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A B S T R A C T   

The transportation sector is deemed one of the primary sources of energy consumption and greenhouse gases 
throughout the world. To realise and design sustainable transport, it is imperative to comprehend relationships 
and evaluate interactions among a set of variables, which may influence transport energy consumption and CO2 
emissions. Unlike recent published papers, this study strives to achieve a balance between machine learning (ML) 
model accuracy and model interpretability using the Shapley additive explanation (SHAP) method for forecasting 
the energy consumption and CO2 emissions in the UK’s transportation sector. To this end, this paper proposes an 
interpretable multi-stage forecasting framework to simultaneously maximise the ML model accuracy and 
determine the relationship between the predictions and the influential variables by revealing the contribution of 
each variable to the predictions. For the UK’s transportation sector, the experimental results indicate that road 
carbon intensity is found to be the most contributing variable to both energy consumption and CO2 emissions 
predictions. Unlike other studies, population and GDP per capita are found to be uninfluential variables. The 
proposed multi-stage forecasting framework may assist policymakers in making more informed energy decisions 
and establishing more accurate investment.   

1. Introduction 

1.1. Background 

Over the last decades, energy consumption (EngCons) and carbon 
dioxide emissions (CO2E) challenges have been the primary issues for 
policymakers. This was because of the impact of energy usage on na
tional economic growth as well as the impact of carbon on human 
health. In parallel with economic and social enhancements, energy de
mand has risen worldwide. Correspondingly, the rapidly increasing level 
of the human population, socioeconomic improvement, urbanization, 
and scientific developments have cumulatively led to an increase in 
worldwide EngCons and CO2E in numerous sectors [1,2]. The world 
CO2E for different transportation sectors is provided in Fig. 1. Although 
CO2E is increasing until 2025, they will continue to decrease dramati
cally until 2070. 

In the United Kingdom (UK), almost all transportation sectors must 
decarbonize to fulfill the economy-wide net-zero commitment. Due to a 

continual increase throughout vehicle kilometers traveled, trans
portation CO2 peaked in 2007, 8.4 % greater compared to 1990. Since 
then, emissions through the transportation sector have dropped back to 
around 1990 levels up till 2019, primarily due to enhancements in new 
vehicle energy efficiency and reduced transportation growth compared 
to prior years due to a dip following the 2008/2009 recession [4]. Ac
cording to the Energy Stats [5], although in 2020 the UK government 
observed significant falls in energy usage for almost all vehicle forms, 
with the most considerable reduction in buses and automobiles trans
port remains the most significant part of energy usage throughout the 
UK. 

A range of machine learning (ML) models can be utilised to estimate 
EngCons and CO2E, including multiple linear regression (MLR) [6,7], 
logistic regression [8], generalized linear models [9], time series anal
ysis [10,11], artificial neural networks (ANN) [12–14], deep learning 
[15–17], support vector machine (SVM) [18,19], decision tree, random 
forest (RF) [20,21], hybrid methods [22,23], to name a few. Despite 
extensive research having been conducted using ML models to forecast 
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EngCons and CO2E, it is noticed that limited attention has been focused 
on the transport sector of the UK. For instance, Piecyk and McKinnon 
[24] conducted a study in 2010 to forecast the carbon footprint of road 
freight transport in 2020, factors affecting freight transport demand, 
truck fuel consumption and related CO2E were discussed. However, 
their research only focused on part of the transport sector and is now 
out-of-date, which diminishes the value of their research for policy
makers in decision-making. Logan et al. [25] conducted a similar study 
where they estimated the energy demand of road transport including 
cars, buses and trains. The energy consumption of the transport sector 

remained untouched. The limited number of works in energy demand 
forecasting of the UK’s transport sector failed to meet the needs of UK 
Transport Vision 2050 [26]. 

Furthermore, as review of literature indicates, previous studies have 
explored forecasting the EngCons and/or CO2E, which preselected a 
small number of features without any strong justification and rationale 
on how and why those set of features are selected. Because of a small 
number of preselected features, unlike many studies in other energy 
forecasting domains, no study has employed FS methods to select the 
combination of features which can lead to high accuracy of ML models. 

Fig. 1. World CO2E for different transportation modes [3].  

Fig. 2. The conceptual framework of the integrated FS and ML based forecasting framework.  
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In addition, only one study [27] has used interpretable ML to forecast 
the EngCons and CO2E to determine the influential variables. Therefore, 
as one of the most crucial needs, the transportation sector is calling for 
an interpretable multi-stage framework to accurately forecast the Eng
Cons and CO2E and to systematically evaluate the effects of different 
types of features. 

1.2. Novelty and contributions 

The novelty and contributions of this study in comparison with 
recently published works in forecasting EngCons and CO2E in trans
portation sector can be concluded as follows:  

• This study considers multi-source data in the UK’s transportation 
sector by integrating three categories of variables (features) 
including socioeconomic, transportation- and energy-related vari
ables. Neither of published papers used a large list of input features 
and performed correlation and multicollinearity analyses to remove 
highly correlated features to provide an appropriate subset of fea
tures for interpretability of black-box ML models. All previous works 
preselected a small number of features without any strong justifica
tion and rationale on how and why those set of features are selected.  

• Previous studies in the literature used neither filter/embedded 
methods to select the input features holding strong relationship with 
the EngCons and CO2E, nor wrapper methods to select the features 
which can lead to high accuracy of ML models. This study introduces 
a novel voting scheme for feature selection (FS), which combines 
both filter and embedded paradigms, which has not been studied 
before in the EngCons context.  

• The other contribution is to propose an interpretable ML-based 
forecasting framework, which is depicted in Fig. 2. The proposed 
generalized framework integrates multi-stage FS procedure with ML 
models to simultaneously achieve more accurate forecasts and more 
reliable interpretation of black-box ML models using Shapley addi
tive explanation (SHAP) analysis proposed by Lundberg et al. [28]. 
SHAP is a method employed for interpreting the output of ML 
models, which is briefly described in Section 3.7. Although the SHAP 
analysis has recently found applications in energy-related fields [27, 
29,30], more work is required to demonstrate the practicality and 
usefulness of SHAP analysis in interpretable ML models for fore
casting EngCons and CO2E. To the best of our knowledge, this study 
is the second work in EngCons context (the first study is Aras and Van 
[31], however, they overlooked the fact that investigation of multi
collinearity in their study is crucial) that applies the SHAP analysis to 

Table 1 
Summary of the primary studies in predicting energy demand and CO2E in the transportation sector.  

