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Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of
the microscopic origin of several new physics models. Numerical studies pursued on the lattice
provide quantitative information necessary for phenomenological applications. To this purpose,
we implemented 𝑆𝑝(2𝑁) gauge theories using Monte Carlo techniques within Grid, a performant
framework designed for the numerical study of quantum field theories on the lattice. We show
the first results obtained using this library, focusing on the case-study provided by the 𝑆𝑝(4)
theory coupled to 𝑁𝑎𝑠 = 4 Wilson-Dirac fermions transforming in the 2-index antisymmetric
representation. In particular, we discuss preliminary tests of the algorithm and we test some of its
main functionalities.
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1. Introduction

Four-dimensional symplectic gauge theories stand out in the literature for their relevance in the
context of new physics models. For this reason, a first quantitative study of the strongly coupled
dynamics based on 𝑆𝑝(2𝑁) gauge theories was obtained using lattice field theory methods [1–6].
The 𝑆𝑝(4) theory with 𝑁 𝑓 = 2, and 𝑁𝑎𝑠 = 3 is particularly interesting [4]: it gives rise, at low
energies, to the effective field theory entering the minimal Composite Higgs model [7, 8] (see
Refs. [9, 10] and references therein), and also realises top (partial) compositeness [11]. In this
work, we make preliminary, somewhat technical, progress to lay the foundation for future large-
scale studies for 𝑆𝑝(2𝑁) theories using Grid [12, 13]. To this end, we wrote and tested new code
[14] that supports the study of 𝑆𝑝(2𝑁) theories with matter fields in multiple representations. This
report is structured as follows. In Sect. 2, we define the 𝑆𝑝(2𝑁) gauge theories of interest, both in
the continuum and on the lattice. Sect. 3 discusses all the tests we performed on the algorithm, and
we test some of its main functionalities. Finally, we draw our conclusions in Sect. 4.

2. Symplectic gauge theories and lattice setup

In the continuum, we consider 𝑆𝑝(2𝑁) field theories (𝑁 > 1), having as Lagrangian densities
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2
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where the mass-degenerated Dirac fermions 𝑄𝑖𝑎, with 𝑖 = 1, · · · , 𝑁f , and 𝑎 = 1, · · · , 2𝑁 , transform
in the fundamental representation, whereas Ψ𝑘 𝑎𝑏, with 𝑘 = 1, · · · , 𝑁as, transform in the 2-index
antisymmetric representation. The covariant derivatives are defined through the transformation
properties under the action of an element 𝑈 of the 𝑆𝑝(2𝑁) gauge group—𝑄 → 𝑈𝑄, Ψ → 𝑈Ψ𝑈𝑇 .
We consider the system discretised on a lattice of size �̃�/𝑎4 = 𝑇 × 𝐿3, 𝑎 being the lattice spacing.
The action on the lattice is the sum of two terms, 𝑆 ≡ 𝑆𝑔 + 𝑆 𝑓 , where 𝑆𝑔 is the gauge action 𝑆𝑔 ≡
𝛽
∑

𝑥

∑
𝜇<𝜈

(
1 − 1

2𝑁 Re TrP𝜇𝜈 (𝑥)
)

where P𝜇𝜈 (𝑥) ≡ 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + �̂�)𝑈†
𝜇 (𝑥 + �̂�)𝑈†

𝜈 (𝑥) is the elemen-
tary plaquette, 𝑈𝜇 (𝑥) ∈ 𝑆𝑝(2𝑁) is the link variable, and 𝛽 ≡ 4𝑁/𝑔2

0 is the inverse bare gauge cou-
pling. The fermion action 𝑆 𝑓 is 𝑆 𝑓 ≡ 𝑎4 ∑𝑁f
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where the covariant derivatives 𝐷
( 𝑓 )
𝑚 and 𝐷

(𝑎𝑠)
𝑚 are built using the links in the fundamental and

2-index antisymmetric representations, respectively. We shall indicate with 𝑚f
0 and 𝑚as

0 are the bare
masses of the fermions in the fundamental and 2-index antisymmetric representation,

3. Tests of the algorithm

Focussing primarily on the 𝑆𝑝(4) theory with 𝑁f = 0, and 𝑁as = 4 Dirac fermions, we
perform preliminary algorithm tests, to check the correct implementation of the new code. First
of all, we check the sanity of the integrators we use for the molecular dynamics (MD) evolution.
The numerical results are presented in Figs. 1 and 2. Their correspondent ensemble is obtained
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Figure 1: Test of Creutz equality [15] (left panel), ⟨exp(−Δ𝐻)⟩ = 1 dependence of ⟨exp(−Δ𝐻)⟩ on the
time–step, Δ𝜏, in the MD integration, for 𝑁 = 2, 𝑁f = 0, and 𝑁as = 4. Test of independence of the plaquette
(right panel) on the time–step Δ𝜏. The relevant parameters are the trajectory length 𝜏 = 1, number of steps
𝑛steps = 14, 16, 18, 22, 26 (Δ𝜏 = 𝜏/𝑛steps), for an ensemble with lattice volume �̃�/𝑎4 = 84, 𝛽 = 6.8, and
𝑎𝑚as

