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A B S T R A C T

This work presents the first method for generating triangular surface meshes in three dimensions for the
NURBS-enhanced finite element method. The generated meshes may contain triangular elements that span
across multiple NURBS surfaces, whilst maintaining the exact representation of the CAD geometry. This
strategy completely eliminates the need for de-featuring complex watertight CAD models and, at the same
time, eliminates any uncertainty associated with the simplification of CAD models. In addition, the ability to
create elements that span across multiple surfaces ensures that the generated meshes are highly compliant with
the requirements of the user-specified spacing function, even if the CAD model contains very small geometric
features. To demonstrate the capability, the proposed strategy is applied to a variety of CAD geometries, taken
from areas such as solid/structural mechanics, fluid dynamics and wave propagation.
1. Introduction

The preparation of computer aided design (CAD) models for com-
putational simulations remains one of the most time consuming parts
of the whole simulation process. One aspect that requires a significant
amount of human hours and expert decision making is the de-featuring
of complex geometric models [1,2]. CAD models often contain multi-
scale geometric features that might, or might not, be relevant to a
particular simulation. Using a standard mesh generation algorithm,
with a CAD containing such features, usually leads to several issues,
such as the generation of badly shaped elements and excessive and
unnecessary local mesh refinement. Highly distorted elements can have
an important impact in the quality of the simulations [3], whereas
unnecessary mesh refinement can pose severe restrictions in the simu-
lation of transient phenomena using explicit time marching algorithms.
The later is of particular importance in a high-order setting, where
coarse elements are preferred, to exploit the full advantage of high-
order approximations. In this context, the presence of a few small
elements can make a simulation unaffordable.

Although some semi-automatic tools for de-featuring CAD models
exist [4], it is not easy to know if de-featuring a certain CAD model
will induce significant changes in the engineering quantities of interest,
introducing a level of uncertainty into the simulation. In addition, the
de-featuring process cannot be fully automatised, as it is dependent
on the physics to be simulated and even on specific parameters of
a simulation. For instance, the level of de-featuring required in heat
transfer, solid mechanics, electromagnetics or fluid mechanics simula-
tions is completely different. This does not only mean that a different

∗ Corresponding author.
E-mail address: xi.zou@swansea.ac.uk (X. Zou).

de-featuring is to be performed for the solution of each physical prob-
lem, but it poses a more profound issue. When different physics is to
be considered, either the same geometric model is considered for all
the physics, with a non-optimal de-featuring, or different geometric
models will be utilised for different physics. This prevents, for instance,
a multi-objective optimisation based on different physics. Even if a
single physical problem is considered, problem parameters, such as the
frequency in a wave propagation problem or the Reynolds number in
a fluid mechanics problem, usually induce different requirements in
terms of de-featuring.

In addition to the uncertainty caused by de-featuring CAD models,
the generation of meshes for computational simulations induces an
extra level of geometric uncertainty. The CAD model, even if de-
featured, is approximated by a surface discretisation, usually employing
triangular or quadrilateral elements. The accuracy of the geometric
approximation can be improved by using mesh refinement based on
curvature, mesh sources or high-order elements. However, a factor
often not given enough importance is that the resulting mesh only
provides a piecewise 0 description of the original CAD model. When
employing high-order elements, where coarse meshes are preferred, the
discontinuous derivative of the normal between elements can induce
non-physical effects, such as diffraction in wave propagation problems,
concentration of stresses in a solid mechanics problem or entropy
production in fluid mechanics problems. This effect can even drive a
degree adaptive process towards an incorrect solution [5–7].

The NURBS-enhanced finite element method (NEFEM), originally
proposed in [8], provides a simple and efficient approach to ensure
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that the geometry of the CAD model is exactly preserved during the
simulation. The method was extended to three dimensional domains
in [9] and it has been applied in a variety of problems involving heat
transfer, electromagnetics, fluid mechanics and solid mechanics [10].
The NEFEM rationale also provides a powerful strategy for completely
avoiding the de-featuring of complex models, while removing the re-
quirement for small elements in regions where small geometric features
are present. The main idea, similar to the virtual topology frame-
work [11], is to consider elements that span across multiple surfaces. In
contrast to the virtual topology, the elements can include non-smooth
variations of the normal to the geometry and still maintain the exact
representation of the geometry.

Despite these advantages, its applicability to problems involving
complex geometries has been hampered by the lack of an automatic
mesh generation algorithm. In fact, the lack of automatic mesh gener-
ators has led researchers to apply the NEFEM on unfitted meshes [12–
14] or by using meshless methods [15,16]. To date, a two dimensional
NEFEM mesh generation approach has been available [17] and has
demonstrated the benefit of using such elements. For a two dimensional
electromagnetic scattering example, it was shown in [17] that the use
of NEFEM can speed up a simulation by a factor of 140. This speed up
is the result of using large elements, not restricted by the presence of
small geometric features, making the use of time marching algorithms
affordable.

This work presents the first three dimensional triangular surface
mesh generation strategy for NEFEM. The proposed approach is capa-
ble of producing elements that span across different NURBS surfaces,
maintaining the exact boundary representation and completely remov-
ing the need of de-featuring CAD models. By extending operations
such as edge collapse and edge split, an initial finite element mesh
is modified to offer better compliance with the user-defined spacing
function. The concept of geometric supporting points, used to ensure
the exact NURBS representation of elements spanning across multiple
surfaces, is introduced and the strategy to compute these points is
detailed. In the presence of trimmed NURBS surfaces, a validity check
is performed to ensure that edges do not intersect trimming curves
and, when these intersections are found, an edge curving strategy is
proposed to alleviate the problem. Finally, two simple operations are
employed to redefine badly shaped elements. The first is an extension
of the traditional swap for edges that span across multiple surfaces.
The second is completely novel and deals with the placement of the
newly introduced geometric supporting points. The work also considers
the construction of high-order nodal distributions on NEFEM triangular
surface elements. Although the geometry of the elements is completely
independent of the degree of the approximation used by the solver,
this extension is a basic requirement to ensure that a NEFEM solver
can utilise such meshes for an arbitrary order of approximation. The
proposed approach is finally applied to generate meshes for a series of
CAD models that contain multi-scale geometric features. The examples
demonstrate the ability of the developed strategy to generate meshes
that are valid, capture the exact geometry and comply with the user-
defined spacing function, even in the presence of geometric features
that are much smaller than the required spacing.

The outline of the paper is as follows. In Section 2, the definition of
NEFEM entities is extended to account for the possibility of triangular
elements spanning across multiple surfaces. Section 3 summarises the
mesh requirements and presents the proposed technique to generate
surface NEFEM meshes. In Section 4, the generation of high-order
nodal distributions on NEFEM surface elements is detailed. Several
mesh examples, of increasing complexity, are presented in Section 5,
to illustrate the potential of the proposed technique. Finally, Section 6
2

summarises the main conclusions. t
2. NEFEM geometric entities

In the standard finite element framework, the CAD model is only
used at the mesh generation stage, to define the nodal distribution and
the element connectivity. When the surface mesh has been created,
finite element solvers employ an isoparametric formulation, in which
the geometry of a surface element is defined in terms of a polynomial
interpolation of the points provided by the mesh generator.

In the NEFEM approach, the exact CAD boundary representation is
used to define the curved surface elements. This guarantees that the
resulting elements introduce no geometric error and the geometry is
made persistent throughout the whole simulation process [18].

A new definition of NEFEM surface triangular elements is proposed
in this work, generalising the original definition [9,19] which assumes
that a surface element:

• belongs to a unique NURBS surface,
• is the image, through the NURBS surface parametrisation, of a

straight sided triangle in the parametric space.

In this work, a NEFEM surface triangle is defined as a collection of
trimmed NURBS surfaces. This, more general, definition, allows for a
surface element to traverse several NURBS surfaces. In addition, the
edges of the triangle in the parametric space will be allowed to be
curved, introducing more flexibility to guarantee the validity of NEFEM
triangles.

Fig. 1 shows a general NEFEM triangular element, 𝛺𝑒, with vertices
𝒙1, 𝒙2 and 𝒙3. The triangle spans across three different NURBS surfaces,
parametrised by 𝑺1, 𝑺2 and 𝑺3, with 𝑺2 parametrising a trimmed
surface. The triangular element 𝛺𝑒 is formally defined as the union
of three different trimmed NURBS surfaces, referred to as physical
subdomains. In general, the element is expressed as

𝛺𝑒 =
𝚗𝚜𝚍𝚘
⋃

𝑗=1
𝛺𝑒,𝑗 , (1)

where 𝚗𝚜𝚍𝚘 is the number of physical subdomains that form 𝛺𝑒. Each
physical subdomain is defined as the image by the NURBS surface
parametrisation of a parametric subdomain, namely

𝛺𝑒,𝑗 = 𝑺𝑗 (𝛬𝑒,𝑗 ), for 𝑗 = 1,… , 𝚗𝚜𝚍𝚘. (2)

The parametric and physical subdomains that form the element de-
picted in Fig. 1 are shown in Fig. 2. To simplify the data structure
that will be utilised to store the NEFEM surface element informa-
tion, parametric/physical subdomains are further divided into para-
etric/physical subelements, which are assumed to be triangular. The

parametric and physical subelements that form the element depicted
in Fig. 1 are shown in Fig. 3.

