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A B S T R A C T

This paper formulates quadrilateral elements for the NURBS-enhanced finite element method
(NEFEM). The objective is to extend the application of NEFEM to problems where the use of
quadrilateral elements is preferred. By leveraging a mapping, between reference and physical
spaces, that encapsulates the exact boundary representation of the domain, a tight integration
with computer aided design (CAD) systems is achieved. The contribution of this work is an
enhanced quadrilateral finite element that incorporates the exact CAD geometry purely from
the boundary representation (B-rep) from CAD and without the need for a whole volume
representation (V-rep) as a NURBS entity. Numerical examples involving heat transfer and linear
elastic problems are used to numerically demonstrate the optimal convergence properties of the
method under mesh refinement.

. Introduction

This work is motivated by the ever-increasing desire to integrate geometry design and analysis into the computational engineering
ractice. This integration, possible by means of the isogeometric analysis (IGA) framework [1], is being halted by the need of
olume-representations (V-rep) of the domain [2,3]. In-service computer aided design (CAD) packages only provide the boundary-
epresentation (B-rep) of a domain, which is the information required by traditional mesh generators to obtain a finite element
iscretisation. This discrepancy is on of the main barriers between engineers and the advantages offered by IGA.

To offer a tight integration between geometry and analysis using the IGA framework, two avenues have been explored. The
irst one shifts from a B-rep to a V-rep paradigm by radically redefining CAD. For example, a B-rep of the unit cube comprises six
urfaces connected along the edges, whereas its V-rep is a trivariate non-uniform rational B-spline (NURBS). The second alternative
onsists of devising algorithms to automatically convert a B-rep into a V-rep suitable for IGA. Both of these approaches are ongoing
evelopments that face major obstacles. The former does not provide legacy with in-service CAD systems and it could overload
raphic processors that need to render volumes rather than surfaces. The latter does not address the discrepancy between B-rep and
-rep, and therefore it defeats the original purpose.

An alternative to IGA is found in methods that are able to incorporate the B-rep into a finite element framework. The NURBS-
nhanced finite element method (NEFEM) is one technique within this class. The main idea is to define a new type of finite element
ear the boundary of the domain. This new type of element accounts for the B-rep and proposes new strategies to define the
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functional approximation and to perform the numerical integration in those elements, whereas standard FEM is used in the rest of
the domain. NEFEM has been applied to the numerical solution of heat transfer, electromagnetic and flow problems in two and three
dimensions [4–6]. However, NEFEM has only been devised to work on triangular and tetrahedral meshes. This is a limitation to its
applicability since it makes it unassailable to those applications, such as explicit nonlinear solid mechanics, for which quadrilateral
and hexahedral elements are preferred.

This work introduces quadrilateral NURBS-enhanced finite elements and provides the following contributions:

• Confirms that NEFEM can integrate finite element analysis with in-service CAD tools.
• Represents curved boundaries on quadrilateral elements exactly as CAD does.
• Extends the use of NEFEM where the use of quadrilateral elements is preferred.

The potential that NEFEM offers is twofold: (i) design cost reduction brought by integration between CAD and FEM, and (ii)
igher accuracy though exact CAD boundary representation. This work extends the range of applications that can benefit from
EFEM, particularly solid mechanics and boundary layers in the simulation of high speed compressible flows, since quadrilateral
nd hexahedral elements are often preferred.

. Background

Since it was first formulated by Hughes et al. [1], the integration of geometry and analysis via IGA remains to a large extent
heoretical; the scientific community however is actively looking for a robust solution to better integrate CAD and analysis. The
ifficulties encountered by the IGA community when creating trivariate NURBS models motivated the appearance of other methods
hat provide a coupling of geometry and analysis by only employing the B-rep that is available in modern CAD packages. The NEFEM
ationale is one of the techniques capable of producing such coupling but its application and potential remains largely unexplored
hen compared to IGA.

This section reviews the current difficulties encountered by IGA, due to the need of a V-rep. The current state of the art of NEFEM
s also reviewed, highlighting the developments required to devise a solution of practical interest to solid mechanics. Finally, a brief
omparison between FEM, IGA and NEFEM is presented.

.1. Boundary and volume representations

Several authors report that the gap between CAD and analysis exists because their development followed different paths [2,7,8].
he CAD technology consolidated in the 1990s, when computing power was extremely limited. As processing units improved, CAD
oved from two-dimensional (2D) to three-dimensional (3D) representations, but always relying on B-reps to model solids — and

till does today. CAD tools prefer B-reps to V-reps because they offer better computational performance and are mathematically easier
o handle. For example, to draw a hollow shape, B-reps naturally extrude a profile, whereas V-reps would need to add trimming
r subdivision techniques. The idea of using V-rep for CAD models is however the requirement to integrate IGA in engineering
ractice [9–11].

To equip CAD with V-rep, recent works have studied feasibility and accuracy [12–15] and revealed major challenges when
orking with complex geometries. The main difficulty is to retain orthogonal basis after (local) refinement. Locally refined B-

plines [8] have recently been proved to give satisfactory results for 2D problems. This technology however seems to imply a major
isruption into existing CAD systems, and so do other methods using script-based approaches [16–18]. In either case, the workflow
ppears cumbersome as it departs significantly from modern engineering practice. Other cases, such as [19] are limited to shell
tructures.

