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Featured Application: A framework to support steel operators in critical decision-making tasks.

Abstract: This paper proposes a human-in-the-loop framework that integrates machine learning
models with semantic technologies to aid decision making in the domain of steelmaking. To achieve
this, we convert a random forest (RF) into rules in a Semantic Web Rule Language (SWRL) format
and represent real-world data as a knowledge graph in a Resource Description Framework (RDF)
format, capturing the meta-data as part of the model. A rule engine is deployed that applies logical
inference on the knowledge graph, resulting in a semantically enriched classification. This new
classification is combined with external domain-expert knowledge to provide improved, knowledge-
guided assistance for the human-in-the-loop system. A case study in the steel manufacturing domain
is introduced, where this application is used for real-world predictive analytic purposes.

Keywords: steelmaking; ontology; knowledge graphs; semantic reasoning; machine learning;
random forest; predictive analytics

1. Introduction

Ontologies and knowledge graphs have become a well-established and recognised
way of modelling and enriching knowledge within a particular domain. In the context
of smart manufacturing, semantic technologies have become a promising solution for
addressing Industry 4.0 challenges [1] and have many advantages including (1) the ability
to provide a shared, machine-understandable vocabulary for data integration and exchange
among components [2], (2) the capability to access and query data at a virtual level without
physical data integration [3], and (3) simulating cognitive decision-making tasks through
logical deductions, rules, and reasoning [4].

Meanwhile, machine learning (ML) models such as random forest (RF) have been
widely adopted in manufacturing to optimize, control, troubleshoot, and improve process
operations and automatization [5]. However, these models are faced with challenges
such as the lack of context-aware information within dynamic production environments
and semantic interoperability [6]. Thus, the development of hybrid models that combine
semantic technologies and ML has been proposed to address these challenges.

Steel production is a particular example of a manufacturing process that requires
extensive human knowledge, produces a vast amount of dynamical and static data, and
where predictive analytics and maintenance are of utmost importance, usually associated
with significant costs [7]. Cold rolling is one example of an important process in steelmaking,
which is the process of reducing the thickness of steel strips to produce narrow sheets that
are coiled. Work rolls are fundamental components of cold rolling, compressing the steel
material, but they become worn after prolonged usage. They are required to be refurbished
on a regular basis to remove the worn surfaces [8]. Presently, work rolls are refurbished
based on the quantity of steel coils produced rather than their physical conditions. One
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motivation of this study is to develop an application to aid operators on the shop floor in
critical decision-making tasks in order to optimize the yield, efficiency, and overall life of
work rolls.

In this paper, we demonstrate a hybrid model for predictive analytic purposes in
the domain of steelmaking. The scheduling of the refurbishment process can then be
targeted based on the condition of the rolls rather than an estimation based on the to-
tal tonnage produced. Additionally, anomalies and accidents within a steel plant such
as spalling and overloads [8] can be identified and avoided pre-emptively with greater
semantic interoperability.

To achieve this goal, we propose a human-in-the-loop framework that leverages
knowledge representations and reasoning mechanisms using machine learning models
to provide semantically enriched classifications, which are further combined with expert
knowledge to support decision-making tasks. The support provided by the framework is
similar to that of an expert system in the domain of steelmaking; however, the framework
itself is not exactly an expert system and serves a more significant purpose.

The contributions of this paper are twofold: (1) we introduce the Random Forest
Ontology (RFO) that captures and models a random forest at a conceptual level, which can
represent and perform RF classification using rule-based reasoning and knowledge graphs,
and (2) we demonstrate an iterative process to integrate external domain–expert knowledge
with RF classification to provide more comprehensible decision-making assistance for the
human-in-the-loop system.

The outline of this paper is as follows. Section 2 introduces the related works exploring
existing hybrid models that combine semantic reasoning with ML. Section 3 introduces the
methodology of our proposed approach. In Section 4, a use case is presented, where the
framework is applied to assist steel operators, and the results of the application are utilized
to validate the framework in Section 5. Finally, we end with the conclusions in Section 6
and future work in Section 7.

2. Related Work

There exists a significant amount of research that employs both semantic reasoning for
inference tasks and ML for predictive tasks, but there are few works that combine the two
paradigms. This section investigates the existing literature that combines ML models with
semantic reasoning.

Rajbhandari et al. [9] introduced a hybrid model that combines ontology with random
forest classification to address the lack of formalisation in systematic models for image
object identification. Their model combines two sets of rules: (1) generalised domain
knowledge rules from the literature and domain experts, and (2) localised rules obtained
from an RF classification to classify landslides. In our paper, the RF classification is re-
created using rule-based reasoning, where each rule denotes a path of an RF that is later
combined with expert rules.

Similarly, Shoaip et al. [10] proposed an interpretable model to detect Alzheimer’s
disease using rule-based reasoning by combining the Alzheimer’s Disease Diagnosis Ontol-
ogy with a combination of different ML models. The Semantic Web Rule Language (SWRL)
rules were obtained by combining a DT with the Java repeated incremental pruning model
to produce a classification with enhanced reasoning efficiency. The rules were produced
in a non-technical manner so that domain experts such as doctors could understand them
and provide feedback without prior technical training. Meanwhile, in our framework, two
distinct rule sets are employed. The first set comprises expert rules that represent the paths
within the RF utilized for rule-based reasoning. The second set consists of domain-expert
rules that are applied on top of any newly acquired classifications. Neither of these rule
sets are displayed to domain experts.

Jabardi et al. [11] used ontological engineering and SWRL rules to identify and classify
fake accounts on Twitter. The authors evaluated their ontology-based classifier results
with different machine learning techniques, including naive bayes, logistic regression, and
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Support Vector Machine (SVM), using the Waikato Environment for Knowledge Analysis
(WEKA) tool. For this approach, the SWRL rules were manually written. The same authors
expanded their research to cover DTs in [12] but did not cover how the rules were created.
In contrast, the SWRL rules representing the RF in our paper are systematically generated
through an algorithm introduced in Section 3, while our domain-expert rules are translated
from natural language manually.

Johnson et al. [13] developed a method to model ontological-based knowledge into a
DT through a generic and interactive process involving domain experts. Their method fol-
lows a data-driven rule-learning model that iteratively implements qualitative knowledge
from the ontology into the DT until a complete DT is formulated. The authors exempli-
fied the model through a case study focused on predicting food quality. Meanwhile,our
framework integrates domain-expert knowledge with RF classification without the need
to recreate the RF each time. Additionally, we follow an iterative process to access and
validate our domain-expert rule set.