Paper Target 
Variable 
(s) 

Field Country Timeframe Feature selection Applied Models 

Filter/ 
Embedded 

Wrapper ML Mathematical Hybrid 

[2] Energy 
and CO2 

Transport Turkey 1970–2016 No No ANN, SVM, DL – – 

[22] Energy Transport Jordan 1985–2009 No No – – Neuro-Fuzzy 
Inference 
System 

[23] Energy Transport Turkey 1975–2019 No No – – ANN-GA, 
ANN-SA, and 
ANN-PSO 

[32] CO2 Transport China 1980–2014 Yes No BPNN, GPR, SVM – PSO-SVM 
[46] Energy Transport Thailand 1989–2008 No No ANN – – 
[41] Energy Transport Turkey 1975–2019 No No multivariate adaptive 

regression splines 
– – 

[42] Energy Automobile Australia 1974–2019 
(Quarterly) 

No No Autoregressive and 
structural model 

– – 

[43] CO2 Transport Top 30 
Emitting 
Nations 

2005–2014 No No OLS, SVM, GBR – – 

[39] Energy 
and CO2 

Transport Canada 1990–2019 No No ARIMA, ARFIMA, SARIMA, 
GARCH, MIDAS, SVR 

– – 

[44] Energy Transport Turkey 2000–2017 No No Bezier search differential 
evolution and black widow 
optimization 

– – 

[45] CO2 Road 
Transport 

China 2006–2015 No No – – Hybrid RF- 
SVR, and 
response 
surface 

[47] CO2 Road 
Transport 

UK 2010–2014 No No – Basic Estimations to 
2050 

– 

[48] non- 
methane 

Road 
Transport 

EU Nations 2004–2016 No No SVR, RLR – Kernel grey 
model 

[49] CO2 Transport Pakistan 1971–2014 No No – Autoregressive 
distributive lag 

– 

[50] CO2 Transport China 2015 (3 
months) 

No No ANN, gaussian naive bayes, 
linear and logistic 
regression, stacked deep 
belief networks 

– – 

[51] CO2 Land 
transport 

Cyprus 2010–2016 No No – Environmentally 
extended input-output 
analysis 

– 

[52] Energy Transport Turkey 1975–2016 No No ANN – – 
Prseent 

study 
Energy 
and CO2 

Transport UK 1990–2019 Yes Yes ANN, RF, LSTM, SVM, MLR, 
LSBoost, GPR 

– –  
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forecast the EngCons and CO2E to determine the influential variables 
contributing to the predictive performance. 

It is worth mentioning that the proposed methodology is designed for 
any ML-based forecasting problems, in which simultaneously selecting 
as few features as possible for interpretability of ML models (or any 
other reasons) and achieving an acceptable model accuracy are desired. 
Multiple stages of FS procedure are so insightful on how different fea
tures are influencing and interacting with each other. 

This paper is organised as follows. Section 2 reviews literature of the 
existing study regarding EngCons and CO2E. Section 3 introduces the 
forecasting framework according to the integrated multi-stage FS 
methods and ML models. In Section 4, the case study and experimental 
settings are described. In Section 5, the analyses of experimental results 
are described along with Shapley Analysis to demonstrate the usefulness 
and benefits of the proposed framework. Section 6 briefly presents some 
noticeable discussion and lastly, concluding statements are provided in 
Section 7. 

2. Literature review 

2.1. Feature selection for energy forecasting 

Multivariate ML-based forecasting models work based on selecting a 
set of potentially influencing features. As it is discussed in Section 2.2 
only Wang et al. [32] used FS method for forecasting CO2E and EngCons 
in transportation sector which in contrast to previous studies that have 
typically chosen a limited number of key features, such as population, 
GDP, and total number of vehicles, without providing a clear rationale 
or justification for their selection. 

An appropriate FS procedure is crucial in forecasting CO2E and 
EngCons. A summary of a few recent studies considering the FS methods 
in different energy fields is provided as follows. Jurado et al. [33] 
compared several ML techniques for energy prediction inside houses. 
They suggested a hybrid strategy that combines FS methods using soft 
computing and ML models, i.e., fuzzy, RF, and ANN. Feng et al. [34] 
developed a method for wind prediction using the ML approach. A FS 
structure was established to identify the most appropriate inputs for the 
ML approach. An organised FS method for establishing house energy 
prediction was suggested by Zhang and Wen [35]. 

The power usage of appliances was forecasted by Moldovan and 
Slowik [36] utilizing binary grey wolf optimization, in which the best 
features were selected utilizing the RF, KNN, decision tree, and extra 
tree methods. Qiao et al. [37] suggested a framework for house energy 
usage forecasting, depending on FS techniques. Lv and Wang [38] 
offered an efficient short-term wind speed prediction model by taking 
into account the impact of several meteorological variables. The 
filter-wrapper method integrating K-medoid clustering was developed to 
choose crucial meteorological elements. In the above papers, experi
mental results indicated that the ML models utilizing the FS methods 
typically have greater generalization and precision than those without 
FS. 

2.2. ML for energy forecasting 

Over the past few years, many forecasting models have been devel
oped to predict EngCons and CO2E in different sectors. In this section, 
we briefly review the papers which investigated ML-based forecasting in 
the transportation sector in recent years. Readers can refer to Refs. [2, 
39] to study more references. Wang et al. [40] developed an ML model 
for transportation emissions utilizing the SVM, GPR, and ANN algo
rithms. Sahraei et al. [41] forecasted transportation energy usage uti
lizing the multivariate adaptive regression splines (MARS) method for 
45 years after 1975 in Turkey. 

Li et al. [42] utilised an ML model to predict Australia’s vehicle 
gasoline usage utilizing an autoregressive and structural method. The 

outcomes of a prediction regarding gasoline usage for 2019–2020 
demonstrate the outstanding prediction performance of the ML model. 
Ağbulut [2] utilised three ML models, i.e., ANN, SVM, and deep learning 
to predict transport energy usage and CO2E. Results showed that CO2E 
and energy usage through the transport sector will rise by almost 3.4 
times more by 2050 than today. Sahraei and Çodur [23] suggested 
hybrid methods, ANN-PSO, ANN-Simulated Annealing, and ANN-GA, 
for a precise optimization of the input parameters regarding fore
casting the energy usage during 1975–2019 throughout Turkey. 

Three ML algorithms were developed by Li et al. [43], including 
gradient boosting regression (GBR), SVM, and ordinary least squares 
regression, to predict transport CO2E. More recently, Javanmard et al. 
[39] employed a hybrid approach integrating a multi-objective mathe
matical model with MLs to predict energy demand and CO2E in the 
transportation sector of Canada. Korkmaz [44] developed black widow 
optimization and bezier search differential evolution methods to 
calculate the transport energy usage throughout Turkey. More recently, 
a hybrid RF-SVR and response surface method were carried out by 
Khajavi and Rastgoo [45] to forecast CO2E for 30 important towns 
throughout China. 

Given the concentration of this study, Table 1 summarises key in
formation from prior studies from all over the world forecasting energy 
demand and CO2E in the transportation sector. In the case of the FS 
methods (wrapper, filter, and embedded), we could not find any study to 
utilise the FS methods except for Wang et al. [32], which used stepwise 
linear regression to select most significant variables. In addition, based 
on authors’ review of literature only [2,39] considered both energy 
demand and CO2E as target variables. 

3. Research methodology 

3.1. Overall procedure of proposed forecasting framework 

Fig. 2 provides a conceptual framework of our proposed method for 
forecasting EngCons and CO2E. The primary goal of the proposed inte
grated multi-stage FS and ML method is to leverage the benefits of FS to 
identify the most influential features while mitigating multicollinearity, 
and to identify a subset of features able to achieve an appropriate bal
ance between accuracy of ML models and their interpretability power. 

The architecture of our proposed method involves multiple stages: i) 
pre-processing operations, (ii) correlation analysis of variables, (iii) fil
ter and embedded FS methods, (iv) multicollinearity analysis, (v) inte
grated wrapper FS and ML models, (vi) selecting the best ML models 
with the highest accuracy, and finally (vii) performing Shapley analysis 
to determine the contributions of variables. 

First, the raw data was collected and processed by removing noise, 
correcting the data inconsistencies, and integrating them into a homo
geneous dataset. The other stages are described in some details as fol
lows. In any ML study, some potentially important features can be 
automatically selected and added to the feature list based on the domain 
knowledge as depicted in Fig. 2. 