Approaches offering legacy with modern CAD-analysis workflows exist and they aim to reconstruct V-reps out of B-reps. The
ain argument supporting this approach is that by harnessing B-reps there would be no need to modify the current practice within

he CAD community and its standards. However, in practice, generating a V-rep out of a B-rep for arbitrary shapes, even in 2D, is
ot a trivial task. This is due to the need of optimisation techniques and quadrilateral/hexahedral mesh generation [20]. For 3D
odels the complexity is remarkably higher [21] and the quality of the resulting mesh is not as good as what in-service FEA tools
sually produce. Tools that do produce high-quality meshes tend to apply Bézier extraction recursively [22–25], but the resulting
lements do not have the larger support that brings many of the benefits of the IGA [1]. Techniques that avoid Bézier extraction
howed that even primitive shapes require advanced algorithms [26–28] and in some occasions these techniques are restricted to
hin structures only [29]. A recent work [30] claimed a major leap forward but its applicability is limited to shapes mappable unit
ubes — confirming the outcome of [17].

Recent works can be found with promising techniques to form a bijective parametrisation of solid domains [31], but overall,
onstructing a V-rep out of B-rep is an approach that shows three evident shortfalls:

1. From a mathematical standpoint it is a difficult, and possibly ill-posed, problem that requires mapping a (non-convex) surface
into a volume.

2. Even if such mapping exists, the resulting volume representation must meet the quality requirements of FE mesh. In particular,
the parametrisation of the volume must ensure the smoothness required to guarantee convergence under ℎ and 𝑝 refinement.

3. The bespoke V-rep used for analysis is not the same mathematical construct generated within CAD systems, leaving little
hope for a seamless integration between modern CAD systems and analysis.

The reader is referred to the extensive review published by Perduta et al. on the integration challenges of classic IGA with in-service
CAD systems [3].
2
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Table 1
Summary of systematic review comparing FEM, IGA and NEFEM.

FEM IGA NEFEM

V-rep: Polynomials NURBS Hybrid
B-rep: Approx. Exacta Exact
Lowest order of shape functions: 1st 2nd 1st
Numerical integration: Exact/Approx. Approx. Approx.
Essential BC’s at the nodes: Exact Approx Exact

a Theoretical result, in practice this might not be achieved with modern CAD systems.

.2. NURBS-enhanced finite element method

Another viable approach for CAD-analysis integration is the NURBS-enhanced finite element method (NEFEM) [4]. This technique
s designed to seamlessly integrate the B-rep from CAD with a standard FEM mesh to provide an exact discretisation of the geometry.
he fact that NEFEM uses the B-rep as given by modern CAD systems is the key advantage and enables CAD-analysis integration.
EFEM does requires only the B-rep without any refinements or editing. Unlike IGA, NEFEM is designed to work with standard
AD file such as IGES or STEP. Somewhat similar to the blended elements present in [32], but using classic FEM meshes instead of
URBS to represent volumes.

NEFEM was originally proposed in two dimensions and applied to heat transfer and electromagnetic problems using a standard
EM and a discontinuous Galerkin (DG) formulation, respectively [5]. The extension to three dimensional problems and to other
ields such as compressible flow simulations was introduced in [4,5]. The use of NEFEM for fluids and solid mechanics has been
ecently proposed in the context of the hybridisable DG method, with particular emphasis on degree adaptive strategies that are able
o maintain the exact B-rep during the adaptivity process [6,33]. The results show that incorporating the exact B-rep into the FE
imulations lead to important gain on accuracy when compared to traditional isoparametric elements due to two main facts. First,
EFEM completely removes any geometric error introduced by the isoparametric representation of the boundary. Second, NEFEM

emoves the non-physical artefacts introduced by a piecewise representation of the boundary. These artefacts include non-physical
ntropy production in fluid flow simulations and concentration of stresses in solid mechanics applications.

The benefits shown by NEFEM have prompted its incorporation in other grid-based numerical methodologies such as finite
olumes [34], space–time elements [35,36] and interface problems [37]. The results show that the benefits of such a tight integration
etween geometry and analysis go beyond the particular use of standard continuous or discontinuous finite elements. However, one
ifficulty preventing the widespread adoption of this technique is the mesh generation process. To fully exploit the benefits of
EFEM, a mesh technology that is capable of generating valid meshes that encapsulate the B-rep is required. For simple geometries

he use of standard mesh generators is a feasible option but for complex geometries with multiscale features specifically designed
echniques are required.

To date, the NEFEM mesh generation problem has only been solved in two dimensions and using triangular elements [38]. This
ifficulty lies in generating elements that preserve a positive Jacobian when curving the boundary a B-rep. This has encouraged
esearchers to extend the NEFEM rationale to methodologies that do not require a boundary fitted mesh. These extensions include
he combination of NEFEM in with immersed FEs [39], boundary elements [40] and mesh-free methods [41]. The current limitation
n the mesh generation for NEFEM halts the scope of this work which is limited to two-dimensional domains.

The original NEFEM formulation is however restricted to triangular and tetrahedral elements. The lack of quadrilateral and
exahedral formulations is a limitation to the space of available shape functions, hence a limit to the accuracy of the method. This
s of particular importance in solid mechanics, where quadrilateral and hexahedral elements are commonly favoured [42] but their
URBS-enrichment has been limited to interfaces in 2D problems only [43]. The simulation of high speed compressible flows can
lso benefit from an extension of NEFEM to quadrilateral and hexahedral meshes its use in boundary layers.

