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Abstract

Rational enriched motivic spaces are introduced and studied in this thesis to pro-
vide new models for connective and very effective motivic spectra with rational
coefficients. We first study homological algebra for Grothendieck categories of
functors enriched in Nisnevich sheaves with specific transfers A. Following con-
structions of Voevodsky for triangulated categories of motives and framed motivic
I'-spaces, we introduce and study motivic structures on unbounded chain com-
plexes of enriched functors yielding two new models of the triangulated category
of big motives with A-tranfers DM 4. We next define enriched motivic spaces
as certain enriched functors of simplicial A-sheaves. We then use the proper-
ties of enriched motivic spaces and the above reconstruction results to recover

SH(k)soq and SHY" (k).
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Chapter 1

Introduction

In his celebrated paper [18] Segal introduced I'-spaces and showed that they yield
infinite loop spaces. In [5] Bousfield and Friedlander defined a model category
structure for I'-spaces and showed that its homotopy category recovers connective
Sl-spectra. They also showed that fibrant objects in this model category are given
by very special I'-spaces.

Garkusha, Panin and Ostveer [25] have recently introduced and studied mo-
tivic I'-spaces. They are M-enriched functors in two variables

X : T ® Smy,. — M,

where M is the category of pointed motivic spaces and Smy,  is the M-category
of framed correspondences of level 0. Special and very special motivic I'-spaces
are defined in [25] as M-enriched functors

X TPXRSmy; , — M"

satisfying several axioms, where M is the M-category of pointed motivic spaces
with framed correspondences. The axioms are a combination of Segal’s axioms
and axioms reflecting basic properties of framed motives of algebraic varieties in
the sense of Garkusha—Panin [23] (see [25] for details).

Inspired by [25] we introduce and study additive versions for motivic I'-spaces.
We start with a reasonable additive category of correspondences A and replace M
by the closed symmetric monoidal Grothendieck category A°?Shv(.A) of simplicial
Nisnevich sheaves with A-transfers. The M-category Smy, . is replaced here by
a APShv(A)-category Sm whose objects are those of Smy.
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We define enriched motivic A-spaces as objects of the Grothendieck cate-
gory of A?Shv(A)-enriched functors [Sm, A%Shv(A)]. Special enriched motivic
A-spaces are defined similarly to special motivic I'-spaces with slight modifi-
cations due to the additive context (see Definition 5.1.1 for the full list of ax-
ioms). In particular, the category I' is redundant in this context (see Sec-
tion 6.1). The category [Sm,A°%Shv(A)] comes equipped with a local and a
motivic model structure. Denote the model categories by [Sm, A?Shv(.A)],s and
[Sm, A°PShv(A)] ot Tespectively (see Section 7.2). Let D([Sm, A%Shv(A)]) be
the homotopy category of [Sm, A’Shv(A)lnis. Define Spc4[Sm]| as the full sub-
category of D([Sm, A°’Shv(A)]) consisting of special enriched motivic A-spaces.
It is worth mentioning that D([Sm, A%Shv(.A)]) is equivalent to the full subcat-
egory of connective chain complexes in the derived category D([Sm, Shv(A)]) of
the Grothendieck category [Sm, Shv(A)]. Thus Spc4[Sm] can also be regarded
as a full subcategory of D([Sm,Shv(.A)]), so that it can be studied by methods
of classical homological algebra.

The following result is reminiscent of Bousfield-Friedlander’s theorem men-
tioned above for classical I'-spaces (see Theorem 7.2.7).

Theorem. Assume that the exponential characteristic p of k is invertible in A.
The category Spc 4|Sm] is equivalent to the homotopy category of the model cat-
egory [Sm, A’Shv(A)|met. The fibrant objects of [Sm, A’Shv(A)|met are the

pointwise locally fibrant special enriched motivic A-spaces.

As applications of the preceding theorem we recover connective motivic bis-
pectra with rational coefficients SH(k)g o (respectively very effective motivic
bispectra with rational coefficients SH®"(k)g) from special rational enriched
motivic A-spaces Spc 4[Sm] (respectively very effective rational enriched motivic
A-spaces Spcs[Sm]) — see Theorems 7.4.2 and 7.4.4. Here we take A to be the
category of finite Milnor-Witt correspondences with rational coefficients 6’\0/7“@)@.