To complete the definition of a curved element, it is necessary to
specify how the subelement edges are defined and the extra information
required to allow elements spanning across several surfaces. These two
aspects are detailed next.

2.1. Geometric definition of subelement edges

The edges of a parametric subelement, referred to as parametric
ubedges can be interior to the parametric space (i.e., with at most one
ertex on a p-curve) or boundary edges (i.e., with both vertices on a
-curve). Parametric subedges with at most one vertex on a p-curve
re defined, using a cubic isoparametric mapping, as

∶ [0, 1] → 𝛤𝜆

𝜉 ↦ 𝜳 (𝜉) ∶=
4
∑

𝑘=1
𝝀𝑘𝑁𝑘(𝜉),

(3)

here 𝝀𝑘 = (𝜆𝑘, 𝜅𝑘) for 𝑘 = 1,… , 4 are the four points in the
arametric space of the NURBS that define the edge 𝛤𝜆 and 𝑁𝑖 are

he one dimensional Lagrange shape functions in the reference interval
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Fig. 1. A NEFEM triangular surface element spanning across three different NURBS surfaces.

Fig. 2. A NEFEM triangular surface element spanning across three different NURBS surfaces, showing the parametric and physical subdomains that form the element.

Fig. 3. A NEFEM triangular surface element spanning three different NURBS surfaces, showing the parametric and physical triangular subelements that form the element.
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[0, 1]. Subedges with both vertices on a p-curve are simply defined, by
rimming the p-curve, as

∶ [0, 1] → 𝛤𝜆

𝜉 ↦ 𝜳 (𝜉) ∶= 𝑪𝜆
(

(1 − 𝜉)𝜆1 + 𝜉𝜆2
)

,
(4)

here 𝑪𝜆 is the p-curve to which the subedge belongs and [𝜆1, 𝜆2] is
he parametric interval for the trimming.

.2. Geometric definition of subelements

A parametric subelement 𝛬𝑖
𝑒,𝑗 is defined using the mapping

∶ [0, 1]2 ⟶ 𝛬𝑖
𝑒,𝑗

(𝜉, 𝜂) ⟼ 𝜣(𝜉, 𝜂) ∶= (1 − 𝜂)𝜳 1(𝜉) + 𝜉𝜳 2(𝜂) + (1 − 𝜉)𝜳 3(𝜂)

− (1 − 𝜉)(1 − 𝜂)𝒙1 − 𝜉(1 − 𝜂)𝒙2,

(5)

where 𝜳 1 is the parametrisation of the first subedge, connecting nodes
1 and 2 of the subelement, 𝜳 2 is the parametrisation of the second
subedge, connecting nodes 2 and 3 of the subelement and 𝜳 3 is the
parametrisation of the third subedge, connecting nodes 1 and 3 of
the subelement. This mapping can be seen as a particular case of
the blending function method [20]. Physical subelements are simply
defined as 𝛺𝑖

𝑒,𝑗 = 𝑺(𝛬𝑖
𝑒,𝑗 ).

2.3. Geometric supporting points

In the original definition of NEFEM surface elements, an edge of a
triangular element is fully described by specifying the two end nodes.
This is not sufficient here because an edge can traverse physical p-
curves, as shown in Fig. 1. An enhanced edge description is proposed
by introducing the concept of geometric supporting points (GS-points).
The set of GS-points associated to one element 𝛺𝑒 is given by the
intersections of 𝜕𝛺𝑒 with the physical p-curves plus the intersections
between physical p-curves that are inside 𝛺𝑒. The set of GS-points for
the element depicted in Fig. 1 are shown in Fig. 3 as green dots.

It is worth emphasising that GS-points are only used to formally
define a NEFEM surface element. They do not introduce new degrees of
freedom in a solver that considers such meshes. Similarly, subelements
are only introduced due to the piecewise nature of a NEFEM surface
element, but the only element that is used in the solver is 𝛺𝑒.

3. Generation of NEFEM surface meshes

This section introduces the generation of the NEFEM triangular
surface meshes suitable for low order approximations. It is worth
emphasising that, in a NEFEM solver, the geometric approximation is
completely decoupled from the solution approximation, i.e. no isopara-
metric concept is used. Therefore, NEFEM enables the exact represen-
tation of complex geometries even when a low-order approximation
of the solution is employed. Although the same geometry may be
variously represented in different CAD models, modern CAD tools such
as [21,22] provide the functionality to simplify the data and generate
standardised CAD files for the downstream mesh generators. In this
paper, it is assumed that the upstream CAD geometry is watertight.

3.1. Mesh requirements

The requirements for a desired NEFEM surface mesh are:

1. The characteristic element size at a point, ℎ(𝒙), must be dictated
by the user and not be restricted by the presence of small
geometric features, i.e. features with characteristic length 𝓁 ≪ ℎ.

2. The surface discretisation must introduces zero geometric error.
This means that all the points of an element are exactly located
4

on the NURBS surfaces, not only the approximation points, as
is usually the case with traditional mesh generators. This means
that the whole surface element coincides with the NURBS and
not only the element nodes are located on the surface, which is
what happens in an isoparametric context.

The first requirement is the most challenging to fulfil and, at the
same time, has the most important implications in terms of develop-
ing efficient solvers. The requirement ensures that no de-featuring of
complex geometries is required, as small features will no longer induce
undesired small elements. This will mean that the use of explicit time
marching solvers for transient problems will be affordable, as the time
step will not be massively restricted by the presence of a few undesired
small elements. However, the requirement implies that a completely
new mesh generation approach must be adopted, enabling elements to
traverse through different NURBS surfaces.

The second requirement introduces the need for a completely new
data structure to store the element information, but it also provides
two important desired features. Firstly, it ensures that the solution
error is free of any uncertainty induced by geometric errors, as is
the case for standard FEM solvers. Secondly, it guarantees that the
geometry is persistent throughout the whole simulation process, facili-
tating the implementation of degree adaptive approaches for high order
methods [5,6].

To illustrate the proposed mesh generation approach, an example
is shown in Fig. 4(a). The NURBS surfaces consists of a trimmed flat
plate and two cylinders with significantly different radii and height.
The thickness of the plate is much smaller than its length and width.
One cylinder has a diameter much larger than its height, while, for
the other cylinder the height is larger than the diameter. The desired
spacing function, ℎ(𝒙), is defined to be constant, with a value much
larger than the thickness of the plate and the height of the flat cylinder.
Fig. 4(b) shows a triangular surface mesh generated using a standard
mesh generator. It can be clearly observed that small and badly shaped
triangles are present in regions where the desired element size is much
larger than a geometric feature. The aim of this section is to explain
the generation of the NEFEM surface mesh shown in Fig. 4(c).

3.2. Initial mesh

Consider a surface manifold 𝛺 ⊂ R3 and a user-specified spacing
function ℎ ∶ 𝛺 → R, defining the spacing at a given location
𝒙 ∈ 𝛺. In this work, the spacing function is defined by using a
background mesh and a set of point, line and triangular sources which
implement the mesh control in Chapter 17 of [23]. The first stage
of the proposed NEFEM mesh generation approach is to generate an
initial FEM mesh, as shown in Fig. 4(b), using a standard surface
mesh generator. It is anticipated that the initial mesh will exhibit the
following characteristics:

1. The mesh is watertight, as it discretises the original watertight
CAD geometry.

2. The user specified spacing function ℎ(𝒙) is generally respected,
but, in regions where geometric features are smaller than the
desired element size, the spacing function will not necessarily
be respected.

Fig. 4(b) shows an initial triangular mesh for the geometry of Fig. 4(a).
The mesh has been generated using a standard FEM mesh generator
with uniform spacing.

3.3. Remeshing procedure

Starting from this initial mesh, a remeshing procedure is employed,
to create the desired NEFEM elements, by using local mesh modifica-
tion operations. The main idea is to loop over the nodes on physical
p-curves, to identify the connected element edges with length smaller
than the user-defined spacing. When these edges have been identified,
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Fig. 4. Example illustrating the NEFEM surface mesh generation process.
they are collapsed recursively. This procedure creates the NEFEM ele-
ments. These may span over multiple surfaces to satisfy the requirement
of the spacing function.

For the initial surface triangular mesh, ℎ, the set of edges is denoted
by ℎ. Each edge is referenced in terms of the two nodes that it
connects, e.g. 𝐸𝑎,𝑏 ∈ ℎ denotes the edge connecting nodes 𝒙𝑎 and 𝒙𝑏.
To decide if an edge 𝐸𝑎,𝑏 of the initial mesh is a valid NEFEM edge,
its length, |𝐸𝑎,𝑏|, computed using the appropriate NURBS surface or p-
curve parametrisation, is compared to the user-defined spacing function
ℎ(𝒙). If the length of the edge is such that

|𝐸𝑎,𝑏| ≤ ℎ∕
√

2, (6)

the edge is considered too short and, therefore, not compliant with the
desired spacing. Similarly, if the length of the edge is such that

|𝐸𝑎,𝑏| ≥ ℎ
√

2, (7)

the edge is considered too long and, again, not compliant with the
desired spacing. Finally, if

ℎ∕
√

2 ≤ |𝐸𝑎,𝑏| ≤ ℎ
√

2, (8)

the edge is considered as compliant with the required spacing and it
will be accepted as a NEFEM edge [24].