Sarkar et al. [14] introduced CHAIKMAT 4.0, a hybrid AI model that integrates seman-
tic reasoning and machine learning paradigms to advance trusted flexible manufacturing
aligned with Industry 4.0 goals. Their approach involves deploying deep learning and
machine learning models for predicting machine capability and text analysis, and utilizes
semantic reasoning to capture common-sense knowledge, enabling the generation of ex-
planations for general tasks within a manufacturing production line. While the authors
acknowledge existing technologies capable of achieving such goals, the implementation is
left for future work.

Ammar et al. [15] introduced a proof-of-concept recommendation system that lever-
ages machine learning and semantic technologies for explainability in AI. In their paper,
the authors developed a hybrid prototype featuring a knowledge-driven recommendation
system aimed at improving mental health surveillance based on adverse childhood expe-
riences. The authors placed significant emphasis on ontological aspects and employed
a question-answering agent from the Google DialogFlow engine to serve as a semantic
knowledge base. The results in their prototype were compared to those of a ML classifica-
tion, showcasing the added advantages of explainability. However, the hybrid method was
still in the proof-of-concept phase and no concrete implementation was provided.

Bettini et al. [16] introduced proCAVIAR, a hybrid model that combines semi-
supervised machine learning models with probabilistic knowledge-based reasoning for
activity recognition. In their approach, the authors developed an ontology to capture
the knowledge of various activities, including running, sitting, cycling and standing. Af-
terwards, probabilistic semantic reasoning was applied to comprehend these activities,
and the outputs of the reasoner were combined with a ML classifier to generate a final
prediction of the user’s activity. In our work, we replicate the ML classifier itself using
semantic reasoning.

Tofighi-Shirazi et al. [17] proposed a novel approach that combines semantic rea-
soning and ensemble machine learning classification for a framework designed to detect
obfuscation transformations. The authors generated obfuscated samples and used semantic
reasoning to extract raw data from these samples. The extracted data were then utilized to
train various ensemble models for classification. In our study, we differ in approach, as we
do not employ semantic reasoning to extract raw data. Instead, we utilize it to recreate the
ensemble classification process of the RF using symbolic methods.

Pukkhem et al. [18] employed decision trees as the basis for generating an ontology
with the objective of predicting the number of students graduating at a University. The
DTs were created using C4.5/J48 algorithms. The authors emphasized how ontological
representations play a key role for predictive purposes and the possibility of using SWRL
rules to infer knowledge. However, the implementation details were not included and are
unidentified as part of future work.

Finally, Cao et al. [19] integrated symbolic and statistical AI technologies for automa-
tion and predictive analysis within the domain of smart manufacturing. The authors adopt
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ontological reasoning with statistical AI techniques using real-world datasets to generate a
rule set in SWRL format. These rules were able to automatically detect machine anomalies
within a shop floor. Meanwhile, our framework proposes different methodologies with
results aimed at assisting operators on the shop floor.

3. Methods

Figure 1 displays the methodology of the proposed framework. There are three key
components: Ontology, Machine Learning, and Semantic Reasoning which are described
in the next sections.

Figure 1. Methodology of our proposed framework.

3.1. Ontology

Ontologies have the capability to explicitly define concepts within a specific domain,
along with their semantics [20]. Therefore, we leverage ontologies to capture the cold rolling
processes and the semantics of the associated datasets. This work is built upon the Steel
Cold Rolling Ontology (SCRO) introduced in [21]. SCRO models domain knowledge related
to the cold rolling processes within a steel factory, emphasising semantic methodologies to
store, access, and integrate real-world industrial data through virtual knowledge graphs.
The cold rolling knowledge was acquired through interactions with domain experts and
supplemented with relevant literature from online sources.

The initial step of the framework involves converting the dataset from a Structured
Query Language (SQL) database into the Resource Description Framework (RDF) format
to produce a knowledge graph. This knowledge graph is a collection of instances where
the resources are identified, and their corresponding data values are represented as nodes.
Meanwhile, their relations, or meta-data, are captured as edges, forming RDF tuples [22].
To achieve this, we employ the Ontop framework to automatically translate data into an
RDF format [23]. Ontop offers two processes: (1) utilizing Bootstrappers that automatically
covert an entire SQL table into an RDF format without explicitly defining any relations, or
(2) using Ontop Mappings, which provide the functionality to select and filter specific data
from an SQL table to correlate with existing properties in an ontology. In our framework,
we chose Ontop mappings for added flexibility.

Ontop Mappings

There are two key components of an Ontop Mapping: (1) the Source containing an
SQL query that allows the user retrieval of specific data through a select clause, (2) the
Target which precisely maps the selected columns of a table to the chosen data or object
property of an ontology.
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Ontop Mappings are constructed manually and therefore require some knowledge
of the syntax of the language. Figure 2 provides an example of an Ontop Mapping. In
the source, we select which columns to include in the knowledge graph, while the target
maps those features to the corresponding data properties in the ontology. The knowledge
graph is then automatically generated by the materialization process in the Protégé IDE.
The creation of the knowledge graph is the initial step in enabling semantic reasoning in
our framework.

Figure 2. The mapping between SQL data and ontology using Ontop.

3.2. Machine Learning Models

Decision trees (DT) are capable of inferring rules from historical data to classify data-
points as belonging to one of a predefined set of categories. They require relatively minimal
data pre-processing steps and generate a definite set of simple rules that assign a unique
category to each instance. During the training process, the DT progressively splits the
dataset according to the value of a certain feature until a classification is reached for
each resulting subset of the dataset. Thus, a DT can be viewed as a set of discrete rules.
Each rule is composed of a logical conjunction of elementary formulae, accompanied by
a class attribution. Any unseen instance satisfies precisely one of those rules, so that the
classification performed by a DT is both human and machine interpretable. They are also
advantageous as they have similar constructs to semantic web-based rules. However, DTs
suffer from high variance and can quickly overfit the training set.