Theorem. The (S',G,,)-evaluation functor induces equivalences of categories
evs1 G,, - SpCa;’Q[Sm] — SH(/{Z)Q)O.

and

evsLG,, - Spc‘%vQ[Sm] — SH (k).
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In particular, the preceding theorem makes SH (k)p more amenable to meth-
ods of homological algebra.

To prove the above results we will first study the Grothendieck category of
unbounded chain complexes of enriched functors Ch([Sm,Shv(.A)]). We prove
two reconstruction theorems recovering Voevodsky’s fundamental triangulated
category of big A-motives DM 4.

In more detail, let A be a symmetric monoidal category of correspondences
that satisfies the strict V-property and cancellation, as defined in [19]. We re-
cover the triangulated category of big A-motives DM 4 out of Grothendieck cat-
egories of enriched functors [B, Shv(A)] in the sense of [1], where B is either the
Shv(A)-category C of the powers G or the Shv(A)-category Sm of all smooth
k-schemes. To this end, we use homological algebra of enriched Grothendieck
categories developed in [20, 21].

In our context we consider two types of the Al-locality of chain complexes
in Ch([B, Shv(A)]): one for the contravariant A'-locality in the A-direction (i.e.
the usual one), denoted by A}, another for the covariant A'-locality in the B-
direction, denoted by A}. We also consider 7-locality in Ch([B, Shv(.A)]) with
respect to the family

T={Gy". -] _® G =[Gy, —][n>0}
Shv(A)
as well as Nis-locality in the covariant B-direction associated to the elementary
Nisnevich squares. As we work with Grothendieck categories of Shv(.A)-enriched
functors here, we say that the relevant chain complexes are strictly local with
respect to the specified family above. We refer the reader to Section 3.1 for
details. The relations are also counterparts of the axioms (2)-(5) for special
motivic [-spaces in the sense of [25] and framed spectral functors in the sense
of [24, Section 6].
Our first reconstruction result states the following (see Theorem 3.1.8).

Theorem. Let C be the natural Shv(A)-category represented by the A-sheaves
A(—, G} ™)nis, n = 0. Let DM 4[C] be the full triangulated subcategory of the de-
rived category D([C,Shv(A)]) consisting of the strictly Al-local and T-local com-
plezes. Then the canonical evaluation functor

evg,, : DM4|[C] — DM 4
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15 an equivalence of compactly generated triangulated categories.
Our second reconstruction result states the following (see Theorem 3.1.14).

Theorem. Let Sm be the natural Shv(A)-category represented by the A-sheaves
A(—, X)nis, X € Smy.. Let DM 4[Sm] be the full triangulated subcategory of the
derived category D([Sm, Shv(A)]) consisting of the strictly A}-, 7-, Nis- and Al-
local complexes. Then the canonical evaluation functor

evg,, : DM4[Sm][1/p] — DMa[1/p]

15 an equivalence of compactly generated triangulated categories, where p is the
exponential characteristic of the base field k.

It is worth mentioning that the latter result requires the recollement the-

orems of Garkusha—Jones [21] as well as a generalization of Rondigs—Ostvaer’s
Theorem [16] (see Section 4.2).
Outline

The thesis consists of two halves: The first half, consisting of Chapters 2, 3
and 4, deals with certain enriched functors of unbounded chain complexes of
Nisnevich sheaves. The second half, consisting of Chapters 5, 6 and 7, deals with
certain enriched functors of simplicial Nisnevich sheaves, which we call enriched
motivic A-spaces. In the second half we will always assume that the exponential
characteristic p of k is invertible in A.

In Chapter 2 we recall the definition of a category of correspondences. For
a suitable category of correspondences A, we construct a well-behaved model
structure on the category of unbounded chain complexes of Nisnevich sheaves
Ch(Shv(A)).

In Chapter 3 we state our two reconstruction results for DM 4 and prove the
first one. In Chapter 4 we prove the second reconstruction result.

In Chapter 5 we introduce enriched motivic A-spaces, and construct a model
structure on the category of simplicial Nisnevich sheaves A%Shv(A).

