
Tense & temporality: Computing
and the logic of time

Troy Kaighin Astarte

This chapter explores the role of time in logic, from ancient history
to modern computing. It provides an outline and primer on the de-
velopment of tense logic, and explores how these ideas found their
way into computer science. The chapter examines how certain philo-
sophical problems in this space saw new light as technical questions,
and explores the role of logic in computer science.

Keywords: history of computing, logic, concurrency, history of science, philosophy of science

1 Introduction

The consideration of time in logic is both ancient and thoroughly modern. From Greek
philosophy to computer science, investigation into tensed logical statements showed
they increase the expressiveness of a logic and its connection with the real world, but
also its complexity. While the classic Aristotelian view was that a statement could
change its truth value with time, this became theologically concerning when examining
statements about determinism and the omniscience of God. Debate on the logic of
time saw detailed and thorough treatment only in the 1950s when A. N. Prior devel-
oped ‘tense logic’, a form of modal logic1 in which notions of time and contingency are
expressed as modalities. Although Prior saw an immediate application to computing,
the ideas broke into this field only in the 1970s, and via alternate means.

1 This branch of logic concerns predicates which express possibility or certainty, typically
through ‘possibly’ and ‘necessarily’ operators. Such logics are often evaluated by means of a
‘possible world’ semantics which allows the linking of modal propositions. Neither the logic
itself nor its history is discussed in detail here; the interest reader is referred to Hughes and
Cresswell (1968) as a standard reference or Goldblatt (2006) for its history.

In the late 1960s Manna was working on systems for proving termination of programs.
Burstall took some of Manna’s ideas and gave them a different notation in a 1974 pa-
per—and made the connection to modal and temporal operators. Meanwhile, Pnueli,
who had worked alongside Manna and Francez on cyclical programs, took Burstall’s
ideas and applied them to concurrent behaviour, naming this ‘The temporal logic of
programs’. Concurrent systems are those in which different components act simulta-
neously while sharing certain resources; they are mandated by the presence of hard-
ware which operates at different speeds, and concurrent behaviour may be deliber-
ately introduced into programs for performance benefits or to model real-world paral-
lel systems. Handling the behaviour of such programs has been recognised as a
difficult task since at least the 1950s,2 and the 70s saw the emergence of various theo-
retical frameworks—of which temporal logic is one—for modelling and reasoning
about concurrent behaviour.

The case of temporal logic demonstrates an example of ancient ideas considered
purely philosophical ending up with serious practical applications. One interesting
facet of this is the rediscovery of many old problems in new contexts. Computer scien-
tists working with temporal logic came against and argued about issues such as
whether time should be considered branching or linear; the interpretation of future
tensed propositions in the present; and the creation of appropriate models for logical
systems. In most cases, these computer scientists considered these problems entirely
unaware of the history behind them.

This chapter explores the ‘logic’ background of temporal logic and investigates how the
ideas came into computing. It considers the early field of temporal logic and shows ex-
amples of old arguments recurring in new contexts. It begins with a brief overview of
some pre-modern views of logic in time, before considering some areas of particular
interest that re-emerge in the computing era. Prior’s tense logic is introduced, and
then the routes by which these ideas made their way into computer science literature
is examined. Temporal logic for concurrency is then discussed and the earlier prob-
lems are reintroduced; the chapter concludes by considering what this story says
about the role of logic in computer science. The case is made that temporal logic, like
much of theoretical computer science, sits neither in logic or mathematics, nor within
the practical toolset of the everyday programmer, but somewhere else entirely.

A large part of the material in this chapter on the pre-computing era draws from the
analysis by Øhrstrøm and Hasle (2007) who provide both contextually accurate and

2 The major challenge is preventing harmful interference which can arise when different
concurrent agents access a resource simultaneously. See Astarte (2023) for discussion of
the historical emergence of this problem and some of the ways to address it.

modern rephrasing of historical logic systems. A final note on terminology: in this
chapter, ‘tense logic’ is taken to refer to the logic of Prior and others, working outside a
computing context; ‘temporal logic’ will denote such logic ideas applied to computing.

2 Old problems, old logics

An early problem, discussed in the work of Aristotle, was how to cope with the in-
herent unknowability of the future (Øhrstrøm and Hasle 2007, §1.1). In On Interpreta-
tion (Chapter IX), the example is presented of potential fight happening at sea to-
morrow. We use 𝐹𝐹𝐹𝐹 to denote the statement “There will be a sea-fight tomorrow”, for
reasons which will become apparent later. The question is: how can the truth of 𝐹𝐹𝐹𝐹 be
interpreted today?

If there are two potential outcomes which are opposite—a fight, or no fight—and nei-
ther of these is contingent on anything today, but that everything which happens (i.e.,
every true statement) is necessitated; then there is no way to determine right now
whether 𝐹𝐹𝐹𝐹 or its negation is true. Aristotle recognised the modality of this situation:
if tomorrow there is indeed a fight, making 𝐹𝐹𝐹𝐹 true yesterday, did that make it also
necessary? And if tomorrow there is no fight, was 𝐹𝐹𝐹𝐹 not possible yesterday? Aristo-
tle’s perspective was that the past and present are deterministic, but the future is not.
All true statements about the past and present are necessary, but true statements
about the future might only be possible. This, however, created a disquieting asym-
metry between past and future.

One way to interpret Aristotle’s position was reasoned out by Richard of Lavenham (c.
1380) starting with the idea that it might simply be impossible to interpret statements
like 𝐹𝐹𝐹𝐹 (Øhrstrøm 1983). To many religious logicians, like Lavenham, this was problem-
atic due to God’s omniscience; and the future being deterministic was equally unap-
pealing. Lavenham’s solution was to reject the necessity of the past. An alternative ap-
proach, favoured by Jan Łukasiewicz (1873–1956), was to reject the law of the excluded
middle, and introduce a third truth value, ‘undetermined’, which could be the result of
evaluating statements like 𝐹𝐹𝐹𝐹 (Øhrstrøm and Hasle 2020).

More relevant for the current chapter, another interpretation of Aristotle was put for-
ward by William of Ockham, and later Peirce, which allowed both the excluded mid-
dle for future propositions, and non-determinism of the future. These were reasoned
out into full modern logical systems by Prior (1967). The idea was to reject the classical
view of time as a single line.

The alternative was to view the future as branching out from the present like a tree,
in a series of different possibilities. A simple illustration of the sea-fight branch can be

seen in Figure 1. The present can even be considered as one of a set of potential pre-
sents along various parallel lines of time, no longer accessible due to previous forks. As
time progresses, one of the possible futures becomes the present, and then the past,
leaving an asymmetric tree with the past as a line.

 [Fig. 1] Aristotle’s sea fight example

Using this branched notion of time allowed Prior to develop a few ways to address
the knowability of future events. One is that all future paths are true until they reach
the present and are evaluated; though Prior didn’t care for that one; after Ockham, the
most religiously satisfying view is that only one future is true but is as yet unknowable
to mere humans; finally, after Peirce, another interpretation of future propositions is
that they are true only when true in all possible futures. Branching approaches like
these, especially the second, allowed logicians to solve the omniscience problem: while
to a human the various potential paths might be unknown and therefore subject to
free will, God is able to identify which future is the real one.

Prior’s contributions to the logic of time are not confined to the branching structure
thereof; the next section examines his work and sources of inspiration.

3 Prior & before

Arthur Norman Prior (1916–1969) was born in New Zealand and brought up a devout
Christian, even intending to follow a career as a Presbyterian minister while he stud-
ied philosophy at the University of Otago (Copeland 2020). Prior’s early interests lay
in ethical philosophy, and the relationship between free will and omniscience. He was
introduced to logic by one of his tutors, John Findlay. Prior favoured realism over ideal-
ism and was opposed to purely formal logic in philosophy, writing that logic was use-
less unless it helps describe the world (Jakobsen 2020). After a little work on ethical
logic, Prior became interested in the history of logic. Likely inspired by Findlay, who
had sketched some propositions for a calculus of time, Prior began to study, among
others, Peirce, Łukasziewicz, and Boole.

