
Irregular Domain Deep Learning

Sachin Shivdas Bahade

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Doctor of Philosophy

Department of Computer Science

Swansea University

October 26, 2023

Copyright: The Author, Sachin S. Bahade, 2023.

j.s.whitney
Cronfa

Declaration
This work has not been previously accepted in substance for any degree and is not being con-

currently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other sources

are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed .. (candidate)

Date ..

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside organisations.

Signed .. (candidate)

Date ..

26 October 2023

26 October 2023

26 October 2023

I would like to dedicate this work to my mother, my late father, and my idol,

Dr. B. R. Ambedkar,

who was a remarkable social reformer and the chief architect of the Indian

Constitution.

We are because he was.

Abstract

In recent years, the use of machine learning and deep learning on graph data has increased

significantly. Convolutional neural networks have achieved remarkable success with grid-like

data such as images, but encounter enormous difficulties when learning from more general

structures such as graphs. The inclusion of trainable local filters enables the automated extrac-

tion of high-level features in a regular domain; however, due to the irregular structure of graph

data, regular domain deep learning operations are constrained. Thus, the development of deep

learning models that can successfully learn from graph data is a promising research field with

a great potential for impact. In this work, we are looking to generalise deep learning model

for learning spatial feature representations on irregular domain topologies for the purpose of

learning high-level model (structures, topology, parts) in medical image analysis problem. This

thesis focuses specifically on graph neural networks as the primary machine learning model for

effectively tacking graph data challenges.

This study investigates the use of irregular domains deep learning methods to enhance the

high-level model, with applications in medical image segmentation and detection tasks. We

first explore how graph construction affects the behaviour of graph convolutional operations.

For this purpose, we use a parametrically specified graph to represent a localised sampling

operation on an underlying domain, which we subsequently mine for features while analysing

the effect of the graph’s construction on the model’s behaviour. After this, we learn features

using advanced deep-learning, spectral, and spatial-based graph signal processing techniques

for cell segmentation on immunostained images and present a comparative study. Third, we

explore the problem of object recognition in an irregular environment. Conventional convolu-

tional neural networks may process Euclidean data for object detection tasks in a number of

ways, but the use of graphs to sample from image data requires special consideration, which

has the possibility of generalising to non-Euclidean data. We describe a graph convolution-

based region proposal method for the detection of non-Euclidean data objects. The extraction

of a subgraph as a candidate for the prospective object regions is our primary focus. We dis-

i

covered improvements when comparing our technique to the region based convolutional neural

networks method for the Euclidean domain. The last main chapter focuses on the problem of

nuclei detection and finds that graph convolutional networks-based cascaded architecture out-

performs convolutional neural networks-based techniques and is more stable. In conclusion,

we demonstrate the stability of our irregular domain deep learning methods for graph construc-

tion, cell segmentation, and nucleus detection applications, as well as its improved performance

in comparison to convolutional neural networks-based approaches.

Acknowledgements

I would like to express my gratitude to Dr. Mike Edwards and Dr. Xianghua Xie for their super-

vision during my studies. They have been a constant source of advice and support throughout

the years, for which I will be eternally grateful. Without their tireless support and encourage-

ment, this thesis would not have been possible. I would want to thank them for their assistance

and discussions, which have helped me strengthen my professional skills. I am also thankful

to Dr. Gary Tam for his support in beginning this path and his initial care.

I would also want to thank my colleagues in the SwanseaVision Lab and the department

of computer science. Dr. Jingjing Deng, Dr. Ali Alqahtani, Dr. Majedaldein Almahasneh,

Dr. Omnia Nagoor, and Elif Firat are specifically thanked for their help, discussion, and en-

couragement during my Doctorate. I would also want to acknowledge the direct and indirect

support of Prof. Matt Jones, Dr. Deepak Sahoo, and Dr. Yogesh Meena.

Lastly, I would like to thank my family, particularly my mother and late father, my well-

wisher Manishkumar Tayade, Csenge Berkin, for their patience, support, and encouragement

despite the challenges, as well as my sister, brother, and other relatives who are proud to see

me at this point.

iii

Contents

Contents v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivations . 2

1.1.1 Graph Construction . 4

1.1.2 Medical Image Cell Segmentation . 5

1.1.3 Medical Image Cell and Nuclei Detection 6

1.2 Overview . 6

1.3 Contributions . 7

1.3.1 List of publications resulting from the research conducted for this thesis: 8

1.4 Outline . 10

2 Fundamentals of Deep Learning and GNNs 13

2.1 Introduction . 14

2.2 Fundamentals of Deep Learning . 15

2.2.1 Neural Network . 15

2.2.1.1 Feedforward Neural Network 16

2.2.1.2 Backpropagation . 19

2.2.2 Convolution Neural Network . 21

2.2.2.1 Convolutional Layer . 22

2.2.2.2 Pooling Layer . 23

2.3 Deep Learning in Irregular Domain . 24

v

2.3.1 Foundation of Graph Signal Processing 25

2.3.1.1 Spectral Graph theory . 26

2.3.1.2 Adjacency Matrix . 26

2.3.1.3 Diagonal Matrix/Degree Matrix 26

2.3.1.4 Laplacian Matrix . 26

2.3.1.5 Graph Signals . 27

2.3.1.6 Graph Signals Processing 28

2.3.2 Graph Neural Networks . 31

2.3.2.1 Graph Convolution Networks 32

2.4 Medical Image Analysis . 38

2.5 Summary . 40

3 Graph construction as a study 41

3.1 Introduction . 42

3.1.1 Problem domain of Graph Construction 42

3.2 Graph construction . 44

3.2.1 Representation of 2D arrays . 46

3.2.1.1 Binary Graph Construction 48

3.2.1.2 Euclidean Graph Construction 49

3.2.1.3 Gaussian Graph Construction 49

3.3 Methods . 49

3.3.1 Convolution on Graph . 50

3.3.2 Convolution on sub graph (Sampler function) 51

3.4 Case study/ experimentation on image domain 52

3.4.1 Architecture . 53

3.4.2 Experiments and Results . 53

3.4.2.1 Global Binary Adjacency matrix 56

3.4.2.2 Global Euclidean Adjacency matrix 56

3.4.2.3 Global Gaussian Adjacency matrix 57

3.4.2.4 Local Adjacency matrix . 57

3.4.2.5 Discussion . 57

3.5 Summary . 59

4 Segmentation in Irregular Domain Data 65

4.1 Introduction . 66

4.2 Methods . 67

4.2.1 Proposed network architecture . 68

4.2.2 Proposed method of utilizing Spectral based Graph-CNN 68

4.2.3 Proposed method of utilizing Spatial based Graph-CNN 71

4.3 Experimentation . 72

4.3.1 Generation of Hodgkin Lymphoma (Ground Truth) Segmentation . . . 72

4.3.2 Segmentation using Clustering Method 74

4.3.3 Segmentation using Deep Learning 75

4.3.4 Segmentation using Spectral Graph-CNN 76

4.3.5 Segmentation using Spatial Graph-CNN 77

4.4 Results . 78

4.5 Summary . 80

5 Cell Detection in Irregular Domain Data 81

5.1 Introduction . 82

5.2 Method . 83

5.2.1 Graph proposal (Gp-NN) . 85

5.2.2 Multi-label graph classification network 86

5.2.3 Classifier . 87

5.3 Experimentation . 88

5.3.1 Dataset . 88

5.3.2 Training and Inference . 88

5.4 Results . 91

5.5 Summary . 92

6 Nuclei Detection in Irregular Domain Data 93

6.1 Introduction . 94

6.2 Methods . 97

6.2.1 Detecting Nuclei with GCN . 97

6.2.2 Cascaded GCN . 98

6.3 Experimentation . 100

6.3.1 Dataset and Implementation . 100

6.3.2 Model Evaluation . 101

6.3.3 Comparison with other works . 102

6.4 Results . 103

6.5 Summary . 105

7 Conclusions and Future Work 107

7.1 Conclusion . 108

7.2 Future Work . 110

Bibliography 113

List of Tables

3.1 Comparative accuracy and hyperparameter description of single layer models. . . . 59

3.2 Comparative performance of the global graph models. 59

4.1 Pixel-based Accuracy of segmentation methods. 79

5.1 Precision quantitative results of cell detection. 89

5.2 Recall quantitative results of cell detection. 91

6.1 Comparative precision, recall and F1 score results of nuclei detection. 102

ix

List of Figures

2.1 Difference between deep learning and machine learning. 15

2.2 Biological Neuron: consisting of soma, dendrites, and axons. 17

2.3 Perceptron operation. 17

2.4 An overview of artificial neural network. 18

2.5 Convolution operation. 22

2.6 Pooling operation: Example of Max pool with 2×2 filters. 24

2.7 Pictorial representation of graph signal. 28

2.8 GCN Feature maps: 2D regular grid graph, Adjacency matrix, Laplacian matrix,

Image signal, Filtered coefficient, Filtered output 34

2.9 Convolution on graph operation. 37

2.10 Graph coarsening scheme SAG. 37

2.11 Graph coarsening scheme WAG . 38

3.1 Example of irregular spatial domain. 46

3.2 Graph labelling: The same graph can be labelled in two different ways. 47

3.3 Linear ordering labelled examples of graph construction. 48

3.4 GCN layer architecture uses for processing global graph construction methods. . . 54

3.5 Local Architecture: Single sampler layer architecture for classification. 55

3.6 Sampler Function: Local grid graphs, sized 5×5, encapsulate local structures. As

they shift horizontally and vertically, they convey distinct graph signals. Processed

via GCNConv and average pooling, each local graph, paired with its graph signal,

yields a single value specific to that graph. 55

3.7 Training performance of different graph construction methods. Metric Vs neigh-

bourhood distance . 60

3.8 Global Vs Local graph training curves. 61

x

3.9 All Global and Local Single sigma: Comparision with CNN, FCNN and GNN

based Global and Local models. Metric value has considered at epoch 100 with all

model distance 1. 61

3.10 Training curve of global graph models with same locality distance of 1 for all. . . . 61

3.11 Traninig curves for Single model Vs Many sigmas. 62

3.12 Training curve of single sigma Vs Many graph. 63

3.12 ALL Graph Diff Sigmas (continued from previous page) 64

4.1 GCNN architecture for spectral-based cell segmentation. 69

4.2 Spatial GCNN architecture for cell segmentation. 69

4.3 k-Means clustering results on histology images. 75

4.4 Visual segmentation results of FCN Fine tunning method. 76

4.5 Coarsening graph representation. 77

4.6 Confusion Matrices of segmentation methods. 78

4.7 Comparative visual results of CNN abd GCN based segmentation methods. 79

4.8 Cropped-in region to show off the localization and segmentation. 80

5.1 Training architecture and detection pipeline. 84

5.2 Pictorial representation of graph node translation. 87

5.3 Qualitative results from cell detection show ground truth and predicted bbox. . . . 89

5.4 Cell detection results-more examples of ground truth and predicted bbox. 90

5.5 Precision recall curve for cell detection. 91

6.1 graph convolution architecture for classification. 97

6.2 Cascade GCN pipeline for nuclei detection. 97

6.3 Comparative training curve of nuclei detection models. 103

6.4 Nuclei detection results on the histology images. 104

Chapter 1

Introduction

Contents
1.1 Motivations . 2

1.1.1 Graph Construction . 4

1.1.2 Medical Image Cell Segmentation 5

1.1.3 Medical Image Cell and Nuclei Detection 6

1.2 Overview . 6

1.3 Contributions . 7

1.3.1 List of publications resulting from the research conducted for this

thesis: . 8

1.4 Outline . 10

1

1. Introduction

1.1 Motivations

Deep learning methods [1] are becoming increasingly powerful in solving various difficult ar-

tificial intelligence tasks. An increase in computational power and an increasing rate of data

capture have resulted in considerable advancements in deep learning methodologies [2]. In

several computer vision image-related applications, including image classification [3], medi-

cal imaging [4], semantic segmentation [5], and object recognition [6–8], these deep learning

techniques have shown promising performance and provide a wide range of approaches to ex-

tract features from observable data. The selection of data representations (or features) and

the creation of the feature-extraction pipeline are key components in the development of the

deep learning technique for representation learning [9]. The usage of local filters in convo-

lutional layers that are trained, in contrast to conventional hand-crafted filters, led to strong

performance, due to the network’s ability to automatically determine what sort of features to

extract by learning the weights in these trainable filters, hence avoiding hand-crafted feature

extraction [10]. Deep learning approaches can learn hierarchical features without the need

to manually construct them, having multiple layers of neurons that are interconnected, each

layer learns progressively complicated features from the preceding layer’s output. The net-

work’s initial layers learn simple features such as edges and corners, whereas the deeper layers

learn more complex features such as shapes and objects. This provides deep learning models

with the advantage of learning high-level features with less human intervention than manually

constructed features.

One of the common characteristic behind these computer vision image tasks is that the data

can be represented by grid-like structures. This permits the usage of kernel-based techniques

like convolution and pooling in the form of the same local filters scanning every place on the

input. Regular convolutions require that the number of neighbours for each node be constant

and that these neighbours be ordered. These array-based data refer to regular domain data that

exist on a regular grid or in Euclidean space. Yet, in many real-world applications, such as so-

cial, citation, and biological networks, the data can be naturally represented as graphs [11] and

does not conform to this grid-like structure. However, applying these standard convolutional

procedures on generic graphs confronts two fundamental obstacles. The numbers of nearby

nodes generally differ for distinct nodes in a network, and there is no order information among

a node’s neighbours upon which we may organise them to guarantee the output is predictable.

Due to these restrictions, conventional deep learning techniques have some limitations when

used to analyse graph data directly. On the other hand, irregular domain refers to data that does

2

1.1. Motivations

not exist on a regular grid or in Euclidean space, where the connectivity between data points can

be represented as a graph. Many graph structures cannot be arbitrarily represented as an array,

with irregular ordering and relations between nodes. Convolutional Neural Networks (CNNs)

are the primary source of inspiration for Graph Neural Networks (GNNs) [1]. CNNs are well-

known for their ability to extract local features using convolutional layers. This idea has been

adapted by GNNs to perform localised feature extraction on graph-structured data. GNNs are

a relationship-based model that uses ‘message passing’ between graph nodes to capture graph

dependency; they are a deep neural network extension that can handle graphical information

representations. Various operations are developed to process data on the graph similar to the

CNNs operation, such as convolution, filtering, and Pooling [12]. Spectral convolution, spatial

convolution, and graph pooling [13] are some of the examples. These operations are developed

using spectral graph theory, an algebraic matrix, and a node’s neighbourhood aggregation cri-

teria. Developing such deep learning models to learn from graph data is an active research field

with challenges in processing computer vision tasks.

The overarching motivation of this thesis is to explore the usage of graphs in sampling data

and using that for segmentation and detection purposes, with studies in its application within

medical image analysis. For these computer vision tasks, we employ graph neural network

operators to build deep learning models. We also use graph-based techniques to learn localised

features on applications in irregular domains and generalise the deep learning model to spatial

feature representation learning for irregular domain topologies. We provide a generalising

deep learning model for learning local features from imaging data, as well as a novel sampling

strategy for feature learning, to examine the impact of parametrically specified graphs and their

influence on the model’s behaviour. We look at computer vision tasks like segmentation and

detection in the context of irregular graph data and employ graph representation of image-

based regular data to use irregular domain deep learning methods to address this. In this thesis,

even though we are using graph representations of image-based regular data to use irregular

domain methods such as GNNs, methods built may be capable of handling new irregular data

as input data is in the form of a graph, which has a generic nature of irregular data structure. We

provide application on a number of domains for the purpose of exploring graph spatial features,

including MNIST classification, medical image segmentation, and nuclei identification, and

compare them to CNN- and GNN-based approaches. These motivations can be broadly seen

in three different parts, as described below.

3

1. Introduction

1.1.1 Graph Construction

The recent growth in geometric and graph-based representation learning has highlighted the

crucial role of graph construction in feature extraction methods. By representing the underly-

ing domain structure, graphs depict the connectivity between nodes, enabling filters to capture

relationships and patterns within the data. Consequently, any modifications to the graph, such

as adding or removing edges, can impact the learned filters by altering the local context. The

topology of the graph, encompassing its structure and connectivity, significantly influences in-

formation propagation. Different graph topologies affect the filters’ receptive fields and their

ability to capture local or global patterns. A graph filter, a commonly used filter in spectral

graph convolution, relies on eigen decomposition to perform operations in the spectral domain.

Changes in the graph can modify the graph’s Laplacian matrix, which in turn alters the associ-

ated spectral characteristics and eigenvalues. These modifications affect the filters’ frequency

response and their ability to capture patterns of different scales and variations in the data. In

certain application, such as the multi-label feature classification task discussed in Chapter 5,

graph-based deep learning methods are utilised. This application involve different graphs with

different topologies. In order to overcome the challenge of translation invariance, which im-

pede filter learning, an effective index-based node ordering, is employed. Moreover, by closely

examining the impact of graph construction on the learning of filters, we gain valuable insights

into the performance of graph-based deep learning methods across various scenarios. This

analysis allows us to better understand how different approaches to graph construction influ-

ence the learning process and subsequently affect the overall performance of the models. By

considering this aspect, we can optimize graph-based deep learning techniques and enhance

their effectiveness in different application domains.

The current state-of-the-art methods in both spatial and spectral domains have made sig-

nificant progress in expanding the use of representation learning in various application areas.

These areas often possess underlying structures that do not conform to classical grid-based lay-

outs. Constructing a graph in such domains may involve interpreting the data and its inherent

structure. This variability in graph construction can have implications for the performance of

feature-mining methodologies and the features discovered. In this research study, we focus on

investigating how graph construction affects the behaviour of graph convolutional operations.

To explore this, a graph is parametrically constructed to represent a localised sampling oper-

ation on an underlying domain. Features are then extracted while assessing the effects of the

graph’s design on the model’s behaviour.

4

1.1. Motivations

1.1.2 Medical Image Cell Segmentation

Graph signal processing is a new subfield of deep learning that aims to handle a variety of

non-Euclidean domain challenges. Due to the limitations of clinical procedures and image

analysis, pathologists have trouble detecting diseases at an early stage. For more precise

disease diagnosis and early detection, automated segmentation can play a crucial role [14].

However, the effectiveness and precision of the system are contingent on how the model was

trained. Numerous techniques have been developed for the purpose of cell segmentation, and

these can roughly be categorised into traditional (also known as non-deep learning) and deep

learning methods [15]. Edward et al. [15] termed Otsu thresholding a traditional (i.e., non-

deep learning) method. The objective of Otsu’s thresholding method is to determine a suitable

threshold that minimises the sum of foreground and background spreads [16]. In contrast to

traditional method terms, Zhou et al. [17] included K-Means clustering-based methods and

image thresholding-based methods in hand-crafted feature-based methods for white blood cell

segmentation. Deep learning approaches have the advantage of a trained filter over traditional

or hand-crafted feature-based methods, and they have proven to achieve higher accuracy in

tasks such as image segmentation [18]. In addition, the recent development of deep-learning

algorithms has yielded encouraging outcomes, particularly for medical imaging. Due to the

complex underlying structure of the medical imaging data and the shortcomings of the training

data, medical image analysis has moved to more complex models and feature mining processes

such as U-Net [19].

By continuing the trend of improving deep learning models for medical image analysis with

convolutional neural networks and graph neural networks, it provides interesting motivation.

With this motivation, we want to address the research question of whether, by employing GNNs

models, the performance of medical image cell segmentation can be improved or not. Also, the

comparative performance of several hierarchical feature-learning deep learning architectures

using CNNs and Graph Convolutional networks (GCNs) operators is an intriguing research

topic, and overcoming the challenge of cell segmentation using a generalised model approach

provides an interesting motivation. We proposed two graph-based convolution methods for

cell segmentation to improve the analysis of immunostained slides. One method is inspired

by the U-Net architecture and builds spectral-based GCNs, and another is a simple three-layer

spatial-based GCNs.

5

1. Introduction

1.1.3 Medical Image Cell and Nuclei Detection

Similar to segmentation, object detection is also one of the areas that needs exploration us-

ing GNNs. Localization and object detection play a critical role in the analysis of medical

cell images. These tasks are essential for disease diagnosis, enabling the identification and

localization of specific objects or regions of interest. Pathologists have challenges in the early

detection of disease due to the limitations of clinical methods such as noisy imaging and ambi-

guity in the data. In this case, the detection of different objects in the cell image can help med-

ical examiners automate their clinical work. Medical practitioners can assess illness severity,

choose the best treatment options, and track the course of the disease by precisely identifying

abnormal cells, tumours, or blood cell counts. There are many methods developed in com-

puter vision for an object detection task in conventional convolutional neural networks such

as RCNN, fast-RCNN, faster-RCNN, YOLO, etc., but the shortcoming of using graph neural

networks requires attention in this regard. One of the great advantages of GNNs is that they

are not limited to Euclidean domain data and have the power of generalisation. The primary

representation of data to use in GNNs is graphs. Many computer vision tasks, including node-

level classification and graph-level classification, can be carried out using graph structure and

node information [20]. This gives motivation to work towards object detection using GNNs.

To address this research gap, we investigate on current CNNs method and build new strategies

that will perform object detection using GNNs with graph data as input. We use this strategy in

two different applications. One is the detection of CD4 and CD8 cells in Hodgkin lymphoma

microscopic immunostaining images by proposing a graph convolution-based region proposal

mechanism for object detection. We created a graph-based technique to extract candidate re-

gion proposals for the cell detection task. Second, nuclei detection in histopathology images

of cancerous tissue stained with standard hematoxylin and eosin stain by proposing simple

GNN-based classification models in cascade arrangement improves nuclei detection. Nuclei

detection in histopathology images of cancerous tissue stained with standard hematoxylin and

eosin stain is also a challenging task due to the complexity and diversity of cell data.

1.2 Overview

Considering the motivations presented in Section 1.1, the purpose of this work is to investigate

the use of graph-based domain deep learning methods in learning features on data sampled

from an underlying domain. We use graphs as a means to represents the explicit structure of an

6

1.3. Contributions

observation, and apply this to problems in the domain of medical image analysis; namely object

detection, segmentation, and localization. This focus is driven developing on recent strategies

of mining features in a data-driven manner seen in the CNN approaches, while generalising the

strategy further by using GCN/GCNN.

To achieve this aim, several objectives have been identified. Firstly, we will explore the

fundamentals of deep learning and graph neural networks. Secondly, we will develop a novel

sampling strategy for feature learning using parametrically specified graphs. Thirdly, we will

evaluate the performance of our proposed models against existing state-of-the-art methods for

medical image analysis tasks such as segmentation, detection and classification. Finally, we

will provide a generalizing deep learning model for learning local features from imaging data.

In Chapter 2, we provide background information about the fundamentals of neural networks

and graph neural networks. In Chapter 3, we will present the study of graph construction. Its

importance, impact and observe the behaviour on graph convolutional operator. In Chapter 4,

We explore the computer vision segmentation task and propose a method for cell segmentation

using spatial- and spectral-based graph convolution and in Chapter 5, we address the challenge

of object detection in irregular domain utilizes a graph convolution network for cell detection

and in Chapter 6, nuclei detection problem by cascaded arrangement of graph convolution

network based classification architecture.

1.3 Contributions

The main contributions of this work can be seen as follows:

• Impact of Graph Construction on Localised Feature Mining

Exploring the impact of graph construction on the behaviour of the graph convolu-

tional operations and analysing the impact of the graph’s construction on the model’s

behaviour. Creating method to utilise a parametrically defined graph to represent a

localised sampling operation on an underlying domain. In this study, we proposed

weighted graph construction methods and subgraph sampling approach. We found sub-

graph sampling approach learn local feature more prominent with stability.

• Graph Convolution Networks for Cell Segmentation

As motivation discussed in section 1.1.2, we proposed two graph-based convolution

methods for cell segmentation to improve analysis of immunostained slides. First is

7

1. Introduction

the spectral-based graph convolutional network, where the spectral-based graph convo-

lution operator is combined with graph pooling in U-Net style. The proposed approach is

able to learn features in an upsampling and downsampling manner, which is inspired by

the CNNs-based approach with the added advantage of generalization on non-Euclidean

domain data. The second spatially-based graph convolutional network method doesn’t

need graph pooling; with its simple architecture, it outperforms spectral-based method.

• Graph Proposal Neural Networks for Cell Detection

In order to handle the difficulty of spatial feature extraction in the irregular domain

and address the graph-based deep learning approach for cell recognition, we present

a graph convolution-based region proposal mechanism in non-Euclidean domain data.

The method of extracting positive object proposals is presented by introducing a graph

proposal neural network algorithm and multi-label classification, which is analogous to

the region proposal in region-based convolutional neural networks (R-CNN).

• Cascaded Graph Convolution Approach for Nuclei Detection

Proposed a graph convolution-based classification model for nuclei classification and

applied such models in a cascaded architecture for nuclei detection. The two-stage ar-

chitecture focused on maintaining high precision and recall value. In the initial stage of

soft negative elimination, a large number of background window patches are removed,

while remaining positive samples are further eliminated by the second stage of hard neg-

ative elimination.

1.3.1 List of publications resulting from the research conducted for this thesis:

1. S. Bahade, M. Edwards, and X. Xie, Graph Convolutional Neural Network for segmen-

tation of immunostained Hodgkin Lymphoma histology images, Medical Image Under-

standing and Analysis Conference (MIUA), 2019. [21]

2. S. Bahade, M. Edwards, and X. Xie, Graph convolution networks for cell segmentation,

International Conference on Pattern Recognition Applications and Methods (ICPRAM),

2021. [22]

3. S. Bahade, M. Edwards, and X. Xie, Cascaded Graph Convolution Approach for Nu-

clei Detection in histopathology images, International Conference on Video and Image

Processing, (ICVIP), 2022. [23]

8

1.3. Contributions

4. S. Bahade, M. Edwards, and X. Xie, Graph Proposal Neural Networks for Cell Detection

Immunostained Hodgkin Lymphoma Histology Images, IEEE 20th International Sym-

posium on Biomedical Imaging, (ISBI) 2023. [24]

9

1. Introduction

1.4 Outline

The remaining chapters of this work are outlined as follows:

Chapter 2 - Background:

The necessary background information surrounding neural networks and deep learning,

as well as an overview of graph neural network theory required in understanding the

formation of deep learning operations on graphs with the help of spectral graph theory

and graph signal processing.

Chapter 3 - Graph Construction:

This chapter involves the study of the use of graph and their different methods of con-

struction to understand the impact on graph convolution operator. We explore the con-

struction of a special sampler function that facilitates convolution on a local graph. Addi-

tionally, we conduct a comparitive analysis of different deep learning methods, including

both CNN-based and graph-based approaches while considering changes in node con-

nectivity.

Chapter 4 - Segmentation:

In this chapter, we utilize spectral and spatial-based graph convolution operators to

perform segmentation tasks on histology images. We define encoder-decoder architec-

ture using a spectral-based graph convolution operator and simple architecture using a

spatial-based graph convolution operator. Evaluation and results are given in comparison

with state-of-the-art CNNs method.

Chapter 5 - Cell Detection:

Presents a method for cell detection in histology images using a strategy for object detec-

tion using graph data. There are three key modules in our system for detecting objects.

The first creates a subgraph with objects and background graph proposals using a tech-

nique for graph proposals. The second module is a graph convolution network that assists

in extracting the features from the graph proposal, and the third module is a classification

network where graph features are classified into relevant labels.

Chapter 6 - Nucleai Detection:

10

1.4. Outline

In this chapter, we conducted a thorough investigation of existing methods for classifica-

tion and regression approaches. Specifically, we focused on the task of nuclei detection

in routine colon cancer histology images. Building upon the knowledge gained from the

previous methods, we proposed a novel two-stage cascade architecture approach.

Chapter 7 - Conclusion and Future Work:

A conclusion of the works presented in previous chapters, noting opportunities and

prospective directions for the future.