In Chapter 6 we study how enriched motivic A-spaces are related to motivic
[-spaces in the sense of [25], and how they are related to the enriched functors
of unbounded chain complexes from the first half of the thesis.
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Introduction

In Chapter 7 we use enriched motivic A-spaces to provide new models for

the connective and very effective parts of the rational stable motivic homotopy
category SH(k)g.

Notation

Throughout the thesis we use the following notation.

k

Sm;,

A
Psh(.A)
Shv(A)
DM

fM

field of exponential characteristic p

smooth separated schemes of finite type over k

symmetric monoidal additive strict V-category of correspondences
presheaves of abelian groups on A

Nisnevich sheaves of abelian groups on A

triangulated category of big motives with A-correspondences
stable motivic homotopy category over k

enriched category of smooth schemes (see Section 3.1)
subcategory of Sm on G)* for n € N (see Section 3.1)
canonical embedding Sm — Shv(A), X — A(—, X)nis
A-motive of X € Smy

category of motivic spaces

category of finitely presented motivic spaces

Also, we assume that 0 is a natural number.



Chapter 2

Nisnevich sheaves with transfers

In this chapter we recall the definition of a category of correspondeces A and the
construction of the triangulated category of big motives with A-correspondences
DM 4 in the sense of Voevodsky [52].

After that we take an additive symmetric monoidal category of correspon-
dences A that satisfies the strict V-property, and construct a model structure on
the category Ch(Shv(A)) of unbounded chain complexes of Nisnevic sheaves on

A.
2.1 Categories of correspondences

The following definition is due to [19].

2.1.1 Definition. A preadditive category of correspondences A consists of

1. a preadditive category A whose objects are those of Smy, called the under-
lying preadditive category,

2. a functor I' : Smy, — A, called the graph functor,
3. afunctor X : A x Sm;, — A
such that the following axioms are satisfied:

1. the functor I' : Smy — A is the identity on objects;

13



14 Nisnevich sheaves with transfers

2. for every elementary Nisnevich square

U/ X/

]

U——X

the sequence of Nisnevich sheaves
0 — A(_J U/)nis — -’4(_7 U)nis % A(_yX/>nis — A(_7 X)nis — 0
is exact. Moreover, we require A(—,D)ns = 0;

3. for every A-presheaf F (i.e. an additive contravariant functor from A to
Abelian groups Ab) the associated Nisnevich sheaf F;s has a unique struc-
ture of an A-presheaf for which the canonical morphism F — Fs is a
morphism of A-presheaves.

4. the functor X : A x Smy — A sends an object (X,U) € Smy x Smy to
X x U € Smy, and satisfies Iy X f =T (1x X f), (u+0)X f=uR f+oX f
for all f € Mor(Sm/k) and u,v € Mor(A).

2.1.2 Definition. 1. A preadditive category of correspondences A is called an
additive category of correspondences if its underlying preadditive category
is an additive category.

2. A preadditive category of correspondences A is called a symmetric monoidal
category of correspondences if its underlying preadditive category A is also
equipped with an Ab-enriched symmetric monoidal structure, such that the
graph functor I' : Sm; — A is a strong monoidal functor with respect to
the cartesian monoidal structure on Smy. This means in particular that
for X, Y € Smy the tensor product X ® Y in A is isomorphic to the usual
product of schemes X x Y.

3. A preadditive category of correspondences A is called a V -category of cor-
respondences if it satisfies the V-property: The V-property says that for
any Al-invariant A-presheaf of abelian groups F the associated Nisnevich
sheaf Fpi is Al-invariant, in the sense that for all X € Smj, the map

]:nis(X) — Fnis(X X Al)
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induced by the projection X x A! — X is an isomorphism.

4. Recall from [51] that a Nisnevich sheaf F of abelian groups is strictly A'-
invariant if for any X € Sm/k, the canonical morphism

H:is(Xv‘F) — H*is(X X A1>~F)

n

is an isomorphism. A V-category of correspondences A is a strict V-category
of correspondences if for any Al-invariant A-presheaf of abelian groups F
the associated Nisnevich sheaf Fy is strictly Al-invariant.

