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ABSTRACT
This paper explores how Generative AI can be incorporated into
software development education. We present examples of forma-
tive and summative assessments, which explore various aspects of
ChatGPT, including its coding capabilities, its ability to construct
arguments as well as ethical issues of using ChatGPT and similar
tools in education and the workplace. Our work is inspired by the
insights from surveys that show that the learners on our Degree
Apprenticeship Programme have a great interest in learning about
and exploiting emerging AI technology. Similarly, our industrial
partners have a clear interest for their employees to be formally
prepared to use GenAI in their software engineering roles. In this
vein, it is proposed that embedding the use of GenAI tools in a
careful and creative way - by developing assessments which en-
courage learners to critically evaluate AI output - can be beneficial
in helping learners understand the subject material being taught
without the risk of the AI tools “doing the homework”.

CCS CONCEPTS
• Applied computing → Education; • Social and professional
topics→ Software engineering education; •Computingmethod-
ologies → Artificial intelligence.
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1 INTRODUCTION
After many decades of promise, AI has recently been – visibly and
publicly – rapidly integrating itself more and more into various as-
pects of modern life, transforming the way wework and learn. From
simple predictive text based on Markov chains, we have moved on
to far richer Generative AI (GenAI) tools, complex neural network
models like Generative Pre-trained Transformers (GPTs) which pro-
duce increasingly complex outputs. In particular, since its release
at the end of 2022, OpenAI’s ChatGPT has undergone rapid growth
and widespread adoption. According to Deloitte’s Digital Consumer
Trends 2023 survey [12], 52% of people in the UK are aware of such
GenAI tools, and half of these have used it. Disturbingly, 43% of
those who used it assume outright that the information it provides
is factual and 38% consider it to be unbiased.

Software engineering is no exception to the current adoption
trends. AI has been reshaping the software industry for some time
now. It enables software engineers to simplify their work by au-
tomating repetitive tasks, improving the debugging process, stream-
lining testing, and providing a multitude of other functionalities.
Increased accessibility of GenAI tools means there is even more to
gain from it in the day-to-day life of a software engineer. However,
this raises concerns about over-reliance on this technology without
sufficient understanding of its capabilities and limitations.

With this in mind, we explore here the feasibility of incorpo-
rating GenAI tools into software engineering education. We also
present the ideas for assessments aimed at raising awareness about
the capabilities and limitations of GenAI. These are experimental as-
sessments that we carried out in our Applied Software Engineering
Degree Apprenticeship Programme.

2 BACKGROUND
Recently, a number of research papers have appeared investigating
the abilities of LLMs (large language models) to generate executable
code for various languages [3, 5, 9, 10, 13, 19]. For example, Hendryk
et al. [9] introduced APPS, a benchmark for code generation. Khan
and Uddin [10] investigated GPT’s performance in generating code
documentation for Java, Python, PHP, GO, JavaScript, and Ruby.
Peng et al. [13] explored the impact of GitHub Copiloton software
developer’s productivity, observing a 55.8% reduction in develop-
ment time in their controlled experiment.

Various educators and researchers have looked into how GenAI
– and ChatGPT in particular – impacts education both in terms of
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the learning process and assessment [11, 14, 16–18]. Finnie-Ansley
et al. [6] found that OpenAI’s Codex solves the majority of CS2
programming exercises in Python. Denny et al. [4] investigated
Copilot’s performance solving CS1 Python programming tasks and
found that it solved half of them on its very first attempt. Biderman
and Raff [2] explored the performance of Java code generated by
GPT-J

on MOSS (measure of software similarity tool) and discovered
that plagiarism was not detected, although they do not have ev-
idence that this would be the case for tasks in more advanced
programming courses.

Barke et al. [1] conducted a study with 20 programmers to ex-
plore how they interact with Copilot, and observed occasional
over-reliance of first-time users. Prather et al. [15] explored inter-
actions of novice programmers with Copilot. Zastudil et al. [20]
interviewed computer science students and instructors to under-
stand their interaction with GenAI and their expectations regarding
its use in education. They observed a positive attitude with regard to
integrating GenAI into the educational process as well as concerns
about over-reliance, trustworthiness and academic integrity.

In terms of education policy, there have been numerous discus-
sions at a national level exploring the use of ChatGPT in Higher
Education in the UK. For example, the QAA (Quality Assurance
Agency) organised a series webinars addressing assessment in the
era of ChatGPT [8]; and the Department of Education submitted a
call for evidence regarding GenAI in education [7].

3 METHODOLOGY
For our study, we followed a structured approach to collecting data
by designing three anonymous online surveys aimed at three dis-
tinct groups: first-year learners (12 respondents); final-year learners
(12 respondents); and industry professionals (13 respondents). Fol-
lowing the surveys, we ran an experimental summative assessment
for the first-year learners as a part of a Professional Issues module.

Professionals Survey. This survey was designed to identify how
much awareness businesses and organisations have about GenAI,
and to gain insights into industry’s perspective surrounding the
integration of GenAI technology into their work processes. We
also aimed to understand whether businesses are interested in their
employees receiving training to utilise these new technologies.

