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A B S T R A C T

A Supervised Parallel Optimisation (SPO) is presented. The proposed framework couples different optimisation
algorithms to solve single-objective optimisation problems. The supervision balances the exploration and
exploitation capabilities of the distinct optimisers included, providing a general framework to solve problems
with diverse characteristics. In this work, five optimisation algorithms are included in the ensemble: Particle
Swarm Optimisation (PSO), Genetic Algorithm (GA), Covariance Matrix Adaption-Evolution Strategy (CMA-
ES), Differential Evolution (DE), and Modified Cuckoo Search (MCS). A geometric path-finding problem with
numerous local minima is used to demonstrate the advantage of SPO. The effectiveness of the approach is
compared with that of stand-alone incidences of the integrated optimisation strategies and with state-of-the-art
algorithms. In addition, a benchmark test suit composed of engineering applications is utilised to validate the
general applicability of SPO with respect to a variety of problems. The good solutions generated by SPO are
shown to be generally reproducible, while isolated algorithms, at best, render good solutions only occasionally.
1. Introduction

Optimisation is a field in continuous development due to the wide
range of applications found in science, engineering, economics, com-
munication, and other fields. The optimisation field has received a
renewed impetus in the last three decades or so due to the advances
in machine learning, where the training stage typically involves the
search for an optimal solution. Consequently, the optimisation field is
continuously evolving in order to address the requirements of emerging
applications and novel software technologies.

A traditional optimisation approach takes into account the gradient
of the objective function to determine a possible direction of the
solution. However, real-world problems are generally discontinuous,
non-differentiable, discrete, noisy, multimodal, and possibly dynamic.
To address these challenges, a range of gradient-free strategies referred
to as meta-heuristics emerged in the second half of the 20th century and
exponentially increased in the last few decades due to their success in
applications to a wide range of complex real-world problems.

In general, a meta-heuristic algorithm is characterised by initialising
a random population of agents that develop through generations to
find an improved solution. The selection process is based on each
agent’s fitness (function evaluation), and, may contain operations such
as crossover between agents, mutation, random walks, etc. Some of
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the best-known meta-heuristic algorithms include genetic algorithms
(GA) [1], simulated annealing (SA) [2], particle swarm optimisation
(PSO) [3], CMA evolution strategy (CMA-ES) [4], differential evolution
(DE) [5–8], cuckoo search (CS) [9], bat algorithm (BA) [10], fire-
fly algorithm (FA) [11,12], and more recently, Electromagnetic field
optimisation (EFO) [13], whale optimisation algorithm (WOA) [14,
15], and squirrel search algorithm (SSA) [16]. It should be noted,
that variations of these strategies and novel metaheuristic algorithms
are being continuously developed targeting both generic optimisation
problems and specific applications. Challenges to be addressed include
the problem-dependent suitability and performance of meta-heuristics,
premature convergence [17–19], local sub-optimal solutions and poor
reproducibility.

We argue that a combination of algorithms with different per-
formance capabilities is advantageous when dealing with problems
that involve a complex solution space. The desired behaviour includes
sufficient exploration, which permits the identification of potential
regions, and an exploitation capability that intensifies the local search.
Strategies involving operations such as mutation, crossover and random
walks are known to preserve exploration, whereas algorithms that
are based on the kinematics of a swarm population are excellent for
solution refinement. Hybridisation strategies merge the algorithmic
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procedure of two or more established optimisers to achieve a more
versatile functionality. Common hybridisation optimisers include ge-
netic algorithms (GA) with particle swarm optimisation (PSO) [20,21],
a simulated annealing and PSO hybrid approach [22,23], cuckoo search
(CS) inspired by PSO [24–26], a CS-PSO hybrid with DE for global
search [27], a DE and PSO combination [28–30], a PSO including
Lévy flights [31], a clustering algorithm based on gravitational search
algorithms (GSA) and k-means (GSA-KM) [32], a Memetic Algorithm
(MA) composed by an evolutionary framework and a set of local search
algorithms [33], and many more.

An alternative strategy is to combine the special features of different
algorithms by running the algorithms independently and performing
merging or seeding processes of their populations within the overall
optimisation strategy; such strategies are commonly referred to as
Ensemble strategies. Wu et al. [34] present a comprehensive review of
these promising strategies, and provide their categorisation according
to the decision of the assembling process. Ensemble approaches have
been proposed utilising multiple instances of a single class of algo-
rithm, e.g. an ensemble of DE variants [35–39], PSO variants [40,
41], including a behaviour pool [41,42], or a combination of differ-
ent type of EAs [43–51]. It should be noted that due to the high
computational effort required for the solution of practical real-world
problems, parallel optimisation is considered essential. Numerous stud-
ies on communication in a parallel setting for optimisation are found
in literature, including, among others, the efficiency between proces-
sors [52], the correlation of variables in objective functions [53], and
parallel architectures [54,55].

The objective of this work is the development of a novel generalised
strategy for practical real-world optimisation problems. The strategy
is capable of coupling multiple independent optimisation algorithms
executed within a Supervised Parallel Optimisation (SPO) framework.
In order to demonstrate the main features of the proposed SPO strategy
a challenging optimisation problem is first considered consisting of
finding the shortest path between two points subject to a large number
of non-penetrable randomly distributed obstacles. In addition, diverse
engineering applications have been solved to demonstrate the general
applicability of the supervised framework. It should be noted that the
proposed ensemble strategy is designed to extract the best features of
separate optimisation algorithms in order to enhance the optimisation
strategy for complex real-world problems.

This article is organised as follows: The optimisation algorithms
included in this ensemble approach are described in Section 2, which
include PSO, GA, CMA-ES, DE and MCS. The proposed supervised
parallel optimisation strategy is introduced in Section 3, where the
general algorithmic structure and the two crucial mechanisms of SPO
are fully described. In Section 4 the path-finding optimisation prob-
lem is defined, and the performance of the proposed methodology
is tested by performing an analysis of convergence behaviour, hy-
perparameter analysis and evaluation of algorithmic complexity. In
addition, a comparative analysis is carried out by contrasting solu-
tions obtained by stand-alone algorithms included in the ensemble and
state-of-the-art algorithms. The solutions obtained for the engineering
application problems are summarised in Section 5. Finally, conclusions
are presented in Section 6.

2. Meta-heuristic algorithms

Although the number of meta-heuristic algorithms that can be in-
cluded in the framework is not limited, it is encouraged to select
optimisers with different characteristics. In this work, five algorithms
with diverse capabilities are selected: A genetic algorithm (GA) that
provides operations such as mutation and crossover among solutions,
a particle swarm optimisation (PSO) that is capable of performing
a global search while refining locally, a covariance matrix adapta-
tion evolution strategy (CMA-ES) that converge fast when exploiting
a solution due to the approximation to a quasi-Newton method, a
2

differential evolution (DE) that is formulated based on a crossover
mechanism, and a modified cuckoo search (MCS) that uses random
walks to explore large areas while elitist mutation operations are
helpful to intensify the best candidates. The first four aforementioned
optimisers are implemented utilising a Python multi-objective optimi-
sation library (Pymoo) [56], whereas a Python version of the modified
cuckoo search (MCS) is adapted from Walton et al. [57].

2.1. Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) [3] is considered a reference
among the so-called swarm intelligence methods due to its simplicity and
speed. Each member of the population, or ‘‘particle’’, has a position that
represents a potential solution. This position has an associated fitness,
or ‘‘cost’’, defined by the objective function. Each particle’s position is
updated iteratively until it reaches a termination criterion. The swarm
converges towards the best region under a simple set of influences,
including the local memory of its best position, the swarm’s knowledge
of the global best position and the particle inertia. The velocities 𝑣𝑑 of
the particles are updated by
(𝑡+1)𝑣𝑖𝑑 = 𝜔 (𝑡)𝑣𝑖𝑑 + 𝑐1𝑟1(𝑝𝑖𝑑 − (𝑡)𝑥𝑖𝑑 ) + 𝑐2𝑟2(𝑔𝑑 − (𝑡)𝑥𝑖𝑑 ) (1)

where the left superscripts (𝑡) and (𝑡 + 1) refer to the current and new
iterations respectively, the subscript 𝑑 refers to the design variable (or
coordinate) of each particle 𝑖, 𝑝𝑖𝑑 is the particle’s local best position,
gd is the swarm global best position, (𝑡)𝑥𝑖𝑑 is the particle’s current
position, r1 and r2 are both random scalar coefficients, 𝜔 is the inertia
coefficient, c1 is the local best coefficient and c2 is the global best
coefficient. The position 𝑥𝑖𝑑 of each particle is updated by

(𝑡+1)𝑥𝑖𝑑 = (𝑡)𝑥𝑖𝑑 + (𝑡+1)𝑣𝑖𝑑 (2)

where (𝑡+1)𝑥𝑖𝑑 corresponds to the updated position of particle 𝑖 at
iteration (𝑡 + 1), 𝑑 is the design variable, and 𝑣𝑖𝑑 is the updated velocity
from Eq. (1).

2.2. Genetic Algorithms (GAs)

Genetic Algorithms (GAs) were introduced in the 1960s by Professor
John Holland and his collaborators at the University of Michigan [1].
The essential characteristics of GAs include the representation of indi-
viduals as chromosomes, manipulation of these by genetic operators,
and selection of the best candidates with the aim of converging to-
wards an optimal solution. The three main genetic operators include
a crossover process swapping elements of two chromosomes aiming
to converge in a subspace; a mutation operation changes parts of one
individual randomly, which increases the diversity; and a selection that
llows propagating the best solutions on to next generations. Numer-
us GA variants have been presented since its introduction, focused
specially on the improvement of the genetic operators. A simulated
inary crossover (SBX) operator has shown good performance for real
nd binary coded GAs, in which two children 𝑐1 and 𝑐2 are created as
ollows

1 = 0.5
[(

𝑝1 + 𝑝2
)

− 𝛽′1 ||𝑝2 − 𝑝1||
]

(3)

2 = 0.5
[(

𝑝1 + 𝑝2
)

+ 𝛽′2 ||𝑝2 − 𝑝1||
]

(4)

here 𝑝1 and 𝑝2 are any two parent solutions, 𝛽′1,2 is found by us-
ng a cumulative polynomial probability distribution based on two
on-dimensionalised factors 𝛽𝐿,𝑈 taking into account the spread ratio
etween children and parents [58]. Among many mutation operators,
polynomial mutation [59] is suggested due to its efficient scheme and
iversity preservation, stating that for a parent solution 𝑝

′ =

{

𝑝 + 𝛿𝐿
(

𝑝 − 𝑥𝐿𝑑
)

for 𝑢 ≤ 0.5
̄ ( 𝑈 ) (5)
𝑝 + 𝛿𝑅 𝑥𝑑 − 𝑝 for 𝑢 > 0.5
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where 𝑝′ is the mutated solution, 𝑢 ∈ [0, 1] is a random number, 𝑥𝐿𝑑 and
𝑈
𝑑 correspond to the lower and upper bounds of each design variable
, and the two 𝛿𝐿,𝑅 parameters are calculated as follows

𝛿𝐿 = (2𝑢)1∕(1+𝜂𝑚) − 1, for 𝑢 ≤ 0.5 (6)
̄𝑅 = 1 − (2(1 − 𝑢))1∕(1−𝜂𝑚), for 𝑢 > 0.5 (7)

here 𝜂𝑚 is a user-defined index parameter. A desired behaviour pre-
ented in GAs is that, as the process evolves, multiple offspring can
xplore diverse regions of the search space alleviating premature con-
ergence problems.