Meanwhile, a Random Forest (RF) [24] was introduced as a classifier to overcome
these shortcomings. A RF classifier is formed by several DTs, each built using a randomly
sampled subset of the training set, containing de-correlated predictors. The predicted
category for each instance is determined by combining the output from the trees, which
reduces the variance and hence improves the accuracy of the model. An algorithm known
as a voting strategy is then used to calculate the final classification from the DTs. There are
two main approaches: (1) using a majority voting strategy where the final classification
is the modal value of all the DT predictions, or (2) using a soft voting strategy where the
final classification is derived by calculating the average value of all the DT predictions.

We chose RFs over other ensemble methods due to their advantageous and easily
comparable rule-like structure, which aligns well with the structure of semantic rules. This
is particularly noticeable when contrasted with other machine learning models such as
the Bayesian model. Random Forests have been extensively studied, and they demon-
strated high accuracy across various complexities of classification and regression tasks [25].
Additionally, RFs provide a versatile set of techniques including bagging, node split-
ting, and various feature selection methods, further contributing to their suitability for
our application [26].

The structure of a random forest is displayed in Figure 3, presenting a concise snippet
in plain text that highlights the straightforward rule-like structure. Each line within the
representation contains precisely one condition involving one specific feature. If the
condition is met, the traversal continues to the next line, recursively. In case the condition is



Appl. Sci. 2023, 13, 12778 6 of 19

not satisfied, the traversal instead travels down the pipe into a new line, typically involving
the same feature with a reversed condition. This iterative process is repeated until a leaf
node is reached, where weightings and classification information are stored.

Figure 3. Structure of a scikit-learn RF in plain text format.

In this specific example, each leaf node is characterized by three potential weighted
classifications enclosed in square brackets. The weighted values represent the quantity of
training samples that satisfied all the conditions along that path up to the respective leaf
node for each class. In a Breiman RF, the final classification is determined by selecting the
maximum value among the three values, simulating a hard voting strategy. In contrast, a
soft voting strategy would involve calculating the average of the three values to derive
the final classification. This distinction in voting strategies adds to the flexibility and
adaptability of the RF model.

Example 1. To illustrate the determination of a class, we consider the first leaf node in Figure 3.
Such node is represented by the following information: weights : [0,7,1] class 1.0. This
indicates that a total of 8 records from the training set satisfy that exact set of inequalities associated
with this node. Among these, 0 belong to class 0, 7 belong to class 1, and 1 belong to class
2. Hence, in this example, class 1 is prioritized for both voting strategies, indicating its higher
prevalence in the training set.

Within the framework, after training a RF for a classification task, the RF is stored
in plain text format using the export_tree method provided by sci-kit learn [27]. Subse-
quently, an algorithm described below is utilized to convert the RF from plain text into
semantic-based rules.

Random Forest Ontology and Algorithm

Random Forest Ontology (RFO) was developed to capture, model, and label the
generic concepts of a random forest at a conceptual level. RFO includes fundamental classes
of a random forest, such as Random_Forest, Decision_Tree, Path, Voting_Strategy,
and others, displayed in Figure 4. RFO can be imported and combined with an existing
ontology containing a knowledge graph to reproduce the RF classification process using
semantic methods.

The first step of achieving RF classification based on ontological rule reasoning is by
converting the RF into a format that supports logical inference and reasoning. We chose to
adopt the Semantic Web Rule Language (SWRL) developed by the W3C consortium [28] to
represent our rules as it is recognised as the leading rule language, which is well studied
in the literature. In the framework, all paths of a RF are translated into SWRL rules by an
algorithm we developed, displayed below as Algorithm 1, first introduced in [29]. The
algorithm feeds in two lists as input, which creates a mapping between the features in the
training set and their corresponding data properties in the ontology, e.g., trip_tonnage as
hasTripTonnage. The algorithm then traverses through the random forest, creating a new
rule for each path it finds and storing it in RFO.
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Figure 4. Classes, object properties and data properties of RFO.

Each SWRL rule contains the MakeOWLThing method from the SWRL-X library. When the
rule is triggered, this method instantiates a new instance of the Decision_Tree class, and
the resulting prediction is added to the knowledge graph. Additionally, a Random_Forest
instance is be generated and incorporated into the knowledge graph, establishing the
connections between all the Decision_Trees in the RF, capturing their index.

Algorithm 1 SWRL-Rule Generation based on existing RF.

1: I ← 0 {index of trees}
2: L← [ ] {list of features}
3: for each tree in forest do
4: for each node in tree do
5: d← depth of node in tree
6: if node 6= leaf node then
7: L[d]← node
8: else
9: R← “ ” {string variable for forming a rule}

10: for i = 0 to d do
11: if i > 0 then
12: R += “∧ ”
13: end if
14: R += “L[i]”
15: end for
16: p← prediction {based on weightings}
17: R += “→ ” + result(node, p, I)
18: end if
19: end for
20: I += 1
21: end for

3.3. Semantic Reasoning

Semantic Reasoners or Semantic Rule Engines are software that provide a mechanism
for inferring logical deductions from a set of asserted axioms using a restricted set of first-
order formulas [4,30]. In simple terms, a rule engine enables the creation of logical rules,
which can be applied to a dataset to derive new knowledge from the existing knowledge [4].

The reasoning process involves two inputs: (1) an ontology containing a knowledge
graph and (2) a rule set in an SWRL format. When the rule engine is executed, these
rules are applied to the data entries in the knowledge graph, leading to the inference of
new knowledge.

Thus, when the rule engine is inferred in the framework, each data entry yields N
uniquely generated DT instances, where N corresponds to the size of the random forest.
Afterwards, a voting strategy is applied for each data entry by calculating the average or
modal value of the generated DT predictions. Algorithm 2 is an example of applying the
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rule engine onto a Breiman RF containing three possible classifications, determining the
modal value of these classifications.

