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ABSTRACT  7 

It is important to be able to predict the creep life and other creep properties of materials 8 

used in power plants and aeroengines. Whilst existing studies have compared different 9 

creep models using different measures of predictive performance, none have identified 10 
whether these differences are real from a statistical significance perspective. This paper 11 

proposes several tests based on a review of the literature. These tests were applied to two 12 
creep models using failure time data on 2.25Cr-1Mo steel to develop a recommended 13 
approach for practitioners to adopt when selecting a creep model. All such tests 14 
concluded that the Evans model produced better long-term life predictions using only 15 

short-term data, and that this difference was statistically significant at the 5% significance 16 
level. 17 

Keywords: creep, parametric tests, non-parametric tests, mean percentage squared and 18 

absolute errors, statistical significance 19 

  20 



2 
 

Introduction 21 

It is important to be able to predict the creep life and other creep properties for materials 22 

used in power plants and aeroengines. When this can be done with a high degree of confidence, 23 

the results can potentially be used to justify the continued use of aging power plants beyond 24 

their original design lives - as a short-term solution to potential energy gaps for example. 25 

2.25Cr-1Mo steel is a main stay alloy used for structural components operating at high 26 

temperature within such aging power plants - where the usual service conditions for heater 27 

tubes is around 840 K and 35 MPa.  28 

There are many creep models available in the literature for carrying out such 29 

extrapolations and a good review can be found in Evans [1] and Holdsworth [2]. Such models 30 

generally fall into two broad categories – those that aim at predicting points on a creep curve 31 

(such as the time to failure or the minimum creep rate) and those that aim to predict the position 32 

and shape of the whole creep curve as a function of test conditions. In turn, there has been a 33 

recent subdivision of the former models into those that are parametric in nature and those that 34 

are semi or non-parametric in nature [3]. Many papers also exist in the literature that perform 35 

comparisons of these models. For example, Holdsworth [5] compared several models using 36 

2.25Cr1Mo, 9CrMoVNb and 18Cr13NiMo steels, whilst Abdallah et. al. [6], Bueno and 37 

Sobrinho [7] have concentrated on 2.25Cr-1Mo. 38 

In all these studies, differences in the predictive performance of different creep models 39 

were observed. However, in none of these studies, (and as far as the author is aware in any 40 

other published paper), was there an attempt to assess whether these differences were 41 

statistically significant - rather than simply occurring due to chance. Clearly, this is important 42 

for determining the selection of the most appropriate creep model for long term life predictions 43 

on a particular material. The objectives of this paper are therefore to review the literature to 44 

present a range of statistical tests that can be used for this purpose by future researchers. The 45 

paper also aims to illustrate how these tests should be applied using 2.25Cr-1Mo steels and two 46 

competing creep models as a test bed. It is not to identify a which of these creep models works 47 

best for any other material, or different batches of this material. That would require an extensive 48 

analysis of data on other materials, To meet these objectives the paper is structured as follows. 49 

The method reviews two performance measures and several statistical tests that are present in 50 

the literature. This section also describes two parametric creep models and how their unknown 51 

parameters can be estimated. In the results section these tests are applied to the predictions 52 

made by these creep models using data on 2.25Cr-1Mo. Conclusions are then drawn. 53 

Method 54 

 Statistical tests  55 

Evans [9,10] has suggested the use of two statistics for comparing the accuracy of 56 

competing creep models. Both are based on the approximate percentage prediction error, with 57 

one squaring this error and the other using the absolute values for these errors. Both these 58 

approaches prevent under and over predictions offsetting each other in the averaging process 59 

MPSE ≈ 
1

𝑛
∑ [𝐴𝑖 − 𝑃𝑖]2 = 𝑛

𝑖=1
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1                      (1) 60 

MPAE ≈ 
1

𝑛
∑ |𝐴𝑖 − 𝑃𝑖| = 𝑛

𝑖=1
1

𝑛
∑ |𝑒𝑖|𝑛

𝑖=1                      (2) 61 
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where MPSE stands for mean percentage squared error and MPAE stands for mean percentage 62 

absolute error. Ai  = ln(𝑡𝐹)𝑖 is the natural log of the time at which the ith test specimen fails (of 63 

which there are n such failure times in a data set) and 𝑃𝑖 is a creep model’s prediction of Ai. 64 

Note that in what follows Ai could equally stand for any other creep property such as the 65 

minimum creep rate, time to a specified strain or even strain itself. The reason for working with 66 

natural logs is that ei is then approximately equal to the percentage difference between the 67 

actual time to failure and a model’s prediction of it. This approximation is very good for 68 

percentages of around 30% or less (and obviously the smaller the better). In this paper ei will 69 

be referred to as the percentage prediction error. Evans [9,10] has also shown how both these 70 

statistics can be decomposed into random and systematic errors.  71 

The use of the MPSE has several limitations, however. The first is that an absolute-72 

value-based measure, such as the mean percentage absolute error (MPAE), is much more 73 

interpretable. Whilst taking the square root of the MPSE (= RMPSE) helps with interpretation 74 

by converting the MPSE into the same units as e, this still can give very misleading assessments 75 

of a creep models adequacy. This is because the percentage prediction errors are squared, and 76 

this makes the MPSE and the RMPSE very sensitive to the presence of any outliers present in 77 

the data, i.e. very poor predictions. Thus, there is the potential for the MPSE to underestimate 78 

the predictive performance of a given creep model. This is not true of absolute percentage 79 

errors which are more robust to the presence of such outliers. But when it comes to developing 80 

tests of statistical significance, the squaring of errors enables several well know distributions 81 

to be used for determining statistical significance (a difference can be statistically significant 82 

no matter how small the difference). 83 

Parametric based tests 84 

When selecting an appropriate creep model, the obvious approach is to select the creep 85 

model that has the smaller MPSE or MPAE. But then there is a need to go one step further and 86 

determine whether this difference is significant for predictive purposes or simply due to the 87 

specific sample of data collected. Let e1i be the percentage prediction errors obtained using 88 

creep model 1 and e2i the percentage prediction errors obtained using creep model 2. The 89 