11

Chapter 2

Fundamentals of Deep Learning and
GNNs

Contents
2.1 Introduction . 14

2.2 Fundamentals of Deep Learning . 15

2.2.1 Neural Network . 15

2.2.2 Convolution Neural Network . 21

2.3 Deep Learning in Irregular Domain . 24

2.3.1 Foundation of Graph Signal Processing 25

2.3.2 Graph Neural Networks . 31

2.4 Medical Image Analysis . 38

2.5 Summary . 40

13

2. Fundamentals of Deep Learning and GNNs

2.1 Introduction

There are many definitions for machine learning; in 1959, Samuel defined the field of study that

gives computers the ability to learn without being explicitly programmed [25]. Another defini-

tion was presented by Tom Mitchell in 1998, who stated that a computer programme is said to

learn from experience E with regard to some task T and some performance P, as measured by

E [26]. For instance, classifying emails as spam or not spam. As the field progressed, the term

‘machine learning’ was created [27], and algorithms for making decisions or predictions based

on data were developed [28, 29]. Machine learning algorithms can be broadly categorised into

two fundamental types: supervised learning and unsupervised learning. Alongside these, there

are other approaches, such as reinforcement learning and semi-supervised learning. Among

these, supervised learning holds immense importance, as it involves building a model or func-

tion using labelled training data. Each training example consists of an input sample and a

corresponding label output. The input sample comprises features, while the label output repre-

sents the desired or true output value, commonly referred to as the ground truth. The training

process entails determining the function or model that best fits the data. Once the function

or model is inferred, it can be used to predict or map additional samples to their respective

targets. This process is commonly known as testing or prediction. In an ideal scenario, the al-

gorithm accurately assigns class labels or regression values to unseen samples, demonstrating

the effectiveness of the learned model.

There are several algorithms for supervised machine learning that are used in a variety of

contexts. Linear regression and logistic regression are the two fundamental supervised learning

methods. Linear regression is utilised to model the relationship between input variables and

continuous output values. Consider a scenario for predicting house prices where the size of

the house is used as the input feature and the corresponding price is the label. By training the

model using this data, a straight-line approximation is generated, enabling the prediction of

house prices for new inputs [30]. In the case of logistic regression, it is used to determine or

forecast the likelihood of a binary (yes/no) event occurring, where the output variable can take

only two possible values [31]. This technique finds application in various scenarios, such as

identifying spam emails, detecting fraudulent transactions, or determining the malignancy of

a tumor, etc. Moreover, logistic regression can be extended to tackle multi-class classification

problems, where the output variable can take more than two possible values.

An artificial neural network can be seen as an extension of the logistic regression model,

where more layers of feature interactions are added. These extra layers make it possible to

14

2.2. Fundamentals of Deep Learning

learn more complex, non-linear rules for making decisions. It forms the backbone of deep

learning networks. When comparing the classification tasks performed by traditional machine

learning and deep learning, it is clear that deep learning is much better because it can automate

the learning of feature sets for multiple tasks, whereas conventional machine learning requires

several sequential steps, such as pre-processing, feature extraction, smart feature selection,

learning, and classification [32, 33]. Deep Learning enables learning and classification to be

achieved in a single shot, as shown in Figure 2.1 [34].

Figure 2.1: Difference between deep learning and machine learning. Deep learning automate the tasks
such as preprocessing, feature extraction and feature selection.

This chapter gives the background information needed to understand this thesis. In Sec-

tion 2.2, we first explain the basic idea behind the deep learning techniques used in the thesis,

such as single unit biological neuron, neural networks, and convolutional neural networks.

In Section 2.3, we look at the background of graph signal processing and the tools required

for convolution operation in the irregular domain, for example, graph filters, graph Laplacian,

graph convolutional networks, etc. In Section 2.4, we present some reviews of medical image

analysis.

2.2 Fundamentals of Deep Learning

2.2.1 Neural Network

Neural networks (NNs) draw inspiration from the functioning of biological neurons, sparked

by experiments on the cerebral cortex, a region of the brain capable of adaptive learning. In

15

2. Fundamentals of Deep Learning and GNNs

biological neurons, the central cell body, or soma, is connected to branched structures called

dendrites and axons. Electrical impulses, carrying information from other neurons, enter the

dendrites through synapses, the connection points. The dendrites transmit this information

to the soma for processing, and the resulting output signal, a sequence of impulses, travels

to the synapses of other neurons via the axon. By connecting neurons together, a network is

formed, allowing for complex information processing and communication. Figure 2.2 depicts

the structure of a single biological neuron [35].

In the context of artificial neural networks, researchers such as Eluyode and Akomo-

lafe [36] have undertaken studies that involve a comprehensive comparison between the be-

haviours of biological neural networks and their artificial counterparts. This cross-disciplinary

exploration has successfully merged insights from biological systems with artificial learning,

paving the way for significant advancements in machine learning and computational intelli-

gence.

An artificial neuron receives information from another neuron, similar to a biological neu-

ron. Weights have the ability to modify this data, which is then transmitted to the artificial

neuron, activating it. To calculate the output of each neuron, the product of each input value

and its corresponding weights is computed. This operation can be seen in Figure 2.3. Every

neuron establishes connections with all other neurons, collectively forming a neural network.

An artificial neural network with three distinct layers: the input layer, the hidden layer, and the

output layer, is shown in Figure 2.4.

The perceptron, explored in depth by pioneers [37,38], was devised based on insights from

the functioning of biological neural networks. From this foundational concept of the simplest

neural network, further advancements led to the development of deep learning networks. A

notable architectural model that has become popular is the feed-forward neural network.

2.2.1.1 Feedforward Neural Network

A feedforward neural network (FNN) is an artificial neural network with forward direction

connections between nodes. It was the first and simplest artificial neural network to be cre-

ated [39]. In this network, the information moves in only one direction from the input layer to

output layer [40]. The perceptron, a feedforward neural network with no hidden units, is the

simplest form of feedforward neural network. Hence, a perceptron consists of merely an input

layer and an output layer; the output units are computed directly from the sum of their weights

multiplied by their corresponding input units; a learned bias is added; and the result is sent to

16

2.2. Fundamentals of Deep Learning

Figure 2.2: Biological neuron, consisting of soma, dendrites, and axons.

x
1

x
n

b

Σ f(z)z

x
2

x
n-1

w
n

w
2

w
1

w
n-1

Inputs Weighted Sum Activation

Figure 2.3: Artificial neuron / Perceptron operation.

17

2. Fundamentals of Deep Learning and GNNs

an activation function to determine the output. [38, 41, 42]. This enables a single perceptron to

transfer input characteristics to a new representation. All of these operations are illustrated in

Figure 2.3 and mathematically it can be described as

Input Layer Hidden Layer Output Layer

Figure 2.4: An overview of artificial neural network. Hidden layer consist of perceptrons from Fig-
ure 2.3, where each has its own trainable weights and bias as well as non-linear activation function.

z = b+
n

∑
i=1

XiWi (2.1)

where X = (X1, ...,Xn) is an given input vector, z is the linear weighted sum, b is the learned

perceptron’s bias, which is utilised to move the new feature space before activation, and Wi is

the learnt weight for input Xi. For the perceptron’s output, z can then be sent through an acti-

vation function f (z). The training of a single layer perceptron involves adjusting the weights

18

2.2. Fundamentals of Deep Learning

of the connections between the input and output layers to minimize the error between the pre-

dicted output and the actual output. During supervised learning, a perceptron is presented with

a set of input-output pairs, or training examples, and its weights are adjusted to minimise the

error on the training data. With the new weights, this process is carried out again until con-

vergence. To solve complex problems involving linear classification and regression, a group of

perceptrons can be integrated into a "single-layer perceptron" for more complicated or higher

dimensional data. An individual neuron can then be included into a Multilayer Perceptron

(MLP) network, in which the output of one neuron serves as the input to the next neuron in the

subsequent network layer. This concept generates a sequential network with numerous layers,

each of which learns weightings based on the outputs of the previous layer, resulting in the

capacity to model progressively complex function spaces. A network’s depth is denoted by the

number of layers it contains, and a layer’s width is the number of neurons it contains. Using

this principle, we can generalise Equation 2.1 as follows:

z j
l+1 = b j

l+1 +
n

∑
i=1

Xi
lW l

i j (2.2)

where b j
l+1 denoted the corresponding bias for the jth neuron in the l +1th layer, Xi

l denotes

the input value of a perceptron i in the layer l. W l
i j is the connecting weight between ith neuron

from the previous layer l with jth neuron in the l +1th layer. Each layer embeds the function

space of the previous layer to a new representation, adding levels of abstraction and introducing

non-linearity, allowing the MLP to obtain more accurate representations of the input data [32].

When dealing with MLPs, achieving the optimal ratio between the number of perceptrons in

a layer and the number of layers becomes crucial. Larger perceptron counts enable the layer

to more accurately capture the input characteristics but have little effect on generalisation as

a whole due to the possibility of overfitting. While deeper networks can boost generalisa-

tion with varying amounts of feature representations, too many layers might cause input data

overfitting [43, 44]. This delicate balance to achieve generalisation without overfitting makes

architectural design (determining perceptron and layer counts, activation functions, etc.) a

subject of several research articles [45–48].

2.2.1.2 Backpropagation

Backpropogation is employed to optimise weights through gradient computation. This back-

propogation algorithm [49] is the foundation of neural network learning, where parameters are

learned to obtain the minimal value of the cost function by utilising the back-propagation of

19

2. Fundamentals of Deep Learning and GNNs

errors to improve the parameters. In supervised learning, inputs are forwarded to the network

and output labels are compared to the expected result [50]. To calculate the loss and optimize

the network weight, the output value must be passed backward through the network, and the

difference between the two values must be determined [51]. If the rate of change of the data

between perceptrons in different layers was monitored, then each weight could be changed

based on that rate. The weight update would need to be minimal and incremental such that

each update does not drastically alter the model. A cost function is built to update the weights

by passing data through the network to produce projected outputs, which are then compared

to the desired outputs. Binary cross-entropy is a prominent example of a loss function used in

classification applications

L =−ylogp+(1− y)log(1− p) (2.3)

where y is the anticipated outcome and p is the predicted output of the model given the input

vector x. To update individual weights, the loss, L, can then be propagated backwards through

the network using an optimization strategy such as gradient descent [52, 53]. We calculate the

partial derivative with regard to the input and weights for each perceptron:

∆wi j =−α
∂L

∂wi j
(2.4)

where α is the learning rate, a term used to limit weight updates at each step, and wi j is the

weight between two perceptrons i and j in adjacent layers. Then each weight is updated by

including the partial derivative, wi j = wi j +∆wi j. The impact of specific neuron exerts on the

network can also be determined by computing the partial derivative relative to the neuron bias,

∂E/∂b. Depending on the task at hand, several objective loss functions can be utilised to opti-

mise the network training scheme. There are numerous alternatives for these jobs in the MLP

algorithm. The implementation of the task requires careful consideration of the appropriate

optimiser and loss function [54]. With increasing network depth, back-propagation becomes

less effective. As errors are back-propagated through each network layer, the derivatives for

each neuron are obtained, and the gradients identified for use in stochastic gradient descent

updates degrade rapidly [55]. This is because the activation function chosen determines the

non-linear transformation performed to the inputs and resulting in the output of each neuron

in the network. Different activation functions have different properties that can affect how

the network learns and how well it can generalize to new data. One factor that can affect the

performance of the network is the shape of the activation function. For example, the sigmoid

20

2.2. Fundamentals of Deep Learning

function is S-shaped and saturates at the extreme values, which can make it difficult to train

deep networks because the gradients can become very small. In contrast, the ReLU (Rectified

Linear Unit) function is piecewise linear and does not saturate, which can make it easier to train

deep networks because the gradients remain large [56]. However, the ReLU function can also

suffer from the "dying ReLU" problem [57], where some neurons become stuck at zero and

stop learning. Leaky ReLUs allow a small, positive gradient when the unit is not active [58].

Some activation functions, such as the sigmoid and tanh functions, are more suited for binary

classification problems, while others, such as the softmax function, are more suited for multi-

class classification problems. Rectified Linear Unit (ReLU) activation has overtaken all other

activation functions (such as sigmoid and Tanh) as the most popular activation function because

it facilitates neural network training and provides a stable derivative for all positive values [59].

Along with activation, regularization, learning rate and different settings of optimization algo-

rithms can lead to the overall generalization and performance of the model [9]. Regularization

has been highly successful in enhancing the generalisation of deep network models [60, 61],

such as batch normalisation [62] and dropout layers [63]; whereas optimization algorithms

are equally important for faster convergence [64]. Some of the most used optimization algo-

rithms for neural netwrok training are: stochastic gradient descent [65]. Mini-batch gradient

descent [66], Adagrad [67], Adadelta [68], and Adam [69].

2.2.2 Convolution Neural Network

Convolutional Neural Networks (CNNs) are a specific kind of feedforward neural network. It

became widely used for many computer vision applications, such as segmentation, object de-

tection, and image classification. The invention of the LeNet architecture by Yann LeCun in

the 1990s [1] was one of the early advances in the field of CNNs. This design employed convo-

lutional layers to extract local features and pooling layers to minimise the dimension of feature

maps. The input and output of each CNNs network stage are referred to as feature maps [70].

CNNs are presented as a type of neural network designed for processing grid-structured data,

such as time-series (1-D grid) and image data (2-D grid of pixels). CNNs contain convolutional

layers for spatially-related feature extraction, so instead of matrix multiplication, convolutional

layers apply a mathematical operation called convolution that slides a locally connected filter

with trainable weights through parts of the input to learn localised information from various

regions of the input. This method effectively decreases the amount of trainable weights and en-

ables CNNs to use multidimensional arrays of standard data (e.g. images) as input rather than

21

2. Fundamentals of Deep Learning and GNNs

an arbitrary feature vector. The LeNet architecture was successfully applied to handwriting

recognition tasks and contributed to the feasibility of CNNs in computer vision applications.

In recent years, a great deal of study has focused on improving the efficiency of CNNs. Due

to the widespread development of deeper architectures, such as the VGG architecture [71] and

the ResNet architecture [44], and a combination of convolutional layers and fully connected

layers, it is now possible to construct extremely deep networks that can learn more complex

image representations. Using pretraining and transfer learning enables huge datasets (such as

ImageNet) to increase the network’s performance on a new task and minimise the quantity of

training data required. The structure of a typical CNNs includes convolutional layers, pooling

layers [72], and several fully linked layers. It is one of the most studied deep learning models

and is frequently employed in computer vision-related applications [3,43,71]. The convolution

layer and the pooling layer, which are both often used in the fundamental development of the

CNNs are shown in Figure 2.5.

0 0

0

0

0

00

2

0-10

0

0 0

2

-1

-1

-1

-2-1

-1

-1

-2

0

1

444

-1 -2

4 1-1-4 -2 0

 0 1 2

0 2 2 -1 -2 1

 0 -2 -5

2

Convolution Pooling

Figure 2.5: Convolution and Pooling operation: feature map value "-2" is obtain by convolving kernel
over first 3×3 position of the image.

2.2.2.1 Convolutional Layer

The convolutional layer [1] is the most essential component of CNNs. It is comprised of con-

volutional filters known as kernels. These filters are convolved with the input image, which

is represented as N-dimensional matrix, to form the output feature map. The definition of a

kernel is a grid of discrete numbers or values. Each value is referred to as a kernel weight. At

22

2.2. Fundamentals of Deep Learning

the beginning of the CNNs training procedure, random numbers are assigned to serve as the

kernel’s weights and there are several techniques for initialising of that. As seen in Figure 2.5,

each kernel executes a convolution operation across the input spatial domain, generating an

output feature map that depicts the filter’s responses at each spatial position of the input. To

obtain a feature map, a kernel of size 3× 3 is applied to an image striding in the height and

width directions over an image of size 10× 10. Similar to conventional neural networks, for-

ward and back-propagation methods are used to train CNNs and estimate their parameters. A

gradient-based optimization technique is used to minimise the loss function and update each

filter weight parameter. At each training period, these weights are modified; hence, the kernel

learns to extract significant features [34]. Filters in initial layers of a network learn low-level

characteristics such as edges, curves, and corners, but filters in subsequent levels learn more

complicated ideas such as parts and objects [73]. This hierarchical structure is common in

image processing, which explains why CNNs function well for image processing without the

requirement for preprocessing procedures such as hand-crafted features employed by conven-

tional image processing techniques.

2.2.2.2 Pooling Layer

Pooling is performed to the feature map in order to minimise dimension and reduce the size

of the input representation. Pooling is often performed after a series of convolutional layers,

and consists of dividing the feature map into smaller parts and computing a summary statistic

for each region. The max pooling process is depicted in Figures 2.5 and 2.6 [74]. Receptive

fields are moved across input maps during the pooling procedure, which reduces the signal in

each receptive field to a single pooled representation on the output feature map. The purpose of

the pooling layer of a CNNs is to lower the number of trainable parameters, the network’s total

computation time, and to ensure translation invariance [75]. Over the years, several methods of

pooling have been developed. Average and maximum pooling techniques are often used [76].

In addition to these common pooling procedures, there are other more specialised pooling

operations that have been designed for specific application, that is spatial pyramid pooling

(SPP) [77] which divides the feature map into many areas of varying sizes and produces a

summary statistic for each region. SPP has been demonstrated to be successful for object

detection tasks that require the network to locate objects at several scales. A global average

pooling can be used as a replacement for CNN’s fully connected layer, with the objective of

producing one feature map for each associated classification problem category [78].

23

2. Fundamentals of Deep Learning and GNNs

2. Pooling Layer

Spatial pooling is applied over feature map to reduce dimension and makes
input representation smaller which helps to control overfitting.

Figure 9: Pooling operation,* Retrieved from [8]

3. Fully Connected NN

The output of the pooling layer act as input to the fully connected layer. This
fully connected layer is used to classify input into different classes

4. Output Layer

This layer is used to show the possible outputs.

1.4 Irregular Spatial Domain

1.4.1 Irregular domain

Irregular domain is such domain where it does not follow the regular domain prop-
erties and whose distance can not be measure by euclidean distance. It belongs to
Non-Euclidean domain such as Social network, weather station network, telecommuni-
cation network, neural brain network. it is difficult to extract meaningful information
for real application from this network using regular properties. The key concept is
that all these irregular data can be represented in the form of graph and to learn
these irregular data domain, the study of two fields the spectral graph theory and
discrete signal processing on graph is essential.

Such problems can be solved with the help of Jordan Normal Form, minimal and
characteristic polynomial as shown below.

10

Figure 2.6: Pooling operation: Example of Max pool with 2×2 filters.

2.3 Deep Learning in Irregular Domain

An irregular domain is a domain that does not comply with the properties of regular domains

and whose distance cannot be measured using Euclidean distance. Deep learning in irregular

domains refers to the application of deep learning techniques to data that do not conform to

the regular grid-like structures typically encountered in Euclidean space. In many real-world

scenarios, data may be organised in irregular or non-Euclidean domains, such as graphs. These

domains lack the regularity and fixed neighbourhood structure found in traditional grid-based

data, making them more challenging to process using conventional deep learning approaches.

It is worth noting that the majority of deep learning theories and techniques have primarily

focused on comprehending regular Euclidean data. The notion of striding a regular grid kernel

across an input feature space does not work well in a domain where the spatial connection

between points in an input feature map may not be regular. An attempt has been made to in-

corporate the irregular domain into a regular spatial grid. Such methods aim to use traditional

CNN operators and architectures for representation learning [59, 79–83]. These strategies rely

on the process of transformation between two different domains. While using such approaches,

spatial information may be completely disregarded, and ordinary neural networks can be used

to train non-linear mappings on input data with no intrinsic spatial relationship [84]. The al-

ternative is to embed the input space into a conventional Cartesian grid, such as an image, and

24

2.3. Deep Learning in Irregular Domain

utilise the standard CNN operators that are optimised for such a domain. The second method is

gaining popularity due to performance improvements observed in the image processing com-

munity [79, 80, 85]. However, by ignoring spatial information available in the input domain,

we may miss an underlying relationship between inputs, hence restricting the performance

of feature representation in such environments. In contrast, by establishing a regular spatial

topology onto which we project an input domain, we may make incorrect assumptions about

the relationships between specific input characteristics.

In order to overcome these obstacles and gain more insight, it will be highly beneficial

to perform filtering operations directly on the non-Euclidean domain. To handle such data,

researchers have developed specialised deep learning methods that leverage graph-based and

geometric representational learning techniques. Graph Neural Networks (GNNs) and other

graph-based models have emerged as powerful tools for processing irregular data with com-

plex relationships and dependencies between entities. GNNs extend the concept of convolu-

tional neural networks to graph data, allowing the propagation of information through graph

edges and capturing spatial dependencies among graph nodes. It attempts to provide localised

filtering operations equal to those of CNNs by using the graph as an input feature space.

By embracing deep learning in irregular domains, researchers and practitioners can effec-

tively tackle a wide range of problems in computer vision, natural language processing, social

network analysis, and other domains where data naturally exists in non-Euclidean structures.

This expansion of deep learning techniques to irregular domains opens up new opportunities

for solving complex real-world challenges and advancing the capabilities of deep learning in

diverse applications. Specifically, to tackle computer vision problems using irregular domain

methods such as GNNs, there is a need to use graph representations of image-based regular

data, as most computer vision tasks work on image data. To understand graph-based represen-

tational learning in this domain of irregular data, it is necessary to study spectral graph theory

and graph signal processing, which we discussed in the next sections.

2.3.1 Foundation of Graph Signal Processing

Graph Signal Processing (GSP) is a framework for processing and evaluating data represented

as signals on graphs or networks. In GSP, signals are associated with the vertices or edges of

a graph, and the graph structure is utilised to define signal relationships. GSP attempts to ex-

tend classical signal processing methods, which are designed for data in Euclidean domains, to

graph-based signals. Concepts from graph signal processing including spectral decomposition,

25

2. Fundamentals of Deep Learning and GNNs

spectrum, and Fourier transform are closely related to the Jordan normal form of adjacency

matrix. To create tools for graph signal processing, Sandryhaila et al. [86] combine compu-

tational analysis with spectral and algebraic graph theory. Some of these are discussed in the

sections below.

2.3.1.1 Spectral Graph theory

The spectral graph theory [87] provides a mathematical framework for analysing the properties

of graphs and their associated signals. The eigenvalues and eigenvectors of the graph Laplacian

matrix may be utilised to examine the characteristics of a graph, which is one of the central

concepts of spectral graph theory. The Laplacian matrix encapsulates the relationships between

the vertices of a graph as a symmetric matrix, and its eigenvalues and eigenvectors can be used

to define the graph’s spectral decomposition. Some of the main characteristics that aid in the

formation of graph signal processing are listed below.

2.3.1.2 Adjacency Matrix

Let G(V, E) be a graph containing V vertices and E edges. If there is an edge between two

vertices u and v, the adjacency matrix of the graph may be expressed as 1. The adjacency can

be expressed mathematically by

A(u,v) =

1, i f (u,v) ∈ E,

0, otherwise,

2.3.1.3 Diagonal Matrix/Degree Matrix

It is a matrix where all diagonal elements are non-zero and all non-diagonal elements are zero.

When considering the graph, it shows the degree of each node. Mathematically, it represents

the following:

Di, j =

deg(vi), i f i = j,

0, otherwise,

2.3.1.4 Laplacian Matrix

The Laplacian matrix describes the structure of a graph. It is a square matrix with a size equal

to the number of nodes in the graph. The diagonal elements are equal to the degree of each

26

2.3. Deep Learning in Irregular Domain

node, which is the number of edges incident to the node. The off-diagonal elements are equal

to -1 if there is an edge between two nodes and 0 otherwise. Mathematically it can be defines

as below:

L(u,v) =

dv, i f u = v,

−1, i f u and v are adjacent,

0, otherwise,

The Laplacian matrix is useful for understanding the structure of a graph because of a

variety of significant properties. It is a positive semi-definite matrix [88], which indicates that

all of its eigenvalues are positive. The smallest eigenvalue of the Laplacian matrix is always

zero, and its corresponding eigenvector is composed entirely of ones [89]. The eigenvalues

and eigenvectors of the Laplacian matrix can be used to build a spectral decomposition of the

graph, which can be applied to clustering, community detection, and dimensionality reduction,

among other applications. The definition of the unnormalized graph Laplacian matrix [90, 91]

is

L = D−W

where D and W are the weight and diagonal matrix, respectively. Whereas normalised graph

Laplacian matrix as

L = D−1/2LD−1/2 (2.5)

Furthermore, the Laplacian matrix is utilised to operate on graph-structured data, such as graph

neural networks and graph convolutional networks. These methods utilize the Laplacian matrix

to create graph filters, which are used to process graph signals (i.e., the data associated with

each node) in a manner that takes the structure of the graph into account. The spectrum features

of the Laplacian matrix are also employed to create a Fourier transform for graph signals [12,

92], which can be used to study the frequency content of graph signals.

2.3.1.5 Graph Signals

A graph signal is a signal defined on the vertices or edges of a graph. In other words, it is a

function that maps each vertex or edge of a graph to a scalar value, vector, or matrix. The data

on the graph can be represented as a collection of samples, and one sample is at each vertex.

These samples are referred to as graph signals. It can represent various types of data, such as

social networks, brain networks, traffic networks, sensor networks, and many more.

27

2. Fundamentals of Deep Learning and GNNs

1.5.6 Graph Signals

The data on the graph can be represented as a collection of samples and one sample
is at one vertex. These samples are referred to as graph signals [10]. Examples
like epidemiological data, census data and brain network data can be found in many
applications.

Figure 10: Graph Signal, * Retrieved from [10]

An example of graph signal is shown visually in above figure. Red points represent
a vertices and blue lines over each vertex is signal value at that vertices. It can be
represented as a set of vectors,

S = s : s = (s0, ..., sN−1)
T , snεC (18)

here each co-efficient sn corresponds to node. This is called a graph signal.

1.5.7 Graph Signals Processing

The transition from classical signal processing to graph signal processing is done
through graph theory [12]. Processing on graph signal establish through this spectral
graph theory and used to extract some meaningful information. Some applications
of signal processing on a graph to data processing is a Linear prediction, Signal com-
pression, Data classification and customer behaviour prediction [9].

1. Graph Filters

[1][14]introduce a concept of graph filters and discuss properties of that includ-
ing linearity, shift-invariance and invertibility. Like DSP, graph filter processed

14

Figure 2.7: A random positive graph signal on the Petersen graph’s vertices. Each blue bar’s height
reflects the signal value at the vertex color red from where the bar originates.

The visual representation of a graph signal is depicted in Figure 2.7 [12]. Each red dot

represents a vertex, whereas each blue line above a vertex indicates the signal value at that

vertex. It can be represented by a collection of vectors. While analysing real-world application

data such as histology high-dimensional images, each pixel location is regarded as a node on

a graph and each pixel’s values are a vector. For example, grayscale images contain a single

value, while RGB images contain three values of pixel that form the colour of that location.

