true positives (TP). If misclassification oc-
curs, then misclassification of a normal point as an abnormality, which
is a false positive (FP), is less critical than classifying a true abnormal
point as normal, which is a false negative (FN). Therefore, the receiving
operating characteristic (ROC) curve is computed based on the true
positive rate (TPR) or sensitivity as well as the true negative rate (TNR)
or specificity [31]. They are computed as based on Eq. (3.3).

⎧
⎨
⎩

= =

= =
+

+

sensitivity

specificity

TP
P

TP
TP FN

TN
N

TN
TN FP (3.3)

where TN is the true negative. An ROC curve is plotted as sensitivity
verses the FPR or − specificity(1 ). We are interested to have high TPR,
ideally one, and a low FPR.

3.2. Supervised analysis

A robust supervised strategy is used for the analysis of the realistic
data scenario described in Section 2.3.2. In this scenario the PCs ac-
quired from the curved Aluminium objects are noisier and have a
varying level of noise and lateral line spacing. In addition, the shapes of
abnormalities are more complex than simple gaps in scan lines (see
Fig. 2.8). The main aim of the supervised analysis is to classify the PCs
local regions into one of the two normal or abnormal classes. For this
aim, the abnormal PC areas were labelled manually and the remaining
PC areas were assigned into the normal class. A supervised strategy
requires dividing the PC data into training and test sets. Around two
thirds of each PC was considered for training and the rest for test. The
data selected for training was then used to form a classification model.
This model was used in the test step to identify the abnormal areas of
the test PC data. The proposed algorithm can be described as three main
steps; pre-processing for smoothing and highly noisy data exclusion,
followed by feature extraction and classification model training, finally
followed by a test step.
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Fig. 3.1 represents the flowchart of the overall supervised analysis
strategy.

3.2.1. Pre-processing
At this step, first a fine smoothing is performed to remove the few

undesired points around the PCs. Following the same approach used for
the planar artefact PC, the MATLAB PC noise removal function,
“pcdenoise”, with a small neighbour size (less than five) and fine
threshold value was used for this aim. While this alleviates small fluc-
tuations over the PCs, some features associated with real abnormalities,
especially in PCs with high line spacing, are lost after this step, as
shown in Fig. 3.2. In the data sets used in this work, this effect was
observed in some left side areas of HeH (see Fig. 2.8). One of such
abnormalities is shown in Fig. 2.8.c. Due to this effect, an abnormality
detection model should be developed based on features that are capable
of finding such cases.

Another issue is that, this fine smoothing step does not remove the
more significant noise in the PCs. As explained in Section 2.4, due to the
low threshold level, noisy PCs were formed. Basically, two different
noise effects can be observed in the data sets; there is a general noise in
all PC areas and even with fine smoothing, some noise is still present. In
addition, regions of high level noise exist in some sections of PCs. To
illustrate the variability in PC quality, an example set of PC data,
containing such a spread of noise and also a real abnormality, is shown
in Fig. 3.4. Such noisy regions can easily be misclassified as a real ab-
normality which increases the amount of FP. To cope with this possi-
bility, an adaptive local mean filter is used on small patches of PC be-
fore feature extraction to handle the general noise effect. In addition to

the adaptive filter, a novel approach is taken to address the second
noise spread problem, whereby all data from the laser scanner is ac-
cepted regardless of the perceived quality. An algorithm is then applied
to assess the quality of the data, in order to detect the regions with a
high spread of noise; to achieve this, the following analysis steps are
performed:

• First, the most suspicious lines, in terms of noise, are found using the
point to point gradients as a means of variation detection. The sum
of the absolute values of point to point gradients for each scanned
line = …l 1, 2, ,NPC are considered, = ∑ ∂ ∂= Z ig /il i 1

nl . nl is the
number of points at line l and ∂Zi/∂i shows the gradient of changes
in the Z direction at point i which is the direction that the height
variation noise occurs. Then, those gls higher than one standard
deviation from the mean are considered ≥ +μ σg (g ) (g )l l l as a list
of suspicious lines.