3.2. Pairwise pearson correlation 

For each input feature (IF), the Pearson correlation coefficient rij of 
this feature (i) with each of the other input features (j) along with its 
corresponding significance value pij (iandj ∈SetIF) are calculated. If the 
absolute value of correlation coefficient rij for each pair of input features 
is greater than correlation threshold value Tu (in this study Tu = 0.95) 
with significant confidence (pij < a, a is significance level), only one 
highly collinear feature will be selected, while the remaining features 
will be excluded from the candidate pool to avoid redundancy. 
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3.3. Filter and embedded FS methods 

3.3.1. Maximum relevance and Minimum Redundancy (mRMR) 
The mRMR is a filter FS algorithm to rank input features based on 

their relevance to the output feature and simultaneously discard 
redundant input features [53]. Mutual information (MI) is employed to 
quantify both the relevance and redundancy of mRMR. The following 
describes MI: 

I(X, Y)=
∫∫

p(x, y)log
p(x, y)

p(x)p(y)
(1)  

where X,Y are vectors, p(x, y) is the joint probabilistic density, p(x) and 
p(y) are the marginal probabilistic densities, respectively. 

Assuming a feature set S with m (xi, i∈ (1,m)) features, then Max- 
Relevance represents a feature subset that jointly has the largest rele
vance to the output variable y: 

maxD(S, y),D=
1
|S|

∑

xi∈S
I(xi, y) (2) 

For defining redundant features, Minimum Redundancy is 

implemented using Max-Relevance’s possible redundancy. : 

minR(S),R=
1
|S|2

∑

xi ,xj∈S
I
(
xi,xj

)
(3) 

An incremental search method is then employed to find the optimal 
solution that can satisfy the above two constraints. Assuming that there 
already have a feature set Sm− 1 , the task is to determine the mth feature 
from {X − Sm− 1}. 

maxxj∈X− Sm− 1

[

I
(
xj, y

)
−

1
m− 1

∑

xi∈Sm− 1

I
(
xi, xj

)
]

(4)  

3.3.2. Random forest 
Random Forest (RF) is an ensemble technique that combines a pre

determined number of decision trees. It employs information gain or 
Gini impurity as the criteria for splitting each node across all trees [54]. 

Fig. 3. Schematic diagram of an LSTM.  

Table 2 
Twenty-four features and their corresponding abbreviation.  

Feature Abbreviation Feature Abbreviation 

CO2E in transport CO2 Unemployment rate UR 
EngCons in transport EC-Trans Gasoline price GP 
Oil Products 

consumption in 
transport 

OP-Trans Total public energy 
RD&D budget 

R&D 

Total EngCons in all 
sectors 

EC-All Net energy imports NEI 

Total energy supply TES Road carbon intensity RCI 
Population POP Air passengers AP 
Urban population rate UPR Air fright AF 
Energy intensity in 

transport 
EI Rail passengers RP 

GDP per capita GDP New road vehicle 
registrations 

NVR 

Total final Electricity 
consumption 

EC-Elec Total licensed road 
vehicles 

TV 

Renewable & Waste by 
Transport 

RW-Trans Average road vehicle 
milage 

AVM 

Share of electric 
vehicles 

SEV Total road vehicle 
milage 

TVM  

Fig. 4. EngCons and CO2E in the transportation sector in the UK (1990–2019).  
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Nodes with the highest impurity reduction are usually found at the start 
of decision trees, while nodes with the lowest impurity reduction are 
typically located towards the end. Therefore, by selectively pruning 
branches at a specific node, it is feasible to create a subset of the most 
significant features. 

3.3.3. Boruta FS 
Boruta is a wrapper algorithm that utilises an RF to identify pertinent 

features associated with output labels while discarding irrelevant fea
tures that may occasionally exhibit significance due to chance [55]. A 
detailed procedure for BFS is iterated below: 

• Randomise the feature set by creating shadow copies (shadow fea
tures) of all features and combining them with the original features 
to create an extended feature set.  

• Establish an RF model for the expanded feature set and assess the 
feature’s importance (the average reduced accuracy Z value). The 
larger the Z value, the more significant the trait. Z-max denotes the 
maximum Z value of the shadow feature.  

• During each iteration, if the feature’s Z value is larger than Z-max, 
the feature is deemed essential and is retained. Otherwise, the 
feature will be considered trivial and eliminated from the feature list.  

• The preceding approach terminates when all features are either 
verified or rejected or when the maximum number of BFS iterations 
is achieved. 

3.3.4. Voting scheme in FS 
One of the challenges in FS is to determine the most appropriate FS 

method(s) for a particular set of data due to the fact that each FS method 
has its own logic based on a statistical measure to calculate the relative 
importance of features, which may lead to different subsets of selected 
features. In other words, a feature may be deemed important in one 
method but not in another. 

In the proposed methodology, three different FS methods, including 
two filter FS methods (mRMR and Boruta) and one embedded FS method 
(RF) were applied to select the most important features. However, both 
filter and embedded methods have their own drawbacks; filter methods 
ignore the dependency among input features and embedded methods 
heavily rely on ML models. To overcome such issue, a voting scheme was 
proposed, when an FS method m picks the feature f, it assigns the vote 
Vmf (no = 0 or yes = 1) for that feature. In the end, the voting scheme 
calculates the total “yes” votes for each feature, i.e., total vote Vf =

∑

m
Vfm, and then a subset of features with the total vote Vf greater than or 

equal to the total vote threshold value VT (provided by ML practitioner 
depending on the problem) are selected. 

3.4. Multicollinearity analysis 

Multicollinearity refers to the correlation between input features in 
ML applications, which typically does not impact the performance of the 
ML models. However, it may significantly distort the interpretability of 
the model and develop a biased insight of feature importance. For 
instance, during training process, a ML method such as Lasso Regression 
may assign a large weight to one arbitrary representative of a group of 
highly correlated features and fully omit the rest ones, despite similar 
information these features represent. A misleading interpretation may 
therefore be obtained due to multicollinearity. To mitigate adverse 
impact of multicollinearity on interpretation of ML, variance inflation 
factor (VIF) [56,57] was introduced in the study for removing highly 
correlated features. 

3.5. ML models 

3.5.1. Support vector machine (SVM) 
SVM is a model for binary classification that functions based on the 

principle of separating hyperplanes [58]. This approach guarantees the 
determination of the hyperplane that can effectively partition the 
training datasets under the largest geometric interval. A Kernel function 
is incorporated into SVM to facilitate the mapping of input spaces onto a 
feature space of high dimensionality through a non-linear trans
formation, which ultimately results in the establishment of a linear de
cision boundary within the transformed space. 

Table 4 
Result of FS voting scheme for EC-Trans(t+1).  

FS Method CO2(t) EC-Trans(t) OP-Trans EC-All TES R&D UR RCI NVR TV Total count 

mRMR ● ● ● ● ○ ○ ● ● ● ● 8 
Boruta ● ● ● ● ● ○ ● ● ● ○ 8 
RF ● ● ● ● ○ ● ● ● ● ○ 8 
Score 3 3 3 3 1 1 3 3 3 1 10  

Table 5 
Result of FS voting scheme for CO2(t+1).  