0 = −0.6. The horizontal line in the right panel represents to the plaquette value obtained averaging over
trajectories having different a number of step values, 𝑛steps. See, for comparison, Ref. [16]. (Figure taken
from Ref. [17]).
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Figure 2: Left panel: Dependence of ⟨Δ𝐻⟩ on the time-step, Δ𝜏, used for the MD integration. Right panel:
Test of the relation between acceptance probability and Δ𝐻 [18]. The theory considered and the relevant
parameters of this study are the same as Fig. 1. These tests follow closely Ref. [16]. (Figure taken from
Ref. [17]).

evolving the system for 3400 trajectories and has Madras-Sokal [19] integrated auto-correlation
time 𝜏𝑐 = 6.1(2). The first test verifies whether the Creutz equality [15] is satisfied. This can
be done by measuring the value of the Hamiltonian, Δ𝐻, before and after each trajectory in the
HMC evolution to find ⟨exp (−Δ𝐻)⟩ = 1. This is supported by our numerical results (left panel of
Fig. 1). As a second test, we verify that quantities computed through hybrid Monte-Carlo (HMC
and RHMC) updates do not depend on the MD time-size step, Δ𝜏, as our updates are obtained
through exact algorithms. To do so, we use the elementary plaquette and verify (right panel of
Fig. 1) the independence of such quantity on Δ𝜏. As a third test, we verify the relation between
⟨Δ𝐻⟩ and Δ𝜏: for a second-order integrator it is supposed to scale as ⟨Δ𝐻⟩ ∝ (Δ𝜏)4. In left panel of
Fig. 2, we show the lattice result, together with a best-fit to the curve log⟨Δ𝐻⟩ = K1 log(Δ𝜏) + K2,
with K1 = 3.6(4). The fit value of the reduced is 𝜒2/𝑁d.o.f. = 0.6, and K1 is compatible with 4.
As a last check, we show in right panel of Fig. 2 results confirming the predicted relation for the

acceptance probability, 𝑃acc = erfc
(

1
2

√︃〈
Δ 𝐻

〉)
[18].

We monitored the contribution to the MD of the fields, and how it changes with bare fermion
masses. We show in Fig. 3 the force split in gauge and fermion contributions, 𝐹 (𝑥, 𝜇) = 𝐹𝑔 (𝑥, 𝜇) +

3
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Figure 3: Field contribution to the MD force for the theory with 𝑁 = 2, 𝑁f = 0, and 𝑁as = 4, on isotropic
lattice with �̃� = (8𝑎)4, and lattice coupling 𝛽 = 6.8. The two blocks are respectively indicating the gauge (light
shading, left) and the fermion (dark shading, right) contribution. Fermion contributions are summed over
flavor. The six panels correspond to different choices of bare mass: 𝑎𝑚as

0 = −0.9, −0.1, +0.6, +1.8, +15, +50
(left to right, top to bottom). The results are normalised so that the gauge contribution is held constant. The
computation of the force contributions is made in Ref. [16]. (Figure taken from Ref. [17]).

𝐹 𝑓 (𝑥, 𝜇). The latter includes all four fermions. As shown in Fig. 3, for large and positive values
of 𝑎𝑚as

0 the dynamics is led by the gauge degrees of freedom, as one would expect from a system
approaching the quenched regime. Conversely, decreasing the mass, the fermion contribution
increases and for negative values of the Wilson bare mass corresponding to small PCAC masses,
the fermion contribution dominates.

As a last test, we verify that our implementation of the Wilson-Dirac operators is correct. We
consider the 𝑆𝑝(4) theory with quenched fermions in either the fundamental or 2-index antisymmet-
ric representation. We compute the spectrum of eigenvalues of the hermitian Wilson-Dirac operator
𝑄𝑚 = 𝛾5𝐷𝑚. Following the procedure discussed in Ref. [20], we compute the distribution of the
unfolded density of spacing, 𝑃(𝑠), and compare our results to the predictions of chiral Random
Matrix Theory [21]. The unfolded density of spacing is

𝑃(𝑠) = 𝑁𝛽𝑠
𝛽 exp

(
−𝑐𝛽𝑠2

)
, where 𝑁𝛽 = 2

Γ𝛽+1
(
𝛽

2 + 1
)

Γ𝛽+2
(
𝛽+1

2

) , 𝑐𝛽 =

Γ2
(
𝛽

2 + 1
)