Boole had written about time in the context of probability, assigning ‘simple’ proposi-
tions a numerical value between 0 and 1, combining them with algebraic laws to create
more complex events (Øhrstrøm and Hasle 2007, §2.1). However, he introduced an in-
teresting “surreptitious” shift in which these values represented not the probability of
the events occurring, but rather the truth of statements that those events occurred
(Durand-Richard 2023). This allowed him to sidestep the philosophically-challenging
problem of ascertaining the true independence of events. Prior shared Boole’s belief in

the importance of finding a role for time in symbolic algebra, though he felt Boole’s
logic, lacking specific operators for tensed statements, was insufficiently rich (Prior
1957, Appx. A).

Like the mediaeval scholars he had studied, Prior believed that since human speech
naturally contains many tensed statements, any system of logic which purports to de-
scribe the world as experienced by humans must be equally rich in its ability to ex-
press temporal notions. Critically, Prior held that sentences like ‘Socrates is sitting’
must be viewed as complete without needing extra components such as ‘at time 𝑡𝑡 ’
to become interpretable (Øhrstrøm and Hasle 2007, §2.5).

Prior’s approach here came from his historical knowledge, especially Peirce and
Łukasiewicz. Peirce too had studied mediaeval logic and used concepts from this in
his semiotics, though he believed that the early 20th Century was not the right time
to bring temporal aspects back into logic (ibid., §2.2). Peirce related modality with time
by connecting ‘actuality’ with the past and present, and ‘possibility’ and ‘necessity’ with
the future, which enabled his view of the future as a set of branching possibilities, and
his proposal for rationalising the apparently competing doctrines of human conscious-
ness, omniscience, and determinism.

LŁukasiewicz’s work in the 1920s and 30s had established a new ‘Polish’ school of logic,
cementing the logical paradigm in which Prior later worked. One relevant facet of
that approach was the translation of historical logical systems into symbolic ones,
thereby allowing their properties to be analysed alongside modern logic. Just as Prior
would, Łukasiewicz used concepts from ancient and mediaeval logic in his original
work (Simons 2021). This was present in his interpretation of Aristotle as describing a
contingent future view which rejected bivalence in favour of a third, ‘possible’, truth
value. Though Prior did not himself favour trivalence, he was full of praise for
Łukasiewicz in many other ways, and made extensive use of his Polish notation.3

Armed with this inspiration, Prior developed a number of systems he called ‘tense
logic’ based on the ordering of events in time. He took the universe of possible worlds
from modal logic into the temporal domain as instants in time; and the accessibility re-
lation between these instants became sequentiality. In this context, the modal ‘neces-
sity’ operator because a temporal ‘always’, and ‘possibility’ became ‘at some point’.
Prior presented his work in the John Locke series of lectures in Oxford 1955–6, and
published a book the next year (Prior 1957). By 1967, the ideas had caused

3 This concise system for writing propositions uses only the Roman alphabet but is deeply
expressive and has the benefit of unambiguous order of interpretation without requiring
brackets. For more on the way this writing tool shaped logic, see Dunning (2020).

significant waves in the logic community (Copeland 2020) and Prior had written a se-
quel, in which he presented a variety of logical systems and their subsequent proper-
ties (Prior 1967).

In the present chapter we will consider the basic aspects of Prior’s tense logic and
some specific points, rather than attempting to cover every single system.4 Tensed
statements are expressed as logical propositions combining untensed terms, usually
lowercase Roman letters, with uppercase Roman letter operators capturing the tense. 𝑃𝑃
and 𝐹𝐹 indicate that something happened at some point in the past or future (respec-
tively) and are outlined in Figure 2.a. 𝐻𝐻 and 𝐺𝐺 capture events that have happened, or
are going to happen, continuously; they are presented in Figure 2.b. These statements
are interpreted with reference to a privileged instant which is ‘now’.

 [Fig. 2] (2.a) Expressing tensed notions with indeterminate operators, (2.b) Determinate tense logic opera-
tors

This system also does not allow the expression of duration. In order to study this, we
first need to examine another critical problem in the logic of time: the basic units of
the logical system.

Though Prior (1967) discussed this idea in some depth, examining the consequences
of various choices, it has a longer pedigree, much like the question of linear or
branching time. As far back as Aristotle, again, the question arose of whether to con-
sider time as a dynamic continuum, or a series of static instants. It was given a partic-
ularly thorough examination in the work of John McTaggart Ellis McTaggart,5 who used
this in his provocative argument for the unreality of time (McTaggart 1908).

McTaggart classified logical systems about time into two types: A and B. The A-theory
view of time is that presented above; it is the logic of tenses and is operator-first,
with statements made relative to a privileged ‘now’. Operators are defined axiomati-
cally (e.g., 𝐺𝐺𝐺𝐺 ≝ ¬𝐹𝐹 ¬𝑝𝑝) and they are able to translate temporal statements lacking
measurements into a formal setting. See Figure 3.a for definitions.

By contrast, B-theory systems start by defining the notion of a comparable instant.
Logical propositions are associated with instants using an operator which lets us
judge the truth of a proposition at a given instant. B-theory relies on concepts of simul-
taneity, before, and after as its main notions; critically, it does not afford privilege to

4 The interested reader is referred to Øhrstrøm and Hasle (2007) for extensive discussions
and many fine points.

5 The unusual duplicity in his name is due to being named ‘John McTaggart Ellis’ at birth, after
his great uncle John McTaggart. When that latter died, he left his estate to the Ellis family on
the condition that they changed their family name to McTaggart. They complied by adding it
to the end of every family member’s name (McDaniel 2020).

any particular instant, not even ‘now’. The same temporal operators can be defined as
in A-theory, but are now given in relation to the series of instants. Definitions, following
Prior (1967) and Øhrstrøm and Hasle (2007), are given in Figure 3.b.

Operators from A-theory can be defined with relation to the time series of B-theory, as
seen in Figure 3.b. Øhrstrøm and Hasle (2007, §3.2) detail an argument that B-theory
should be seen as the ‘basic’ system, with the premise that B-theory concepts cannot
be expressed in A-theory since it has no way to express the ordering of events. That
the B-theory is seen as the standard is reflected in its primacy in the Stanford Encyclo-
pedia of Philosophy entry on temporal logic (Goranko and Rumberg 2022). However,
Prior was opposed to that view, in part motivated by his own realist philosophy which
privileged human-intuitive models, including (in his view) A-theory. Øhrstrøm and
Hasle (2007, §3.2) agree, and provide a mechanism through which A- and B-theory con-
cepts can be freely inter-translated.

It is notable that many modern logics were developed by people familiar with complex
mathematics (e.g. Russell, Kripke, Scott). By contrast, Prior did not train in maths until later
in life, and tense logic was developed in an almost purely philosophical setting. This cre-
ated an emphasis, at least initially, on using tense logic for conceptual investigations,
hence the strong connection with statements in natural language. Tense logic did, how-
ever, still attract the intellectual cachet of formalism, though its form differed: A-theory
lent itself to an axiomatic presentation and B-theory to a semantic model (ibid., §2.8). This
is how they are presented in Figures 3.a and 3.b.

[Fig. 3] (3.a) Prior’s A system of tense logic, (3.b) Prior’s B system of tense logic.

The distinction is relevant for the application of tense logic to computing, for which
the potential utility of discrete-time B-systems was recognised by Prior (1967, 67). He
wrote they “are applicable in limited fields of discourse in which we are concerned
only with what happens next in a sequence of discrete states, e.g. in the working of a
digital computer.” Despite this observation in 1967, the impact of tense logic on com-
puting did not come until well into the next decade. This history is traced in the next
section.