.3. Comparison between FEM, IGA and NEFEM

This section discusses the main differences between the classical FEM [42], IGA [9] and NEFEM [5]. These differences are
ummarised in Table 1.

Regarding the volume representation of the computational domain, FEM uses a piecewise polynomial description of the geometry.
he computational domain is subdivided into elements and the boundary of the computational domain is approximated with
iecewise polynomials of the desired degree that, in general, do not represent the boundary exactly. IGA uses NURBS to represent
he volume under consideration and represents boundary exactly. However, as discussed in Section 2.1, its V-rep is not compatible
ith modern CAD systems and in practice creates a gap between CAD and analysis: the former provides a B-rep, while the latter
eeds a different monolithic representation used in IGA. With NEFEM, the volume is represented using a hybrid approach. Those
lements sharing a face or an edge with the boundary inherit the CAD B-rep, whereas the rest of the elements follow an isoparametric
escription. For boundary elements, NEFEM directly uses NURBS B-rep, without modification, meaning that the boundary matches
xactly the description provided by modern CAD systems.

When considering the application of finite elements to problems in the field of solid mechanics, it is important to note that
inear elements are still the predominant and preferred option to be used in industrial applications. With IGA, the use of linear basis
3
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Fig. 1. Examples of feasible NEFEM elements. (a) An element with an edge given by a NURBS curve. (b) An element with two edges given by two different
NURBS curves. (c) An element with an edge given by a NURBS closed curve.

functions reduces to the standard FEM. However, with NEFEM it is possible to use a linear approximation for the solution whilst
maintaining the exact B-rep. This is due to the decoupling of the two concepts tightly coupled in isoparametric or isogeometric
methods, namely the geometric and solution representation.

For all the methods considered here, it is necessary to approximate the integrals of the weak formulation by means of numerical
quadratures. With standard FEM, it is possible to compute the integrals exactly in many situations. For instance, the terms
of the mass matrix can always be integrated exactly using a numerical quadrature and, for cases where the Jacobian of the
isoparametric mapping is constant, the entries of the stiffness matrix can also be exactly computed. However, when the Jacobian of
the isoparametric mapping is not constant the integrals can only be computed approximately [44]. For IGA and NEFEM, the integrals
are always computed approximately due to the rational nature of NURBS [45]. It is worth noting that complex CAD models used
in industrial applications contain a large number of B-splines and rational surfaces appear in limited occasions, when containing
conics for instance. This means that in many occasions, it is also possible to compute exactly the integrals appearing in a NEFEM
formulation.

Regarding the imposition of boundary conditions, natural and essential conditions are mainly of interest in solid mechanics.
Natural boundary conditions are handled equally in the three methods considered, whereas important differences arise when
considering essential boundary conditions. In FEM and NEFEM essential boundary conditions can be exactly imposed at the nodes
following the standard practice of reducing the system of linear equations. However, with IGA the imposition of non-homogeneous
essential boundary conditions is not trivial and not exact at the nodes [46].

3. NEFEM formulation for quadrilaterals

This section presents a novel quadrilateral formulation for NEFEM. The approach presented is general and can be extended to
high order approximations.

3.1. Pre-processing

Given a domain 𝛺, described by the B-rep, , of the boundary 𝜕𝛺 and a standard finite element mesh , given by a disjoint set
quadrilateral elements,  , and the nodal coordinates,  . This section describes the pre-process that is required to obtain the data
structures employed in a NEFEM solver.

The first step consists of reading the set of curves, , within the B-rep, . More precisely, NEFEM requires the set of control
points and weights and the knot vector for each NURBS curve 𝐶𝐼 ∈ . In this work, this information is extracted from a standard
CAD file (e.g. IGES or STEP) using the open source OpenCascade library.

The second step consists of identifying the elements with at least one edge on 𝜕𝛺 and, for each edge on the boundary, the
associated NURBS curve. It is worth noting that some mesh generators directly output this information, so that boundary conditions
can be assigned to a set of edges or nodes that belong to a NURBS curve. If this information is not available within the given finite
element mesh, it can be easily computed at this stage using a NURBS point projection algorithm.

At this stage, the set of elements  is partitioned into elements with at least one edge on the boundary, 𝑏 and interior elements
 𝑖, with 𝑏 ∪  𝑖 =  and 𝑏 ∩  𝑖 = ∅. For each element 𝛺𝑒 ∈ 𝑏, a list of boundary edges and the associated NURBS is readily
available.

In a traditional low-order FEM solver, the elements are simply defined by their vertices. In NEFEM, this definition is maintained
for all elements in  𝑖, but a NURBS-enhanced definition is introduced for those elements with at least one edge on the boundary.
An element 𝛺𝑒 ∈ 𝑏 is defined by replacing the original straight edges on 𝜕𝛺 by the trimmed NURBS that connects the two nodes
on 𝜕𝛺. Fig. 1 shows three examples of quadrilateral elements with at least one node on 𝜕𝛺.