• Second, the list of suspicious lines is analysed. The aim is to find
whether the observed noise in a line is due to the existence of a local
abnormality observed in a small number of points in the line, or if
the noise observed is spread over a large number of points. For this
aim, the suspicious lines are segmented into bins of fixed length (20
points) = …, b 1, 2, ,B and the variation in each bin is compared to
the average variation of the line population. Based on our ob-
servations, a pre-assumption is that the number of regular points in
a line is not less than the highly noisy ones. This means that the
average variation of total bins is closer to the population of regular
points, rather than the noisy ones. Based on this, the average sum of
the absolute values of gradients at each bin μb as well as the total
average over all the bins μtb is calculated. Then, the difference of
each bin from the overall average (of gradients)

= − = …μ μd , b 1, ,Bb tb b is computed. Considering the dis-
tribution of distances is normal, a threshold can be defined using
their average and standard deviations +μ σd d to detect the number
of irregularities in the line that exceeds the threshold. If there are
few numbers of bins (e.g. less than 5) far from the average distances,
there exists a local region rather than a more evenly spread noise
contribution (see Fig. 3.3). Such lines are excluded from the original
list of suspicious lines found in the first step.

• Third, the suspicious lines are checked to be adjacent and those
individual lines far from the other groups are excluded. A margin
(e.g. 2) is also considered to include the neighbour lines before and
after the group of lines in the list.

• In the last step, the noisy points of the group of lines are found based
on thresholding the gls as performed in the first step. The detected
points at each line are integrated to remove the discontinuities and
the neighbour points within a margin before and after the area are
also included. Furthermore, the spread of indices between the group
of lines are equalized so that, an integrated rectangular shape area is
formed as shown in Fig. 3.3 and the corresponding indices are re-
corded in a filtered list L.

These points are excluded from the analysis and their 3D location
can be used for further follow-up, re-scan and inspections.

3.2.2. Feature extraction
The features necessary to classify an abnormality are defined based

on the structures and characteristics of abnormalities that make line
data collected for them different from the data collected from a regular
surface. PC abnormalities are not all in similar shape. For example, the
abnormalities shown in Fig. 2.8a and b of L-L are more similar in
structure to the one shown in Fig. 2.8d for HeH. However, there are
abnormalities such as Fig. 2.8c, which are different in structure due to
the smoothing at pre-processing step explained in Section 3.2.1. The
abnormalities similar to the former case might be confused with some
noisy regions of the PCs, but the shape of those similar to Fig. 2.8c is
different due to the missing points. They have similar form to the

Fig. 3.1. Flowchart of the supervised abnormality detection process (a) training step (b)
test step.

Fig. 3.2. The effect of fine smoothing on the weak features in high spaced scan lines (a)
an abnormality is shown on the middle line before smoothing (b) after smoothing, it can
be seen that the points associated with the abnormality have been removed.
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abnormalities of the planar artefact shown in Fig. 2.5 and Fig. 2.6. The
regions with an evenly distributed spread of high level noise are already
detected and excluded in the previous pre-processing step which alle-
viates the first problem. The choice of features can also help to reduce
these problems.

For feature extraction, the labelled abnormal regions as well as
some points from different normal regions of each PC training area are
considered. An equal number of data points in the abnormal and normal
classes is considered. That is due to the use of support vector machine
(SVM) classifiers, whose decision boundaries are sensitive to un-
balanced classes and can be skewed toward the dominant class. A local
rectangle patch of points of only a few millimetres is considered around
each point. An adaptive local mean filter is applied to the patch for de-
noising in the next step. The window size of the filter changes adap-
tively based on the sum of absolute values of gradients inside a patch,
which shows the level of variability and noise in that patch. Thereafter,
six different features are extracted, that will be described in the fol-
lowing subsections.