According to the criteria specified by (6)–(8), three disjoint sets of
edges are constructed: the set of short edges, 𝑠

ℎ, the set of long edges,
 𝑙
ℎ and the set of compliant edges, 𝑐

ℎ, with ℎ = 𝑠
ℎ ∪  𝑙

ℎ ∪ 𝑐
ℎ.

It is worth noting that non-compliant edges in the initial mesh
could be both edges considered to be too short or too long. Edges to
be considered too short are mainly due to the presence of geometric
features that are much smaller than the required spacing. However,
edges that are too long could be present in the initial mesh, as the
initial finite element mesh does not consider any smoothing to strictly
satisfy that no long edges are present. The reason for the factor

√

2
in (8) is to ensure that when an edge is regarded as being too long, i.e.
satisfying (7), and it is split into two edges, the resulting edges will both
be compliant, according to (8). It is important to note that the proposed
algorithm targets the elimination of edges considered too short, but this
work does not focus on the application of smoothing to strictly ensure
that the all the elements satisfy (8).

The proposed remeshing approach is based on an extension of
procedures usually found in standard mesh generators, such as edge
collapse and edge split. The main idea is to identify edges connected
to nodes on physical p-curves that can be collapsed to ensure that the
spacing function is respected as much as possible. If collapsing an edge
that was considered too short as per (6), results in the appearance of an
edge that is considered too long as per (7), an edge split is applied. The
strategy introduced here is novel, as both the edge collapse and split
are devised to work with edges that traverse physical p-curves. This is
not an operation that is available in standard mesh generators.

Remark 1. By looping through the physical p-curves in the CAD model,
the surface remeshing algorithm proposed in this section is applied
sequentially to nodes on the curves. Alternating the numbering of the
physical p-curves may result in different pattern as shown in Fig. 5. All
those patterns are valid NEFEM meshes.
5

3.3.1. Edge collapse
Consider an element patch ℎ,𝑎 ⊂ ℎ, with the centre node 𝒙𝑎 being

on a physical p-curve. The set of edges connected to 𝒙𝑎 is denoted by
ℎ,𝑎. The edges on ℎ,𝑎 are denoted by 𝐸𝑎𝑖, for 𝑖 ∈ 𝑎, where 𝑎 is
the set of indices corresponding to nodes connected to 𝒙𝑎. The number
of edges in 𝑎 is denoted by 𝚗𝙴. The edges of the element patch ℎ,𝑎
are classified into three subsets of short, long and compliant edges,
viz. 𝑠

ℎ,𝑎 = ℎ,𝑎 ∩ 𝑠
ℎ,  𝑙

ℎ,𝑎 = ℎ,𝑎 ∩  𝑙
ℎ and 𝑐

ℎ,𝑎 = ℎ,𝑎 ∩ 𝑐
ℎ. Fig. 6(a)

shows an example of an element patch centred at 𝒙𝑎. The set of indices
corresponding to nodes connected to 𝒙𝑎 is 𝑎 = {1, 3, 4, 6, 10, 12}.

If 𝑠
ℎ,𝑎 ≠ ∅, the edges in 𝑠

ℎ,𝑎 are collapsed sequentially, until the
set of short edges is empty. Each time an edge is collapsed, the sets
𝑠
ℎ,  𝑙

ℎ and 𝑐
ℎ are updated. The sets 𝑠

ℎ,𝑎,  𝑙
ℎ,𝑎 and 𝑐

ℎ,𝑎 are updated
accordingly. The proposed edge collapse implies deleting a point that
was on a physical p-curve and creating edges that traverse physical p-
curves. In the example of Fig. 6(a), the edge 𝐸𝑎,4 is considered a short
edge and is collapsed, as shown in Fig. 6(b). As a result, the updated
edges 𝐸3,4 and 𝐸10,4 traverse the physical p-curve parametrised by 𝑪2.

To describe an edge connecting two nodes on different surfaces,
apart from the two end points, GS-points need to be created to account
for the intersecting location of the edge and the physical p-curve.
The proposed strategy to create the GS-points will be detailed in the
next section. Nevertheless, the exact length of such edges cannot be
computed before creating the GS-points. Therefore, an estimation is
made to assess the length of new edges that will traverse physical p-
curves before deciding if an edge needs to collapse. This is done using
the previously computed lengths of existing edges in the element patch.
This estimation is also used to decide if the edge collapse is performed
by eliminating either the centre node 𝒙𝑎 or the node connected to 𝒙𝑎.
Due to this estimation, the resulting element edge length may slightly
violate the imposed compliance criterion. In this process, preference
is given to the collapse that maintains the centre node of the element
patch, as this minimises the number of GS-points that needs to be
created. However, it is common to encounter small edges where the
two nodes belong to different physical p-curves and, therefore, the
two possible edge collapse operations will induce the need of creating
GS-points. In the example of Fig. 6(a), the edge 𝐸𝑎,4 is made of two
nodes on different physical p-curves, parametrised by 𝑪2 and 𝑪4. The
edge collapse is made by deleting the central node 𝒙𝑎, as shown in
Fig. 6(b). Before deciding to collapse the edge 𝐸𝑎,4, the length of the
newly created edge 𝐸10,4 is estimated as |𝐸10,4| ≈ |𝐸10,𝑎| + |𝐸𝑎,4|.

3.3.2. Creation of GS-points
The creation of new edges that traverse physical p-curves requires

the creation of GS-points, to ensure that such edges exactly lie on
the surfaces given in the CAD model. The number of GS-points to be
created, 𝚗𝙶𝚂, after performing the edge collapse is simply given by the
number of edges that traverse a physical p-curve, i.e. edges where
the two end nodes belong to two different NURBS surfaces. For each
edge, the index of the physical p-curve that needs to be traversed is
readily available, as it is the curve that contained the centre node of the
element patch, 𝒙𝑎. In fact, not only the physical p-curve is known, but
also its parametric coordinate, i.e. 𝜆 and 𝑗 such that 𝒙 = 𝑪 (𝜆 ), are
𝑎 𝑎 𝑗 𝑎
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Fig. 5. NEFEM mesh patterns may change due to different numbering of physical p-curves.
Fig. 6. Illustration of the edge collapse strategy allowing new edges to traverse physical p-curves.
both known. In the example of Fig. 6(b), edges 𝐸3,4 and 𝐸10,4 require
the creation of one GS-point each and these GS-points will belong to
the physical p-curve parametrised by 𝑪2.

The process begins by creating an ordered list, with the three
nodes that belonged to the physical p-curve parametrised by 𝑪𝑗 in
the original element patch. The order is assigned by using the orien-
tation of the physical p-curve and the ordered list of nodes is denoted
by 𝑎,𝑗 = {𝒙−𝑎 ,𝒙𝑎,𝒙

+
𝑎 } ⊂ 𝑎. The corresponding parametric coordi-

nates of the three nodes are denoted by 𝜆−𝑎 , 𝜆𝑎 and 𝜆+𝑎 . To avoid
self-intersection with edges from other element patches, the interval
defining the GS-points is taken as

𝐼𝑎 ∶=
[𝜆−𝑎 + 𝜆𝑎

2
,
𝜆𝑎 + 𝜆+𝑎

2

]

. (9)

A simple equally spaced distribution of nodes is initially placed in 𝐼𝑎,
viz. 𝜆𝑎,𝑘 for 𝑘 = 1,… , 𝚗𝙶𝚂. The GS-points are obtained by mapping this
distribution to the physical p-curve, i.e. 𝒈𝑘 = 𝑪𝑗 (𝜆𝑎,𝑘) for 𝑘 = 1,… , 𝚗𝙶𝚂.
Each GS-point is then assigned to an existing edge of the triangle strip,
created by the edge collapse. This operation is easily performed after
the triangles of the strip are ordered according to the orientation of
the physical p-curve 𝑪𝑗 . Algorithm 1 lists the steps involved in the
process of creating the GS-points. This approach can easily lead to badly
shaped elements, but their validity is ensured. A repositioning strategy
to guarantee better shaped elements will be described in Section 3.4.
The process of creating the GS-points, for the example of Fig. 6, is
illustrated in Fig. 7. Two GS-points are created in the physical p-curve
and then associated to the edges 𝐸3,4 and 𝐸10,4. This allows for the
NURBS-enhanced edges to traverse the physical p-curve parametrised
by 𝑪 and lie exactly on the NURBS surfaces 𝑺 and 𝑺 .
6

2 5 4
Remark 2. More complex scenarios, that involve an edge traversing
several physical p-curves, are common, when a CAD model contains
very small features, compared to the local requirements of the user-
defined spacing function. Such cases require the creation of multiple
GS-points for edges that traverse multiple physical p-curves. This sit-
uation is easily handled by creating the GS-points after a collapse
operation is completed at an element patch level. This means that
an edge that traverses multiple physical p-curves is constructed re-
cursively, by performing several edge collapse operations, one at a
time, and creating a GS-point every time an edge collapse operation
is performed. An example of such scenarios is shown in Fig. 8, where
four elements are traversing three surfaces after several edge collapse
operations.