2.3.1.6 Graph Signals Processing

Graph signal processing (GSP) serves as an extension of conventional discrete signal process-

ing [93], allowing the application of signal processing techniques to graphs. With graphs,

complex and irregular data, along with their interactions, can be effectively managed. This

opens up possibilities for filtering, sampling, denoising, smoothing, modelling, and gaining in-

sights into the structure of irregular data, inspired by principles from digital signal processing

(DSP). A key concept linking DSP and GSP lies in the notion of shift, where in GSP, signals

are processed at graph nodes, akin to how time signals are handled in DSP [12]. Here, applying

a shift in GSP involves multiplying a signal vector by a filter matrix. Graph theory facilitates

the transition from classical signal processing to GSP [87], while spectral graph theory comes

into play to extract valuable information from signals and graphs. Such a framework finds

diverse applications in data processing, including linear prediction, signal compression, data

categorization, and consumer behaviour prediction [94]. Within the realm of GSP, several no-

28

2.3. Deep Learning in Irregular Domain

table tools have been developed, further enhancing its capabilities and expanding its potential

for various domains. Some of the notable tools are:

Graph Filters: A graph filter is a linear signal processing procedure applicable to graph

signals. Sandryhaila et al. [86, 95] present the notion of graph filters and analyse its features,

such as linearity, shift-invariance, and invertibility. Similar to DSP, graph filter processes graph

signals and generates output signals. Graph shift is the core concept of graph filter. Every

matrix for input that transfers to output corresponds to a graph filter that satisfies the demands

of linearity and shift invariance when given in matrix-vector multiplication form. Given a

graph G = (V,A), each signal coefficient sn on every node vn can be represented by the degree

of their neighbouring relations, which can be mathematically defined,

s̃n =
N−1

∑
m=0

An,msm⇐⇒ s̃n = As

where n is the number of nodes over m dimensions and s represents the signal. A graph filter

is a linear operator that operates on a graph’s adjacency matrix and a graph signal to generate

a new output graph signal. The filter coefficients determine the filter’s frequency response. In

example, any matrix H ∈CNxN that produces another graph signal s̃ = Hs given an input signal

s ∈ S corresponds to a graph filter [86]. There are a variety of graph filters, such as spectral

filters, spatial filters, and wavelet filters. Based on the graph Fourier transform and operating

in the spectral domain, spectral filters can be built to target specific frequencies or frequency

ranges. Spatial filters are based on the local connectivity of the graph and operate in the vertex

domain. Wavelet filters work in both the spectral and vertex domains and are based on wavelet

transformations.

Graph Fourier Transform (GFT): is a tool for the transformation of graph signals from

the vertex domain to the spectral domain. In classical signal processing, the Fourier transform

translates signals from the time domain to the frequency domain. It provides a framework for

discrete signal processing to handle and analyse complicated irregular data. Sandryhaila et.

al. proposed discrete signal processing on the graph for the representation, processing, and

analysis of graph-represented structured datasets [96]. The Fourier transform for graph signals

is related to the generalized eigenvector of the graph’s adjacency matrices. If a graph signal is

sparsely represented in the spectral domain, that is, if its frequency content is dominated by a

few frequencies, then it can be approximated effectively using a few spectrum coefficients [94].

29

2. Fundamentals of Deep Learning and GNNs

The GFT is described in terms of the eigenvectors and eigenvalues of the graph Laplacian

matrix, which represents the graph’s local connectivity. The real and symmetric nature of the

Laplacian matrix ensures that its eigenvectors form an orthonormal basis. The eigenvalues

indicate the graph signals’ frequencies, while the eigenvectors represent the spectral domain’s

basis functions. Mathematically graph Fourier transform can be defined as [96]

f̃ (λ1) =< f ,ψ >=
N

∑
n=1

f (n)ψ∗(n)

where ψ∗(n) is the eigenvectors applied over function f (n) . Spectral decomposition of

set of signals S expands each signal s ∈ S in the basis given by the union of all generalized

eigenvectors. This expansion can be written as,

s =V ŝ,

It is called graph Fourier basis. Vector of coeffiecient is given by

ŝ =V−1s

this is called the Graph fourier transform. In matrix form it represented as,

F =V−1

and the coefficient ŝ is called the spectrum of a signal s.

Spectral Representation of Graph signal: The representation of the signal is important

for better performance, including compression, storage, and transmission. In some image

compression applications, it transforms into some basis to improve quality. As demonstrated

in [97], graph signals can be sparse in the frequency domain, which makes Fourier basis useful

for better signal representation and compression. Graph Fourier transforms are orthogonal ma-

trices, and their Fourier basis is orthogonal, which has the advantage of selecting the spectrum

component with the largest magnitude to minimise the approximation error in the least-squares

sense. The use of orthogonal graph Fourier basis is given in the compression algorithm, image

compression, and incompression of sensor measurement.

In recent years, GSP has been combined with deep learning techniques to create graph

neural networks that can learn representations of graph-structured data for tasks like node cat-

egorization and link prediction. The graph convolutional neural network (GCN), a form of

30

2.3. Deep Learning in Irregular Domain

GNN that employs a spectral graph filter as its convolutional operation, is a key innovation that

emerged from GSP.

2.3.2 Graph Neural Networks

Graph neural networks (GNNs) are deep learning-based methods that operate on graph do-

mains [98]. With the growing accumulation of non-Euclidean data represented by graph struc-

ture data, scientists are beginning to focus on the processing of graph structure data, which

may express complicated interactions between objects. Graph embedding methods, for in-

stance, are used to translate graph structure data to simpler representations [99]. At the pre-

processing phase, this technique may lose the topological information of the network struc-

ture, consequently impacting the final prediction outcome. Based on neural network research

achievements, [100] introduced the idea of graph neural networks and created a model that can

directly handle graph structure data. This model was further developed to demonstrate the bet-

ter performance of GNNs than conventional techniques by iteratively exploiting the topological

information of graphs [99]. On GNNs, various models and application studies have since been

offered. GNNs are a neural network model that represents the dependence of graphs through

message passing between nodes, taking into account simultaneously the size, heterogeneity,

and deep topological information of the input data. Currently, GNNs demonstrate dependable

performance in mining deep-level topological information, extracting the key features of data,

and realising the rapid processing of massive data, such as predicting the properties of chemi-

cal molecules [101], extracting text relationships [102], reasoning the structure of graphics and

images [103], link prediction and node clustering of social networks [104], network completion

of missing information [105], and drug interaction prediction [106]. In recent years, several

real-world applications for computer vision issues, such as image classification [103,107–110],

region classification [111], semantic segmentation [112–115], and object detection [116, 117],

have been created using GNN. Some of the systematic reviews of methods and applications in

GNN [20, 98, 118] provide further information.

The GNN general design pipeline consists of four steps: (1) discover graph structure; (2)

describe graph type and scale; (3) design loss functions; and (4) construct models utilising

computational modules [98]. In this section, we provide broad design concepts and some

background information. Additional information regarding the types of graphs and their con-

struction is presented in Chapter 3.

The principle of a GNN is that a graph can be updated by message passing layers that

31

2. Fundamentals of Deep Learning and GNNs

map it to a new version. Formally, they can be expressed as message passing neural networks

(MPNNs). [119]. An MPNN layer can be expressed as follow:

hu = φ

(
Xu,

⊕
v∈Nn

ψ(Xu,Xv,eu,v)

)

where φ and ψ are differentiable functions (e.g., artificial neural networks), and
⊕

is a per-

mutation invariant aggregation operator that can accept an arbitrary number of inputs (e.g.,

element-wise sum, mean, or max). In particular, φ and ψ are referred to as update and mes-

sage functions, respectively. Each node can learn to gather information from its nearby nodes

and then utilise this information to update its own features. This is accomplished by a process

of message passing, in which each node sends and receives messages from and to its neigh-

bours. Messages generally include the characteristics of the transmitting node and the edge

connecting the nodes. Typically, the message-passing procedure is repeated many times, en-

abling each node to acquire information from its neighbours, change its own characteristics,

and then transfer that information to its neighbours in the following round. Following a pre-

determined number of iterations, the final node characteristics are used for tasks such as node

classification and graph classification. Researchers continue to explore and develop various

architectures, making them an essential tool in the machine learning community for effectively

handling graph-structured data and solving a wide range of real-world problems. Some of the

further advances in GNN models for processing graph structure data that we discuss in this

thesis are graph convolutional networks (GCNs).

2.3.2.1 Graph Convolution Networks

The foundation of a graph-based neural network classifier originated from the idea of spectral

graph convolution [120]. As we explore existing GCN models, we can categorise them into

two main groups: spectral-based and spatial-based GCNs. Spectral-based GCNs adopt the

principles of graph signal processing, utilising the Laplacian and Fourier transforms to convert

the irregular graph structure into a regular Euclidean space for the convolution process. On the

other hand, spatial-based GCNs directly leverage the information dissemination mechanism

on the graph to define the convolution operation, reflecting a propagation technique akin to

the original GNN. In the subsequent discussion, we will delve into the intricacies of these two

distinct models.

32

2.3. Deep Learning in Irregular Domain

Spectral-Based GCNs Spectral-based graph convolutional networks are a type of neural net-

work designed to handle graph-structured data. They are based on spectral graph theory, which

is a branch of mathematics that studies the properties of graphs in terms of their eigenvalues

and eigenvectors [87]. A graph Laplacian is the core operator for a spectral graph convolu-

tional. An eigendecomposition of the graph Laplacian matrix, which gives Fourier modes and

graph frequencies, forms the basis for spectral-based graph convolution [120]. From the defi-

nation given in equation 2.5, a normalized graph Laplacian can be decomposed into eigenbasis

and eigenvectors as,

L =U Λ UT (2.6)

where U = (u0,u1, ...,un−1) is the eigenvector matrix and Λ is the eigenvalue diagonal matrix.

On the graph, the normalised Laplacian matrix L and its eigenvector u create an orthogonal

space, which corresponds to the Fourier transform ecosystem on the graph.

The applied graph Fourier-transfer on signal s gives,

FGs = ŝ =UT s (2.7)

and inverse Graph Fourier transfer,

F−1
G ŝ =Uŝ =UUT s = s, (2.8)

convolution on graph in Fourier domain from the last step is,

s∗G g = FG
−1(FGs⊙FGg), (2.9)

and it can be represented as,

s∗G g = ĝ(L)s, (2.10)

33

2. Fundamentals of Deep Learning and GNNs

Figure 2.8: GCN Feature maps: Top Left- 2D regular grid graph 28× 28, Top Middle- Adjacency
matrix(A), Top Right- Laplacian matrix (L), Bottom Left- Input image as a signal on graph, Bottom
Middle- Filtered coefficient (e−Λ), Bottom Right- Filtered output signal.

The Laplacian matrix described in Section 2.3.1.4 can be implemented with the use of the

degree matrix and adjacency matrix. Figures 2.8 depict the graphical representations of the

2D regular grid graph of size 28×28, the adjacency matrix, and the laplacian matrix, respec-

tively. As shown in Equation 2.6, the graph Laplacian can be decomposed into eigenbasis

and eigenvectors to obtain the fourier basis. The eigenvalues of the graph Laplacian is com-

monly used to define the filter coefficients in spectral graph convolution, similar to the filter

for CNNs. A low-pass filter that attenuates high-frequency components of the spectral signal

while preserving low-frequency components is commonly used. It effectively suppresses the

higher eigenvalues and preserves the lower eigenvalues due to the exponential function’s prop-

erty of rapidly declining as its value increases. The diagonal form of this exponential filter

is depicted in Figure 2.8, but it was reshaped to square, which is a bit unintuitive. This filter

coefficient was applied to the input signal to produce the output signal represented in bottom

row of the Figure 2.8. However, there are variants of spectral graph convolution that require

the parameterization of eigenvalues or spectral filters. In the paper [121], for instance, the au-

thors present a type of spectral graph convolution in which the filter coefficients are learned as

a function of the input data and the graph structure. In particular, they learn a low-dimensional

34

2.3. Deep Learning in Irregular Domain

linear transformation of the input features, which is then applied to the spectral coefficients of

the graph Laplacian.

Nonetheless, spectral-based GCNs have certain drawbacks. One of these drawbacks is their

sensitivity to the selection of the Laplacian matrix, as different selections may lead to distinct

spectral representations of the graph. Moreover, the Laplacian matrix, although specifically

set for a particular graph, may not be well-suited for managing graphs with variable sizes

and topologies. Additionally, spectral-based GCNs pose another limitation: they are global

frequency filters rather than translational filters. This means that they process the entire graph

as a whole, lacking the ability to adapt to local variations or changes in specific regions of the

graph.

Spatial-Based GCNs Spatial-based graph convolutional networks rely on the direct manipu-

lation of the neighbourhood information of each graph node. This method includes convolving

the graph signal at each node with a spatial filter determined by the graph’s structure. Typ-

ically, the spatial filter is a linear function of the node features and the node features of its

neighbours. The central concept of spatially-based GCNs is to aggregate the properties of

surrounding nodes using a trainable weight matrix. This technique enables each node to in-

corporate information from its near-graph neighbours, allowing the network to discover local

patterns and relationships.

Diffusion-Convolutional Neural Networks (DCNN) [122] claims that convolution is a pro-

cess of diffusion between nodes and utilises the k-hop transition probability derived after ran-

dom walking to establish the weight between nodes. The structure of layer m is as described

below,

H(m+1) = f (WPkHm), (2.11)

where Pk is the probability of k-hop reachability between two nodes in a random walk, and W

is a learnable model parameter. DCNN describes the high-order information between nodes,

but its computational complexity makes it difficult to apply to a large graph. GraphSage [123]

randomly samples the nearby nodes so that the neighbouring nodes of each node are lower

than the specified number of samples in order to accommodate the application for large-scale

networks. There are various studies that seek to define the general structure of GCNs. Among

them, mixture model networks (MoNet) [124] emphasise translation invariance and convert

the local structure of each node to a vector of the same size by creating a mapping function.

35

2. Fundamentals of Deep Learning and GNNs

It learns the shared convolution kernel based on the mapping output. The message passing

neural network (MPNN) [125] presents a framework by specifying a generic version of the

aggregation function.

In mixture model networks, the interaction between nodes is expressed as a low-

dimensional vector in the new coordinate system. Concurrently, a weight function is created

on all nearby nodes centred on a node, and a vector representation of identical size is generated

for each node.

D j(x) f = ∑
y∈N(x)

w j u(x,y) f (y), j = 1, ...,J

where N(x) represents the set of adjacent nodes of x, f (y) represents the value of node y on

the signal f , u(x,y) refers to the low-dimensional vector representation of the node relationship

in the coordinate system u, w j represents the j-th weight function, and J represents the weight

function number. This operation gives each node a J-dimensional representation, and the shared

convolution kernel is defined on this.

MPNNs emphasise, unlike MoNet, that the essence of graph convolution is to define the

aggregation function between nodes by using the aggregation function to obtain the local struc-

ture expression of each node and its neighbouring nodes and then applying the update function

to itself and the local structure expression to obtain the new expression of the current node.

The convolution procedure is described as follows:

hv
(k) =Uk(hv

(k−1), ∑
u∈N(v)

Mk(hv
k−1,hu

k−1,Xe
uv))

where Uk is the update function and Mk is the aggregate function. The aggregate function

learned inside a spatial framework is more adaptable to the task and the particular graph struc-

ture. Figure 2.9 shows the MPNNs operation. Each graph node calculates a message for each

of its neighbours. Messages are dependent on the node, its neighbour, and the connecting edge.

Messages are transmitted, and each node aggregates the messages it gets using an aggregate

function (such as sum, average, max, etc.). After receiving the messages, each node updates

its attributes in accordance with its existing attributes and the aggregated messages.

Pooling on Graph In conventional CNNs, a pooling layer is used to reduce the resolution

of the input feature map, but in the case of a spectral graph methods, there is no reduction in

size due to the multiplication of the filter with the spectral signal [127]. To pool local feature

36

2.3. Deep Learning in Irregular DomainMessage Passing Neural Networks [3]

x1

x2 x3

x4

e21 e31

e41

Graph.

m1

m21 m31

m41

e21 e31

e41

Messages.

x′1

m21 m31

m41

e21 e31

e41

Propagation.

[3] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.

11

Figure 2.9: Message passing neural network: Convolution on graph operation [126]. Node x1
′ is the

updated version of x1 and aggregation message function of its neighbours.

output from the convolution layer, it is required to perform graph coarsening, which reduces

the number of vertices and handles the edges between these vertices.

There are various methods for graph coarsening. One of the common methods for se-

lecting vertices is to select a subset of the set of vertices or generate new nodes. Edwards et

al. used Kron’s reduction, which provides a reduction of nodes from the weight matrix by

discarding vertices from the Laplacian matrix and selecting vertices used to construct a coars-

ened graph [128], and the Algebraic Multigrid (AMG) method for graph coarsening, which

projects a signal to the coarse graph by greedy selection of vertices [127]. Whereas Chevalier

et al. compare the two different coarsening schemes: strict and weighted aggregation (SAG

and WAG) [129]. In SAG, the nodes are combined into a small subset. Two nodes are blocked

together if their coupling is locally strong. It is shown in Figure 2.10 below.

Pooling on the graph
In conventional CNN, pooling layer is used to reduce the resolution of input feature

map but in case of a graph, there is no reduction of size due to the multiplication of
filter with spectral signal [19]. To pool local feature output from convolution layer,
it is required to perform graph coarsening which reduce the number of vertices and
handle the edges between these vertices.

There are various methods to do graph coarsening. one of the common methods
for selecting vertices is to select a subset of the set of vertices or generate new nodes.
[23] used Kron’s reduction which provides a reduction of nodes from weight matrix by
discarding vertices from the Laplacian matrix and selected vertices used to construct a
coarsened graph. [19] utilize Algebraic Multigrid (AMG) method for graph coarsening
which project signal to coarser graph by greedy selection of vertices. [24] compare the
two different coarsening scheme: strict and weighted aggregation (SAG and WAG).
In SAG, the nodes are combined together in a small subset. Two nodes are blocked
together if their coupling is locally strong. It is shown in below figure.

Figure 12: SAG, * retrieved from [24]

In case of a WAG, each node can be divided into fractions. Different fractions
belong to different aggregates. nodes are divided into small subsets and that nodes
which belong to more than one subset will be divided among corresponding coarse
aggregate as shown in below figure.

Figure 13: SAG, * retrieved from [24]

19

Figure 2.10: Strict Aggregation (SAG) is a method for coarsening graphs that combines disconnected
pairs of nodes into a single node [129].

In the case of a WAG, each node can be divided into fractions. Different fractions belong

to different aggregates. Nodes are divided into small subsets, and nodes that belong to more

than one subset will be divided among the corresponding coarse aggregates as shown in the

below Figure 2.11.

37

2. Fundamentals of Deep Learning and GNNs

Pooling on the graph
In conventional CNN, pooling layer is used to reduce the resolution of input feature

map but in case of a graph, there is no reduction of size due to the multiplication of
filter with spectral signal [19]. To pool local feature output from convolution layer,
it is required to perform graph coarsening which reduce the number of vertices and
handle the edges between these vertices.

There are various methods to do graph coarsening. one of the common methods
for selecting vertices is to select a subset of the set of vertices or generate new nodes.
[23] used Kron’s reduction which provides a reduction of nodes from weight matrix by
discarding vertices from the Laplacian matrix and selected vertices used to construct a
coarsened graph. [19] utilize Algebraic Multigrid (AMG) method for graph coarsening
which project signal to coarser graph by greedy selection of vertices. [24] compare the
two different coarsening scheme: strict and weighted aggregation (SAG and WAG).
In SAG, the nodes are combined together in a small subset. Two nodes are blocked
together if their coupling is locally strong. It is shown in below figure.

Figure 12: SAG, * retrieved from [24]

In case of a WAG, each node can be divided into fractions. Different fractions
belong to different aggregates. nodes are divided into small subsets and that nodes
which belong to more than one subset will be divided among corresponding coarse
aggregate as shown in below figure.

Figure 13: SAG, * retrieved from [24]

19

Figure 2.11: Weighted Aggregation (WAG) can divide a vertex from a finer representation among nu-
merous coarser level nodes by using non-disjoint subsets of vertices [129].

2.4 Medical Image Analysis

Medical image analysis is the process of applying computational methods to extract clinically

relevant information from medical images. Various tasks, including segmentation, feature ex-

traction, and classification, are part of medical image analysis. Medical image segmentation

is a computer task that involves dividing a medical image into various regions or segments,

each of which corresponds to a different anatomical component or pathology of interest. This

process plays a vital role in medical diagnosis, treatment planning, and research endeavours.

Medical images, such as magnetic resonance imaging (MRI), computed tomography (CT), and

immunostained histology, comprise a significant amount of visual data that can be difficult to

interpret manually. Image segmentation can help extract meaningful information from these

images and aid medical professionals in making precise diagnoses and treatment decisions.

There are numerous methods for segmenting medical images. One of the traditional ap-

proaches for image segmentation is developed using principal component analysis (PCA) and

K-Means [130]. To assist doctors in identifying tuberculosis bacteria, [131] created a novel

algorithm. They identified the issue of local minima in k-means and resolved it using the

windowing method. The entire image is broken into small patches, and k-means clustering is

used to segment each patch. For colour images, a region-, edge-, and pixel-based segmentation

has a feature classification limitation. By transferring the RGB image into CIELAB (L*a*b)

color space, [132] analyses the features of each pixel of an image, classifying the colours

using K-Means and adopting support vector machine (SVM) classifiers to detect tumours by

comparing the clustered image with labelled data. The two-colour components, a and b, from

L*a*b colour space can also be used as a feature for K-Means clustering in the segmentation

of white blood cells from microscopic images [133]. Another approach to obtaining segmen-

38

2.4. Medical Image Analysis

tation of white blood cells for acute leukaemia images is to use a linear-contrast segmentation

technique using hue, saturation, and intensity (HSI) colour space [134]. In the medical field,

lymphoma cancer cells have important elements that are a cluster of differentiation 4 (CD4)

and a cluster of differentiation 8 (CD8), where CD8 helps to kill infected virus cells and CD4

works as a signal activator. In a clinical setting, the CD4/CD8 count ratio is used to judge

the condition of the immune system. Automated segmentation of such immunostaining im-

ages helps to carry out a more accurate diagnosis of disease or even early detection [19]. A

review of various automated methods for cell detection and segmentation is provided in the

paper [135]. Clustering-based methods involve grouping similar pixels together based on their

feature vectors using unsupervised learning algorithms like the K-Means clustering algorithm.

The resulting clusters represent different regions within an image that can be further processed

for object identification or classification. Whereas thresholding-based methods involve setting

a threshold value that separates foreground from background pixels based on their intensity

values. The Otsu method is a popular thresholding technique that automatically determines

the optimal threshold value based on minimising intra-class variance between foreground and

background pixels.

Recently, there has been a growth in the use of deep learning techniques for medical-image

analysis, especially segmentation tasks for the early detection of disease. Notably, [136] em-

ployed deep learning techniques with the threshold-based Otsu method to identify tissue. Their

approach involved dividing the image into patches and applying supervised classification to de-

tect tumours. This pioneering work, along with other promising studies in deep learning for

image segmentation [19, 134, 137–139], has garnered widespread attention from researchers.

The state-of-the-art Fully Convolutional Network (FCN)-based segmentation [139] adopts an

encoder-decoder architecture, fine-tunes a VGG-16 portion, and replaces the dense layer with

1× 1 convolution for dense prediction. It uses skip connections to recover potential infor-

mation loss during convolution. Another popular architecture, SegNet [137], eliminates the

need for learning to upsample compared to FCN. On the other hand, the U-Net architecture,

tailored for biomedical image segmentation with limited medical images available, is based

on FCN [19]. The key difference lies in the upsample part, where pooling operations are re-

placed by up-convolution, increasing resolution and concatenating skip connections instead of

adding, thus enhancing segmentation performance. The FCN model leverages convolutional

neural networks (CNNs) to learn features from images at different scales, employing multiple

layers with increasing receptive fields. Its output layer generates a pixel-wise classification

39

2. Fundamentals of Deep Learning and GNNs

map that can be further refined using post-processing techniques like conditional random fields

(CRFs).

2.5 Summary

This chapter serves as a foundation for the deep learning techniques employed in this thesis.

It starts by introducing the concepts of biological neurons, neural networks, and convolutional

neural networks. We discussed the area of deep learning and its benefits in feature mining. It

covers neural networks, feedforward neural networks, backpropagation, convolutional neural

networks covers convolutional layers and pooling layers. Moreover, we explore the signifi-

cance of deep learning in irregular domains, particularly graph signal processing, and delve

into graph deep learning methods, including spectral and spatial-based approaches. The gen-

eral design pipeline for graph neural networks is presented, accompanied by essential design

concepts. For a more comprehensive understanding of graph structures, Chapter 3 offers ad-

ditional information on various graph types and their construction. Furthermore, we discuss

the tools necessary for convolution operations in irregular domains, such as graph filters and

graph Laplacian, thereby laying the groundwork for graph neural network design concepts. In

addition, the chapter provides an overview of medical image segmentation techniques, setting

the stage for our exploration of deep learning’s applications in this domain.

Overall, this chapter provides a foundation for understanding the deep learning techniques

used throughout the thesis. It explains how these techniques work and how they can be applied

to irregular domains such as graphs. This chapter establishes a solid foundation upon which

our subsequent analyses and investigations are built.

By the end of this chapter, readers should have a good understanding of the basic principles

behind deep learning techniques like neural networks and convolutional neural networks. They

should also understand how these techniques can be applied to irregular domains like graphs

using tools like graph filters and graph Laplacian. This background information will be essen-

tial for understanding the rest of the thesis, which builds upon these concepts to develop new

approaches for computer vision tasks using irregular domain deep learning.

40

Chapter 3

Graph construction as a study

Contents
3.1 Introduction . 42

3.1.1 Problem domain of Graph Construction 42

3.2 Graph construction . 44

3.2.1 Representation of 2D arrays . 46

3.3 Methods . 49

3.3.1 Convolution on Graph . 50

3.3.2 Convolution on sub graph (Sampler function) 51

3.4 Case study/ experimentation on image domain 52

3.4.1 Architecture . 53

3.4.2 Experiments and Results . 53

3.5 Summary . 59

41

3. Graph construction as a study

3.1 Introduction

In the previous chapter, we looked at the background of the deep learning and irregular domain

techniques. In this chapter, we investigates the specific problem of graph construction in GNNs,

which is the process of creating a graph from data such as images, text, or molecular structures.

Graphs serve as data structures to represent irregular data. Among the common methods for

graph construction, manual annotation stands out, where a human expert manually labels the

nodes and edges of a graph. Nodes are represented by features such as image pixels or text

words, and edges are created based on the similarity or proximity of these features. This

feature-based approach is time-consuming and subjective, and may not be feasible for large

datasets. It can be automated, but may not capture important relationships between the data.

Another approach is data-driven graph construction, where the graph structure is learned

directly from the data. This method can be more effective than manual annotation or feature-

based graph construction, but it requires large amounts of labelled data. Recent developments

in graph construction include the use of deep learning methods such as variational autoen-

coders (VAEs) [140] and generative models to create graphs. These methods can be trained on

unlabeled data and can learn complex relationships between the data.

This chapter highlights the challenges and limitations of current graph construction meth-

ods, such as interpretability and generalization, and concludes by pointing out the importance

of graph construction in GNNs and its potential impact on various applications.

3.1.1 Problem domain of Graph Construction

The specific problem of graph construction in Graph Neural Networks (GNNs) is the process

of creating a graph from data such as images, text, or molecular structures in a way that can

be used as input for GNNs. GNNs are a class of neural networks that are designed to operate

on graph-structured data, where the data is represented as a set of nodes and edges. The graph

structure captures the relationships and dependencies between the data points, and is crucial

for the performance of GNNs. The graph construction process should be interpretable, mean-

ing that the graph should reflect the underlying structure of the data in a meaningful way, be

able to generalise to new unseen data, and work well on new problems. To construct a graph

that captures the underlying structure of the data, it is important to choose the right type of

graph and determine the right set of nodes and edges that represent the relationships between

the data points. The graph construction approach can significantly impacts feature learning. It

42

3.1. Introduction

determines the connectivity structure between nodes, influencing local and global information

propagation. Additionally, it affects node representation, graph size, density, topology, and the

ability to capture complex relationships. Some methods leverage unsupervised learning from

unlabeled data, while domain-specific knowledge can guide construction. The choice of graph

construction method is critical, as it directly influences feature learning and task performance.