Algorithm 2 Ontological Classifier for a Breiman RF with classes 0, . . . , n.
Input: Ontology file incl. knowledge graph with individuals
Text file containing a list of SWRL rules generated from a RF
Output: Updated Ontology file with new acquired knowledge

1: load Ontology
2: let I1 be a set of individuals relating to the relevant data instances
3: read in SWRL rules into rule engine
4: apply the rule engine
5: let I2 be a set of individuals relating to Decision_Tree instances
6: for all r in I1 do
7: for all i from 0 to n do
8: C[i]← 0 {initialize count for class i}
9: end for

10: for all t in I2 do
11: if t is instance of Decision_Tree class for r then
12: let p = prediction value of t
13: C[p] += 1
14: end if
15: end for
16: P← mode(C[0] & C[1] & . . . & C[n]) {compute mode of highest class}
17: store P as the hasClassification property for r
18: end for
19: delete all intermediate rules
20: delete all intermediate Decision_Tree individuals
21: return new ontology file

Example 2. We consider a random forest with n = 10 decision trees. This can be explicitly
represented in the RFO ontology with one instance of the RF class RF_001 and n instances of the
DT class, DT_001 to DT_n. These DT instances are acquired by executing the rule engine on a
rule set generated by Algorithm 1. Each instance of the DT class is linked to the RF individual via
the isDecisionTreeOf relation, as well as its inverse relation hasDecisionTree. Furthermore,
each instance of the DT class contains the data property hasPrediction to carry its classification.
Afterwards, a voting strategy is executed to calculate the final classification of each individual by
calculating the modal value or average of the hasPrediction values, as outlined in Algorithm 2.

Afterwards, domain expert knowledge can be integrated to produce a more compre-
hensible result that provides greater decision-making assistance for the human in the loop.
To achieve this, the domain expert knowledge has to be acquired from domain experts
using well-studied knowledge acquisition methods, and translated into an SWRL format
so that logical reasoning can be applied. In essence, we are embedding the capabilities of a
simplified expert system as part of the framework. These results are displayed using the
SPARQL Protocol and the RDF Query Language [31].

4. An Application of the Framework: Use Case of Cold Rolling

This section demonstrates the applicability of the framework and introduces an ex-
ample where the hybrid approach, utilizing real-world industrial data, is employed for
predictive analytics purposes. Specifically, we present a use case illustrating how the frame-
work can be applied in a cold rolling environment to assist operators in the crucial task of
predicting the optimal time to stop operations to refurbish the rolls, providing helpful and
actionable advice for the operator.
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4.1. Application Use Case

As mentioned in the introduction, cold rolling of steel is one example of an important
process in steel making: it is the process of reducing the thickness of steel to produce
narrow sheets that are rolled into coils. During this process, the material undergoes
deformation by passing through a set of rotating work rolls [32]. The work rolls are
under constant pressure during operation, and they become worn after heavy usage,
requiring regular refurbishment [8]. During the refurbishment process, the worn surface is
removed, decreasing the diameter of the work rolls. The quantity of diameter removed,
also referred to as stock, is calculated based on the quantity of steel produced rather than
the physical condition of the roll. Because of this, the work rolls are often refurbished
prematurely or belatedly; hence, their efficiency and yield are suboptimal. Therefore, it is
important for operators on the shop floor to halt operations at an optimal point in time in
order to maximize the yield of the work rolls, while simultaneously not overworking the
work rolls, which in turn results in the production of defective steel and huge additional
refurbishment costs. Typically, in our study, work rolls begin their life with a diameter
of 600 mm and are scrapped when approaching 520 mm. Work rolls are expected to be
refurbished hundreds of times before being scrapped, which varies between each work roll.
An average refurbishment on a healthy work roll removes approximately 0.2 mm of stock.
Meanwhile, if a work roll is damaged or over-worn, it may result in a significantly greater
stock reduction. In extreme cases, an over 10 mm stock removal may be necessary, which is
a significant cut in lifespan.

The acquisition of this knowledge involves active engagement with domain experts
and stakeholders. Additionally, further interviews with domain experts are conducted
to gather insights regarding the optimal timing to stop operation and refurbish the work
rolls. Using this acquired knowledge, we construct a static set of expert rules designed to
encapsulate these insights. This rule set is an essential component within the application,
as these rules are applied to the real-time condition of the work rolls, influencing the final
decision produced by the framework.

Thus, at any given point during cold rolling operations, the real-time conditions
of the work rolls can be captured as a timestamp and input into the application. Dur-
ing this process, the data is integrated into a knowledge graph containing historical
information about the work rolls, including details such as their previous grindings and
stock reduction values. Subsequently, the knowledge graph is passed through a seman-
tic reasoner, which applies logical deduction to predict the live condition of the work
rolls. This prediction is accomplished through the application of a rule-based random
forest classification, as introduced in this paper. Once this classification is obtained, it is
combined with the expert rule set, generating a status for the operator and offering clear
advice on whether to proceed with the cold rolling operations, along with insights into
the recommended tonnage. Ultimately, the decisions produced by the application are
intended to assist the human in the loop with their decision-making process and can be
utilized as guidance.

In this use case, we apply the framework to the last 100 roll unit trips of our industrial
partners and perform comparison with domain experts if the assistance provided is useful
and accurate.

4.2. Producing a Random Forest

For this study, we deploy a supervised RF model to predict the condition of the
work rolls at a given interval. The outcome can be one of three classifications: class 0,
implying the condition of the work roll is Bad, i.e., the roll requires a considerable
amount of stock reduction to remove the worn surface; class 1, where the condition
of the work roll is considered as Best, and thus requires minimal stock removal; or
class 2, implying the condition of the work roll is Good and an average stock reduction
value is necessary.
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There are many impacting factors that affect the rolls, which are collected and used for
training and testing the RF model. This includes a combination of dynamic sensory and
historical static data of the work rolls. The dynamic data contain live data read from sensors,
which include the total tonnage and meterage rolled during a trip, speeds, temperature,
as well as the coil usage data. This coil usage contains information regarding the steel
grades and full chemical composition for each coil processed, e.g., its carbon or silicon
values. Meanwhile the static data provide information regarding the roll historical data,
such as their previous grindings, stock reductions, positioning, tons and length rolled, etc.
This wide collection of data was explained by domain experts and data scientists from our
industrial partners, which assisted in the data collection and aggregation aspects to build
our random forest model.

To build the RF classifier in our application, 80% of the original dataset (9781 sam-
ples) was used as the training set. The train–test split was performed randomly and in
such a way that the original proportion was respected. The value of the hyperparameters
n_estimators and max_depth was set using grid search and validated through the perfor-
mance of the metrics. Finally, the optimized values for n_estimators and max_depth were
20 and 22, respectively.

The RF contained a total of 20 decision trees that contained a total of 25,657 paths.
The majority voting strategy technique was applied to calculate the final classification
by computing the modal value of all the decision trees in the RF. The RF was exported to
plain text using the export_tree method mentioned previously. The accuracy of the random
forest is measured in terms of precision, recall and f1-score and their weighted values are
displayed below.