5. Fori < k+1 & Nlet ¢ : ank — ank*l be the inclusion map in Smy, sending
(x1,...,x%) to (T1,..., 71,1, 241, ..., 2x). For any scheme X let A(—, X)
be the presheaf represented by X, and A(—, X)ns be the sheafification of
A(—, X). The maps t;; : GXF — G*! induce maps ¢« : A(—, GF)pis —
A(—, G . In Shv(A) define

k
GrAnk = A(—, ernk)niS/Z Im (¢ —14)-
=1

Furthermore, let A} := Spec(klto, ..., ta]/(to + -+ + ¢, — 1)). Similarly to
[19, Definition 3.5] we can define bivariant A-motivic cohomology groups
by

HYY(X,Y) = HY (X, A(— x ALY AGL)nis[—4]),

where the H?_ on the right hand side refers to Nisnevich hypercohomology
groups. We say that a strict V-category of correspondences A satisfies the
cancellation property if all the canonical maps

AP HY(X,Y) — HRPY M (X AG)LY)
are isomorphisms.

From now on, A is an additive symmetric monoidal strict V -category corre-
spondences. From Section 3.1 onwards we will furthermore assume that A satis-
fies the cancellation property. Non-trivial examples are given by finite correspon-
dences Cor in the sense of Voevodsky [52], finite Milnor-Witt correspondences
Cor in the sense of Calmes-Fasel [7] or K§ in the sense of Walker [541]. Given
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a ring R (not necessarily commutative) which is flat as a Z-algebra and a cate-
gory of correspondences A, we can form an additive category of correspondences
A ® R with coefficients in R, by defining (A® R)(X,Y) := A(X,Y) ® R for all
X, Y € Smy.

We are now passing to the construction of Voevodsky’s triangulated category
of big motives with A-correspondences DM 4. Let Shv(A) be the Grothendieck
category of Nisnevich sheaves on A with values in abelian groups. The category
Shv(A) of Ab-valued Nisnevich sheaves on A is symmetric closed monoidal with
the Day convolution product [10] that is induced by the monoidal structure of A.
The internal hom of Shv(A) will be denoted sometimes by Homgy, (4, (—, —), and
sometimes by [—, —] if there is no likelihood of confusion. Let D(Shv(.A)) be the
derived category of Shv(A). Consider the localizing subcategory £ in D(Shv(A))
that is compactly generated by the shifts of the complexes

= 0= A, X X AM)is = A(—, X)nis = 0 — -+

for all X € Smy,, where A(—, X)nis € Shv(A) is the sheaf represented by X.
By general localization theory for triangulated categories [15] we can form the
quotient triangulated category D(Shv(A))/L.

2.1.3 Definition. We call DM := D(Shv(A))/L the triangulated category
of effective motives with A-correspondences. It can be identified with the full
subcategory of D(Shv(A)) of those objects that have Al-invariant cohomology
sheaves.

In DM" we can @-invert G)! using a procedure similar to [30, 5.2]. Namely,
we define a G/\!-spectrum of chain complexes C' to be a collection (C,, 0 )nen
consisting for each n € Z-g of a chain complex C,, € Ch(Shv(.A)), and a morphism
of chain complexes o, : C,, @ GA! — C,,,;. A morphism of G/\!-spectra of chain
complexes is a graded morphism of complexes respecting the structure maps o,,.
The category of G,,-spectra of chain complexes is denoted Spg, (Ch(Shv(A))).

2.1.4 Definition. 1. Let I : Smy — Shv(A) be the obvious inclusion functor
I(X) := A(—, X )nis. For any G/!-spectrum of chain complexes C' we define
presheaves of homology groups by assigning to each U € Smy, and n,m € Z
the group H,,(C),,(U) as the colimit of the diagram

coo = Hompyer (I({U)[n —m] @ G, C) — ..
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ranging over r € N.

2. A morphism of G/l-spectra of chain complexes is called a stable motivic
equivalence if it induces isomorphisms on these homology presheaves.

3. We define DM 4 to be the category obtained from Spg (Ch(Shv(A))) by
inverting the stable motivic equivalences. We call DM 4 the triangulated
category of big A-motives.