.3. CMA-ES algorithm

Evolution strategies (ES) are algorithms based on the use of mu-
ation and selection mechanisms. CMA-ES is a second-order approach
o estimating a positive definite matrix within an iterative procedure,
roving very useful when applied to ill-conditioned objective func-
ions [4,60]. This leads to a similar approximation of the inverse
essian matrix in the classical quasi-Newton optimisation method. The
opulation is generated by sampling a multivariate normal distribution

𝑖 ∼ 
(

𝐦, (𝜎)2 𝐂
)

(8)

here 𝐱𝑖 is the (𝑖th) offspring (search point), ∼ denotes the same distri-
ution in both sides of the equation, 𝐦 is the mean value of the search
istribution, 𝜎 is the overall standard deviation (step size) at current
eneration, 𝐂 is the covariance matrix, and  is the multivariate
ormal search distribution defined by

(𝐦,𝐂) ∼ 𝐦 + (0,𝐂) ∼ 𝐦 +𝐦𝐁𝐃 (0, 𝐈) (9)

here the covariance matrix is decomposed as 𝐂 = 𝐁 (𝐃)2 𝐁𝑇 , 𝐁 are
he eigenvectors of 𝐂, the squared diagonal elements of the diagonal 𝐃
re the corresponding eigenvalues,  (0, 𝐈) are independent realisations
f the multivariate normal distribution with zero mean and covariance
qual to the identity matrix 𝐈.

CMA-ES has minimal user control avoiding tedious parameter tun-
ng for a specific problem. The algorithm has been empirically suc-
essful and outperformed other methods on low-dimensional functions
nd functions that can be solved with a small number of function
valuations. However, as indicated in [61], CMA-ES has disadvantages
uch as premature stagnation when solving large-scale optimisation
roblems.

.4. Modified Cuckoo Search (MCS)

The cuckoo search (CS) algorithm [9] is inspired by the brood
arasitism of certain cuckoo bird species and by the foraging exhibited
y many animals. The description of CS can be simplified into the
ollowing set of rules: Each cuckoo lays a single egg at a time and leaves
t in a random nest; the nests containing the eggs with the best fitness
alues are protected and carried on to the next generation. Lastly, as
he number of available nests is a fixed value, a probability 𝑃𝑎 ∈ (0, 1)

is introduced to allow for the removal of an egg if it is discovered. This
algorithm combines local and global random walks, where the latter is
carried out by Lévy flights i.e.
(𝑡+1)𝐱𝑖 = (𝑡)𝐱𝑖 + 𝛼 ⊕ Lévy(𝜆) (10)

here (𝑡+1)𝐱𝑖 corresponds to the updated nest position vector, 𝛼 > 0
ontrols the step size of a flight and should be related to the scales
f the problem and the product ⊕ means entrywise multiplications.
Lévy flight is essentially a random walk that is drawn from a Lévy

istribution, providing a more efficient method to explore the design
pace.

A CS variant denominated modified cuckoo search (MCS) includes
decreasing 𝛼 coefficient, which enhances exploitation as the agents

volve towards a potentially better solution and a crossover mechanism
3

etween the current solutions. d
.5. Differential Evolution (DE)

Differential Evolution (DE) [5,6] is a search method that makes
se of 𝑁𝑃 D-dimensional parameter vectors such as population for
ach generation. DE performs the following operations: A mutation, by
dding a weighted difference between two vectors, a crossover, that
ixes the mutated vector’s parameters with a predetermined ‘‘target’’

ector, and a selection of the best solution with respect to the new and
arget vector. For each target vector 𝐱𝑖, 𝑖 = 1, 2, 3,… , 𝑁𝑃 , mutation is

performed according to
(𝑡+1)𝑣𝑖𝑑 = (𝑡)𝑥𝑟1𝑑 + 𝐹 ⋅ ( (𝑡)𝑥𝑟2𝑑 − (𝑡)𝑥𝑟3𝑑 ) (11)

here (𝑡+1)𝑣𝑖 is a mutant vector at iteration (𝑡+ 1) with random indices
1, 𝑟2, 𝑟3 ∈ 1, 2,… , 𝑁𝑃 , that represent different non-repeated integers,
he subscript 𝑑 refers to the design variable, and a real constant factor
> 0 ∈ [0, 2] controls the amplification of the variation.

. Supervised parallel framework

Ensemble strategies are promising approaches that combine the
ehaviour of established metaheuristics. The proposed approach in-
ludes a novel supervised framework with straightforward mechanisms
hat initialise optimisation instances, monitor them and decide which
emains active. A parallelisation of the methodology is recommended
s one thread is assigned to supervise and the rest are optimisa-
ion instances (workers). Based on the classification described by Wu
t al. [34], the strategy proposed in this work is considered as a high-
evel ensemble in which the intrinsic formulation of the algorithms is
ot altered. It is implemented following a cooperative multi-population
pproach built by the supervisor when receiving messages from the
orkers that have assigned optimisation instances with their own
eveloped population.

.1. Parallel supervisor-worker structure

On a multi-processor machine, one of the processors adopts the role
f the supervisor, while the remaining processors take on the role of the
orkers. The supervisor is in charge of initialising each worker with an
ptimisation algorithm predefined by the user, which, in this work, can
e a combination of PSO, GA, CMA-ES, DE or MCS. Each worker starts
n isolated optimisation algorithm, i.e. runs a stand-alone optimiser in
ne processor. At the beginning of the working process, the population
s initialised by a random uniform distribution. Whenever each worker
ompletes a defined number of generations 𝑁𝑔𝑒𝑛, it reports its current
est solution to the supervisor. This process is asynchronous as each
ptimiser has a different performance speed. When the supervisor
eceives a message from each worker, it starts filling a repository of size
𝑟𝑒𝑝 with the best solutions reported so far. In that sense, the supervisor

s continuously monitoring and sorting new incoming messages. While
he implementation in this work is based on Python and the parallel
ommunication is implemented using Message Passing Interface for
ython (MPI4Py), the algorithmic structure described in Algorithm 1
s easily extended to any programming language.

There are two crucial features of this approach, both performed
y the supervisor. The first one is the stopping of a worker that is
riggered when the supervisor does not observe sufficient improvement
n the relatively poor solutions reported by the same worker. If a
talled worker is detected, the supervisor stops the current optimisation
rocess and reinitialises the optimisation process on the corresponding
orker. Then, depending on a given probability, the seeding procedure

s activated, in which the new algorithm can initialise its population
ith one or more of the best solutions collected in the supervisor’s

epository. This is an important feature because certain algorithms that
ould not perform adequately in the first stage of the optimisation
rocess, commonly denominated as the exploration phase, can thus
enefit from previous solutions obtained by other types of workers
nd focus on that region. Three fundamental steps of the process: (a)
nitialisation, (b) reporting/stopping and (c) seeding, are schematically

isplayed in Fig. 1 and are further explained in the following sections.
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Fig. 1. Supervised parallel structure and roles of the processors in the proposed strategy. Three stages are depicted: (a) processor initialisation by the supervisor (S), (b) workers
(W) report their performance to the supervisor (S) and the supervisor stops stalled workers, and, (c) the supervisor re-initialises the inactive worker with a new optimiser including
a seed from its repository.
Algorithm 1 Supervisor-Worker Structure.

1: if Supervisor then
2: while workersAlive > 0 do ⊳ Monitor while workers exist
3: status ← MPI.status ⊳ Verify MPI status
4: if status.tag is 1000 then ⊳ Worker is idle
5: pop ← SeedingProcedure() ⊳ Initialise population
6: MPI.send(optimiser(pop)) ⊳ Initialise optimiser and assign hyperparameters
7: else if status.tag is 2000 then ⊳ Receive data from worker
8: workerData ← MPI.recv(source=anyWorker) ⊳ Worker data include objective function evaluation

(cost), design parameters and MPI rank.
9: if workerSol is better than supervisorSol then
0: supervisorSol ← workerSol ⊳ Update best solution obtained and store it in seeds’

repository
1: saveRepository(supervisorSol)

2: stallWorker ← stoppingCriteria(workerData) ⊳ Verify if the worker is stalled
3: if stallWorker is True and Worker is not 𝑇 𝑜𝑝 then
4: stallWorker ← True (Stop) ⊳ Verify if worker is one of the top

5: MPI.send(stallWorker) ⊳ Send supervisor’s decision (continue/stop) to optimiser
6: else if status.tag is 3000 then ⊳ Tell supervisor worker has finished
7: workersAlive -= 1
8: else if Worker then
9: workerReady ← True ⊳ Worker ready is set to True
0: continueFlag ← True ⊳ Continue work is set to True

1: while continueFlag is True do
2: MPI.send(workerReady, tag=1000) ⊳ Tell supervisor worker is available
3: MPI.recv(optimiser) ⊳ Receive optimiser algorithm from supervisor
4: optimiser.run() ⊳ Run assigned optimiser, which will send its solution

data (tag 2000) to the supervisor at every checkpoint
5: workerReady ← False
6: MPI.send(workerReady, tag=3000) ⊳ Tell supervisor worker has finished
3.2. Stopping criteria

The workers report regularly their best cost and solution to the
supervisor at each checkpoint, or update frequency, at every 𝑁𝑔𝑒𝑛
generations. The parallel communication and repository update is set
to the same checkpoint for all optimisers. However, due to the different
4

optimisers’ speeds, worker-supervisor communication could occur more
often to some optimisers than others. The supervisor monitors the
current solution sent by each worker and keeps the history of the
previous solutions. Then, the supervisor can assess if the worker is
not improving sufficiently and can classify the optimisation process as
stalled. When this occurs, the supervisor stops the worker if it is not one
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of the 𝑁𝑡𝑜𝑝𝑠𝑒𝑡 < 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 workers, and a new optimisation algorithm is
tarted. The overall process stops when 𝑁𝑟𝑢𝑛𝑠 optimisation procedures
ave been completed or a time limit has been imposed. The criterion
sed by the supervisor to detect stagnation can be written as
𝜖𝑚

𝜖𝑚−𝑁stall

> 1 − 𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

⇒ Optimisation has stalled.
(12)

where 𝜖𝑚 is the 𝑚th cost reported to the supervisor by the corresponding
orker and a 𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is a parameter defined by the user. The

ritical number of checkpoints reached without sufficient improvement
stall is calculated from

stall = �̄�stall

(

𝜖
𝜖𝑚

)𝑝
(13)

where �̄�stall is an initial number of stalled solutions allowed. The
exponent 𝑝 may be chosen as 1, 2, 3, or higher if required, and controls
how much longer the workers are allowed to explore solutions of more
advanced quality. The reference cost 𝜖 is computed automatically by
the performance of the initial workers. At the start of the proposed
optimisation framework, the first workers are considered explorers as
the initial population is randomly generated, and, it is likely that some
of them are stalled at 𝑁stall = �̄�stall. When this happens for the 𝑁𝜖
time in every optimisation algorithm, the reference cost 𝜖 is set to the
verage of the cost 𝜖𝑁𝜖

among the type of optimisers included.

̄ = 1
𝑁𝑎𝑙𝑔

𝑁𝑎𝑙𝑔
∑

𝑖=1
𝜖𝑖𝑚 (14)

here 𝑁𝑎𝑙𝑔 is the number of different types of optimisation algorithms
un by the workers, e.g. this work considers PSO, GA, DE, CMA-ES and
CS.