Precision: 0.78 Weighted Precision: 0.78

Recall: 0.75 Weighted Recall: 0.78

F1-score: 0.76 Weighted F1-score: 0.77

When running Algorithm 1 for this particular RF, the 25,657 different paths produced
an equal amount of SWRL-rules that were passed to the semantic reasoner for inference.

4.3. Reasoning

To build our knowledge graph, we created an Ontop Mapping that correlated the last
100 cold rolling trips from our local database into individuals in the ontology. These data
entries were an instance of the Roll_Unit_Trip class.

First, the 25,657 rules and the 100 data entries were input into the reasoner, initiating
the application of rules to the knowledge graph for logical inference. Listing 1 displays the
syntax and format of one of the 25,657 rules as an example. As shown, the antecedent of
every rule starts with Roll_Unit_Trip(?trip) to target the corresponding instances of the
Roll_Unit_Trip class in the knowledge graph that the rule is applied to. Each instance
must be linked to an instance of the RF class via the RFO:hasRandomForest property
provided by RFO (which is typically mapped automatically). Then, each rule contains
the features and conditions of the path, in this case hasGrindNr, hasDiamBefore and
hasSurfaceRA and their conditions, respectively. The end of the antecedent exploits the
makeOWLThing method from the SWRL-X library to instantiate a new, unspecified instance in
the knowledge graph. Meanwhile, the consequent of the rule specifies the new instance to
be of type RFO:Decision_Tree, which contains the RFO:hasPrediction data property to
store the classification, as well as the RFO:treeIndex data property to store the index of the
tree in the RF.
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Listing 1. Example of an SWRL rule.

Roll_Unit_Trip(?trip) ^ RFO:hasRandomForest(?trip, ?rf) ^
hasGrindNr(?trip, ?GrindNr) ^ swrlb:greaterThan(?GrindNr, 53.50) ^
hasDiamBefore(?trip, ?DiamBefore) ^ swrlb:lessThanOrEqual(?DiamBefore, 573.40)^
hasSurfaceRA(?trip, ?SurfaceRA) ^ swrlb:lessThanOrEqual(?SurfaceRA, 0.81) ^
swrlx:makeOWLThing(?DT, ?trip) −> RFO:Decision_Tree(?DT) ^ RFO:isDecision
TreeOf(?DT,?rf) ^ RFO:hasPrediction(?DT, 1) ^ RFO:hasTreeIndex(?DT, 1)

After the rule engine completed its process, each Roll_Unit_Trip individual accu-
mulated a total of 20 unique instances of the RFO:Decision_Tree class, each containing a
prediction. Afterwards, as this RF utilised a majority voting strategy, the modal value of the
20 classifications was computed to derive the final classification for each Roll_Unit_Trip
individual. This final classification was then stored in the ontology. Finally, all intermediate
values, including the decision tree instances, were purged from the ontology, resulting in a
streamlined and concise representation of the final classifications.

4.4. Limitations and Validation

The proposed method is computationally expensive for large RFs or large datasets. In
our study, the sci-kit learn model was using the remaining 20% of the dataset (1957 samples)
for validation, which, when converted into rule-base reasoning, was too large for the default
SWRL-API reasoner Drools. Therefore, we instead compared the accuracies of a batch of
100 data points iteratively, which overall produced identical results for all data points to
the sci-kit learn validation, validating our approach. More concretely, a total of 25,657 paths
in the RF translated to 25,657 SWRL rules that were passed to a rule engine. Each rule was
applied to the batch of 100 instances, producing a total of 2,565,700 inferences. Meanwhile,
the authors in [33] compared the performance of different rule engines and concluded that
Drools is optimised for smaller datasets and has the worst performance with larger datasets
when compared to other reasoners. A possible solution for this performance issue is to
investigate the use of a different rule engine that is compatible with SWRL-API.

4.5. Integrating Domain Expert Knowledge

As mentioned, numerous industrial processes within the steel domain heavily rely on
knowledge, where plant operators constantly make important decisions based on the sce-
nario and their expertise. Meanwhile, the framework combines domain expert knowledge
with ML classification to offer decision-making assistance for the human in the loop. The
initial step involves acquiring expert knowledge through one or more well-known knowl-
edge acquisition methods. This knowledge must be captured in a format that is translatable
into an SWRL format for compatibility with the rule engine. These expert rules are treated
as highly accurate within rule-based systems [34].

Knowledge Acquisition Methods

Domain expert knowledge is often considered to be of implicit and tactic nature which
contradicts ontologies explicit modelling behaviour [35]. In the context of manufacturing,
tacit knowledge refers to the concept of informal learning by simply performing actions and
experiences, often where the knowledge is unconsciously retained in individual memory
rather than being formally recorded or shared [35]. To overcome this phenomenon, many
different ways of extracting tacit knowledge have been widely studied over the years. This
includes techniques such as interviewing, questionnaires, protocol analysis, inferential flow
analysis, and many more [36].

For our study, we conducted interviews and questionnaires with domain experts and
plant operators to construct our domain expert knowledge rule set. Presently, we obtained a
small sample of domain expert rules which we aim to increase in quantity and quality over
time. Meanwhile, the small sample of domain expert rules demonstrate the capabilities of
the framework. Table 1 displays some expert rules in a categorised format before they are
translated into the SWRL format. Example 3 displays a domain expert knowledge obtained
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during the knowledge acquisition sessions which we translate as rules. As these rules
come directly from knowledge acquisition sessions with domain experts, the validity and
accuracy of these rules are treated as absolute. In an event that a rule creates an incorrect
status, it is reviewed with experts and updated accordingly.

Table 1. Domain expert knowledge rules in a simplified view.

ID Classif-
ication

Recent Severe
Grinding

Tonnage
Limit

Tonnage
Reached Status

1 Best False 4500 False Continue rolling: predicted condition is best on a healthy roll.
Recommended tonnage of 4500.

2 Best False 4500 True Stop rolling: predicted condition is best on a healthy roll. Recommended
tonnage of 4500 is exceeded.

3 Best True 4000 False Continue rolling: predicted condition is best but recent high stock
removal may affect roll. Recommended tonnage of 4000.

4 Best True 4000 True Stop rolling: predicted condition is best but recent high stock removal
may affect roll. Recommended tonnage of 4000 is exceeded.

5 Good False 4000 False Continue rolling: predicted condition is good on a healthy roll.
Recommended tonnage of 4000.

6 Good False 4000 True Stop rolling: predicted condition is good on a healthy roll. Recommended
tonnage of 4000 is exceeded.