A poorly constructed graph may not capture the underlying structure of the data, leading to

poor performance of the GNNs. Defferrard et al. shows the capability of generalising CNNs

in the form of graph domains [120]. Here he uses the undirected connected graph, which is

an 8 Nearest Neighbour (NNs) graph of a 2D grid with a weight matrix calculated based on

the 2D coordinate of a pixel. The use of k-nearest neighbours (kNN) as a graph construction

method is more suitable for supervised data classification [141]. Most of the computer vision

based problems used primarily images, which are a 2D grid arrangement of the pixels. It is

interesting to observe the effect of different node connections in the graphs on the performance

of the model by considering the graph representation of the image data. To construct a pipeline

in GNNs, there is a need to specify the graph type along with the vector signal. This type

of graph is called a manual annotation or non-structural graph, where we have to first build

the graph for the task, such as building a scene graph for an image [98]. In the supervised

learning literature, only a few known graph construction techniques have been presented to

directly handle vector-based data [142, 143]. However, a substantial amount of research has

offered graph construction approaches for unsupervised, semi-supervised, and dimension re-

duction tasks (e.g., [144–149]). Thus, supervised works often adopt basic graph construction

techniques, such as k-Nearest Neighbours (kNN) [150] or one of its versions, such as the com-

bination of kNN and ε-radius criteria or the k-associated optimum graph [143, 151, 152].

By inspiration from [120], where a 2D regular grid can be represented in the form of a

graph, using k-Nearest Neighbour, there is an opportunity to use a lattice graph from graph

theory. More precisely, a square grid graph in which the vertices represent points on a plane

with integer coordinates (x-coordinates in the range 1, ...,n and y-coordinates in the range

1, ...,m) and in which two vertices are connected by an edge whenever the corresponding points

are at a distance 1 from one another. A square grid graph can also refer to a 2D grid graph,

which represents a 2D grid or lattice. The nodes in the graph represent the individual cells in

the grid, while the edges represent the relationships that exist between the cells. The speciality

of a 2D grid graph is that it can be embedded in Euclidean space, meaning that each node in

the graph can be represented by a point in 2D or 3D space, and the edges between the nodes

43

3. Graph construction as a study

can be represented by lines connecting those points. This embedding can be useful in tasks

such as image or video processing, where the data is represented as a grid of pixels or voxels,

because it allows the graph to be analysed and processed using the geometric properties of

Euclidean space. It can also be embedded in other spaces, such as a torus, where the edges of

the grid are wrapped around to create a closed surface, or in a non-Euclidean space, such as

a hyperbolic space. We are exploring the interpretability and generalisation problems of 2D

grid graph construction methods in the non-Euclidean domain by assigning different weight

matrices and sub-graph localising approaches.

The creation of a graph can have a substantial effect on the understanding of the data it

represents. A badly constructed graph can hide essential data patterns or relationships, whereas

a well-crafted graph can reveal them. The weighting of a graph’s edges refers to the assignment

of numeric values to the connections between nodes. The weights can be used to indicate

various connection properties, such as the intensity or frequency of interaction between nodes.

Moreover, edge weighting may be employed to describe the distance or similarity between

network nodes. Edge weighting can have a significant effect on the performance of community

detection algorithms [153]. The degree weighting and strength weighting schemes can increase

the quality of the community partition and the resolution limit, but they can also reduce noise

resilience. Degrees of the nodes are also taken into account by MoNet [124] in their weighting

method, and [154] presents the effects of a structural graph construction approach for brain

networks.

In this study, to observe the impact of graph construction, we first use the baseline undi-

rected 2D grid graph similar to that used by Defferrard et.al. [120] for MNIST image classi-

fication. After that, we apply different waiting schemes with a global and local approach, as

discussed in further sections, and finally, we discuss the comparative results obtained by these

approaches.

3.2 Graph construction

Graph construction plays a very important role in the process of convolution in the irregular

domain. Extracting localised information from the spatial domain of such irregular data would

be interesting but designing the filter and convolution operation is non-trivial when considering

a domain in which the use of a spatially localised kernel and its translation across a grid are not

regular. The idea of a localised neighbourhood in the spatial domain is simple, but creating a

localised kernel-based filter for an irregular neighbourhood is not. The locally responsive con-

44

3.2. Graph construction

volutional layer filtering and the feature generalisation of pooling are still two operators that

we would want to see implemented similarly to those introduced by CNNs. However, it can

be difficult to define such an operation. It is feasible to try some kind of irregular domain em-

bedding in a regular spatial grid. These methods attempt to use standard CNNs operators and

architectures for representation learning through some reconfiguration of the spatial domain,

typically through unrolling, projection, or resampling. These techniques rely on the transform

operation between the original domain and the new Cartesian embedding to reconstruct the

relationships between the input space’s elements with sufficient accuracy. The learned CNNs

filter kernels will be impacted by methods that introduce padding to assist the embedding since

they will introduce spatial areas where there is no signal. The creation of CNN layers was

an attempt to improve the architecture for the problem of image and volume recognition by

utilising the regularity of the grid. CNNs layers are a means of adding a localised filtering

constraint to fully connected neural networks. Without the presumption of utilising a grid, the

field of deep learning in the irregular domain seeks to provide the same localised filtering limi-

tations. Instead, these strategies aim to make use of the inherent spatial structure of the domain

itself and reformulate the filtering procedure.

In the regular 2D grid, index i and j provide a relationship between pixels. The next pixel

is situated in i+1th, j+1th, and the previous pixel’s relationship can be described as i−1th,

j−1th. In order to perform convolution operations, the weighted kernel must convolve over

them, perform filtering operations and return an output feature map. In the domain where

there is not regular cartisian space, it is difficult to produce such a regular kernel. As a real-

life example in Figure 3.1 (a) and 3.1 (b), each city connected with its nearest neighbour

city with variable distance, as in the case of the Facebook friend network. There might be a

possibility that some friends are located at the same distance, but that does not hold true for

each friend or group of friends. In this situation, the standard CNNs operator does not work,

and some generalisation of convolution to such irregular domain data is required to get good

performance in understanding the data and features from them.

As the focus of this thesis is to apply graph-based deep learning methods to image-based

problems with a 2D grid arrangement, it can also be applied to other non-Euclidean domain

problems. So we will discuss the representation of a 2D array and its different ways of con-

struction. It also explores the behaviour of different graphs in the model.

45

3. Graph construction as a study

(a) Sensory networks (b) Facebook network

Figure 3.1: Example of irregular spatial domain.

3.2.1 Representation of 2D arrays

It is vital to find a representation that allows us to perform filtering operations without making

the assumption of a regular spatial kernel in order to adapt current convolutional style tech-

niques to graph domains. The inclusion of sample relationships via graphs could provide fresh

perspectives on analysis and improve data processing. In comparison to traditional data do-

mains, graphs have the benefit that they naturally take into account a problem’s irregular data

relations as well as the accompanying data connectedness during analysis. Similar to tradi-

tional signal processing methods, graph signal processing tools are especially well suited to

extracting meaning from data collected over graph data domains. We can construct a structure

on top of which we can observe graph signals and carry out filtering operations by describing

such a domain as a graph representation.

Representing the graphs as one vector requires fixing the order of the nodes. The same

graph is labelled in two different ways, as shown in Figure 3.2. The graph label shows the

node order from A to F. The optimal model should not depend on how it is presented. The

model will produce results based on the order of the nodes. If the order changes, the results

also change. Figure 3.2 depicts a graph with seven vertices and six edges. This quantity of

vertices and edges permits the construction of 21C3 distinct combinations of simple graphs.

46

3.2. Graph construction

Figure 3.2: Graph labelling: The same graph can be labelled in two different ways [155].

A generalisation of graph G is that it is composed of vertices and edges, V and E, where the

vertices of the graph represent the location of the input data over the entire input space and the

edges show the spatial relationship between vertices. In an edge-weighted graph of N vertices,

the adjacency matrix A∈ 0,1N×N is a binary matrix representation of the edge list where ai, j = 1

indicates an edge between vertices vi and v j, given i ̸= j. The weight matrix W ∈N×N denotes

the edge weights of the connected, undirected, non-self-looping edge vertices vi and v j. Such

edge weighting metrics require defining a graph construction method on a given domain, with

certain domains providing a natural definition for the relationship between two nodes, such as

connectivity between two users or distance between cities on a map. In applications where

such a definition is not readily available, one common approach is to use a Gaussian weighting

function that utilises the Euclidean distances between nodes within a given locality,

W (i, j) = e
i−µi

2

2∗σi2
+

j−µ j
2

2∗σ j2
, (3.1)

where σ define the fall off provided by the Gaussian weighting scheme.

For array inputs like images, the Cartesian grid domain can be conceptualised as a graph de-

scribing vertex connectivity. In image processing, the relationship between pixels is presented

by 4-neighbourhood and 8-neighbourhood. pixel q is in the 4-neighbourhood of pixel p(x,y) if

they belong to p(x−1,y), p(x+1,y), p(x,y−1), p(x,y+1), similarly for the 8-neighbourhood,

which involves diagonal pixels as well as p(x−1,y−1), p(x+1,y+1), p(x−1,y+1), p(x+

1,y−1) in addition to 4-neighbourhood pixels. In the case of transformation into the graph do-

main, pixels are formulated as nodes on the graph, and neighbourhood connectivity described

47

3. Graph construction as a study

as an adjacency. This phase in building the graph is crucial because it gives a foundational

description of the spatial interactions among the components of the irregular domain problem.

However, methods for creating such a representation for a particular domain are still an active

area of research.

1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9 1 2 3 4 5 6 7 8 9

Figure 3.3: Linear ordering labelled examples of graph construction for a 3×3 regular spaced grid. Left
to Right: 4-Neighbourhood, 8-Neighbourhood, fully connected.

Figure. 3.3 shows the methods of construction of a 2D grid graph where the connectivity

varies from left to right. In a 4-neighbourhood, each node is connected to its four neighbouring

nodes. The connection between two nodes in represented by 1 and 0 for no edge. Here, node

”1” is connected with node 2 and node 4. Similarly node 5 is connected with nodes 2,4,6, and

8. In the case of an 8-neighbourhood graph, each node is connected to its eight neighbouring

nodes. In a fully connected graph, each node is connected to all the other nodes. Here the

undirected, non-self-loop graph with 0/1 weighting is used. The connectedness between the

vertices helps to undesrstand the spatial relationship between the elements. We define three

graph construction method based on the distance matrix.

3.2.1.1 Binary Graph Construction

It creates a link from vertex vi to vertex vu if the distance (or similarity) between them is

less than a pre-defined value ε . If the ε-radius neighbourhood value is 1, then it is a 4-

neighbourhood grid graph where each node is connected to its nearest 4 neighbour, and the

same is true for an 8-neighbourhood if the ε-radius neighborhood value is 2.

Aiu =

1, if dist(vi,vu)<= ε− radius

0, otherwise.
(3.2)

Here dist is a distance matrix calculated on 2D grid indices, and ε-radius is any neighbour-

hood from 4-N to fully connected, as shown in fig 3.3.

48

3.3. Methods

3.2.1.2 Euclidean Graph Construction

The adjacency matrix A of Euclidean graph is given by,

Aiu =

d, if 1/dist(vi,vu)<= ε− radius

0, otherwise.
(3.3)

Here, inverse Euclidean matrix on 2D grid indices shows the neighbouring nodes having

more distance than the far one.

3.2.1.3 Gaussian Graph Construction

An adjacency matrix can be created using a 2-D Gaussian equation by defining a weight for

each edge based on the distance between the nodes. The distance between nodes can be calcu-

lated using their coordinates in the 2D grid. The weight of the edge between nodes i and j can

be defined using the below equation,

A(x,y) = e
x−µx2

2∗σx2 +
y−µy2

2∗σy2 (3.4)

where (µx,µy) is the centre of the Gaussian, and σx and σy are the standard deviations along

the x and y axes that control the spread of the Gaussian function, respectively.

To use this Gaussian function to create an adjacency matrix for a 2D grid graph, it needs to

compute the value of the function for each pair of nodes in the graph. The resulting value would

be the weight of the edge between those two nodes, which leads to the symmetric adjacency

matrix.

3.3 Methods

An input layer, a group of convolutional and/or pooling layers, a fully connected neural net-

work, and an output prediction layer make up the structure of a standard CNNs. The convolu-

tion of a filter over a spatial domain in the traditional CNNs operator is not trivial when taking

into account an irregular domain with no regular structure. The complexity arises from the

absence of ordering information and the lack of a constant distance between neighbours, pre-

requisites for the application of the traditional CNN operator. One solution is to do convolution

in the spatial domain using multiplication in the spectral graph domain to produce the feature

maps using graph signal processing methods. A graph-based convolution network, or GNNs,

49

3. Graph construction as a study

learns spectral multiplier-based convolution in the spectral domain of the graph signal, much

like a standard CNN network does. Training consists of making a feed-forward pass through

the network to acquire outputs. This is done after the loss has been transmitted backwards

through the network to update the weights that were randomly initialised.

A recent field known as "graph neural networks" processes signals using graphs. The signal

x is carried by the graph G. Wavelet filtering, convolution, and Fourier Transform are just a few

of the standard signal processing procedures that may be carried out on x via G since graphs

have underlying knowledge about the spatial relationship between the vertices. It is possible

to apply the signal processing operator to the observed data as a graph signal by describing

the observed domain as a graph signal. Deep learning can be used in domains with irregular

spacing that traditional CNNs are unable to convolve a regular kernel over by combining vari-

ous graph signal processing approaches. As a result, the proposed method would enable deep

learning to be applied to a larger range of machine learning and pattern recognition domains

that have typical but spatially connected features.

3.3.1 Convolution on Graph

To perform convolution on the graph, spectral graph theory is used to define the analogue to

the conventional convolution tool. A graph G = {V,W} consists of a set of vertices, V , and

a list of edge weights, W , where each edge is the non-directed, non-negative, non-selflooping

value connecting two vertices, vi and v j. To carry out convolution on a graph, the Laplacian

matrix plays an important role. The unnormalized graph Laplacian matrix L can be defined

as L = D−W , where D is a diagonal matrix containing each diagonal entry di, j =
N
∑

i=1
wi as

a sum of all adjacent weights for a vertex. Given G, an observed data sample is a signal

x ∈ RN that resides on graph G, where xi corresponds to the signal amplitude at vertex vi. The

normalised Laplacian L̃ = In−D−1/2LD−1/2 is an alternative to the non-normalised Laplacian,

which enables normalisation of the edge weights in A.

Convolution is one of the most important processes in CNNs architecture, highlighting

locally receptive features in the input image. A similar operator is presented in graph-based

CNN; however, due to the potentially irregular domain, graph convolution makes use of the

convolution theorem, where convolution in the spatial domain is approximated by element-wise

multiplication in the frequency domain. To project the graph signal into the frequency domain,

the Laplacian L is decomposed into a full matrix of orthonormal eigenvectors U = ui=1...N

where ui is a column of the matrix U , and the vector of associated eigenvalues λi=1...N . Using

50

3.3. Methods

the matrix U , the graph Fourier transform is defined as x̃=Ux, and the inverse as f =Ux̃, where

UT is the transpose of the eigenvector matrix. A convolutional operator in the vertex domain

can be formed as a multiplication in the Fourier space of the Laplacian operator for forward

convolution. Given the spectral form of our graph signal x̃ ∈ R and the spectral multiplier

k ∈RN, the convolved output signal in the original spatial domain is the spectral multiplication,

i.e., y = Ux̃⊙ k. This could potentially be expanded to support multiple input channels and

output feature maps.

ys,o =U
I

∑
i=1

UT xs,i⊙ ki,o, (3.5)

where I is the number of input channels for x, s is a given batch sample, and o indexes an

output feature map from O output maps.

One issue with the above formulation of the filter k is the use of a spectral multiplier, an

N-length vector that gives a filter with a separate parameter for each Laplacian eigenvector of

the graph. This makes the convolution operator more expensive parametrically and reduces

the chances of localising filters in the spatial domain. Another issue is that if the input graph

is large, then creating a normalised Laplacian matrix and then the eigen decomposition of

such a matrix would be beyond the limit of average computer resources. In convention CNNs,

we have a kernel that keeps convolving over the kernel receptive field to get the localised

region in the spatial domain. In a similar way, we can divide a larger graph into subgraphs

and perform graph convolution and global pooling operations to get the unique value (sum or

average) for that subgraph. After computing this for all subgraphs, we combine them to get the

feature map for the larger graph. To construct a subgraph, consider a centre node and a local

sampling region of size, for example, ’r’, similar to the filter size in conventional CNNs. The

neighbouring nodes that fall within the radius of ’r’ create a graph connecting the centre node

with other nodes. These subgraphs are weighted using the binary, Euclidean, and Gaussian

graph construction strategies mentioned in the previous section on graph construction above.

The convolution operation for such subgraphs is performed using the sampling function, as

discussed in the next section 3.3.2.

3.3.2 Convolution on sub graph (Sampler function)

The GCNs filter is used for graph convolution operation in the spectral graph convolution

operator [121]. There are some limitations to such a filter when it applies to large image graph

51

3. Graph construction as a study

datasets, due to the spectral multiplication of the weight parameter and the GCNs filer in the

form of a normalised Laplacian matrix.

One way to perform filtering operations on graph domain is to partition the large graph into

small sub-graphs. In this sub-graph partitioning approach, we apply graph convolution to each

sub-graph and get the aggregative result for each graph by means of a simple global pooling

operation. With the help of this sub-partitioning approach, there is not only the possibility

of processing large graphs but also more focus on the localised feature because of the small

receptive field. This is a similar spatial filtering operation in CNNs but It is generalisable to

graphs and can process large graphs in a computationally cost-effective way.

To perform convolution on a localise graph, a special sampler function is constructed. A

graph G = {V,W} consists of the number of vertices V and the list of edge weights W , where

each edge is the non-directed, non-negative, non-selflooping value connecting two vertices vi

and v j. The edge weight matrix W is constructed as per binary, Euclidean, or Gaussian weight

formulas. It is also called an adjacency matrix, which describes the relationship between a

node and its neighbour by some value assigned to it. This large graph adjacency matrix helps

to extract the local signal x’. While creating a subgraph for each node, consider whether a main

node with neighbouring nodes falls, and that can be calculated by edge weighting formula. This

calculated subgraph would then transform into a modified Laplcian matrix for the graph con-

volution operation to be carried out. The normalised Laplacian is L̃ = In−D−1/2LD−1/2. The

unnormalized graph Laplacian matrix L can be defined as L = D−W , where D is a diagonal

matrix containing each diagonal entry di, j =
N
∑

i=1
wi as a sum of all adjacent weights for a vertex.

Similar to equation 3.5, the local convolution process produces a feature map and then goes for

the sum of all adjacent weights, which results in a single value for each node that corresponds

to a large graph.

3.4 Case study/ experimentation on image domain

Let us define a graph G = {V,E,W}, where V & E are a set of vertices and an edge list,

respectively. W is the weight matrix, which is a binary value. If there is a connection between

edges, it is represented with a value of 1 and 0 elsewhere. While considering the MNIST RGB

image of size 28×28 and wanting to transform on the graph domain, we need the size of the

graph, i.e., the number of nodes, to be 28× 28 which is 728 nodes. As the MNIST is a grey

image, each node has a dimensional vector specifying its pixel values. Each given image can

52

3.4. Case study/ experimentation on image domain

be transformed into a graph signal of size 728×1.

3.4.1 Architecture

The architectures of the build network are shown in Figure 3.4 and 3.5. There are two architec-

tures designed: one is for global feature learning and another focuses on the local subpartition

graph patch. Each network uses all of the above graph construction methods under study. In

global architecture, a network contains two graph convolution networks followed by two fully

connected layers. The MNIST grey pixel values of each sample are passed through the graph

convolution operator to extract the features. The extracted feature vector is classified into fully

connected layers. The last layer is a dense classification layer with softmax non-linearity. The

model training parameters are the same for all Global and local models. In local architecture,

as shown in Figure 3.5, the graph convolution layer is replaced by the sampler function, which

includes the customised graph convolution layer with golbal average pooling for learning lo-

calised features. The pictorial function of the sampler function is explained in Figure 3.6.

Each subgraph is constructed from the edge weight formula, which is a binary, Euclidean, and

Gaussian-weighted matrix. This weighted local subgraph, along with the associated signal

value, is passed to the graph convolution, followed by average pooling, which gives a single

node value for each local graph. For example, a MNIST image of size 28×28 has 784 nodes.

For each node, a local subgraph of size 5×5 created. There is a 784 local subgraph passed for

convolution operation as described in section 3.3.2 and it outputs a same size feature map with

the same number of channels. This feature map passes to another sampler function layer, the

dense layer, and finally achieves classification with the dense softmax layer.

3.4.2 Experiments and Results

For all experiments we have used the same parameters: batch size = 32, epochs = 50, regulari-

sation rate = 5e-4, and learning rate = 1e-3. Our models are implemented in Tensorflow 2.0 and

Keras and are trained and evaluated on a PC with an Intel i7 CPU and an NVIDIA GEFORCE

GTX 1080Ti.

53

3. Graph construction as a study

GCN GCN Dense
+

Relu

 Dense
+

 Soft-
 max

Input graph Signal

784 x 32

512 10

784 x 32

 +

Graph
Adjacency

Matrix

(A.) Two GCN: elu activation after each GCN

GCN
 +
Leak
yReL
LU

Dense
+

Sigmo
id

Input graph Signal

784 x 32

10

 +

Graph
Adjacency

Matrix

(B.) 1 GCN

Figure 3.4: Global Architecture: Single and Two layer GCN architecture for processing global graph
construction methods for classification.

54

3.4. Case study/ experimentation on image domain

Input graph Signal
 +

Graph
Adjacency

Matrix

Sampler
Function

+
Leaky
ReLU

Dense
+

Sigmo
id

784 x 32

10

Classification
Output

Figure 3.5: Local Architecture: Single sampler layer architecture for classification. Graph and image
signals pass through the sampler function, where they are processed through a local subgraph sampling
mechanism.

GCNConv Average
Pooling

Horizontal
slide

Vertical

slide

Local graph +
Associated

graph signal

Horizontal

Vertical

Figure 3.6: Sampler Function: Local grid graphs, sized 5×5, encapsulate local structures. As they shift
horizontally and vertically, they convey distinct graph signals. Processed via GCNConv and average
pooling, each local graph, paired with its graph signal, yields a single value specific to that graph.

55

3. Graph construction as a study

3.4.2.1 Global Binary Adjacency matrix

In this experiment, we generated a binary adjacency graph with 1 and 0 edge connections.

Global graph in the sense that the entire graph was used as the image size for the feature

training phase. MNIST image size is 28× 28. Hence, we create a 2D grid graph with a

28×28 grid size. By default, edges are connected in four distinct neighbourhood patterns, as

depicted in Figure 3.3. It indicates that each node is connected to a maximum of four nearest

neighbours with an edge distance of 1 or 0 if none are present. This is the binary representation

of the nodes that are connected with a neighbourhood length of 1. Given that the length of

the neighbourhood ranges from 1 to 27, the number of connected nodes between each node

increases as the distance between them increases. For instance, the length of neighbourhood 1

produces a 4-neighbourhood, neighbourhood 2 gives an 8-neighbourhood, and so on up to a 27-

neighbourhood. Figure 3.3 depicts a fully connected graph where each node is connected to all

other nodes. The neighbourhood distance is computed using the Euclidean distance equation,

where distances that fall within or are equal to the neighbourhood distance are noted with a 1,

and the remainder are marked with a 0. Due to the fact that it is a binary adjacency matrix,

all related nodes are represented by 1 and 0. As a GCNs Filter for the Learning feature over a

whole 2D grid graph, we change the graph to a modified laplacian. For the classification task,

the input graph signal and associated whole graph adjacency matrix are provided to the model

as depicted in Figure 3.4.

3.4.2.2 Global Euclidean Adjacency matrix

Similar to the binary adjacency matrix, we have built the Euclidean adjacency graph, in which

edge connections indicate Euclidean distance and 0 otherwise. It will start with the neigh-

bourhood distance of 1 to 27. The length of neighbourhood distance 1 tells us which nodes

lie within radius 1, the length of neighbourhood distance 2 tells us which nodes fall within

radius 2, and so on up to a 27-neighbourhood distance. In the case of this adjacency matrix,

the invested Euclidean distance has been considered. As a node moves away from the centre

nodes, the Euclidean distance between them begins to decrease. In other words, the greater the

Euclidean edge distance value, the closer the nodes are. The value 0 is assigned to all nodes

whose Euclidean distance is greater than or equal to the neighbourhood distance. As a GCNs

Filter for the Learning feature over a complete 2D grid graph, we have additionally transformed

the graph to a modified Laplacian. For the classification task, the input graph signal and related

graph adjacency matrix are provided to the model as depicted in Figure 3.4.

56

3.4. Case study/ experimentation on image domain

3.4.2.3 Global Gaussian Adjacency matrix

In this manual construction of a Gaussian adjacency matrix, the Gaussian value for each node

is calculated by entering the parameters µx, µy, σx and σy into Equation 3.1. In each global

adjacency matrix, assuming a single neighbourhood distance, produces a graph; similarly, for

each of the 27 radiuses , present the corresponding number of graphs. In the case of Gaussian,

the value of the standard deviation is treated as if it were a neighbourhood distance, which

results in a single graph. To produce Gaussian values for all nodes with reference to the centred

node and to shift the µx and µy values of each centre node to the next centre node. This produces

a complete Gaussian adjacency matrix. We may generate different graphs by adjusting the

standard deviation value. All self-nodes are set to 0, and the threshold for clipping the Gaussian

curve, denoted by sigma x and sigma y, is equal to the neighbourhood radius.

3.4.2.4 Local Adjacency matrix

In this local adjacency matrix, the graph construction approach is similar to that of the global

matrix, with the dimension being the sole difference. Instead of constructing a graph for the

entire image, we divide the 2D grid graph of image size into subgraphs of lower sample size.

Construct a sampling-size 2D grid graph, for instance, 5×5 in our case, using the same method

described for global graphs for binary, inverse Euclidean, or Gaussian distance adjacency ma-

trices. After creating the subgraph, the convolution on the subgraph using the sampler function

will be performed, as described in Section 3.3.2. Figure 3.6 illustrates the straightforward

architecture of the sampler function used to extract local subgraphs from a large graph and

pass them through a graph convolution and pooling operation. Figure 3.5 demonstrates the

classification of the MNIST digit image using two sampler functions with output channel 32 in

conjunction with two desnse layers and a softmax classifier. For a fair comparison, we maintain

the same architecture design for both global and local systems.

3.4.2.5 Discussion

To investigate the behaviour of the model, a range of hyperparameters are utilised throughout

the training of both local and global models. In order to ensure a fair comparison, the FCNN,

CNN, and GCN models maintain a simple architecture. It is understandable that increasing the

hyperparameter could result in an improvement in the model’s performance. As an illustration,

we have considered the global graph model depicted in Figure 3.4A. with two GCN layers with

output channel 32, followed by a Dense layer with ReLU activation and a softmax classifier.

57

3. Graph construction as a study

Our straightforward architecture for all models consists of a single layer, then followed by a

classifier. The performance is shown in Table 3.1 after the inclusion of these extra layers. Here

are three distinct models constructed using three distinct techniques. This accuracy measure

is evaluated at epoch 50 with a radius of 1. In comparison to the performance of the simple

global architecture depicted in Figure 3.4B., Table 3.1 reveals that its accuracy is inferior. To

understand the effect of the graph construction approaches on the working behaviour of the

GCN operator, it is crucial to maintain a simple architecture throughout, consisting of a single

layer between the input layer and output classifiers. Let’s examine the global model results

depicted by the changing graphs in Figure 3.7. Each curve is represented by distances ranging

between 1 and 27. During epoch 50, accuracy and loss value are considered when plotting for

each radius. Observing the behaviour of these simple global models with various graphs reveals

the variable learning feature according to the radius and graph techniques. At radius 5, there

is a major reduction in the ability to learn over a Gaussian graph, whereas binary and inverse

Euclidean continue a gradual decline until radius 15, after which binary declines sharply. In

contrast, the Gaussian graph joins the Euclidean graph trend with a smooth step. Conclusions

drawn, we can conclude that inverse Euclidean and Gaussian graphs follow some stability in

the consideration of distant features, whereas binary graphs do not. It is crucial that all graphs

trained at epoch 50, with a radius of 1, exhibit improved performance. When selecting a radius

of 1, let’s train all global models across 500 epochs. As seen in Figure 3.10, the Gaussian graph

has low performance when compared to the other two graphs. This study demonstrates that the

Gaussian method of graph formation lacks the ability to establish efficient edge connections to

be learned by the GCN operator and hence favours other methods of construction.