To better exemplify this process, consider the case of using just
ne optimisation algorithm and defining 𝑁𝜖 = 1, then, the reference
ost 𝜖 is computed when the first worker is stalled. If using more than
ne optimisation algorithm, the cost of the stalled workers is stored
ntil reaching 𝑁𝜖 to compute the optimiser’s average reference. This
s particularly important when considering more than one algorithm,
s their performance can be significantly dissimilar in the exploration
hase. When the reference cost 𝜖 is established, the number of stalled
olutions allowed will increase as stated by Eq. (13). Algorithm 2
escribes the steps to determine if a worker is declared stalled.

.3. Seeding procedure

During the optimisation procedure, the workers are constantly send-
ng messages to the supervisor with the current best location found.
he supervisor receives these messages, arranges them according to
he cost, and stores them in a seed repository of size 𝑁𝑟𝑒𝑝, taking
recautions to avoid duplicates of the gathered solutions. The seeding
rocedure can happen only after the first worker has been declared
talled. In that instant, the supervisor should re-initialise a new opti-
iser to avoid having an inactive worker. The optimisation algorithm
ay be the same as before or not, but the population is different, as it
ay be initialised randomly or with a solution (seed) from a previous
orker. This is advantageous in the following scenario; consider an
lgorithm 𝐴 that is an excellent explorer in a given problem, but
t is unable to refine its solution, hence, it cannot improve for a
ertain duration and the supervisor decides to stop it. Then, consider
n algorithm 𝐵 that is an excellent exploiter but is inefficient during
xploration. The proposed strategy couples both algorithms by running
n exploiter algorithm 𝐵 that has been seeded by an explorer algorithm
, maximising the capabilities of both.

The process has been implemented in a way that not all workers are
nitialised with seeds, thus allowing for the preservation of diversity in
he general population and avoiding over-exploiting the same region of
5

he solution space. The probability 𝜈 ∈ [0, 1] for seeding as opposed to e
andomly initialising the new population is set by the user. Experiments
one by the authors suggest that values 𝜈 > 0.9 are disadvantageous
s they over-emphasise exploitation. The number of seeds introduced
nto the population of a worker is given by a random uniform (RU)
istribution and controlled by another parameter, denoted by a per-
entage of the algorithm population 𝜙 ∈ [0, 1]. This means that not all
he workers may have the same amount of seeds, which again, helps
o preserve diversity. The general seeding procedure is summarised in
lgorithm 3.

. Illustrative example: Geometric path-finding problem

A geometric path-finding problem has been designed to test the
erformance of the proposed strategy. The objective is to minimise the
ength of a path described by the coordinates of a sequence of points,
ubject to avoiding penetration of several randomly placed circular
bstacles. Note that this problem differs from discrete graph-based
ath-finding problems, commonly applied in transport networks such
s roads, railways, and others, in which the node locations are fixed.
tochastic On-Time Arrival (SOTA) and derived methods [62–65] have
een proposed to find the shortest travel time in such discrete graph
ystems. Conversely, the proposed geometric path-finding problem as
escribed below does not feature a discrete graph structure.

Considering the large number of obstacles shown in Fig. 2, the
odel problem described here features numerous local minima and

llows for experimentation with large numbers of design variables.
ence, it is expected that stand-alone evolutionary optimisation strate-
ies are likely to suffer from premature convergence issues. It can be
rgued that the optimisation process has to address two tasks of very
ifferent characteristics, firstly the identification of the correct gaps
etween the obstacles and secondly the straightening of the several
ections of the path. The problem is sufficiently complex to represent
hallenging applications and to test the supervised parallel optimisation
trategy proposed in Section 3.

.1. Problem definition

A rectangular domain with 𝑥 ∈ [0, 30] and 𝑦 ∈ [−15, 15], contains
𝑐 = 48 randomly positioned circular obstacles of varying radii as

hown in Fig. 2. The objective of the optimisation problem is to
ompute the shortest path from Point 𝐴 with (𝑥, 𝑦) = (0, 0) to Point

with (𝑥, 𝑦) = (30, 0), such the path does not intersect any of the
ircular obstacles. The path is defined by a sequence of 𝑁𝑝 points that
re connected by straight line segments. The points are equally spaced
n the 𝑥-direction. Hence, the set of design variables reduces to an 𝑁𝑝-
imensional array 𝑦 = 𝑦1, 𝑦2,… , 𝑦𝑁𝑝

that contains the y-coordinates of
he points. A penalty formulation is used to avoid the intersection of
he path with any of the circles. Hence, denoting the path length and
he obstacle penetration by, respectively, 𝑙(𝑦) and 𝑝(𝑦), the cost function
an be written as

𝑜𝑠𝑡 = 𝑙(𝑦) + 𝑘 𝑝(𝑦) (15)

here the penalty factor is set to 𝑘 = 1. The length of the path is
omputed from

(𝑦) =
𝑁𝑝−1
∑

𝑖=1

√

(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 (16)

hile the penetration can be evaluated from

(𝑦) =
𝑁𝑝−1
∑

𝑖=1

𝑁𝑐
∑

𝑗=1
max

(

0, 𝑅𝑗 −
√

(𝑋𝑗 − 𝑥𝑖)2 + (𝑌𝑗 − 𝑦𝑖)2
)

(17)

here, 𝑅𝑗 , 𝑋𝑗 and 𝑌𝑗 represent, respectively, the radii and the coordi-
ates of the centre points of the circular obstacles. The penetration is
llustrated in Fig. 3. Recall that the coordinates 𝑥𝑖 are known from the
qual spacing of the points in the 𝑥-direction.
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Algorithm 2 Stopping Criteria.

1: 𝜖𝑚 ← Worker cost ⊳ The worker sends the cost of its best solution

2: 𝜖ℎ𝑖𝑠.append(𝜖𝑚) ⊳ Store cost history per worker

3: while
(

𝜖𝑚
𝜖𝑚−𝑁stall

< 1 − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
)

do ⊳ Verification of stalled worker by Eq. (12)

4: remove(𝜖ℎ𝑖𝑠.first) ⊳ Remove the first cost received

5: if 𝜖 is set then

6: 𝑁stall ← �̄�stall

(

𝜖
𝜖𝑚

)𝑝
⊳ Compute a new number of stalled messages allowed.

7: if Size(𝜖ℎ𝑖𝑠) > 𝑁stall then ⊳ Verify if a worker is stalled

8: StallWorker ← True ⊳ Worker is declared stalled

9: Optim.StallCounter += 1 ⊳ Stall counter per each optimisation algorithm

0: if (All) Optim.StallCounter > 𝑁𝜖 then

1: OptimFlag ← True ⊳ Check if every optimiser has at least 𝑁𝜖 stalled runs

2: if 𝜖 not set and OptimFlag is True then

3: 𝜖 ← 1
𝑁𝑎𝑙𝑔

∑𝑁𝑎𝑙𝑔
𝑖=1 𝜖𝑖𝑚 ⊳ Reference by averaging the stalled 𝑁𝜖 cost of all optimisers
Algorithm 3 Seeding Procedure.

1: Pop ← RU(PopSize) ⊳ Initialise population using a random uniform distribution RU
2: if RepExists then
3: if RandNum < 𝜈 then ⊳ Verify probability 𝜈 of seeding a population
4: MaxSeeds = 𝜙 × Pop ⊳ Maximum number of seeds constrained by percentage 𝜙

5: SeedsFromRep ← random(0, MaxSeeds) ⊳ Number of seeds is a random number
6: for pi ← 1 to size(SeedsFromRep) do:
7: RandSeed ← random(0, RepSize)
8: RandPop ← random(0, PopSize)
9: Pop[RandPop] ← Repository[RandSeed] ⊳ A random particle from the population is replaced by a

random seed from the repository
t
t
a
c
t
a

o
t

4.2. Results and discussion

The proposed methodology has been tested for the path-finding
problem described in Section 4.1. The number of points defining the
path, i.e. the number of design variables chosen is 200. The optimi-
sation algorithms included in the supervised approach are PSO, GA,
CMA-ES, DE and MCS, as introduced in Section 2. The recommended
parameters, detailed in Appendix C, have been used to set up each
optimiser, i.e. without parameter experimentation done a priori. In
addition, explorer (V1) and exploiter (V2) versions of PSO and MCS
re included by adjusting the parameters to continuously maintain
iversity in the population and to perform intensification, respectively.
he experiment is carried out in a parallel system using 16 processors,
ence, one CPU is reserved for the supervisor and 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 15, and a
ime limit has been imposed to 15 h of computation.

.2.1. Convergence behaviour
The convergence behaviour of the proposed methodology has been
6

resented in Fig. 4 in which the convergence plot of every optimisation t
instance is superimposed and shown in different colours. It can be
noticed that a vast number of workers with high costs are clustered
in the initial exploration phase. The workers are allowed to continue
if they are capable of decreasing their costs sufficiently, or, on the
contrary, they are stopped. After the reference cost 𝜖 is defined, the
workers remain active and intensify the local search. This results in
a characteristic tree shape in Fig. 4(a). Every new worker can be
initialised by a previous solution, or seed, which is indicated on the
plot by a black point in the centre of each marker. The probability of
seeding a worker is chosen as 𝜈 = 0.5, while the maximum proportion of
he seeded population is 𝜙 = 1.0, i.e. some workers could start having
heir entire population seeded. As expected, it is less likely that one
lgorithm remains the best in the entire process, but the best solution
an be found by different algorithms through each phase, hence, a
riangle marker is used to identify when an optimiser has been the best
t some point.

Fig. 4(b) shows the convergence behaviour over time exhibiting that
ptimisers with exploitation capabilities take over and start refining
he solution after approximately three hours of exploration. To main-
ain diversification, new explorers are continuously initialised in the
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Fig. 2. Path-finding problem domain and obstacles imposed.

Fig. 3. Definition of the obstacle penetration.

remaining time, keeping the optimisation instances that show sufficient
progress and stopping optimisers with poor improvement. Fig. 4(c) is
a magnification of Fig. 4(a) in the refinement region, in which a GA
optimiser acts as a link between exploration and exploitation phases
by seeding other optimisers; this is identified with triangle markers in
between costs 40–50 of Fig. 4(c). This is also shown in Fig. 4(d), which
illustrates the seeding process over time in the refinement region, as
different optimisers take over the best solution. The exploiter MCSV2
is the last optimiser refining a solution, indicating that it is a suitable
algorithm for exploitation, however, notice that the combination of
different optimisation instances such as DE, PSO and PSOV1 are needed
to accomplish the final cost.

An additional analysis that helps to understand the behaviour of
the proposed strategy is to examine the performance of each type of
optimiser included in the ensemble. This can be done indirectly by
counting the messages received by the supervisor during the optimi-
sation process. Three possible reasons suggest why a type of optimiser
sends more messages than others:

1. The supervisor allows to run an optimiser for longer due to its
good performance.

2. More instances of a suitable optimiser are active taking the place
of other optimisers.
7

3. The speed of an optimiser is considerably faster than the rest of
the optimisers.

The first two cases are straightforward possible scenarios, in which
both can occur individually or simultaneously. The third case has the
following two possible causes:

(a) The optimiser has good performance, hence, the three aforemen-
tioned cases may occur at the same time.

(b) The optimiser has poor performance, but, accomplishes sending
at least �̄�𝑠𝑡𝑎𝑙𝑙 solutions at every initialisation, having an impact
on the number of messages due to its speed of computation.