3.2.2.1. Normal features. One type of classic feature for abnormality
detection is surface normal. For finding the normal to a patch, a surface
is fitted to the patch points and then, the normal to the fitted surface is
computed (see Fig. 3.5). This normal is initiated from the average
coordinate of all points in the patch (Pi in Fig. 3.5). Then, the angle
between the normal and the connecting vector between Pi and each
point in the patch Pp is considered (α in Fig. 3.5). The deviation of α
from 90° increases mainly when there are variations in a patch due to
the existence of an abnormality or high level of noise. Recalling that the
major noisy regions are excluded at the pre-processing step and the
adaptive filtering alleviates the noise, we observed that the number of

points with high level of deviations (e.g. more than 50°) is more in an
abnormal patch than a noisy or regular one. Therefore, the first normal
feature is defined as the number of points in the patch with high
degrees of deviations = > ∘f N(Δ 50 )αN1 p so that, = − ∘αΔ 90α pp . The
second feature is defined based on the absolute value of difference
between Δαp and their population mean μ (Δ )αp so that,

= − μf Δ (Δ )α αN2 p p . The population mean is computed using all the
samples in a patch. This feature can be discriminative in conditions that
the number of abnormal points with large deviations is less compared to
the majority of regular points in a patch.

3.2.2.2. Height features. A significant characteristic of most abnormal
patches is the change in height of some points compared to the regular
points. This can be quantified as a feature for each point in the
patch fZp, by fitting a surface to a patch and finding the differences in
the original height of the points and the corresponding height in the
fitted plane.

In addition, the height changes can be considered at each line
within the patch. In this case, the absolute value of height deviations
from the population mean at each line is considered = − μf Zl (Zl)Zl i .

3.2.2.3. Chi-squared statistics (χ2). Since in many cases, the abnormal
points in a patch line have similar behaviour to a Gaussian distribution,
the goodness of fit to a Gaussian is considered as a feature f χ 2. The chi-
squared statistic is a measure of the goodness-of-fit of the data to the
Gaussian model. This statistic shows how many standard deviations
each data point lies from the model and is computed using Eq. (3.4).

∑ ⎜ ⎟= ⎛
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where, Lp is the number of points in a patch line, = + +dl xl yl zli i
2

i
2

i
2

is the Euclidean distance of each point in the line from the origin, μ (dl)
and σ(dl) are the average and standard deviations of dlis respectively.
The lower χ2 values show better fit to a Gaussian.

3.2.2.4. Proximity features. In the case of abnormalities similar to the
one shown in Fig. 2.8c, there is not any significant local variations in

Fig. 3.3. The plot of db in a line with one abnormality (a) and a line with a noise spread area (b).

Fig. 3.4. A real abnormal region and a detected highly noisy region L, which is excluded
from the analysis.

Fig. 3.5. Illustration of the normal to a patch and deviation angle α for a patch point Pp.
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height and there is only a gap of missing points in the PC lines. For these
types of abnormalities, a proximity feature fprox is defined based on
maximum distance of each point in a patch from its nearest point in the
adjacent lines, =f max(d , d )prox ne pr so that, dne, dpr are the distances to
the nearest points in the next and previous lines respectively. This
feature is discriminative for the abnormal points before or after a line
with a gap in, or the points located in peaks or valleys around the
abnormality area. However, they may not be significantly different for
the points within the line that the gap is located.

3.2.2.5. Feature transformation. An important requirement of a robust
classification model is to be trained based on discriminative features.
Meaning that, the features of different classes should be well separated
from each other and the level of overlap between the features of the two
classes should be as small as possible. As will be shown in Section 4.2.2,
there exist some overlap between the features of normal and abnormal
classes of the training data. In order to increase the distance of the
training features of the two classes (Ftr), the well documented
generalised Rayleigh Quotient strategy for feature transformation is
employed [32,33].