Let’s discuss the local graph method shown in the architecture of Figure 3.5. As depicted

in the sampler function Figure 3.6. The implementation of the sampler function in local ar-

chitecture consists of dividing the graph into subgraphs, passing these local graphs with local

signals to the GCNConv operator, followed by average pooling. Their operation is described

in Section 3.3.2. There are various model combinations that are trained. It corresponds to the

strategy of a single graph with many radii and a single radius with many graphs. The training

curves are illustrated in Figures 3.11 and 3.12. When studying these curves, we discover that

modifying the radius of a local, smaller subgraph has no appreciable effect on performance.

The performance of local and global graph models can be seen in Figure 3.8. In this in-

stance, training was conducted until epoch 500 while maintaining the optimal radius of 1 for

the global binary graph. Using the same parameters as our proposed local architecture, the

58

3.5. Summary

graph convolution operator acquires localised features more effectively than global features,

which struggle to maintain performance. Its constancy across 500 epochs is remarkable to ob-

serve. Even when compared to CNN and FCNN models in Figure 3.9, the global GCN model’s

performance is superior. The outcomes of the training can be seen in Table 3.1, which reveals

that all local models outperform global models at epoch 50, which is intriguing. Improved

results can be noticed in addition to working on larger graphs.

Layer Activation Train/Test Acc@E50
FCNN Dense ReLU 0.9973 / 0.9627
CNN Conv2D ReLU 0.9998 / 0.9843

GCN Global Binary GCNConv LeakyReLU 0.9508 / 0.9406
GCN Global InvEuclidean GCNConv LeakyReLU 0.9511 / 0.9422

GCN Global Gaussian GCNConv LeakyReLU 0.9421 / 0.9315
GCN Local Binary Sampler function LeakyReLU 0.9522 / 0.9514

GCN Local InvEuclidean Sampler function LeakyReLU 0.9527 / 0.9532
GCN Local Gaussian Sampler function LeakyReLU 0.9532 / 0.9497

Table 3.1: Architecture parameter settings: FCNN, CNN, GCN Global and GCN Local. Sample func-
tion internaly used GCNConv and global average pooing. Here GCN Global trained at 500 epoch and
observer at 50. CNN and FCNN trained at 100 epoch. Local Binary at 500, Gaussian and Inverse Eu-
clidean at 1000.

Training (%) Validation (%) Testing (%)
Binary Distance 0.9954 0.9810 0.9795

Inverse Euclidean Distance 0.9963 0.9780 0.9800
Gaussian Distance 0.9956 0.9778 0.9773

Table 3.2: Global graphs with architecture 3.4A.: Metrics accuracy value observed at epoch 50 and
radius 1.

3.5 Summary

With the use of the local subgraph approach, this study suggests a unique technique for con-

ducting convolutional operations on irregular graphs by breaking down the larger graph into

smaller subgraphs. Convolutions are used to handle the non-trivial irregular kernel design

while learning spatially localised features in the spectral domain of the graph Laplacian. Pro-

posed weighted graph construction methods explore the behaviour of models in terms of sta-

bility. Results are shown for learning on the entire graph as a problem of irregular domain

59

3. Graph construction as a study

Global Accuracy

Global Loss

Figure 3.7: Metrics with different global models: Training and Testing curve plotted for an increasing
radius from 1 to 27. Each metric value considered at epoch 50.

60

3.5. Summary

Global Vs Local Acc Global Vs Local Loss

Figure 3.8: Global Vs Local: plotted metric vs epoch by keeping neighbourhood distance 1.

All Global and Local Single sigma Acc All Global and Local Single sigma Loss

Figure 3.9: All Global and Local Single sigma: Comparision with CNN, FCNN and GNN based Global
and Local models. Metric value has considered at epoch 100 with all model distance 1.

All Global different graphs Acc All Global different graphs Loss

Figure 3.10: All Global different graphs: Training curve of global graph models with same locality
distance of 1 for all.

61

3. Graph construction as a study

(A.) Local BinDist Training Accuracy (B.) Local BinDist Training Loss

(C.) Local GaussDist Training Accuracy (D.) Local GaussDist Training Loss

(E.) Local InvEuDist Training Accuracy:FiltSiz-5,R-
variable

(F.) Local InvEuDist Training Loss

Figure 3.11: Traninig curves for Single model Vs Many sigmas: None is default graph. With local filter
size 5, the value of sigmas is standard deviation in Gaussian, whereas in binary and inverse Euclidean
graph, it is neighbourhood euclidean distance. Any distance greater than sigmas or neighbourhood
distance is 0.

62

3.5. Summary

(A.) Local AllGraph Sigms-1 Training Accuracy (B.) Local AllGraph Sigms-1 Training Loss

(C.) Local AllGraph Sigms-1.5 Training Accuracy (D.) Local AllGraph Sigms-1.5 Training Loss

(E.) Local GaussDist Training Accuracy (F.) Local AllGraph Sigms-2 Training Loss

(G.) Local AllGraph Sigms 2.5 Training Accuracy (H.) Local AllGraph Sigms 2.5 Training Loss

Figure 3.12: Training curve of single sigma Vs Many graph: Each curve is plotted to observe the effect
of same distance with many graphs.

63

3. Graph construction as a study

(I.) Local AllGraph Sigms 3 Training Accuracy (J.) Local AllGraph Sigms 3 Training Loss

Figure 3.12: ALL Graph Diff Sigmas (continued from previous page)

categorization as well as learning on a localised extracted subgraph, and they demonstrate the

capability of learning localised feature mappings throughout a network’s numerous layers. The

use of a graph global pooling approach that aggregates vertices in the subgraph spatial domain

needs further investigation to improve the subgraph partition method. We found that local

sampler functions learn localised features more prominently than global image arrangement.

We also discovered that such a model is more stable. We further notice that the changing dis-

tance in local architecture does not appear to improve, although it does in global architecture,

particularly in binary.

By taking into account the learning of localised features by subdividing the entire image

data and processing each subdivided data, it may be possible to solve various computer vision-

based medical image analysis tasks, such as cell segmentation and cell detection in immunos-

tained histology images. Utilising the benefit of local graph processing, we will investigate the

segmentation problem in the following chapters and cell detection in the chapter after that.

64

Chapter 4

Segmentation in Irregular Domain
Data

Contents
4.1 Introduction . 66

4.2 Methods . 67

4.2.1 Proposed network architecture 68

4.2.2 Proposed method of utilizing Spectral based Graph-CNN 68

4.2.3 Proposed method of utilizing Spatial based Graph-CNN 71

4.3 Experimentation . 72

4.3.1 Generation of Hodgkin Lymphoma (Ground Truth) Segmentation 72

4.3.2 Segmentation using Clustering Method 74

4.3.3 Segmentation using Deep Learning 75

4.3.4 Segmentation using Spectral Graph-CNN 76

4.3.5 Segmentation using Spatial Graph-CNN 77

4.4 Results . 78

4.5 Summary . 80

65

4. Segmentation in Irregular Domain Data

4.1 Introduction

Medical image analysis is a critical component of modern healthcare, enabling the detection

and diagnosis of diseases at an early stage. However, the accuracy and efficiency of medical

image analysis depend on the quality of the segmentation process, which involves dividing an

image into meaningful regions or objects. In medical imaging, segmentation is used to identify

specific structures or tissues within an image, such as tumours or blood vessels. Due to the

limitations of clinical procedures and image analysis, pathologists have difficulty understand-

ing diseases at an early stage. Automated segmentation can play a vital role in improving the

accuracy and efficiency of disease diagnosis and early detection. There are several segmen-

tation methods, including conventional and deep learning. We are primarily concentrating on

utilising graph-based convolution operations for medical image applications. As demonstrated

in Chapter 3, we observed that sampler extraction of local features offers enhanced stability

and performance when employing graph convolution techniques. This approach holds promise

for improving the accuracy and efficiency of feature learning in biomedical image applications

and contributing to the advancement of graph-based deep learning methods.

The research problem addressed in this study pertains to the accurate and efficient anal-

ysis of microscopic immunostaining images of Hodgkin lymphoma containing CD4, CD8,

and FOXP3 cell staining. Hodgkin lymphoma is a complex malignancy characterised by the

presence of specific immune cell markers, namely CD4, CD8, and FOXP3. Identifying and

quantifying these cell populations in immunostaining images is crucial for understanding the

disease’s pathological characteristics and its progression. However, the manual analysis of

such images is time-consuming and subject to inter-observer variability. In order to automate

the segmentation and quantification of CD4, CD8, and FOXP3 cell staining in the microscopic

images and enable more effective and accurate analysis for improved disease diagnosis and

research outcomes, the research aims to develop advanced deep learning-based methods and

computational techniques.

Graph-based convolution leverages the connectivity information within the graph to com-

pute node-based features, allowing the analysis to be more localised and context-aware. This

approach overcomes challenges posed by the irregular distribution of cells in Hodgkin lym-

phoma images and enables the extraction of relevant information at a finer scale. By integrat-

ing graph-based convolution as a sampler in the analysis pipeline, the research aims to enhance

the accuracy and efficiency of cell segmentation and quantification, providing valuable insights

into the distribution and density of CD4, CD8, and FOXP3 cell staining. Graphs are an effec-

66

4.2. Methods

tive representation of such irregular data, where nodes represent individual cells, and edges

capture the spatial relationships between neighboring cells. By modeling the image as a graph,

the graph-based convolution operation efficiently samples local features, improving the analy-

sis process. With graph convolution, each node is updated based on the information from its

neighboring nodes and processed for the convolution operation. This enables the analysis to

capture important local patterns and characteristics of the cell distributions, leading to more

robust and precise results in the study of Hodgkin lymphoma images containing CD4, CD8,

and FOXP3 cell staining.

In this chapter, we propose two graph-based convolution methods for cell segmentation to

improve the accuracy and efficiency of disease diagnosis and early detection. Our proposed

methods use advanced deep-learning, spectral, and spatial-based graph signal processing ap-

proaches to learn features. The proposed methods are motivated by the convolutional neural

network U-Net architecture that uses both spectral and spatial-based graph convolutions to

learn features from irregular domain data such as immunostained slides. These FCN and U-

Net architectures are primarily based upon convolutional neural network (CNN), where a FCN

requires more training data and the U-Net is initially designed for biomedical images with few

samples with no dense layer. Our contribution in this chapter is to apply a graph convolution

operator on the non-Euclidean data and propose a method for segmentation task on biomedical

cell image data such as immunostaining images of Hodgkin lymphoma.

Section 4.2 provides a proposed methods of cell segmentation followed by experimenta-

tion, results and summery in subsequent section 4.3, 4.4 and 4.5

4.2 Methods

We proposed spectral and spatial-based methods. Spectral-based convolution uses filters from

the perspective of graph-signal processing while spatial-based convolution defines graph con-

volutions by information propagation. In a spectral-based approach, convolution operations

are performed in the frequency domain. The matrix representation of the graph is convolved

with the features matrix. The result multiply with the weights W i on each nodes in the ith layer

and passed through the hidden layer non-linear function. In conventional CNN, the pooling

layer is used to reduce the resolution of input feature map but in the case of a graph, there

is no reduction of size due to the multiplication of the filter with spectral signal [127]. To

pool local feature output from the convolution layer, it is required to perform graph coarsening

which reduces the number of vertices, and handle the edges between these vertices based on

67

4. Segmentation in Irregular Domain Data

the similar properties. In graph convolution, there is no reduction of vertices, only changes

in the output filter channel. But for the precise classification, pooling generalizes features in

the spatial domain. Agglomerative pooling is a bottom-up approach to reduce vertices and

project the features on a new graph. There are various methods to do graph coarsening such as

graclus etc. One of the common methods for selecting vertices is to select a subset of the set

of vertices or generate new nodes. Algebraic Multigrid (AMG) is a graph coarsening method

which project a signal to a coarser graph by greedy selection of vertices. This method is used

as a pooling operation on graph [127]. Spatial-based graph convolution follows the similar

approach of convolutional operation of a conventional CNN on an image. Their operation is

based on a node’s spatial relations. Images are represented as a special form of 2D graph with

each pixel representing a node and is directly connected to its nearby pixels. Similar to con-

ventional convolution operation, spatial graph convolution perform convolution operation by

considering its neighbours’ representations of node and central node.

4.2.1 Proposed network architecture

Motivated by the convolutional neural network U-Net architecture, we propose a similar archi-

tecture using spectral based graph convolution and graph pooling. The network architecture

is illustrated in Figure 4.1. The encoder part consists of its three blocks, each consisting of

three graph convolutions and graph pooling layers. For graph-pooling operation, we utilize

AMG coarsening to obtain the restriction and projection matrices. The decoder part starts with

the graph up-pooling operation in sequence with the last pooling operation of an encoder. It

consists of three layers of graph convolution, each initiated with a graph up-pooling operation.

In the case of up-pooling operation, we used the projection matrix of previous coarsened graph

to reconstruct original size graph dimension.

In the spatial approach based graph convolution architecture, we have used mixture model

CNN (MoNet) framework for the graph convolution operation where each convolution oper-

ation is followed by activation. Here we have avoided the pooling operation as the spatial

approach used aggregative methods of neighbour node used to learn efficiently large graphs.

4.2.2 Proposed method of utilizing Spectral based Graph-CNN

To perform convolution on the graph, spectral theory is used to define the analogue to convolu-

tion, and for the downsampling and upsampling operations, graph coarsening as a pooling layer

is defined. While performing the graph pooling, we partition the graph into coarsened graphs

68

4.2. Methods

Figure 4.1: GCNN architecture: blue color box represents output result of the graph, processed by oper-
ations GCN/G-pooling. It also mentioned the size of the graph: number of nodes and output channels.

Figure 4.2: Spatial GCNN architecture: blue color box represents output result of the graph, processed
by operations spatial GCNN. It also mentioned the size of the graph: number of nodes and output
channels.

and use projection and restriction for graph pooling and graph up pooling operation [85, 156].

Training is fed forward through the network to obtain output, and loss propagates backward to

update the weights. The graph holds spatial information about the connectivity of nodes and

allows graph processing tools, such as convolution and pooling, to operate on signals [12].

To perform the graph convolution, an image is considered a 2D grid graph, having a set

of nodes (V), set of weighted edges (E) and and adjacency matrix (A). The graph possesses

the property that each node is connected with its neighbouring nodes, which form the basis

of locality for the convolution operation. The graph structure of the image represents irregu-

lar data, and graph Laplacian is the core operator for the graph convolution layer. The graph

69

4. Segmentation in Irregular Domain Data

convolution operator used here is spectral-Based GCN, and their operations are described in

section 2.3.2.1. However, a simplified expression of the graph convolution operation is ex-

plained here. Let N be the number of nodes holding the 3 RGB pixel values at each node,

say, in the d dimension. This expression is nicely derived from spectral-base graph convolu-

tion [121]. X is a feature matrix of dimension N×F0, where N is the number of nodes and F0

is the number of features on each node. The 2D grid graph is created to hold this signal, with

the dimension N. The N×N binary matrix stores the connectivity of the node and is called

adjacency matrix, represented by A. Like conventional CNN, the hidden layer in graph-CNN

is represented by

H i = f (H i−1,A) (4.1)

as H i is ith hidden layer. For optimisation and training, weight is assigned to edges between

connecting nodes as W i and also considers the self-node features that are added into the adja-

cency matrix. So, the new adjacency matrix is Â = A+ I where I is an identity matrix. Graph

convolution is modified as follows: first compute the node feature representation of each node

by aggregating the feature representation of its neighbours, and then transform it by multiply-

ing by the weight matrix. To avoid the gradient exploding, normalise the feature representation

by adding the degree matrix D−1. The whole graph convolution is represented as

f (H i,A) = σ(D0.5AD0.5H iW i) (4.2)

where σ is a nonlinear activation function. The Laplacian matrix is decomposed into the

orthonormal vector U . This eigendecomposition of the graph Laplacian gives the Fourier mode

and graph frequencies. So, the generalised equation of graph convolution is

f (H i,A) = σ(U ∗ s) (4.3)

where s is a signal on a graph.

For the graph pooling operation, we are using the AMG method to coarsen a graph and

projecting signals on a new coarsened graph via a greedy selection of vertices [157]. The two-

level coarsening is shown in Figure 4.5. Every AMG coarsened graph provides the restriction

matrix R and the projection matrix P for the interpolation of the input signal s. Downsampling

operation is performed by multiplication of signal and restriction matrix

s j = si ∗Ri

and reverse pooling by multiplication with projection matrix

si = s j ∗P j

70

4.2. Methods

Where s j is the output of the downsampling operation and si is the output of upsampling. Ri

and P j are the restriction and projection matrices, respectively.

4.2.3 Proposed method of utilizing Spatial based Graph-CNN

Similar to the conventional CNN on the two-dimensional grid image, spatial-based graph con-

volution defines the spatial relation between the node and its neighbouring nodes on the graph.

Each node is represented as a vertex of the graph, and the value is the signal on that vertex. In

the spatial graph convolution network, centre nodes are updated by averaging the neighbouring

nodes, analogous to the conventional CNN.

In our case, we are using a spatial-based mixture model CNN for graphs (MoNet). MoNet’s

use of a Gaussian mixture model (GMM) to learn filters on graphs is one of its key innovations.

This increases the interpretability of the filters, as each basis function corresponds to a local

pattern in the graph. Each basis function is defined as a Gaussian centred on a certain graph

node or pixel. During training, the weight of each basis function is learned, and the number of

basis functions is a hyperparameter that can be tuned for optimal performance on the given task.

In addition, the use of a GMM enables the model to learn a set of filters that capture various

aspects of the graph structure, as opposed to relying on a single global filter. This can result

in enhanced performance on tasks like graph classification. MoNet can utilise a predefined

set of basis functions that correspond to various levels of image abstraction. One set of basis

functions may capture low-level features like edges and corners, while another set may capture

higher-level features like object shapes. In this approach, the pixel-neighbourhood relationship

can be represented by a pseudo-coordinate. x represents a vertex on a graph, and y ∈ N(x) are

the vertices in the neighbourhood of x. Assign a d dimensional vector of pseudo-coordinate

u(x,y). The pseudo-coordinate calculates the degree of nodes by the equation

u(x,y) = (1/
√

deg(x),1/
√

deg(y))T (4.4)

In this coordinate space, parametric learnable Gaussian kernel function is defined as below:

Wj(u) = exp(−1/2(u−u j)
T (Σ j)

−1(u−u j)) (4.5)

where Σ j and u j are learnable d×d and d×1 covariance matrix and mean vector of Gaussian

kernel. This Gaussian kernel acts as a basis function.

With the help of these kernel functions, a patch operator is used to perform the function of

convolution. This operator applies the Gaussian kernel to each node pseudo-coordinate with

all neighbourhoods and summons up the results [124].

71

4. Segmentation in Irregular Domain Data

D j(x) f = ∑
yεN(x)

w j(u(x,y)) f (y), j = 1, ...J, (4.6)

The patch operator can be defined by the above equation, Where J represents the dimensional-

ity of the extracted patch. The generalised graph convolution operation is written as

(f ∗g)(x) =
J

∑
j=1

g jD j(x) f , (4.7)

where g j is the learnable weight matrix. The output of the convolution process is a set of

feature vectors that encapsulate the structure of the graph at a particular level of abstraction.

By utilising a set of basis functions, MoNet can capture a wide range of local graph structures,

from low-level features such as edges and corners to higher-level features such as object shapes

and structures. This enables MoNet to learn highly expressive feature representations, such as

image classification.

Some of the advantages of MoNet over spectral-based networks are that it is highly expres-

sive and capable of learning complicated filters that reflect the graph’s underlying structure. It

is computationally efficient since it permits the sharing of parameters among nodes and is scal-

able to huge graphs because only local information must be transmitted between surrounding

nodes.

4.3 Experimentation

4.3.1 Generation of Hodgkin Lymphoma (Ground Truth) Segmentation

Microscopic immunostaining images of Hodgkin lymphoma are medical images obtained

through a staining technique that allows specific immune cell markers to be visualized in tis-

sue samples of Hodgkin lymphoma. Immunostaining is used to identify and highlight certain

proteins or markers within the tissue, enabling researchers and pathologists to study the distri-

bution and characteristics of specific immune cell populations in the lymphoma. CD4, CD8,

and FOXP3 are markers for different types of immune cells. They play crucial roles in the

body’s immune response and are commonly used as indicators to identify and quantify specific

immune cell populations in tissue samples. Here’s a brief explanation of each marker:

1. CD4: CD4 is a protein found on the surface of helper T cells, which are a type of white

blood cell. Helper T cells play a central role in coordinating the immune response, help-

72

4.3. Experimentation

ing other immune cells recognise and attack foreign invaders such as bacteria, viruses,

and cancer cells.

2. CD8: CD8 is a protein present on cytotoxic T cells, also known as killer T cells. Cyto-

toxic T cells are responsible for directly attacking and destroying infected or cancerous

cells in the body.

3. FOXP3: FOXP3 is a protein marker found on regulatory T cells, which are immune

cells responsible for maintaining immune tolerance and preventing excessive immune

responses that could damage healthy tissues.

In the context of medical imaging, immunostaining images of Hodgkin lymphoma con-

taining CD4, CD8, and FOXP3 cell staining provide essential information about the presence,

distribution, and density of these immune cell populations within the lymphoma tissue. Ac-

curate identification and quantification of these cell populations are critical for understanding

the disease’s pathological characteristics, its progression, and potential treatment responses.

Automated analysis and segmentation of these immunostaining images using advanced deep

learning techniques, such as graph-based convolution operations, can significantly improve the

accuracy and efficiency of cell identification and quantification. This can lead to more reliable

and consistent results in disease diagnosis, prognosis, and research, contributing to improved

patient care and medical advancements in Hodgkin lymphoma and potentially other diseases

as well.

To create a ground truth generation, we have focused on CD4, CD8, and background

(FOXP3). To create a ground truth label for segmentation, a manual labelling process was

undertaken, involving the selection of contour points for each cell class. Subsequently, all the

pixels within the contours were filled with the unique class ID corresponding to the specific cell

type, whether CD4, CD8, or the background (FOXP3). This process results in a ground truth la-

bel that aligns with the original image size, where every pixel is assigned a class label, making

it a dense labelling technique. The dense labeling approach ensures that each pixel is asso-

ciated with the appropriate cell class, including the background (FOXP3), enabling accurate

segmentation and analysis of CD4, CD8, and FOXP3 cell populations in the immunostaining

images of Hodgkin lymphoma.

Further, the labelled data we have created is used for supervised machine learning to learn

meaningful features from the data and for deep learning experimentation.

73

4. Segmentation in Irregular Domain Data

4.3.2 Segmentation using Clustering Method

Clustering is a crucial step in image segmentation, and among the various approaches avail-

able, the K-Means algorithm stands out for its popularity and effectiveness. K-Means is a

simple yet powerful technique used to cluster pixels based on their colour information. The

process involves randomly selecting k initial cluster centres and iteratively updating them to

minimise the sum of squared distances between each pixel and its nearest cluster centre. Once

the centres converge, pixels are assigned to the closest centre, resulting in distinct segments or

regions within the image. Owing to the effectiveness of the K-Means clustering method [158],

we have selected it for our data, as shown in Figure 4.3. In our specific application of mi-

croscopic immunostaining images of Hodgkin lymphoma, we aim to segment the images into

three classes: CD4, CD8, and the background. The number of selected clusters, K, is set to

three to accommodate these three classes. By employing K-Means, we can efficiently deter-

mine the nearest pixels assigned to random centroids and update these centroids based on the

mean of the pixels in their respective clusters. The result of the K-Means clustering process

is a segmented image that displays the distribution and spatial arrangement of CD4, CD8, and

background elements within the immunostaining images. This segmentation is vital for gaining

insights into the pathology of Hodgkin lymphoma, understanding the distribution of specific

immune cell markers, and potentially aiding in disease diagnosis and prognosis. However, it

is essential to critically consider the advantages and limitations of segmentation based on clus-

tering. One significant benefit is its simplicity and efficiency, allowing for real-time processing

of massive datasets. Moreover, clustering-based segmentation does not require prior knowl-

edge or training data, making it valuable in situations where labelled data may be scarce or

unavailable.

Despite these advantages, K-Means clustering has its limitations. One notable drawback

is its sensitivity to the initial cluster centres or characteristics. Depending on the initial cen-

troids’ placement, the segmentation results may vary, and suboptimal placements can lead to

poor segmentation. Additionally, clustering-based segmentation can sometimes result in over-

segmentation or under-segmentation, where regions are separated into an excessive number of

small segments or too few large segments, respectively. These challenges need to be carefully

considered and addressed to ensure accurate and meaningful segmentation results.

74

4.3. Experimentation

Figure 4.3: k-means clustering of Hodgkin lymphoma immunostaining image. Left: Original image-red
colors represent a CD4, purple shows CD8 and rest are background FOXP3 protein., Right: Segmen-
tation via k-means- red colors represent a CD4, yellow shows CD8 and rest are background FOXP3
protein.

4.3.3 Segmentation using Deep Learning

In using deep learning, we used a fully convolutional neural network as one of the state-of-the-

art methods for segmentation. We prepared the data and created patches of size 224×224 from

a 768×1366 size image. With the supervised deep learning approach, we need data images as

well as respective class label masks for each patch.

In this architecture, the encoder contains several layers. Each layer is a combination of con-

volution followed by pooling operation. At each convolution, the 3× 3 kernel convolve with

the input image and produce output feature maps. The decoder is used to reconstruct the origi-

nal image by upsampling and skip connections. In the experimentation, initially 224×224 size

patches were fed into the network. The intersection over union (IOU) accuracy was observed

with varying accuracy when it was tested on the unseen image. The resulting output obtained

from this fine-tuning is shown in Figure 4.4. The choice of hyperparameters such as optimizer,

learning rate, and loss function can greatly impact the segmentation model’s performance. The

optimizer is responsible for updating the model’s weights to minimise the loss function during

training. The Adam optimizer is a popular option for segmentation problems since it is an

adaptive optimisation method that adjusts the learning rate for each parameter using a combi-

nation of momentum and RMSprop. It has been demonstrated to converge more quickly and

effectively than other optimisation methods, making it a suitable option for segmentation prob-

lems using deep learning. The learning rate controls how frequently the optimizer updates the

model’s weights. A high learning rate can cause the optimizer to overshoot the minimum of

the loss function, resulting in instability and slow convergence, whereas a low learning rate can

cause the optimizer to become stalled at local minima. A decent starting point for the learning

75

4. Segmentation in Irregular Domain Data

Figure 4.4: Left: Original Image, Right: FCN Fine-Tuning method. CD4 and CD8 can clearly distin-
guish in FCN results from background.

rate is often around 0.001, and that makes our models a good choice. The pixel-wise cross-

entropy loss function is used by FCN to measure the error between the predicted segmentation

map and the ground truth segmentation map at each pixel location. We have used a total of 414

patch samples for training and validation.

4.3.4 Segmentation using Spectral Graph-CNN

Due to the resource limitations associated with spectral-based graph convolution, we divided

the original image into patches of size 32×32×3. Random sampling was employed to select

a limited number of 1400 patches per image. After assessing the patch sizes, we removed any

inappropriate patches to ensure a standardized input size for the graph convolution process. To

process this patch using the graph, first we need to construct the graph that holds the signal,

which is 32×32×3 size.