The first example, in Fig. 1(a), shows an element with nodes 𝒙2 and 𝒙3 on the NURBS curve 𝐶𝐼 . The parametric coordinates of the
nodes are 𝜆 and 𝜆 respectively. In this example, the original element 𝛺 as shown in the Figure would be enhanced by replacing
4
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the straight edge connecting nodes 𝒙2 and 𝒙3 by the NURBS curve 𝐶𝐼 trimmed to the interval [𝜆𝑎, 𝜆𝑏]. The second example, in
Fig. 1(b), depicts an element with two edges defined by two different NURBS curves, namely the edge connecting nodes 𝒙2 and 𝒙3
on the NURBS curve 𝐶𝐼 and the edge connecting nodes 𝒙3 and 𝒙4 on the NURBS curve 𝐶𝐽 . To equip this element with a NEFEM
ationale, each edge will be defined by a trimmed NURBS curve. Finally, the third example, in Fig. 1(c), shows a situation where the
URBS curve defining the boundary is a closed curved, so 𝑪𝐼 (0) = 𝑪𝐼 (1) and the edge connecting the nodes 𝒙2 and 𝒙3 traverses the
eriodic point. In this case, the curved edge will be defined as the collection of two trimmed curves, namely the curve 𝑪𝐼 trimmed
o [𝜆𝑎, 1] and the same curve 𝑪𝐼 trimmed to [0, 𝜆𝑏]. It is worth noting that the last example assumes, without loss of generality, that
he parametric space of the curve 𝑪𝐼 is [0, 1].

.2. Basis functions

For those elements with no edges on the boundary, NEFEM uses a standard FE formulation. This means that the approximation
f the solution 𝑢, denoted by 𝑢ℎ, is defined in a reference element, with local coordinates 𝜉 and 𝜂. For a bi-linear quadrilateral the
pproximation is defined as

𝑢ℎ(𝜉, 𝜂) =
4
∑

𝑗=1
𝑁𝑗 (𝜉, 𝜂)𝑢𝑗 , (1)

here 𝑢𝑗 and 𝑁𝑗 are the nodal value and the bi-linear shape function associated to node (𝜉𝑗 , 𝜂𝑗 ).
For elements with at least one edge on the NURBS boundary, the traditional approach followed in NEFEM consists of defining

he polynomial basis directly in the physical space, with Cartesian coordinates 𝑥 and 𝑦. In this work, this traditional approach is
ot followed. Instead, the approximation traditionally used in FEM solvers is favoured, meaning that the same approximation is
mployed for all the elements.

To justify the choice made for the basis functions employed in NEFEM elements, it is worth recalling the motivation for selecting
different approximation in the existing implementations of NEFEM. First, it is important to note that all NEFEM approaches

roposed in boundary fitted meshes are only designed to work on triangular and tetrahedral meshes. In this scenario elements with
o edges on the boundary are triangular elements with straight edges and therefore they always have a constant Jacobian. This
roperty implies that defining the polynomial basis in the physical element or in the reference element is equivalent because the
soparametric mapping is always affine. From a computational point of view, it is clearly preferred to define the basis in a reference
lement. However, for NEFEM elements, the definition of the basis in a parametric space or in the physical space is not equivalent as
he mapping cannot be affine and at the same time account for the exact B-rep. For consistency, the original NEFEM formulation in
riangles and tetrahedra proposed the definition of the basis functions for NEFEM elements in the physical space. With this approach,
he resulting methodology was able to provide reproducibility of polynomials of any degree in the physical space [44].

In this work the interest is in extending the NEFEM rationale to quadrilateral elements. Even for standard FEM quadrilateral
lements the mapping between the reference element and the physical element is only affine if the opposite edges of the quadrilateral
re parallel, so in general the mapping is not affine. This implies that in standard FEM the basis functions are polynomials in the
eference element but not necessarily in the physical space. For this reason, in this work there is no benefit on defining the basis
unctions for NEFEM elements in the physical space and they are defined always in the reference element, for both FEM and NEFEM
lements.

It is worth mentioning that it is possible to define the shape functions for all elements in the physical space. However, this
ption is not advocated here as it will increase the cost of computing the elemental matrices. In the original NEFEM approach for
riangles and tetrahedra this was not an issue because the shape functions in the physical space were only generated for a very small
ercentage of the total number of elements, only for the elements with at least one edge or face on the boundary.

.3. Mapping between local and physical coordinates

For FEM elements, with no edges on a boundary defined by a NURBS curve, the mapping from the reference element [0, 1]2 to
he physical element is the classical isoparametric mapping, given by

𝝍(𝜉, 𝜂) =
4
∑

𝑘=1
𝑁𝑘(𝜉, 𝜂)𝒙𝑘, (2)

here 𝑁𝑘 is the bi-linear shape function associated to node (𝜉𝑘, 𝜂𝑘).
The new mapping considered by NEFEM quadrilateral elements is the patch due to Coons who introduced, in [47], an injective

nd continuously differentiable function able to parametrise the surface enclosed by four curves.
The mapping from the reference element [0, 1]2 to a quadrilateral NEFEM element 𝛺𝑒 is written as

𝝍(𝜉, 𝜂) =
2
∑

𝑖=1
�̃�𝑖(𝜂)𝑪 𝑖(𝜉) +

2
∑

𝑗=1
�̃�𝑗 (𝜉)𝑫𝑗 (𝜂) −

4
∑

𝑘=1
𝑁𝑘(𝜉, 𝜂)𝒙𝑘, (3)

here {�̃�}𝑙=1,2 denote the linear shape functions in the one dimensional reference element [0, 1]. The parametric curves {𝑪 𝑙}𝑙=1,2
describe the edges connecting nodes 𝒙4 and 𝒙3 and nodes 𝒙1 and 𝒙2, respectively. Similarly, the parametric curves {𝑫𝑙}𝑙=1,2 describe
5

he edges connecting nodes 𝒙2 and 𝒙3 and nodes 𝒙1 and 𝒙4, respectively.
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Fig. 2. Illustration of the parametrisation of a curved NEFEM element using the mapping defined in Eq. (3).