Diebold-Mariano [11] test (the DM test) then involves creating a new series called the 90 

differential loss di which can be defined in different ways. But for this paper, di will be defined 91 

in one of the following two ways 92 

di = (e1i)
2 – (e2i)

2      or       di = |e1i| – |e2i|                                 (3) 93 

The Diebold-Mariano (DM) test statistic is then defined as  94 

𝐷𝑀 =
𝑑̅

𝑠𝑑̅

                      (4a) 95 

where  96 

𝑑̅ =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1            and               𝑠𝑑̅

2 =
∑ [𝑑𝑖−d̅]

2𝑛
𝑖=1

𝑛(𝑛−1)
                                                    (4b) 97 

Under the null hypothesis that the population mean value for d is zero, (i.e. μ = E[di] = 98 

0, where E[di] reads the expected value for d), DM has an asymptotic standard normal 99 

distribution: DM ∼ N(0, 1). Thus, there is a statistically significant difference between the 100 

predictions obtained from two creep models if |DM| > Zcrit, where Zcrit is the two-tailed critical 101 
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value from the standard normal distribution. Zcrit depends of course on the researchers chosen 102 

level of statistical significance (typically either 1%, 5% or 10%). 103 

Diebold and Mariano provided some simulation evidence to suggest that their test 104 

performance was versatile and satisfactory relative to any other test in moderately large 105 

samples over a wide range of situations, including heavy-tailed as well as normal prediction 106 

error distributions. However, they did find the test tends to reject the null hypothesis too often 107 

in small to moderately sized samples (i.e., it is oversized or has lower power). Harvey, 108 

Leybourne, and Newbold [12] found that the following modified DM test (or the HLN test) 109 

HLN = √
𝑛

𝑛−1
𝐷𝑀                     (5) 110 

performed better in all scenarios that they looked at. They also found that this modified test 111 

was not as over-sized, and that the performance of the test would be acceptable to practitioners. 112 

Under the null hypothesis that the population mean value for d is zero (μ = E[di] = 0), HLM 113 

follows a Student t distribution with n - 1 degrees of freedom: HLN ∼ T(n-1). Thus, there is a 114 

significant difference between the model’s predictions if |HLN| > Tcrit where Tcrit is the two-115 

tailed critical value from the Student t distribution. The standard assumptions required for the 116 

above two tests to be valid are that the di are normally distributed and that the variance for d is 117 

constant.  118 

Tests that were present in the literature prior to the publication of the DM test, include 119 

those proposed by Ashley, Granger and Schmalensee [13] (the AGS test) and that by Morgan-120 

Granger-Newbold [14,15] (the MGN test). However, these are tests for equality of the 121 

MPSE’s between creep models only. The foundation of the AGS test lies in the decomposition 122 

of the mean percentage squared error (MPSE) based on the work of Granger and Newbold [16]. 123 

They showed that 124 

MPSE = (𝐴̅ − 𝑃̅)2 + 𝑠𝑒
2                                                                                             (6a) 125 

  where 𝑠𝑒
2 is the variance in the percentage prediction errors 126 

𝑠𝑒
2 =

∑ [𝑒𝑖−e̅]2𝑛
𝑖=1

𝑛
                                                                                                           (6b) 127 

If MPSE1 is the mean percentage squared error associated with the n predicted creep 128 

properties obtained from creep model 1 and if MPSE2 is the mean percentage squared error 129 

associated with the n predicted creep properties obtained from creep model 2, then from 130 

Equations (6a)  131 

MPSE1 - MPSE2   = (𝑒̅1
2 − 𝑒̅2

2) + (𝑠𝑒1
2  - 𝑠𝑒2

2 )                                                             (6c)                                                                                          132 

where 𝑒̅1 and 𝑒̅2 are the average percentage prediction errors from creep models 1 and 2 133 

respectively, and se1
2 , se2

2  their variances. These variances are obtained in the same way as in 134 

Equation (6b) – with e1 and e2 replacing e. Equation (6c) can be rewritten using si = e1i + e2i 135 

and gi = e1i - e2i  136 

MSPE1 - MSPE2  = (e̅1
2 − e̅2

2) + ssg                                                                          (7a)                                                                                          137 

where ssg is the covariance between s and g  138 
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ssg =
∑ [𝑠𝑖−𝑠̅]𝑛

𝑖=1 [𝑔𝑖−𝑔̅]

𝑛
                      (7b) 139 

Equation (7a) comes about because (𝑠𝑒1
2 − 𝑠𝑒2

2 ) = 𝑠𝑠𝑔. Now, if model predictions P2, 140 

are more accurate than model predictions P1, then MPSE2 will be smaller than MPSE1 so that 141 

the terms on the right-hand side of Equation (6a) must in combination be positive. Therefore, 142 

a test of whether the MPSE2 is smaller than MPSE1, can be based on whether the combination 143 

of the covariance and the difference between the squares of the mean errors is positive. This 144 

test can be carried out by first estimating the parameters of the regression equation using least 145 

squares 146 

gi = 1+2(si - 𝑠̅) + ui                                                                                                                                                    (8a) 147 

where u is an error term with mean zero, and 𝑠̅ is the average of all the si values. The least 148 

squares estimators of the parameters 1 and 2 are 149 

𝜆̂1 = 𝑔̅    and   𝜆̂2 =
𝑠𝑠𝑔

(𝑠𝑠−𝑠̅)2
                        (8b) 150 

where 𝑠𝑠−𝑠̅ is the standard deviation in the mean adjusted values for si. From Equations (8a,b), 151 

the hypothesis that there is no difference in the MPSE’s implies that 1 and 2 will be zero, 152 

which can be tested via the null hypothesis, Ho:  1 = 2  = 0. The alternative hypothesis, that 153 

the predictions P2 have a smaller MPSE, implies that either or both 1 and 2 will be positive. 154 

Should the estimated coefficients in Equation (8a) be significantly negative, the forecasts P2 155 

are not more accurate than P1. The test that 1 and 2 is jointly zero is based on the F distribution 156 