Learner Surveys. Learner surveys were designed to run along-
side experimental formative assessments. Both first- and final-year
learners were asked to answer background-related questions to
assess their familiarity with GenAI and the extent to which they
carry out programming tasks on a daily basis. Similarly, both co-
horts were asked to express their thoughts on how and whether
GenAI should be used in software development, and to estimate
potential time savings from the pre-generated output.

Formative Assessments. As a part of their Professional Issuesmod-
ule, first-year learners analysed a pre-generated ChatGPT output
in Java for a Stack class, comparing it to their own code previously
written as part of their formative assessment in another module.
They were asked to answer a number of open-ended and multiple
choice questions as well as evaluate the quality of the pre-generated
code using a 5 point Likert scale.

As a part of their formative assessment for an AI module, final-
year learners were asked to use their own prompts to ChatGPT to
generate a Dart application for a Snooker Scoring app. They were
then asked to analyse the output with respect to their own solution
which they had done for anothermodule, and rate it on a Likert scale.
They had also to mark the output based on the original marking
rubric for the coursework, using standard grade boundaries; and
estimate time savings associated with the use of ChatGPT.

Summative Assessment. An experimental summative assessment
was created to evaluate first-year learners’ understanding of Chat-
GPT. The cohort completing this assessment consisted of 17 learners.
The assessment looked not only into the analysis of ChatGPT’s
programming capabilities but also into argumentation and ethical
issues. The results of the assessment were analysed through the
creation and use of a coding scheme, to gauge sentiment towards
different tasks, and GenAI usability.

The first two parts of the assessment required interacting with
ChatGPT to generate well-formatted and functioning code in Java
and Pep/8 Assembly, respectively. The Java task was similar to that
in the previous formative assessment; however, this time, learners
were picking their own prompts and had an opportunity to refine
their prompts to get a better result. They were also asked to reflect
on their ‘journey’. Pep/8 Assembly was chosen for the second task
as it is covered in a previous module, and because it adds confusion
to prompts: as PEP8 is a style guide for Python code, if assembly
language is not explicitly specified, ChatGPT will likely generate
Python code. Additionally, numerous tests that we ran on ChatGPT
showed that, compared to simple Java snippets, the code that it
generates in Pep/8 has significantly more issues.

In the third part of the assessment, the learners were asked to
write a prompt for ChatGPT to argue that cryptocurrencies are
(environmentally) sustainable. They were also tasked to explore a
topic of their choice, asking ChatGPT to argue that “A is better than
B” and then argue the inverse. Reflections that learners documented
allowed an evaluation of how much awareness they have regarding
ChatGPT’s potential biases and delusions. The marking rubric for
each of the above parts considers howwell prompts are constructed,
the rigour with which the output is analysed and compared with the
learner’s own work, and the quality of their ‘journey’ presentation.

Finally, in the last part, learners were asked to discuss the im-
plications of using ChatGPT in education and in their workplace,
considering both professional and ethical aspects. The marking
rubric for this part takes into account the thoroughness of the
learner’s evaluation of the overall experience, both with program-
ming and with text output. It also considers the comprehensiveness
of their ethical analysis.

4 RESULTS
First-year Survey and Formative Assessment. All but two respon-

dents agreed that ChatGPT generated a working Java program
requiring little to no modification. Interestingly, there was no cor-
relation between people’s exposure to software development and
the way in which the output was rated. ChatGPT’s output was
described as “more efficient and better styled”, though respondents
also noted that it: lacked “some common sense like variable naming” ;
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Figure 1: Responses to “Do you feel you / your staff being
formally trained on GenAI (e.g., ChatGPT) as part of this
Degree Apprenticeship Programme would be beneficial?”

did not include comments or follow coding conventions; and did
not provide input validation.

When asked about the benefits of ChatGPT as a support tool, half
agreed that it would have been beneficial as a support tool in their
programming module, while a third opted for the ‘maybe’ option.
Improved efficiency, new ideas and solutions, and a pre-generated
‘skeleton’ code were mentioned among the benefits.

Final-year Survey and Formative Assessment. Most of the respon-
dents managed to get a running program of varied quality, with
50% of the respondents stating that it needed heavy modifications.
Everyone felt that the generated output was worse than their own
previously developed app and that ChatGPT struggled with specific
features, requiring further prompts to improve the code. At the
same time, everyone believed that they would have benefitted from
using ChatGPT during their coursework assignment, specifically
by saving time. They believe it would be useful for refactoring or
writing initial small bits of code, but not a whole program.

In terms of time-savings, we asked participants to estimate the
amount of time that they spent on the programming task initially,
and to provide an estimate on how long it would take them if
they were to use ChatGPT. The average development time without
ChatGPT was estimated to be 17.1 hours, and the estimate for
development time with ChatGPT was 10 hours.

Three-quarters of the final-year learners feel that ChatGPTwould
be useful in their full-time job by saving time and offering alterna-
tive solutions to programming tasks.

