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Abstract

Rates of Multimorbidity (also called Multiple Long Term Conditions, MLTC) are increasing in

many developed nations. People with multimorbidity experience poorer outcomes and

require more healthcare intervention. Grouping of conditions by health service utilisation is

poorly researched. The study population consisted of a cohort of people living in Wales, UK

aged 20 years or older in 2000 who were followed up until the end of 2017. Multimorbidity

clusters by prevalence and healthcare resource use (HRU) were modelled using hyper-

graphs, mathematical objects relating diseases via links which can connect any number of

diseases, thus capturing information about sets of diseases of any size. The cohort included

2,178,938 people. The most prevalent diseases were hypertension (13.3%), diabetes

(6.9%), depression (6.7%) and chronic obstructive pulmonary disease (5.9%). The most

important sets of diseases when considering prevalence generally contained a small num-

ber of diseases, while the most important sets of diseases when considering HRU were sets

containing many diseases. The most important set of diseases taking prevalence and HRU

into account was diabetes & hypertension and this combined measure of importance fea-

tured hypertension most often in the most important sets of diseases. We have used a single

approach to find the most important sets of diseases based on co-occurrence and HRU

measures, demonstrating the flexibility of the hypergraph approach. Hypertension, the most

important single disease, is silent, underdiagnosed and increases the risk of life threatening

co-morbidities. Co-occurrence of endocrine and cardiovascular diseases was common in

the most important sets. Combining measures of prevalence with HRU provides insights

which would be helpful for those planning and delivering services.
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Introduction

Multi-morbidity, or multiple long term conditions (MLTC) is defined as the presence of two

or more long-term conditions [1]. The prevalence of multi-morbidity is increasing across the

world due to ageing populations and improved survival for many chronic conditions [2–4].

multi-morbidity is also more common in less affluent or educated communities [5, 6]. Histori-

cally, health research has generally focused on single diseases, so comparatively little is known

about how multiple diseases and treatments interact. Little is known about which combina-

tions of conditions are most prevalent or troublesome. Our aim was to quantitatively evaluate

combinations of long term conditions to determine their importance when considering preva-

lence and also their impact on healthcare resource utilisation, for which we used the standard-

ised rate at which people interacted with outpatient services or as unplanned inpatient services

admission. Understanding such resource utilisation would be valuable for better planning of

healthcare and improving patient outcomes.

Several studies investigating how multi-morbidity affects patient outcomes using linear or

time-to-event regression, such as Cox regression, exist in the literature. For example, [7] devel-

oped a prediction model to estimate the risk of additional chronic diseases using a copula-

based approach. [8, 9] used multiple logistic regression to model the relationship between

multi-morbidity and some outcome measure. [10, 11] used Cox regression methods to analyse

the interplay between multi-morbidity and long term mortality. Several groups have recently

used machine learning models, typically random forests, to investigate how multi-morbidity

relates to certain outcomes, for example, random forests were used by [12] to develop a multi-

morbidity frailty index and by [13] to investigate the relationship between multi-morbidity

and healthcare expenditure. Deep learning models have recently been applied to the problem

of healthcare resource utilisation. For example [14] used an attention-based model to predict

operations from diagnosis data in secondary care, while [15] investigated predicting healthcare

expenditure from multiple sources of input data.

The use of statistical modelling and unsupervised machine learning techniques to find clus-

ters of coincident diseases and understand multi-morbidity has been thoroughly explored in the

literature recently [16]. Several groups observed that network analysis could be used to describe

a system of diseases and the interactions between pairs of disease (see for example [17–23]).

Network based approaches utilising mathematical structures called graphs and hypergraphs

have several advantages over other clustering and statistical modelling approaches. Many clus-

tering methods (for example, hierarchical clustering) allow the user to only include each dis-

ease in a single cluster, which may obscure interactions where a single disease is an important

feature of several disease clusters. Approaches utilising weighted graphs are useful since they

allow us to account for the prevalence of individual conditions while also accounting for the

number of people that have different combinations of diseases (which can be thought of as a

measure of ‘prevalence’ of sets of diseases).