The parametrisation of a curved NEFEM quadrilateral element induced by the mapping of Eq. (3) is illustrated in Fig. 2. It is
worth noting that for the majority of NEFEM elements, not all the faces are curved, as illustrated in Fig. 1. When one of the edges
of a NEFEM quadrilateral element is straight (i.e. not on the boundary), the parametrisation is simply given by the two nodes that
connect this edge. For instance, if the edge connecting the nodes 𝒙2 and 𝒙3 is a straight edge, the parametrisation 𝑫1 is simply

𝑫1(𝜂) = 𝜂𝒙2 + (1 − 𝜂)𝒙3. (4)

3.3.1. Numerical integration
The weak form of the problem at hand requires to compute numerically integrals over elements and, when natural boundary

conditions are involved, integrals over boundary edges.
Let us consider the computation of a generic entry of a stiffness matrix, namely

𝐾𝑒
𝑖𝑗 = ∫𝛺𝑒

𝛁𝑥𝑁𝑖 ⋅ 𝛁𝑥𝑁𝑗𝑑𝑥𝑑𝑦 = ∫

1

0 ∫

1

0

(

𝑱−1
𝜓 𝛁𝜉𝑁𝑖

)

⋅
(

𝑱−1
𝜓 𝛁𝜉𝑁𝑗

)

|𝑱𝜓 |𝑑𝜉𝜂, (5)

where 𝛁𝑥 denotes the gradient with respect to the physical coordinates, 𝛁𝜉 is the gradient with respect to the local coordinates and
the Jacobian of the mapping between local and physical coordinates is given by

𝑱𝜓 =

⎡

⎢

⎢

⎢

⎣

𝜕𝜓1
𝜕𝜉

𝜕𝜓2
𝜕𝜉

𝜕𝜓1
𝜕𝜂

𝜕𝜓2
𝜕𝜂

⎤

⎥

⎥

⎥

⎦

(6)

The integrals cannot be exactly computed in general, even for standard finite elements due to the appearance of the inverse of
Jacobian of the mapping. In this work, they are evaluated using Gaussian quadratures defined in the reference element [0, 1].

The components of the Jacobian for a FEM element only require the computation of the derivatives of the shape functions in
the reference element. From a computational point of view, these derivatives are precomputed at the Gauss integration points.

For a NEFEM element, the components of the Jacobian are computed as

𝜕𝝍
𝜕𝜉

=
2
∑

𝑖=1
�̃�𝑖(𝜂)𝑪 ′

𝑖(𝜉) +𝑫1(𝜂) −𝑫2(𝜂) −
4
∑

𝑘=1

𝜕𝑁𝑘
𝜕𝜉

𝒙𝑘, (7a)

𝜕𝝍
𝜕𝜂

= 𝑪1(𝜉) − 𝑪2(𝜉) +
2
∑

𝑗=1
�̃�𝑗 (𝜉)𝑫′

𝑗 (𝜂) −
4
∑

𝑘=1

𝜕𝑁𝑘
𝜕𝜂

𝒙𝑘, (7b)

which requires evaluating the derivatives of the curves parametrising the boundary of the element.
The computation of the boundary integrals for quadrilateral NEFEM elements involves the computation of integrals over trimmed

NURBS, which is exactly the same as when triangular elements are used. In [44] the authors explore different alternatives to compute
such integrals and conclude that Gauss quadratures are the most attractive option as they are able to provide the maximum accuracy
for a given number of integration points.

The sufficient number of integration points for an accurate result is set by a rule of thumb. For bilinear shape functions, NEFEM
elements employ three Gauss points in each parametric coordinate, whereas FEM use only two Gauss points. Numerical evidence
will show that this rule of thumb is an effective compromise to limit the error due to numerical integration, while keeping the
computational overhead extremely low compared to the classic FEM formulation.

A mesh involving highly distorted elements would, in principle, require a higher number of Gauss points to retain accuracy,
however in such hypothetical scenario a stronger constrain would halt NEFEM. The mapping introduce in this work is not
automatically guaranteed to be a valid: the necessary condition is that the Jacobian in Eq. (6) is positive in the domain. This
condition should be verified at runtime simply by checking the Jacobian at the Gauss points is valid and, if necessary, a suitable
mitigation strategy should be used. For example, depending on the application, element erosion or a local mesh refinement can
quickly solve this issue.
6
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Fig. 3. (a) The geometry of the circular annulus showing the control points of the four different NURBS describing the boundary. Meshes with (b) 16, (c) 64
and (d) 1024 elements are displayed and NEFEM elements are highlighted in green.

Remark 1. NURBS curves defining the boundary of the element might contain internal breakpoints (i.e. points where the NURBS
definition changes). In such case there is no need to subdivide or re-map elements for the numerical integration: the volume is always
integrated from a tensor product of one 1D quadrature per edge. This is avoids the need for remapping or element subdivision.