On the other hand, if an optimiser sends a low number of messages,
the straightforward reason is that the supervisor is not allowing it
to run for longer (poor performance). However, an optimiser may be
much slower than the rest of them, but, its solutions are excellent.
The number of received messages is highly related to the level of
exploration (more initialisations) and exploitation (optimisers run for
longer). Hence, it is useful to analyse the messages sent by an optimiser
and their level of accuracy to understand the decisions taken by the
supervisor. Fig. 5 displays the message analysis, where the grey bar
indicates the optimiser message percentage 𝑚𝑜

𝑚𝑜 =
𝑁𝑚𝑜
𝑁𝑚𝑠

⋅ 100% (18)

where 𝑁𝑚𝑜 is the total number of messages per optimiser, and 𝑁𝑚𝑠 is
the total number of messages that the supervisor received. The coloured
bar indicates the corresponding percentage when the message was the
best solution.

Fig. 5(a) corresponds to the message analysis of the best solution
achieved from ten experiments considered, Fig. 5(b) shows the mean
and standard deviation, and Fig. 5(c) is the ratio between the best
message received with respect to the total number of messages per
optimiser (coloured bar from 5(b)), the value of the ratio is the mean
value of the ten experiments considered. It can be observed that the
three versions of MCS have similar 𝑚𝑜 and percentage of being the
best optimiser, whereas the exploiter PSOV2 has a major impact during
the optimisation process, most noticeable in the refinement section,
compared to the other two PSO versions considered. CMA-ES does not
perform on the same level as the others for this problem as the number
of messages when it performs best is negligible. The GA algorithm
has the second place in terms of the total number of messages 𝑚𝑜,
but it has the fifth place of best messages (Fig. 5(c)). In general, DE
is the algorithm that has larger 𝑚𝑜 and has the greater percentage of
being the best, which suggests that it is a suitable algorithm within the
ensemble for this problem, followed by GA, PSO, MCS and the last is
CMA-ES. Note that this analysis helps to understand the behaviour of an
algorithm within the ensemble. However, despite identifying DE as an
optimiser with more incidence of best messages this does not guarantee
that running a stand-alone DE algorithm will be sufficient for solving
the problem. A comparison of the proposed ensemble strategy and each
isolated algorithm is discussed in the following section.

4.2.2. Comparison with isolated optimisers
A comparison exercise has been carried out by considering the same

optimisers included in the proposed approach, however, functioning
as stand-alone procedures. The explorer and exploiter versions of PSO
and MCS are not included in this comparison as their performance is
very poor and does not make sense to run an isolated optimisation
procedure. To perform a fair comparison, the same computational effort
has been taken into account for the stand-alone optimisers by running
as many independent optimisers as workers used in the proposed
approach, i.e. as 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 15, or 15 CPUs, in the supervised approach,
then, 15 independent runs are carried out for each optimiser. This test
is performed 10 times with the proposed approach, which means that
each independent optimiser is run 150 times. The convergence of the
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Fig. 4. Convergence behaviour of the supervised parallel ensemble strategy: (a) superimposed convergence-generations plot of every optimisation instance, (b) superimposed
convergence plot over time of every optimisation instance, (c) refinement region of the convergence plot (a), and (d) refinement region of the convergence plot over time (b).
Fig. 5. Number of messages in percentage sent by each optimiser (grey) and percentage of these messages when the optimiser was the best solution (colour by each optimiser).
(a) Messages percentage in the best solution achieved, (b) messages percentage mean and standard deviation of ten experiments considered, and (c) ratio of the best message sent
with respect to the total messages per optimiser, the result shown is the mean across ten experiments.
best solution achieved, the mean and standard deviation are presented
in Fig. 6, in which the vertical axis is the objective function while the
horizontal is the computation time, with a maximum of 15 h utilising
15 CPUs. It is shown that SPO consistently finds the best solution with a
higher level of accuracy. Table 1 presents the best solution achieved by
each optimiser, the mean, worst, standard deviation and median of the
10 experiments carried out by the supervised approach, and the 150
runs by the stand-alone optimisers.

Fig. 7 presents the solution to the problem by the supervised ap-
proach and the stand-alone optimisers. It can be seen that the solution
obtained by the proposed approach is more accurate than the rest of the
algorithms working alone. The fine-tuned solution of SPO, which in the
last stage was found by an exploiter version of MCS, provides straight
segments in between the obstacles, proving to be a balanced approach
between exploration and exploitation. Although the closest competitor
8

is the isolated MCS, its best solution crosses through an obstacle,
suggesting that this optimiser has not converged in the imposed time
constraint, but, it could refine the solution if it continues working.
The poorest behaviour in this problem was performed by CMA-ES,
which is capable of obtaining straight lines, but, the overall path shows
large jumps between distant regions in the domain. Therefore, CMA-
ES is well suited to accomplish local refinement, but, not capable of
performing a satisfactory exploration. The isolated DE presents poor
behaviour in this problem, however, there is a consistent solution found
by this optimiser exhibited by the standard deviation in Table 1, which
suggests that DE provides consistent solutions when integrated within
the SPO.

4.2.3. SPO hyperparameter analysis
A hyperparameter analysis for the proposed SPO approach has been

carried out to determine the sensitivity of the cost with respect to
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Fig. 6. Convergence comparison of the best solution obtained by stand-alone optimisers and the proposed approach. The mean 𝜇 and standard deviation 𝜎 of the solutions
throughout the 10 experiments are computed using the last result obtained.
.

Table 1
Best, worst, mean, standard deviation and median by stand-alone optimisers and the
proposed SPO.

Optimiser Best Mean Worst Std Median

Pymoo PSO 38.2086 98.2314 216.5675 30.2439 97.5021
Pymoo GA 41.3171 65.2243 171.0270 23.3537 56.2161
Pymoo CMAES 171.0815 284.9940 417.0519 52.7251 285.3436
Pymoo DE 116.2521 123.0248 131.7709 3.5586 123.1253
MCS 32.8160 66.8578 108.5957 14.7948 65.4331

SPO 31.4619 31.9412 34.4326 0.9110 31.4635

Fig. 7. Solution comparison of stand-alone optimisers against the proposed strategy.

relevant parameters of the proposed strategy, including (a) the expo-
nent 𝑝, (b) the initial number of allowed stalled solutions �̄�𝑠𝑡𝑎𝑙𝑙, both
from Eq. (13), (c) the 𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 from Eq. (12), (d) the number
of stall solutions per optimiser 𝑁𝜖 from Eq. (14), (e) the 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡
frequency, and (f) the seeding probability 𝜈. Table 2 indicates a set of
values for each parameter tested. Each experiment is set with a base
configuration (column 3) and individual hyperparameters are modified
to observe the behaviour of the strategy while solving the path-finding
problem with the same conditions imposed in the previous section
(design variables equal to 𝑁𝑝 = 200, time limit = 15 h, 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 15,
𝑁𝐶𝑃𝑈𝑠 = 16). Each configuration has been tested five times to obtain
an adequate average behaviour.

Fig. 8(a) shows the best cost (dot), the mean (solid line) and the
standard deviation (filled range) obtained using each hyperparameter
setting. In combination with the base configuration, the cost does not
exhibit an important variation with respect to the power parameter 𝑝,
the number of stall solutions per optimiser 𝑁𝜖 , and the 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡
(update frequency), whereas the initial number of stalled solutions
9

Table 2
SPO hyperparameters included in the sensitivity analysis for the path-finding problem

SPO parameter 1 2 3 4 5

𝑝 1 2 3 4 5
�̄�𝑠𝑡𝑎𝑙𝑙 1 5 10 20 30
𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 0.9 0.1 0.01 0.001 0.001
𝑁𝜖 1 5 20 50 100
𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 10 50 100 500 1000
𝜈 0.1 0.25 0.5 0.75 1.0

�̄�𝑠𝑡𝑎𝑙𝑙 is stable from values greater than 5, the 𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 presents
better behaviour with values lower than 10−1, and the seeding proba-
bility 𝜈 is less prone to diverge for values smaller than 0.75. However,
it can be noticed, that an optimal solution is achieved through all
the configurations at least once for the path-finding problem. The
results suggest that the proposed strategy is robust enough to obtain
excellent solutions without the need for tedious hyperparameter tuning.
In practical terms, a user does not require previous experience with the
strategy and the problem intended to be solved to obtain an accurate
response.

Furthermore, a second study was carried out focusing on the time
of computation when the strategy achieves a near optimal solution with
cost 𝑐. The objective is to establish whether certain hyperparameter
configurations are capable of yielding higher efficiency compared to
others. A cost threshold has been defined as equal to 𝑐 = 31.55, which is
close to the best solution achieved with cost 𝑐 = 31.462. Fig. 8(b) shows
the computation time that each hyperparameter configuration requires
to overtake the threshold. It can be observed that the base configuration
is the most efficient setting taking approximately 6 h to reach 𝑐 and the
remaining time to further refine the solution. This behaviour is seen in
all the time-hyperparameter plots.

After performing the hyperparameter analysis for the path-finding
problem, a recommended practical setting to solve a problem utilising
the SPO strategy is to use the base configuration shown in column 3 of
Table 2, and then start modifying the values according to the response
observed. Recall that the individual optimiser hyperparameters are
set according to the library default settings (Appendix C), with the
exception of the population size that has been set to half of the number
of design variables to provide sufficient exploration and to maintain
algorithmic efficiency. A hyperparameter analysis of individual opti-
misers is out of the scope of this work, emphasising that the focus is
to demonstrate the supervised strategy performance without interfering
with internal optimisers’ mechanisms. This is a more desired approach
in practice when dealing with unexplored problems.

4.2.4. Algorithmic complexity
An additional measure of performance is the algorithmic complexity,

in which an optimiser’s efficiency can be tested based on the time
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Fig. 8. SPO hyperparameter analysis considering: (a) the solution achieved in 15 h of computation, and (b) the computation time of achieving a near-optimal solution threshold
of 31.55. The best solution is represented by a dot, the mean by a solid line and the standard deviation by a filled range.
required to complete a number of function evaluations. A simple ex-
pression has been used by Kumar et al. [66] to compute the algorithmic
complexity

𝐴𝐶𝑇 =
𝑇2 − 𝑇1

𝑇1
(19)

where 𝐴𝐶𝑇 is the algorithmic complexity value calculated based on
the required computation time by imposing a fixed number of eval-
uations, 𝑇1 corresponds to the computation time required to perform
𝑁𝑒𝑣𝑎𝑙 number of objective function evaluations, and 𝑇2 is the time
required by an optimiser to compute the same 𝑁𝑒𝑣𝑎𝑙 number of function
evaluations. Within the proposed parallel supervised approach, the
individual optimisers are controlled by the supervisor and they can
differ in number of evaluations. Hence, a modification of Eq. (19) is
proposed

𝐴𝐶𝐸 =
𝐸𝑤
1 − 𝐸2

𝐸𝑤
1

(20)

here 𝐴𝐶𝐸 is the algorithmic complexity value obtained based on the
umber of evaluations in a fixed time, 𝐸2 is the total number of function
valuations computed by the proposed parallel supervised strategy, and
10
𝐸𝑤
1 = 𝐸1 ⋅ 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 is the number of objective function evaluations

considering the number of parallel processors assigned to SPO. Note
that the complexity obtained for the proposed strategy encompasses the
complexity of each optimiser included in the ensemble, the supervisor-
worker mechanisms (stopping criterion, seeding procedure) and the
message exchange between processors. To compute the algorithmic
complexity, the geometric path-finding problem defined in Section 4.2
was used as a test case for three imposed time limits of computation:
1 min, 30 min and 1 hr, and the number of workers used in this test
is 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 10 (11 CPUs). Table 3 summarises the number of function
evaluations 𝐸𝑤

1 , the supervised strategy function evaluations 𝐸2 and
the obtained algorithmic complexity 𝐴𝐶𝐸 for each corresponding time
limit. The results obtained indicate that the complexity for 1 min is
the lowest, and the complexity value is maintained for 30 min, and 1
hr, suggesting that in the 1st min there are not as many communica-
tions, whereas complexity reaches higher values up to a limit when
the supervisor-worker dynamic and message exchange is occurring
constantly. The number of evaluations ratio with respect to 1 min
of computation (columns three and five) is a practical measure to
identify the evaluation rate compared to the algorithmic complexity

that saturates to a limit value.
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Fig. 9. Path solution comparison of state-of-the-art optimisers against the proposed supervised strategy and the convergence behaviour in the geometric path-finding problem, in
which the mean 𝜇 and standard deviation 𝜎 of the solutions throughout the experiments are depicted for the last result. Figures (a) and (b) correspond to a 30 design variables
problem, while Figures (c) and (d) correspond to the 200 design variables problem.
Table 3
Algorithmic complexity calculated for the path-finding problem considering three
computation times.