We used a hypergraph rather than a simpler binary graph for this work because hyper-

graphs can quantify the effect of interactions between any number of diseases (as opposed to

just two in a binary graph). The calculation of a quantity from the graph called centrality allows

one to quantitatively estimate the connectedness of nodes within the graph. Nodes with a high

centrality are strongly connected to other nodes, which for a graph where nodes represent dis-

eases and the edge weights represent the number of people that have all diseases connected to

the edge, represents the frequency at which a single disease features in sets of diseases (and

hence, it’s importance to multi-morbidity). We used a network approach and a hypergraph in

a previous original article and tutorial paper [24]. Subsequently, work using hypergraphs has

been performed by others [25].
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The measure of prevalence of sets of diseases is only one choice of weighting scheme. Any

measure related to the sets of diseases can be used to weight the hypergraph, which reflects the

flexibility of the approach. In this study we have chosen to use healthcare resource utilisation

as the quantity with which we will weight the graph, since healthcare resource use is an impor-

tant factor to understand for healthcare delivery planning purposes, and is likely to be highly

correlated with negative patient outcomes.

This aims of this work were

1. To demonstrate the utility of hypergraphs in their application to problems of quantifying

disease set importance based on healthcare resource use, a metric unrelated to the preva-

lence of the diseases.

2. To find the most important sets of diseases based on two different measures of healthcare

resource use, interactions with outpatient services and unplanned interactions with inpa-

tient services, and a similar measure of prevalence to that used in previous work [24] mak-

ing a total of three weightings for consideration.

Methods

This study was performed using anonymised routine data held in the Secure Anonymised

Information Linkage (SAIL) Databank, a Trusted Research Environment for people interact-

ing with healthcare services in Wales, UK. The study was approved by the Information Gover-

nance Review Panel under project reference number 0911. Ethical approval was not required

nor sought for the study.

Cohort

The cohort used for this study consisted of all people living in Wales, UK on the 1st January

2000 and aged 20 years or older, which was constructed specifically to study multimorbidity in

Wales, UK. Please see [26] for a full description of the cohort used. All clinical events recorded

in primary or secondary care before the index date of 1st January 2015 were included in the

study. The raw data consisting of Read coded primary care data and ICD-10 coded secondary

care data were processed into a table containing one row per pseudonymised person ID. The

outcome measures chosen were the standardised rate of unplanned admissions to inpatient

care and the standardised rate of interactions with outpatient services recorded in the three

years following the index date (i.e. from 1st January 2015 to 31st December 2017). All data for

the study were accessed and analysed within the SAIL Databank [27, 28].

Hypergraph data

Hypergraphs were constructed using software available from [29]. Three hypergraphs were

built separately using different weighting schemes to quantify diseases prevalence and health-

care resource utilisation. In each hypergraph diseases were represented by nodes and sets of

diseases by edges [24]. The disease data were derived from primary and secondary care records

held in the Welsh Longitudinal General Practice Database and the Patient Episodes Database

for Wales respectively, and consisted of binary flags indicating the presence or absence of spe-

cific disease diagnoses in patient records. The disease definitions used were taken from the

Elixhauser morbidity index [30, 31]. Three pairs of diseases were merged (i. cancer and meta-

static cancer, ii. diabetes and diabetes with complication, iii. hypertension and hypertension

with complication) since they are closely related by nature and would induce

pseudoclustering.
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Firstly for the prevalence hypergraph node weights, we used the prevalence of the diseases

wN
i ¼
jXij

P

where |Xi| is the number of people with disease Xi and P is the total population. For the edge

weights we chose the generalised overlap coefficient

wE
a ¼

jXi \ Xj \ Xk \ . . . \ Xlj

min ðjXij; jXjj; jXkj; . . . ; jXljÞ

where Ea = {Xi, Xj, Xk, . . ., Xl}.

For the outpatient resource utilisation hypergraph the node and edge weights were the age

standardised rate of interactions with outpatient services per 100,000 people recorded for peo-

ple with the specific disease or set of diseases (i.e., the edge weight for the diabetes and rheuma-

toid arthritis edge used only people with recorded diagnoses of diabetes, rheumatoid arthritis

and no other diseases under consideration in the study but we note that people may have

recorded diagnoses for diseases that were not considered as part of the study). For the

unplanned inpatient resource utilisation hypergraph the weighting scheme was the age stan-

dardised number of unplanned admissions to inpatient care recorded for people with the spe-

cific disease or set of diseases. Age standardisation was performed using the European

standard population 2013 [32].

We then computed the eigenvector centrality of the dual representation of each hypergraph.