After the edge collapse strategy is performed sequentially, on all
element patches with a node on a physical p-curve and with at least
one short edge, according to (6), the set of short edges will be empty.
However, as a result of the collapse, some newly created edges might
become too long. A new edge split strategy is desired that is capable of
handling edges that traverse multiple physical p-curves.

3.3.3. Edge split
When a long edge is created by edge collapse, a new edge split

process is performed to ensure compliance with the requirements of the
user specified spacing function. The difficulty in splitting an edge of a
NEFEM surface element lies in the fact that the newly created edges
can traverse intersection curves. This situation is not encountered in
the usual edge split utilised in standard mesh generators.

Consider two elements, 𝛺1 and 𝛺2 with nodes {𝒙5,𝒙3,𝒙6} and
{𝒙 ,𝒙 ,𝒙 } respectively, that share the edge 𝐸 , which traverses at
3 5 4 5,3
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Fig. 7. Illustration of the process to create the GS-points and to associate them to the edges that traverse a physical p-curve.
Fig. 8. An example of NEFEM surface mesh including four NEFEM elements (labelled
A, B, C and D) traversing three surfaces (coloured in brown, pink and blue, respec-
tively), the geometry is based on Fig. 4(a). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Algorithm 1: Process for GS-point creation during edge collapse.
1 Collect 𝒙𝑎, 𝒙−𝑎 and 𝒙+𝑎 ;
2 Collect the parameters 𝜆𝑎, 𝜆−𝑎 and 𝜆+𝑎 ;
3 Calculate the interval 𝐼𝑎 according to (9);
4 Extract the number of GS-points to create 𝚗𝙶𝚂;
5 Identify the edges {𝐸𝑎,𝑘} to add GS-points;
6 for 𝑘 ← 1 to 𝚗𝙶𝚂 do
7 Calculate 𝜆𝑎,𝑘 ∈ 𝐼𝑎;
8 Create GS-point 𝒈𝑘 = 𝑪𝑗 (𝜆𝑎,𝑘);
9 end for
10 Perform the edge collapse and update connectivity;
11 for 𝑘 ← 1 to 𝚗𝙶𝚂 do
12 Associate GS-point 𝒈𝑘 to edge 𝐸𝑎,𝑘;
13 end for

least one physical p-curve and it is regarded as too long. To illustrate
the process, the example shown in Fig. 9(a) is considered. The two
elements span across two different surfaces, parametrised by 𝑺1 and
𝑺5, and traversing a physical p-curve parametrised by 𝑪2.

Firstly, a triangular sub-mesh is created, with the advancing front
method, by using the element nodes and the GS-points. The sub-edges
of the sub-mesh are depicted with dashed lines in Fig. 9(b). Each
sub-edge is associated to a geometric entity, which can be a physical
p-curve, if both nodes belong to the same curve, or a surface, if at least
one node does not belong to a physical p-curve. For instance, the sub-
edge connecting 𝒈2 and 𝒙6 is associated to surface 𝑺1, whereas the edge
connecting 𝒈 and 𝒈 is associated to the physical p-curve 𝑪 . Next, the
7

2 7 2
mid point of the edge to be split, namely 𝒙8 on 𝐸5,3, is computed using
the appropriate NURBS surface parametrisation. The objective is to find
if new GS-points need to be created when splitting the edge, i.e. when
creating the two new edges connecting nodes 𝒙6 and 𝒙8 and nodes 𝒙4
and 𝒙8. To this end, sub-edges of the sub-mesh are marked if they will
be traversed by the new edges to be created. These sub-edges, such as
that connecting 𝒈2 and 𝒈7, highlighted in red in Fig. 9(c), are identified
using a combination of a modified Dijkstra’s Algorithm [25] and an
approximation of the geodesic described in [26]. If the marked edges
to be traversed are associated to a physical p-curve, a new GS-point will
be created along this edge, otherwise the new edge can be created by
simply joining the two nodes. The result of the edge split is illustrated
in Fig. 9(d). A new GS-point 𝒈5 is created on the physical p-curve 𝑪2
and is associated to the new edge 𝐸8,4.

The detailed steps in the process for edge splitting are listed in
Algorithm 2. The Dijkstra-like pathfinding procedure is listed separately
in Algorithm 3. A representative pathfinding scenario is also presented
in Fig. 10 to show the resulting paths. In this scenario, two elements
𝛺𝐿 and 𝛺𝑅 traverse three surfaces. Here, 𝛺𝐿 is subdivided into 5
sub-elements and 𝛺𝑅 into 4 sub-elements. The algorithm utilises two
stacks, of sub-edges and sub-elements, to dynamically store the path
in a recursive implementation. The solid arrows in Fig. 10 indicate
the path successfully found, while the dashed arrows represent the dis-
carded testing paths when they hit a boundary sub-edge. The sub-edge
rendered in red implies a GS-point will be created.

3.3.4. Validity check
This procedure for creating NEFEM surface elements might lead

to non-valid elements in the presence of trimmed surfaces. A valid-
ity check and a mesh local modification is adopted to alleviate this
problem. To illustrate the problem and the approach adopted, a rep-
resentative scenario illustrated in Fig. 11(b) is considered. The edge
connecting nodes 𝒙𝑎 and 𝒙𝑏, 𝐸𝑎,𝑏, is associated to surface 𝑺3. However
𝑺3 is trimmed by the physical p-curve depicted in blue, which intersects
the edge 𝐸𝑎,𝑏, leading to a non-valid element. Fig. 11(a) shows the
problem in the parametric space of the surface parametrised by 𝑺3. For
each edge that contains one node on a trimming intersection curve, e.g.
𝐸𝑎,𝑏 in the example of Fig. 11(b), a validity check is performed. The
check simply involves computing the normal to the trimming curve
in the parametric space and a scalar product. More precisely, if the
outward unit normal vector to the parametric space of 𝑺3 is denoted
by 𝒏 and the unit vector defined by the two end points of the edge in
the parametric space is defined by 𝝀𝑎,𝑏, the edge is considered valid
if 𝒏 ⋅ 𝝀𝑎,𝑏 < 0. If a non-valid edge is identified, a simple strategy
is proposed, involving redefining the edge as a cubic curve in the
parametric space. To illustrate the process, consider the cubic specified
by the two end points, 𝒙𝑎 and 𝒙𝑏 in the example of Fig. 11, and the
tangent vectors at the two end points. The tangent vector at the node
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Fig. 9. Illustration of the edge split approach for an edge that traverses two physical p-curves.
Fig. 10. Illustration of the pathfinding results for edge split.

that belongs to the trimming curve, 𝒙𝑏, is defined as the bisector of the
angle formed by the tangent to the trimming curve and the vector 𝝀𝑎,𝑐 .
The tangent vector to the cubic at the other end, 𝒙𝑎, can be adjusted by
the user. In the current implementation it is selected as the bisector of
the angle formed by 𝝀𝑎,𝑏 and 𝝀𝑎,𝑐 . When the cubic curve is defined in the
parametric space, two additional points are used to store its geometric
definition in the parametric space, as shown in Fig. 12(a). In this way,
the data structure only contains nodal coordinates and connectivities
but not tangent vectors. The resulting physical curved edge is defined
as the image of the cubic curve by the NURBS surface parametrisation,
as depicted in Fig. 12(b).

3.4. Mesh enhancements

Standard mesh generators employ a variety of local and global op-
erations to enhance the quality of the generated elements. These oper-
ations include procedures such as edge swap and Laplacian smoothing.
8

This work is not aimed at defining and improving quality measures
for NEFEM surface elements, but at generating valid surface NEFEM
meshes. As quality measures devised for traditional FEs are not suitable
for NEFEM, due to the non-isoparametric nature of the NEFEM ratio-
nale, improved quality procedures will be the subject of future research.
However, two local operations are introduced here to redefine badly
shaped elements that are the result of the edge collapse, generation of
GS-points and the edge split. The first operation is unique to the current
mesh generation technique and involves sliding GS-points on physical
p-curves. The second operation is the edge swap, which is extended
here to consider elements that span across multiple NURBS surfaces.

3.4.1. Sliding of GS-points
The GS-points used to define the NURBS-enhanced edges can be

moved along the corresponding physical p-curve to improve the shape
of the NEFEM surface elements. When generated by mapping an
equally-spaced nodal distribution in the parametric space of the p-
curve, as described in Section 3.3.2, the resulting elements might be
largely distorted, depending on the derivative of the NURBS curve
parametrisation. An example of largely distorted elements that may
be created by a naive construction of the GS-points is shown in
Fig. 13(a).