2.2 A model structure on Ch(Shv(.A))

Let A be a symmetric monoidal category of correspondences satisfying the V-
property. The goal of this section is to construct a monoidal model structure
on Ch(Shv(A)) that is weakly finitely generated (Definition 2.2.9), satisfies the
monoid axiom [17, Definition 3.3], and in which the weak equivalences are the
quasi-isomorphisms. Once we have such a model structure we can use [20, Theo-
rem 5.5] to construct the projective model structure on the category of chain
complexes Ch([C,Shv(A)]) of the Grothendieck category of enriched functors
[C,Shv(A)] for any small Shv(A)-enriched category C. The model structure will
be useful for proving the reconstruction theorems of the next two chapters.

There is a finitely generated monoidal model structure on the category of
unbounded chain compelxes of abelian groups Ch(Ab), where weak equivalences
are quasi-isomorphisms and fibrations are epimorphisms [19]. This model struc-
ture also satisfies the monoid axiom in the sense of [17, Definition 3.3]. For
any abelian group A, let S"A be the chain complex that is A in degree n and
0 everywhere else. Let D™A be the chain complex that is A in degree n and
n + 1, and 0 everywhere else, and where the differential from degree n + 1 to
degree n is the identity map on A. For every m € Z there is a canonical map
S™A — D™A which is id4 in degree n. A set of generating cofibrations of Ch(Ab)
is Ich := {S"Z — D"Z | n € Z}, and a set of generating trivial cofibrations is
Jch = {0 — D"Z | n e Z}

Let Psh(.A) be the category of Ab-enriched functors A% — Ab. We can then
apply [20, Theorem 5.5] to get a weakly finitely generated monoidal model struc-
ture on Ch(Psh(.A)), where weak equivalences are sectionwise quasi-isomorphisms,
and the fibrations are epimorphisms. We call it the standard projective model
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structure on presheaves, or sometimes just the projective model structure on
presheaves. The proof of [I41, Theorem 4.2] shows that the generating cofibra-
tions and generating trivial cofibrations of this model structure are given by the
sets

Io; = {A(—, X)® S"Z — A(—,X) ® D"Z|X € Smy,n € Z}

Jproj = {0 — A(_,X) & DnZ’X € Smk,n € Z}

From [I1, Theorem 4.4] it also follows that this model structure on Ch(Psh(.A))
satisfies the monoid axiom.

2.2.1 Lemma. Fvery cofibration in the projective model structure on Ch(Psh(A))
18 a degreewise split monomorphism with degreecwise projective cokernel.

Proof. Take a cofibration f : A — B in Ch(Psh(A)). Take an arbitrary n € Z.
Define a morphism of complexes ¢ : A — D"(A,) by means of the following

diagram
8'n+3 8n+2 8n+1 8" 8” 1
Apy s Ay P A, g, B
id
0 A, A, 0

In the following commutative diagram in Ch(Psh(.A))) the right hand side mor-
phism is a surjective quasi-isomorphism, i.e. a projective trivial fibration

A—“’;Dn(An
|7
0

So we get a lift s : B — D"(A,) with so f = ¢. In particular s, 0 f,, = ¢, = id4
Since n € Z was arbitrary, f is a degreewise split monomorphism.

We have a pushout diagram:

B

I

—— Coker(f)
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Since the upper map is a cofibration, the lower map is a cofibration. So Coker( f)
is a cofibrant object. To show that f is a degreewise split monomorphism with
degreewise projective cokernel, we now just need to show that every cofibrant
object in Ch(Psh(.A)) is degreewise projective.