The eigenvector centrality of the nodes and edges of a hypergraph give a direct measure of the

importance of each to the graph as a whole and as such are interpreted as the importances of

the diseases and sets of diseases. Uncertainties were calculated using bootstrapping, i.e. a boot-

strap cohort was selected from main cohort with replacement and the hypergraph and eigen-

vector centrality were calculated, and this process was repeated. The mean of the eigenvector

centrality for each set of diseases was taken as the estimate of centrality, while the 2.5% and

97.5% percentiles of the bootstrap distribution were taken as the 95% confidence intervals. We

discarded sets from the results where the lower 95% confidence interval of the centrality inter-

sected with zero.

Further analysis

In order to construct a picture of sets of diseases that are important both because of their prev-

alence and because of their healthcare resource utilisation we constructed a composite measure

of these quantities. Firstly, we found the sets of diseases that had a centrality higher than the

median for both hypergraphs. We then found the Euclidean sum of the eigenvector centralities

(i.e. the square root of the sum of the squares of the individual eigenvector centralities). We

constructed three composite measures, two combining the overlap coefficient centralities with

the HRU centraities to investigate differences in care needs for different sets of diseases and

finally one combined measure of all three centralities.

Results

Data from a total of 2,178,938 people were included in the analysis. See Table 1 for summary

statistics. The most commonly diagnosed diseases were hypertension (13.3%), diabetes (6.9%),

depression (6.7%) and COPD (5.9%). The frequency of the number of interactions with

healthcare services for both outpatient and unplanned inpatient services was approximately

exponential other than an enhanced zero count, as can be seen in Fig 1.
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The most important sets of diseases by prevalence all featured hypertension and were gen-

erally smaller sets, with the most important being hypertension and diabetes. The most impor-

tant set containing three conditions and the 20th most important set overall was hypertension,

diabetes and obesity (see supplement for the 100 most important disease sets). the most

Table 1. The fraction of people diagnosed with the feature diseases.

Disease Diagnosed (%)

Hypertension 13.30

Diabetes 6.88

Depression 6.69

COPD 5.89

Any Cancer 4.96

Renal Disease 4.83

Obesity 4.56

Arrythmia 4.52

Other Neurological Disorders 3.61

Hypothyroidism 2.77

Deficiency Anaemia 2.58

Congestive heart failure 2.06

Fluid & Electrolyte Disorders 1.98

Weight Loss 1.87

Valvular Disease 1.69

Peripheral Vascular Disease 1.61

Rheumatoid Arthritis 1.49

Peptic Ulcer 0.94

Liver Disease 0.73

Pulmonary Circulation Disorder 0.67

Paralysis 0.54

Drug Abuse 0.53

Psychosis 0.47

Coagulopathy 0.34

Lymphoma 0.22

Blood loss anaemia 0.12

https://doi.org/10.1371/journal.pone.0295300.t001

Fig 1. The frequency of the number of interactions with healthcare services. The y-axes are logarithmic scales. Left: Outpatient services. Right:

Unplanned inpatient services.

https://doi.org/10.1371/journal.pone.0295300.g001
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important set of diseases for unplanned inpatient HRU was a set of nine diseases (Arrhythmia,

COPD, heart failure, fluid and electrolyte disorder, peripheral vascular disease, pulmonary cir-

culatory disorder, renal disease, valvular disease and hypertension). The most important set of

diseases for outpatient HRU contained eight diseases (COPD, heart failure, depression, fluid

and electrolyte disorder, obesity, peripheral vascular disease, renal disease and valvular disease)

(see supplements for the 100 most important disease sets for both unplanned inpatient and

outpatient HRU).

When combined to investigate sets of diseases that were important for both prevalence and

one of the HRU hypergraphs, we found the most important set of diseases for overlap coeffi-

cient combined with unplanned inpatient HRU was arrhythmia, heart failure and hyperten-

sion while for overlap coefficient combined with outpatient HRU the most important set was

diabetes and hypertension. See Fig 2 for a plot of the overlap coefficient hypergraph centrality

against the HRU weighted hypergraph centrality and supplemental material for tables of the

100 most important sets. In Fig 2, each point represents a set of diseases, and the distance from

the origin of each point represents the combined importance of the set of diseases. The colour

of the points represents the number of diseases in the set. It is evident that larger sets of dis-

eases typically have larger HRU centrality values, while smaller sets of diseases typically have

larger overlap coefficient centrality values.