The input signal to the Graph-CNN is a 32×32 patch obtained from a divided histological

image. Each node in the graph corresponds to a pixel within the patch, and the node signal

is represented by a 1024× 3 feature vector, capturing the spectral information of each pixel.

The adjacency matrix A encodes the spatial relationships between nodes, defining the edges of

the graph. The Graph-CNN learns a representation of this graph, combining both spatial and

spectral features of the patch. By processing the graph representation, the model generates a

pixel-wise segmentation map as output. This approach allows the model to effectively capture

both local and global relationships between pixels, enabling accurate predictions for segmen-

tation tasks. The Graph-CNN excels in handling data with complex structures and textures,

making it particularly valuable for identifying objects and regions in an image while recognis-

ing their unique characteristics, thus enhancing the accuracy of segmentation predictions.

76

4.3. Experimentation

Figure 4.5: Graph representation: Left: Original graph of the 2D grid, Middle: first coarsening level
with AMG pooling, Right: second coarsening level with AMG.

4.3.5 Segmentation using Spatial Graph-CNN

In the experimentation with spatial graph CNN, we are using a MoNet operator as described

in the method section. We have set the neighbourhood of each vertex to 4 as changing dis-

tance in local architecture does not appear to improve as we found in Chapter 3, and based

on the Euclidean distance, their respective four adjacent nodes have been collected in sorted

order to build an adjacency matrix of k nearest neighbours graph. To perform a Gaussian

kernel operation, the coordinate distance between the source and target nodes is used as a

pseudo-coordinate. In the operation, apply the Gaussian kernel w j(u(x,y)) over each pseudo-

coordinate on the nodes and their neighbours y ∈ N(x) the result is multiplied with the signal

on the neighbour f (y) and summed all the neighbour’s results. We have used a Gaussian kernel

of size 25 and summed up the result of each Gaussian output patch. All operations are defined

by the patch operator. This patch operator is multiplied with the learnable weight matrix to

perform a convolution operation, as shown in Equation 4.7.

The architecture used in the model contains four graph convolution blocks with output

feature sizes of 32, 64, 32, and 3, giving the segmented output the same dimension as the

input. Each layer is followed by the LeakyRelu activation function, except the last layer. In the

architecture diagram 4.2, the blue box shows the output graph with the number of nodes and

feature size, and the edges describe the convolution operation. For the training, ten thousand

random patches from each image size of 1366× 768 graph signal, have been collected for

21 such image patches. The data is trained with 5-fold cross-validation with the RMSprop

optimizer and a learning rate of 1e-5. We have set the training epoch to 10 with batch size 1,

which helps to enhance the functionality of the patch operator and learn the feature better as

compared to spectral-based graph convolution, as shown in confusion matrix Figure 4.6.

77

4. Segmentation in Irregular Domain Data

Figure 4.6: Confusion Matrices of segmentation methods. Top left: FCN, Top right: Spectral Graph-
CNN, Bottom: Spatial Graph-CNN.

4.4 Results

For training and testing, we have used a total of 23 images of size 1366×768 cell segmentation

dataset. For FCN approach training and validation, the data sample is divided into a ratio of

70:30 for the total of 414 patch samples. We report an average accuracy of 87.07% computed

over a total of 18 patch samples of size 224×224. Regarding the graph-based approach: due to

limitation of resources we used samples of size 32×32 and total number of sample for training

and testing is 30800 with 70:30 ratio. The pixel accuracy is taken over 1008 unseen image

samples for both spectral and spatial-based approaches, with an improvement of 2.2% and

3.94% compared with the FCN approach, respectively. Their class-based comparative analysis

of quantitative measures can be seen in the confusion matrix of Figure 4.6 where both spectral

and spatial-based methods show considerable improvement.

The comparative quantitative and qualitative results of the proposed method are shown in

Table 4.1 and Figure 4.7. Along with the resultant image, we have also presented the cropped-

78

4.4. Results

Method Pixel Accuracy (%)
FCN 87.07

(Ours)Spectral Graph-CNN) 89.29
(Ours)Spatial Graph-CNN) 91.03

Table 4.1: Quantitative comparison of results.

(a) Ground Truth (b) FCN result

(c) Spectral G-CNN result (d) Spatial G-CNN result

Figure 4.7: Qualitative Comparison of Results. (a): Ground Truth of original image of different sam-
ples, (b): Result obtained by FCN method, (c): Result obtained by G-CNN method, (d):Result obtained
by Spatial G-CNN method. Red color represent the CD4 stain cells and Green color corresponds to
CD8.

in region to show off the localization and segmentation in Figure 4.8. It is observed that the

size feature of the cell is better represented by a graph-based approach with an improved result.

It was also observed that spectral-based methods work best with small graphs, while spatial-

based methods perform better with large graphs.

79

4. Segmentation in Irregular Domain Data

Ground Truth FCN result Spectral G-CNN Spatial G-CNN

Figure 4.8: Cropped-in region to show off the localization and segmentation.

4.5 Summary

This study proposes a novel method of performing segmentation on cell images using spectral

and spatial graph convolutional networks. It also allows patch-wise distribution of the original

image for better feature learning. Convolutions are performed in the spectral domain of the

graph Laplacian for learning of spatially localised features. Spatial-based graph convolution

handles different graphs to learn locally at each node. Results are provided on both conven-

tional CNN and graph-based CNN which shows graph-based CNN, has the ability to learn

localised feature maps across multiple layers of a network. We have also experimented with

these data with different traditional methods like clustering, thresholding, and deep learning

methods such as FCN, spectral, and spatial-based graph convolution. In observation, we have

found that graph convolution networks improve segmentation results.

80

Chapter 5

Cell Detection in Irregular Domain
Data

Contents
5.1 Introduction . 82

5.2 Method . 83

5.2.1 Graph proposal (Gp-NN) . 85

5.2.2 Multi-label graph classification network 86

5.2.3 Classifier . 87

5.3 Experimentation . 88

5.3.1 Dataset . 88

5.3.2 Training and Inference . 88

5.4 Results . 91

5.5 Summary . 92

81

5. Cell Detection in Irregular Domain Data

5.1 Introduction

In this chapter, we present a novel approach for cell detection in non-Euclidean data using

graph convolution networks (GCNs). GCNs have become increasingly popular in recent years

due to their ability to handle complex data structures such as graphs and networks. Due to

limitations of clinical methods such as noisy imaging and ambiguity in the data, the detection

of different objects in the cell image helps medical examiners automate their clinical work.

There are many methods developed to process Euclidean data for an object detection task in

conventional convolutional neural networks (CNN), but non-Euclidean data requires attention

in this regard.

In computer vision, object detection combines the tasks of classification and localisation.

Classification predicts the class label of the object in the image, while localisation locates the

object in the image. Various efficient techniques have been developed for object detection in

the context of Euclidean data, leveraging the capabilities of convolutional neural networks.

Noteworthy examples encompass RCNN, fast-RCNN, faster-RCNN, YOLO, etc [6,159–161].

However, the exploration of spatial-based graph convolution networks was initiated as early as

2009 [162], and since then, a plethora of methods have emerged [122,125,163]. By harnessing

the graph structure and node-specific information, these networks prove versatile in performing

diverse computer vision tasks, including node-level and graph-level classification [20]. This

compelling capability serves as motivation to delve into the arena of object detection within

the non-Euclidean domain.

The prospect of employing a graph neural network for object detection holds immense

potential, although its applicability has predominantly been explored within point cloud con-

texts [164]. When dealing with images represented as 2D grid graphs, the challenge lies in

deciphering the spatial relationships of objects from the sparse data distribution. In address-

ing this challenge, we present a novel algorithm that retrieves object proposals in the form of

subgraphs from the original 2D graph. Our approach involves a generalised feature extraction

technique tailored for non-Euclidean data graphs. This study marks the pioneering instance of

extracting object proposals as subgraphs from sparse data for the purpose of object detection.

Our focus encompasses two key challenges: firstly, devising a mechanism for object local-

ization through graph proposal extraction using a graph convolution network; and secondly,

training a model in the presence of highly unbalanced and noisy detection data. While previ-

ous works by Szegedy et al. proposed localization as a regression problem, the sliding-window

detector approach exhibited superior performance [159, 165]. Convolutional neural networks

82

5.2. Method

have been effectively employing the sliding-window technique for over two decades, and we

are contemplating its application within our system.

In this chapter, we propose a graph convolution-based region proposal mechanism for ob-

ject detection in non-Euclidean data. We mainly focus on the extraction of a subgraph as a

candidate for the prospective object region, the classification of the object candidate into cor-

responding class labels, and the detection mechanism. This chapter is divided into sections:

Section 5.2 elaborates on the method, including the graph proposal algorithm, Section 5.3 pro-

vides details about the data we have used and explains the experimentation and results. In the

last section, we conclude the findings of the chapter with a summary in Section 5.5.

5.2 Method

Our object detection pipeline consists of training and inference architectures. Figure 5.1 shows

the system overview, where the training architecture is divided into four parts. In the first

part, the input graph signal is a 1D vector representation of a 2D image. In the second, the

subgraph proposal mechanism outputs sub-graph proposals corresponding to object and non-

object regions. Next, the graph convolution network computes the features from the sub-graph

proposals. Lastly, a softmax classifier is added to classify subgraphs/graph proposals into

corresponding class labels.

In inference architecture, the terms "N-hop proposals" and "N-hop anchors" are used inter-

changeably. N-hop is the travel distance from the source node to the destination node. N-hop

proposals are subgraphs fetched in a sliding window fashion from the 2D graph with the help

of a breadth-first-search algorithm, and each fetched N-hop proposal has an arbitrary node size

with the distance "N-hop". Next, all the N-hop proposals are passed to the trained classifier.

The output N-hop proposals are referred to as bounding box proposals that qualify the thresh-

old. Furthermore, non-maximum suppression is created to remove unwanted bounding box

proposals. Finally, the object bounding box is produced.

Our object detection system consists of three main modules. The first is a graph proposal

mechanism that produces the subgraph, containing objects and background graph proposals.

The second module is a graph convolution network that helps extract the features from the

graph proposal, and the third is a classification network where graph features are classified into

related labels. We called our system ’Object Detection with Graph Proposal Neural Networks’

(Gp-NN), because of the use of a graph proposal mechanism for an object detection task.

83

5. Cell Detection in Irregular Domain Data

Class 0

Class 1

Class n
1. Input Graph
Signal

2. Sub-Graph
proposals 3. Compute Graph-

proposals features
4. Classify sub-
graph (N-hop)

Fetching
N-hop
regions

Sliding window
detetctor

Sub-graph
classifier trained
model

Non-Maximum-
Suppression for
1d signal

Object
bounding boxInput signal Output signal

with bbox

Training Architecture: From left to right, 1.Input graph signal on the 2d grid graph, 2.Fetch N-hop sub-graphs
from input graph signal and apply graph proposal algorithm 1 & 2, 3.Extracted graph proposals passed through the
graph convolution network(use GAT) for feature learning. 4. Softmax classifier to classify into object class

Build object
detection dataset
with sub-graph

proposals

Train graph
classification

model on dataset

During inference,
run sub-graph

proposals on input
image

Apply
1 dimensional

NMS

Return final object
detection results

Make predictions
on each proposal

using trained
model

Inference and Detection Pipeline: From left to right: Building dataset for the training purpose using sub-
graph/graph proposal mechanism, Used graph convolution networks for classification on this data, During inference
time, extract graph proposals in sliding window fashion for classification. From right to left: Pass each proposals
through trained model for prediction, Non-Maximum Suppression- Positive detected proposals passed through
NMS to remove unwanted bbox, Desired object bounding box as final result

Figure 5.1: Gp-NN Object detection pipeline

84

5.2. Method

5.2.1 Graph proposal (Gp-NN)

There are many ways to find the proposals and use them for classification in conventional CNN

as well as in the graph-based approach. In conventional CNN-based object detection, R-CNN

and fast R-CNN use a selective search proposal method. There are other methods as well; for

example, Cireşan et al. apply CNN on regularly-spaced square crops for the proposals [166].

In the case of a graph-based approach, graph matching and frequent subgraph mining are used

to extract the subgraph as a feature for classification [167]. The general idea is to represent

the regions of an image having similar properties by graph vertices and their relations between

vertices by edges. Quad-trees represent the image in the form of tree-like structures [168], and

Niusvel et al. used them for graph classification [167].

In our graph proposal approach, we consider the image as a 2D grid graph, with each vertex

representing a part of structural and topological information. To extract the graph proposals,

we used the Breadth-First-Search-based approach. In the graph domain, vertices are scattered

and do not have any spatial relationship, such as in Euclidean data. Hence, the challenge

of selecting the vertices that belong to a similar feature object can be solved with the help

of Breadth-First-Search with a chosen N-hope distance. The Algorithms 1 and 2 explain the

mechanism of graph proposal extraction. The input signal S, graph structure G = (V,E) and N-

Hop size are the essential elements of the algorithm. We created binary masks of each object

within the image with a centre coordinate. To find the size of the object, we considered the

varying N-hop distances from the centre coordinate node. The ground truth label is used in the

same manner as in Section 4.3.1 for the segmentation tasks, and then binary masks are created

for each object class from that ground truth label.

To generate a graph proposal, we have vectorised the 2D grid image. Each node is con-

sidered to have "k" number of N-HOP anchors as fetched in Algorithm 1, so the total number

of N-HOP anchors will be the number of nodes times "k" (N× k). Each anchor is the result

of Breadth-First-Search and is a collection of neighbouring nodes that provide feature infor-

mation. N × k anchors were compared with the ground truth binary masks. These binary

mask nodes are the ground truth object representations of the corresponding image, and N× k

anchors are all possible object proposals for the image. The possible object proposals that

passed the threshold value were categorised into object graph proposals and background graph

proposals, as mentioned in the Algorithm 2.

85

5. Cell Detection in Irregular Domain Data

Algorithm 1: BFS (Breadth First Search for Graph)
Require: i: node to be search, G = (V,E), N-HOP: max-nhop

Nlist = []
while j ≤ len(N−HOP) do

Apply BFS node searching with N-HOP length j and return all nodes n.
Append nodes n into Nlist ,Nlist =← n

end while
return Nlist

Algorithm 2: Graph Proposals
Require: S: signal set, G = (V,E), V: vertices set, E: edges set, N-HOP: max-nhop
Ensure: len(S) = len(V)

j = range [2, len(N-HOP)]: N-hop anchor size
Create Label mask of Ground truth
Create binary masks BM of each object class from Ground truth
for i≤ len(V) do

Nlisti = BFS(i, G, N-HOP)
for k ≤ len(BM) do

if IOUOverlap((BMk ,Nlisti))>= 0.70 then
Object Graph proposal = S[Nlisti j]

else
Background Graph proposal

end if
end for

end for

5.2.2 Multi-label graph classification network

Both the object graph proposals and background graph proposals will be referred to as graph

proposals. These graph proposals have different node sizes carrying arbitrary topology. To

remove translation invariance, we have transformed the coordinate system and considered the

subgraph as a new graph with a different index-based coordinate system, as shown in figure

5.2. In our experimentation, we found this transformation helps Graph Attention Networks

learn features better.

The feature extraction architecture used for the graph classification contains two Graph

Attention Networks (GAT), followed by global attention pooling. The output of pooling was

given to the last layer as soft max activation. The GAT used here operates on graphs. 2-D grid

graphs have a Euclidean structure, but the attention mechanism learns weights based on local

86

5.2. Method

Figure 5.2: Left- Feature node graph of n-hop 2, Right- mapped graph of n-hop 2.

connectivity rather than a fixed distance matrix. Consequently, GAT favours representation re-

gardless of Euclidean structure. In the GAT, graph structure inputs from the masked attention

help to decide which neighbouring nodes take part in the feature learning and are to be decided

from the feature itself, which makes this operator powerful in object detection [117,169]. A bi-

nary adjacency matrix, which represents the neighbourhood connections and graph structures,

is created, helping to learn the attention coefficient from the features.

In global attention pooling [170], the varying sized graph features are made into unique

sizes with the help of global aggregation of all the nodes in the graph, where each node is

computed with a feature weight and an attention weight as shown below in the equation.

X ′ =
N

∑
i=1

(σ(XW1 +b1)⊙ (XW2 +b2))i (5.1)

where σ is the sigmoid activation function, X, W and b are the input signal, weight and bias

values. This pooling layer helps to learn the graph features with varying sizes and shapes.

5.2.3 Classifier

The softmax classifier was used to assign a probability to each possible label for the graph.

The output of the graph convolutional network was a vector, which was then passed through

the softmax function to obtain a probability distribution over the possible labels. In this third

module, we add the softmax activation layer to assign probabilities to each extracted feature

from the graph convolution network, calculating the loss with the corresponding labels, and

backward the propogation.

87

5. Cell Detection in Irregular Domain Data

5.3 Experimentation

5.3.1 Dataset

We have used immunostained images of lymphoma cancer patients blood cells as a dataset for

the experimentation to evaluate the proposed method.

In immunostained images, we focused on two proteins: cluster of differentiation 4 (CD4)

and cluster of differentiation 8 (CD8). The dimensions of each image are 1366× 768× 3

(width, height, and channel) pixels, which has a hardware resource limitation due to processing

a huge number of node signals over the graph. We have divided the original size of the images

into 128× 128× 3 patches. We use the term images for 128× 128× 3 patches. The images

are manually annotated for the object detection task. Annotated label images contain object

masks where all pixels belong to the object classes represented by unique labels. Furthermore,

a binary mask for each object belonging to the same image is created. These label masks and

images are utilised for possible object proposal creation in the graph proposal mechanism.

5.3.2 Training and Inference

We have used 100944 samples of arbitrary-sized graph signals from 40 Immunostained cell

images and split them into an 80:20 ratio. For each node, there are 17 bbox anchors, and each

anchor has a varying N-Hop size from 3 to 20. N-HOP anchors that belong to the proposed

region anchors that contain the object. We have collected such region proposals that belong to

the respective classes and non-region proposals of equal size. Trained the model one sample at

a time due to the arbitrary nature of the graph size until early stopping at 75 epochs. The RGB

pixel values of the signal were normalised in the range of [0-1], and focal loss was used for the

training to take care of the imbalanced data. The Adam optimiser uses the default parameter

and learning rate set to 5e−5.

88

5.3. Experimentation

Method Prec@0.10 Prec@0.30 Prec@IOU.50 Prec@0.70 Average

R-CNN 0.60 0.42 0.34 0.078 0.3595

Our Methods(Gp-NN) 0.89 0.69 0.27 0.10 0.4875

Table 5.1: Precision Quantitative results of cell detection.

Figure 5.3: Qualitatively results: Left- Original images, Middle- detection results of R-CNN, Right-
detection results our method (Gp-NN). Ground truth bbox represented by green colour where predicted
bbox by red colour. Each predicted bbox shows an intersection over union score with class id seperated
by class commas.

89

5. Cell Detection in Irregular Domain Data

Figure 5.4: More examples: Ground truth and predicted bbox continue

90

5.4. Results

Method Recall@0.10 Recall@0.30 Recall@IOU.50 Recall@0.70 Average

R-CNN 0.37 0.29 0.25 0.0714 0.2453

Our Methods(Gp-NN) 0.79 0.74 0.53 0.31 0.5925

Table 5.2: Recall Quantitative results of cell detection.

Figure 5.5: Precision recall curve for our method (Gp−NN) with IOU threshold 0.10

In the inference time, the trained model was used for the object detection task. The learned

model predicts the respective class of the graph. In the setup, we used the sliding window

detector. For each node, we selected varying N-hop sizes, the respective feature signal vector,

and the binary adjacency matrix. Pass this attribute to the feature extraction networks, and it

outputs the classification prediction. If the objectness score is greater than the threshold, then

the bounding box at the location of the node must be passed. Using non maximum suppression

for the 1D graph signal, we have removed the unwanted bounding box.

5.4 Results

The visual representation of our results can be observed in Figure 5.3, with additional examples

provided in Figure 5.4, giving insight into the effectiveness of our approach. Delving deeper

into the quantitative evaluation, the average precision and recall scores, presented in Tables 5.1

and 5.2, shed light on the performance of our object detection method across various Intersec-

tion over Union (IOU) thresholds. Notably, our primary focus lies in precise object localization

91

5. Cell Detection in Irregular Domain Data

rather than the tightness of bounding box tightness, as captured by the IOU score. To accom-

plish this, we strategically set the IOU threshold at 0.10, ensuring accurate true positives.

The corresponding precision-recall curve, illustrated in Figure 5.5, further illuminates the

performance characteristics of our method. It’s imperative to consider the complexity inher-

ent in immunostained cell images. The challenge arises from the intricate task of annotating

precise cell boundaries due to the scattered and potentially ambiguous nature of stained cell

colours. Despite these complexities, our methodology underwent rigorous testing with varying

IOUs to accurately calculate the Average Precision and Recall scores, ultimately highlighting

the effectiveness of our approach.

In a comparative analysis against the conventional CNN-based Region Proposal Network

(R-CNN) detector, our method showcases a substantial enhancement in both precision and

recall scores by 12.80% and 34.72%, respectively. This notable enhancement underlines the

competence of the graph-based proposal extraction mechanism within the contemporary ob-

ject detection paradigm. Moreover, it hints at the potential to extend the applicability of this

mechanism to new, irregular domain data.

5.5 Summary

This chapter proposes a graph proposal neural networks for cell detection in immunostained

Hodgkin Lymphoma histology images. We demonstrate that our method of simple object de-

tection for non-Euclidean data can be compared to CNNs-based object detection. We achieved

an average precision score by proposing a graph proposal mechanism, multi-label graph clas-

sification, and training on scarce data. These results were achieved at a high computational

cost due to the use of BFS algorithms. Firstly, the use of a graph traversal algorithm for each

proposal and, secondly, online training of the arbitrary-size graphs. In our future work, we will

focus on cost reduction and expand this method to a large number of classes.

92

Chapter 6

Nuclei Detection in Irregular Domain
Data

Contents
6.1 Introduction . 94

6.2 Methods . 97

6.2.1 Detecting Nuclei with GCN . 97

6.2.2 Cascaded GCN . 98

6.3 Experimentation . 100

6.3.1 Dataset and Implementation . 100

6.3.2 Model Evaluation . 101

6.3.3 Comparison with other works 102

6.4 Results . 103

6.5 Summary . 105

93

6. Nuclei Detection in Irregular Domain Data

In this chapter, we are addressing the nuclei detection problem in histology images of ade-

nocarcinoma using irregular domain deep learning methods. Nuclei detection in histopathology

images of cancerous tissue stained with standard hematoxylin and eosin stain is a challenging

task due to the complexity and diversity of cell data. Recent advances in deep learning have ex-

hibited significant promise in the domain of nuclei detection, predominantly emphasising clas-

sification and regression-based methodologies. Notably, contemporary research underscores

the potency of regression-based approaches, which have demonstrated enhanced performance

compared to their classification counterparts. Nonetheless, it is imperative to highlight a cru-

cial gap within this context – the necessity to address classification within the framework of

graph convolution. In light of the unique challenges posed by nuclei detection, especially in

irregular and complex biological contexts, devising effective classification strategies within the

graph convolution domain emerges as a critical focal point. In this chapter, we propose a graph

convolution-based classification model to perform nuclei classification, and such models are

used in cascaded architecture to perform nuclei detection. We have evaluated the CNN and

GCN-based approaches on a large dataset of cancer histology images with almost 29,000 an-

notated nuclei. Our results show that graph convolutions show more stability than CNN and

improved performance with cascading GCN architecture. We have compared our two-fold

quantitative evaluation results with CNN-based models such as centre-of-pixel (CP-CNN) and

spatial constrained convolutional neural network (SC-CNN). To observe the power of CNN

and GCN operators, we used two different loss functions, such as binary cross-entropy and

focal loss function, and explored their behaviour on CP-CNN and GCN models.

The chapter unfolds through various sections. Section 6.1 provides the introduction, and

section 6.2 elaborates on the method, including the graph convolution architecture and cas-

caded pipeline, Section 6.3 provides details about the data we have used and explains the ex-

perimentation, followed by results in section 6.4. In the last section, we conclude the findings

of the chapter with a summary in section 6.5.

6.1 Introduction

Nuclei detection in histology images is an important parameter for many biomedical image

analysis tasks. Due to the varying sizes and shapes of the nuclei, detecting accurate nuclei

becomes a challenging task. In the past, many methods have been proposed that can be cate-

gorised into classification and regression approaches. Due to the increased popularity of graph

convolution networks, solving this challenging task in an irregular domain is important, which

94

6.1. Introduction

gives the possibility and power of graph convolution over critical data.

The tumour is the result of highly uncontrollable cell growth and death. This heterogeneity

in cells evokes an inflammatory response, angiogenesis, and tumour necrosis in tumour devel-

opment [171, 172]. The location, sizes, arrangement, and placements of these heterogeneous

cell types also show the different stages of the cancer level [173,174]. Therefore, the qualitative

and quantitative analysis of nuclei helps to better understand the condition of the tumour and

explore the different options for various cancer treatments. Pathologists use different colour

markers and stains to understand the many insights and properties of the cancer tissues. How-

ever, it requires biological experts understanding of tumours to point out informative markers,

and it is expensive to carry out work in the laboratory every time due to the availability of cell

data [175]. Developing an automated system to do this task of nuclei detection would be a

more efficient way to not only save laboratory time but also provide an effective analysis of the

image to help biological experts understand the different conditions of the tissue cell.

There are many factors that affect the precise automation of the nuclei detection, mainly

due to the noise and poor staining during the preparation process of the image slides. Dis-

arrangement of nuclei, diversity of nuclear morphology, and complex tissue structure create a

challenging task for computer vision researchers to automate and analyse. In addition, different

types of cells often have irregular chromatin textures and seem to largely overlap each other

without any visible boundary, which makes the detection of individual nuclei a challenging

task. Some of the different types of nuclei appear to be the same type of nuclei, complicating

the challenge of nuclei detection automation [176].

However, there are many methods for cell detection that have been developed based on clas-

sification, regression, and the traditional approach, for example, thresholding, region-growing,

k-mean, etc. Sirinukunwattana et al. proposed a regression-based approach to train the convo-

lutional neural network model to predict the centre coordinate of the nuclei used in the prob-

ability map carried out by post-processing [176]. In this method, the spatial constrained layer

is used for regression-based nuclei centre coordinate prediction, and the parameter estimation

layer is used to create a probability map. This work is influenced by the conventional method

for object detection, centre-of-the-pixel CNN (CP-CNN), where each path gives the probabil-

ity of being the centre of nuclei or not, and second, structural regression (SR-CNN) [177],

where each patch is regressed instead of a single pixel. Veta et al. proposed techniques for

nucleus detection in routine Hematoxylin and eosin (H&E) histology images that rely on mor-

phological features such as symmetry and stability of the nuclear region to identify nuclei and

95

6. Nuclei Detection in Irregular Domain Data

on the direction of the gradient to identify the centre of nuclei [178]. Cosattoet al. [179] use

the difference of Gaussian (DoG) and Hough transforms to find symmetric shapes of cells for

nuclei detection.

In a more specific context, various methodologies have been explored, particularly the

classification approach for cell detection. One prominent avenue involves the utilisation of

morphological features in H&E stained breast cancer images. Within this framework, the task

entails classifying different cell types, such as cancer cells, lymphocytes, or stromal cells.

This classification endeavour is intricately linked with the prerequisite segmentation of cell nu-

clei [180]. In a parallel vein, the work of Malon et al. [181] stands out. Their study employed

the power of a CNN classifier to discern between mitotic and non-mitotic cells. This classifi-

cation strategy entailed integrating colour, texture, and shape information. Similarly, Nguyen

et al. [182] explored classification, with their approach grounded in the nuanced textures and

appearances of nuclei. A noteworthy perspective shift is offered by Cruz et al. [183]. Their

study resoundingly demonstrated the superior efficacy of deep learning approaches over tra-

ditional predefined feature sets and canonical representations. In contrast, Wang et al. [184]

introduced a novel approach involving cascaded classification aimed at detecting mitotic cells.