Let C be any cofibrant object in Ch(Psh(A)), and let n € Z. We claim that
C,, is projective in Psh(.A). Take an arbitrary epimorphism p : X — Y in Psh(.A)
and an arbitrary map ¢ : C,, — Y in Psh(A). We need to find a lift in the diagram

X

P

Just like at the begining of the lemma we can construct a morphism of chain
complexes ¢ : C — D™(C,) with ¢, = idc,, ons1 = 05T and ¢ = 0 for
k ¢ {n,n+1}. In Ch(Psh(.A)) we then have a diagram

0 : D"(X)
l s lD"(p)
C 7 D™ (Cy) Dn—(g)> D™(Y)

We claim that in this diagram a lift s : C' — D"(X) exists. This is true for the
following reason: Since p is an epimorphism, D™ (p) is an epimorphism, so D"(p)
is a projective fibration. Since D"(X) and D™(Y") are both acyclic, it follows that
D™(p) is a quasi-isomorphism, so D"(p) is a trivial fibration. Since 0 — C'is a
cofibration, it follows that the lift s : C' — D"(X) exists. Then s, : C;, = X
satisfies p o s, = g, and this then shows that C), is projective. m

2.2.2 Corollary. The standard projective model structure on Ch(Psh(A)) is cel-
lular, in the sense of [27, Definition 12.1.1]

Proof. The domains and codomains from I,,,; and Jp,; are compact. By Lemma
2.2.1 every cofibration is a degreewise split monomorphism. Since Ch(Psh(.A)) is
an abelian category, every monomorphism is an effective monomorphism. So ev-

ery cofibration is an effective monomorphism, and the projective model structure
on Ch(Psh(.A)) is cellular. O
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We next apply a left Bousfield localization on the projective model structure

on presheaves.

2.2.3 Definition. Let Q be the set of all elementary Nisnevich squares in Sm;,.

We want to make the following class of maps in Ch(Psh(.A)) into weak equiva-

lences:

1. The morphism 0 — A(—, () will be a weak equivalence.

2. For every elementary Nisnevich square () € Q of the form

Ul _ﬁ> X/

o, b

U—sX
we get a square
A(=,U") 2 A=, X7)

-
A(=,U) "= A(~, X)

in Ch(Psh(A)) (we regard each entry of the square as a complex concen-

trated in zeroth degree). We take the mapping clyinder C' of the map

A(=,U") = A(—,X’). So the map factors as a cofibration followed by

a trivial fibration A(—,U’)——C—> A(—, X’), and C is finitely pre-

sented. Let sg := A(—,U) [I C. Then sq is also finitely presented.
A(=,U")
Notice that sq is the homotopy pushout of A(—,U) and A(—,X’) over
A(—,U"). Take the mapping cylinder t¢ of the map sg = A(—,U) [ C —
A(=,U")

A(—, X), so that it factors as 5Q>£> tg —> A(—,X), and t( is finitely
presented.
For every () € Q this cofibration pg : sg — tg will be a weak equivalence.

Our notation here is similar to that of [15, Notation 2.13]. Denote the set of

all the shifts of these morphisms by S = {0 = A(—,0)[n] | n € Z} U {pg[n]|Q €
Q,n € Z}. We can apply [27, Theorem 4.11] to get the left Bousfied localization
of the projective model structure of presheaves with respect to S. We call the
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resulting model structure the local projective model structure on presheaves. We
write local, Jocal fOr the generating cofibrations, generating trivial cofibrations
and weakly generating trivial cofibrations of the local projective model structure

on Ch(Psh(A)).

We will say that an object F' € Ch(Psh(.A)) is locally fibrant, if it is fibrant in
the local projective model structure.

2.2.4 Lemma. An object F € Ch(Psh(.A)) is locally fibrant if and only if F()) —
0 is a quasi-isomorphism in Ch(Ab), and F sends elementary Nisnevich squares
to homotopy pullback squares.

Proof. Let 7o : Ch(Psh(A)) — Ch>o(Psh(A)) be the good truncation functor,
sending

"'—>A1—>A0%A_1—>...

to
coo = A — ker(99).

For A, B € Ch(Psh(A)) let Homcy,psh(4)) (A, B) be the internal hom of Ch(Psh(.A))
and let map®”5¢t(A, B) € A Set be the derived simplicial mapping space. De-
fine

map "> (A, B) := 7o (Homey psnay) (4, B)(pt)) € Cho(Ab).

If A is cofibrant and B is fibrant, then for every n > 0 we have an isomorphism
of abelian groups

H,(map®=0AP)(A B)) = 1, (map™”5(A, B)).