4 Time, for computers

One early glimpse of a logic of time in a computing setting came from McCarthy and
Hayes (1969), writing a review of ideas from philosophy that could be exploited for
their AI work at Stanford. The authors propose a ‘fluent’ function which allows state-
ments such as ‘given one situation, a certain other will eventually result’. The authors ex-
plicitly made the connection between this situation calculus and Prior’s tense logic,

presenting inter-translation of the relevant operators. They also propose a ‘formal liter-
ature’ which is “like a formal language with a history: we imagine that up to a certain
time a certain sequence of sentences have been said. The literature then determines
what sentences may be said next” (ibid., 32). As well as an interesting anticipation of
2010s natural language processing AI, this notion has a reflection in later models of
temporal logic which use sequences of (abstract) computer states as models for his-
tory, and which determine the future properties of the system or its allowable actions.

While this paper shows glimpses of how the ideas of tense logic could be used in com-
puting, it seems to have made little impact on the early development of temporal logic
in computer science. This could be because of its focus on the AI domain, quite
different to the applications for which early temporal logic work were developed. (It
has a large number of citations in AI literature). Instead, the line of work taking tense
logic to concurrency goes via another Stanford connection, the work of Zohar Manna
on termination.

The task of verifying the correctness of programs is difficult and has a long history
(Jones 2003). An early proponent was Bob Floyd (1967), who drew flowcharts of pro-
grams with logical assertions expressing properties at particular points. Floyd then
conducted semi-formal proofs using axioms about the program behaviour and input
to trace through its intended execution, demonstrating that particular conditions
about the program output would be true. In this way, Floyd, and others who followed
in his style such as Hoare (1969) argued that a program could be verified correct.6

However, should there be some error in program or input that prevents it terminating
(for example, a loop which is supposed to count down to a target value instead counts
upward indefinitely), the program’s correctness cannot be shown. Since most programs
in the 1960s were ‘functional’ (i.e., intended to produce an answer), proving termina-
tion was a desirable feature. Due to the halting problem (Davis 1965), an algorithm to
automatically determine whether an arbitrary program terminates is impossible; but
for some programs it is possible to construct a proof of termination. Floyd used his
annotations to show that every step of the program decreased some quantity towards
a limit (e.g., a loop counter decrementing to zero). The inherent future tense in the
question “Will this program terminate?” provides a hint to why this line of work even-
tually involved tense logic.

6 Later proponents of program verification would come to talk (more precisely) about a
program ‘meeting its specification’ and detractors argued about the applicability of proofs
made about abstract representations to the physical working of programs—but these
concerns are out of scope for the current chapter and the interested reader is directed to
MacKenzie (2001, Ch. 6).

We see in the work of Floyd and Hoare some early attempts to bring programs into the
domain of mathematical proofs. There is yet to be any explicit connection with logic
(though later Hoare’s work would be termed ‘Hoare logic’) and neither author pro-
vides citations to literature outside the computing field. Instead we can observe that
their use of logico-mathematical constructs like propositions and predicates assumes
the audience has familiarity with these concepts already. From the framing, the au-
thors position themselves within the tradition of formal semantics for programming
languages, one of the earliest academic spheres of theoretical computer science (As-
tarte 2022). By the late 1960s, the precedent for these approaches was well-estab-
lished, though much-criticised; indeed, this new strand of program verification was in
some respects an answer to the difficulties of formal semantics (ibid.). The application
of techniques explicitly influenced by logic is yet to appear, and, as we will see, was
largely reinvented.

The thread begins properly with Floyd’s student Zohar Manna (1939–2018), who stud-
ied mathematics at the Technion in Haifa, Israel, before embarking on a PhD at Carnegie
Mellon. His dissertation ‘Termination of algorithms’ (Manna 1968) took Floyd’s ideas fur-
ther and included significantly more logical weight. The idea was to translate an algo-
rithm (an already abstract representation of a program’s functionality, not dissimilar to
Floyd’s flowcharts although less pictorial) into a series of statements of first-order
predicate calculus. Through a careful manipulation of these predicates, now in the
space of logic, a particular statement could be formulated, the (logical) satisfiability of
which would indicate the termination of the original algorithm.7 Through a series of
papers, Manna (1969a, 1969b) showed that the translation into logical predicates could
be achieved for more concrete programs. This decision to move away from merely
adding logical statements to programs (as Floyd had done) and instead to translate
wholesale into predicate calculus represented a new way of thinking about programs in
a logical way: forefronting the logic as the space for reasoning.

Manna (1970) next became interested in non-deterministic programs—those which,
rather than being functional, have a number of equally correct possible terminations.
This work led ultimately towards his collaboration with another Stanford postdoc, Ed
Ashcroft (Ashcroft and Manna 1971), which addressed (inherently non-deterministic)
concurrent programs. However, this approach to concurrency was ultimately discarded
by Manna and did not inform his further work; for more on this, see Jones (2023).

7 Satisfiability is a property of formulas in mathematical logic; a formula is satisfiable iff there
exists an value for each of its variables which results in the overall formula being true. For
example, i < 0 is satisfiable when i can range over the integers, but not when i is confined to
the natural numbers.

Instead, Manna (and Pnueli) came to favour a modal-logic based approach, which
appeared a paper by Rod Burstall (1974). Burstall had encountered Manna’s ap-
proach to program correctness, but found his wholesale translation into predicate cal-
culus overly complicated for problems which Burstall felt were relatively simple. In-
stead, he favoured a more informal proof of program correctness and termination
achieved by ‘stepping through’ a pen-and-paper simulation of a program’s execution.
This proof was built using predicate assertions attached to points in the program.

The key distinction came from Burstall using two kinds of assertion attachment. In
the standard Floyd approach, as used by Manna, an assertion must always be true
every time the control flow reaches that point in the program. Burstall, however, intro-
duced another kind of assertion which stated that execution of the program would
eventually reach that point with a particular assertion true (ibid., 308). To illustrate
the distinction, a typical Floydian assertion within a loop whose termination criterion
is 𝑖𝑖 > 𝑛𝑛 might state 𝑖𝑖 ≤ 𝑛𝑛; whereas Burstall’s assertion would state 𝑖𝑖 > 𝑛𝑛. The distinc-
tion might seem rather trivial at this point, and, indeed, Burstall shows that there is not
much expressive difference in his approach and Floyd’s, since in functional programs
one would expect control to pass through every point in a (well-written, terminating)
program. Instead, some proofs come out easier with Floyd’s and some with Bur-
stall’s. The real value would come later, with an application to non-deterministic and
concurrent programs, where the multiple valid outcomes meant that control would not
be guaranteed to flow through a whole program.

Burstall made the important observation in the paper’s conclusion that what he
wrote represented a simple form of modal logic. His ‘eventually’ notion was like the
modal possibility operator and a standard Floyd-like assertion was like the necessity
operator. The possible world semantics of modal logic establishes an interpretation for
modal statements: a proposition of the form ‘possibly 𝑝𝑝’ is true if a world in which p
is true is somehow accessible from the actual world. Burstall’s formulation used “pos-
sible states” and their accessibility was shown through the path of program execu-
tion. Clearly Burstall was deeply familiar with logic literature since he could pre-
cisely state to which system of Hughes and Cresswell (1968) this corresponded (S5)—
however, despite his accessibility notion connecting states of computation through
time, he did not make the connection to Prior’s tense logic. The fact that this section
comes at the conclusion, and is not used as a motivator throughout the text, sug-
gests that Burstall did not consider this the major contribution of his work—perhaps
seeing it instead as something of a curiosity rather than a significant tool for the pro-
grammer to use.