The proposed approach to produce better shaped elements consists
of sliding the GS-points to guarantee that they conform with the
spacing function ℎ(𝒙) along the physical p-curve. The iterative process
for placing the nodes on the physical p-curves proposed in [26] is
utilised here. Fig. 13(b) shows the result of sliding the GS-points of the
mesh in Fig. 13(a). In this example, the user-specified spacing function
corresponds to a requirement for uniform spacing.

3.4.2. Edge swap
The strategy for performing an edge swap for an element that spans

across multiple NURBS surfaces is closely related to the edge split
process presented in Section 3.3.3. The only difference is that the edge
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Fig. 11. Illustration of the validity check for an edge that intersects a physical p-curve used to trim a NURBS surface.
Fig. 12. Illustration of the validity fix for an edge that is curved to avoid intersection with a physical p-curve used to trim a NURBS surface.
Fig. 13. Detail of a NEFEM surface mesh corresponding to the geometry of Fig. 4(a) before and after sliding the GS-points.
to be swapped is deleted and no mid-node needs to be created. Using
the general example in Fig. 9, if an edge swap is to be performed by
replacing edge 𝐸5,3 by edge 𝐸6,4, a sub-mesh is again used to identify
the path that the new edge is to follow and to also identify if new GS-
points need to be created as a result of the edge swap. After the path is
identified, the new edge connection 𝐸6,4 is created and, when needed,
new GS-points are located and associated to this edge. The criteria
used to decide if an edge swap is performed is, as usual, based on the
angles of the triangle. However, in a NEFEM context, the angles of an
enhanced triangle must be computed using the tangent to the enhanced
edges by employing the NURBS description. In addition, the current
implementation also computes the length of the proposed new edge
before performing the swap. The edge is swapped only if the length of
9

the resulting edge does not substantially differ from the user defined
spacing. Fig. 14 shows the resulting mesh after performing multiple
edge swaps to that of Fig. 13(b). It is worth recalling that the length of
an enhanced edge is evaluated using the NURBS entities and not just
defined as the distance between the vertices.

4. Extension to high-order approximations

The strategy described in the previous section enables the genera-
tion of NEFEM surface meshes where the elements are allowed to span
across multiple NURBS surfaces. This results in a better compliance
with the requirements of the user defined spacing function, even when
very small geometric features are present in the CAD model. From the
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Algorithm 2: Process for splitting an edge traversing multiple
surfaces.
1 Collect the vertices for the element pair 𝛺𝐿 and 𝛺𝑅:

𝒙𝑎,𝒙𝑏,𝒙𝐿,𝒙𝑅;
2 Collect the edge to be split 𝐸𝑎,𝑏;
3 Collect the involved surfaces and curves: {𝑺𝑗} and {𝑪𝑘};
4 Build the sub-mesh  within elements 𝛺𝐿 and 𝛺𝑅;
5 Extract from  the sets of boundary sub-edges for the two

sides 𝜖𝐿, 𝜖𝑅;
6 Create the midpoint 𝒙∗ = 𝙱𝚒𝚜𝚎𝚌𝚝𝙴𝚍𝚐𝚎(𝐸(𝒙𝑎,𝒙𝑏), {𝑺𝑗});
7 Find the sub-elements 𝛬𝐿 ∈ 𝛺𝐿 and 𝛬𝑅 ∈ 𝛺𝑅 such that

𝒙∗ ∈ 𝜕𝛬𝐿 ∩ 𝜕𝛬𝑅;
8 Initialise the sub-element stacks 𝐿 = {𝛬𝐿} and 𝑅 = {𝛬𝑅};
9 Find the sub-edges 𝑒∗ such that 𝒙∗ ∈ 𝑒∗;
10 Initialise the sub-edge stacks 𝜖𝐿 = {𝑒∗} and 𝜖𝑅 = {𝑒∗};
11 Find sub-edges traversed by the new edge 𝐸(𝒙∗,𝒙𝐿):

𝜖𝐿 = 𝙵𝚒𝚗𝚍𝙿𝚊𝚝𝚑(𝜖𝐿, 𝜖𝐿,𝐿,𝒙∗,𝒙𝐿);
12 Find sub-edges traversed by the new edge 𝐸(𝒙∗,𝒙𝑅):

𝜖𝑅 = 𝙵𝚒𝚗𝚍𝙿𝚊𝚝𝚑(𝜖𝑅, 𝜖𝑅,𝑅,𝒙∗,𝒙𝑅);
13 Perform the split, update element connectivity;
14 for 𝑒𝑙 ∈ 𝜖𝐿 do
15 for 𝑪𝑘 ∈ {𝑪𝑘} do
16 if 𝑒𝑙 ∈ 𝑪𝑘 then
17 Create a GS-point 𝒈𝑙 ∈ 𝑒𝑙;
18 Associate 𝒈𝑙 to 𝐸(𝒙∗,𝒙𝐿);
19 end if
20 end for
21 end for
22 for 𝑒𝑚 ∈ 𝜖𝑅 do
23 for 𝑪𝑘 ∈ {𝑪𝑘} do
24 if 𝑒𝑚 ∈ 𝑪𝑘 then
25 Create a GS-point 𝒈𝑚 ∈ 𝑒𝑚;
26 Associate 𝒈𝑚 to 𝐸(𝒙∗,𝒙𝑅);
27 end if
28 end for
29 end for

Fig. 14. Detail of a NEFEM surface mesh after performing multiple edge swaps to the
mesh of Fig. 13(b).

point of view of a NEFEM solver, the generated elements only support
a linear approximation of the solution, as the only degrees of freedom
of the triangle correspond to the three vertices. In this section, a novel
strategy to generate high-order nodal distributions in NEFEM surface
elements is presented.

4.1. Distribution of high-order edge nodes

The distribution of high-order nodes on NURBS-enhanced edges is
similar to the strategy presented in [17] when generating two dimen-
sional triangular NEFEM meshes. The main difference is that in the
two dimensional case, NURBS-enhanced edges are always defined by
10
Algorithm 3: Process for pathfinding during edge split:
𝙵𝚒𝚗𝚍𝙿𝚊𝚝𝚑.

global: The sub-mesh 
input: Boundary sub-edges 𝜖, sub-edge stack 𝜖𝑎, sub-element

stack 𝑎;
input: Midpoint 𝒙∗ and goal vertex 𝑥𝑎;

1 Retrieve current sub-edge 𝑒𝑘 from top of stack 𝜖𝑎;
2 Retrieve current sub-element 𝛬𝑘 from top of stack 𝑎;
3 if 𝑥𝑎 ∈ 𝛬𝑘 then
4 return 𝜖𝑎
5 else
6 Identify the two sub-edges 𝑒𝑖 ∈ 𝜕𝛬𝑘 and 𝑒𝑗 ∈ 𝜕𝛬𝑘 other than

𝑒𝑘;
7 Identify the corresponding neighbour sub-elements 𝛬𝑖 and

𝛬𝑗 ;
8 if 𝑒𝑖 ∉ 𝜖 then
9 Push 𝑒𝑖 into stack 𝜖𝑎;
10 Push 𝛬𝑖 into stack 𝑎;
11 else if 𝑒𝑗 ∉ 𝜖 then
12 Push 𝑒𝑗 into stack 𝜖𝑎;
13 Push 𝛬𝑗 into stack 𝑎;
14 else
15 Add 𝑒𝑘 into 𝜖;
16 Pop 𝑒𝑘 out of stack 𝜖𝑎;
17 Pop 𝛬𝑘 out of stack 𝑎;
18 end if
19 end if
20 Recursively update the sub-edge stack:

𝜖𝑎 = 𝙵𝚒𝚗𝚍𝙿𝚊𝚝𝚑(𝜖𝑎, 𝜖𝑎,𝑎,𝒙∗,𝒙𝑎);

NURBS curves, whereas in the current three dimensional setting, edges
could be on NURBS curves and/or on NURBS surfaces. For a NURBS-
enhanced generic edge, connecting nodes 𝒙𝑎 and 𝒙𝑏, 𝐸𝑎,𝑏, the set of 𝚗𝚜𝚎
sub-edges that form 𝐸𝑎,𝑏 is denoted by 𝜖𝑎,𝑏. The sub-edges in 𝜖𝑎,𝑏 are
assumed ordered, such that the first sub-edge 𝑒1 starts at 𝒙𝑎 and the last
sub-edge 𝑒𝚗𝚜𝚎 ends at 𝒙𝒃. Each sub-edge, connects a node of the original
edge and a GS-point or two GS-points. The length of the sub-edges, 𝑙𝑟,𝑠 is
already available as it is computed during the mesh generation process.
Therefore, the length |𝐸𝑎,𝑏| of the edge 𝐸𝑎,𝑏 is available.