Γ2
(
𝛽+1

2

) , (2)

where 𝛽 is the Dyson index. As the spectrum is linked to the chiral symmetry-breaking pattern,
the distribution 𝑃(𝑠) discriminates between the symmetry-breaking patterns associated to different
representations of groups. Due to this property, the Dyson index takes different values: 𝛽 = 4
corresponds to 𝑆𝑈 (2𝑁 𝑓 ) → 𝑆𝑂 (2𝑁 𝑓 ), 𝛽 = 2 to 𝑆𝑈 (𝑁 𝑓 ) × 𝑆𝑈 (𝑁 𝑓 ) → 𝑆𝑈 (𝑁 𝑓 ), and 𝛽 = 1
to 𝑆𝑈 (2𝑁 𝑓 ) → 𝑆𝑝(2𝑁 𝑓 ). To compare our results on the lattice with Eq. (2), we compute the
eigenvalues of 𝑄𝑚 for 𝑁conf configurations. Then, following the procedure described in Ref. [20],
we find the discretised unfolded density of spacings, 𝑃(𝑠). In Fig. 4, we show our numerical
results: one finds a distribution that is compatible with the expected symmetry-breaking patterns.
The observed agreement with the predicted model gives us strong indication that we correctly
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Figure 4: Distribution of the unfolded density of spacing between subsequent eigenvalues of the hermi-
tian Dirac-Wilson operator 𝑄𝑚 = 𝛾5𝐷𝑚, obtained as in Ref. [20], and comparison with predictions from
chRMT [21], computed in the quenched approximation, with ensembles having 𝛽 = 8.0, 𝑎𝑚0 = −0.2, and
lattice volume �̃� = (4𝑎)4, in the 𝑆𝑝(4) theory. The left panel shows the case of fermions transforming in
the fundamental representation, and the right is for fermions in the 2-index antisymmetric one. The numbers
of configurations are 𝑁conf,f = 88 and 𝑁conf,as = 47, while the number of eigenvalues in each configuration
used is 3696 for fundamental fermions and 5120 for antisymmetric fermions. (Figure taken from Ref. [17]).

implemented the Wilson-Dirac operators. 1

We performed a lattice parameter space scan, to identify possible phase transitions happening while
varying lattice parameters, by studying the average plaquette, ⟨𝑃⟩, and its hysteresis. Performing
such a study we know where there is no bulk phase transition, and one can safely perform lattice
numerical calculations. The left panel of Fig. 5 displays the average plaquette, ⟨𝑃⟩, in ensembles
generated using a cold start. For this theory, the average plaquette is a smooth function everywhere,
except for precise values of 𝛽∗ and 𝑎𝑚as ∗

0 , where it shows an abrupt change—this gives us a strong
indication of a first-order, bulk phase transition. As a further verification, we re-generated the same
ensembles with hot starts and repeated the measurements using the same lattice parameters. The
right panel of figure 5 shows the comparison of the average plaquette values, ⟨𝑃⟩, between hot and
cold starts, using the same bare lattice parameters and hysteresis is clearly visible, for 𝛽 < 𝛽∗ ≃ 6.4.

We adopt a scale setting procedure that makes use of the Wilson flow. [22]. One introduces

the fifth-dimension, flow time, 𝑡, and solves the defining diffusion differential equation
d𝐵𝜇 (𝑥, 𝑡)

d𝑡
=

𝐷𝜈𝐺𝜈𝜇 (𝑥, 𝑡), with the boundary conditions, 𝐵𝜇 (𝑥, 0) = 𝑈𝜇 (𝑥). Then, one defines the quantities
E(𝑡) ≡ 𝑡2

2
〈
Tr

[
𝐺𝜇𝜈 (𝑡)𝐺𝜇𝜈 (𝑡)

]〉
,W(𝑡) ≡ 𝑡 𝑑

𝑑𝑡
E(𝑡) and introduces a prescription E(𝑡) |𝑡=𝑡0 = E0

that sets the scale 𝑡0, or alteratively W(𝑡) |𝑡=𝑤2
0
= W0 that sets the scale 𝑤2

0. Both E0 and W0
are chosen conventionally. In Fig. 6 we show E(𝑡) and W(𝑡) as functions of the flow time,
𝑡. On the lattice, the calculation of E(𝑡) and W(𝑡) depends on a definition of 𝐺𝜇𝜈 , and we
display explicitly two choices: the elementary, P𝜇𝜈 (𝑥), and the clover-leaf plaquette, 𝐶𝜇𝜈 (𝑥).
The plots show results agreeing with previous findings in the literature, according to which at
early flow times E(𝑡) and W(𝑡) strongly differ due to UV fluctuations. Then, the cut-off effects
are smoothened and the two curves become closer to each other. Moreover, we notice that the
function W(𝑡) displays a milder dependence. For this reason, we set the scale 𝑤0 using W(𝑡),