We consider the mean and covariance of the two normal and ab-
normal classes as μ( , Σ )no. no. and μ( , Σ )abno. abno. . Then, the generalised
Rayleigh Quotient strategy is based on the within-class covariance

= +S (Σ Σ )w no. abno. and between-class covariance =SB

− − + − −n μ μ μ μ n μ μ μ μ( )( ) ( )( )no. no. t no. t
T

abno. abno. t abno. t
T. nno. and

nabno. are the number of samples in the two classes and μt is the total
mean of all of the two class's features. The basic idea is to transfer the
original training features = +(F F F )tr trno. trabno into a new orthogonal
space so that, the distance between the features in each class be mini-
mized (Sw), while their distance to the features of the other class be
maximized (SB). The results should be a reduction in the overlap be-
tween the features of the two classes and this enhances the classification
model. For this aim, the, Eigen decomposition of −S Sw

1
B is performed to

find an Eigen vector that maximises the generalised Rayleigh Quotient
objective function:
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The resulting Eigen vector (w) corresponds to the largest
Eigenvalue. Depending on the desired percentages of variation that is
explained by the Eigen values, more than one Eigen vector can be used.
In this work, the first three Eigen vectors, W(1, 2, 3) are used for trans-
forming the training and test features (Ftr, Fts) into an orthogonal fea-
ture space so that, =T F Wtr tr (1,2,3) and =T F Wts ts (1,2,3). Then, having n
samples and p features as Fn× p, the transformed features will be Tn× 3.
The transformed features of the two classes will be better separated
from each other as will be shown in Section 4.2.2.

3.2.2.6. Training a classification model. Using the transformed
features Ttr, an SVM classifier is trained. SVM is a kernel-based
classification method, which is based on a maximum margin
algorithm [34]. The reason for the choice of this classification
method is that it is appropriate for data sets with linear or non-linear
behaviour due to the use kernel functions in its’ objective function. SVM
maps features into a high dimensional feature space using the kernel so
that the classification is performed more easily. For training an SVM
classification model, an optimal kernel function as well as its associated
optimal parameters should be found.

Usually, model selection strategies such as K-fold cross validation
(CV) is used for tuning the kernels and parameters [34]. It divides the
training data (Ftr) into K roughly equal-sized folds and each time con-
siders one of them as a validation set and trains a model using the rest
of the folds (see Fig. 3.6a). For the kth fold, a candidate model (e.g. a
candidate kernel) is fitted to the other (K− 1) folds of the data. Then,
the model error (prediction or classification error) is calculated by

applying the fitted model on the kth fold. This is done
for =k K1, 2, . . ., . Combining this with the number of candidate
models gives a validation error map. By averaging the error map over
the K folds, the optimal model is identified based on the minimum
average error (see Fig. 3.6b). The dimensionality of the average error
map depends on the number of candidate parameters. For example, in
this work, the choice of kernel and three related parameters are done
using an 8-fold CV; the resulting five dimensional error map is averaged
over the eight folds that give a four dimensional averaged error map.
The minimum element of this map is used to find the optimum para-
meters among the candidates. In this work, the LibSVM [35] toolbox for
MATLAB is used for the SVM algorithm.

3.2.3. Test step
A PC, acquired from the custom made laser scanner, typically is on

the scale of a few hundred thousand points. Applying the feature ex-
traction and classification on this large set of points is computationally
intensive. In order to reduce the computational load, first a fast un-
supervised thresholding strategy, similar to the method explained in
Section 3.1.3, is applied on each PC. The threshold value is chosen
based on the range of abnormality sizes.

The result of this unsupervised step provides all the suspicious
points including abnormalities (TP), noisy and missing point areas (FP).
Using this subset of data means the main analysis steps, including
patching, adaptive filtering, feature extraction are performed only on
the limited set of suspicious points. The learnt Eigen vectors W(1, 2, 3)

(from the training data) is used for feature transformation afterwards,
=T F Wts ts (1,2,3). Using the trained SVM classifier, the extracted features

are classified into one of the normal or abnormal classes. During the
feature extraction, when a patch is defined for one of the suspicious
points, the analysis is also performed for any other suspicious points in
that patch. In other words, more than one suspicious point might share
the same patch.