Consider a 𝑝th degree nodal distribution on the reference interval
𝐼 = [0, 1], namely {𝜉}𝑘 ∈ 𝐼 for 𝑘 = 1,… , 𝑝 + 1. The nodal distribution
utilised is specified by the user, depending on the type of elements used
by the NEFEM solver, e.g. an equally-spaced nodal distribution or a
Fekete nodal distribution [27]. The high order nodes on the NURBS-
enhanced edge 𝐸𝑎,𝑏 are found in two stages. The sub-edge 𝑒𝑙 that must
contain the 𝑘th high order node, for 𝑘 = 2,… , 𝑝, is easily identified by
comparing the length of the sub-edges to the position of the 𝑘th high
order node in the reference interval, namely 𝜉𝑘. More precisely, the 𝑙th
sub-edge is such that

1
|𝐸𝑎,𝑏|

𝑙−1
∑

𝑖=1
|𝑒𝑖| ≤ 𝜉𝑘 < 1

|𝐸𝑎,𝑏|

𝑙
∑

𝑖=1
|𝑒𝑖|. (10)

Once the subedge is identified, the exact position of the high-order
node is computed by iteratively solving a one-dimensional root finding
problem. If the sub-edge is on a physical p-curve, parametrised by
𝑪𝑗 , the position of the 𝑘th high order node is first computed in the
parametric space of the p-curve as the root of the function

𝐺(𝜂) = 1
|𝐸𝑎,𝑏|

( 𝑙−1
∑

𝑖=1
|𝑒𝑖| + ∫

𝜂

𝜆𝑙
‖𝑪 ′

𝑗 (𝜆)‖𝑑𝜆

)

, (11)

where 𝜆𝑙 is the parametric coordinate of the first vertex of the subedge
𝑒𝑙. When the root 𝜂⋆ of 𝐺 is obtained, the physical position of the high-
order node is computed as 𝑪 (𝜂⋆). If the sub-edge that must contain the
𝑗
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Fig. 15. Illustration of the procedure to define a third order nodal distribution on an edge that is made of two sub-edges. The first sub-edge belongs to the physical p-curve
parametrised by 𝑪1, whereas the second sub-edge is interior to NURBS surface parametrised by 𝑺3.
𝑘th node is not on an intersection curve but on a surface, parametrised
by 𝑺𝑗 , the solution of a slightly different one dimensional root finding
problem is required. This is due to the different definition of the sub-
edge, as described in Section 2.1. The position of the node is obtained
by computing the root of the function

𝐺(𝜂) = 1
|𝐸𝑎,𝑏|

( 𝑙−1
∑

𝑖=1
|𝑒𝑖| + ∫

𝜂

0

‖

‖

‖

‖

‖

𝑑𝑺𝑗 (𝜳 (𝜉))
𝑑𝜉

‖

‖

‖

‖

‖

𝑑𝜉

)

, (12)

where 𝜳 , given in (4), is the isoparametric mapping used to describe
a cubic curve in the parametric space of 𝑺𝑗 . Once the root 𝜂⋆ of 𝐺 is
obtained, the physical position of the high-order node is computed as
𝑺𝑗

(

𝜳 (𝜂⋆)
)

. A simple bisection method is employed and the integrals
appearing in (11) and (12) are evaluated using an adaptive Gauss-
Legendre quadrature. The placement of high-order nodes does not need
to be done sequentially, as the positions of the high-order nodes are
independent.

To illustrate this approach to locating high-order nodes on NURBS-
enhanced edges, Fig. 15, shows the strategy followed when employing
a third order Fekete nodal distribution on a NURBS-enhanced edge 𝐸𝑎,𝑏.
The edge contains a GS-point, 𝒈1, and is made of two sub-edges. Sub-
edge 𝑒1 contains the node 𝒙𝑎 and the GS-point 𝒈1, while sub-edge 𝑒2
contains the GS-point 𝒈1 and the node 𝒙𝑏. The first high-order node
placed on 𝐸𝑎,𝑏 is identified to be placed on the first sub-edge, while
the second high-order node must be placed on the second sub-edge.
The figure shows the parametric space of the physical p-curve that is
used to solve the non-linear problem of (11). The figure also shows
the parametric space of the NURBS surface and the mapping 𝜳 to the
reference interval that is used to define a sub-edge on a NURBS surface.

4.2. Distribution of high-order interior nodes

For NEFEM elements with 𝑝 > 2, the final step in the process consists
of placing the high-order nodes that are interior to the element. For a
desired degree of approximation 𝑝, an equally-spaced or Fekete nodal
distribution is considered on a reference triangle. This is illustrated in
Fig. 16(a) for 𝑝 = 3. For each interior node, the coordinates in the
reference triangle are denoted by 𝝃𝑘 = (𝜉𝑘, 𝜂𝑘). The intersection between
the line connecting the vertex of the reference triangle (0, 1) with 𝝃𝑘 and
the horizontal axis 𝜂 = 0, is given by 𝝃𝑡 = (𝜉𝑘∕(1 − 𝜂𝑘), 0). The point 𝒙𝑡
is defined, over the physical edge 𝐸𝑏,𝑐 , such that the distance from 𝒙𝑏
to 𝒙𝑡, measured over 𝐸𝑏,𝑐 , is equal to |𝐸𝑏,𝑐 |𝜉𝑘∕(1−𝜂𝑘). This is illustrated
in Fig. 16(b). The path between 𝒙𝑎 and 𝒙𝑡 in the physical space is
then found by using an approximation of the geodesic [26]. This path
is shown with a dashed line in the example of Fig. 16(b). The final
11
Table 1
Geometric data of the hollow fairing model.

Number of NURBS Surfaces 10
Number of NURBS Curves 22
Minimum curve length 15.62
Maximum curve length 850.74

step consists of finding the position of the high-order node, 𝒙𝑘, in the
physical space. This is done by ensuring that the distance from 𝒙𝑎 to 𝒙𝑘,
measured over the approximate geodesic that joins 𝒙𝑎 and 𝒙𝑡, is equal
to 𝑑𝑎,𝑡𝑑𝑎,𝑡. Here 𝑑𝑎,𝑡 denotes the arc length of the approximate geodesic
joining 𝒙𝑎 and 𝒙𝑡 and 𝑑𝑎,𝑡 is the distance from (0, 1) to 𝝃𝑡 in the reference
space. The computation of the position of internal nodes utilises the
algorithms, that have already described in detail, for building a NURBS-
enhanced edge, performing an edge split and placing high-order nodes
on element edges. The final position of the high-order node is illustrated
in the example of Fig. 16(b).

5. Examples

A number of examples have been included to illustrate the ca-
pability of the procedure for generating surface NEFEM meshes for
geometries that contain small geometric features. The selected exam-
ples include a wide range of geometries relevant to different areas of
computational engineering, such as solid/structural mechanics, fluid
dynamics and wave propagation. In each example mesh, the edges
adjacent to at least one intersection curve are particularly defined as the
edges of interest. These edges of interest in a FEM mesh are analysed and
modified during the generation of the corresponding NEFEM surface
mesh.

5.1. Hollow fairing for a turbine engine

The first example considers the generation of a NEFEM surface mesh
for a turbine engine fairing with a uniform spacing function. The CAD
model, shown in Fig. 17, contains four large surfaces representing the
outer and inner shells, and six narrow and thin surfaces representing
the leading and trailing edges that connect these two shells. The
representative dimensions of the model are listed in Table 1. Note
that the lengths of the curves in the CAD model vary significantly,
e.g. the length of the longest curve is about 54 times larger than that
of the shortest curve. More importantly, the user specified spacing in
this example, ℎ(𝒙) = 100, requires elements that have a representative
length more than six times larger than the shortest curve in the CAD
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Fig. 16. Illustration of the procedure used to place a high-order node that is interior to a NEFEM element. The example corresponds to a high-order approximation with degree
𝑝 = 3.
Fig. 17. CAD geometry of the hollow fairing for a turbine engine.
model. For this reason, the initial FEM mesh contains a number of
small elements that clearly violate the desired spacing, as depicted in
Fig. 18(a). The condition number of the global finite element matrices
will be adversely affected by the presence of these small elements. The
presence of a single element with a very short edge length will impose
severe restrictions on an explicit time marching algorithm, if numerical
stability is to be achieved. The generated NEFEM surface mesh is shown
in Fig. 18(b). Details of the generated NEFEM mesh near the trailing
and leading edges, where small surfaces are present, are shown in
Fig. 19(a) and (b), respectively. In this model, all surfaces are curved
and, therefore, all surface elements are considered NEFEM elements to
ensure that the exact representation of the domain is maintained. The
elements highlighted with pink edges in Fig. 18(a) have been split in
the NEFEM mesh. This is because the edge length of NEFEM elements
is evaluated with the arc length of the approximated geodesic, which is
typically longer than the Cartesian distance, thus they would trigger the
edge split process as per (7). The statistics for both meshes are listed
in Table 2. The generated NEFEM mesh has a slightly lower number
of nodes and elements, as a result of the edge collapse performed on
the original FEM mesh. Considering the edges of interest, the most
significant difference is that the minimum edge length in the NEFEM
mesh is more than nine times larger than the minimum edge length
in the original FEM mesh and more than four times larger than the
smallest geometric feature present in the CAD model. This example
shows the ability to produce surface meshes with triangular elements
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spanning across multiple NURBS surfaces, while retaining the exact
geometric representation. To further illustrate the potential of the ap-
proach, histograms of the normalised edge length for both the original
FEM mesh and the resulting NEFEM mesh are displayed in Fig. 20. A
comparison clearly shows the ability of the method to create a mesh
in which the majority of elements have an edge length very close to
the requirements of the user-specified spacing function, even in the
presence of small geometric features. To conclude this example, the
technique described in Section 4 is applied to construct high order
nodal distributions on the surface NEFEM elements. Fig. 21 shows
the surface NEFEM meshes obtained for linear, quadratic and cubic
approximation. Note that, in all cases, the same, exact representation
of the geometry is guaranteed. The only use of the high-order nodal
distributions is to define an approximation of the solution in a NEFEM
solver.