FS Method CO2(t) EC-Trans(t) OP-Trans EC-All TES RW- Trans R&D NEI RCI AVM GP POP Total count 

mRMR ● ● ● ● ● ● ● ● ● ○ ○ ● 10 
Boruta ● ○ ● ● ● ● ● ● ● ● ● ○ 10 
RF ● ● ● ● ● ● ● ● ● ● ○ ○ 10 
Score 3 2 3 3 3 3 3 3 3 2 1 1 12  

Table 3 
The summary of hyperparameters for the ML models.  

ML Model Parameter name Parameter value 

MLR – – 
RF Maximum number splits 

Pruning 
Number of trees 

10 
Off 7 

LS-Boost Maximum number splits 
Pruning 
Number of trees 
Learning rate 

12 
Off 7 
0.3 

MLP Number of hidden layers 
Number of neurons 
Learning method 
Activation function 

1 
10 
Levenberg-Marquardt 
Sigmoid 

LSTM Number of LSTM layers 
Number of hidden units 
Maximum epoch 

1 
20 
100 

SVR-RBF Box constraint I 
Gamma (γ) 

100 
1 

GPR Explicit basis 
Prediction method 

Linear 
Subset of regressors approximation  
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3.5.2. Gaussian process regression (GPR) 
The GPR model is a supervised machine-learning algorithm that 

operates on probabilistic principles [59]. It leverages prior knowledge to 
generate predictions and provides measures of uncertainty. Assuming a 
training set D = (X, y) = {(Xi, yi)|i= 1, …,N}, where X is denotes an 
input vector and y denotes an output or target variable. When given a 

new input X*, the corresponding output ŷ* can be expressed as 

ŷ∗ =K(X∗,X)K(X,X)− 1y (5) 

The derivation process is as follows, assuming: 
[

y
y∗
]

∼ N

(

0,
[

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])

(6) 

Fig. 6. The heatmap of correlation coefficient for CO2(t).  

Fig. 5. The heatmap of correlation coefficient for EC-Trans(t).  
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According to the conditional distribution property of the multidi
mensional Gaussian distribution: 

y∗|y ∼N
(
K(X∗,X)K(X,X)− 1y,K(X∗,X∗) − K(X∗,X)K (7) 

Finally, p(ŷ∗|y) is able to achieve its maximum when ŷ∗ = K(X∗,

X)K(X,X)− 1y. 

3.5.3. Long short-term memory (LSTM) networks 
Long Short-Term Memory (LSTM) networks are sequential neural 

networks that address the vanishing gradient of Recurrent Neural Net
works [60] by introducing the concept of cell states and bring four 
interacting layers and gate units as shown in Fig. 3. 

The self-connected memory cell Ct is the key feature of LSTMs, 
enabling gradients to flow across long sequences. LSTMs use 3 sigmoid 
gates (forgetting, input, and output) to manage cell state information.: 

σ(x)= 1
1 + e− x (8) 

Forgetting gate ft determines the specific information to discard from 

the cell state based on ht− 1 and xt, and update the cell state Ct− 1 (i.e., 0: 
discard, 1: remain). 

ft = σ
(
Wf • [ht− 1, xt] + bf

)
(9) 

The input gate it and a tanh layer are then developed to control new 
information stored in the new cell: 

it = σ(Wi • [ht− 1, xt] + bi) (10)  

C̃t = tanh(WC • [ht− 1, xt] + bC) (11) 

the new cell state Ct can be updated: 

Ct = ft • Ct− 1 + it • C̃t (12) 

Finally, the output gate ot uses the current input and the previous 
output to decide what parts of the cell state to output, and a tanh 
function is established to calculate the current state. 

ot = σ(Wo[ht− 1, xt] + bo) (13)  

Table 7 
Selected feature subsets with the ML models for forecasting CO2(t+1).  

Feature 
subset 

ML models Selected features Number of features 

EC-Trans 
(t) 

OP- 
Trans 

EC- 
All 

TES RW- 
Trans 

R&D NEI RCI AVM GP POP GDP CO2 
(t) 

S1 LSBoost ○ ● ○ ○ ● ○ ○ ○ ● ○ ○ ○ ● 4 
MPL ● ○ ○ ○ ○ ● ○ ● ● ● ○ ● ● 7 
SVR ○ ○ ● ○ ○ ○ ● ● ● ● ○ ○ ● 6 
GPR ○ ○ ○ ○ ○ ● ○ ○ ● ● ○ ○ ● 4 
LR ● ○ ● ○ ○ ● ○ ● ● ● ○ ● ● 8 
RF ○ ● ● ○ ● ○ ○ ● ● ● ○ ○ ● 7 
LSTM ● ● ○ ● ○ ● ● ● ● ● ● ● ● 11 
Score 3 3 3 1 2 4 2 5 7 6 1 3 7 47 

S2 LSBoost ● N/A ● N/ 
A 

N/A ○ ○ ● N/A ● N/A N/A ● 5 
MPL ● ● ○ ● ● ● ● 6 
SVR ○ ● ○ ● ● ● ● 5 
GPR ● ○ ● ● ● ● ● 6 
LR ● ● ● ○ ● ● ● 6 
RF ● ● ● ○ ● ● ● 6 
LSTM ● ● ○ ● ● ● ● 6 
Score 6 6 3 4 7 7 7 40 

Note: N/A indicates the feature is excluded in S2. 

Table 6 
Selected feature subsets with the ML models for forecasting EC-Trans(t+1).  

Feature subset ML models Selected features  

CO2(t) OP-Trans EC-All TES R&D UR RCI NVR TV POP GDP EC-Trans(t) Number of features 

S1 LSBoost ○ ● ● ○ ● ○ ○ ● ● ○ ● ● 7 
MPL ● ● ● ○ ○ ○ ○ ● ● ○ ● ● 7 
SVR ○ ○ ○ ○ ○ ○ ● ● ● ● ○ ● 5 
GPR ○ ○ ○ ○ ○ ● ○ ● ● ○ ○ ● 4 
LR ○ ○ ○ ○ ○ ● ● ● ● ○ ● ● 6 
RF ○ ● ● ● ● ● ● ● ● ● ● ● 11 
LSTM ○ ● ○ ○ ○ ○ ● ● ● ○ ● ● 6 
Score 1 4 3 1 2 3 4 7 7 2 5 7 46 

S2 LSBoost N/A N/A ● N/A ● ● ○ ● N/A N/A ○ ● 5 
MPL ● ○ ● ○ ● ● ● 5 
SVR ● ○ ○ ○ ● ● ● 4 
GPR ● ○ ● ○ ● ○ ● 4 
LR ● ○ ● ● ● ○ ● 5 
RF ● ○ ○ ● ● ● ● 5 
LSTM ○ ○ ○ ● ● ● ● 5 
Score 6 1 4 3 7 4 7 32 

Note: N/A indicates the feature is excluded in S2. 
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ht = ot • tanh(Ct) (14) 

In Equations (8)–(14), the matrices Wf , Wi and Wo are the recurrent 
weighting metrics; bf , bi, bC and bo are the corresponding bias vectors. 

3.5.4. Linear regression (LR) 
LR measures the relationship between a target variable and a given 

set of input variables [61]. Assuming there are m input variables: 

Y = β0 + cX1 + β2X2 + … + βmXm + ε (15)  

where β0 is the constant term and β1 to βm are the coefficients associated 
with the input variables. ε is the random error. Note that the mth 

regression coefficient βm represents the expected change in Y per unit 
change in the mth input variable xm, assuming E(ε)= 0, βm =

∂E(Y)
∂Xm

. 