AGS =
(∑ 𝑔𝑖

2−∑ 𝑢𝑖
2)/2

∑ 𝑢𝑖
2/(𝑛−2)

                                                                                                    (8c) 157 

where 𝑢̂𝑖 are the observed residuals in Equation (8a) obtained by using the estimated parameter 158 

values of Equation (8b). If the null hypothesis is true, AGS has an F-distribution with 2 and n-159 

2 degrees of freedom, AGS ∼ F(2, n-2). Thus, there is a significant difference between creep 160 

model predictions if AGS > Fcrit, where Fcrit is the critical value for the F distribution.   161 

If creep model predictions are further assumed to be unbiased (so (𝑒̅1
2 − 𝑒̅2

2) = 0), the 162 

AGS test then suggests that the equality of mean percentage squared errors is equivalent to 163 

equality of prediction error variances. This leads to the MGN test. This test starts with the 164 

regression equation 165 

si = (gi)+i                                                                                                                                                                         (9a) 166 

The null hypothesis Ho  = 0 states that the sum of the prediction errors from the two 167 

creep models equals random values given by i, i.e., the prediction errors from each model 168 

differ from each other by random unexplained amount  and so they are essentially the same. 169 

The standard t test can be used to test this hypothesis 170 

𝑀𝐺𝑁 =
𝜆̂−0

√
∑ 𝜀̂𝑖

2𝑛
𝑖=1

(∑ {𝑔𝑖
2})𝑛

𝑖=1 (𝑛−1)

             with               𝜆̂ =  
∑ 𝑠𝑖𝑔𝑖

𝑛
𝑖

∑ 𝑔𝑖
2𝑛

𝑖=1

                                          (9b) 171 
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where 𝜀𝑖̂ are calculated from Equation (9a) using the value for  given by Equation (9b). Under 172 

the null hypothesis that  = 0 (i.e. the error in predictions from each creep model are the same), 173 

MGN follows a Student t distribution with n - 1 degrees of freedom.  174 

The standard assumptions required for the AGS and MGN tests to be valid are that the 175 

residuals ui and i both have a mean of zero, both have a constant variance, and that these 176 

residuals are uncorrelated with si  - 𝑠̅ and gi respectively. It must be additionally assumed that 177 

the ui and i are normally distributed. However, Diebold and Mariano provide simulation 178 

evidence showing that the test can be seriously over-sized, even in very large samples, when 179 

the normality assumption does not hold. This drawback could be serious, as heavy-tailed 180 

distributions for prediction errors would seem to be quite plausible in practice. 181 

Moreover, this problem persists, and, indeed, becomes worse as the sample size 182 

increases. It is therefore desirable to have a test that is robust to this type of non-normality. The 183 

source of this problem is that the variance of  in the denominator Equation (9b) is an 184 

inconsistent estimator of the true variance for . This in turn is a consequence of the fact that, 185 

although gi and si are uncorrelated under the null hypothesis, they are not independent. 186 

Harvey et. al. [12] recommend a modification of the above test to overcome this 187 

problem 188 

𝑀𝐺𝑁∗ =
𝜆̂−0

√
∑ 𝑔𝑖

2𝜀̂𝑖
2𝑛

𝑖=1

(∑ 𝑔𝑖
2𝑛

𝑖=1 )
2

                                                                                                    (9c)    189 

Although the distribution for MGN* is no longer exactly a Student t distribution, a 190 

reasonable practical procedure is to compare this test statistic with critical values from the 191 

Student's t distribution with (n - 1) degrees of freedom. Simulations by Harvey et. al. revealed 192 

that the MGN* test does yield a test of the correct size for large samples. However, in the 193 

smallest samples, the MGN* test is seriously over-sized even when the error distribution is 194 

normal – more so than the MGN test. Thus, they recommend use of the MGN* test only when 195 

moderately large samples are available.  In the absence of large samples, they recommended a 196 

consideration of non-parametric approaches. 197 

A non-parametric test 198 

Non-parametric procedures are recommended when any of the assumptions behind the 199 

above tests are invalid. Non-parametric tests are said to be distribution free in that they don’t 200 

assume a normally distributed population, and so can be used in the presence of non-normality. 201 

To compare the accuracy of two sets of creep property predictions, the sign test (Mendenhall 202 

and Reinmuth [17]) is based on the number of times that predictions from creep model 1 are 203 

better than predictions from creep method 2. Any ties are ignored. As such it can be used to 204 

see if there are difference between two MPSE’s or MPAE’s. The number of times creep model 205 

1 is better than model 2 is given by the binomial distribution, and under the null hypothesis 206 

that both creep models are equally accurate, the probability parameter p of this distribution is 207 

0.5. That is, if both creep models are equally accurate, the probability of a specific creep model 208 

producing a better prediction than another model is 0.5 for each time a prediction is made. The 209 

binomial distribution with p = 0.5 can be written as 210 

P[X = x) = Cx
n0.5x(1 − 0.5)n−x                                                                                 (10a) 211 
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 where X is the number of times creep model 1 produces better predictions than model 2, when 212 

n predictions are made. P[X = x] reads the probability that the random variable X will equal a 213 

specific value x (e.g. the probability that creep model 1 produces x = 10 better predictions in 214 

the n predictions produced). Cx
n are the number of different ways of getting x superior 215 

predictions from model 1, in the n predictions made. 216 

  If a large or small value for x is actual observed, but this value for x leads to P[X = x] 217 

being very small (and below a selected significance level) when using p = 0.5 in Equation 218 

(10a), then this low probability for observing something that has actually happened can only 219 

be explained by p not being equal to 0.5. In which case the null hypothesis is incorrect, and 220 

creep model 1 performs differently to creep model 2 at the selected significance level (whether 221 

its better or worse depends on whether x is small or large). More formally, let x equal the 222 

number of times creep model 1 produces a percentage prediction error smaller than creep model 223 

2 224 

x = #e1i < e2i                                          for  i = 1 to n                                                              (10b) 225 

   No matter how the prediction errors are distributed, this count will always have a 226 

binomial distribution given by Equation (10a) under the null hypothesis that the two creep 227 

models are equally accurate in prediction (assuming independence). In the context of creep 228 

model comparisons, the null hypothesis is always of the form H0: p = 0.5 so that each creep 229 

model is equally likely to produce the best prediction at any one test condition. The alternative 230 

is that Ha: p > 0.5. Here Ha says that creep model 1 is more likely to produce the best prediction 231 

at any one test condition. The probability that the null hypothesis is true, the p-value, can be 232 

evaluated using the following version of the binomial distribution 233 

p-value = PX ≥ x] = ∑
n!