7 Good True 3500 False Continue rolling: predicted condition is good but recent high stock
removal may affect roll. Recommended tonnage of 3500.

8 Good True 3500 True Stop rolling: predicted condition is good but recent high stock removal
may affect roll. Recommended tonnage of 3500 is exceeded.

9 Bad False 3000 False Continue rolling: predicted condition is bad on a previously healthy roll.
Recommended tonnage of 3000.

10 Bad False 3000 True Stop rolling: predicted condition is bad on a previously healthy roll.
Recommended tonnage of 3000 is exceeded.

11 Bad True 2500 False Stop rolling: predicted condition is bad on a roll that was previously
damaged.

12 Bad True 2500 True Stop rolling: predicted condition is bad on a roll that was previously
damaged. Recommended tonnage of 2500 is exceeded.

Example 3. ‘For any trips considered to have the ‘Bad’ condition, if that trip reaches a high level of
tonnage and the work rolls recently had severe grindings in their last five trips, then the stopping of
operation should be considered.’

Here, we have to explicitly define ‘high tonnage’ and ‘severe grindings’ with the help
of domain experts. In this case, high tonnage is a dynamic value that changes thresholds
depending on the condition of the roll. Meanwhile, the condition of the work roll can be
calculated by looking at the previous grindings and whether it has recently had any severe
grindings. A roll grinding is considered severe if any of the last five grindings of the work
roll had a stock removal value greater than 0.5 mm and therefore require a lower tonnage
threshold. Additionally, the historical data of roll change reasons are also considered as
part of the domain expert rule set. A severe grinding could be caused by a mill incident
where the impact on the health of the roll is much greater. This knowledge is not captured
in the RF but is included as expert rules. Listing 2 displays the rule in Example 3 in its
SWRL format.

These rules are manually translated into the SWRL format. Afterwards, they were
passed into the rule engine, which combined the RF prediction with the expert knowledge,
producing new knowledge stored in the data property hasStatus. The status produced
is displayed using SPARQL, a well-known semantic-based querying language that en-
ables querying based on RDF triples and graph data [31]. Listing 3 is a SPARQL query,
which when executed, prints the operational trips and their corresponding classification
and status.
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Listing 2. Example of a domain expert SWRL rule.

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasInferredCondition(?trip, ?condition) ^
swrlb:equal(?condition, "Bad") ^ hasRecentSevereGrinding(?r, ?severe) ^
swrlb:equal(?severe, true) ^ hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan
(?tonnage, 2500) −> hasStatus(?trip, "Highest risk: predicted condition is
bad on a roll that was previously damaged. Recommended tonnage of 2500.")

Listing 3. SPARQL query to retrieve results.

PREFIX : <http://www.semanticweb.org/new/ontologies/2023/1/SCRO#>
PREFIX rf: <http://www.semanticweb.org/sadeer/ontologies/2023/0/RF#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX swrl: <http://www.w3.org/2003/11/swrl#>

SELECT ?trip ?classification ?status
WHERE {

?roll :hasRollUnitTrip ?trip .
?trip :hasRollRefurbConditionInferred ?classification .
?trip :hasTripTonnage ?tonnage_of_trip .
#if any of the last 5 trips contain a stock removal value >0.5
?roll :hasRecentHighStockRemoval ?high_stock_removal .
?trip :hasStatus ?status .

}
GROUP BY ?trip ?classification ?status

5. Results and Validation

The purpose of this section is to validate the framework by contextualizing it with
the results obtained from the application, as illustrated in the use case presented in the
preceding section. This validation process aims to assess the effectiveness and reliability of
the proposed framework in practical scenarios, providing an evaluation of its performance
and utility.

Figure 5 is a snippet that displays some results from the last 100 operational trips,
which are used to test and validate the framework. These results display the knowledge-
guided decisions through the Status column, as well as the classifications from semantic-
based reasoning in the classification column, which are both displayed to the operator.
As shown, each classification may be one of three categories, where the status provides a
decision on what to do based on expert knowledge and the collected data at the specific
timestamp of operation. The accuracy of the RF model is 78%, whereas the accuracy of the
decision-guided assistance is calculated and validated with the help of domain experts in
the following subsection using qualitative methods.

Figure 5. SPARQL query results.
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Validation

The purpose and contribution of the framework is to provide improved assistance for
the human in the loop. The classifications of the RF model produced good, bad, and best
outputs, whereas the final status output provided new decision-making knowledge on
whether to continue the rolling process, with an estimation of how much more rolling was
recommended based on classification and expert knowledge.

Because of this, there was no ground truth or direct labels to compare for validation.
However, there are many well-studied validation techniques for situations where no
ground truth is available, often deployed during unsupervised learning models, such as
interval validation, external validation, domain expertise, twin-sample validation, and
cross-validation [37]. In our use case, we adopt external validation and domain expertise
validation methodologies to validate our framework. These validation methods have been
applied in various domains [38,39].

Similarly, we followed an iterative screening and refinement process with domain
experts and stakeholders to share results and obtain valuable feedback, as highlighted in
Figure 6. Within the iterative cycle, the results are displayed, discussed, and validated with
the domain experts. The expert rules are refined with any newly obtained knowledge from
these instances. Once the rule set is recompiled, it is passed through the semantic reasoner
again, producing new results which are displayed to the experts once more, repeating the
iterative cycle. By utilizing domain experts for validation, we can ensure the accuracy,
relevance, and robustness of the framework, providing insights and tactic knowledge that
are not apparent from data alone.

Figure 6. Methodology of iterative process with experts for validation.

With each iteration, we displayed the one hundred data entries. These entries con-
tained the status, classification, expert rules, sensory data, and the actual stock reduction
of the roll. Furthermore, we categorised the entries into two groups: (1) expected output
consisting of 80% of the entries where the status of the entry matched the amount of stock
reduction for that roll, e.g., “stop rolling” for entries where the stock reduction was greater
than the expected average value, and (2) unexpected output where 20% of entries where
the opposite interaction occurred. All entries were displayed to the experts; however, it
would be revealed to be a time consuming task to iterate through all the entries, so we
further refined and handpicked the most interesting results and compared the predictions
with those of domain experts.