Burstall’s ideas got back to Manna, and provided the inspiration for a new direction in
his work, reported on in a joint paper with Waldinger (1976). Now the concept of tem-
porality appears at last in a computer science context, with the title reading ‘Is “some-
time” sometimes better than “always”? Intermittent assertions in proving program cor-
rectness’. Despite this there are no references to the logic literature—the authors do
not follow Burstall’s lead. Instead the paper is situated firmly in the program correct-
ness paradigm. ‘Intermittent assertions’, which term was coined in this paper as a way
to describe Burstall’s idea, and opposed to the Floyd-style assertions which they
called ‘invariant’, are used for proving the correctness and termination of programs in
a single proof. This is seen as the major reason to prefer intermittent assertions, though
the authors do note in the conclusion that while termination is an interesting prop-
erty, many useful classes of program do not terminate, and for those, intermittent asser-
tions might also turn out to be appropriate. This line of work was followed by another
Israeli, Amir Pnueli.

Pnueli (1941–2009), according to his longtime collaborator Harel (2010), was a quiet and
gentle man, generous; his habit of running late with work did not prevent his contribu-
tions being recognised for the 1996 Turing Award (Zuck 2019). Pnueli’s had a back-
ground working on applied mathematics before moving to Stanford as a postdoc in
1967 (ibid.). There, he worked with Manna and knew his early ideas; their work together
concerned moving problems from computing and programming into first order predi-
cate logic, but there was yet to be any sign of modal or tense logic.

By the mid-1970s, Pnueli had returned to Israel, setting up a new computer science
department at Tel Aviv University, where he became interested in non-terminating and
cyclic programs, such as operating systems and—critically—concurrent programs
(Francez and Pnueli 1978). Viewing such programs as functional transformations of
input into output, worked rather poorly. Pnueli did not wish to give up on logic, but
came to believe that a dynamic approach was needed. He expressed this in a speech
in 2000, after receiving the Israel Prize (quoted in Zuck 2019):

In mathematics, logic is static. It deals with connections among entities that exist in
the same time frame. When one designs a dynamic computer system that has to
react to ever changing conditions, ... one cannot design the system based on a
static view. It is necessary to characterize and describe dynamic behaviors that
connect entities, events, and reactions at different time points. Temporal Logic deals
therefore with a dynamic view of the world that evolves over time.

The early work of Francez and Pnueli did not yet use the language of temporality; nor
did they cite Manna and Waldinger (1976), suggesting their work happened some-
what independently. Francez and Pnueli analysed the ongoing behaviour of a program

as its key property, and wanted to formalise how a program reacted appropriately to
stimuli. This lent itself to statements of the form ‘if input 𝑥𝑥 happens, then at some point
the program will do 𝑦𝑦 in response’. By introducing an explicit time variable to proposi-
tions about their computational statements, these inherently temporal statements
could be expressed. Over these discrete time, ordered, sequences of states, an oper-
ator 𝐸𝐸𝐸𝐸 [eventually] was used. This is a clear example of a B-theory system of tense
logic, though it was reinvented in this paper. While Pnueli and Francez knew of Bur-
stall’s work and followed a similar strategy for their proofs, they did not take up on
his suggestion for using modal logic.

One computer scientist who did present his work with a strong grounding in logic
was Fred Kröger, who was working at Technische Universität München in the mid-
1970s. Inspired by Burstall, but unaware of Manna and Pnueli, his program logic is
likely the earliest example of tense logic in computing. Kröger (1975) argued that since
algorithms are dynamic, a logical system is needed to cope with propositions that be-
come true or false over time. Kröger introduced a language for program logic that had
specialised operators to represent specific program components such as branching and
looping, which he formalised using Kripke semantics, a standard method for modal
logic.

A few years later, Kröger (1978) became aware of Manna and Waldinger (1976) and
showed how their approach connected to the literature of logic. Here, he presented a
complete logical system with operators 𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑠𝑠𝑠𝑠𝑠𝑠. While we have seen the latter,
an 𝐹𝐹 equivalent, emerge many times (and implicitly seen 𝐺𝐺 appear in the guise of Floyd-
style invariant assertions), this is the first discussion of a ‘next’ operator in computing.
Not typically included in Prior’s tense logic, a chapter on ‘Non-standard Logics’ in his
later book considered this operator (Prior 1967, § IV.3). This operator, which Prior
called 𝑇𝑇 (for ‘tomorrow’, and its complement Y for ‘yesterday’), was due to Dana Scott,
who had some widely-cited work in this area that was never published (Copeland
2020). Only applicable to discrete-time systems, this operator indicates a particular
proposition should hold in the state directly succeeding the one in which the term is
evaluated.

In response to Kröger’s presentation, Pnueli mentioned that he was working on a sim-
ilar system for concurrency and non-determinism using only the ‘sometimes’ and ‘always’
modalities. In the years since his paper with Francez, Pnueli had encountered these
modal notions. While on sabbatical at the University of Pennsylvania, Pnueli was work-
ing on problems stemming from his partnership with Manna, according to Øhrstrøm
and Hasle (2007, 344) who had personal communication with Pnueli. At Penn, Saul
Gorn showed Pnueli Logic of Commands (Rescher 1966), which was not directly useful,

but provided a reference to a book by Rescher and Urquart (1971) called Temporal
Logic which did inform his work. Pnueli said this was “late 1975 or early 1976”; given
that it was not mentioned in the paper with Francez, later seems more likely. With
this material in hand, Amir Pnueli (1977) was able to make a proper link to the logi-
cal literature. Here, he synthesised ideas from Burstall, Manna, and Kröger with some
firm modal logic, calling the result ‘temporal logic’—noting also that McCarthy and
Hayes (1969) had made some suggestions along these lines. Intermittent assertions
could now be formalised using ‘temporal reasoning’ and applied to concurrency. In a
later publication expanding the idea (Pnueli 1979) uses a state sequence semantics
and includes a Kröger style ‘next’ operator 𝑋𝑋 alongside 𝐹𝐹 and 𝐺𝐺 , now explicitly invoking
the connection with Prior.

Here we can see a new phase in the application of logic to computing. While Burstall,
Manna, and Pnueli (and their collaborators) had taken ideas here and there from logic,
much of their work in the 1970s created new ways of thinking about programming
largely ignorant of the related literature in logic. By the end of the decade, the links
were discovered, and a new basis for the computing logics could be presented, as part
of a distinguished lineage. In contrast, Kröger explicitly evoked much of the logic canon
in his work, but perhaps because of its lack of immediate connection to the program
proving paradigm, it was somewhat overlooked—though all the same components were
present as in Pnueli’s paper a few years later, it is Pnueli that received the Turing
Award. This will be discussed further in the current chapter’s conclusion, but first, let
us example the manner in which Pnueli’s temporal logic was presented with its new
logic grounding.

5 Temporal logic canon

By 1980, Manna held positions at both Weizmann and Stanford and Pnueli was at Weiz-
mann; the two build a network of researchers into temporal logic located around Israel.
Many of these can be seen as collaborators during this time and in the acknowledge-
ments of a series of joint works by Manna and Pnueli (1981a, 1981b, 1982, 1983). These
papers lay out a canonical form for temporal logic, specifically positioned as a method
for abstract reasoning about, and verification of, concurrent programs.

By now, Manna and Pnueli had become versed in modal and temporal logic, and reinter-
pret their previous work in this grounding—making reference to Prior (1967) and
Rescher and Urquart (1971). Indeed they build their own logical system by presenting
modal logic as a well-known natural starting point. They provide the justification for
employing modal logic as a basis for temporal logic by explaining that it fixes one varia-
ble and allows variation over others. While standard predicates and quantifiers allow

expression of properties of a particular program state, temporal operators indicate rela-
tionships between states. Using modal logic is not wholly necessary for a temporal
logic system, since Pnueli had already shown that time could simply appear as a pa-
rameter in predicate logic system; but by making time the major variable its importance
as the factor linking states is more clearly emphasised.

[Fig. 4] Temporal operators defined in Manna/Pnueli style

The logic system uses a discrete sequence of ordered states and operators are de-
rived from this—in other words, a B-system. The technical details are represented in
Figure 4; note the use of pictorial operators borrowed from modal logic rather than the
uppercase letters Prior used. The system explicitly includes an axiom (no. 39) of ‘for-
wards linearity’: there is no branching future here.