(n−x)!x!
0.5x (1 − 0.5)n−xn

x                                                  (10c) 234 

While this sign test has the attraction of being distribution free so that very few 235 

assumptions need to be made, it is important to realise that they ignore some of the information 236 

which is available within the data - the sign test ignores the numerical size of the errors in 237 

prediction for example. This loss of information can result in the power of the sign test being 238 

considerably smaller than those for the parametric tests described above – depending on the 239 

specific circumstances.  240 

Testing the assumptions behind parametric tests 241 

Normality of ui and i can be tested using the test statistic proposed by Doornik and 242 
Hansen [18]. This is a more powerful version of the asymptotic version proposed earlier by 243 

Jarque and Bera [19]. Both these approaches involve testing for the presence of skewness and 244 
kurtosis in the least squares residuals. Testing for normality of the ui in Equation (8a) can be 245 

done using the Jarque and Bera test statistic  246 

JB =
n(w1)2

6
+

n(w2−3)2

24
                            (11a) 247 

where  248 

𝑤1 =
∑ ( 𝑢𝑡 −𝑢)3/𝑁𝑁

𝑡=1

{∑ ( 𝑢𝑡− 𝑢̅)2/𝑁𝑁
𝑡=1 }

2/3      and     𝑤2 =
∑ ( 𝑢𝑡 −𝑢)4/𝑁𝑁

𝑡=1

{∑ ( 𝑢̂𝑡− 𝑢̅)2/𝑁𝑁
𝑡=1 }

2                                       (11b) 249 
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Under the null hypothesis of no skewness and kurtosis in the residuals, this test statistic 250 

has an asymptotic chi square distribution with 2 degrees of freedom, JB ~ (2).  Thus, there is 251 

a significant deviation from normality when JB > crit, where crit is the critical value for the 252 

chi square distribution. Testing for normality of the i in Equations (9a) can be done by 253 

replacing terms contain u with  in Equations (11). The Doornik and Hansen [18] version 254 
simply adjusts this test statistic for small samples. 255 

Homoscedasticity of the residuals ui or i can be tested using the test statistics proposed 256 

by White [20] and by Nicholls and Pagan [21] - both of which look to see if the variance in 257 
these residuals, as estimated using the squared residuals, depends on all the explanatory 258 

variables (and their squares) that are in the regression equation. The involves estimating the 𝑢̂𝑡 259 

in Equation (8a) using the  estimates in Equation (8b). Then 𝑢̂𝑡
2 is regressed on (si-𝑠̅) and (si-260 

𝑠̅)2 and the coefficient of determination R2 extracted. Under the null hypothesis of 261 

homoscedastic residuals, the statistic W = NR2 has a chi square distribution with 1 degree of 262 

freedom, W1~(1). Thus, there is a significant deviation from homoscedasticity when W1 > 263 

crit. Homoscedasticity of the residuals i in Equations (9a) can be tested by first estimating the, 264 

𝜀𝑡̂ in Equation (9a) using the  estimate in Equation (9b). Then 𝜀𝑡̂
2 is regressed on gi and (gi)

2 265 

and the coefficient of determination R2 extracted. Under the null hypothesis of homoscedastic 266 
residuals, the statistic W = NR2 has a chi square distribution with 1 degree of freedom. 267 

W2~(1).  Thus, there is a significant deviation from homoscedasticity when W > crit. 268 

Specification of two parametric creep models 269 

The above tests will be applied to two very different creep models to test whether they 270 
produce significantly different predictions of long-term life. The aim is not to establish 271 

superiority of one model over the other – simply to identify whether any statistically significant 272 

differences exist between them. The first model used in this paper is that attributed to Orr-273 
Sherby-Dorn (OSD) [22] and is given by 274 

ln(tF) = ln(𝐵) + nln(σ) +
Qc

R
(

1

𝑇
)                            (12a) 275 

where B and n are further model parameters. The model implies that there is a linear 276 

relationship between log failure time and log stress, and the role of temperature is to shift this 277 

linear relationship in a parallel fashion. Another approach that is increasingly common in the 278 

literature is to normalise stress using the high temperature tensile strength of the material TS 279 

with the additional constraint that when  = TS, tF will equal zero and as s tends to zero tF 280 

tends to infinity. This approach is rather appealing because provided the tensile strength is 281 

measure at a high enough constant strain rate, TS should represent the stress inducing 282 

instantaneous failure upon the application of a constant load in a creep test. Such a constraint 283 

is introduced using an inverted S shaped curve for the relationship between /TS and tF at 284 

constant temperature. Thus, Wilshire and Battenbough [23] introduced the creep model 285 

tF = A [−ln (
σ

σTS
)]

m
 exp {

Qc

RT
}                                                                                   (12c) 286 

which at constant temperature is the same equation that describes the inverted Weibull 287 

cumulative density function. Yang et. al. and Wang et. al. [24,25] introduced the model 288 

tF = A [
σ

σTS−σ
]

−m
exp {

Qc

RT
}                   (12d) 289 
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which at constant temperature is the same equation that describes the inverted Logistc 290 

cumulative density function. Finally, Evans [26] unified these two models by adding an 291 

additional parameter k, so allowing for other S shaped curves that fall within these two special 292 

cases 293 

tF = A𝜏mexp {
Qc

RT
}            where    𝜏 = [𝑘 (

σ

σTS
)