The motivation to use a graph sampling approach arose from the confluence of two key factors:

the critical importance of addressing classification within the context of graph convolution and

the benefits of a cascading architecture for filtering unprocessed samples. The utilization of a

graph-based sampling technique has demonstrated stability and enhancement in the previous

chapters, further prompting an exploration of its effectiveness in handling more intricate data

and assessing its efficiency in sample classification architecture. Due to the graph sampling

approach’s emphasis on local regions, it excels at extracting positive samples. Notably, the

employment of spectral-based graph convolution yields effectiveness with small sample sizes

and focuses on structural aspects, thereby aiding in noise reduction during the learning process.

The problem of nuclei detection consists of finding a set of centroid coordinates of nuclei

from a given input RGB image I. This problem is solved by a graph convolution-based deep

learning supervised approach where the detector is trained on training samples with ground

truth information about centroid coordinates. Each pixel is categorised into nuclei or non-

nuclei classes. Our detector is a GCN-based pixel classifier. All the pixels in each training

sample are assigned a class nuclei where the ground-truth pixel p is centred on the training

sample and a non-nuclei class where the centred pixel does not fall into the proximity of

ground-truth nuclei centred with euclidean distance d. The GCN network predicts the class

96

6.2. Methods

of the raw RGB image value that falls into the sample patch.

In the next section 6.2, we explain the Method of graph convolution working and building

cascaded architecture using GCN for detection.

6.2 Methods

6.2.1 Detecting Nuclei with GCN

The architecture of the network is shown in Figure 6.1. It contains two graph convolution

networks, followed by two fully connected layers. The RGB pixel values of each sample are

passed through the graph convolution operator to extract the features. The extracted feature

vector is classified by fully connected layers. The last layer is a single unit dense classification

layer with sigmoid non-linearity. Dropout and ReLU non-linear activation functions are used

before each dense layer to control the overfitting problem.

GCN GCN Dense

Relu,

Dropout Dense
Relu,

Dropout

Dense +

Sigmoid

Dense +

Sigmoid

Input graph

+ Signal

N x 729 x 36N x 729 x 36 N x 729 x 48
Graph N x 729 x 729

Signal N x 729 x 3

N x 512 N x 512

N x 1

Figure 6.1: Graph convolution architecture for classification.

Soft-Negative
GCN Detector

Nuclei
Detection

Hard-Negative
GCN Detector

Figure 6.2: Cascade GCN pipeline for nuclei detection.

We formulate nuclei detection as a simple binary classification problem. The architecture

of the method is shown in Figure 6.1. Given an input histology image of size 500 x 500,

97

6. Nuclei Detection in Irregular Domain Data

extract patches of size 27 x 27 with centre coordinates as ground truth nuclei centres as positive

samples. To extract negative samples, we have chosen random coordinates that do not fall into

the proximity of the ground truth nuclei centre with distance d, as shown below.

Sample =

Positive, ∀c, Such that c is ground truth coordinate.

Negative, dist(Nc - c) > d, Where Nc is random center coord.

To formulate the classification, we have labelled positive patches as 1 and negative patches

as 0. We have randomly set the number of negative samples required to extract from each

image. As we have used the spectral-based graph convolutional operator to learn features. To

perform graph convolution, the patch of size 27×27 is considered a 2D grid graph having a set

of nodes (V), a set of weighted edges (E), and an adjacency matrix (A). The graph (N×729×
729) in Figure 6.1 is a binary adjacency matrix A and possesses the property that each node

is connected with its neighbouring nodes, which form the basis of locality for the convolution

operation. The operation of spectral-based GCN is described in Section 2.3.2.1. After the

two graph convolution layers, there are two fully connected layers, with the last layer having

one neuron activated by a sigmoid function to classify the feature vector extracted from the

previous two graph convolutional layers. The inherent strength of the GCN architecture lies in

its ability to adeptly extract local contextual information from these interconnected nodes. This

capability empowers the GCN to learn complex representations that encapsulate the intricate

features of the nuclei in a remarkably effective manner. To effectively improve nuclei detection

and maintain the higher recall value, this graph convolutional layer-based classifier is used in

cascaded architecture.

6.2.2 Cascaded GCN

In our pursuit of enhancing the detection process, we adopted the Cascade GCN method. This

approach introduces a cascading architecture that progressively refines detection by system-

atically eliminating negative samples. However, this meticulous filtering process inevitably

results in the removal of certain positive samples, thereby requiring a delicate balancing act

between specificity and comprehensiveness. The cascade architecture unfolds in two distinct

phases: soft negative elimination and hard negative elimination. Figure 6.1 illustrates the clas-

sification filtering architecture at each stage, while Figure 6.2 presents the complete flowchart

of the Cascade GCN detector. This architectural choice is influenced by previous CNN-based

nuclei detection architectures in CP-CNN and SP-CNN.

98

6.2. Methods

The initial stage involves the soft negative GCN detector, which primarily focuses on the

elimination of the majority of negative background patches. The process of generating classi-

fication patches involves systematically scanning input images in a sliding window approach

while ensuring minimal feature loss, with adjustments of one pixel for both height and width. It

is worth noting that a considerable number of window patches were eliminated as background

during the initial stage.

The second stage, referred to as the hard negative detector, is geared to undergo training

with adjusted parameters. This enables the extraction of additional positive samples while

simultaneously eliminating more complex false positives that may have persisted through the

prior stage. Utilising ground-truth information, the positive samples are segregated into true

positives and false positives. A positive sample is classified as a true positive if its predicted

nucleus centre is in proximity to the ground truth nucleus centre with a pixel distance of less

than d; otherwise, it is classified as a false positive.

Sample =

T P, ∀c,

FP, dist(Nc - c) > d,

Here, c represents the ground-truth coordinate, d is the proximity pixel distance, and Nc denotes

the predicted centre coordinate.

The cascade architecture thus combines the soft and hard negative elimination phases, cap-

italizing on their collective efficacy to significantly enhance the detection process. The nuclei

detection block from Figure 6.2 is designed to accurately locate nuclei while retaining effective

positive patch samples at a higher resolution. This serves as the final phase of the cascading

pipeline. The last two phases focus on binary classification as soft and hard elimination stages,

filtering out the most negative samples while maintaining higher precision and recall. The re-

maining positive samples, containing nuclei centre coordinates, undergo Non-Maximum sup-

pression (NMS) to eliminate redundancy, utilising an intersection over union (IoU) threshold

of 0.30 and a maximum output bounding box size of 1200.

In essence, the Cascade GCN approach operates as a multi-layered, refined detection strat-

egy. By meticulously balancing the removal of negative samples with the retention of positive

samples, coupled with the finality of NMS, the cascade framework significantly elevates the

accuracy and precision of nuclei detection.

99

6. Nuclei Detection in Irregular Domain Data

6.3 Experimentation

6.3.1 Dataset and Implementation

The dataset employed consists of 100 H&E-stained histology images showcasing adenocarci-

noma, with a 2-fold cross-validation experiment being conducted. This dataset is specifically

used for problems centred around CNN-based nucleus detection. Each image boasts dimen-

sions of 500× 500 pixels. It’s worth noting that these images do contain certain noises, such

as overstaining and instances of autofocus failure. Notably, the annotation of nuclei is meticu-

lously carried out by domain experts, yielding a total of 29,756 nuclei that serve as focal points

for supervised learning tasks.

Our model is meticulously implemented using Tensorflow 2.0 and Keras. This proposed

model undergoes comprehensive training and evaluation on a personal computer equipped with

an Intel i7 CPU and an NVIDIA GEFORCE GTX 1080Ti. The learning rate is judiciously set

at 0.001, with a batch size of 100. Additionally, a dropout rate of 0.2 is applied to both the

CPCNN and the proposed model GCN, ensuring a fair and balanced comparison. To further

explore the behaviours of both models within distinct loss environments, we assess the effec-

tiveness of both binary cross-entropy and focal loss. For the implementation of SC-CNN, the

learning rate is established at 0.01. The scheduling of learning adheres to the recommendations

provided by the author [176].

Within this GCN architecture in Figure 6.1, a 2D grid graph of dimensions 27×27 serves

as the input, accompanied by an adjacency matrix os size 729× 729. The input graph sig-

nal, bearing dimensions 27× 27× 3, is normalised between 0 and 1 through a normalisation

function,

X =

(
X−µ

σ

)
(6.1)

where X signifies image data, µ denotes the mean, and σ represents the standard deviation.

The architectural foundation features a 2D grid graph with a structure size of N×N, where N

signifies the number of nodes in the graph, corresponding to the 27×27 signal size. Each node

in this configuration accommodates a 3-channel RGB signal. This 2D grid graph, depicted as

a binary adjacency graph of N×N, encapsulates the interconnections between nodes, marked

as 1 or 0. The initial and second Graph Convolutional Networks (GCNs) employ 36 and

48 filters, respectively, harnessing their capacity to preserve vital features and eliminate low-

frequency components. This strategic filter arrangement is pivotal for the enhancement of

desirable characteristics. To ensure the retention of optimal patches for subsequent stages,

100

6.3. Experimentation

a higher recall is attained by training with the maximum precision-recall rate for a patience

period of 10. Evaluation is facilitated by a sigmoid classification layer with a decision boundary

set at 0.50.

For stage 1, where the objective is to sustain a high recall rate and eliminate challenging

negative samples, an identical architecture as depicted in Figure 6.1 is employed. This model

is trained with the objective of achieving the minimum validation loss with a patience factor

of 10. The second stage involves leveraging this model with a training dataset comprising

38,643 false-positive and 100,000 true-positive samples. To create a balanced training dataset,

negative samples are augmented through horizontal flipping and rotation by 90 degrees. This

meticulous approach to data augmentation ensures that the training process is comprehensive

and effective, facilitating the accurate and efficient functioning of subsequent stages.

6.3.2 Model Evaluation

Figure 6.4 shows the qualitative detection results on the unseen sample images. For quantitative

analysis, we define the ground-truth areas as a circular region with 8 pixels in every annotated

nuclei centre. A detected nuclei centroid is considered a true positive (T P) only if it lies within

the ground-truth areas; otherwise, it is considered a false positive (FP). Each T P is matched

with the nearest ground-truth annotated nuclei centre. The ground-truth nuclei centre that is

not matched by any detected results is considered a false negative (FN). Based on the above

definitions, we can compute the precision(P), recall(R), and F1 score as P= T P
T P+FP , R= T P

T P+FN

and F1 = 2∗ P∗R
P+R respectively.

We evaluated the proposed model with CNN-based Pixel-Wise Classification (PWC) [177],

or Center of Patch Convolutional Neural Network (CPCNN) [176] which share the same ar-

chitecture as mentioned in the chapter [176] except that it utilises the sigmoid activation in the

last layer.

Figure 6.3 shows the validation precision-recall curves with respect to the epochs of the

GCN method and CPCNN. These curves are generated over the maximum precision-recall

metric with patience 10. As we can see in Figure 6.3(a), that CPCNN fails to learn features

over the focal loss, and their evaluation quantitative results in Table 6.1 also explain best. While

using the binary cross-entropy loss for CPCNN, there is a large deviation between two folds

as compared to the proposed model using GCN. The GCN-based model can learn features

better in focal loss, but it also works for binary cross-entropy loss, which is not true in the case

of CPCNN focal loss. Also, the deviation between the folds in GCN is smaller compared to

101

6. Nuclei Detection in Irregular Domain Data

CPCNN, which shows the stability of the GCN-based proposed model.

Method Precision Recall F1

SC-CNN (lr 0.01) 0.7183 ± 0.0063 0.6995 ± 0.0579 0.7078 ± 0.0328

SC-CNN (lr scheduled) 0.6355 ± 0.1163 0.7909 ± 0.0416 0.6951 ± 0.0555

CP-CNN (Bin cross) 0.7291 ± 0.0677 0.6930 ± 0.0227 0.7078 ± 0.0203

CP-CNN (Focal Loss) - - -

GCN (Bin cross) 0.6832 ± 0.0019 0.6757 ± 0.0141 0.6793 ± 0.0061

GCN (Focal Loss) 0.7336 ± 0.0055 0.6077 ± 0.0028 0.6647 ± 0.0005

Cascade-GCN (Focal Loss) 0.7334 ± 0.0004 0.7927 ± 0.0005 0.7619 ± 0.0005

Table 6.1: Quantitative results: Comparative precision, recall and F1 score results of nuclei detection
various models.

6.3.3 Comparison with other works

We also compared our model with the state-of-the-art proximity map-based nuclei detection

regression model (SC-CNN) [176]. While comparing with SC-CNN, we have eliminated the

preprocessing of augmentation and HSV space channel separation to keep training data the

same for all methods for comparison. As demonstrated in Table 6.1, there is a substantial

difference between the precision and recall values of SC-CNN with a stable learning rate and

a scheduled learning rate. With careful observation of standard deviation values, we can see

that the GCN-based proposed model performs better in precision, recall, and F1 score. While

compared with the SC-CNN scheduled learning rate, the GCN precision value is increased by

almost 10%. One of the advantages of our GCN model with focal loss is that it learns features

better, while CP-CNN struggles to learn hardly any features, which proves the stability of the

GCN-based model. When using the GCN in a cascade fashion, the F1 score increases almost

6% more than other models, as shown in Table 6.1. While observing the cascade qualitative

results in Figure. 6.4, It shows a better recall value than the other but at the cost of a lower

recall, whereas two-fold quantitative evaluation results on 50 images in Table 6.1, show that

overall precision, recall, and F1 score are in a better position than the rest.

102

6.4. Results

(a) CPCNN: Focal loss (b) CPCNN:Binary loss

(c) GCN: Focal loss (d) GCN:Binary loss

Figure 6.3: Qualitative Comparison of Results. The Figure shows the 2-fold training and validation
curves of prc values along the y axis and epochs along the x axis. The colour name with a subscript
shows the train or val curve of the fold number. (a): bluetr1, redva1, skytr2 pinkva2, (b): redtr1, skyva1,
pinktr2 greenva2, (c): greentr1, grayva1, Orangetr2, blueva2, (d): redtr1, skyva1, pinktr2, greenva2

6.4 Results

The evaluation of the cascaded-GCN method unveils a significant advancement of 6% in the

F1 score compared to alternative techniques, affirming its efficacy in nuclei detection. Notably,

the two-fold cross-validation recall rate reaches 84.53%, showcasing the method’s capacity to

accurately identify a substantial portion of true positive samples with the configuration men-

tioned in Section 6.3.1. However, this achievement is accompanied by a trade-off, resulting

in a slightly diminished precision rate of 65.45%. This balance between recall and precision,

inherent in classification tasks, reflects the inherent tension of maximising both metrics simul-

taneously.

Examining the computational time for the two stages yields insightful observations. The

first stage, characterised by soft negative elimination, consumes a considerable 4 hours, 27

minutes, and 43 seconds. Stage 2, focused on hard negative elimination, drastically reduces

103

6. Nuclei Detection in Irregular Domain Data

SC-CNN CP-CNN

GCN Cascade-GCN

Figure 6.4: Nuclei detection results on the sample image. Red dots represent the detected nuclei centre.
The ground-truth annotations are represented by blue circles for better illustrations.

104

6.5. Summary

the processing time to 17 minutes and 12 seconds due to the prior elimination of numerous

negative samples in Stage 1. An interesting strategic choice is emphasised throughout the

methodology, prioritising the retention of positive patches as the cascade progresses and aiming

to augment the precision-recall rate. By emphasising recall, the approach ensures sensitivity to

positive cases while striving to minimise false negatives. The quantitative results are described

in Table 6.1 and the qualitative comparison in Figure 6.3.

The core idea of the proposed spectral GCN method lies in its capacity to harness the inher-

ent graph structure of images, effectively capturing local dependencies between pixels. This

architectural choice proves particularly advantageous in mitigating image-related challenges

such as noise and poor staining. By treating the image as a graph, with pixels as nodes and

edges as spatial relationships, spectral GCN facilitates the propagation of information between

neighbouring pixels. This is especially valuable when dealing with missing or corrupted pixel

values due to noise or staining issues. Furthermore, spectral graph convolution equips the net-

work to learn domain-specific filters that identify patterns and features beyond the scope of

spatial domain analysis. The network’s ability to focus on the image’s fundamental structural

attributes rather than its noise or distortions enhances its ability to handle challenging scenarios

like noise and poor staining.

A comprehensive assessment of the Cascaded GCN approach is achieved through ablation

experiments. These experiments involve the systematic removal of elements to gauge their

impact on performance. In this context, the F1 score is seen to decrease by 33.73%, with a

small standard deviation of 0.01567, underscoring the methodology’s sensitivity to its com-

ponents. In conclusion, the cascaded-GCN approach demonstrates its potential to address the

nuclei detection challenge effectively. By judiciously balancing recall and precision, leverag-

ing the graph structure of images, and orchestrating a cascade of processing stages, the method

showcases substantial improvements. Its performance gains over existing methods underscore

its applicability, while its adaptability to complex domains and its adeptness at handling noise

and staining issues make it a compelling tool for nuclei detection in histology images.

6.5 Summary

In this chapter, we propose a cascaded graph convolution approach for the nuclei detection

task. The proposed GCN classifier differs from the traditional CNN classifier by introducing

a graph convolutional operator to learn features in the training data. We have experimentally

demonstrated the superior performance of the cascaded architecture of the GCN classifier in

105

6. Nuclei Detection in Irregular Domain Data

terms of stability and precision, recall, and F1 score compared with the CNN-based state-of-

the-art and also observed the validation behaviour of CPCNN and GCN with different loss

functions. In future work, we aim to improve the performance with other graph convolutional

operators and explore adding more classifiers.

106

Chapter 7

Conclusions and Future Work

Contents
7.1 Conclusion . 108

7.2 Future Work . 110

107

7. Conclusions and Future Work

7.1 Conclusion

In this thesis, we have investigated the feasibility of applying irregular domain deep learning to

both medical image analysis and generic computer vision problems, more specifically, MNIST

numerical digit classification, medical image segmentation, cell detection, and nuclei detec-

tion. Central to our approach has been the strategic utilization of graphs as a potent sampling

mechanism, facilitating localized feature learning essential for robust and effective results.

In our graph construction study, we propose a unique technique for performing convolu-

tional operations on graphs by using a local subgraph approach. The proposed weighted graph

construction methods are also explored to understand their impact on the model’s behaviour.

Results show that the model can learn local features throughout the network with improved

stability by introducing local subgraph features. We also observe that changing the size of the

graph in local architecture does not appear to improve it, although it does in global architec-

ture, particularly in binary. However, further investigation is needed to improve the subgraph

partition method and the graph global pooling approach to aggregate vertices in the subgraph

spatial domain. The study suggests that the proposed graph sampling approach could be use-

ful in solving various computer vision image-based tasks, such as image classification, cell

segmentation, and cell detection in immunostained histology images.

For medical image segmentation, we tried to fill the knowledge gap between computer sci-

entists and experienced pathologists by introducing an automated segmentation scheme based

on a graph sampling approach. The proposed method for performing cell image segmentation

using spectral and spatial graph convolutional networks, which allow patch-wise distribution of

the original image to improve feature learning, The comparative result of the proposed method

of spectral, spatial-based graph convolution with FCN is presented. The observations from the

experiments suggest that graph convolutional networks improve segmentation results.

The proposed graph proposal method demonstrates the ability to achieve results compa-

rable to CNN-based object detection by using a simple object detection approach that has the

potential to generalise to non-Euclidean data. The challenge of spatial relations in graphs is

addressed by the BFS algorithm, which uses a graph sampling approach for classification. The

proposed method achieved an average precision score. However, there were higher computa-

tional costs associated with this approach due to the use of a graph traversal algorithm for each

proposal and the online training of arbitrary-size graphs.

The performance of nuclei detection can be improved by using a cascaded arrangement

of graph-based convolution networks, and each stage in a cascaded architecture uses a clas-

108

7.1. Conclusion

sification network based on the graph sampling approach. In this thesis, we have shown that

strategies and methods derived from irregular domain deep learning are efficient to address

cell segmentation and nuclei detection problems. The main contributions of this work can be

summarised as follows:

• Impact of Graph Construction on Localised Feature Mining

Exploring the study of the impact of graph construction on the behaviour of the graph

convolutional operations and analysing the impact of the graph’s construction on the

model’s behaviour. Creating a method to utilise a parametrically defined graph to rep-

resent a localised sampling operation on an underlying domain. First proposed a three

different weighted graph such as a binary-weighted, inverse Euclidean-weighted, and

gaussian-weighted 2D grid graph. Second, we applied a graph convolution network for

the MNIST digit classification tasks, and finally, we proposed a new approach to solve

the limitation of constructing a larger graph by using a subgraph partition sampling ap-

proach.

• Graph Convolution Networks for Cell Segmentation

Proposed two graph-based convolution methods for cell segmentation to improve the

analysis of immunostained slides. First is spectral-based Graph-CNN, where spectral-

based GCN operators along with graph pooling are arranged in U-Net style. The pro-

posed approach is able to learn features in an upsampling and downsampling manner,

which is inspired by the CNN-based approach with the added advantage of generalisa-

tion on Non-Euclidean domain data. The second spatial-based graph-CNN method does

not need to use graph pooling with a simple architecture to outperform spectral.

• Graph Proposal Neural Networks for Cell Detection

Propose a graph convolution-based region proposal mechanism for object detection in

non-Euclidean data. Address the challenge of spatial feature extraction in irregular do-

mains. Similar to the region proposal in R-CNN, the way of extracting positive object

proposals is proposed by introducing the graph proposal neural network algorithm and

multi-label classification.

• Cascaded Approach for Nuclei Detection in histopathology images

109

7. Conclusions and Future Work

We proposed an irregular domain deep learning cascaded scheme that increases recall

progressively with increasing stages. A graph convolution-based classification model to

perform nuclei classification.

7.2 Future Work

There is a lot of potential for generalising deep learning approaches that use spatially con-

nected feature descriptors. The formulation of deep learning techniques on the graph domain

may benefit other application areas that employ convolutional operators on the Cartesian grid.

The large improvements shown in self-learning feature descriptor techniques might be made

available to new application areas by generalising the representation learning methodology.

Social networking sites to decentralised weather monitoring stations are just a few of the many

application domains. It will be fascinating to observe how these applications can leverage deep

learning techniques that, up to now, have not been able to use the explicit spatial interactions

between nodes on the input domain.

Deep learning techniques for irregular domains are still in the early stages of research.

Study is necessary for understanding learned filters, including research into their optimisation

and visualisation. Due to the specified spatial structure in some domains, it is feasible to

see feature maps on the spatial domain; however, there is presently no efficient method for

exploring learned descriptors, such as those found in CNN filter visualisation. ResNets [44],

AutoEncoders [185–187], Inception modules [43], and Generative Adversarial Networks [188]

are a few examples of deep learning techniques in the regular domain that make use of residual

information. Although the usage of all of these techniques may theoretically be extended to

the graph domain, they presently all employ the standard spatial domain input of images and

volumes.

The choice of graph construction and pooling methods for a given problem domain is still a

topic of active research, and opening up collaborations with the graph domain community will

help us learn more about how to choose approaches for a given Graph-CNN architecture. The

ability to employ a deep representation learning technique with a localised filtering behaviour

is more widely accessible to a variety of application areas by generalising the convolution

and pooling processes. A disadvantage of this relaxation is that implementing domain-specific

restrictions might benefit applications inside the particular domain, much like how the imple-

mentation of the array-based input constraint resulted in major performance improvements for

the image domain community. To aid in the widespread adoption of the techniques, efforts

110

7.2. Future Work

to develop intuition regarding the application of graph-based deep learning are necessary, but

they could take some time, especially given the ongoing development of novel techniques and

understanding in the deep learning community as a whole. Utilising existing techniques for

grouping different graph types and comparable vertices developed by the graph domain com-

munity [189] and [190] will make it easier to create Graph Convolutional Neural Network

approach. There are several potential future work extending to current work in this thesis.

− There are a few alternative ways of constructing graphs, each of which has the potential

to increase the functionality of the graph operator. There is also the opportunity to inves-

tigate suggested approaches for graph creation by applying them to a variety of datasets

and performing additional computer vision tasks, such as segmentation and detection.

The subgraph partitioning technique may be expanded to include pictures of a larger

size, and this is an excellent chance to investigate comparative studies of the efficacy of

images of varying sizes in relation to the various types of graphs.

− Finding spatial relationships in an irregular domain is an ongoing and challenging topic,

particularly when it comes to the task of object recognition. The Breadth-First-Search

strategy, which is used to solve such issues, may be expanded by using a variety of

neighbourhood strategies as well as a variety of databases.

− Improvement to the already used method of segmentation by the use of a new spectral

and spatial graph convolution operator, as well as alternative databases Additionally, the

nuclei detection design might be enhanced by the addition of additional layers to the

cascaded architecture.

Overall, this comprehensive exploration into medical image analysis has not only uncov-

ered novel insights but has also underscored the significant potential of deep learning in irreg-

ular domains. The methodologies and findings presented herein not only advance the field of

image analysis but also shed light on the vast array of challenges and opportunities that lie

ahead. As the deep learning community continues to evolve, this work serves as a stepping

stone towards wider applications, benefiting both the machine learning realm and the diverse

domains that stand to harness the power of representational learning techniques. The culmi-

nation of this thesis is not an end but rather a new beginning, as the pursuit of knowledge and

innovation remains boundless.

111

Bibliography

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2323, 1998.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-

hamer, “cuDNN: Efficient Primitives for Deep Learning,” 2014.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-

lutional neural networks,” Communications of the Association for Computing Machin-

ery, vol. 60, no. 6, pp. 84–90, 2017.

[4] S. K. Zhou, H. Greenspan, C. Davatzikos, J. S. Duncan, B. V. Ginneken, A. Madabhushi,

J. L. Prince, D. Rueckert, and R. M. Summers, “A review of deep learning in medical

imaging: Imaging traits, technology trends, case studies with progress highlights, and

future promises,” Proceedings of the IEEE, vol. 109, no. 5, pp. 820–838, 2021.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution, and

fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 40, no. 4, pp. 834–848, 2017.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” in Conference on Neural Information Pro-

cessing Systems - Volume 1. Cambridge, MA, USA: MIT Press, 2015, p. 91–99.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.

113

Bibliography

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 779–788.

[9] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” arXiv preprint

arXiv:2106.11342, 2021.

[10] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition with convolu-

tional neural networks,” in Proceedings of the 21st International Conference on Pattern

Recognition. IEEE, 2012, pp. 3304–3308.

[11] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional networks,” in

Proceedings of the 24th ACM International Conference on Knowledge Discovery &

Data Mining, 2018, pp. 1416–1424.

[12] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerg-

ing field of signal processing on graphs: Extending high-dimensional data analysis to

networks and other irregular domains,” IEEE Signal Processing Magazine, vol. 30,

no. 3, pp. 83–98, 2013.

[13] C. Liu, Y. Zhan, C. Li, B. Du, J. Wu, W. Hu, T. Liu, and D. Tao, “Graph pooling

for graph neural networks: Progress, challenges, and opportunities,” arXiv preprint

arXiv:2204.07321, 2022.

[14] P. N. Srinivasu, S. Ahmed, A. Alhumam, A. B. Kumar, and M. F. Ijaz, “An AW-HARIS

based automated segmentation of human liver using CT images,” Computers, Materials

& Continua, vol. 69, no. 3, pp. 3303–3319, 2021.

[15] E. Vendrow and Z. Ma, “Cell segmentation with traditional and deep learning methods

on evican-a partially annotated dataset of grayscale images of 30 different cell lines from

multiple microscopes,” 2022.