4. Experimental results

In this section, the obtained results from both the unsupervised as
well as supervised analyses strategies for the planar artefact and curved
shape Aluminium object will be presented.

4.1. Unsupervised analyses results

In this section, first, the evaluations of planar artefact PCs in terms
of quality for different projection angles will be presented. Then, the
unsupervised abnormality detection algorithm test results are described
for all the controlled conditions and systematic variations.

4.1.1. Quality computation results
The first experiment for the planar artefact evaluates the quality of

the PCs, when scanned in different projection angles. As explained in

Fig. 3.6. (a) The CV concept, (b) an example of a one dimensional averaged error map for
selection of optimal model.
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Section 3.1.1, the quality was evaluated in terms of the number of
missing points and deviations from a local fitted surface. Due to the lack
of points in the 25° data (see Fig. 2.4), the PC in this projection angle
could not be analysed. Table 4.1 presents the results. As can be seen, all
of the calculated factors including the number of missing points in scan
lines, the mean, standard deviations and standard errors of Euclidean
distances from the locally fitted surfaces are increased as a result of
increasing the projection angle of the laser scanner.

Due to the poor quality of the PCs and increased number of missing
points acquired at the 15° and 20° projection angles, the PCs at these
angles were not considered for the abnormality detection analysis.

4.1.2. Abnormality detection results
The second experiments for the planar artefact, is about abnorm-

ality detection. Four different factors were varied in this experiment;
the systematic change in sizes of abnormalities of the planar artefact
(see Fig. 4.1), the threshold for the unsupervised detection algorithm,
the line resolution (step size dy) and the projection angle. The PCs were
analysed based on the analysis procedures described in Section 3.1.

Fig. 4.2 shows the number of abnormalities that have been detected
at a 5° projection angle by the unsupervised strategy for four sizes of
abnormalities and for different threshold values and line resolutions.
Since the first two rows have similar abnormality sizes, the results of
just one of them are reported. As can be seen, the detection process
improved for higher resolutions (smaller dy) and smaller threshold
values. Although that is the desired result, the low threshold values
increases the number of wrongly detected abnormalities dramatically.
It is not feasible for an inspection system to re-check most parts of the
object for abnormalities that are incorrectly detected.

The ROC curves for different lines spacing resolutions and threshold
values at 5° projection angle are shown in Fig. 4.3. As can be seen, for
small threshold values, both TPR and FPR increased. While the former
is desirable, the latter results in a problem. In the worst case, when both
the resolution and threshold were lowest in value, the FPR was one,
meaning that all the normal patches were detected as an abnormal. It is
therefore clear that a compromise should be made to have a high TPR
but low FPR. The last two rows of abnormalities were hard to be seen
even by eye and in the PCs, they could not be distinguished from the
normal areas as shown in Fig. 2.6. Therefore, reducing the threshold to
detect those sizes of abnormalities introduced a significant amount of
FP to the results. Consequently, the results of applying the two smallest
thresholds, the diamonds and pentagrams markers are overlaid in
Fig. 4.3. Similar trends were seen in the results for the other analysed
projection angles 0° and 10°.

Due to the reasons explained in Section 2.4, the projection angles of

the Micro Epsilon laser scanner in terms of abnormality detection were
evaluated based on the data analysis results. In order to compare the
combined effects of projection angle and line resolution, the TPR, FPR,
TNR and FNR for different angles and line resolutions are illustrated in
Fig. 4.4. The threshold value was kept at an intermediate level, 225 µm,
in these plots. As can be seen, the best abnormality detection results or
in another words, highest TPR and lowest FNR were obtained at 5°
projection angle and after that at 10°. The worst result, lowest TPR and
highest FNR, in this case was obtained at a complete 0° projection
angle. The best result for classification of normal points, the lowest FPR
and highest TNR, were obtained for 0° and then for 5°. Regarding the
line resolutions, the higher resolutions obtained better results in terms
of TPR and FNR but the FPR and TNR for them was also higher. This
shows that, the higher the number of data points in the tested local
patches, the better the abnormality detection. On the other hand, it is
more probable that a normal point falsely be detected as an abnormal
one among the many points in a highly dense patch.