Time 𝐸𝑤
1 𝐸𝑤

1 ∕𝐸
𝑤
1 (1 Min) 𝐸2 𝐸2∕𝐸2(1 Min) 𝐴𝐶𝐸

1 min 194 960 1.0 171 493 1.0 0.12036
30 min 14 782 810 75.82 8 635 083 50.35 0.41587
1 h 29 965 120 153.70 16 915 512 98.64 0.43549

4.2.5. Comparison with state-of-the-art algorithms
The proposed supervised strategy has been compared against three

state-of-the-art algorithms in the geometric path-finding problem con-
sidering two discretisations: 30 and 200 design variables. Two of
the chosen optimisers are suggested in the comprehensive perfor-
mance analysis of more than 500 metaheuristic algorithms provided
by Ma et al. [67], corresponding to the Hybrid Sampling-Evolution
Strategy HSES [68] and a hybrid of two enhanced DE variants named
EDE-EBDE [69]. In addition, a third improved DE variant is considered,
namely OLSHADE-CS [70] that presents an orthogonal array-based ini-
tialisation and a novel selection strategy. The parameter setting chosen
for each algorithm corresponds to the suggested values in each pub-
lished paper and from the exhaustive analysis done by Ma et al. [67].
These parameters are tuned for problems with 30 design variables
which align with the first case of this analysis. The parameters for the
200 design variables are extended accordingly to provide a favourable
comparison. The magnitudes of the parameters considered in each case
are given in Table 4.

We test the efficiency of the proposed strategy and the state-of-the-
art algorithms in moderate and large-scale problems. To this end, a 30
11
Table 4
Parameter setting for the three state-of-the-art algorithms used as a comparison in the
path-finding problem for 30 and 200 design variables respectively.

Algorithm 30 design variables 200 design variables

HSES Population Size
𝑀 = 200; 𝑁 = 160

Population Size
𝑀 = 900; 𝑁 = 720

OLSHADE-CS 𝑄 = 80; 𝑁 𝑖𝑛𝑖𝑡
𝑝 = 6𝐷2;

𝑁 𝑖𝑛𝑖𝑡
𝑝 = 4

𝑄 = 220; 𝑁 𝑖𝑛𝑖𝑡
𝑝 = 𝐷2;

𝑁 𝑖𝑛𝑖𝑡
𝑝 = 4

EDE-EBDE 𝐿_𝑅𝑎𝑡𝑒 = 0.7763;
𝐸𝐷𝐸_𝑏𝑒𝑠𝑡_𝑟𝑎𝑡𝑒 = 0.1264;
𝑀𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒 = 6

𝐿_𝑅𝑎𝑡𝑒 = 0.8;
𝐸𝐷𝐸_𝑏𝑒𝑠𝑡_𝑟𝑎𝑡𝑒 = 0.1;
𝑀𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒 = 5

design variables path-finding problem is considered first as follows: The
supervised approach is defined with 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 5 and 10 repetitions to
account for statistical analysis, hence, 50 runs have been performed for
the three state-of-the-art optimisers to provide a reasonable compari-
son. Figs. 9 (a) and (b) show the path solution and the convergence
behaviour, in which the proposed SPO approach and the three consid-
ered algorithms perform adequately as the path solution is accurate and
the obstacles are avoided correctly. The best solution is achieved by the
proposed SPO approach, EDE-EBDE and HSE, whereas OLSHADE-CS
presents a sub-optimal solution with a small variation in length around
two obstacles. The convergence plot shows that the best solution is
achieved fastest by EDE-EBDE, followed by the proposed SPO approach,
HSES, and OLSHADE-CS.

In the 200 design variables case, the supervised approach solu-
tion corresponds to the same analysis presented in Section 4.2 with
𝑁 = 15 and 10 repetitions, while the state-of-the-art algorithms
𝑤𝑜𝑟𝑘𝑒𝑟𝑠
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Table 5
Best, worst, mean, standard deviation and median by state-of-the-art optimisers and the proposed SPO in the geometric path-finding problem
with 30 and 200 design variables.

30 design variables 200 design variables

Optimiser Best Mean Worst Std Median Best Mean Worst Std Median

HSES 31.5558 33.8702 37.3847 1.4227 31.9937 44.6498 55.4486 72.8450 5.5712 54.8743
OLSHADE-CS 31.7308 32.2090 33.0020 0.41088 31.9937 50.6037 51.0607 51.3590 0.1597 51.0504
EDE-EBDE 31.5557 33.2330 36.3829 1.4588 33.1395 37.8881 45.9686 59.5449 5.1231 44.6919

SPO 31.5561 31.7160 32.8325 0.3814 31.5600 31.4619 31.9412 34.4326 0.9110 31.4635
Table 6
Engineering applications with the corresponding number of design variables, constraints, reference objective function values, and the performance of the proposed
SPO strategy and considered comparison algorithms, highlighting best, worst, mean, standard deviation and median of the solutions obtained [66].
Problem name 𝐷 𝑁𝑔 +𝑁ℎ 𝑓𝑅(𝑥) Algorithm Best Mean Worst Std Median

(a) Heat Exchanger
Network Design
(Case 1)

9 0 1.89E+02

SPO 1.89E+02 1.89E+02 1.89E+02 1.79E−08 1.89E+02
IUDE 1.89E+02 2.29E+02 1.85E+02 8.06E+01 2.60E+02
𝜖MAgES 1.89E+02 4.55E+02 4.37E+02 2.23E+02 4.92E+02
iLSHADE𝜖 1.90E+02 2.06E+02 2.29E+02 1.93E+01 1.94E+02

(b) Pressure vessel
design

4 4 5.88E+03

SPO 5.74E+03 5.99E+03 6.05E+03 1.23E+01 6.05E+03
IUDE 6.06E+03 6.06E+03 6.09E+03 6.16E+00 6.06E+03
𝜖MAgES 6.06E+03 7.38E+03 1.19E+04 1.93E+03 6.41E+03
iLSHADE𝜖 6.06E+03 8.48E+03 1.49E+04 3.14E+03 6.11E+03

(c) Three-bar truss
design problem

2 3 2.64E+02

SPO 2.64E+02 2.64E+02 2.64E+02 0.0 2.64E+02
IUDE 2.64E+02 2.64E+02 2.64E+02 0.0 2.64E+02
𝜖MAgES 2.64E+02 2.65E+02 2.74E+02 2.88E+00 2.64E+02
iLSHADE𝜖 2.64E+02 2.64E+02 2.64E+02 1.99E−02 2.64E+02

(d) Hydro-static
thrust bearing
design problem

4 7 1.62E+03

SPO 1.49E+03 1.52E+03 1.61E+03 4.81E+01 1.49E+03
IUDE 1.86E+03 1.93E+03 2.60E+02 2.37E+03 2.60E+02
𝜖MAgES 1.62E+03 2.35E+03 6.34E+02 1.41E+03 2.26E+03
iLSHADE𝜖 1.66E+03 1.76E+03 6.12E+02 1.28E+03 2.09E+03

(e) Himmelblau’s
Function

5 6 −3.07E+04

SPO −3.07E+04 −3.07E+04 −3.07E+04 3.63E−12 −3.07E+04
IUDE −3.07E+04 −3.07E+04 −3.07E+04 3.71E−12 −3.07E+04
𝜖MAgES −3.07E+04 −3.07E+04 −3.07E+04 3.56E−12 −3.07E+04
iLSHADE𝜖 −3.07E+04 −3.07E+04 −3.07E+04 3.64E−12 −3.07E+04
are run 150 times. Note that all optimisers have a termination criterion
defined as an imposed time limit of 15 h of computation. Figs. 9(c) and
(d) show the achieved path solution and the convergence behaviour
respectively. As can be seen, the three state-of-the-art algorithms failed
to replicate the best solution obtained by the proposed SPO strategy.
The algorithms EDE-EBDE and HSES are close to achieving an accurate
solution, as both find a reasonable path, however, they crossed an
obstacle between 𝑥 = 15 and 𝑥 = 25. In this test, OLSHADE-CS
erforms poorly, as the best solution found is a path that avoids the
one with obstacles, which results in a non-optimal path. Furthermore,
he convergence behaviour of the algorithms suggests premature con-
ergence of the three state-of-the-art algorithms as they reach a local
inimum within the first hour of the optimisation process, whereas the
roposed SPO strategy takes longer due to the exploration phase, but
t eventually achieves the optimal path. The results obtained suggest
hat the solution of large-scale problems with multiple local minima,
uch as the path-finding problem with a fine discretisation, requires
echniques to avoid premature stagnation and refinement of solutions,
hich are the two main objectives of the supervised strategy presented

n this work.
Table 5 provides statistical results obtained by the solution of the

ath-finding problem with 30 and 200 design variables respectively. In
he case of the 30 design variables, the four strategies are capable of
eaching an adequate solution, however, the statistical mean shows that
12
the proposed SPO strategy provides better solution in all experiments.
When considering the 200 design variables problem, the high level of
complexity becomes apparent, so the proposed SPO strategy is the only
strategy to achieve the best solution. Furthermore, it should be noticed
that the best solution found by any of the state-of-the-art algorithms
is not better than the standalone MCS optimiser, and comparable to
the PSO and GA tested in Section 4.2.4. However, their statistical
mean is better and more consistent than the aforementioned standalone
optimisers suggesting that a correct implementation of the state-of-the-
art optimisers within the supervised approach are likely to benefit the
efficiency of the overall SPO performance.

5. Selected engineering applications

In order to test the supervised parallel strategy performance on
practical real-world problems, selected engineering applications from
the test-suite suggested by Kumar et al. [66] are considered in this
section. The complexity of these problems arises in the formulation
of the objective function and the number of constraints involved. The
test problems chosen are related to different fields such as industrial
chemical processes, mechanical and civil engineering. Note that the
constraint handling is done via penalisation which agrees with the
current implementation of the ensemble algorithms. The constraints are
handled as

�̄�(𝑥) = max(0, 𝑔(𝑥))2 (21)
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Fig. 10. Message analysis performed for the engineering applications test suit (a) - (e) from Table 6. The number of messages sent by the optimiser is displayed using grey bars,
while the coloured bars represent the message when the optimiser is the best. (Colour should be used.).
ℎ̄(𝑥) = (ℎ(𝑥))2 (22)

where 𝑥 are the design variables, 𝑔(𝑥) is an inequality constraint with
the shape 𝑔(𝑥) ≤ 0, ℎ(𝑥) is an equality constraint, and �̄� and ℎ̄ are
soft inequality and equality constraints. Hence, the general objective
function for the problems has the form

𝑐𝑜𝑠𝑡 = 𝑓 (𝑥) + 𝑘
⎛

⎜

⎜

⎝

𝑁𝑔
∑

𝑖
�̄�𝑖(𝑥) +

𝑁ℎ
∑

𝑖
ℎ̄𝑖(𝑥)

⎞

⎟

⎟

⎠

(23)

where 𝑓 (𝑥) is the objective function, 𝑁𝑔 is the number of inequality
constraints, �̄�𝑖(𝑥) are soft inequalities and ℎ̄𝑖(𝑥) are soft equalities, 𝑘 is
a penalty factor defining how hard the constraint is considered.