[16] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[17] X. Zhou, T. Tong, Z. Zhong, H. Fan, and Z. Li, “Saliency-CCE: Exploiting colour con-

textual extractor and saliency-based biomedical image segmentation,” Computers in Bi-

ology and Medicine, p. 106551, 2023.

114

Bibliography

[18] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L. Kr-

palkova, D. Riordan, and J. Walsh, “Deep learning vs. traditional computer vision,” in

Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference,

Volume 11. Springer, 2020, pp. 128–144.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical

image segmentation,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–

241, 2015.

[20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on

graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 32, no. 1, pp. 4–24, 2020.

[21] S. Bahade, M. Edwards, and X. Xie, “Graph convolutional neural network for segmen-

tation of immunostained hodgkin lymphoma histology images,” in Medical Image Un-

derstanding and Analysis, 2019.

[22] ——, “Graph convolution networks for cell segmentation.” in International Conference

on Pattern Recognition Applications and Methods, 2021, pp. 620–627.

[23] ——, “Cascaded graph convolution approach for nuclei detection in histopathology im-

ages,” in International Conference on Video and Image Processing, 2022.

[24] ——, “Graph proposal neural networks for cell detection immunostained hodgkin lym-

phoma histology images,” in International Symposium on Biomedical Imaging, 2023.

[25] A. L. Samuel, “Machine learning,” The Technology Review, vol. 62, no. 1, pp. 42–45,

1959.

[26] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in

Proceedings of the Eleventh Annual Conference on Computational Learning Theory,

1998, pp. 92–100.

[27] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM

Journal of Research and Development, vol. 44, no. 1.2, pp. 206–226, 2000.

[28] B. Cm, Pattern Recognition and Machine Learning. Springer, New York, 2010.

115

Bibliography

[29] D. George, “Feature driven learning techniques for 3D shape segmentation,” 2019.

[Online]. Available: http://csvision.swan.ac.uk/uploads/Site/Publication/thesis.dageo.

pdf

[30] A. Ng, “Coursera machine learning linear regression.” [Online]. Available: https:

//www.coursera.org/lecture/machine-learning/linear-regression-model-part-1-1ACA2

[31] J. Brownlee, “Logistic regression for machine learning,” Machine Learning Mastery,

vol. 1, 2016.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436–444, 2015.

[33] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,”

IEEE Access, vol. 7, pp. 53 040–53 065, 2019.

[34] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santa-

maría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning: Con-

cepts, cnn architectures, challenges, applications, future directions,” Journal of Big

Data, vol. 8, pp. 1–74, 2021.

[35] M. Roos, “Deep learning neurons versus biological neurons,”

https://towardsdatascience.com/deep-learning-versus-biological-neurons-floating-

point-numbers-spikes-and-neurotransmitters-6eebfa3390e9, online; accessed 6-May-

2023.

[36] O. Eluyode and D. T. Akomolafe, “Comparative study of biological and artificial neural

networks,” European Journal of Applied Engineering and Scientific Research, vol. 2,

no. 1, pp. 36–46, 2013.

[37] F. Rosenbaltt, “The perceptron: a perciving and recognizing automation,” Cornell Aero-

nautical Laboratory, 1957.

[38] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and orga-

nization in the brain.” Psychological Review, vol. 65, no. 6, p. 386, 1958.

[39] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,

vol. 61, pp. 85–117, 2015.

116

http://csvision.swan.ac.uk/uploads/Site/Publication/thesis.dageo.pdf
http://csvision.swan.ac.uk/uploads/Site/Publication/thesis.dageo.pdf
https://www.coursera.org/lecture/machine-learning/linear-regression-model-part-1-1ACA2
https://www.coursera.org/lecture/machine-learning/linear-regression-model-part-1-1ACA2

Bibliography

[40] M. Sazli, “A brief review of feed-forward neural networks,” Communications Faculty

Of Science University of Ankara, vol. 50, pp. 11–17, 01 2006.

[41] F. Rosenblatt, “The perceptron: A perceiving and recognizing automaton,” Cornell Uni-

versity, Ithaca, NY, Project PARA, Cornell Aeronaunt Laboratory, Rep, pp. 85–460,

1957.

[42] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 770–778.

[45] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting

topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127, 2002.

[46] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based encoding for evolv-

ing large-scale neural networks,” Artificial Life, vol. 15, no. 2, pp. 185–212, 2009.

[47] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural

networks for resource efficient inference,” arXiv preprint arXiv:1611.06440, 2016.

[48] M. Babaeizadeh, P. Smaragdis, and R. H. Campbell, “Noiseout: A simple way to prune

neural networks,” arXiv preprint arXiv:1611.06211, 2016.

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[50] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in System

Modeling and Optimization. Springer, 1982, pp. 762–770.

[51] D. Ruhmelhart, G. Hinton, and R. Wiliams, “Learning representations by back-

propagation errors,” Nature, vol. 323, no. 533-536, p. 10, 1986.

117

Bibliography

[52] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression func-

tion,” The Annals of Mathematical Statistics, pp. 462–466, 1952.

[53] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathe-

matical Statistics, pp. 400–407, 1951.

[54] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in clas-

sification,” arXiv preprint arXiv:1702.05659, 2017.

[55] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural

networks,” in International Conference on Machine Learning. PMLR, 2013, pp. 1310–

1318.

[56] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” arXiv preprint

arXiv:1803.08375, 2018.

[57] L. Lu, “Dying ReLU and initialization: Theory and numerical examples,” Communica-

tions in Computational Physics, vol. 28, no. 5, pp. 1671–1706, Jun 2020.

[58] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve neural

network acoustic models,” in Proc. in International Conference on Machine Learning,

vol. 30, no. 1, 2013, p. 3.

[59] M. Edwards, “Representation learning in irregular domains,” Ph.D. dissertation,

Swansea University, 2018.

[60] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the Thirteenth International Conference on Artifi-

cial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2010,

pp. 249–256.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 1026–1034.

[62] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in International Conference on Machine Learning.

pmlr, 2015, pp. 448–456.

118

Bibliography

[63] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:

a simple way to prevent neural networks from overfitting,” The Journal of Machine

Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[64] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods from a machine

learning perspective,” IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3668–3681,

2019.

[65] Y. Bengio, “Practical recommendations for gradient-based training of deep architec-

tures,” Neural Networks: Tricks of the Trade: Second Edition, pp. 437–478, 2012.

[66] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochastic

optimization,” in Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2014, pp. 661–670.

[67] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization.” Journal of Machine Learning Research, vol. 12, no. 7,

2011.

[68] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[69] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[70] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series classification using multi-

channels deep convolutional neural networks,” in Web-Age Information Management:

15th International Conference. Springer, 2014, pp. 298–310.

[71] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale im-

age recognition,” arXiv preprint arXiv:1409.1556, 2014.

[72] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[73] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

European Conference Computer Vision. Springer, 2014, pp. 818–833.

[74] U. Karn, “An intuitive explanation of convolutional neural networks,” The Data Science,

2016.

119

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[75] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised learning of in-

variant feature hierarchies with applications to object recognition,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[76] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling in

visual recognition,” in Proceedings of the 27th International Conference on Machine

Learning, 2010, pp. 111–118.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional

networks for visual recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[78] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400,

2013.

[79] E. P. Ijjina and C. K. Mohan, “Human action recognition based on mocap informa-

tion using convolution neural networks,” in 13th International Conference on Machine

Learning and Applications, 2014, pp. 159–164.

[80] ——, “Human action recognition based on motion capture information using fuzzy con-

volution neural networks,” in Eighth International Conference on Advances in Pattern

Recognition, 2015, pp. 1–6.

[81] A. Johnson, “Spin-Images: A Representation for 3-D Surface Matching,” Ph.D. disser-

tation, Carnegie Mellon University, Pittsburgh, PA, August 1997.

[82] A. E. Johnson and M. Hebert, “Surface matching for object recognition in complex

three-dimensional scenes,” Image and Vision Computing, vol. 16, no. 9-10, pp. 635–

651, 1998.

[83] D. George, X. Xie, and G. K. Tam, “3D mesh segmentation via multi-branch 1D convo-

lutional neural networks,” Graphical Models, vol. 96, pp. 1–10, 2018.

[84] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, “Co-occurrence feature

learning for skeleton based action recognition using regularized deep LSTM networks,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

120

Bibliography

[85] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “ShapeNet:

convolutional neural networks on non-euclidean manifolds,” ArXiv Preprint, vol.

abs/1501.06297, 2015.

[86] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs: Graph filters,”

in IEEE International Conference on Acoustics, Speech and Signal Processing, no. 412,

2013, pp. 6163–6166.

[87] F. R. Chung and F. C. Graham, Spectral graph theory. American Mathematical Soc.,

1997, no. 92.

[88] H. LI, “Properties and applications of graph laplacians,” http://math.uchicago.edu/

~may/REU2022/REUPapers/Li,Hanchen.pdf, online; accessed 11-March-2023.

[89] A. M. Martınez, P. Mittrapiyanuruk, and A. C. Kak, “On combining graph-partitioning

with non-parametric clustering for image segmentation,” Computer Vision and Image

Understanding, vol. 95, no. 1, pp. 72–85, 2004.

[90] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,

pp. 395–416, 2007.

[91] R. Singh, A. Chakraborty, and B. Manoj, “Graph fourier transform based on directed

laplacian,” in International Conference on Signal Processing and Communications,

2016, pp. 1–5.

[92] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral

graph theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–

150, 2011.

[93] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, “Graph signal

processing: Overview, challenges, and applications,” Proceedings of the IEEE, vol. 106,

no. 5, pp. 808–828, 2018.

[94] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,” IEEE Trans-

actions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[95] Y. Jin and D. I. Shuman, “An m-channel critically sampled filter bank for graph signals,”

in IEEE International Conference on Acoustics, Speech and Signal Processing, 2017,

pp. 3909–3913.

121

http://math.uchicago.edu/~may/REU2022/REUPapers/Li,Hanchen.pdf
http://math.uchicago.edu/~may/REU2022/REUPapers/Li,Hanchen.pdf

Bibliography

[96] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs: Graph fourier

transform,” in 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, 2013, pp. 6167–6170.

[97] ——, “Discrete signal processing on graphs: Frequency analysis,” IEEE Transactions

on Signal Processing, vol. 62, no. 12, pp. 3042–3054, 2014.

[98] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph

neural networks: A review of methods and applications,” AI open, vol. 1, pp. 57–81,

2020.

[99] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph

neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–

80, 2008.

[100] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,”

in Proceedings. IEEE International Joint Conference on Neural Networks, vol. 2, 2005,

pp. 729–734.

[101] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecular

fingerprints,” Advances in Neural Information Processing Systems, vol. 28, 2015.

[102] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W.-t. Yih, “Cross-sentence n-ary re-

lation extraction with graph lstms,” Transactions of the Association for Computational

Linguistics, vol. 5, pp. 101–115, 2017.

[103] X. Wang, Y. Ye, and A. Gupta, “Zero-shot recognition via semantic embeddings and

knowledge graphs,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 6857–6866.

[104] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” Advances in

Neural Information Processing Systems, vol. 31, 2018.

[105] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs: Unsupervised

inductive learning via ranking,” arXiv preprint arXiv:1707.03815, 2017.

[106] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side effects with

graph convolutional networks,” Bioinformatics, vol. 34, no. 13, pp. i457–i466, 2018.

122

Bibliography

[107] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,” arXiv preprint

arXiv:1711.04043, 2017.

[108] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. F. Wang, “Multi-label zero-shot learning with

structured knowledge graphs,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 1576–1585.

[109] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, and E. P. Xing, “Rethink-

ing knowledge graph propagation for zero-shot learning,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 487–11 496.

[110] K. Marino, R. Salakhutdinov, and A. Gupta, “The more you know: Using knowledge

graphs for image classification,” arXiv preprint arXiv:1612.04844, 2016.

[111] X. Chen, L.-J. Li, L. Fei-Fei, and A. Gupta, “Iterative visual reasoning beyond con-

volutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 7239–7248.

[112] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with graph

lstm,” in European Conference Computer Vision. Springer, 2016, pp. 125–143.

[113] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic segmentation with

superpoint graphs,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 4558–4567.

[114] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic

graph cnn for learning on point clouds,” Acm Transactions On Graphics, vol. 38, no. 5,

pp. 1–12, 2019.

[115] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3D graph neural networks for RGBD

semantic segmentation,” in Proceedings of the IEEE International Conference on Com-

puter Vision, 2017, pp. 5199–5208.

[116] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for object detection,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2018, pp. 3588–3597.

[117] J. Gu, H. Hu, L. Wang, Y. Wei, and J. Dai, “Learning region features for object detec-

tion,” in European Conference Computer Vision, 2018, pp. 381–395.

123

Bibliography

[118] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, “Graph neural networks and their current

applications in bioinformatics,” Frontiers in Genetics, vol. 12, p. 690049, 2021.

[119] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning:

Grids, groups, graphs, geodesics, and gauges,” arXiv preprint arXiv:2104.13478, 2021.

[120] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on

graphs with fast localized spectral filtering,” in Advances in Neural Information Pro-

cessing Systems, 2016, pp. 3844–3852.

[121] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” Computing Research Repository, vol. abs/1609.02907, pp. 1–14, 2016.

[122] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” Advances in

Neural Information Processing Systems, vol. 29, 2016.

[123] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[124] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein, “Geo-

metric deep learning on graphs and manifolds using mixture model cnns,” in Computer

Vision and Pattern Recognition, 2017, pp. 5115–5124.

[125] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural mes-

sage passing for quantum chemistry,” in International Conference on Machine Learning,

2017, pp. 1263–1272.

[126] D. Grattarola, “Graph neural networks lecture slides,” https://danielegrattarola.github.

io/files/talks/2021-03-01-USI_GDL_GNNs.pdf, online; accessed 22-March-2023.

[127] M. Edwards and X. Xie, “Graph based convolutional neural network,” in British Ma-

chine Vision Conference, 2016.

[128] ——, “Graph-based cnn for human action recognition from 3d pose,” in Deep Learning

in Irregular Domains Workshop, British Machine Vision Conference, 2017.

[129] C. Chevalier and I. Safro, “Comparison of coarsening schemes for multilevel graph par-

titioning,” in International Conference on Learning and Intelligent Optimization, 2009,

pp. 191–205.

124

https://danielegrattarola.github.io/files/talks/2021-03-01-USI_GDL_GNNs.pdf
https://danielegrattarola.github.io/files/talks/2021-03-01-USI_GDL_GNNs.pdf

Bibliography

[130] J. Katkar, T. Baraskar, and V. R. Mankar, “A novel approach for medical image segmen-

tation using PCA and k-means clustering,” in International Conference on Applied and

Theoretical Computing and Communication Technology, 2016, pp. 430–435.

[131] R. Rulaningtyas, A. B. Suksmono, T. Mengko, and P. Saptawati, “Multi patch approach

in k-means clustering method for color image segmentation in pulmonary tuberculosis

identification,” in International Conference on Instrumentation, Communications, In-

formation Technology, and Biomedical Engineering, 2015, pp. 75–78.

[132] H. Yadav, P. Bansal, and R. Kumarsunkaria, “Color dependent k-means clustering for

color image segmentation of colored medical images,” in Proceedings on International

Conference on Next Generation Computing Technologies, 2016, pp. 858–862.

[133] N. M. Salem, “Segmentation of white blood cells from microscopic images using k-

means clustering,” in National Radio Science Conference, 2014, pp. 371–376.

[134] A. S. Abdul Nasir, M. Y. Mashor, and H. Rosline, “Unsupervised colour segmentation

of white blood cell for acute leukaemia images,” in IEEE International Conference on

Imaging Systems and Techniques, 2011, pp. 142–145.

[135] R. M. Thomas and J. John, “A review on cell detection and segmentation in microscopic

images,” in International Conference on Circuits, Power and Computing Technologies,

2017, pp. 1–5.

[136] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep learning for identi-

fying metastatic breast cancer,” Computing Research Repository, vol. abs/1606.05718,

2016.

[137] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional encoder-

decoder architecture for image segmentation,” IEEE Pattern Analysis and Machine In-

telligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[138] Y. Arora and I. Patil, “Fully convolutional network for depth estimation and semantic

segmentation.” stanford. edu, 2017.

[139] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-

mentation,” in Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

125

Bibliography

[140] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[141] M. G. Carneiro and L. Zhao, “Analysis of graph construction methods in supervised data

classification,” in 7th Brazilian Conference on Intelligent Systems, 2018, pp. 390–395.

[142] T. C. Silva and L. Zhao, “Network-based high level data classification,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 23, no. 6, pp. 954–970, 2012.

[143] J. R. Bertini Jr, L. Zhao, R. Motta, and A. de Andrade Lopes, “A nonparametric classi-

fication method based on k-associated graphs,” Information Sciences, vol. 181, no. 24,

pp. 5435–5456, 2011.

[144] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data

representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[145] M. G. Carneiro, T. H. Cupertino, R. Cheng, Y. Jin, and L. Zhao, “Nature-inspired graph

optimization for dimensionality reduction,” in IEEE 29th International Conference on

Tools with Artificial Intelligence, 2017, pp. 1113–1119.

[146] B. Araújo and L. Zhao, “Data heterogeneity consideration in semi-supervised learning,”

Expert Systems with Applications, vol. 45, pp. 234–247, 2016.

[147] L. Berton and A. De Andrade Lopes, “Graph construction based on labeled instances for

semi-supervised learning,” in 2014 22nd International Conference on Pattern Recogni-

tion, 2014, pp. 2477–2482.

[148] M. G. Carneiro, T. H. Cupertino, and L. Zhao, “K-associated optimal network for graph

embedding dimensionality reduction,” in International Joint Conference on Neural Net-

works, 2014, pp. 1660–1666.

[149] T. H. Cupertino, M. G. Carneiro, and L. Zhao, “Dimensionality reduction with the k-

associated optimal graph applied to image classification,” in IEEE International Con-

ference on Imaging Systems and Techniques, 2013, pp. 366–371.

[150] T. H. Cupertino, L. Zhao, and M. G. Carneiro, “Network-based supervised data classi-

fication by using an heuristic of ease of access,” Neurocomputing, vol. 149, pp. 86–92,

2015.

126

Bibliography

[151] M. G. Carneiro and L. Zhao, “High level classification totally based on complex net-

works,” in 2013 BRICS Congress on Computational Intelligence and 11th Brazilian

Congress on Computational Intelligence, 2013, pp. 507–514.

[152] M. G. Carneiro, L. Zhao, R. Cheng, and Y. Jin, “Network structural optimization based

on swarm intelligence for highlevel classification,” in International Joint Conference on

Neural Networks (IJCNN), 2016, pp. 3737–3744.

[153] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community detection algo-

rithms on directed and weighted graphs with overlapping communities,” Physical Re-

view E, vol. 80, no. 1, p. 016118, 2009.

[154] S. I. Dimitriadis, E. Messaritaki, and D. K Jones, “The impact of graph construction

scheme and community detection algorithm on the repeatability of community and hub

identification in structural brain networks,” Human Brain Mapping, vol. 42, no. 13, pp.

4261–4280, 2021.

[155] A. Daigavane, B. Ravindran, and G. Aggarwal, “Understanding convolutions on

graphs,” Distill, 2021, https://distill.pub/2021/understanding-gnns.

[156] P. Liu, X. Wang, and Y. Gu, “Graph signal coarsening: Dimensionality reduction in

irregular domain,” in IEEE Global Conference on Signal and Information Processing,

2014, pp. 798–802.

[157] C. Chevalier and I. Safro, “Comparison of coarsening schemes for multilevel graph par-

titioning,” in International Conference on Learning and Intelligent Optimization, 2009,

pp. 191–205.

[158] J. A. Katkar and T. Baraskar, “Medical image segmentation using PCA and k-mean

clustering algorithm,” in Post Graduate Conference for Information Technology, 2015,

pp. 1–6.

[159] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” in Computer Vision and Pattern Recogni-

tion, 2014, pp. 580–587.

[160] R. Girshick, “Fast R-CNN,” in International Conference on Computer Vision, 2015, pp.

1440–1448.

127

Bibliography

[161] R. Huang, J. Pedoeem, and C. Chen, “YOLO-LITE: A real-time object detection algo-

rithm optimized for non-gpu computers,” in IEEE International Conference on Big Data

(Big Data), 2018, pp. 2503–2510.

[162] A. Micheli, “Neural network for graphs: A contextual constructive approach,” IEEE

Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009.

[163] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for

graphs,” in International Conference on Machine Learning, 2016, pp. 2014–2023.

[164] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object detection in a

point cloud,” in Computer Vision and Pattern Recognition, June 2020.

[165] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in

NIPS - Volume 2, ser. NIPS’13. Red Hook, NY, USA: Curran Associates Inc., 2013, p.

2553–2561.

[166] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis detection in

breast cancer histology images with deep neural networks,” in Medical Image Comput-

ing and Computer Assisted Interventions, 2013, pp. 411–418.

[167] N. Acosta-Mendoza, A. Gago-Alonso, and J. E. Medina-Pagola, “Frequent approximate

subgraphs as features for graph-based image classification,” Knowledge-Based Systems,

vol. 27, pp. 381–392, 2012.

[168] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on composite

keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974.

[169] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph

attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[170] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural net-

works,” arXiv preprint arXiv:1511.05493, 2015.

[171] P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat,

S. Sim, J. Okamoto, D. M. Johnston, D. Qian et al., “Single-cell dissection of transcrip-

tional heterogeneity in human colon tumors,” Nature biotechnology, vol. 29, no. 12, pp.

1120–1127, 2011.

128

Bibliography

[172] C. A. O’Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell

capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no.

7123, pp. 106–110, 2007.

[173] A. Basavanhally, M. Feldman, N. Shih, C. Mies, J. Tomaszewski, S. Ganesan, and

A. Madabhushi, “Multi-field-of-view strategy for image-based outcome prediction of

multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison

to oncotype dx,” Journal of pathology informatics, vol. 2, 2011.

[174] J. S. Lewis Jr, S. Ali, J. Luo, W. L. Thorstad, and A. Madabhushi, “A quantitative

histomorphometric classifier (quhbic) identifies aggressive versus indolent p16-positive

oropharyngeal squamous cell carcinoma,” The American journal of surgical pathology,

vol. 38, no. 1, p. 128, 2014.

[175] G. N. van Muijen, D. J. Ruiter, W. W. Franke, T. Achtstätter, W. H. Haasnoot, M. Ponec,

and S. O. Warnaar, “Cell type heterogeneity of cytokeratin expression in complex epithe-

lia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins

nos. 4 and 13,” Experimental cell research, vol. 162, no. 1, pp. 97–113, 1986.

[176] K. Sirinukunwattana, S. E. A. Raza, Y.-W. Tsang, D. R. Snead, I. A. Cree, and N. M.

Rajpoot, “Locality sensitive deep learning for detection and classification of nuclei in

routine colon cancer histology images,” IEEE Transactions on Medical Imaging, vol. 35,

no. 5, pp. 1196–1206, 2016.

[177] Y. Xie, F. Xing, X. Kong, H. Su, and L. Yang, “Beyond classification: structured regres-

sion for robust cell detection using convolutional neural network,” in International Con-

ference on Medical Image Computing and Computer-Assisted Intervention. Springer,

2015, pp. 358–365.

[178] M. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Breast cancer histopathology

image analysis: A review,” IEEE Transactions on Biomedical Engineering, vol. 61,

no. 5, pp. 1400–1411, 2014.

[179] E. Cosatto, M. Miller, H. P. Graf, and J. S. Meyer, “Grading nuclear pleomorphism on

histological micrographs,” in 2008 19th International Conference on Pattern Recogni-

tion. IEEE, 2008, pp. 1–4.

129

Bibliography

[180] Y. Yuan, H. Failmezger, O. M. Rueda, H. R. Ali, S. Gräf, S.-F. Chin, R. F. Schwarz,

C. Curtis, M. J. Dunning, H. Bardwell et al., “Quantitative image analysis of cellular

heterogeneity in breast tumors complements genomic profiling,” Science translational

medicine, vol. 4, no. 157, pp. 157ra143–157ra143, 2012.

[181] C. D. Malon and E. Cosatto, “Classification of mitotic figures with convolutional neural

networks and seeded blob features,” Journal of pathology informatics, vol. 4, 2013.

[182] K. Nguyen, A. K. Jain, and B. Sabata, “Prostate cancer detection: Fusion of cytological

and textural features,” Journal of pathology informatics, vol. 2, 2011.

[183] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A. G. Osorio, “A deep learning

architecture for image representation, visual interpretability and automated basal-cell

carcinoma cancer detection,” in International Conference on Medical Image Computing

and Computer-Assisted Intervention. Springer, 2013, pp. 403–410.

[184] H. Wang, A. Cruz-Roa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman,

J. Tomaszewski, F. Gonzalez, and A. Madabhushi, “Cascaded ensemble of convolutional

neural networks and handcrafted features for mitosis detection,” in Medical Imaging:

Digital Pathology, vol. 9041, 2014, p. 90410B.

[185] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[186] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceedings

of ICML Workshop on Unsupervised and Transfer Learning. JMLR Workshop and

Conference Proceedings, 2012, pp. 37–49.

[187] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new

perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 8, pp. 1798–1828, 2013.

[188] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,

“Generative adversarial networks: An overview,” IEEE signal processing magazine,

vol. 35, no. 1, pp. 53–65, 2018.

[189] K. Riesen and H. Bunke, Graph classification and clustering based on vector space

embedding. World Scientific, 2010, vol. 77.

130

Bibliography

[190] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1, no. 1, pp. 27–64,

2007.

131

	Contents
	List of Tables
	List of Figures
	Introduction
	Motivations
	Graph Construction
	Medical Image Cell Segmentation
	Medical Image Cell and Nuclei Detection

	Overview
	Contributions
	List of publications resulting from the research conducted for this thesis:

	Outline

	Fundamentals of Deep Learning and GNNs
	Introduction
	Fundamentals of Deep Learning
	Neural Network
	Feedforward Neural Network
	Backpropagation

	Convolution Neural Network
	Convolutional Layer
	Pooling Layer

	Deep Learning in Irregular Domain
	Foundation of Graph Signal Processing
	Spectral Graph theory
	Adjacency Matrix
	Diagonal Matrix/Degree Matrix
	Laplacian Matrix
	Graph Signals
	Graph Signals Processing

	Graph Neural Networks
	Graph Convolution Networks

	Medical Image Analysis
	Summary

	Graph construction as a study
	Introduction
	Problem domain of Graph Construction

	Graph construction
	Representation of 2D arrays
	Binary Graph Construction
	Euclidean Graph Construction
	Gaussian Graph Construction

	Methods
	Convolution on Graph
	Convolution on sub graph (Sampler function)

	Case study/ experimentation on image domain
	Architecture
	Experiments and Results
	Global Binary Adjacency matrix
	Global Euclidean Adjacency matrix
	Global Gaussian Adjacency matrix
	Local Adjacency matrix
	Discussion

	Summary

	Segmentation in Irregular Domain Data
	Introduction
	Methods
	Proposed network architecture
	Proposed method of utilizing Spectral based Graph-CNN
	Proposed method of utilizing Spatial based Graph-CNN

	Experimentation
	Generation of Hodgkin Lymphoma (Ground Truth) Segmentation
	Segmentation using Clustering Method
	Segmentation using Deep Learning
	Segmentation using Spectral Graph-CNN
	Segmentation using Spatial Graph-CNN

	Results
	Summary

	Cell Detection in Irregular Domain Data
	Introduction
	Method
	Graph proposal (Gp-NN)
	Multi-label graph classification network
	Classifier

	Experimentation
	Dataset
	Training and Inference

	Results
	Summary

	Nuclei Detection in Irregular Domain Data
	Introduction
	Methods
	Detecting Nuclei with GCN
	Cascaded GCN

	Experimentation
	Dataset and Implementation
	Model Evaluation
	Comparison with other works

	Results
	Summary

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