In Fig. 4.5, the TPR, FPR, TNR and FNR verses different projection
angles and threshold values are shown. Similarly, the worst TPR and
FNR as well as the best FPR and TNR were obtained for 0° and the best
TPR and FNR were achieved at 5°. The two smallest threshold values
were the best in terms of TPR and FNR and the worst in terms of FPR
and TNR.

4.2. Supervised analyses results

In this section the results of the pre-processing, combined with the
training and test steps analysis performed on the curved shape
Aluminium objects is presented.

4.2.1. Pre-Processing results
At the pre-processing step, the noise detection algorithm described

in Section 3.2.1, found the regions of the PCs where a high level of noise
exist. The distribution of noise over the HeH PC and the corresponding
filtered noisy areas by the algorithm are shown in Fig. 4.6a and
Fig. 4.6b respectively. Similar results are illustrated for L-L PC in
Fig. 4.6c and Fig. 4.6d. Only the areas where there were a high level of
noise spread were excluded and the local noisy areas were included in
the data set to be analysed, and were treated by the adaptive mean filter
before feature extraction.

4.2.2. Feature extraction and training step results
Based on the characteristics of the abnormalities of the L-L PC, that

were explained in Section 3.2.2, five features including
f f f f f, , , ,N N Zp Zl χ1 2 2 were used for training a classifier for this PC. These
features are appropriate for abnormalities that have deviations from
surface normal and height in their structure and have a shape that can
be approximated by a Gaussian profile.

In the case of HeH PC, besides these five features, the maximum
distance between the nearest points in the adjacent lines fprox was also
used. Fig. 4.7 shows the extracted features from the HeH and L-L PCs.
As can be seen in the distribution of features along the fN1 axis Fig. 4.7a
and Fig. 4.7c, many abnormal features (in red colour) have high values
(> 50°) of Δαp compared to the regular ones.

For a few abnormal features, (αp) was close to 90° and therefore,
their related fN1 was close to the regular features (in blue colour). That
can also be observed along the fN2 axis. As expected, f χ 2 is lower for
most of the abnormal features that have a Gaussian shape behaviour
compared to the regular features (see in Fig. 4.7a and Fig. 4.7c, the f χ 2

axis). In the case of height features (Fig. 4.7b and Fig. 4.7d)), fZp shows
better discrimination rather than fZl. This might be due to the fact that
the former was computed using all data points in a patch while the
latter was computed based on the data points of one line in a local
patch. In the case of HeH, the last feature, fprox shows a discriminative
effect between the two classes. As shown in Fig. 4.7b, along the fprox
axis, the regular class features are grouped into two groups of low and

Table 4.1
The quality parameters of the PCs acquired in different viewing angle. The distances are
in mm unit.

Proj. angle 0° 5° 10° 15° 20°

Missing ratio 0.0019 0.0064 0.0144 0.4151 0.9282
Mean eu. dist. 0.0140 0.0167 0.0196 0.0236 0.0249
Std. of eu. dist. 0.0110 0.0129 0.0153 0.0186 0.0188
Ste. of eu. dst. 8.9261e-6 1.0521e-5 1.2557e-5 1.9848e-5 6.2474e-5

Fig. 4.1. The matrix of abnormality sizes in µm on the planar artefact.

S. Sharifzadeh et al. Mechatronics 51 (2018) 59–74

68



high values. The low proximity features were extracted from the high
resolution areas of the HeH, where the adjacent lines spaces were very
low. Conversely, the regular points in the high spaced lines have high
values of fprox. In the case of abnormalities, most of their features are in
the middle part of the fprox axis, except those located on the high spaced
lines of the PC.