The selected engineering applications have been solved by the
proposed SPO strategy and compared against three state-of-the-art al-
gorithms namely Improved Unified Differential Evolution (IUDE) [71],
Matrix Adaptation Evolution Strategy (𝜖MAgES) [72] and LSHADE44
with an Improved 𝜖 Constraint-handling Method (iLSHADE ) [73].
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𝜖

Each problem solved by SPO utilises the optimisers’ hyper-parameters
indicated in Appendix C, the SPO configuration and the magnitude of
the penalty 𝑘 per problem are indicated in Appendix D, the number of
workers is 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 10 (𝑁𝐶𝑃𝑈𝑠 = 11), and 25 simulations are executed
for each problem, whereas the solutions obtained by the comparison
algorithms are reported in Kumar et al. [66].

Table 6 contains the problem name along with the number of design
variables 𝐷, the number of constraints 𝑁𝑔 +𝑁ℎ, its reference objective
function value 𝑓𝑅(𝑥), and summarises best, mean, worst, standard
deviation and median solution achieved by the proposed strategy and
the considered comparison algorithms. It can be observed that the
results obtained for the engineering applications (a), (c), and (e) agree
with the reference cost, whereas in cases (b), and (d) the cost obtained
has been improved. In all cases, the mean, worst and median agree
with the reference cost adequately, and the standard deviation obtained
is remarkably small, indicating the high replicability of the solutions.
In comparison with the considered algorithms, it can be noticed that



Swarm and Evolutionary Computation 84 (2024) 101445E.J. Muttio et al.
SPO has a comparable performance or in some cases, the solution is
improved with respect to the selected engineering applications.

Additionally, a message analysis from SPO has been carried out to
compare the individual optimiser performance. Fig. 10 displays two
plots per engineering application (a)–(e): The top bar graph displays
the total optimiser message percentage 𝑚𝑜 with respect to all messages
received by the supervisor and the bottom bar graph corresponds to
the ratio of messages when the optimiser is the best with respect to the
total number of messages delivered by that optimiser. This information
exhibits the performance of the optimisers within the ensemble in
different applications. It is considered that the number of messages is
an indirect measure of the supervisor’s decision to let an optimiser work
for longer, and also the optimiser’s speed in delivering messages. The
ratio of best messages is an indicator of the optimiser’s suitability for
different problems.

In problem (a), DE has a greater frequency of sending messages
resulting in a mean 𝑚𝑜 above 60%, whereas the rest of the optimisers
share a balanced number of messages. Considering the ratio of best
optimiser messages, DE also has the best performance with approxi-
mately 80% of its messages being the best during the optimisation.
The contribution of the other optimisers in this problem is minimal,
with PSOV2 and PSO occupying the second and third places in the
best message ratio analysis. In problem (b), a balanced number of
messages is observed, and the best message percentage is shared by
the three MCS versions. CMA-ES has a similar incidence of messages,
but the number of best messages is zero suggesting that it has low
algorithmic complexity, i.e. it is fast when computing and sending
messages, but it never achieves a better solution than other optimisers.
Problem (c) has one the most balanced number of optimiser messages in
the considered applications test suit, indicating that the supervisor kept
all the ensembled optimisers working equivalently. However, the best
solution is sent by CMA-ES, followed by DE, MCSV2, MCS, MCSV1 and
GA. In problem (d), the overall number of messages is balanced with
the exception of MCSV1 which has the largest variance. In this problem,
DE has the best message ratio compared to the other optimisers. In
Problem (e), the supervisor kept a proportional number of messages
among optimisers, however, the best ratio is achieved by PSO and
PSOV2.

6. Conclusions

A supervised parallel optimisation approach is presented. This strat-
egy couples established algorithms in a supervisor-worker structure. It
uses the tools of monitoring, stopping and seeding to optimise the use
of the available computational resources. The supervision effectively
combines the exploration and exploitation capabilities of the different
optimisers, providing a generalised framework suited to solve problems
with diverse characteristics. Provided that the optimisation strategies
followed by the workers include a variety of algorithms, the proposed
supervised approach makes the success of the optimisation procedure
independent of any tuning of hyperparameters, which is otherwise
generally crucial.

The strategy performance has been tested with a geometric path-
finding problem, which features a large number of design variables and
a multitude of local minima. While none of the stand-alone procedures
succeeded in finding the optimal solution, the proposed supervised
strategy is capable of finding the minimal path length, which is con-
structed by straight lines, within the time limit. Thus, it has been
demonstrated that the proposed supervised strategy is superior to the
stand-alone algorithms by a large margin. Moreover, a hyperparameter
analysis has been carried out exhibiting the robustness of the proposed
strategy set with diverse configurations, and an algorithmic complexity
analysis provides information on the performance of the strategy and
its parallel communication exchange between supervisor and workers.
In order to demonstrate the robustness and efficiency of the proposed
SPO strategy a comparison with the state-of-the-art algorithms has been
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performed considering the path-finding problem. It is shown that the
proposed SPO strategy provides the solution for an optimal path using
both coarse and fine discretisation, while the state-of-the-art algorithms
can obtain an accurate solution for coarse discretisation only that relies
on the reduced set of design variables.

In order to validate the general applicability of the proposed strat-
egy, a benchmark test suit composed of engineering applications is
solved demonstrating that the proposed strategy can match, and in
some cases improve, the standard algorithms with respect to the at-
tainment of a reference cost. Furthermore, the performance of the
type of optimisers included in the ensemble is measured to understand
the internal mechanisms of the supervisor and provide a hint on the
most suitable algorithms for the problems considered in this work. A
notable application, in which the proposed supervised parallel optimi-
sation strategy has recently shown promising results, is the training of
recurrent neural networks [74].
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Appendix A. Code release

The Supervised Parallel Optimisation (SPO) strategy presented in
this work has been implemented in Python. The code is continuously
maintained in a public GitHub repository [75] that can be easily
accessed. However, as the code is developed, the results generated on a
posterior date could differ from those presented in this work. A specific
code release capable of generating the results presented can be found
in a Zenodo repository [76].

The user is encouraged to read the documentation provided in the
chosen version of the code (release/developer) in which the installa-
tion, usage and examples are detailed. The code will be made publicly

available once the present work is published.
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Table B.7
Circular obstacles location and radii defined within the
domain of the problem.
Obstacle Location Radius

𝑥 𝑦

1 2.50 −5.00 2.00
2 3.50 7.50 2.30
3 2.50 −0.50 1.50
4 6.00 3.00 2.00
5 6.50 −8.00 3.00
6 7.00 6.50 1.50
7 8.00 −2.00 2.50
8 12.00 1.00 1.50
9 14.00 4.00 2.00
10 14.50 −4.00 3.00
11 15.00 10.00 2.50
12 21.00 0.00 2.00
13 22.50 −3.50 1.50
14 23.00 3.00 2.00
15 27.00 −1.00 2.00
16 19.00 5.00 1.50
17 20.00 −5.00 1.00
18 27.00 7.50 3.00
19 25.00 −6.00 1.50
20 17.00 2.50 0.50
21 12.00 8.00 1.50
22 11.00 5.50 0.70
23 20.00 −7.50 2.00
24 11.00 −8.50 1.20
25 13.00 −9.00 1.50
26 18.00 −8.00 0.75
27 23.00 10.00 1.50
28 10.00 3.50 0.80
29 20.00 10.00 1.20
30 22.00 7.50 0.80
31 28.00 2.50 0.80
32 17.00 0.00 1.10
33 18.00 −2.50 0.30
34 9.00 −5.00 0.40
35 11.00 −6.50 0.50
36 7.50 10.00 1.50
37 12.00 12.00 0.75
38 10.50 10.00 0.45
39 25.00 −9.00 1.10
40 18.00 7.50 0.50
41 16.00 −9.00 0.60
42 27.00 −6.00 0.80
43 28.00 −8.00 0.90
44 5.00 11.00 0.90
45 2.50 2.50 0.40
46 3.50 4.00 0.40
47 5.00 −3.50 0.40
48 4.00 −2.00 0.40

Appendix B. Definition of obstacles

The circular obstacles included in the domain of the problem are de-
fined by the location of the centre and the radius. Table B.7 summarises
the parameters to define the obstacles.

Appendix C. Optimiser hyperparameters

Suggested SPO and individual hyperparameters utilised in the so-
lution of the path-finding problem of Section 4 are provided in this
section. Note that for the explorer and exploiter versions of PSO and
MCS optimisers, the strategy incorporates a hyperparameters pool that
selects a random parameter value from a given range.

• Supervised Parallel Optimisation

– Initial number of stalled messages �̄�stall: 10
15

– Exponent 𝑝: 3
– Stall tolerance: 0.01
– Stall average 𝑁𝜖 per algorithm: 20
– Number of top workers allowed to continue: 5
– Seeding probability 𝜈 = 0.5

• Pymoo Genetic Algorithm

– Population size: 100
– Number of offspring: 50

• Pymoo CMA-ES

– Population size: 100
– Initial standard deviation 𝜎: 0.5

• Pymoo PSO

– Population size: 100
– Inertia 𝜔: 0.9
– Cognitive impact 𝑐1: 2.0
– Social impact 𝑐2: 2.0
– Max velocity rate: 0.2
– Adaptive 𝜔, 𝑐1, 𝑐2: True

• Pymoo PSO V1 Explorer

– Population size: 100
– Inertia 𝜔: [0.5–0.9]
– Cognitive impact 𝑐1: [2.0–3.9]
– Social impact 𝑐2: [0.1–2.5]
– Max velocity rate: 0.2
– Adaptive 𝜔, 𝑐1, 𝑐2: False

• Pymoo PSO V2 Exploiter

– Population size: 100
– Inertia 𝜔: [0.1–0.6]
– Cognitive impact 𝑐1: [0.2–2.0]
– Social impact 𝑐2: [2.0–3.9]
– Max velocity rate: 0.2
– Adaptive 𝜔, 𝑐1, 𝑐2: False

• Modified Cuckoo Search

– Population size: 100
– Minimum nests: 25
– Discard fraction 𝑝𝑎: 0.7
– Max step 𝐴: 100
– Step size power 𝑝𝑤𝑟: 0.5

• Modified Cuckoo Search V1 Explorer

– Population size: 100
– Minimum nests: 25
– Discard fraction 𝑝𝑎: [0.5–0.9]
– Max step 𝐴: [10–1000]
– Step size power 𝑝𝑤𝑟: [0.25–0.6]

• Modified Cuckoo Search V2 Exploiter

– Population size: 100
– Minimum nests: 25
– Discard fraction 𝑝𝑎: [0.2–0.6]
– Max step 𝐴: [1000–1000000]
– Step size power 𝑝𝑤𝑟: [0.5–0.9]

Appendix D. Engineering applications details

Table D.8 summarises the SPO hyperparameters and penalty factors
𝑘 utilised to solve each engineering application discussed in Section 5.
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Table D.8
SPO hyperparameters and penalty factor 𝑘 per each engineering application.