3.5.5. Gradient tree boosting with least squares (LSBoost) 
LSBoost is a meta learning method that comprises a specific number 

of weak tree-learners [28].The algorithm initiates by sequentially 
training individual weak learners in the form of decision trees, and 
subsequently fits the residual of errors to attain improved performance. 
The LSBoost approach employs the least squares as the criterion for loss. 

Assuming the training set {(xi, yi)}
n
i=1, a loss function L(y, F) = (y− F)2

2 
and regression function Fm(x), (F0(x) = y), where m is the number of 
iterations. 

Fig. 7. Performance of the ML models in forecasting EC-Trans(t+1).  

Fig. 8. Performance of the ML models in forecasting CO2(t+1).  

Table 8 
ML performance for forecasting EC-Trans(t+1) with S1 and S2 feature sets.  

Dataset ML 
models 

Metrics Nubmer of 
features 

RMSE rRMSE MAPE MAE 

S1 LSBoost 14.805 0.864 0.806 13.770 7 
MLP 17.160 1.000 0.864 14.903 7 
SVR- 
RBF 

6.769 0.395 0.338 5.833 5 

GPR 21.131 1.233 1.148 19.647 4 
LR 13.847 0.808 0.633 10.876 6 
RF 10.881 0.635 0.488 8.404 11 
LSTM 38.311 2.235 2.129 36.575 6 

Average  17.558 1.024 0.915 15.715 6.571 
S2 LSBoost 23.668 1.381 1.092 18.763 7 

MLP 33.500 1.954 1.569 27.036 5 
SVR- 
RBF 

8.357 0.488 0.340 5.880 4 

GPR 19.561 1.141 0.849 14.666 4 
LR 26.552 1.549 1.375 23.675 5 
RF 17.159 1.000 0.702 12.079 5 
LSTM 40.154 2.342 2.248 38.649 6 

Average  24.136 1.408 1.168 20.109 5.143 
Difference LSBoost 59.9 % 59.8 % 35.5 % 36.3 % 0.0 % 

MLP 95.2 % 95.4 % 81.6 % 81.4 % − 28.6 % 
SVR- 
RBF 

23.5 % 23.5 % 0.6 % 0.8 % − 20 % 

GPR − 7.4 
% 

− 7.5 
% 

− 26.0 
% 

− 25.4 
% 

0.0 % 

LR 91.8 % 91.7 % 117.2 
% 

117.7 
% 

− 16.7 % 

RF 57.7 % 57.5 % 43.9 % 43.7 % − 54.5 % 
LSTM 4.8 % 4.8 % 5.6 % 5.7 % 0.0 % 

Average  37.5 % 37.4 % 27.6 % 27.9 % − 21.7 %  

Table 9 
ML performance for forecasting CO2(t+1) with S1 and S2 feature sets.  

Dataset ML 
models 

Metrics Number of 
features 

RMSE rRMSE MAPE MAE 

S1 LSBoost 1.180 0.962 0.876 1.072 4 
MLP 1.011 0.825 0.693 0.849 7 
SVR-RBF 1.16 0.946 0.734 0.902 6 
GPR 1.197 0.977 0.867 1.068 4 
LR 1.426 1.163 0.837 1.031 8 
RF 1.311 1.069 0.976 1.197 7 
LSTM 1.920 1.566 1.368 1.682 11 

Average  1.315 1.073 0.907 1.114 6.714 
S2 LSBoost 1.412 1.152 0.919 1.132 5 

MLP 1.901 1.554 1.377 1.690 6 
SVR-RBF 1.126 0.918 0.751 0.925 5 
GPR 2.041 1.665 1.378 1.688 6 
LR 1.484 1.211 0.876 1.079 6 
RF 1.867 1.523 1.203 1.483 6 
LSTM 1.787 1.458 1.278 1.570 6 

Average  1.660 1.354 1.112 1.367 5.714 
Difference LSBoost 19.7 

% 
19.8 % 4.9 % 5.6 % 25.0 % 

MLP 88.0 
% 

88.4 % 98.7 
% 

99.1 
% 

− 14.3 % 

SVR-RBF − 2.9 
% 

− 3.0 
% 

2.3 % 2.5 % − 16.7 % 

GPR 70.5 
% 

70.4 % 58.9 
% 

58.1 
% 

50.0 % 

LR 4.1 % 4.1 % 4.7 % 4.7 % − 25.0 % 
RF 42.4 

% 
42.5 % 23.3 

% 
23.9 
% 

− 14.3 % 

LSTM − 6.9 
% 

− 6.9 
% 

− 6.6 
% 

− 6.7 
% 

− 45.5 % 

Average  26.2 
% 

26.3 % 22.5 
% 

22.6 
% 

− 14.9 %  
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For each iteration, 

ỹi = yi − Fm− 1(xi), fori= 1, 2,…,N (16)  

(ρm,αm)= argminρ,α

∑N

i=1
[ỹi − ρh(xi;α)]2 (17)  

Fm(x)=Fm− 1(x) + ρmh((x;αm) (18)  

where h(xi;α) is a parameterised function of input variables xi that 
characterised by parameter αm, ρm is a successive increment/step/boost 
of LSBoost. 

3.5.6. Multi-layer perceptron (MLP) 
A multilayer perceptron is a fully connected feedforward artificial 

neural network (ANN) containing at least three layers of nodes: an input 
layer, a hidden layer, and an output layer [62]. 

Assuming an input layer consisting of a set of neurons {xi|x1, x2,

…, xm}, each neuron in the hidden layer is linearly weighted to sum the 
values from the input layer: 

vi =ωi1x1 + ωi2x2+…+ωimxm (19)  

Where vi is the weighted sum of the input connections of hidden node, 
ωim is the weight between hidden node i and input xm. 

Then, the weighted summation is applied to a nonlinear activation 
function, typically a hyperbolic tan function or sigmoid function: 

y(vi)= tanh(vi)ory(vi)= (1 + e− vi )
− 1 (20) 

The learning process in the MPL is carried out through back
propagation by changing the weights after all data is processed. 

Assuming an error in an output node j in the n th data point ej(n) =

yj(n) − yj(n), where y is the actual value and y is the calculated value. 
The node weights can be adjusted based on the least mean squares al
gorithm to minimise the error in the entire output as described: 

E (n)=
1
2
∑

j
ej

2(n) (21) 

According to gradient descent, the change in each weight is: 

△ωji(n)= − η ∂E (n)
∂vj(n)

yj(n) (22)  

Where yj is the output of the previous neuron and η is the learning rate, 
then the derivative can be described with Equation (25): 

−
∂E (n)
∂vj(n)

=φ′( vj(n)
)∑

k
−

∂E (n)
∂vk(n)

ωjk(n) (23)  

Where φ′ is the derivative of the activation function. The derivative 
depends on the change in weights of the k th nodes, which represent the 
output layer. 

3.6. Wrapper FS 

SIFE [63] is an efficient wrapper-based evolutionary algorithm with 
set-inspired operations and fuzzy granulation for both high-dimensional 
and low-dimensional FS problems. To improve its search policy, SIFE 
uses a three-parent crossover approach based on set-theoretic concepts 
such as ‘union’ and ‘intersection’. Fuzzy granulation is also integrated 
into SIFE, which aids in population initialization and elite steps. It helps 
in generating a diverse population throughout generations and acts as a 
surrogate strategy to avoid additional fitness evaluations. This approach 
aims to achieve a fast and reasonable balance between exploration and 

Fig. 9. Performance of SVR-RBF in forecasting EC-Trans(t+1) based on (a) S1 and (b) S2 feature subsets.  
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exploitation in its problem encoding and search operation, while 
reducing computational costs. SIFE is adopted in this research because of 
its high capability of handling both high-dimensional and 
low-dimensional search space. 