After feature extraction, the features were transformed into a new
space, using the Rayleigh Quotient for increasing the distances of the
features of the two classes, as explained in Section 3.2.2.5. The first
three feature components in the new space are shown for L-L and HeH
in Fig. 4.8. As can be seen, the training features are well separated in
the new space and the classification performance was 100% and
98.913% for the training labelled data of HeH and L-L PCs respectively.

4.2.3. Test step results
At the test step, first the unsupervised thresholding were applied to

detect the suspicious points as shown in Fig. 4.9 for HeH and L-L PCs.

The suspicious points that were among the initially detected highly
noisy areas (from the filtered list) are shown in black colour in the
images. Those points weren't considered in the next analysis steps.
Then, based on the algorithm procedures explained in Section 3.2.3, the
final abnormalities were classified (Fig. 4.9b and Fig. 4.9d). The pro-
gram found all the abnormalities successfully for both PCs and there
were no false positives in the case of L-L and only one false positive for
HeH.

5. Discussion

The results obtained from the unsupervised strategy demonstrated
the influences of the factors that were varied systematically over the
data sets. Two key factors in this case are the choice of the threshold
value for the unsupervised algorithm, and the sensitivity of the algo-
rithm to the laser projection angle. An ideal inspection system should
detect all the abnormalities and gain a sensitivity value equal to one, it
should not misclassify any normal region as an abnormal one (an FPR
value of zero or specificity of one); however, this optimal performance
is not usually the case when systems are put in to practice. As such, the
analysis of results from the Micro Epsilon scanner showed that by using
small thresholds, high sensitivity is achieved but, the specificity dra-
matically decreases. Therefore, a compromise should be made in the
choice of threshold. This is also acceptable empirically based on the fact
due to the limits of the laser scanners resolution, it is impossible to
detect the two smallest sized abnormalities that are located in the last
two rows of the planar artefact. Hence, we do not expect the classifi-
cation algorithm to detect them. While this represents a lower limit in
terms of abnormality detection, it does mean that a proper threshold
value can be chosen at a higher range e.g. in this work a value of half
the size of the third smallest abnormality. Fig. 5.1 shows the detected
number of abnormalities at each row of the planar object when dif-
ferent thresholds were chosen. As can be seen from Fig. 5.1, abnorm-
alities can be successfully detected if the threshold size is at least less
than the defect size.

Fig. 4.2. The number of detected abnormalities at 5° projection angle vurses line resolution and threshold for the planar artefact. There were a total of 5 abnormalities per abnormality
size.

Fig. 4.3. The ROC curves of the planar artefact analysis for 5° projection angle. The
markers colours are related to various line resolution and the marker shapes, ‘circles’,
’square’, ’diamond’ and ‘pentagram’ shows the threshold value variation from the highest
to the lowest respectively. The last two markers are overlaid in all cases due to the close
values of the last two thresholds and the resulting TPR and FPR.
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As well as considering the resolution of the laser scanner device, it is
also important to consider how this device is positioned relative to the
target surface. In particular it has been shown that the laser projection

angle with respect to the target surface is an imporant factor to con-
sider. The analysis of PC data, aquired for a range of projection angles,
showed that even though the best PC quality was achieved at 0°, the

Fig. 4.4. Illustration of TPR, FPR, TNR and FNR based on variations in projection angles and line space resolutions for the unsupervised detection algorithm.

Fig. 4.5. Illustration of TPR, FPR, TNR and FNR based on variations in projection angles and threshold values for the unsupervised detection algorithm.
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unsupervised abnormality detection algorithm has the worst results for
this projection angle. This can be explained based on the geometrical
characteristics of the diamond shape abnormalities. That means the
surfaces within these abnormalities become better visible to the laser
scanner at 5°. This was determined based on the data driven optimi-
sation strategy that was applied. Based on the observed results, it is

clear that the good PC quality at 0° helps to avoid misclassification of
the normal regions of the PC so that, the best FPR is obtained in this
angle and after that at 5°. Therefore, the interesting result of the data
driven strategy suggests that, the 5° can be considered as the best
compromise on the projection angle for having optimum TPR and FPR
value.