For the expected output category where the majority of data points were, ten entries
were displayed to the experts. All entries were studied and approved by the experts, stating
that they would have made the same decision based on the data. Two out of the ten entries
are displayed in Table 2. This confirmed that the support provided by the framework was
accurate for the expected category.

Similarly, ten entries from the unexpected output category were also displayed to
the experts. In three of those cases, the status was ‘stop rolling’ despite a low diameter
reduction and an accurate ‘good’ classification. In these cases, an expert rule was triggered
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that prioritised stopping operation if there was a high tonnage produced on a pair of work
rolls that were recently damaged. Having investigated these results with domain experts,
we discovered that there was a ‘pinch’ on one of the rolls, which is required to be removed
before further operation. This positive feedback confirmed that the framework was able to
provide accurate results in these cases.

Table 2. Two reports from the ‘expected’ category.

Report ID 01
Roll and Trip ID roll_1728_trip_67496
Category Expected.
Trip details (1) Trip has high tonnage threshold; (2) Work roll had a high stock reduc-

tion in the last five refurbishments.
Classification Bad condition.
Status Stop rolling: predicted condition is bad on a roll that was previously

damaged. Recommended tonnage of 2500 is exceeded.
Expert comment ‘The status is accurate. The roll has done high tonnage in the current trip

and should be taken out. Looking at the historical data of roll 1728, it
had a significant cut in stock recently and should be treated carefully. If
it was removed earlier, the stock reduction would be lowered.’

Report ID 02
Roll and Trip ID roll_1609_trip_67249
Category Expected.
Trip details (1) Trip had medium tonnage; (2) Work roll is brand new and had no

recently high stock reductions.
Classification Best condition.
Status Continue rolling: predicted condition is best on a healthy roll. Recom-

mended tonnage of 4500.
Expert comment ‘The status is accurate to continue rolling. This roll is new and is expected

to roll the maximum amount possible. The recommended tonnage could
have been slightly higher than 4500 before being refurbished.’

Meanwhile, there were three instances where the status produced was ‘stop rolling’ by
a similar expert rule. However, the experts stated that although the expert rule was correct,
some knowledge was missing, stating that work rolls in Stand 3 are expected to handle
more work load and pressure. The experts began to describe the refinement process in more
detail, explaining how work rolls in different stands have different tonnage expectations
and require different handling, which we adapt into our expert knowledge rule base for the
next iteration. Finally, the remaining four instances provided an inaccurate status as the ML
classification inaccurately predicted the roll condition. Two entries from the unexpected
category are displayed in Table 3.

For the second iteration, we refined our expert knowledge rule set to include the newly
obtained knowledge of stand information, which we displayed to the domain experts again.
Once more, we produced two categories of results in the same manner as the first iteration.
We first revisited the same entries from the first iteration. This time, the entries that were in
Stand 3 produced a more accurate ‘continue rolling’ status, aligning with the expectations
of the experts. Additionally, we continued to review ten new outputs for the second
iteration for each category. This process established new knowledge regarding grinder
stone diameter and roll hardness that can be used to improve the quality of the expert rules,
followed by further iterations of the process if required.

From the qualitative validation, the accuracy of the expected category results for the
first and second iteration were both 100%. Although each iteration had ten entries, it
offered confidence to the experts using the system as 80% of the overall entries were in
the expected category. Meanwhile, the accuracy of the unexpected column improved after
the refinement of the expert rules in the second iteration, and it can be improved with
further refinement.
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Table 3. Two reports from the ‘unexpected’ category.

Report ID 03
Roll and Trip ID roll_1534_trip_67845
Category Unexpected.
Trip details (1) Trip had high tonnage; (2) Work roll had a significant stock reduction

in the last five refurbishments.
Classification Good condition.
Status Stop rolling: predicted condition is good but recent high stock removal

may affect roll.
Expert comment ‘The status is accurate. After investigating roll 1534, there was a pinch on

the work roll which needed to be removed before further operations.’
Report ID 04
Roll and Trip ID roll_1647_trip_65846
Category Unexpected.
Trip details (1) Trip had high tonnage; (2) Work roll had a significant stock reduction

in the last five refurbishments.
Classification Good condition.
Status Stop rolling: predicted condition is good but recent high stock removal

may affect roll. Recommended tonnage of 3500 is exceeded.
Expert comment ‘The status is not completely accurate for this roll. This is because the

roll is in stand three. Rolls in stand three are expected to do more total
tonnage than other stands before being refurbished, and are expected
to withstand stronger forces. The expected result in this situation is to
continue rolling for a few hundred more tons.’

In addition, the experts we engaged with provided overwhelming positive feedback
of the framework in general. One expert said that it is reassuring having a second opinion
on difficult decision-making situations, where usually they may consult a fellow worker
or manager for a second opinion. Meanwhile, another expert claimed that the framework
has very good potential with the improvement of stronger expert rules and machine
learning models. Finally, the iterative process itself was perceived as useful: it enabled
interaction and continuous improvement of the decision making tool for the experts, while
also providing us as non-experts with greater domain knowledge and understanding of
the cold rolling processes.

Overall, the results demonstrated the capabilities of the framework, and its ability to
assist operators with decision-making tasks. One fundamental contribution of the proposed
framework is the ability to encode RF classification in a semantic way, so that the meta-data
is also included in the model, which can be combined with external knowledge for further
assistance in decision-making. Our results used real-world examples to demonstrate that
such an approach is possible and advantageous. Ultimately, the knowledge is provided to
assist and support the operator with their decision-making tasks.

6. Conclusions

This paper introduces a human-in-the-loop framework that combines a random forest
model with semantic technologies where the resulting semantic ML classification is en-
hanced by domain expert knowledge. There are two key contributions and components
of the framework: (1) the Random Forest Ontology that models the concepts of a random
forest, which can be deployed and attached to an external ontology containing a knowledge
graph to produce RF classification using rule-based reasoning, and (2) the integration of
expert knowledge with the classification to provide semantically enriched, knowledge-
guided decisions as recommendations for the human in the-loop system. A use case for
predictive analytics in smart manufacturing is demonstrated that uses real-world data
from industrial partners, which displayed the capabilities, applicability, advantages, and
limitations of the proposed framework.

Within smart manufacturing, a fundamental goal is to improve machine interoperabil-
ity and interpretability; this paper proposes a method of improving machine interpretability
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via semantic technologies, providing one example of how ML models can be represented
using semantic technologies.