4. Numerical results

This section presents numerical results involving heat transfer and linear elasticity problems. The objective is to numerically
demonstrate the optimal convergence properties of the proposed approach and to compare its accuracy against classical isopara-
metric bi-linear elements. To this end, examples with known analytical solutions are first considered and the error in the 2(𝛺)
norm is used to measure the accuracy.

4.1. Heat transfer

This first test considers a heat transfer problem modelled by the Poisson equation, namely

⎧

⎪

⎨

⎪

⎩

−𝛥𝑢 = 𝑓 in 𝛺

𝑢 = 𝑢𝐷 on 𝛤𝐷
𝛁𝑢 ⋅ 𝒏 = 𝑔𝑁 on 𝛤𝑁 ,

(8)

where 𝑢 is the temperature field, 𝑓 is the external source, 𝑢𝐷 is the imposed temperature on the Dirichlet boundary 𝛤𝐷, 𝑔𝑁 is the
imposed heat flux on the Neumann boundary 𝛤𝑁 and 𝒏 is the outward unit normal vector to the boundary.

The external heat source and the boundary conditions are selected such that the analytical temperature is known and given by

𝑢(𝑥, 𝑦) = 𝑥 cos(𝑦) + 𝑦 sin(𝑥). (9)

The computational domain corresponds to a quarter of a circular annulus, with internal radius equal to three and external radius
equal to six, as depicted in Fig. 3(a). The boundary is given by four NURBS curves. Two curves are just linear B-splines whereas the
other two are NURBS exactly representing the two concentric circles. Dirichlet boundary conditions are imposed on the polygonal
part of the boundary and Neumann boundary conditions on the curved part of the boundary.

Fig. 3 also shows three successively refined meshes with 16, 64 and 1024 quadrilateral elements. In green are depicted NEFEM
elements, whereas the in white are standard FEM elements. It is worth noting that when labelling NEFEM and FEM elements, no
distinction has been made about the different nature of the NURBS curves describing the boundary. If desired, it is easy to check if
a boundary curve is a straight line and flag the elements with at least one edge on this curve as FEM elements.

The temperature field computed with standard isoparametric bi-linear elements and with the proposed NEFEM approach are
displayed in Fig. 4. The top figures show the solution computed with FEM and the bottom figures the solution employing NEFEM.
As expected, there are some small differences in the isolines that can be observed when coarser meshes are used. The differences
are less evident when the mesh is refined. It is worth noting that with NEFEM the boundary of the computational domain is always
the one given by the exact B-rep, whereas with FEM an important discrepancy between the exact boundary and the computational
boundary is observed, specially for coarse meshes.

Fig. 5 shows the convergence of the 2(𝛺) error as a function of the minimum element size. First, the results demonstrate the
optimal (i.e. quadratic) convergence of both FEM and NEFEM. This is expected as both methods employ a bi-linear approximation
of the solution in the reference element. In addition, it is important to note that NEFEM offers an improvement for all levels of mesh
refinement, and not only for coarse meshes.

To further illustrate the benefits of the proposed approach, Table 2 summarises the results, including the number of degrees of
freedom of each simulation, the error of FEM and NEFEM computations and the relative difference between the FEM and NEFEM
2(𝛺) errors.

The results show that NEFEM is between 20% and 30% more accurate than FEM using the same number of degrees of freedom
and bi-linear shape functions. Contrary to the belief that an accurate geometric representation is only relevant when using high
7
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Fig. 4. Heat transfer problem: computed temperature field with FEM (top figures) and NEFEM (bottom figures) on four successively refined meshes.

Fig. 5. Heat transfer problem: 2(𝛺) error for FEM and NEFEM as a function of the minimum element size.

Table 2
Heat transfer problem: 2(𝛺) error for FEM and NEFEM and their relative difference as a percentage.
ℎmin dof Error

FEM NEFEM Difference

0.750 16 4.47 × 100 3.55 × 100 20.5%
0.375 81 1.21 × 100 9.05 × 10−1 25.1%
0.190 289 3.11 × 10−1 2.25 × 10−1 27.9%
0.095 1089 7.83 × 10−2 5.62 × 10−2 28.2%
8
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Table 3
Linear elastic problem: 2(𝛺) error for FEM and NEFEM and their relative difference as a percentage.
ℎmin dof Error

FEM NEFEM Difference

0.750 50 8.64 × 10−2 4.56 × 10−2 47.2%
0.375 182 1.54 × 10−2 8.56 × 10−3 44.3%
0.190 578 2.71 × 10−3 1.59 × 10−3 41.1%
0.095 2178 4.75 × 10−4 2.99 × 10−4 37.2%

order elements and coarse meshes, this examples shows that even when fine meshes of low order elements are used, the benefits of
NEFEM are substantial.

It is worth noting that despite NEFEM elements require more integration points, when the mesh is refined, the number of NEFEM
lements is a very small portion of the total number of elements. For instance, in the fourth mesh considered in this study, with
024 element, there are only 64 NEFEM elements. In addition, to accurately compute the integrals of the weak form in a NEFEM
uadrilateral element, it is only necessary to increase the number of integration points in the direction associated to the boundary
dge, and not in the direction associated to interior edges. This means that the extra cost induced by NEFEM is negligible.