Fig. 4.6. 3D representation of the HeH and L–L PCs, coloured based on the distribution of noise (a,c). the corresponding filtered regions (b,d). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.7. The extracted features from (a,b) HeH PC, (c,d) L–L PC.
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Regarding the proposed supervised technique, according to the re-
sults shown in Section 4.2.3, the unsupervised thresholding strategy
that was applied initially on the curved objects data found a set of
suspicious points that also included some normal points (FP) besides
the abnormal points (TP). That indicates the important role of the
proposed supervised feature extraction and classification algorithm for
achieving robustness. One of the main issues in this work is the choice
of features. Generally, it is desirable to choose the most discriminative
features with minimum correlation or dependency. In order to test the
advantage of keeping all selected features, the model performance was
evaluated in terms of FP and FN as well as the classification perfor-
mance at training step for different sub sets of features. Therefore, the
classification model was trained separately using the two normal fea-
tures, the two height features, the chi-squared feature for both L–L and
HeH and also using the proximity feature for HeH and the perfor-
mance was evaluated. As shown in Fig. 5.2, for both PCs, the best result
was obtained using all the features. This demonstrates that each of the
defined features characterize a unique aspect of the abnormalities that

Fig. 4.8. The first three components of transformed features (a) HeH PC (b) L–L PC.

Fig. 4.9. (a, c) 3D representation of the initial detected suspicious points by unsupervised thresholding for HeH and L–L PCs respectively. Among these points, the highly noisy ones that
were in the filtered list (L) are illustrated in black colour. (b, d) The corresponding classified abnormalities.

Fig. 5.1. Illustration of the number of detected abnormalities, out of a total of five at each
row of the planar artefact, using four different threshold values. The projection angle is
5°.
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is important for discrimination.
Regarding the required time for inspection and analysis, the current

inspection system is presented as a proof of principle and current in-
spection speed is on the order of 500mm2/s. However, an optimized
setup can perform orders of magnitude faster and can be achieved
through more effective integration of robot and laser scanner. In add-
tion, the use of high frequency line scanners, allowing for faster surface
sweep, would also increase inspection speed. Having a previously
trained classification model the data analysis time is also short. The
running time of the test algorithm for finding abnormalities on the
aluminium object, where the aquired PCs were on the order of 150
thousand data points, was 3.35 s (using MATLAB 2015). This make the
use of proposed inspection strategy reasonable for real time applica-
tions.

6. Conclusion

In this paper two data analysis strategies for surface abnormality
detection in the manufacturing domain were presented. The relation-
ship between PC data quality, size of abnormalities and threshold
parameters with the performance of an unsupervised thresholding ab-
normality detection algorithm was investigated. A commercial laser
scanner, manufactured by Micro Epsilon, was used to scan a planar
artefact in controlled conditions considering abnormality size, resolu-
tion and laser projection angles. The PCs quality in different projection
angles was evaluated. In addition, the effect of abnormality size,
threshold value, scan line resolution as well as the projection angle (PC
quality) on the sensitivity and specificity of the unsupervised thresh-
olding algorithm was studied. The results showed that using an inter-
mediate threshold value of 225 µm, the best compromise in the desired
TPR and FPR results can be achieved. In addition, based on the char-
acteristics of the abnormalities and structure of commercial laser
scanners, a 5° laser projection angle achieved the best compromise on
discrimination of abnormalities from regular regions in terms of TPR
and FPR. Furthermore, a robust supervised abnormality detection
strategy was proposed for a more realistic data scenario, when the two
different PCs with inconsistent quality and complex object shape was
used. Results showed that robustness cannot be achieved in this con-
dition using only an unsupervised thresholding strategy. However,
using such a method prior to the supervised detection step is beneficial
as it helps reducing the computation load for the subsequent supervised
classification steps. The training classification performance of the pro-
posed supervised strategy was 100% and 98.913% for the two PCs, all
abnormalities were found in the test step and there was only one FP for
one of the two tested PCs.
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