By [27, Definition 3.1.4] an object F' € Ch(Psh(A)) is locally fibrant if and
only if for every s : A — B, with s € S the map

s* : map”” 5 (B, F) — map®” 5(A, F)

is a weak equivalence of simplicial sets. Since s is a cofibration between cofi-
brant objects, and every object in Ch(Psh(.A)) in the standard projective model
structure is fibrant, it follows that F' is locally fibrant if and only if

s* : map"= AP (B F) — map=0AP) (A F)
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is a quasi-isomorphism in Chso(Ab). If s is of the form 0 — A(—,D)[n], this
means that the map

To(F(0)[=n]) =0

is a quasi-isomorphism. This holds for every n € Z if and only if 0 — F(0) is a
quasi-isomorphism. If s is of the form pg : sg — g for an elementary Nisnevich
square () of the form

then this means that the map

o F(X)[-n)) = 7ol (F(X') < F(U))[-n)

is a quasi-isomorphism in Ch(Ab), where F'(X’) x”" F(U) is the homotopy pull-
F(U’)
back of F(U) — F(U') - F(X’). This holds for every n € Z if and only if

F(X)— F(X') x" F(U)
F(U’)
is a quasi-isomorphism in Ch(Ab), which is the case if and only if F' sends @ to
a homotopy pullback square. O

The property of sending elementary Nisnevich squares to homotopy pullback
squares is also called the B.G.-property in [39]. We now prove basic facts about
the local projective model structure.

2.2.5 Lemma. A morphism f: A — B in Ch(Psh(A)) is a weak equivalence in
the local projective model structure if and only if it is a local quasi-isomorphism,
i the sense that it is a stalkwise quasi-isomorphism with respect to the Nisnevich

topology.

Proof. This follows using a similar argument as in [31, C.2.1]. They use finite
correspondences, but all the arguments of [31, §C.2] work for an arbitrary additive

symmetric monoidal category of correspondences satisfying the strict V-property.
O
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2.2.6 Lemma. Let C' € Psh(A) be projective. Then C' is flat, in the sense that

C ® — : Psh(A) — Psh(A)

Psh

s an exact functor.

Proof. Since Psh(A) is an abelian category with enough projectives, we know

that for every A € Psh(A) the tensor product functor A ® — has left derived
Psh

functors
Torfs"(A, —) : Psh(A) — Psh(A)

for i > 0. By [55, Corollary 2.4.2], if C' is projective, then
Torf*"(A,C) =0

for all i # 0 and all A € Psh(A). Since Tor[*" is symmetric we therefore also

get Tor?*"(C, A) = 0. But this then means that the functor C' ® — : Psh(A) —
Psh

Psh(A) is exact. O

2.2.7 Lemma. Let C' € Ch(Psh(A)) be a degreewise flat chain complex. Then C
is a flat chain complex in the sense that

C @ — : Ch(Psh(.A)) — Ch(Psh(.A))
1s an exact functor.

Proof. Since the functor C' ® — is right exact, we just need to show that C' ® —
preserves monomorphisms. Let ¢ : A — B be a monomorphism in Ch(Psh(A)).
For every n € Z we have

(C®u), = @Cp@)aq.

ptq=n

Since each C), is flat and each ¢, is a monomorphism, each C, ® ¢, is a monomor-
phism. Then (C'®¢),, is a monomorphism because it is a direct sum of monomor-
phisms. So C' ® ¢ is a monomorphism, and therefore C' is flat in Ch(Psh(A)). O
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There is an adjunction Ly : Psh(A) & Shv(A) : Uy, where the left adjoint
Lyis is Nisnevich sheafification and the right adjoint U,;s is the forgetful functor.
The sheafification functor L, is well-defined because one of the axioms of the
category of correspondences A states that for every A-presheaf the associated
sheaf with respect to the Nisnevich topology on Smy has a unique strucutre of an
A-presheaf. This adjunction extends to an adjunction on chain complexes

Lyis : Ch(Psh(A)) & Ch(Shv(A)) : Uys.
2.2.8 Lemma. The local projective model structure on Ch(Psh(.A)) is monoidal.