.2. Linear elasticity

The second example considers a linear elastic problem, governed by the boundary value problem

⎧

⎪

⎨

⎪

⎩

−𝛁 ⋅ 𝝈 = 𝒇 in 𝛺,
𝒖 = 𝒖𝐷 on 𝛤𝐷,

𝒏 ⋅ 𝝈 = 𝒈𝑁 on 𝛤𝑁 ,
(10)

here 𝒖 is the displacement field, 𝝈 is the Cauchy stress tensor, 𝒇 denotes a volumetric external force, 𝒖𝐷 is the imposed displacement
on the Dirichlet boundary and 𝒈𝑁 is the imposed traction vector on the Neumann boundary.

The test considered is the so-called Lamé problem. It consists of a thick-walled cylinder of infinite length subject to a uniform
internal and external pressure. The solution is computed in a quarter of the domain using the symmetry of the problem, leading to
the same domain as the one considered for the heat transfer problem, shown in Fig. 3. There are no volumetric forces applied and
the exact solution can be written, in polar coordinates, as

𝑢(𝑟) = 𝐶1 𝑟 +
𝐶2
𝑟
, (11)

where

𝐶1 =
𝜈 − 1
𝜈 𝐸

𝑝𝑒𝑟2𝑒 − 𝑝𝑖𝑟
2
𝑖

𝑟2𝑒 − 𝑟
2
𝑖

, 𝐶2 =
𝜈 + 1
𝜈 𝐸

(𝑝𝑒 − 𝑝𝑖)
𝑟2𝑒𝑟

2
𝑖

𝑟2𝑒 − 𝑟
2
𝑖

. (12)

In the above expressions, 𝑟 =
√

𝑥2 + 𝑦2, 𝑟𝑒 and 𝑟𝑖 and the external and internal radii of the annulus respectively, 𝑝𝑒 = 0.5 MPa and
𝑝𝑖 = 1.5 MPa and the external and internal pressure applied respectively, 𝜈 = 0.3 is the Poisson’s ration and 𝐸 = 1 MPa is the Young
modulus.

In this example, the meshes considered are also the same meshes used in the previous example. This setting is used to evaluate
the potential advantages of NEFEM in a solid mechanics problem using the same discretisations employed for the heat transfer
problem.

The displacement field computed with standard isoparametric bi-linear elements and with the proposed NEFEM approach are
displayed in Fig. 6. The top figures show the solution computed with FEM and the bottom figures the solution employing NEFEM.
A visual comparison of the results reveals that NEFEM presents the boundary exactly.

Fig. 7 shows the convergence of the 2(𝛺) error as a function of the minimum element size. The results show the optimal
convergence of both FEM and NEFEM approaches. Furthermore, the extra accuracy of NEFEM can be clearly observed. In fact, the
results in the figure indicate that NEFEM offer greater advantages for the elastic problem, when compared to the results presented
for the heat transfer problem.

Table 3 summarises the results, including the number of degrees of freedom of each simulation, the error of FEM and NEFEM
computations and the relative difference between the FEM and NEFEM 2(𝛺) errors.

The comparison shows that NEFEM is between 35% and 50% more accurate than FEM. The extra accuracy provided by NEFEM
is substantially higher than in the previous example, showing the potential of the proposed approach in linear elastic problems.

4.3. CAD integration

In this section two applications considering more complex CAD geometries are considered to further evaluate the potential and
9
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Fig. 6. Linear elastic problem: computed displacement field with FEM (top figures) and NEFEM (bottom figures) on four successively refined meshes.

Fig. 7. Linear elastic problem: 2(𝛺) error for FEM and NEFEM as a function of the minimum element size.

The first example considers the CAD model of a fir tree root blade commonly found in turbine engines. This is imported, pre-
processed and analysed following the steps outlined in Section 3. A detailed view of the geometry, together with the computed
displacement, is shown in Fig. 8. This figure also shows a detailed view of the discretisation used near the boundary, highlighting
the elements where the NEFEM formulation is used. In this example, the preprocess has been enhanced to ensure that the elements
in contact with the polygonal part of the boundary are considered as FEM elements.

Homogeneous Dirichlet boundary conditions are applied on the lower part of the geometry and an upward force is applied on
the teeth of the discs representing the centrifugal forces action on the turbine blades. As no analytical solution is available for this
problem, a reference solution, computed using bi-quadratic finite elements.

The mesh contains 8503 quadrilateral elements and the preprocess stage partitions the mesh into 606 NEFEM elements and 7897
FEM elements. The results indicate that using NEFEM the error can be reduced by almost 13% compared to the results obtained with
standard bi-linear quadrilaterals. It is worth noting that in this example, the large majority of the mesh is made of standard FEM
elements, so the benefit of NEFEM is not as high as before due to the selected global measure of the error, namely the 2(𝛺) norm.

The last example considered is a Maltese cross (or Geneva drive) mechanism. This is imported, pre-processed and analysed
following the steps outlined in Section 3 showing the ability to handle geometries that contain closed curves (i.e. the internal
circle). The geometry, together with the computed Von Mises stress field, is shown in Fig. 9. This figure also shows a detailed view
of the discretisation used near the boundary, highlighting the elements where the NEFEM formulation is used.
10
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Fig. 8. Detailed view of the geometry of the fir tree and computed displacement field. A detailed view of the mesh near the boundary is also shown, highlighting
the NEFEM (light green) and FEM (white) elements.