3.7. ML interpretation by SHAP method 

As black-box ML models have long been criticised for lacking inter
pretability. In the context of decision-making, stakeholders and policy 
makers prioritise quantitative analysis of the correlation between input 
and target variables over the predictive accuracy of ML models. 

Shapley Additive Explanations (SHAP) is an approach employed for 
interpreting the output of ML models [64]. The classical Shapley value 
from game theory is used by SHAP method to establish a connection 
between the optimal credit allocation and the local explanation. SHAP 
operates by decomposing the output of an ML model into the sums of the 
impacts of individual features which facilitates the comprehension of 
the significance of individual features and benefits decision-making. In 
order to compute SHAP value, a linear explanation model is utilised as 
an interpretable approximation to a ML model [65]: 

g(z′)=φ0 +
∑M

i=1
φizi

′ (24)  

where z′ ∈ {0,1}M represents whether a feature is used to estimate the 
output variable, M is the number of input features, φi is the SHAP value 
of the ith feature, and φ0 is the mean value of the output variable. The 
SHAP value assesses feature importance by comparing model prediction 
performance with and without each feature in feature combinations: 

φi =
∑

S⊆z′{i}

|S|!(M − |S|− 1)
M!

[fx(S∪{i}) − fx(S)] (25)  

where S is the set of non-zero z′, and fx(S) = E[|f(x)xS|] is the expected 
outcome of the model f(x) subjected to S. 

4. Experimental setting 

The study utilises the MATLAB software to implement the ML algo
rithms and wrapper FS. All experiments for filter and embedded FS, 
SHAP analysis and producing heatmap are coded in Python. 

4.1. Data 

The case of this study is based on the EngCons and CO2E in the UK’s 
transportation sector in the time interval of 1990–2019. The year 2020 
was not considered in this study, because this observation is detected as 
an outlier for some features due to the Covid Pandemic. The EngCons 
and CO2E of the UK’s transportation sector is illustrated in Fig. 4, where 
similar pattern as bimodal distribution chart in EngCons and CO2E is 
observed. The initial growth trajectory encountered an avalanche of 
decline in 2008 which persisted until 2013 when it reached its lowest 
point, the same as in 1990. After a brief four-year increase in EngCons 
and CO2E levels, they began a second decline in 2017 and beyond. 

Table 2 presents the list of 24 variables (features) along with their 
corresponding abbreviations, which include 22 input variables and two 
target variables, EngCons and CO2. Based on the intensive review of 
existing literature, a wide range of input variables in three categories 
including socioeconomic, transportation and energy-related factors are 
considered. Socioeconomic factors include GDP per capita, population, 
gasoline price and unemployment rate which indicate the strong rela
tionship between the EngCons and CO2E in literature. To consider ur
banization level of the UK, urban population rate is added to the list. 

For transportation category, we considered three main modes of 

Fig. 10. Performance of SVR-RBF in forecasting CO2(t+1) based on (a) S1 and (b) S2 feature subsets.  
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transportation including air, rail, and road transportation, and each 
mode comprising passenger and freight transportation. Furthermore, 
energy intensity in transport, renewable and waste energy in transport, 
share of electric vehicles and road carbon intensity which could have 
significant influence on EngCons and CO2E are considered. For energy 
category, a few energy-related variables considered in other studies, 
which may have relationships with EngCons and CO2E in transport are 
added to the list. 

The data was collected from the UK Department for Transport (www. 
gov.uk/government/organisations/department-for-transport), UK Of
fice for National Statistics (www.ons.gov.uk/economy/environmentala 
ccounts), and International Energy Agency (World Energy Balances 
Highlights) https://www.iea.org/data-and-statistics/data-product/wor 
ld-energy-balances-highlights. The descriptive statistics of the 24 fea
tures considered for transport EngCons and CO2E is presented in 
Table A1. 

4.2. Hyperparameter setting of MLs 

Optimising hyperparameters is crucial for MLs resulting in promising 
performance. A pilot study was conducted to manually tune the pa
rameters to assess the impact of FS methods on ML model performance 
and evaluate the influence of different features on EngCons and CO2E. 
The best values of hyperparameters found in the pilot experiments for 
seven ML models are presented in Table 3. 

4.3. Evaluation metrics 

To develop a comprehension of the model performance in terms of 
the EngCons and CO2E of transportation sector, the following evaluation 
metrics are included: root mean square error (RMSE), relative root mean 

square error (rRMSE), mean absolute error (MAE), mean absolute per
centage error (MAPE). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − pi)

2

√

(26)  

rRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

i=1
(yi − pi)

2

∑n

i=1
(pi)

2

√
√
√
√
√
√
√

(27)  

MAE=
1
n
∑n

i=1
|yi − pi| (28)  

MAPE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − pi

yi

⃒
⃒
⃒
⃒ (29)  

where yi is the actual value and pi is the predicted value. 

5. Results and analysis 

5.1. Primary correlation analysis 

Since all 22 input variables are continuous numerical, Pearson cor
relation coefficients with two-tailed test were computed among them. 
The correlation results indicate that some correlation values were both 
statistically significant with a = 0.01 and greater than predefined cor
relation threshold 0.95. 

The correlation between population and urban population rate was 
found to be extremely high, r(28) = +1. The variables rail passengers 
and air passengers were found to be extremely positively correlated with 

Fig. 11. The Shapley analysis for SVR-RBF for forecasting EC-Trans(t+1). (a) SHAP summary plot with S2 features, (b) The average contributions of the S2 features.  
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population with r(28) = 0.99 and r(28) = 0.98, respectively. Energy 
intensity is extremely negatively correlated with population, r(28) =
− 0.98. It is interesting to note that gasoline price has very strong posi
tive correlation with GDP per capita, r(28) = 0.93. Total number of 
licensed road vehicles has very strong positive correlation with popu
lation, r(28) = 0.95, but our domain knowledge recommended us not to 
remove TV. 

Correlation analysis of target variables indicated that EC-Trans(t) 
and CO2(t) have very strong positive correlation of r(28) = 0.84. 
Renewable and waste energy in transport and share of electric vehicles 
have slight or very weak negative correlation with EC-Trans(t), but 
moderate negative correlation with CO2(t). The correlation values of 
EC-Trans(t) and CO2(t) with their corresponding next year values, i.e. 
EC-Trans(t+1) and CO2(t+1), are r(27) = 0.86 and r(27) = 0.91, 
respectively. 

5.2. Intermediate results 

After removing extremely correlated input features, voting scheme 
was implemented in a conservative manner with total vote threshold 
value VT of 1. In fact, features were discarded only if they be deemed not 
important in all 3 FS methods. The selected feature subsets for EC-Trans 
(t+1) and CO2(t+1) were listed in Tables 4 and 5. 

In this study, regarding that population and GDP per capita variables 
are found to be important in all similar studies, domain knowledge 

recommended adding these two variables to the selected list of features 
after they were removed in the voting scheme. 