It is worth noting that, in this example, the virtual topology
paradigm [11], would also allow meshing across different surfaces,
as there is a smooth transition of the normal between the surfaces.
However, as has been shown in [7], utilising such meshes in a tradi-
tional finite element context will lead to a non-exact approximation
of the geometry. Further, as isoparametric elements only provide
a piecewise 0 approximation of the geometry, even if high-order
approximations are used, the resulting simulations might show non-
physical singularities in the solution induced by the piecewise 0
geometric approximation. This is relevant in different applications. In
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Fig. 18. Meshes for the hollow fairing for a turbine engine. Elements highlighted in pink are split in the NEFEM mesh due to change of length metrics. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Detailed views of the generated high-order NEFEM mesh with 𝑝 = 2 for the hollow fairing model. Surfaces are rendered in distinguishable colours. GS-points are rendered
with green dots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 20. Histograms of edges of interest in FEM and NEFEM meshes for the hollow fairing.
Table 2
Surface mesh statistics for the hollow fairing model.

Surface mesh 𝑝 = 1 FEM NEFEM

Number of nodes 345 278
Number of elements 690 556
Number of edges of interest 483 386
Minimum normalised edge length 0.0761 0.7340
Average normalised edge length 0.7617 1.1230
13
stress analysis, boundaries with 0 continuity might lead to a stress
concentration. In fluid mechanics, corners are known to introduce
non-physical entropy. In electromagnetics, corners can lead to strong
singularities of the electromagnetic field. Therefore, the persistence of
the true CAD model in the solver, via the NEFEM approach, is expected
to bring several advantages, not only in terms of efficiency, but also in
terms of reliability of the results.

To further illustrate this issue, Fig. 22 shows the effect of using
elements that traverse surfaces without a smooth transition of the
normal in a FE context. As it can be observed, the approximation
of the geometry with a high-order element would not reproduce the
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Fig. 21. NEFEM surface mesh of the hollow fairing with linear, quadratic and cubic nodal distributions.
Fig. 22. Virtual topology enabled FEM surface mesh of the hollow fairing with
quadratic isoparametric elements, viewing from trailing edge. After generating elements
that traverse multiple surfaces with no smooth transition of the normal, the geometry
is approximated using quadratic polynomials, losing the exact geometric definition and
leading to different physics.

Table 3
Geometric data of the wing model.

Number of NURBS Surfaces 5
Number of NURBS Curves 9
Minimum curve length 7.27
Maximum curve length 1,381.12

exact geometric features. In addition, the blunt trailing edge will not
be captured and this is known to lead to significant differences in the
physics that can be reproduced [28].

5.2. Wing with a blunt trailing edge

The next example considers a wing with a blunt trailing edge and
is intended to show an ability to generate a NEFEM surface mesh
with a prescribed non-uniform spacing function ℎ(𝒙). The example also
demonstrates the ability of the approach to generate elements that span
across multiple surfaces, even when there is a non-smooth transition of
the normal across the surfaces. This is a feature that cannot be achieved
with the virtual topology approach.

Fig. 23 shows the CAD geometry of the wing. The model consists
of five NURBS surfaces, viz. the top and bottom surfaces, the tip and
root of the wing and the blunt trailing edge. Compared to the previous
example, the ratio between the maximum and minimum curve lengths
of the CAD model is even more extreme and is almost 190 in this
example. Representative dimensions of the model are listed in Table 3.
The non-uniform spacing function is defined using a combination of
point and line sources [23]. A point source, shown in Fig. 23, is
introduced near the trailing edge of the root and two line sources are
14
Table 4
Surface mesh statistics for the wing model.

Surface mesh 𝑝 = 1 FEM NEFEM

Number of nodes 1,606 1,273
Number of elements 3,208 2,542
Number of edges of interest 1,596 1,357
Minimum normalised edge length 0.1455 0.7214
Average normalised edge length 0.7614 1.2810

introduced near the leading and trailing edges of the wing. The initial
FEM and the generated NEFEM meshes are shown in Figs. 24 and 25,
respectively. The local refinement induced by the point sources can be
clearly observed in the rear view of both the FEM and NEFEM meshes.
However, the element size on the NEFEM mesh grows rapidly, as the
influence of the point source disappears, while the FEM mesh is refined
due to the small thickness of the blunt trailing edge. When the defined
spacing is larger than the thickness of the blunt trailing edge, the
generated NEFEM elements span across multiple surfaces, even when
there is a non-smooth transition of the normal between the surfaces.

Remark 3. The scenario in Fig. 26(a) presents a state before collapsing
edge 𝐸4,8 from 𝒙4 to 𝒙8. This would typically be prevented by standard
mesh generators, due to the creation of two triangular elements sharing
all three nodes, viz. {𝒙2,𝒙5,𝒙8}, and the geometric information that
surfaces {𝑺1,𝑺3,𝑺4} intersect at the location of 𝒈4 would be discarded.
In NEFEM, this collapse is permitted due to the introduction of the GS-
points. As shown in Fig. 26(b), the geometric information is preserved
by {𝒈4, 𝒈6, 𝒈7} in the upper element after the collapse.

The mesh statistics are listed in Table 4, where the element edge
length is normalised with respect to the requirements of the user-
specified spacing function. The NEFEM mesh again involves a lower
number of nodes and elements, but the most significant difference is
that, considering the edges of interest only, the minimum edge length
in the NEFEM mesh is almost five times larger than the smallest edge
in the FEM mesh. Fig. 27 shows the histograms of the normalised edge
length of interest for both the original FEM mesh and the resulting
NEFEM mesh. The histogram of the NEFEM mesh shows that the
majority of the elements comply with the requirements of the spacing
function.

It is worth noting that in computational fluid dynamics simulations,
preserving the blunt trailing edge of a wing is crucial to reproduce
the correct physics. Numerical simulations and experiments [28] have
confirmed that collapsing the blunt trailing edge might lead to a steady
flow, whereas preserving the blunt trailing edge triggers an unsteady
behaviour that induces vibrations and noise. The main problem with
preserving blunt trailing edges is the small thickness (2 mm to 3 mm),
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Fig. 23. CAD model of the wing with a blunt trailing edge, a point source is prescribed and illustrated in red spheres. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 24. FEM mesh of the wing model with views from different aspects.
Fig. 25. NEFEM mesh of the wing model with views from different aspects.
Fig. 26. A detailed view of the NEFEM mesh at a corner of the blunt trailing edge.
which naturally induces very small elements when using traditional
methods. In turn, this leads to restrictions to the time stepping when us-
ing explicit time marching. This is particularly problematic when using
high order methods where the objective is to use very large elements
with high order approximations. The objective here is to preserve the
geometric feature exactly and rely on high order approximations to
capture the flow physics.
15
5.3. Complete aircraft

This next example involves a full aircraft model and it is designed to
show the ability of the NEFEM surface mesh generator to handle com-
plex geometries. The CAD model, shown in Fig. 28, contains 48 NURBS
surfaces and 100 NURBS curves. The geometric data is presented in
Table 3. The model contains a variety of features, including very short
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Fig. 27. Histograms of edges of interest in FEM and NEFEM meshes for the wing.
Fig. 28. CAD model for the falcon aircraft model.
Fig. 29. Meshes for the full aircraft model.
curves and small surfaces, smooth transitions between different surfaces
and sharp transitions with a non-smooth normal between surfaces. The
minimum curve length is only 0.37 while the maximum is 10.61, which
is nearly 30 times larger. The specified global mesh size is 0.35. The
characteristic thickness of the wing is about 0.2, which poses a major
16
limitation on the element size at the wing tip when using standard
mesh generators. The summarised curve length data have been listed
in Table 5. In this case, the minimum curve length is larger than the
specific spacing, but compliance with the desired spacing is limited by
the thickness of some NURBS surfaces, rather than a NURBS curve. The
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Fig. 30. Detailed views of NEFEM mesh for the falcon aircraft model.
Fig. 31. Histograms of edges of interest in FEM and NEFEM meshes for the full aircraft model.
Table 5
Geometric data of the full aircraft model.

Number of NURBS Surfaces 48
Number of NURBS Curves 100
Minimum curve length 0.37
Maximum curve length 10.61

Fig. 32. CAD geometry of a flange model.

initial FEM and the resulting NEFEM meshes are shown in Fig. 29. Two
detailed views, near a wing tip and the tip of the tail, of the generated
NEFEM mesh are shown in Fig. 30. The figure clearly demonstrates the
ability of the method to comply with the spacing function by creating
elements that span across multiple surfaces. The mesh statistics are
listed in Table 6. In the standard FEM mesh, when only the edges of
interest are considered, the minimum edge length could only reach
17
Table 6
Surface mesh statistics for the full aircraft model.