1The correctness of the Wilson–Dirac operator could also be checked via consistency with the Feynman rules, both
by using the free propagator obtained from Fourier transforms, and by comparing the results of gauge transformation.
This has not been done in this work.
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Figure 5: Left panel: parameter scan of the 𝑆𝑝(4) theory with 𝑁f = 0, 𝑁as = 4 fermions, with ensembles
generated from a cold start, using the HMC. We show the value of the average plaquette, ⟨𝑃⟩, as a function
of the bare mass, for a few representative values of the coupling 𝛽 as shown in the legend. The lattice size is
�̃� = (8𝑎)4, and each point is obtained by varying the lattice coupling 𝛽 = 5.6 to 7.0. Right panel: Hysteresis
between hot (red) and cold (other colors) starts for the 𝑆𝑝(4) theory. The lattice coupling is 𝛽 = 6.4 to 5.6
(left to right, and top to bottom). (Figure taken from Ref. [17]).
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Figure 6: Wilson Flow [22] energy density E(𝑡) (left panel) and W(𝑡) (right), computed as in Refs. [1, 23],
from the standard (pl) and the clover-leaf (cl) plaquette, for the 𝑆𝑝(4) theory with 𝑁as = 4 fermions
transforming in the 2-index antisymmetric representation. The lattice size is �̃� = (12𝑎)4, 𝛽 = 6.8 and 6.9,
𝑎𝑚as

0 = −0.8. The time step is 0.01, 𝑡𝑚𝑎𝑥 = 4.5 to reduce finite-size effects. We choose W0 = 1
2𝐶2 (𝐹) for the

scale setting. The corresponding values of 𝑤0 from the plaquette and the clover-leaf are 𝑤0, 𝑝𝑙. = 1.485(3)
and 𝑤0,𝑐𝑙. = 1.495(2) for 𝛽 = 6.8 and 𝑤0, 𝑝𝑙. = 2.005(2) and 𝑤0,𝑐𝑙. = 2.026(2) for 𝛽 = 6.9. We have set
𝑎 = 1, for notational convenience. (Figure taken from Ref. [17]).

by conventionally setting W0 = 1
2𝐶2(𝐹). Having set the scale, one can define the topological

charge. For gauge configurations generated by Monte Carlo simulation, this observable is dominated
by UV fluctuations, hence it will be regulated defining it through 𝐵𝜇 (𝑥, 𝑡), obtaining 𝑄𝐿 (𝑡) ≡

1
32𝜋2 𝜀

𝜇𝜈𝜌𝜎
∑

𝑥 Tr
[
C𝜇𝜈 (𝑥, 𝑡)C𝜌𝜎 (𝑥, 𝑡)

]
. In Fig. 7 we display the value of 𝑄𝐿 (𝑡 = 𝑤2

0), for the
same ensembles of the Wilson flow study. There is no evidence of topological freezing, as the
Madras-Sokal integrated autocorrelation time [19], 𝜏𝑄, of the topological charge turns out to be
many orders of magnitude smaller than the number of trajectories.
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Figure 7: Evolution with the ensemble trajectories of the topological charge computed at flow time 𝑡 = 𝑤2
0,

as shown in Ref. [23], for the 𝑆𝑝(4) theory with 𝑁as = 4 fermions transforming in the 2-index antisymmetric
representation. The lattice parameters and size are the same as Fig. 6. The histograms of the measurements
(right panels) are compatible with a normal distribution centered at zero, with reduced chi-square 𝜒2/𝑁d.o.f =

�̃�2 = 1.1 for both panels. The integrated autocorrelation time computed using the Madras-Sokal windowing
algorithm is 𝜏𝑄 = 31(3) (left panel) and 𝜏𝑄 = 238(12) (right panel). (Figure taken from Ref. [17]).

4. Summary and outlook

Symplectic gauge theories have a variety of phenomenological applications in many contexts
such as Composite Higgs Models and top partial compositeness [7, 8], strongly interacting dark
matter models [24, 25]. We developed and tested new software, embedded into the Grid environment
to take full advantage of its flexibility. We reported the positive results of our tests of the algorithms,
particularly focusing on the 𝑆𝑝(4) theory coupled to 𝑁𝑎𝑠 = 4 (Dirac) fermions transforming in the
antisymmetric representation. This work and the software we developed for it set the stage needed
to explore and quantify future large-scale studies—among them, the study of the conformal window
extent in strongly coupled gauge theories with matter field content. Moreover, the tools we developed
will be useful in the context of the recent literature discussing the spectroscopy of 𝑆𝑝(2𝑁) theories
with various representations (see, e.g. Refs.[1, 2, 4]), and can be further extended by applying new
techniques based on the spectral densities [26].
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