Having built a temporal logic system which is so far entirely abstract—applicable to any
kind of tensed statement about events—Manna and Pnueli work in the parts specific
to programs. By deriving axioms from particular programs and adding them to the
overall temporal logic, expressions of properties of those programs can be made. The
proof principles and decision procedure of the logical system can then be used in order
to prove them. Various proof strategies are presented, which build on the intermittent
assertions approach of Manna and Waldinger (1978) as well as Manna’s early work on
termination. Pnueli and Manna provide an intriguing advantage for using this latter sys-
tem: less temporal reasoning is required. The implication here is that the additional
complexity of reasoning using the logical system might be off-putting to potential users.

The presentation of temporal logic in this series of papers, which forms the basis of text-
books written by Kröger (1987) and later Manna and Pnueli themselves (1992), paints a
different picture to that which is outlined in the current chapter. This temporal logic sys-
tem which was built up a variety of authors over a series of years started with systems
that worked very closely with programs—and which might conceivably form part of
an advanced programmer’s workflow—is presented here firmly as a variety of the
well-established modal logic. This reframing of their work as part of a time-honoured ab-
stract logical world mirrors the “reflective closure” of the formalisation programming
language semantics, a related field of computer science (Astarte 2022), and is typical
of the way computers were reinvented as logic machines in the 1980s (Priestley 2011).

The four Manna/Pnueli papers discussed in this section indicate the maturing of tem-
poral logic into a central canon, with the duo at the centre and support from their
growing research environment. The topic started to be taught, e.g., by Kröger at TUM
from 1983, out of which course he wrote a textbook combining the core ideas from
Manna and Pnueli with some own aspects of his own earlier logic (Kröger 1987).

Work throughout the 1980s on temporal logic continued in two veins: experimentation
with the core logical system—adding operators, testing expressiveness, decision pro-
cedures, and so on—this activity often coming from the Israeli group; and applying the
ideas from temporal logic to practical tools and approaches, often externally to Manna
and Pnueli’s team. Those applications are explored in the following section.

6 Problems of the past, logics of the future

With an established canon of temporal logic to examine, we can now return to some
of the old logical questions considered previously in this chapter: the fundamental ba-
sis for a system, and the branching or linear nature of time. As explored earlier, McTag-
gart identified two basic conceptions for thinking about tensed statements, A- and B-
theory, which Prior subsequently considered in some detail. Every computer science
publication cited in the present chapter uses only a B-theory basis: why? One reason
is the ostensible focus on programming which set state sequences as the domain of
discourse, thanks to an established literature on the syntax and semantics of pro-
gramming languages being heavily state-based (see Astarte 2019, 2022). Prior himself
had noted that B-theory could be applicable for problems involving computers. It is
however curious to wonder why the canonical series of papers, which uses the lan-
guage of abstract logical systems so clearly, does not even explore an operator-first
A-system. Another potential explanation is that insignificant linkage to practical pro-
gramming was a good way to get computing theory dismissed as irrelevant in the
1960s and 70s—even though that link was rarely exercised (Astarte 2022). The tem-
poral logic canon discussed above does give example ‘programs’ for treatment within
the logical framework, but these are all rather small, and none are actually written in a
real programming language (rather, pseudocode is used).

Leslie Lamport (1941–) was interested in providing a more practical framework for
this kind of logic; and, indeed, also in the question of branching time. Lamport studied
a PhD in mathematics, and, unusually for a someone who made significant contribu-
tions to computer science theory and practice—even winning the Turing Award in
2013—never had a permanent academic position and spent his career in industry.
Lamport became interested in concurrency through algorithms; he saw a paper on the
mutual exclusion problem in Communications of the ACM and thought he could write a
better solution, eventually developing the ‘bakery algorithm’ (Lamport 1974). In the
process, he came to believe that concurrent algorithms need reliable proofs (Hoare and
Lamport 2020).

Like many others mentioned in this chapter, Lamport (1977) invented his own tem-
poral system, in his first publication on proving properties of concurrent programs.

It hinges on his operator A ⇝ 𝐵𝐵 which he reads as “if a legitimate execution reaches a
state in which A is true, then it will subsequently reach a state in which B is true”.
Like with many other authors, Lamport appears to have invented this independently
of the logic literature, including no citations thereto; and though he references Manna’s
work, it is the early material with Ashcroft that has no temporal aspects.

By the end of the decade, Lamport (1980) had become aware of both temporal and
tense logic, providing many citations to Rescher and Urquart (1971). Lamport’s concern
was now that linear time might not always be the best model, as reflected in the title
‘“Sometime” is sometimes “Not never”’—an obvious reference to Manna and Waldinger
(1976). He writes out a branching time temporal logic, noting that branching and lin-
ear time are equally but not equivalently expressive. In branching time, in which
every possible future is equally real, “sometime p” should denote that p is true at
some point in every future path. However ¬□¬ 𝑝𝑝 (or ◊ 𝑝𝑝) means that it is not true that
every future path has p continually false, i.e., at least one future path has p true at
some point. See Figure 5 for an illustration.

Lamport argues that branching time temporal logic is better for modelling non-deter-
minism, in the sense of automata theory, where a non-deterministic machine is one
that pursues all its possible courses simultaneous and terminates successfully when
one course succeeds.8 On the other hand, concurrency is often modelled by a system in
which actions of concurrent agents happen sequentially, but the order of which is non-
deterministic. Lamport made the case that reasoning about concurrent programs is
concerned only with the sequence of events that actually happens in the future of the
program, and so linear time temporal logic is more suitable since it constrains the fu-
ture to one path.

Branching time was addressed by the Israeli group: Ben-Ari, Pnueli, and Manna (1983)
present some ideas in this respect. To set up branching time, the semantic model is
changed from state sequences to state trees, rather like in Figure 5. The future is
then a tree rooted in the current state; quantifiers range over branches and tem-
poral operators within branches. This means that there is a distinction between the
operator ∃𝐹𝐹 (true in at some point in the future on least one branch) and ∀𝐹𝐹 (true at
some point in the future on every branch).

[Fig. 5] Different interpretations of future tensed propositions in a branching future

8 This kind of automata-theoretic approach is used in the work of Pratt (1976, 1979) and
Harel and Pratt (1978).

This allowed the expression of yet more properties, and, the authors claim, presen-
tation of non-deterministic programs more naturally; yet some aspects remained in-
expressible in either given system. Branching time, generally, is less suited to discus-
sions of fairness,9 since the tree of all possible computations includes unfair paths; yet for
discussion of non-deterministic properties, it is the only model to use.

Lamport frequently wrote about temporal logic in a rather critical tone, particularly
that he felt many systems were “too expressive”, especially when they included ‘next’
operators (Lamport 1980). In developing a system for specifying programs using tem-
poral logic, Lamport wrote about needing, for example, “a lot of ordinary mathemat-
ics glued together with a little bit of temporal logic” (Lamport 1999), presumably in
backhanded reference to the large quantities of complicated mathematics in the Israeli
group’s papers. Lamport’s system TLA (Lamport 1994) and its successor TLA+ (Lamport
1999) was intended for practical use by software engineers for specifying concurrent
systems. The idea was that a programmer could work out the core functionality of their
proposed system using a TLA model and verify some important properties before
the complexities of implementation made the task more difficult. He emphasised a
‘compositional specification’ approach with the basic module unit used to built more
complex specifications. The underlying temporal logic system appears simple and
uses as its only operator, though assertions are allowed over pairs of states, which he
calls ‘actions’ and which implicitly incorporates a notion of ‘next’. While these actions
are inherently temporal, the reasoning about them can be non-temporal, simplifying
the process. Following his earlier remarks about its suitability for concurrent systems,
TLA uses linear time logic. TLA+ did indeed end up seeing some success in industrial
use, notably by Amazon Web Services (Newcombe et al. 2015; Cook 2018), though both
utilised additional tools to check the specifications—specifically, the model checker
TLC (Yu, Manolios, and Lamport 1999).