The correlations between selected featurses and EC-Trans(t) and CO2 
(t) were presented in Figs. 5 and 6 where significant correlative features 
were detected, which confirms the need for multicollinearity analysis. 

5.3. Multicollinearity analysis 

Multicollinearity analysis was performed to model the relationship 
between 12 selected features and EC-Trans(t+1), and between 13 
selected features and CO2(t+1) as presented in Tables 4 and 5, respec
tively. The Multicollinearity analyses indicate that two regression 
models have severe multicollinearity for some of the features. For both 
EC-Trans(t+1) and CO2(t+1) regression models, the features with the 
highest VIF are iteratively removed until the VIF for each feature be
comes less than 10. In EC-Trans(t+1) regression model, the OP-Trans, 
CO2(t), TES, POP and TV were respectively removed, whereas in CO2 
(t+1) regression model, OP-Trans, R&W-Trans, TES, POP, AVM and 
GDP were respectively removed. 

Each selected feature subset, before and after multicollinearity 
analysis (called S1 and S2, respectively, as shown in Fig. 2), underwent 
the final wrapper FS method (SIFE) to produce the final feature subsets 
as listed in Tables 6 and 7. More specific, for both EC-Trans(t+1) and 
CO2(t+1), the number of selected features by ML models based on S1 
varied significantly while constantly for subset S2. On the other hand, 

Fig. 12. The Shapley analysis for SVR-RBF for forecasting CO2(t+1). (a) SHAP summary plot with S2 features, (b) The average contributions of the S2 features.  
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intersections in FS were noticed despite individual preference of ML 
models in determining the crucial features. For EC-Trans(t+1), NVR and 
TV are extra two features deemed as the most influential features by all 
ML models in S1 followed by GDP. In S2, NVR and OP-Trans are 
determined as important features. For CO2(t+1), in S1, AVM, GP, and 
RCI was determined significant for 7, 6 and 5 times, respectively. When 
it comes to S2, 4 features including GP, RCI, EC-Trans and OP-Trans 
were selected multiple times (i.e., 7, 7, 6 and 6 times) by ML models. 

It’s important to note that unlike similar studies where population 
and GDP are key driving variables, in the UK’s transportation sector only 
GDP is selected as influential variable for forecasting EC-Trans(t+1). 
The possible reason for this observation could be due to fact that 
although in all countries, particularly developing countries, population 
and GDP are key driving factors of EngCon and CO2E, these two mea
sures are significantly harnessed in the UK and they have been 
decreasing since 2017 as depicted in Fig. 4. 

5.4. Final results 

The performance of ML models in terms of RMSE, rRMSE, MAPE and 
MAE metrics for forecasting EC-Trans(t+1) and CO2(t+1) based on S1 
and S2 feature subsets are listed in Tables 8 and 9 as well as Figs. 7 and 8, 

respectively. As shown in the tables and figures, the performance met
rics share a similar pattern in both EC-Trans(t+1) and CO2(t+1) fore
casts. In general, a better performance was observed when the ML 
models were treated with more features. The performance of some ML 
models was relatively constant or even improved with a reduced number 
of features. For example, GPR indicated an increase in all metrics in EC- 
Trans(t+1) despite fewer input features. Similar results were shown in 
SVR-RBF and LSTM regarding CO2E prediction. Among all employed ML 
models, SVR-RBF and RF indicated the best performance throughout all 
feature subsets and prediction tasks even with fewer features compared 
with other ML models. 

Figs. 9 and 10 illustrate the detailed training and testing perfor
mances of SVR-RBF using feature subsets S1 and S2 for forecasting EC- 
Trans(t+1) and CO2(t+1), respectively. It is noticed that there was only 
a marginal decrease in rRMSE when utilizing a smaller feature subset. 
Specifically, S2 had one less feature than S1 for both EngCons and CO2E. 
This result indicates that the FS procedure proposed in the study was 
successful in reducing the dimension of the feature set while preserving 
the most pertinent information. In addtion, the evaluation of SVR-RBF 
on the test set exhibits a negligible diminution in its performance as 
compared to that on the training set, which indicates slight overfitting 
issue. 

Fig. 13. The Shapley analysis of RF for forecasting EC-Trans(t+1). (a) SHAP summary plot with S2 features, (b) The average contributions of the S2 features.  
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5.5. SHAP analysis 

The SHAP method was utilised to enhance the interpretability of ML 
models and examine the impact of input features on model output. 
Figs. 11–13 summarised the SHAP values of the final determined fea
tures (i.e., S2 feature set) and their quantified contribution towards EC- 
Trans(t+1) and CO2(t+1) using SVR-RBF and RF, respectively. The 
SHAP graphs in Figs. 11–14 (a) display each input feature as a vertical 
bar on the x-axis, indicating its SHAP value and contribution to the 
models’ output. SHAP values can be positive or negative, indicating 
whether a feature increased or decreased the model output. The SHAP 
values magnitude signifies the effect’s intensity. The colour of each bar 
denotes the feature value in relation to the mean predicted value in the 
dataset. Blue signifies low values or negative effects, while red signifies 
high values or positive effects. The colour scheme aids in interpreting 
feature contributions and understanding the relationship between their 
values and the model’s predictions. A simplified version of SHAP values 
were depicted in Figs. 11–14 (b) which summarise the overall impor
tance of each feature. In this study, the SHAP method was employed for 
interpreting SVR-RBF and RF in predicting EngCons and CO2E, respec
tively. As shown in Figs. 11 and 12, EC-trans played a significant role in 
EngCons while NVR, GDP and EC-All indicated a similar importance. In 
addition, it is observed that a higher value of EC-Trans and NVR led to a 
positive SHAP value and vice versa. Such association was not detected in 

GDP and EC-All. In terms of CO2E, RCI contributed a significant higher 
proportion than any other features (i.e., CO2, EC-All, GP and NEI). 
Similarly, association between a higher value of RCI, CO2 and a positive 
SHAP value is obtained and vice versa. For forecasting EC-Trans(t+1) 
based on RF, RCI, EC-Trans ranked top 2 and were significantly more 
important than the other 3 features. The relations between positive 
SHAP value and the higher value of RCI, EC-Trans and NVR is also notice 
in Fig. 13. UR however suggested an opposite result where a higher 
value is associated with negative SHAP value. While for CO2E predic
tion, RCI was also regarded as the most critical feature, followed by CO2 
(t) and R&D. Similar associations are seen between greater RCI, CO2(t) 
values and positive SHAP values, and vice versa. An opposite result is 
detected in R&D. 

6. Noticeable discussions and limitations 

A few noticeable points and limitations have been figured out in this 
study which are worth revealing for future similar studies. The dataset 
comprises a small size of 30 observations in the 1990–2019 period with 
24 features, thereby such a small sample size leads to some challenges 
for MLs such as overfitting and the presence of random effects, which 
may negatively disturb the generalisation capability of ML models. To 
minimise the adverse impact caused by a small sample size, multiple FS 
stages within the forecasting framework was proposed to select the most 

Fig. 14. The Shapley analysis of RF for forecasting CO2(t+1). (a) SHAP summary plot with S2 features, (b) The average contributions of the S2 features.  
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related features and the feature space was therefore significantly 
reduced from initial 22 input features to less than 10 features. The risk of 
sparse matrix was then avoided. 