When all three hypergraph centralities were combined, the most important set of diseases

was diabetes and hypertension. All of the top 17 sets of diseases featured hypertension. See the

supplemental material for a table of the 100 most important sets.

The single diseases that were included most often in the most important sets of diseases

were hypertension, appearing in 60.1% of the most important disease sets for outpatient HRU

and 59.9% of the most important disease sets for unplanned inpatient HRU, followed by

arrhythmia and renal disease (see Fig 3).

Discussion

This work demonstrates the use of hypergraph analysis for applied multi-morbidity research

beyond simply describing clusters of coincident diseases. The weights in a hypergraph can in

Fig 2. The centrality of the overlap coefficient weighted hypergraph (x-axis) plotted against the centrality of the HRU hypergraph (y-axis). Each point

represents a set of diseases. The colour of the point represents the number of diseases in the set. Left: Outpatient services. Right: Unplanned inpatient

services.

https://doi.org/10.1371/journal.pone.0295300.g002
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principle be used to quantify any relationship between the nodes of the hypergraph which

makes them supremely flexible and useful mathematical objects for modelling many things,

including differences in healthcare resource utilisation between people that have different sets

of diseases.

The importance of the sets of diseases when the hypergraphs were considered on their own

exhibited patterns one would expect (see for example [33] which had similar findings to our

study). There is currently no accepted standard method for defining the diseases that are con-

sidered in studies of multimorbidity, and considerable variation in methods used in the litera-

ture has led to different sets of diseases and corresponding differences in conclusions [34].

One needs to be careful when interpreting the results of hypergraph centrality, especially

when the weighting scheme is more abstract like a measure of HRU. Eigenvector centrality, as

used here, is high when a node is strongly connected to other nodes that also exhibit high cen-

trality. For hypergraphs with weightings that depend on a measure of prevalence an important

disease set is one where the number of people with the set of conditions is relatively high com-

pared to other disease sets in the hypergraph, and also that the disease set is strongly connected

to other disease sets. This implies that people with a specific ‘important’ set of diseases are

more likely to acquire new diseases. When the weighting scheme used to construct the hyper-

graph is more abstract, such as HRU for each set of diseases, the interpretation is more compli-

cated. A high centrality means that the HRU of the set of diseases is large, but the HRU of

neighbouring sets of diseases is also large. This means that if a person has an ‘important’ set of

conditions, then removing or adding a disease from the set wouldn’t have a large effect on the

approximate HRU.

We chose to consider importance of multi-morbidity using two axes, prevalence and HRU.

The most important sets of diseases for the prevalence hypergraphs were sets containing few

diseases, because the number of people that had a small number of diseases was large

Fig 3. The number of times each single disease appeared in the most important sets of diseases based on combined centrality for overlap coefficient

and HRU weighted hypergraphs. Left: Outpatient services. Right: Unplanned inpatient services.

https://doi.org/10.1371/journal.pone.0295300.g003
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compared to the number that had many diseases. The most important set of diseases in the

prevalence hypergraph was hypertension with diabetes, both of which are very prevalent

conditions.

Conversely, the most important sets of diseases for the hypergraphs weighted by HRU con-

sisted of many diseases, which is also natural as people with many diseases are likely to have

more complex healthcare needs that will require involvement of clinicians from different spe-

cialties. Despite the centrality being large for many large sets of diseases the confidence interval

around the centrality depended on the number of people in the set and often became very

large when the number of diseases in the set was large. We discarded sets where the lower 95%

confidence interval of the centrality intersected with zero. This had the effect of removing sets

of diseases where the centrality was indistinguishable from zero, but also had the effect of

removing sets with small numbers of individuals in them.

Arguably, the most important sets of multi-morbidities are those which are both prevalent

and command a large HRU. To find these sets we combined most important sets of diseases

from two hypergraphs, the prevalence centrality combined with a measure of HRU centrality.

This created a different set of rankings. The most important sets of conditions for the preva-

lence and unplanned inpatient combination was arrhythmia, heart failure and hypertension

while for the combination of prevalence and outpatients HRU was diabetes and hypertension.

We observed that the most important sets of diseases for the outpatient activity combination

were smaller than for the emergency inpatients combination. Hypertension appeared promi-

nently in the list of most important sets for both combinations.