The model checking paradigm also has its roots in temporal logic, though it has grown
to be a significant tool of the verification community. While Lamport downplayed the
mathematics and temporality in TLA, Clarke and Emerson (1981) were not afraid to
dive into the technicalities of branching time logic. According to Emerson (2010), he
had been trying to work with concurrency in a Hoare logic framework and found the
manual proof constructions difficult and time-consuming. Emerson heard Manna give
a talk on fixed points at the University of Texas in 1975, and this led to a team at
Texas trying to apply this to parallel programs; results were presented by Emerson and
Clarke (1980). Working in this setting, the duo realised their ‘fixed point’ semantics
corresponded to the branching temporal logic of Ben-Ari, Pnueli, and Manna (1983).
They felt this branching logic struck a nice balance between expressiveness and decida-
bility, though the complexity of many concurrent programs still caused difficulties.

Clarke and Emerson (1981) therefore used a ‘synchronisation skeleton’: the program’s
concurrency management aspects with all the sequential parts hidden.

The model checking approach starts with a specification written in the CTL language.
From this, a synchronisation skeleton can be automatically synthesised and will have a
finite number of states as a consequence, making it amenable to mechanised check-
ing. Their branching time logic is used since the ability to quantify over paths of com-
putation, not available in linear time logics, is useful in program synthesis. Properties
can be proven about the skeleton and once the synchronisation is proven correct the
rest of the program can be written. The program synthesis is based on the decision
procedure for the satisfiability of CTL; Clarke and Emerson (1981) note that although
the procedure is potentially exponential, the skeletons tend to be quite small.

This work on the branching time logic CTL, and the surrounding development and
verification ideas, led to the Turing Award being granted to Emerson and Clarke in
2007, alongside Sifakis, who developed essentially the same idea independently (Emer-
son 2008). The paradigm is called ‘model checking’ since their algorithm checks
whether the synchronisation skeleton, is a proper model of the properties desired for
the program. Since the 1980s, there have been many developments in the area, seeing
particular success in applications to hardware verification, an area where problems
tend to be smaller in size and more regular (Emerson 2010). As well as the Amazon
examples discussed above, other industrial uses were presented by Emerson and Nam-
joshi (1998), who also some-what poetically claimed model checking addressed Leibniz’s
dreams of universal calculus.

Like TLA+, model checking in the early 2000s represented a more prosaic dream: the long-
awaited industrial applicability of theoretical computer science and the formal methods
community. Emerson (2008) reports Daniel Jackson claiming model checking “saved
the reputation” of formal methods, and, grudgingly, Dijkstra admitted it was an “ac-
ceptable crutch”. From its early recreations in the 1970s, and ancient roots in philoso-
phy and theology, the logic of time has, at least, found a place in the 21st Century.

7 Conclusions

Though the origins of the logic of time have ancient and philosophical roots, con-
cerns about effective ways to express temporal concepts continue to resonate even
when placed into an entirely different context, that of digital computers. Whether at-
tempting to investigate the tensed nature of human language, or to state critical prop-
erties of concurrent programs, the precision of a logic of time provides a useful tool.
The ability to state difficult tensed notions formally yet intuitively was as essential for

Prior trying to represent the human experience as Lamport attracting software engi-
neers to a specific paradigm. It is perhaps less surprising that philosophy should prove
relevant to concurrent programming when we recognise the world as a giant concur-
rent system, full of independent agents behaving unpredictably.

In the computing context the question of time’s structure as linear or branching changes
from a theological conundrum pitting omniscience against free will to one of the rela-
tive merits of non-determinism or fairness in concurrency. This choice presents real
technical challenges over which statements can be phrased in a logic system and the
significant difficulties of combining them. Choosing a structure for the future affects
what can be proven to be true: the way the world is viewed, is, in a sense, changing
its very nature. Despite this, the two practical systems for temporal logic discussed
here, model checking and TLA, effectively manage this choice and the TLC system even
uses aspects of both.

By contrast, the debate over A- and B-theory as the fundamental basis for a logic of
time is almost entirely ignored within computing. It is simply taken as automatic that a
B-system based on state sequences is the appropriate choice, likely an extension of ex-
isting views on the semantics of programming languages and proofs of programs. Per-
haps this also stems from the lack of engagement by the early computer science work
with the long history of time in logic. Unlike Peirce, Łukasiewicz, and Prior, all of
whom studied and used historical logic, temporality took a circuitous route into com-
puting.

Though Prior had already identified the potential application of tense logic to comput-
ers in 1967, and McCarthy and Hayes noted some connections, most computer sci-
entists here did not engage with the logic literature until the early 1980s. Instead, simi-
lar ideas were slowly reinvented and later rationalised when the connections were real-
ised. It is interesting to observe that the exception to this rule is Kröger, whose work
connected to the logic literature immediately; despite—or perhaps even because of—
this, his work did not cause a great deal of impact and he is often overlooked in the in-
ternal history of the field.

Once a temporal logic system research agenda was established, largely around Manna
and Pnueli, experimentation with the system formed the dominant trend of the 1980s.
The establishment of the agenda can be seen in the way that many new introductions
began with student projects and were then incorporated into the canon via joint pa-
pers with Manna and/or Pnueli—e.g., branching time with Ben-Ari (1983).

Penetration of these ideas towards practical applications took a long time, and it is worth
observing that the two discussed here took different routes: simplicity in TLA to en-
courage programmers to specify with it; and complexity backed up with tool support for
model checking. It is interesting to observe that Manna and Pnueli, as well as Lamport,
find the complexity of temporal reasoning sufficiently off-putting as to sell ways to
avoid it as positives in some of their systems. Further, both practical temporal sys-
tems mentioned here, TLA and CTL, use a simplified program structure for the tem-
poral reasoning to cut down on the complexity and enhance the usability of their sys-
tems.

The standard narrative in computer science that computers grew from the application of
logic theory is lacking in nuance, as Priestley (2011) notes; rather, much of theoretical
computer science stems from programmers inventing ‘new’ tools and discovering only
later they can be legitimised and codified by connecting them with mathematical or
logical practice. The choice of symbols for temporal operators reflects this: starting with
program-like keywords such as ‘eventually’ or ‘sometime’, Prior’s single capital letters—
though not his taste for full Polish notation—was briefly in vogue until the connections
were made with modal logic, and those symbols taken over, representing the assump-
tion of a legitimate logical appearance. The temporal logic research programme in the
1970s and 80s is part of the re-examination of computing objects (physical and ab-
stract) in the rediscovery of logic, a rationalising of existing practice for concurrent pro-
gramming, as had happened for formal semantics in the 1960s (Astarte 2022). The as-
sumption of this intellectual pedigree may be part of the reason why temporal logic
is a particularly prestigious field of computer science—this chapter features four Turing
Award winners. Temporal logic, then, is an example not of a new branch of logic or
even a practice with direct applicability to programming, but a combined object be-
tween the two, the re-situation of old and ancient ideas in a new context.

Acknowledgements. The research leading to this chapter received funding from
Leverhulme Trust Grant No. RPG-2019-020. Many thanks to attendees at ICHST 2021,
Arianna Borrelli, Marie-José Durand-Richard, Cliff Jones, Mark Priestley, and Markus
Roggenbach for providing useful comments and suggestions.
For the purpose of Open Access, the author has applied a CC BY licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

References
Ashcroft, Ed A., and Zohar Manna. 1971. “Formalization of Properties of Parallel Programs.” In

Machine Intelligence, 6, edited by B. Meltzer and D. Michie, 6:17–41. Edinburgh: Edinburgh Uni-
versity Press.

Astarte, Troy Kaighin. 2019. “Formalising Meaning: A History of Programming Language Seman-
tics.” PhD thesis, Newcastle University.