Industry Professionals Surveys. With respect to GenAI in an in-
dustry setting, only two of the 13 respondents stated that there
were attempts to integrate GenAI into their workplace. This can be
explained by the fact that this technology has only entered a mass
market recently. However, there is a clear trend of seeing GenAI
as useful in improving a work life cycle, with 30.8% of the respon-
dents considering it definitely useful and 61.5% of the respondents
considering it potentially useful.

Combined Overall Survey Results: GenAI Education and Practice.
A majority of the surveyed participants see a benefit in formal
training on the use of GenAI tools as an aid in software engineering.
Figure 1 shows that over 80% of all participants demonstrated some
level of willingness to either want to be trained or to have their
staff formally trained.

Summative Assessment. As the first part of the summative as-
sessment, first-year learners were asked to solve a simple Java task,
something they had completed earlier in the year for another mod-
ule’s formative assessment. Unlike formative assessment, which
used a pre-generated code, this assignment required them to inter-
act with ChatGPT. When generating Java code via ChatGPT, 94%
of learners generated code with their first prompt which compiled,
and 89% of them felt that it was equal to or better than the code
they wrote themselves in their attempt.

When refactoring their generated code, 53% of learners felt that
it refactored correctly, and ChatGPT could implement additional
features, or modify existing ones. In other cases, code either did not
compile after refactoring or learners felt that the newly refactored
code didn’t reflect the prompt they had given. Due to ChatGPT
being a generalised LLM, this behaviour is not surprising and can
become more common the more complex the refactoring request.

Compared to generating Java code, the learners struggled to get
ChatGPT to generate Pep/8 Assembly code. They were tasked with
generating code which, when provided two integers, will divide
one by the other; something which is tricky in Pep/8. Results show
that 29% of learners were able to generate some compilable Pep/8
code, although no learner felt that the generated code was better
than what they could write themselves, and only 2 learners (11%)
felt that it was equal to what they would write. The remaining
71% of learners either couldn’t generate compilable Pep/8 code or
their prompts were not specific enough and generated Python code
instead. In fact, one of the learners even failed to notice that the
code was not in Pep/8, which is an example of over-reliance.

When tasked with generating a text-based argument regarding
the sustainability of cryptocurrencies, most learners (76%) were
critical of the arguments made by ChatGPT. Many of them reported
that the arguments made were either vague or that it wasn’t a bal-
anced discussion, and the generated discussion was one-sided. After
requesting refinement of the argument, more learners (81%) were
critical of the newly generated response, either due to exasperating
previous issues or creating new ones. Many learners felt that the
generated text wasn’t sufficient for a constructive argument, and
would require additional work and editing. From this response, it
can be understood that many learners may not feel comfortable to
use ChatGPT for large amounts of nuanced text generation, as it is
reported to do a worse job than what many of them could do by
themselves.

When asked to reflect on their experience, 62.5% of learners felt
that ChatGPT could make either limited or well-reasoned factual
arguments, in many cases providing reasonable references and
discussing a topic in depth. However, many learners felt that the
writing style was very artificial. Additionally, 68% of learners felt
that ChatGPT was able to generate reasonable code, in the afore-
mentioned languages, as well as C# or Javascript (Figure 2). With
such a large majority of learners finding code generation useful,
this supports the argument for using GenAI as a teaching aid.

Further support for this can be seen when analysing learners’
thoughts towards using GenAI in work. When asked if they felt
that GenAI should be used within the workplace, 62.5% responded
positively, stating they feel that when used correctly, this could
increase productivity and make code generation easier, a similar
statistic to the one seen in the previously conducted surveys. All
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Figure 2: Sentiment towards language code generation

37.5% of learners who felt that it wouldn’t be useful in the workplace
had previous neutral or bad experiences with code generation,
either feeling that the code generated in the initial Java task was
equal to their own or feeling that ChatGPT failed to refactor their
Java code effectively. Almost all learners had a level of concern
when considering using GenAI in the workplace, mostly around
privacy and ethical considerations.

5 CONCLUSION AND FUTUREWORK
The purpose of this paper was to describe our experience of incor-
porating GenAI into teaching, which helped share with students
a new tool they can access when creating software. Additionally,
we hope to motivate further discussion to set guidelines for how
to incorporate this new technology into the curriculum. Results
show that when employed in formative and summative assessments,
students can use GenAI to complete tasks, and can easily identify
positives and negatives regarding this new technology.

Apprentices provided positive feedback, overall, at being allowed
to explore technologies such as GenAI within the curriculum. They
expressed enjoyment in discussing and using GenAI in their sum-
mative assessments, and – especially the more reluctant users –
applauded the opportunity to explore technology which they had
either dismissed or felt was beyond their skill level.

Future work involves incorporating GenAI into more modules on
the Degree Apprenticeship Programme, further preparing learners
for an ever-changing technology landscape. Specifically, we are
working on creating summative assessments which give students
the choice of using these tools, further normalising them as another
‘tool in the toolbox’ for software engineers.
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