−1/𝑘

− 𝑘]                                      (12e) 294 

This unification comes about because as k ⟶ ∞, 𝜏m  ⟶  [−ln (
σ

σTS
)]

m
 and when k = 1 295 

𝜏m =  [
σ

σTS−σ
]

−m

. As a cumulative probability must range between 0 and 1, all the models 296 

contained within Equations (12e) have the constraint tF ⟶ ∞ as  /TS ⟶ 0 and tF ⟶ 0 as 297 

/TS⟶ 1. So, the transformed stress given in Equation (12e) is not some arbitrarily correction 298 

made to stress – instead it is integral to some new approach in the literature to creep life 299 

prediction. Further, these S shaped creep models have been successfully applied to many 300 

different high temperature materials for example, applications to 2.25Cr-1Mo [27], 316 301 

stainless steels [28], and Inconel 740/740H [29]. 302 

Estimating these parametric model 303 

 304 

In all applications of these models, there is a need to estimate their unknown 305 
parameters, and this is complicated by the fact that this should be done in a piecewise fashion. 306 

This is required because the model parameters will be different over different stress and 307 
temperature ranges to reflect the different creep mechanism operating in such ranges. This 308 
creates a further complication, namely that the test conditions at which such creep mechanisms 309 

change must also be part of the estimation procedure. The following approach estimates such 310 

break points from the data and allows the model parameters to be different either side of these 311 
break points. 312 

 313 

 Wilshire and Whittaker [28], when studying all the batches of 2.25Cr-1Mo steel in the 314 
NIMS creep data base, and  using Equation (12c) identified two distinct breaks and so three 315 

distinctly different creep mechanisms. To explain this, they suggested that at the highest 316 
stresses creep takes place through the generation and movement of new dislocations, formed 317 

at appropriate sources, since the yield stress of the material is exceeded. These new dislocations 318 
that are continuously generated due to the high stress, leads to large net movement of atoms, 319 
and so contributes to high creep rates making failure times very sensitive to changes in stress 320 
(and so large values for m in Equation (12c)). This creep occurs largely because of these 321 
dislocations moving within the grains, and under these circumstances Qc is expected to be high 322 

and equivalent to that for self-diffusion in bainitic matrices. At intermediates stresses, where 323 
the stress is below the yield stress, these authors suggest creep occurs not by the generation of 324 

new dislocations but by the movement of the dislocations pre-existing in the as received 325 
bainitic microstructure. With fewer atoms moving, the creep rate slows (and so m falls in 326 
value). Provided the movement of preexisting dislocation is predominantly within grains the 327 
activation energy will remain unchanged. 328 

 329 

However, Whittaker and Harrison [30] have suggested that at these intermediates 330 
stresses creep takes place predominantly within the grain boundary zones rather than in the 331 
grains, and this would reflect itself in a lower activation energy for creep representing diffusion 332 
along dislocations and grain boundaries. They did not formally test for this and so this paper 333 



10 
 

will use an estimation strategy that does. Then at the lowest stresses, Wilshire and Whittaker 334 

state that the bainitic regions transform to ferrite and coarse molybdenum carbide particles due 335 
to the long-term nature of the tests conducted at the very low stresses. This they argued result 336 
in creep once again taking place within the grains where the activation energy would be higher 337 

and equal to that for self-diffusion. In comparison to the Wilshire and Whittaker study, Brear 338 
[31] identified only two distinct ranges of test conditions when using Equation (12a), and he 339 
suggested that this change may be due to the high amounts of oxidized material seen on the 340 
failed creep specimens at the very lowest stresses – the result of prolonged testing. This 341 
reduction in the number of implied creep mechanisms will also be tested in the results section 342 

below. 343 
 344 

The presence of three different stress regimes suggested by the Wilshire and Whittaker 345 

study can be accommodated for in the Evans model by using the following modification of 346 

Equation (12e) 347 

 348 

ln[tF] = ln[𝐴] + mln[τ] + m1max[0, ln(τ) − ln(τ1 )] + m2max[0, ln(τ) − ln(τ2 )] + Qc
1

RT
+ +m3

𝐷

RT
        349 

           (13a)                                    350 

where 1 < 2 and these are the values for  where there is a change in creep mechanism and D 351 

is a dummy variable that equals 1 when 1 <  < 2 and zero otherwise. m1 to m3 are three 352 

additional parameters that require estimation. Thus, in the high stress regime where  < 1, the 353 

model simplified to 354 

 355 

ln[tF] = {ln[𝐴]} + (m)ln[τ] +
Qc

RT
                                                                            (13b) 356 

 357 

and in the low stress regime where  > 2, the model becomes 358 

 359 

ln[tF] = {ln[𝐴] − m1ln(τ1 ) − m2ln(τ2 )} + (m + m1 + m2)ln[τ] +
Qc

RT
             (13c) 360 

 361 

and in the intermediate stress regime where 1   < 2, the model becomes 362 

 363 

ln[tF] = {ln[𝐴] − m1ln(τ1 )} + (m + m1)ln[τ] +
Qc+m3

RT
                                        (13d)                                                        364 

 365 

Thus in the intermediate stress regime the activation energy drops form Qc (which 366 

represents that for self-diffusion) to Qc+m3, as the expectation is for m3 to be negative based 367 

on the Wilshire and Harrison [30] paper. In the high and low stress regimes the activation 368 

energy will be higher and estimated by Qc . But if m3 = 0, that will support the view put forward 369 

by Wilshire and Whittaker [28] that dislocation movement remains predominantly within the 370 

grains in the intermediate stress range. When jumping from the high to intermediate stress 371 

regime parameter m changes to a value of m+m1, with the expectation (based on the analysis 372 

by Wilshire and Whittaker and Whittaker and Harrison) that m1 will be negative so that the 373 

value for n diminishes as the stress falls (due to fewer moving dislocations). Parameter m 374 

changes to m+m1+m2 in the low stress regime. If the value for m2 is such that m+m1+m2 375 

approximates m, that would support the view that microstructural degradation is taking place 376 

so increasing m. But, if the value for m2 is such that m+m1+m2 drops off towards a value of 1, 377 
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that would be consistent with Nabarro-Herring creep. This then represents a piecewise fitting 378 

procedure where the parameters are different over different stress ranges. 379 

 380 

To estimate values for the parameters in Equations (13) the following procedure can be 381 

used. First k is set equal to 1,with 1 and 2 set equal to random values within the limits of the 382 

largest and smallest values for  within the sample of data. This enables a  value to be 383 

associated with each failure time in the NIMS creep data base so that all the variables on the 384 

right-hand side of Equation (13a) are fully quantified allowing ln(tF) to be regressed on ln(), 385 

max[0, ln(τ ) − ln(τ1 )], max[0, ln(τ ) − ln(τ2 )], 1/RT and D/RT to obtain least squares 386 

estimates for , m, m − m and Qc. This regression equation has a residual sum of squares 387 