Problem name 𝑝 �̄�𝑠𝑡𝑎𝑙𝑙 𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑁𝜖 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝜈 𝑘

(a) Heat Exchanger
Network Design
(Case 1)

3 10 0.001 100 100 0.5 1000

(b) Pressure vessel
design

3 3 0.001 10 10 0.5 1𝑒6

(c) Three-bar truss
design problem

3 10 0.01 10 10 0.5 1𝑒6

(d) Hydro-static
thrust bearing
design problem

3 10 0.01 10 10 0.5 1𝑒6

(e) Himmelblau’s
Function

3 5 0.01 5 100 0.5 1𝑒6

References

[1] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, control, and Artificial Intelligence, MIT
Press, 1992.

[2] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671–680.

[3] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95
- International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948,
http://dx.doi.org/10.1109/ICNN.1995.488968.

[4] N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation, in: Proceedings of
IEEE International Conference on Evolutionary Computation, 1996, pp. 312–317,
http://dx.doi.org/10.1109/ICEC.1996.542381.

[5] R. Storn, On the usage of differential evolution for function optimization,
in: Proceedings of North American Fuzzy Information Processing, 1996, pp.
519–523, http://dx.doi.org/10.1109/NAFIPS.1996.534789.

[6] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (1997) 341–359.

[7] S. Das, S.S. Mullick, P.N. Suganthan, Recent advances in differential evolution –
An updated survey, Swarm Evol. Comput. 27 (2016) 1–30.

[8] K.R. Opara, J. Arabas, Differential Evolution: A survey of theoretical analyses,
Swarm Evol. Comput. 44 (2019) 546–558.

[9] X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in: 2009 World Congress
on Nature Biologically Inspired Computing, NaBIC, 2009, pp. 210–214, http:
//dx.doi.org/10.1109/NABIC.2009.5393690.

[10] X.S. Yang, A new metaheuristic bat-inspired algorithm, in: Nature Inspired Co-
operative Strategies for Optimization, NICSO 2010, in: Studies in Computational
Intelligence, Springer, Berlin, Heidelberg, 2010, pp. 65–74, http://dx.doi.org/10.
1007/978-3-642-12538-6_6.

[11] X.S. Yang, Firefly algorithm, stochastic test functions and design optimisation,
Int. J. Bio-Inspir. Comput. 2 (2) (2010) 78–84.

[12] I. Fister, I. Fister Jr., X.S. Yang, J. Brest, A comprehensive review of firefly
algorithms, Swarm Evol. Comput. 13 (2013) 34–46.

[13] H. Abedinpourshotorban, S. Mariyam Shamsuddin, Z. Beheshti, D.N.A. Jawawi,
Electromagnetic field optimization: A physics-inspired metaheuristic optimization
algorithm, Swarm Evol. Comput. 26 (2016) 8–22.

[14] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw. 95
(2016) 51–67.

[15] F.S. Gharehchopogh, H. Gholizadeh, A comprehensive survey: Whale Opti-
mization Algorithm and its applications, Swarm Evol. Comput. 48 (2019)
1–24.

[16] M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization:
Squirrel search algorithm, Swarm Evol. Comput. 44 (2019) 148–175.

[17] M. Rocha, J. Neves, Preventing premature convergence to local optima in genetic
algorithms via random offspring generation, in: I. Imam, Y. Kodratoff, A. El-
Dessouki, M. Ali (Eds.), Multiple Approaches to Intelligent Systems, Springer,
Berlin, Heidelberg, 1999, pp. 127–136.

[18] C. Vanaret, J.-B. Gotteland, N. Durand, J.-M. Alliot, Preventing premature
convergence and proving the optimality in evolutionary algorithms, in: P.
Legrand, M.-M. Corsini, J.-K. Hao, N. Monmarché, E. Lutton, M. Schoenauer
(Eds.), Artificial Evolution, Springer International Publishing, 2014, pp. 29–40.

[19] M. Bhattacharya, A synergistic approach for evolutionary optimization, in: Pro-
ceedings of the 10th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO ’08, Association for Computing Machinery, New York, NY,
USA, 2008, pp. 2105–2110, http://dx.doi.org/10.1145/1388969.1389031.

[20] B. Yang, Y. Chen, Z. Zhao, A hybrid evolutionary algorithm by combination of
PSO and GA for unconstrained and constrained optimization problems, in: 2007
IEEE International Conference on Control and Automation, 2007, pp. 166–170,
http://dx.doi.org/10.1109/ICCA.2007.4376340.
16
[21] P. Ghamisi, J.A. Benediktsson, Feature selection based on hybridization of genetic
algorithm and particle swarm optimization, IEEE Geosci. Remote Sens. Lett. 12
(2) (2015) 309–313.

[22] F. Zhao, Q. Zhang, D. Yu, X. Chen, Y. Yang, A hybrid algorithm based on
PSO and simulated annealing and its applications for partner selection in
virtual enterprise, in: D.-S. Huang, X.-P. Zhang, G.-B. Huang (Eds.), Advances in
Intelligent Computing, in: Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2005, pp. 380–389, http://dx.doi.org/10.1007/11538059_40.

[23] N. Sadati, T. Amraee, A.M. Ranjbar, A global Particle Swarm-Based-Simulated
Annealing Optimization technique for under-voltage load shedding problem,
Appl. Soft Comput. 9 (2) (2009) 652–657.

[24] A. Ghodrati, S. Lotfi, A hybrid CS/PSO algorithm for global optimization, in:
J.-S. Pan, S.-M. Chen, N.T. Nguyen (Eds.), Intelligent Information and Database
Systems, in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
2012, pp. 89–98, http://dx.doi.org/10.1007/978-3-642-28493-9_11.

[25] R. Chi, Y.-x. Su, D.-h. Zhang, X.-x. Chi, H.-j. Zhang, A hybridization of cuckoo
search and particle swarm optimization for solving optimization problems, Neural
Comput. Appl. 31 (1) (2019) 653–670.

[26] X. Li, M. Yin, A particle swarm inspired cuckoo search algorithm for real
parameter optimization, Soft Comput. 20 (4) (2016) 1389–1413.

[27] J. Dash, B. Dam, R. Swain, Optimal design of linear phase multi-band stop filters
using improved cuckoo search particle swarm optimization, Appl. Soft Comput.
52 (2017) 435–445.

[28] T. Hendtlass, A combined swarm differential evolution algorithm for optimization
problems, in: Proceedings of the 14th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems:
Engineering of Intelligent Systems, in: IEA/AIE ’01, Springer-Verlag, Berlin,
Heidelberg, 2001, pp. 11–18.

[29] W.-J. Zhang, X.-F. Xie, DEPSO: Hybrid particle swarm with differential evolution
operator, in: SMC03 Conference Proceedings. 2003 IEEE International Conference
on Systems, Man and Cybernetics. Conference Theme - System Security and
Assurance. Vol. 4, 2003, pp. 3816–3821, http://dx.doi.org/10.1109/ICSMC.2003.
1244483.

[30] R. Xu, J. Xu, D.C. Wunsch, Clustering with differential evolution particle swarm
optimization, in: IEEE Congress on Evolutionary Computation, 2010, pp. 1–8,
http://dx.doi.org/10.1109/CEC.2010.5586257.

[31] Z. Wang, Y. Chen, S. Ding, D. Liang, H. He, A novel particle swarm optimization
algorithm with Lévy flight and orthogonal learning, Swarm Evol. Comput. 75
(2022) 101207.

[32] A. Hatamlou, S. Abdullah, H. Nezamabadi-pour, A combined approach for
clustering based on K-means and gravitational search algorithms, Swarm Evol.
Comput. 6 (2012) 47–52.

[33] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: A
literature review, Swarm Evol. Comput. 2 (2012) 1–14.

[34] G. Wu, R. Mallipeddi, P.N. Suganthan, Ensemble strategies for population-based
optimization algorithms – A survey, Swarm Evol. Comput. 44 (2019) 695–711.

[35] M.Z. Ali, N.H. Awad, P.N. Suganthan, Multi-population differential evolution
with balanced ensemble of mutation strategies for large-scale global optimization,
Appl. Soft Comput. 33 (2015) 304–327.

[36] G. Wu, R. Mallipeddi, P.N. Suganthan, R. Wang, H. Chen, Differential evolution
with multi-population based ensemble of mutation strategies, Special issue on
Discovery Science, Inform. Sci. 329 (2016) 329–345.

[37] S.X. Zhang, S.Y. Zheng, L.M. Zheng, An efficient multiple variants coordination
framework for differential evolution, IEEE Trans. Cybern. 47 (2017) 2780–2793.

[38] G. Wu, X. Shen, H. Li, H. Chen, A. Lin, P. Suganthan, Ensemble of differential
evolution variants, Inform. Sci. 423 (2018) 172–186.

[39] P. Singh, R. Kottath, An ensemble approach to meta-heuristic algorithms:
Comparative analysis and its applications, Comput. Ind. Eng. 162 (2021) 107739.

[40] S.M. Elsayed, R.A. Sarker, E. Mezura-Montes, Self-adaptive mix of particle swarm
methodologies for constrained optimization, Inform. Sci. 277 (2014) 216–233.

[41] N. Lynn, P.N. Suganthan, Ensemble particle swarm optimizer, Appl. Soft Comput.
55 (2017) 533–548.

[42] A.P. Engelbrecht, Heterogeneous particle swarm optimization, in: Swarm In-
telligence, Vol. 6234, Springer, Berlin, Heidelberg, 2010, pp. 191–202, http:
//dx.doi.org/10.1007/978-3-642-15461-4_17.

[43] J. Robinson, S. Sinton, Y. Rahmat-Samii, Particle swarm, genetic algorithm,
and their hybrids: optimization of a profiled corrugated horn antenna, in:
IEEE Antennas and Propagation Society International Symposium. Vol. 1, IEEE
Cat. No.02CH37313, 2002, pp. 314–317, http://dx.doi.org/10.1109/APS.2002.
1016311.

[44] J.A. Vrugt, B.A. Robinson, J.M. Hyman, Self-adaptive multimethod search for
global optimization in real-parameter spaces, IEEE Trans. Evol. Comput. 13 (2)
(2009) 243–259.

[45] J. Zhang, T.-S. Pan, J.-S. Pan, A parallel hybrid evolutionary particle filter for
nonlinear state estimation, in: 2011 First International Conference on Robot,
Vision and Signal Processing, 2011, pp. 308–312, http://dx.doi.org/10.1109/
RVSP.2011.77.