Surface mesh 𝑝 = 1 FEM NEFEM

Number of nodes 3,464 3,393
Number of elements 6,924 6,782
Number of edges of interest 3,999 3,908
Minimum normalised edge length 0.0833 0.7461
Average normalised edge length 0.9423 1.0820

8.3% of the desired mesh size, owing to the presence of small geometric
features. This is significantly increased to 74.6% in the NEFEM mesh.
The histograms, presented in Fig. 31, clearly demonstrate the potential
of the approach to guarantee a better compliance with the requirements
of the user-specified spacing function. It is worth noting that edges of
interest in the NEFEM mesh do not strictly follow the desired spacing,
even an edge longer than the desired spacing range has been created
in the NEFEM mesh. This can be easily corrected by applying mesh
improving techniques such as edge flip and mesh smoothing.

5.4. Flange

The next example considers a mechanical component with multiple
geometric features. This example aims to demonstrate the ability to
handle a model with multiple trimmed surfaces by curving NEFEM
edges as described in Section 3.3.4.

The CAD model, shown in Fig. 32, depicts a flange, with a large
centre hole and a skirt, containing six satellite holes for fastener instal-
lation. A U-shaped channel, at the mid-height of the body, creates three
sliver surfaces in the shape of a ring or a cylinder. The round fillet, at
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Fig. 33. Meshes of the flange model.
Fig. 34. Detailed views of the NEFEM mesh for the flange model. The highlighted edge in (b) is curved to ensure validity.
Table 7
Geometric data of the flange model.

Number of NURBS Surfaces 29
Number of NURBS Curves 70
Minimum curve length 1.57
Maximum curve length 138.13

the outer edge of the top surface, also introduces a curved sliver surface.
The geometric data is detailed in Table 7. The geometric characteristics
of the model results in the creation of a large number of small elements,
with large aspect ratio, when using a standard FEM mesh generator,
as presented in Fig. 33(a). In this example, the minimum edge length
in the initial FEM mesh is 19% of the desired element size. A view
of the NEFEM mesh is shown in Fig. 33(b). Again, a reduction in the
number of nodes and elements is obtained, as detailed in Table 8, and,
more significantly, the minimum edge length is more than double that
for the original mesh. Two detailed views of the NEFEM mesh are
presented in Fig. 34. The view, near the U-channel, shows elements that
cross multiple intersections. The view, near one of the satellite holes,
illustrates that the technique introduced in Section 3.3.4 is used to
avoid the intersection of edges with trimming curves. The highlighted
edge in Fig. 34(b) between nodes 𝒙𝑎 and 𝒙𝑏 is intentionally curved so
that it would not intersect with the other edge on the circular hole near
𝒙𝑏. Fig. 35 shows the histograms for the two meshes, with he NEFEM
mesh clearly improving the compliance of the mesh size and increasing
the minimum element size.

5.5. The eiffel tower

The final example involves a model of the Eiffel Tower and demon-
strates the ability to handle large and complex geometric models. The
CAD model, illustrated in Fig. 36, contains 12,034 NURBS surfaces and
18
Table 8
Surface mesh statistics for the flange model.

Surface mesh 𝑝 = 1 FEM NEFEM

Number of nodes 2,139 1,724
Number of elements 4,302 3,472
Number of edges of interest 3,635 2,823
Minimum normalised edge length 0.1913 0.7083
Average normalised edge length 0.7988 1.0971

Table 9
Geometric data of the Eiffel Tower model.

Number of NURBS Surfaces 3,139
Number of NURBS Curves 12,034
Minimum curve length 0.23
Maximum curve length 452.61

3,139 NURBS curves. Numerous features, including common geometric
issues reported in [29] such as sliver surfaces, narrow regions, sharp
angles, short edges and fillets are included in this complex model. The
characteristic dimensions of the model are listed in Table 9. It can be
seen that,in this model, the maximum curve length is 452.61, which is
almost 2,000 times larger than the minimum curve length of 0.23. This
challenging ratio results in a large number of non-compliant elements
in the initial FEM mesh. Taking advantage of the symmetry of the
geometry, a one-eighth model is considered for the mesh generation.
In this sub-model, the number of NURBS surfaces and curves have
been reduced to 460 and 1,828, respectively. The large size of the
model means that the global view cannot clearly illustrate the mesh,
at an affordable resolution. Instead, the detailed views at the featured
locations labelled from A to D in Fig. 36(a) are presented in Figs. 37
to 40, respectively.

Fig. 37 demonstrates that the curved surfaces at the tower base do
not limit the NEFEM element size, as they do in the FEM mesh. Fig. 38
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Fig. 35. Histograms of edges of interest in FEM and NEFEM meshes for the flange model.
Fig. 36. CAD model for the Eiffel Tower. Featured locations are labelled to show mesh details.
shows that the sliver fillet surfaces are traversed by NEFEM elements,
ensuring a better compliance with the user-defined spacing function.
The sharp angle at the tangent point between the cylindrical surface
and the bottom plane, as shown in Fig. 39, induces the creation of small
elements with large aspect ratio in the FEM mesh. This is avoided in the
NEFEM mesh. Fig. 40 shows the FEM and NEFEM meshes at location
19
D, where multiple geometric features are present. The statistics of both
the FEM and NEFEM meshes are listed in Table 10. Along with the
reduction in the number of elements and nodes, taking into account
the edges of interest, the NEFEM mesh has a minimum edge length
which is about 23 times larger than the minimum edge length of the
original FEM mesh. The histograms, shown in Fig. 41, demonstrate the
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Fig. 37. Meshes for the Eiffel Tower with zoomed in views at featured location A.
Fig. 38. Meshes for the Eiffel Tower with zoomed in views at featured location B.
Table 10
Surface mesh statistics for the Eiffel Tower 1/8 model.

Surface mesh 𝑝 = 1 FEM NEFEM

Number of nodes 17,519 12,164
Number of elements 33,776 23,112
Number of edge of interest 16,006 12,475
Minimum normalised edge length 0.0229 0.5118
Average normalised edge length 0.7816 1.0311

improved element size in the NEFEM mesh. In addition, the percentage
of edges with non-compliant length is significantly decreased in the
NEFEM mesh, where only about 20% edges achieve half of the desired
edge length. Again, a few edges of interest in the NEFEM mesh fall
out of the desired spacing range, and this can be improved by further
processing such as smoothing the mesh.

6. Concluding remarks

This work presents a novel surface mesh generation technique
tailored to NEFEM. The generated meshes contain elements that span
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across multiple surfaces and demonstrate much better compliance with
the user-defined spacing, even in the presence of very small geo-
metric features. The resulting meshes completely avoid the need for
de-featuring complex geometric models that contain multi-scale geo-
metric features and, at the same time, preserve the exact representation
of the original CAD model. These features are unique to the present
technique and enable the geometry to be persistent throughout the
whole simulation process.

A new geometric definition of curved edges and curved surface ele-
ments is introduced, extending the definitions employed in the original
NEFEM approach. With the requirements for a NEFEM surface mesh
identified, a novel approach is developed. This relies on an extension of
operations, commonly found in mesh generators, such as edge collapse
and edge split. The extension is required to ensure that edges can
traverse multiple physical p-curves, and the concept of GS-points is
introduced. A simple check for the validity of the surface meshes is
introduced and a simple fix that consists of curving internal edges is
performed, when problematic elements appear due to the presence of
trimmed NURBS surfaces in the CAD model. Although this work does
not specifically address mesh quality measures, two basic operations
are devised to redefine badly shaped elements.
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Fig. 39. Meshes for the Eiffel Tower with zoomed in views at featured location C.
Fig. 40. Meshes for the Eiffel Tower with zoomed in views at featured location D.
Fig. 41. Histograms of edges of interest in FEM and NEFEM meshes for the Eiffel Tower model.
The generation of high-order nodal distributions on NEFEM surface
elements is also addressed. More precisely, novel strategies are devised
21
to define an arbitrary high-order nodal distribution in elements that
span across multiple surfaces. It is worth noting, that contrary to mesh
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a

R

generators suitable for isoparametric finite elements, the exact NURBS
description is considered for any order of approximation.

A set of numerical examples has been presented to demonstrate
the potential of the surface mesh generator. The examples include
geometries relevant in different engineering applications and show the
possibility of creating elements spanning multiple surfaces, even when
the normal changes abruptly between the surfaces. This is in contrast
to existing approaches based on the virtual topology paradigm. In all
the examples, the resulting NEFEM meshes contain a slightly lower
number of nodes and elements, but, most importantly, the minimum
element size is significantly increased with respect to the original FEM
meshes. This is expected to provide significant advantages for the
NEFEM solver, as it will alleviate the severe restriction in the time step
size that the small elements in the FEM mesh impose when attempting
to guarantee numerical stability in an explicit time marching algorithm.

The surface mesh generator can be directly used within a NURBS-
enhanced boundary element framework, but it also serves as the main
building block for the development of a NEFEM volume mesh genera-
tor, which is the object of current research.
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