———. 2022. “‘Difficult Things Are Difficult to Describe’: The Role of Formal Semantics in Euro-
pean Computer Science, 1960–1980.” In Abstractions and Embodiments: New Histories of Com-
puting and Society, edited by Janet Abbate and Stephanie Dick. Johns Hopkins University Press.

———. 2023. “From Monitors to Monitors: An Early History of Concurrency Primitives.” Minds
and Machines. online first. https://doi.org/10.1007/s11023-023-09632-2.

Ben-Ari, Mordechai, Amir Pnueli, and Zohar Manna. 1983. “The Temporal Logic of Branching
Time.” Acta Informatica 20 (3): 207–26.

Burstall, Ron M. 1974. “Program Proving as Hand Simulation with a Little Induction.” In Infor-
mation Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10,
1974, edited by J. L. Rosenfeld, 308–12. North-Holland.

Clarke, Edmund M, and E Allen Emerson. 1981. “Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic.” In Workshop on Logic of Programs, edited by D.
Kozen, 131:52–71. Lecture Notes in Computer Science. Springer-Verlag.

Cook, Byron. 2018. “Formal Reasoning About the Security of Amazon Web Services.” In Com-
puter Aided Verification. CAV 2018, edited by Weissenbacher G. Chockler H., 10981:38–47. Lec-
ture Notes in Computer Science. Springer-Verlag.

Copeland, B. Jack. 2020. "Arthur Prior", The Stanford Encyclopedia of Philosophy (Spring 2020 Edi-
tion), edited by Edward N. Zalta. https://plato.stanford.edu/archives/spr2020/entries/prior/.

Davis, Martin. 1965. Computability and Undecidability. Dover.

Dunning, David E. 2020. “Writing the Rules of Reason: Notations in Mathematical Logic, 1847–
1937.” PhD thesis, Princeton University.

Durand-Richard, Marie-José. 2023. “Boole’s Symbolized Laws of Thought Facing Empiricism.” In
Logic in Question: Talks from the Annual Sorbonne Logic Workshop (2011-2019), 97–118. Springer.

Emerson, E Allen. 2008. “The Beginning of Model Checking: A Personal Perspective.” In 25 Years
of Model Checking, 27–45. Springer-Verlag.

———. 2010. “Meanings of Model Checking.” In Concurrency, Compositionality, and Correctness:
Essays in Honor of Willem-Paul de Roever, edited by Dennis Dams, Ulrich Hannemann, and Mar-
tin Steffen, 237–49. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-11512-7_15.

———, and Edmund M Clarke. 1980. “Characterizing Correctness Properties of Parallel Pro-
grams Using Fixpoints.” In International Colloquium on Automata, Languages, and Programming,
169–81. Springer-Verlag.

———, and Kedar S Namjoshi. 1998. “Verification of a Parameterized Bus Arbitration Protocol.”
In International Conference on Computer Aided Verification, 452–63. Springer-Verlag.

Floyd, Robert W. 1967. “Assigning Meanings to Programs.” In Mathematical Aspects of Computer
Science, edited by J. T. Schwartz, 19:19–32. Proc. Of Symposia in Applied Mathematics. Ameri-
can Mathematical Society.

https://doi.org/10.1007/978-3-642-11512-7_15

Francez, N., and A. Pnueli. 1978. “A Proof Method for Cyclic Programs.” Acta Informatica 9: 133–
57. https://doi.org/https://doi.org/10.1007/BF00289074.

Gabbay, Dov, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. “On the Temporal Analysis
of Fairness.” In Proceedings of the 7th Acm Sigplan-Sigact Symposium on Principles of Program-
ming Languages, 163–73.

Goldblatt, Robert. 2006. “Mathematical Modal Logic: A View of Its Evolution.” In Handbook of the
History of Logic, 7:1–98. Elsevier.

Goranko, Valentin, and Antje Rumberg. 2022. “Temporal Logic.” In The Stanford Encyclopedia of
Philosophy (Summer 2022 Edition), edited by Edward N. Zalta. https://plato.stanford.edu/ar-
chives/sum2022/entries/logic-temporal/

Harel, David. 2010. “Amir Pnueli. A Gentle Giant: Lord of the 𝜙𝜙’S and the 𝜓𝜓’S.” Formal Aspects of
Computing 22 (6): 663–65.

———, and Vaughan R Pratt. 1978. “Nondeterminism in Logics of Programs.” In Proceedings of
the 5th Acm Sigact-Sigplan Symposium on Principles of Programming Languages, 203–13. POPL
’78. New York, NY, USA.

Hoare, Charles Antony Richard. 1969. “An Axiomatic Basis for Computer Programming.” Com-
munications of the ACM 12 (10): 576–80.

———, and Leslie Lamport. 2020. “Virtual Hlf 2020 – Dialogue: Sir c. Antony R. Hoare/Leslie
Lamport.” Heidelberg Laureate Forum YouTube Channel.
https://www.youtube.com/watch?v=wQbFkAkThGk.

Hughes, George E., and Maxwell J. Cresswell. 1968. An Introduction to Modal Logic. New Accents.
London, UK: Methuen. https://books.google.co.uk/books?id=CukMAQAAIAAJ.

Jakobsen, David. 2020. “A.N. Prior and ‘the Nature of Logic’.” History and Philosophy of Logic 41
(1): 71–81. https://doi.org/10.1080/01445340.2019.1605479.

Jones, Cliff B. 2003. “The Early Search for Tractable Ways of Reasoning About Programs.” IEEE
Annals of the History of Computing 25 (2): 26–49. https://doi.org/10.1109/MAHC.2003.1203057.

———. 2023. “Three Early Formal Approaches to the Verification of Concurrent Programs.”
Minds and Machines. https://doi.org/10.1007/s11023-023-09621-5.

Kröger, Fred. 1975. “Formalization of Algorithmic Reasoning.” In International Symposium on
Mathematical Foundations of Computer Science, 287–93. Springer.

———. 1978. “A Uniform Logical Basis for the Description, Specification and Verification of Pro-
grams.” In Proceedings, Ifip Working Conference on Formal Description of Programming Concepts,
St. Andrews, Canada, August 1977, 441–57. North-Holland, Amsterdam.

———. 1987. Temporal Logic of Programs. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag.

Lamport, Leslie. 1974. “A New Solution of Dijkstra’s Concurrent Programming Problem.” Com-
munications of the ACM 17 (8): 453–55.
https://doi.org/https://dl.acm.org/doi/10.1145/361082.361093.

https://doi.org/https:/doi.org/10.1007/BF00289074
https://plato.stanford.edu/archives/sum2022/entries/logic-temporal/
https://plato.stanford.edu/archives/sum2022/entries/logic-temporal/
https://www.youtube.com/watch?v=wQbFkAkThGk
https://books.google.co.uk/books?id=CukMAQAAIAAJ
https://doi.org/10.1080/01445340.2019.1605479
https://doi.org/10.1109/MAHC.2003.1203057
https://doi.org/10.1007/s11023-023-09621-5
https://doi.org/https:/dl.acm.org/doi/10.1145/361082.361093

———. 1999. “Specifying Concurrent Systems with Tla +.” In Calculational System Design, edited
by M. Broy and R. Steinbrüggen, 183–247. IOS Press.

———. 1977. “Proving the Correctness of Mutiprocess Programs.” IEEE Transactions on Software
Engineering 3 (March): 125–43. https://doi.org/https://doi.org/10.1109/TSE.1977.229904.

———. 1980. “‘Sometime’ is Sometimes ‘Not never’: On the Temporal Logic of Programs.” In Pro-
ceedings of the 7th Acm Sigplan-Sigact Symposium on Principles of Programming Languages, 174–
85. Las Vegas, Nevada. https://doi.org/https://doi.org/10.1145/567446.567463.