7. Future Work

The major constraint of the proposed approach was the capabilities of the chosen
rule engine. Drools, the default reasoner of SWRL-API, struggled to provide logical
inferences on a very large dataset and hence limited the size of the knowledge graph. One
future goal is to investigate the different available reasoners that have stronger inference
capabilities to speed up and stabilise the inference process. On the other hand, the quality
of the framework depends on the quality of the ML model and the quality of the training
set, as well as the quality of the domain expert knowledge. Presently, we aim to hold
more knowledge acquisition sessions to improve the quality of the expert rules. It is also
necessary to take the time to evaluate and further validate the impact and effectiveness of
the framework with the industrial partners after extended usage.

Author Contributions: Conceptualization, S.B.; Data curation, S.B. and K.L.; Formal analysis, S.B. and
K.L.; Funding acquisition, C.G. and A.B.; Investigation, S.B.; Methodology, S.B.; Project administration,
C.G. and A.B.; Resources, S.B., K.L. and C.G.; Software, S.B. and K.L.; Supervision, A.B.; Validation,
S.B. and A.B.; Visualization, S.B. and A.B.; Writing—original draft, S.B. and K.L.; Writing—review and
editing, C.G. and A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Swansea University and the Engineering and Physical Sciences
Research Council grants EP/T517537/1, EP/V061798/1, EP/S001387/1 & EP/S018107/1.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Tata Steel and are available from the authors with the permission of Tata Steel.

Acknowledgments: The authors would like to acknowledge Steve Thornton as the main contact
from our industrial partners, who provided data and scheduled interviews with domain experts
Mark and Chris. Finally, the authors would like to acknowledge Eugenio Borghini for his assistance
with the RF model.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

API Application Programming Interface
ML Machine Learning
RDF Resource Description Framework
RF Random Forest
RFO Random Forest Ontology
SCRO Steel Cold Rolling Ontology
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
SWRL Semantic Web Rule Language
W3C World Wide Web Consortium

References
1. Patel, P.; Ali, M.I.; Sheth, A. From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0. IEEE

Intell. Syst. 2018, 33, 79–86. [CrossRef]
2. Ameri, F.; Urbanovsky, C.; Mcarthur, C. A Systematic Approach to Developing Ontologies for Manufacturing Service Modeling.

In Proceedings of the Workshop on Ontology and Semantic Web for Manufacturing, Graz, Austria, 24 July 2012.
3. Xiao, G.; Ding, L.; Cogrel, B.; Calvanese, D. Virtual Knowledge Graphs: An Overview of Systems and Use Cases. Data Intell.

2019, 1, 201–223. [CrossRef]
4. Wang, X.H.; Zhang, D.Q.; Gu, T.; Pung, H.K. Ontology based context modeling and reasoning using OWL. In Proceedings of the

IEEE Annual Conference on Pervasive Computing and Communications Workshops, Proceedings of the Second, Orlando, FL,
USA, 14–17 March 2004; pp. 18–22.

5. Dalzochio, J.; Kunst, R.; Pignaton, E.; Binotto, A.; Sanyal, S.; Favilla, J.; Barbosa, J. Machine learning and reasoning for predictive
maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 2020, 123, 103298. [CrossRef]

http://doi.org/10.1109/MIS.2018.043741325
http://dx.doi.org/10.1162/dint_a_00011
http://dx.doi.org/10.1016/j.compind.2020.103298


Appl. Sci. 2023, 13, 12778 18 of 19

6. Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019,
7, 19990–19999. [CrossRef]

7. Roberts, W.L. Cold Rolling of Steel; Routledge: New York, NY, USA, 1978. [CrossRef]
8. Ray, A.; Mishra, K.; Das, G.; Chaudhary, P. Life of rolls in a cold rolling mill in a steel plant-operation versus manufacture. Eng.

Fail. Anal. 2000, 7, 55–67. [CrossRef]
9. Rajbhandari, S.; Aryal, J.; Osborn, J.; Musk, R.; Lucieer, A. Benchmarking the applicability of ontology in geographic object-based

image analysis. ISPRS Int. J.-Geo-Inf. 2017, 6, 386. [CrossRef]
10. Shoaip, N.; Rezk, A.; El-Sappagh, S.; Abuhmed, T.; Barakat, S.; Elmogy, M. Alzheimer’s Disease Diagnosis Based on a Semantic

Rule-Based Modeling and Reasoning Approach. Comput. Mater. Contin. 2021, 69, 3531–3548. [CrossRef]
11. Jabardi, M.; Hadi, A. Twitter fake account detection and classification using ontological engineering and semantic web rule

language. Karbala Int. J. Mod. Sci. 2020, 6, 8. [CrossRef]
12. Jabardi, M.; Hadi, A. Using Machine Learning to Inductively Learn Semantic Rules. In Proceedings of the International

Conference of Modern Applications on Information and Communication Technology (ICMAICT), Babylon-Hilla City, Iraq, 22–23
October 2020; IOP Publishing: Bristol, UK, 2021; Volume 1804. [CrossRef]

13. Johnson, I.; Abécassis, J.; Charnomordic, B.; Destercke, S.; Thomopoulos, R. Making ontology-based knowledge and decision
trees interact: An approach to enrich knowledge and increase expert confidence in data-driven models. In Knowledge Science,
Engineering and Management, Proceedings of the 4th International Conference, KSEM 2010, Belfast, UK, 1–3 September 2010; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010. [CrossRef]

14. Sarkar, A.; Naqvi, M.R.; Elmhadhbi, L.; Sormaz, D.; Archimede, B.; Karray, M.H. CHAIKMAT 4.0-Commonsense Knowledge
and Hybrid Artificial Intelligence for Trusted Flexible Manufacturing. In Flexible Automation and Intelligent Manufacturing: The
Human-Data-Technology Nexus, Proceedings of the FAIM 2022, Detroit, MI, USA, 19–23 June 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 455–465.

15. Ammar, N.; Shaban-Nejad, A. Explainable artificial intelligence recommendation system by leveraging the semantics of adverse
childhood experiences: Proof-of-concept prototype development. JMIR Med. Inform. 2020, 8, e18752. [CrossRef]

16. Bettini, C.; Civitarese, G.; Giancane, D.; Presotto, R. Procaviar: Hybrid data-driven and probabilistic knowledge-based activity
recognition. IEEE Access 2020, 8, 146876–146886. [CrossRef]
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