(RSS) associated with it - that of course is minimised for the chosen value for k, 1 and 2  by 388 

the linear least squares procedure. Then a generalized reduced gradient non-linear search 389 

technique that uses centralised numerical derivatives is used to search for values of k, 1, and 390 

2 that minimise the RSS associated with the regression line given by Equation (13a). This non-391 

linear search is carried out using Excel’s Solver [32] subroutine.  392 

 393 

The presence of three different stress regimes suggested by Wilshire and Whittaker study 394 

can be accommodated for in the OSD model by using the following modification of Equation 395 

(12a) 396 

 397 

ln[tF] = ln[𝐵] + nln[σ] + n1max[0, ln(σ) − ln(σ1 )] + n2max[0, ln(σ) − ln(σ2 )] + Qc
1

RT
+ +n3

𝐷

RT
        398 

           (14a)                                    399 

where 1 < 2 and these are the values for  where there is a change in creep mechanism and D 400 

is a dummy variable that equals 1 when 1 <  < 2 and zero otherwise. n1 to n3 are three 401 

additional parameters that require estimation. Thus, in the high stress regime where  < 1, the 402 

model simplified to 403 

 404 

ln[tF] = {ln[𝐵]} + (n)ln[τ] +
Qc

RT
                                                                            (14b) 405 

 406 

and in the low stress regime where  > 2, the model becomes 407 

 408 

ln[tF] = {ln[𝐵] − n1ln(σ1 ) − n2ln(σ2 )} + (n + n1 + n2)ln[σ] +
Qc

RT
                 (14c) 409 

 410 

and in the intermediate stress regime where 1   < 2, the model becomes 411 

 412 

ln[tF] = {ln[𝐵] − n1ln(σ1 )} + (n + n1)ln[σ] +
Qc+n3

RT
                                        (14d)                                                        413 

 414 

This then represents a piecewise fitting procedure where the parameters are different 415 

over different stress ranges. The parameters of Equation (14a) can be estimated in the same 416 

way as for the Evans model by searching, using Excel’s Solver, for the optimal break points 417 

(value for where the creep mechanism changes – 1 and 2) 418 

 419 
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Results: An application of statistical tests for 2.25Cr-1Mo steel 420 

Data sources 421 

 This paper makes use of the creep failure times contained within Creep Data Sheets 3B 422 

& 50A, published by the Japanese National Institute for Materials Science (NIMS) [33-34]. 423 

This has extensive data on twelve batches of 2.25Cr-1Mo steel where each batch has a different 424 

chemical composition that underwent one of four different heat treatments - details of which 425 

are given in [33]. This paper makes use of just one of these batches, the MAF batch, which was 426 

in tube form that had an outside diameter of 50.8mm, a wall thickness of 8mm and a length of 427 

5000 mm with a chemical composition as shown in Table 1. Specimens for creep testing were 428 

taken longitudinally from this material. Each test specimen had a diameter of 6mm with a gauge 429 

length of 30mm. The creep tests were obtained over a wide range of conditions: 400 MPa - 430 

22MPa and 723K – 923K. Figure 1 plots the failure times obtained for this MAF batch at the 431 

different stresses and temperatures used. 432 

Figure 1. Relationship between stress, temperature, and time to failure for the MAF batch of 433 

2.25Cr-1Mo steel contained within NIMS creep data sheets 3B &50A [33-34]. 434 

The same NIMS data sheet also contains results from high temperature tensile testing. 435 

The tensile strength measurements shown in the first row of Table 2 were obtained using a 436 

constant strain rate of 0.0013s-1.  The models defined by Equations (12c-e) require TS to 437 

represent that stress that will induce -in practical terms - instantaneous creep rupture when it is 438 

instantly applied (so inducing a very high strain rate) to a specimen in a creep test. It follows 439 

therefore that TS must be obtained from a high temperature tensile test that is conducted at a 440 

sufficiently high strain rate – one high enough to make the tensile strength values independent 441 

of the chosen strain rate. However, a recent paper by Evans [35] has revealed that the NIMS 442 

stain rate of 0.0013s-1 is not sufficiently high enough to meet this criteria, because data on the 443 

same2.25Cr-1Mo steel obtained by Bueno and Sobrinho [7] shows the tensile strength 444 

measurements remain strain dependent above a strain rate of 0.0013s-1. The steel tensile tested 445 

by Bueno and Sobrinho was supplied in plate form with 25.4 mm thickness, according to 446 

ASTM A 387, grade 22, in the normalized and tempered condition, with a chemical 447 

composition shown in the second row of Table 1. Metallographic analysis indicated the 448 

presence of 30% bainite and 70% ferrite in the as-received condition. The specimens for tensile 449 

testing were extracted from the rolling direction and a gauge length Lo = 25 mm and an initial 450 

diameter do = 6.25mm were used for all specimens. The constant strain rate tests were carried 451 

out in a servo-hydraulic 8802 model INSTRON machine. 452 

Table I.  Chemical Composition for Different Batches of 2.25Cr- 1Mo Steel (%/wt) 453 

Source Cr Mo C Si Mn P S Ni Cu Al 

MAF [33-34] 2.46 0.94 0.1 0.23 0.43 0.011 0.009 0.008 0.07 0.005 

Bueno & Sobrinho[7] 2.09 1.08 0.097 0.32 0.50 0.007 0.002 0.03 0.01 0.05 

Balance Fe.  