———. 1994. “The Temporal Logic of Actions.” ACM Transactions on Programming Languages and
Systems 16 (3): 872–923. https://doi.org/https://doi.org/10.1145/177492.177726.

MacKenzie, Donald. 2001. Mechanizing Proof: Computing, Risk, and Trust. MIT Press.

Manna, Zohar. 1969a. “Properties of Programs and the First-Order Predicate Calculus.” Journal
of the ACM 16 (2): 244–55. https://doi.org/https://doi.org/10.1145/321510.321516.

———. 1970. “The Correctness of Nondeterministic Programs.” Artificial Intelligence 1 (1-2): 1–26.
https://doi.org/https://doi.org/10.1016/0004-3702(70)90002-0.

———. 1968. “Termination of Algorithms.” PhD thesis, Carnegie-Mellon University.
https://apps.dtic.mil/dtic/tr/fulltext/u2/670558.pdf.

———. 1969b. “The Correctness of Programs.” Journal of Computer and System Sciences 3 (2):
119–27. https://doi.org/https://doi.org/10.1016/S0022-0000(69)80009-7.

———, and Amir Pnueli. 1981a. “Verification of Concurrent Programs: The Temporal Frame-
work.” In The Correctness Problem in Computer Science, edited by R. S. Boyer and J. S. Moore,
215–73. New York: Academic Press. https://doi.org/10.21236/ada106750.

———, and Amir Pnueli. 1981b. “Verification of Concurrent Programs: Temporal Proof Princi-
ples.” In Proc. Workshop on Logics of Programs, edited by Dexter Kozen, 131:200–252. Lecture
Notes in Computer Science. Berlin: Springer-Verlag.
https://doi.org/https://dl.acm.org/doi/10.5555/648063.747433.

———, and Amir Pnueli. 1982. “Verification of Concurrent Programs: Proving Eventualities by
Well-Founded Ranking.” Technical report STAN-CS-82-915. Stanford University Computer Sci-
ence Dept. https://apps.dtic.mil/dtic/tr/fulltext/u2/a132416.pdf.

———, and Amir Pnueli. 1983. “Verification of Concurrent Programs: A Temporal Proof System.”
STAN-CS-83-967. Department of Computer Science, Stanford University.
https://doi.org/https://dl.acm.org/doi/book/10.5555/892296.

———, and Amir Pnueli. 1992. Temporal Logic of Reactive and Concurrent Systems. New York:
Springer-Verlag. https://doi.org/https://dl.acm.org/doi/book/10.5555/128869.

———, and Richard Waldinger. 1976. “Is ‘Sometime’ Sometimes Better Than ‘Always’?: Intermit-
tent Assertions in Proving Program Correctness.” Memo AIM-281, STAN-CS-76-558. Stanford
Artificial Intelligence Laboratory.

———, and Richard Waldinger. 1978. “Is ‘Sometime’ Sometimes Better Than ‘Always’?: Intermit-
tent Assertions in Proving Program Correctness.” Communications of the ACM 21 (2): 159–72.
https://doi.org/https://doi.org/10.1145/359340.359353.

https://doi.org/https:/doi.org/10.1109/TSE.1977.229904
https://doi.org/https:/doi.org/10.1145/567446.567463
https://doi.org/https:/doi.org/10.1145/177492.177726
https://doi.org/https:/doi.org/10.1145/321510.321516
https://doi.org/https:/doi.org/10.1016/0004-3702(70)90002-0
https://apps.dtic.mil/dtic/tr/fulltext/u2/670558.pdf
https://doi.org/https:/doi.org/10.1016/S0022-0000(69)80009-7
https://doi.org/10.21236/ada106750
https://doi.org/https:/dl.acm.org/doi/10.5555/648063.747433
https://apps.dtic.mil/dtic/tr/fulltext/u2/a132416.pdf
https://doi.org/https:/dl.acm.org/doi/book/10.5555/892296
https://doi.org/https:/dl.acm.org/doi/book/10.5555/128869
https://doi.org/https:/doi.org/10.1145/359340.359353

McCarthy, John, and Patrick J. Hayes. 1969. “Some Philosophical Problems from the Standpoint
of Artificial Intelligence.” In Machine Intelligence 4, 463–502. Edinburgh University Press.

McDaniel, Kris. 2020. "John M. E. McTaggart", The Stanford Encyclopedia of Philosophy (Summer
2020 Edition), edited by Edward N. Zalta. https://plato.stanford.edu/archives/sum2020/en-
tries/mctaggart.

McTaggart, J Ellis. 1908. “The Unreality of Time.” Mind 17 (68): 457–74.

Newcombe, Chris, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael
Deardeuff. 2015. “How Amazon Web Services Uses Formal Methods.” Communications of the
ACM 58 (4): 66–73. https://doi.org/10.1145/2699417.

Øhrstrøm, Peter. 1983. “Richard Lavenham on Future Contingents.” Cahiers de L’Institut Du
Moyen-Âge Grec et Latin 44: 180–86.

———, and Per Hasle. 2007. Temporal Logic: From Ancient Ideas to Artificial Intelligence. Vol. 57.
Studies in Linguistics and Philosophy. Springer Science & Business Media.

———, and Per Hasle. 2020. “Future Contingents.” In The Stanford Encyclopedia of Philosophy
(Summer 2020 Edition), edited by Edward N. Zalta. https://plato.stanford.edu/ar-
chives/sum2020/entries/future-contingents/.

Pnueli, Amir. 1977. “The Temporal Logic of Programs.” In Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science, 46–57. SFCS ’77. USA: IEEE Computer Society.
https://doi.org/10.1109/SFCS.1977.32

.———. 1979. “The Temporal Semantics of Concurrent Programs.” In Semantics of Concurrent
Computation., edited by G. Kahn, 70:1–20. Lecture Notes in Computer Science. Heidelberg:
Springer-Verlag. https://doi.org/https://doi.org/10.1007/BFb0022460.

Pratt, Vaughan R. 1976. “Semantical Consideration on Floyd-Hoare Logic.” In 17th Annual Sympo-
sium on Foundations of Computer Science (Sfcs 1976), 109–21. IEEE.

———. 1979. “Process Logic: Preliminary Report.” In Proceedings of the 6th Acm Sigact-Sigplan
Symposium on Principles of Programming Languages, 93–100.

Priestley, Mark. 2011. A Science of Operations: Machines, Logic and the Invention of Programming.
History of Computing. Springer-Verlag, London.

Prior, Arthur N. 1957. Time and Modality: Being the John Locke Lectures for 1955-6 Delivered the
University of Oxford. Oxford University Press.

———. 1967. Past, Present and Future. Oxford University Press.

Rescher, Nicholas. 1966. The Logic of Commands. Routledge & Kegan Paul; Dover Publications.

———, and Alasdair Urquart. 1971. Temporal Logic. New York: Springer-Verlag.

Simons, Peter. 2021. “Jan Łukasiewicz.” In The Stanford Encyclopedia of Philosophy (Winter 2021
Edition), edited by Edward N. Zalta. https://plato.stanford.edu/archives/win2021/en-
tries/lukasiewicz/

Yu, Yuan, Panagiotis Manolios, and Leslie Lamport. 1999. “Model Checking Tla+ Specifications.”
In Advanced Research Working Conference on Correct Hardware Design and Verification Methods,
54–66. Springer.

https://doi.org/10.1145/2699417
https://plato.stanford.edu/archives/sum2020/entries/future-contingents/
https://plato.stanford.edu/archives/sum2020/entries/future-contingents/
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/https:/doi.org/10.1007/BFb0022460
https://plato.stanford.edu/archives/win2021/entries/lukasiewicz/
https://plato.stanford.edu/archives/win2021/entries/lukasiewicz/

Zuck, Lenore. 2019. “Amir Pnueli - A.m. Turing Award Laureate.” 2019.
https://amturing.acm.org/award_winners/pnueli_4725172.cfm.

https://amturing.acm.org/award_winners/pnueli_4725172.cfm