[46] Y. Xue, S. Zhong, Y. Zhuang, B. Xu, An ensemble algorithm with self-adaptive
learning techniques for high-dimensional numerical optimization, Appl. Math.
Comput. 231 (2014) 329–346.

http://refhub.elsevier.com/S2210-6502(23)00217-1/sb1
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb1
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb1
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb1
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb1
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb2
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb2
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb2
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICEC.1996.542381
http://dx.doi.org/10.1109/NAFIPS.1996.534789
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb6
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb6
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb6
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb7
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb7
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb7
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb8
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb8
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb8
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb11
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb11
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb11
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb12
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb12
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb12
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb13
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb13
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb13
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb13
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb13
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb14
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb14
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb14
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb15
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb15
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb15
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb15
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb15
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb16
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb16
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb16
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb17
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb18
http://dx.doi.org/10.1145/1388969.1389031
http://dx.doi.org/10.1109/ICCA.2007.4376340
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb21
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb21
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb21
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb21
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb21
http://dx.doi.org/10.1007/11538059_40
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb23
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb23
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb23
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb23
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb23
http://dx.doi.org/10.1007/978-3-642-28493-9_11
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb25
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb25
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb25
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb25
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb25
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb26
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb26
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb26
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb27
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb27
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb27
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb27
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb27
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb28
http://dx.doi.org/10.1109/ICSMC.2003.1244483
http://dx.doi.org/10.1109/ICSMC.2003.1244483
http://dx.doi.org/10.1109/ICSMC.2003.1244483
http://dx.doi.org/10.1109/CEC.2010.5586257
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb31
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb31
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb31
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb31
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb31
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb32
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb32
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb32
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb32
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb32
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb33
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb33
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb33
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb34
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb34
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb34
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb35
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb35
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb35
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb35
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb35
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb36
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb36
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb36
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb36
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb36
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb37
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb37
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb37
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb38
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb38
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb38
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb39
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb39
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb39
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb40
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb40
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb40
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb41
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb41
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb41
http://dx.doi.org/10.1007/978-3-642-15461-4_17
http://dx.doi.org/10.1007/978-3-642-15461-4_17
http://dx.doi.org/10.1007/978-3-642-15461-4_17
http://dx.doi.org/10.1109/APS.2002.1016311
http://dx.doi.org/10.1109/APS.2002.1016311
http://dx.doi.org/10.1109/APS.2002.1016311
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb44
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb44
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb44
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb44
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb44
http://dx.doi.org/10.1109/RVSP.2011.77
http://dx.doi.org/10.1109/RVSP.2011.77
http://dx.doi.org/10.1109/RVSP.2011.77
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb46
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb46
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb46
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb46
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb46


Swarm and Evolutionary Computation 84 (2024) 101445E.J. Muttio et al.
[47] S.Y. Yuen, X. Zhang, On composing an algorithm portfolio, Memet. Comput. 7
(3) (2015) 203–214.

[48] S. Elsayed, N. Hamza, R. Sarker, Testing united multi-operator evolutionary
algorithms-II on single objective optimization problems, in: 2016 IEEE Congress
on Evolutionary Computation, CEC, 2016, pp. 2966–2973, http://dx.doi.org/10.
1109/CEC.2016.7744164.

[49] A.A. Nik, F.M. Nejad, H. Zakeri, Hybrid PSO and GA approach for optimizing
surveyed asphalt pavement inspection units in massive network, Autom. Constr.
71 (2016) 325–345.

[50] H. Garg, A hybrid PSO-GA algorithm for constrained optimization problems,
Appl. Math. Comput. 274 (2016) 292–305.

[51] K. Wansasueb, S. Bureerat, S. Kumar, Ensemble of four metaheuristic using a
weighted sum technique for aircraft wing design, Eng. Appl. Sci. Res. 48 (4)
(2021) 385–396.

[52] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, A.D. George, Parallel global
optimization with the particle swarm algorithm, Internat. J. Numer. Methods
Engrg. 61 (13) (2004) 2296–2315.

[53] J.-F. Chang, S.-C. Chu, J. Roddick, J.-S. Pan, A parallel particle swarm opti-
mization algorithm with communication strategies, J. Inf. Sci. Eng. 21 (2005)
809–818.

[54] G. Venter, J. Sobieszczanski-Sobieski, Parallel particle swarm optimization al-
gorithm accelerated by asynchronous evaluations, J. Aerosp. Comput. Infor.
Commun. 3 (3) (2006) 123–137.

[55] M. Waintraub, R. Schirru, C.M.N.A. Pereira, Multiprocessor modeling of parallel
Particle Swarm Optimization applied to nuclear engineering problems, Prog.
Nucl. Energy 51 (6) (2009) 680–688.

[56] J. Blank, K. Deb, pymoo: Multi-objective optimization in Python, IEEE Access 8
(2020) 89497–89509.

[57] S. Walton, O. Hassan, K. Morgan, M. Brown, Modified cuckoo search: a new
gradient free optimisation algorithm, Chaos, Solitions Fract. 44 (2011) 710–718.

[58] K. Deb, A. Kumar, Real-coded genetic algorithms with simulated binary
crossover: Studies on multimodal and multiobjective problems, Complex Systems
(1995) 431–454.

[59] K. Deb, D. Deb, Analysing mutation schemes for real-parameter genetic
algorithms, Int. J. Artif. Intell. Soft Comput. 4 (1) (2014) 1–28.

[60] N. Hansen, The CMA evolution strategy: A comparing review, in: Towards a New
Evolutionary Computation. Studies in Fuzziness and Soft Computing. Vol. 192,
2007, pp. 75–102, http://dx.doi.org/10.1007/3-540-32494-1_4.

[61] J. Jin, C. Yang, Y. Zhang, An improved CMA-ES for solving large scale
optimization problem, in: Y. Tan, Y. Shi, M. Tuba (Eds.), Advances in Swarm
Intelligence, Springer International Publishing, 2020, pp. 386–396.

[62] Y.Y. Fan, R.E. Kalaba, J.E. Moore, Arriving on Time, J. Optim. Theory Appl. 127
(3) (2005) 497–513.
17
[63] Y. Nie, Y. Fan, Arriving-on-time problem: Discrete algorithm that ensures
convergence, Transp. Res. Rec. 1964 (1) (2006) 193–200.

[64] M. Niknami, S. Samaranayake, Tractable pathfinding for the stochastic on-time
arrival problem, in: Experimental Algorithms, in: Lecture Notes in Computer
Science, Springer International Publishing, 2016, pp. 231–245, http://dx.doi.org/
10.1007/978-3-319-38851-9_16.

[65] Y. Liu, S. Blandin, S. Samaranayake, Stochastic on-time arrival problem in transit
networks, Transp. Res. B 119 (2019) 122–138.

[66] A. Kumar, G. Wu, M.Z. Ali, R. Mallipeddi, P.N. Suganthan, S. Das, A test-suite
of non-convex constrained optimization problems from the real-world and some
baseline results, Swarm Evol. Comput. 56 (2020) 100693.

[67] Z. Ma, G. Wu, P.N. Suganthan, A. Song, Q. Luo, Performance assessment and
exhaustive listing of 500+ nature-inspired metaheuristic algorithms, Swarm Evol.
Comput. 77 (2023) 101248.

[68] G. Zhang, Y. Shi, Hybrid sampling evolution strategy for solving single objective
bound constrained problems, in: 2018 IEEE Congress on Evolutionary Computa-
tion, CEC, IEEE, Rio de Janeiro, 2018, pp. 1–7, http://dx.doi.org/10.1109/CEC.
2018.8477908.

[69] A.W. Mohamed, A.A. Hadi, K.M. Jambi, Novel mutation strategy for enhancing
SHADE and LSHADE algorithms for global numerical optimization, Swarm Evol.
Comput. 50 (2019) 100455.

[70] A. Kumar, P.P. Biswas, P.N. Suganthan, Differential evolution with orthogonal
array-based initialization and a novel selection strategy, Swarm Evol. Comput.
68 (2022) 101010.

[71] A. Trivedi, D. Srinivasan, N. Biswas, An improved unified differential evolution
algorithm for constrained optimization problems, in: Proceedings of 2018 IEEE
Congress on Evolutionary Computation, IEEE, 2018, pp. 1–10.

[72] M. Hellwig, H.-G. Beyer, A matrix adaptation evolution strategy for con-
strained real-parameter optimization, in: 2018 IEEE Congress on Evolution-
ary Computation, CEC, 2018, pp. 1–8, http://dx.doi.org/10.1109/CEC.2018.
8477950.

[73] Z. Fan, Y. Fang, W. Li, Y. Yuan, Z. Wang, X. Bian, LSHADE44 with an improved
constraint-handling method for solving constrained single-objective optimization
problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, IEEE,
2018, pp. 1–8, http://dx.doi.org/10.1109/CEC.2018.8477943.

[74] W.G. Dettmer, E.J. Muttio, R. Alhayki, D. Perić, A framework for neural network
based constitutive modelling of inelastic materials, Comput. Methods Appl. Mech.
Eng. (2023) http://dx.doi.org/10.1016/j.cma.2023.116672.

[75] E.J. Muttio, Supervised parallel optimisation framework, 2023, URL: https://
github.com/EugenioMuttio/SPO.git.

[76] E.J. Muttio, W.G. Dettmer, J. Clarke, D. Perić, Z. Ren, L. Fletcher, Supervised
Parallel Optimisation Framework, Zenodo, 2023, http://dx.doi.org/10.5281/
zenodo.8005337.

http://refhub.elsevier.com/S2210-6502(23)00217-1/sb47
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb47
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb47
http://dx.doi.org/10.1109/CEC.2016.7744164
http://dx.doi.org/10.1109/CEC.2016.7744164
http://dx.doi.org/10.1109/CEC.2016.7744164
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb49
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb49
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb49
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb49
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb49
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb50
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb50
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb50
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb51
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb51
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb51
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb51
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb51
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb52
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb52
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb52
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb52
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb52
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb53
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb53
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb53
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb53
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb53
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb54
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb54
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb54
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb54
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb54
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb55
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb55
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb55
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb55
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb55
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb56
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb56
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb56
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb57
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb57
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb57
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb58
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb58
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb58
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb58
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb58
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb59
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb59
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb59
http://dx.doi.org/10.1007/3-540-32494-1_4
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb61
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb61
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb61
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb61
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb61
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb62
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb62
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb62
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb63
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb63
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb63
http://dx.doi.org/10.1007/978-3-319-38851-9_16
http://dx.doi.org/10.1007/978-3-319-38851-9_16
http://dx.doi.org/10.1007/978-3-319-38851-9_16
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb65
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb65
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb65
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb66
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb66
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb66
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb66
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb66
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb67
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb67
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb67
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb67
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb67
http://dx.doi.org/10.1109/CEC.2018.8477908
http://dx.doi.org/10.1109/CEC.2018.8477908
http://dx.doi.org/10.1109/CEC.2018.8477908
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb69
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb69
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb69
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb69
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb69
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb70
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb70
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb70
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb70
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb70
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb71
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb71
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb71
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb71
http://refhub.elsevier.com/S2210-6502(23)00217-1/sb71
http://dx.doi.org/10.1109/CEC.2018.8477950
http://dx.doi.org/10.1109/CEC.2018.8477950
http://dx.doi.org/10.1109/CEC.2018.8477950
http://dx.doi.org/10.1109/CEC.2018.8477943
http://dx.doi.org/10.1016/j.cma.2023.116672
https://github.com/EugenioMuttio/SPO.git
https://github.com/EugenioMuttio/SPO.git
https://github.com/EugenioMuttio/SPO.git
http://dx.doi.org/10.5281/zenodo.8005337
http://dx.doi.org/10.5281/zenodo.8005337
http://dx.doi.org/10.5281/zenodo.8005337

	A supervised parallel optimisation framework for metaheuristic algorithms
	Introduction
	Meta-heuristic Algorithms
	Particle Swarm Optimisation (PSO)
	Genetic Algorithms (GAs)
	CMA-ES Algorithm
	Modified Cuckoo Search (MCS)
	Differential Evolution (DE)

	Supervised Parallel Framework
	Parallel Supervisor-Worker Structure
	Stopping Criteria
	Seeding Procedure

	Illustrative Example: Geometric Path-Finding Problem
	Problem Definition
	Results and Discussion
	Convergence Behaviour
	Comparison with Isolated Optimisers
	SPO Hyperparameter Analysis
	Algorithmic Complexity
	Comparison with State-Of-The-Art Algorithms


	Selected Engineering Applications
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Code Release
	Appendix B. Definition of Obstacles
	Appendix C. Optimiser Hyperparameters
	Appendix D. Engineering Applications Details
	References