Combining centrality measures for all three hypergraphs we have computed provides an

overall picture of the diseases that have the highest general HRU and are relatively prevalent

compared to other sets of diseases. The most important sets of diseases using this measure all

featured hypertension, with the most important set being diabetes and hypertension. For

future work one may consider applying a weighting to the combination of centrality measures.

In this study the hypergraph centralities are all weighted equally, but we note that when com-

bining a prevalence hypergraph and a HRU hypergraph the prevalence component contributes

50% of the combined centrality, but for this combination of all three hypergraphs the preva-

lence component only contributes 33.3% of the combined centrality. The contribution of

hypergraph weights were allocated equally since there was no identified a-priori method to

allocate disproportionate weightings. This observation could be used to tailor the method to

specific research questions, for example, in demographic groups where the majority of health-

care interactions are delivered via outpatient services, the hypergraph derived from outpatient

HRU could be weighted more highly in the combined centrality than inpatient HRU

centrality.

Hypertension was the disease that appeared most frequently in sets of diseases that were

important in both the prevalence and HRU hypergraphs by a large margin. Hypertension is a

“silent” condition, inasmuch as moderate or even severe hypertension often presents with no

symptoms. Furthermore, it is commonly associated with an increased risk of life-threatening

cardiovascular conditions like heart attack and stroke. The order of the single diseases that

appear most commonly in the most important sets of diseases is largely the same for the two

measures of HRU, meaning people who have higher HRU for unplanned impatient care are

likely to also have higher HRU for outpatient services.

This study has presented a combined analysis of disease set prevalence and HRU using

hypergraphs. We have quantitatively evaluated sets of diseases based on their prevalence and

their HRU and ordered the sets of diseases based on importance. The study has the advantage

of providing a quantitative estimate for the importance of every set of diseases (some methods

for clustering diseases require that diseases can only appear in one set for example) and
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hypergraph objects are general enough to allow one to choose the weighting scheme used to

capture the information needed by the research. A limitation of the hypergraph approach is

they it can be very time consuming to compute, as the number of edges scales exponentially

with the number of nodes. This makes bootstrapping to calculate uncertainties quite time con-

suming, even on a computing cluster. The flexibility to define the hypergraph weights also

leads to some difficulties in the interpretation of hypergraph centrality.

Our results are coherent on the relatively small but growing literature on the impacts of

multimorbidity. Soley-bori and colleagues carried out a systematic review of the impact of

multimorbidity on healthcare costs and utilisation in the UK [35] in 2020, identifying 17 stud-

ies (7 on costs and 10 on HRU). Whilst the different studies used different demographic inclu-

sion criteria, grouping of morbidity, and time frames the overall patterns were similar;

multimorbidity found to be associated with increased primary care, emergency department

and inpatient resources. Similar patterns have been reported from Denmark, India, Catalonia

and China, again using different categories and methodologies [36–39].

The results of this study should be of interest to health planners, patients and patient advo-

cacy groups. Combining measures of prevalence with HRU provides insights into aspects of

the ‘importance’ of sets of multi-morbidities which would be helpful for those planning ser-

vices. For future work it may be of interest to perform this analysis in cohorts of people with

specific, common diseases to understand the common sets of comorbidities and HRU in those

subcohorts. From this study, the most interesting populations to explore in studies of this type

would be people with hypertension, diabetes or depression.

Supporting information

S1 File. Prevalence hypergraph most important disease sets. The one hundred most central

sets of diseases based on prevalence weighting.

(CSV)

S2 File. Unplanned inpatients hypergraph most important disease sets. The one hundred

most central disease sets from a hypergraph weighted using the number of unplanned inpa-

tient visits.

(CSV)

S3 File. Outpatients hypergraph most important disease sets. The one hundred most central

disease sets from a hypergraph weighted using the number of outpatient visits.

(CSV)

S4 File. Prevalence and outpatients HRU most important disease sets. The one hundred

most important diseases from the prevalence and outpatients HRU hypergraphs combined

into a single importance score.

(CSV)

S5 File. Prevalence and unplanned inpatients HRU most important disease sets. The one

hundred most important diseases from the prevalence and unplanned inpatients HRU hyper-

graphs combined into a single importance score.

(CSV)

S6 File. Prevalence, unplanned inpatient and outpatients HRU most important disease

sets. The one hundred most important diseases from the unplanned inpatient, prevalence and

outpatients HRU hypergraphs combined into a single importance score.

(CSV)
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