Fig. 9. Geometry of the Maltese cross and computed Von Mises stress field. A detailed view of the mesh near the boundary is also shown, highlighting the
NEFEM (light green) and FEM (white) elements.

Homogeneous Dirichlet boundary conditions are applied on the inner circle part of the geometry and a rotational load is applied
11

on all the straight edges of the four inserts. As no analytical solution is available for this problem, a reference solution, computed
using bi-quadratic finite elements.
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Table 4
Summary of the results for all the linear elastic problems presented in this paper.

Number of elements Error reduction

FEM NEFEM Ratio

Circular membrane (finest) 900 124 7.6:1 37.2%
Blade root 7897 606 13:1 12.8%
Maltese cross 3846 542 7:1 20.0%

The mesh contains 4388 quadrilateral elements and the preprocess stage partitions the mesh into 542 NEFEM elements and 3846
EM elements. Computing the error of the FEM and NEFEM solutions, the results reveal that NEFEM is able to reduce the error by
0%. This again shows the potential of NFEEM even with a global measure of the error is considered.

We now present a study to assess what number of Gauss points produces results sufficiently accurate. The numerical quadrature
escribed in Section 3.3.1 introduces an approximation that is proportional to the number of Gauss points used for the quadrature
tself; the aim of this study is to provide an empirical rule of thumb which set a sufficient number of Gauss points. The idea is to
tart from a baseline value and measure the error as the number of Gauss points increases. The baseline is set to match the FEM
ormulation, which requires 𝑝+1 Gauss points for a shape function of order 𝑝: two Gauss points for each dimension of the parametric

domain. This configuration gives a total error of 2.894. By increasing the number of Gauss points to nine, three for each direction,
the error drops to 2.815. Numerical tests show that this value does not decrease significantly when adding more Gauss points and,
since the error reached a plateau, we conclude that 𝑝 + 2 Gauss points are sufficient.

To conclude, Table 4 collects the results for the three linear elastic problems considered in this work, namely the Lamé problem
considered in the previous section and the two problems involving more complex geometries analysed in this section.

It is clear that with the negligible extra cost introduced on boundary NEFEM elements, the proposed formulation is able to
provide a significant reduction in the error for a given spatial discretisation. The improvement are related to the amount of curved
elements and the complexity of the solution, but in all cases the incorporation of NEFEM elements is beneficial.

4.4. Discussion

The advantages and current limitations of the new quadrilateral element are presented in this section.
The new method offers:

1. Higher accuracy than FEM. This is demonstrated by a set of numerical examples involving heat transfer and linear elastic
problems, including cases with complex geometries.

2. Seamless integration with current CAD. The new pre-processing algorithm was proven robust. It has also demonstrated ability
to create NEFEM suitable models for complex CAD geometries and unstructured meshes.

3. Effective rule of thumb for numerical quadrature. Compared to standard FEM, only one extra Gauss point is required to
produce accurate result.

The first advantage is essentially a consequence of the numerical integration strategy that accounts for the exact boundary
representation. This results in a more accurate computation of both integrals in the boundary elements and integrals over edges on
the boundary, required to impose the non-homogeneous natural conditions.

The second advantage is due to the direct use of the B-rep, without any further modification or transformation of the geometry
that is naturally used by the CAD community.

The formulation proposed in this work brings the advantages of the NEFEM rationale for the first time to the finite element solid
mechanics community. This is the first time NEFEM has been applied to quadrilateral elements and for solid mechanics problems
solved using a traditional continuous Galerkin formulation. Despite that the formulation can be extended to other interpolation
functions (e.g. Hermitian, bicubic, etc...) the focus of the present work is limited to low order approximations due to the shortcomings
of current mesh generators already discussed in Section 1.

5. Conclusions

This work proposed a new super-parametric mapping for FEM that integrates into de-facto CAD solutions. In particular, a
quadrilateral element for NEFEM is presented along with applications to heat transfer and solid mechanics. The new element provides
exact boundary representation of the computational domain, as given by a CAD model. This means that strong legacy with in-service
CAD and FEM analysis systems is retained.

The method partitions the mesh in two sets of FEM and NEFEM elements. For NEFEM elements a new mapping is defined between
the reference element and the physical element, with at least one edge on the NURBS boundary, whereas standard FEM is used in
the rest of the domain. The only extra cost associated to NEFEM elements is therefore related to the extra number of integration
points to be used in order to account for the rational definition of NURBS. However, this extra cost is negligible because NEFEM
elements represent a small portion of the total number of elements. In addition, the method only requires to increase the number
12

of points in one direction of the quadrilateral element, the one associated to the NURBS boundary.
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The resulting method has been applied to heat transfer and solid mechanics problems with analytical solution, demonstrating
he optimal convergence properties as the mesh is refined. In addition, two applications in solid mechanics involving complex
eometries have also been considered to show the potential of the proposed method. For each example the accuracy of NEFEM has
een evaluated and compared against traditional bi-linear elements. It has been found that, for the same mesh, NEFEM offers an
rror reduction between 25% and 50% with respect to the FEM counterpart.

Future development should include: (i) robust pre-processing algorithm for 3D geometries, (ii) a methodology to feed back into
AD the simulation results following approaches such as [48], and (iii) analysis of large deformations with emphasis on stress
istribution, convergence studies, orthotropic materials and other scenarios in which quadrilateral elements are known to improve
onvergence drastically [49].
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