 454 

Whilst the chemical composition of the specimens tested by Bueno and Sobrinho (Table 455 

1) are slightly different from those associated with the NIMS MAF batch, these differences are 456 

not enough to explain the extent to which the Bueno and Sobrinho tensile strength 457 

measurements obtained at the much higher strain rate of 0.013s-1 differ from the NIMS data 458 
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obtained at 0.0013s-1. For this reason, the results shown below for the Evans model make use 459 

the NIMS stresses normalised using the Bueno and Sobrinho tensile strength measurements 460 

shown in Table 2. 461 

Table 2.  Tensile strength measurements made on two different batches for 2.25Cr- 1Mo 462 

Steel (MPa) 463 

Data Source 723K 748K 773K 798K 823K 873K 923K 

MAF [33-34] 448 423 394 380 365 283 216 

Bueno & Sobrinho[7] 534* 513* 486 471* 456 413 360 
*Interpolated values based on the temperature dependency of the tensile strength 

 464 

Estimating the Evans model 465 

The estimation technique described above is applied to the NIMS failure times with 466 

values of 10,000h or less, i.e. to the solid data points in Figure 2(a). Failure times above 10,000h 467 

are shown as open circles. It was found that the RSS is minimised when k = 1 suggesting the 468 

Yang et. al. model [24] represents the creep data better than the Wilshire model (hence the 469 

vertical axis shows ln[(max/) -1] – which is what  in Equation (12e) collapses to when k = 470 

1). The model’s predictions are shown by the solid segmented line and this fits the short-term 471 

data (failure times less than 10,000h) very well– with an R2 value of 98.04%. The model yields 472 

an activation energy of 309 kJmol-1 in the high and low stress regions - which is quite close to 473 

that for lattice self-diffusion in this material (350 kJmol-1). This value is therefore consistent 474 

with dislocation creep controlled by lattice self-diffusion in these stress regions. Whilst the 475 

activation energy is slightly different in the intermediate stress region, this difference is not 476 

statistically significant. This suggests that in this region dislocation movement is still 477 

predominantly within grains, but because the stresses are below the yield stress, it is the 478 

movement of preexisting rather than new dislocations – hence the observed increase in the 479 

value for m and mainly unchanged value for Qc in this region. Hence the Whittaker and 480 

Harrison [30] suggestion that creep is predominantly the result of dislocation movement 481 

between grain is not fully supported by the data. 482 

 The predictions of failure times beyond 10,000h are summarised in Figure 2(b). Notice 483 

how close the trend line fitted to the data points in this Figure is to the 45o line where actual 484 

and predicted values are identical. The equation of this trend line picks up systematic errors 485 

made by the creep model in predicting time to failure, whilst the scatter of the data points 486 

around the trend line picks up the random prediction errors that the model makes. With the 487 

power term of predicted time being almost unity, the trend line reveals that this creep model 488 

has systematic prediction errors averaging 5.9% (1/0.944) above the actual failure times. 489 

Figure 2. Showing (a) the Evans representation of failure times using TS from Bueno and 490 

Sobrinho, where the model is estimated using tF < 10,000h and, (b) actual v predicted tF values 491 

beyond 10,000h. 492 

Estimating the OSD model 493 

Like for the Evans model above, the parameters of Equation (14a) were estimated using 494 

only failure times of 10,000h or less. The model’s predictions are shown by the solid segmented 495 

line and the fit to the short-term data (failure times less than 10,000h) is again good – with an 496 



14 
 

R2 value of 97.30% - slightly below that for the Evans model. There appears to be two breaks 497 

in this prediction line at a log stress of 4.44 and 4. Both breaks are statistically significant and 498 

so the data does not support Brear’s [31] claim of a single break. The model yields an activation 499 

energy of 383 kJmol-1 in the high and low stress regions - which is again quite close to that for 500 

lattice self-diffusion in this material (350 kJmol-1). Whilst the activation energy is slightly 501 

different in the intermediate stress region, this difference is not statistically significant. In the 502 

low stress regime n continues to fall in absolute terms to a value of around 2. This decrease is 503 

not consistent with Brear’s oxidation argument nor with Wilshire and Whittaker’s particle 504 

coarsening argument, It is more consistent with a move towards diffusion creep within grains 505 

at lower stresses. The predictions of failure times beyond 10,000h are summarised in Figure 506 

3(b). Notice the fitted trend line in this Figure has a slope different from the 45o line, implying 507 

a larger degree of systematic error compared to the Evans model. That is, at low failure times 508 

the model consistently underpredicts with the opposite occurring at higher failure times. 509 

Figure 3. Showing (a) the OSD representation of failure times, where the model is estimated 510 

using tF < 10,000h and, (b) actual v predicted tF values beyond 10,000 h 511 

Figure 4 shows the predictions from the Evans and OSD models in the more familiar 512 

stress v time space. The tendency for the OSD model to produce the larger predicted times at 513 

a given stress and temperature is clearly seen in this figure. 514 

Figure 4. Relationship between stress, temperature, and time to failure for the MAF batch of 515 

2.25Cr-1Mo steel contained within NIMS creep data sheets 3B &50A [31-32], together with 516 

the predicted values from the OSD and Evans models. 517 

 518 

Statistical tests 519 

 520 

Figures 2(b) and 3(b) reveal differences in the characteristics of the predicted failure 521 

times made by each creep model. The Evans model slightly overpredicts all the failure times 522 

beyond 10,000h, whilst the OSD model under predicts at the lowest times and over predicts 523 

and the higher failure times. If the Evans model is labelled creep model 1 and the OSD model 524 

creep model 2 then the data in Figures 2(b) and 3(b) produce RMPSE1 = 30.67%, RMPSE2 = 525 