Wrapper and embedded FS methods are both ML-based approaches. 
However, as previously mentioned, the issue of overfitting can hinder 
MLs from producing the most representative subset of features. In the 
context of filter methods, it is possible for two features to present a 
strong correlation based solely on numerical values, but this correlation 
may not essentially hold true. Therefore, in this paper, we proposed a 
voting mechanism to achieve a common agreement from three popular 
FS methods (i.e., mRMR, Boruta and RF). The preference of individual 
feature selection methods was mitigated to a greater extent. 

It has been observed that most ML models exhibit a decrease in 
performance because of reducing the dimensionality of the feature set. 
This is comprehensible as the removed feature(s) may still possess a 
nuanced amount of valuable information but were excluded due to 
significant multicollinearity. The potential influence of the limited scope 
of the included data on this matter should not be underestimated. In 
comparison to high dimension datasets, such as gene analysis, low 
dimension dataset is less prone to containing redundant or irrelevant 
variables. However, this does not imply that the proposed FS methods 
were incapable of handling low-dimensional data, as suggested by SVR- 
RBF methods. In fact, a superior performance was achieved even with a 
reduced number of features. Also, it is important to note that despite a 
compromise in forecasting accuracy, the proposed framework retains 
the most related features for EngCons in transport sector, in which 
policymakers can benefit more from correct and accurate conclusion 
rather than accurate prediction but contain misleading information. 

Lastly in all studies, GDP and population were selected as key driving 
variables for forecasting EC-Trans(t) and CO2(t), but in this study 
neither GDP nor population are found as influential variables in the UK’s 
transportation sector, possibly because the trend of both EngCons and 
CO2E are rapidly decreasing in the UK. 

7. Conclusions and future research 

A sustainable transport system necessitates a comprehension of the 
associations between transport EngCons and CO2E, and their contrib
uting factors, which also facilitates achieving promising performance of 
MLs in forecasting. To this end, this paper proposes an interpretable 
multi-stage forecasting framework to quantify EngCons and CO2E in the 
UK’s transport sector and identifying the most relevant factors based on 
22 initial input features from multisource including socioeconomic, 
transportation- and energy-related variables. Unlike recent published 
papers that solely focused on achieving the best prediction accuracy, the 
proposed framework also integrated interpretable ML methods to 
simultaneously maximise the forecasting accuracy and to determine the 
relationship between the forecasts and the influential variables using the 
SHAP method. 

The contributions of this paper are as follows:  

• To the best of our knowledge, this study is the first attempt, which 
employed a large list of input features and performed correlation and 

multicollinearity analyses to remove highly correlated features to 
provide an appropriate subset of features for interpretability of 
black-box ML models.  

• This study introduces a novel voting scheme for feature selection 
(FS), which combines both filter and embedded paradigms, which 
has not been studied before in the EngCons context.  

• This study is the second work in EngCons context (the first study is 
[31]) that applies the SHAP analysis to forecast the EngCons and 
CO2E to determine the influential variables. 

The results indicate that the proposed multi-stage FS framework was 
able to improve the quality of data by removing potentially irrelevant 
and redundant features, in which average rRMSE and average MAPE of 
1.024 and 0.915 for forecasting EC-Trans(t+1), and average rRMSE and 
average MAPE of 1.073 and 0.907 for forecasting CO2(t+1) with S1 
feature subsets are achived. The selected best ML model varies 
depending on the feature subset examined. Overall, in both S1 and S2 
feature subsets SVR-RBF and LSTM have the best and the weakest 
performance. 

Shapley analysis for UK’s transport EngCons and CO2E forecasting 
indicates that road carbon intensity is the most significant factor asso
ciated with both EngCons and CO2E. Unlike similar studies where 
population and GDP are key driving variables, Shapley analysis reveals 
that only GDP is selected as contributing variable for forecasting EC- 
Trans(t+1). 

In 2020 the United Nations Economic Commission for Europe rec
ommended that countries investigate the possibility of reporting quar
terly GHG emissions data as part of climate change statistics [63]. There 
are solid methodologies for estimating GHG emissions on an annual 
basis and a few countries currently strived to develop statistical meth
odologies to compile quarterly time series emissions. Thus, for future 
researchers are encouraged to use quarterly GHG emissions data, rather 
than annual observations in which ML models avoid facing challenges 
with small sample size. 
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Appendix A  

Table A1 
Descriptive statistics for the full features  

Feature Abbreviation Unit Mean Std Min Max 

CO2 Mtoe 127.39 5.09 118.76 135.96 
EC-Trans PJ 1716.13 54.84 1631.21 1828.29 
OP-Trans PJ 1675.92 61.87 1577.97 1798.86 
EC-All PJ 5861.52 394.87 5144.19 6341.47 
TES PJ 8625.08 741.32 7145.14 9449.86 

(continued on next page) 
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Table A1 (continued ) 

Feature Abbreviation Unit Mean Std Min Max 

POP Million 8.90 9.80 2.00 9.00 
UPR % 80.20 1.87 78.11 83.65 
EI MJ/pkm 144.04 31.99 94.13 190.43 
GDP USD 34816.21 10197.2 18389.02 50653.26 
EC-Elec PJ 1130.26 76.32 987.96 1255.23 
RW-Trans PJ 18.79 22.54 0.00 68.90 
SEV % 0.47 0.81 0.00 3.30 
UR % 6.54 1.82 3.80 10.40 
GP USD 1.41 0.46 0.80 2.20 
R&D USD 419.23 358.78 69.90 1290.15 
NEI PJ 971.17 1991.90 − 2014.40 4026.40 
RCI gCO2/MJ 70.80 0.57 69.30 71.60 
AP Million 91.32 34.34 42.86 165.39 
AF Million tone 5702.52 847.88 3825.40 7618.10 
RP Million 1169.33 354.97 735 1744 
NVR Thousand 2714.65 402.78 1901.80 3295.96 
TV Million 31345.42 4606.01 24511.00 38682.70 
AVM 1000 miles 9.65 0.59 8.90 10.53 
TVM Billion vehicle miles 295.88 26.28 241.00 338.60  
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[2] Ağbulut Ü. Forecasting of transportation-related energy demand and CO2 
emissions in Turkey with different machine learning algorithms. Sustain Prod 
Consum 2022;29:141–57. 

[3] IEA. Global. CO2 emissions in transport by mode in the sustainable development 
scenario, 2000-2070. 2022. 

[4] GreenhouseGas.Statistics. UK territorial greenhouse gas emissions national 
statistics. 2021. 

[5] Energy.Stats. Energy consumption in the UK (ECUK) 1970 to 2021. 2022. 
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Nomenclature 

I: Mutual information 
p: Joint probabilistic density 
S: Data set 
maxD: Max-Relevance 
minR: Minimum-Redundancy 
x, X: Input feature, input vector 
Vmf: Whether select feature or not 
VT: The total vote threshold value 
D : Training dataset 
y, y, ỹ/p: Actual, average actual and predicted target variable 
N : Gaussian distribution 
σ (1): Sigmoid function 
ft: Forgetting gate 
C (1): Cell state 
it: Input gate 
ot: Output gate 
h (1): Hidden state 
Wf , Wi, Wo: Recurrent weighting metrics 
bf, bi, bo: Bias vectors 
β1, β2, βm: Coefficients 
ε: Random error 
E: Expectation function 
L: Loss function 
am, pm: Increment/step/boost of LSBoost 
η: Learning rate of ANN 
φ′: The derivative of the activation function 
ω: Weights of ANN nodes 
φ: SHAP value 
φ0: The mean value of the output variable 
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