46.23% with MPAE1 = 25.31% and MPAE2 = 42.55%. Clearly then, the Evans model is 526 

producing the most accurate predicted lifetimes, but the question remains as to whether this 527 

result is a peculiarity of this sample of data on 2.25Cr-1Mo steel or whether these differences 528 

are real. Not also how squaring the prediction errors (leading to the RMPSE) underestimates 529 

the predictive accuracy of each model as RMSPE > MPAE. 530 

 531 

Using di = (e1i)
2 – (e2i)

2, gave DM = -26.14 and HLN = -26.68, whilst using di = |e1i| – |e2i| 532 

gave DM = -19.71 and HLN = -20.12. Using a 5% significance level, the value for Zcrit = 1.96 533 

and the value for Tcrit = 2.06. So, |DM| >Zcrit and |HLN| > Tcrit. Consequently, the Evans model 534 

produces statistically significantly better mean squared percentage errors and mean percentage 535 

absolute errors, irrespective of whether the original or modified DM test is used. That is, the 536 

chances of the population average value for d being zero is less than 5%. Further, given the 537 

sample of 25, and based on the results of Diebold-Mariano [11], these tests reject the null 538 

hypothesis only about 0.3 percentage points more than they should. 539 

 540 
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Estimation of Equation (8a) yielded gi =  - (si - 𝑠̅) with an R2 value of 16.03%. 541 

The AGS statistic came out at 4.39, and with Fcrit = 3.42 at the 5% significance level, it can 542 

again be concluded that the Evans model produces a statistically significantly lower mean 543 

percentage square error (i.e. the null hypothesis of 1 = 2 = 0 is rejected at the 5% significance 544 

level). The Student t statistic on 1 is 0.80 and -2.10 on 2. Consequently, 1 is not significantly 545 

different from zero, whilst 2 is significantly less than 1 - which together imply the predictions 546 

from the OSD model are not more accurate than those from the Evans model. 547 

 548 

Recall that this test assumes that the ui in Equation (8a) are normally distributed with a 549 

constant variance. The JB statistic comes out at 4.12, and with crit = 5.99 at the 5% significance 550 

level it can be concluded that the null hypothesis of normality cannot be rejected at this 551 

significance level. Further, the White test for homoscedastic residuals produced a test statistic 552 

value of W = 4.15, and with crit = 3.84 at the 5% significance level it can be concluded that 553 

the null hypothesis that the ui have constant variance can be rejected at this 5% significance 554 

level. But with crit = 6.63 at the 10% significance level it can be concluded that the null 555 

hypothesis that the ui have constant variance cannot be rejected at this higher 10% significance 556 

level. Perhaps then, some degree of cation should be attributed to the results of the above AGS 557 

test statistic. 558 

 559 

Estimation of Equation (9a) yielded si = −(gi), with an R2 value of 15.23%. The MGN 560 

statistic associated with this regression comes out at -2.08 and for the modified version MGN* 561 

= -2.77. Both |MGN| and |MGN*| exceed the value of Tcrit of 2.06 and so once again the null 562 

hypothesis that both models produce the same MPSE can be rejected at the 5% significance 563 

level. Indeed, the negative value for  means that the Evans model produces a significantly 564 

small MPSE. 565 

 566 

Again, this test assumes that the i in Equation (9a) are normally distributed with a 567 

constant variance. The JB statistic comes out at 0.89, and with crit = 5.99 at the 5% significance 568 

level it can be concluded that the null hypothesis of normality cannot be rejected at this 569 

significance level. Further, the White test for homoscedastic residuals produced a test statistic 570 

value of W = 3.99, and with crit = 3.84 at the 5% significance level it can be concluded that 571 

the null hypothesis that the i have constant variance can be rejected at this 5% significance 572 

level. But with crit = 6.63 at the 10% significance level it can be concluded that the null 573 

hypothesis that the i have constant variance cannot be rejected at this higher 10% significance 574 

level. Perhaps then, some degree of cation should be attributed to the results of the above MGN 575 

test statistic. 576 

 577 

As there is an element of uncertainty surrounding the constancy of the variance for ui and 578 

i, it is worth looking at the results from the sign test that do not require this assumption. For 579 

the sign test, the Evans model produced a smaller percentage prediction error (measured either 580 

as an absolute or squared error) 20 times out of the 25 predictions made. The probability of 581 

getting such a count or higher under the assumption that both models are equally accurate (p = 582 

0.5) is, from the Binomial distribution, 0.046%. That is, such counts are highly unlikely, yet 583 

given that such a result has occurred, the only way of explaining this is to conclude that p > 584 
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0.5. Consequently, the Evans model has a higher probability of producing a better prediction 585 

of time to failure at any stated test condition compared with the OSD model.  586 

Conclusions 587 

This paper has put forward several statistical tests to assess whether one creep model 588 

produced better predictions of creep properties than another. These tests were obtained from a 589 

review of the literature – mainly within the field of economic time series forecasting where 590 

such approaches are well developed. The tests reviewed were based on either the MPSE or the 591 

MPAE, or indeed both. These statistics were then applied to predicted failure times for 2.25Cr-592 

1Mo steel obtained from two competing creep models - the well-known OSD model and a 593 

recently proposed model by Evans. The purpose being, not to identify a model that will always 594 

be superior for all materials or for different batches of this material, but to suggest a statistical 595 

testing procedure that will be useful for practitioners to analyse their own results (it is unlikely 596 

that the superiority of the Evans model displayed in this paper generalises to other materials).     597 

           More specifically, it was found that the Evans model produced both a lower RMPSE 598 

and a lower MPAE. Furthermore, all the proposed statistical tests concluded that this observed 599 

difference in the MPSE and the MPAE was real and not something that had occurred by chance. 600 

Using the 5% significance level all tests concluded the Evans model produced statistically 601 

significantly lower MPSE’s and MPAE’s (although the assumption of homogenous variances 602 

required for these tests was only accepted at the 10% significance level). However, the 603 

Binomial test, that does not require this assumption, came to the same conclusions as the other 604 

tests. These statistical tests can be used by future practitioners to identify the best creep models 605 

to work with for a particular high temperature material. Consequently, one area for future 606 

research is to apply these methods to different materials and to different creep models. 607 
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