Proof. We use [50, Theorem B|. Cofibrant objects in the local projective model
structure are also cofibrant in the standard projective model structure. By
Lemma 2.2.1 they are degreewise projective, and therefore degreewise flat by
Lemma 2.2.6, and therefore flat by Lemma 2.2.7. We now need to show for every
elementary Nisnevich square ) and cofibrant object K that the morphism

K®pg: K®sg— K®tg

is a local quasi-isomorphism. For this it suffices to show that the sheafification
Lyis(K ®pg) is a local quasi-isomorphism. Since Lys : Ch(Psh(A)) — Ch(Shv(A))

is a strong monoidal functor we have
LniS(K ®pQ) = LniS(K) ® LnIS(pQ)-

Since K is a cofibrant object in Ch(Psh(.A)), it follows that K is flat in
Ch(Psh(A)). This then also implies that the sheafification LK of K is flat
in Ch(Shv(A)), and this implies that the functor Lus(K) ® — : Ch(Shv(A)) —
Ch(Shv(.A)) preserves local quasi-isomorphisms. Since pg is a local quasi-isomor-
phism, it follows that Ls(K) ® Lus(pg) is a local quasi-isomorphism. So K ® pg
is a local quasi-isomorphism. Similarly 0 — K ® A(—, () is a local quasi-isomor-
phism. With this we have proved the lemma. O

We want to show that the local projective model structure is weakly finitely
generated in the sense of [11, Definition 3.4]. For the convenience of the reader
we recall this notion here.
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2.2.9 Definition. A cofibrantly generated model category M is said to be weakly
finitely generated, if it is cofibrantly generated and the generating cofibrations I
and generating trivial cofibrations J can be chosen such that

1. The domains and codomains of maps in I are finitely presented.
2. The domains of maps in J are small.

3. There exists a subset J" C J of maps with finitely presented domains and
codomains, such that for every map f : A — B, if B is fibrant and f has
the right lifting property with respect to J’, then f is a fibration.

We will call J’ the set of weakly generating trivial cofibrations.

Let Ich,, = {S"Z — D"Z | n > 0} U{0 — S°Z} be a set of generating
cofibrations for the standard projective model structure on the category of con-
nective chain complexes Ch(Ab). Let SOIcp., denote the set of all maps which
are pushout-products of maps in .S and Ich,-

2.2.10 Lemma. An object F' € Ch(Psh(.A)) is fibrant in the local projective model
structure if and only if the map F' — 0 has the right lifting property with respect
to SD]Ch2O .

Proof. For A, B € Ch(Psh(A)) let map“AP)(A, B) € Ch>¢(Ab) denote the good
truncation of the chain complex of morphisms A — B, just like in the proof
of Lemma 2.2.4. An object F' € Ch(Psh(A)) is S-local if and only if for every
s: X =Y, seS the map

s* : map“"“P/(Y, F) — map“hP) (X F)

is a quasi-isomorphism. Since s is a cofibration and F' is fibrant, the map s* is a
fibration in Ch(Ab). So s* is a quasi-isomorphism in Ch>¢(Ab) if and only if s* is
trivial fibration in Chso(Ab), and that is the case if and only if s* has the right
lifting property with respect to Icp,,. For every ¢ : A — B in Icp,, we have that
the following diagram has a lift

A——=map“hAP) (Y, F)

B map™AP) (X F)
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in Ch5o(Ab) if and only if the following diagram has a lift

A®Y [[B®X ——=F
A®X

B®Y 0

in Ch(Psh(.A)). So F is fibrant in the local projective model structure if and only

if F'— 0 has the right lifting property with respect to SUlch.,- ]
2.2.11 Lemma. The local model structure on Ch(Psh(A)) is weakly finitely gen-
erated. A set of weakly generating trivial cofibrations is given by Ji .. = Jproj U
(SDICh>0)'

Proof. The domains and codomains from Jj ., are clearly finitely presented.

All morphisms from J,,; are local projective trivial cofibrations. Since S
consists out of cofibrations that are S-local equivalences, it consists out of lo-
cal projective trivial cofibrations. Since the local projective model structure is
monoidal, it follows that SOlcy., consists out of local projective trivial cofibra-
tions. So all morphisms from .J| ,, are trivial cofibrations in the local projective
model structure, so J],.,; € Jiocal for a suitable choice of Jipcal-

Let f : A — B be a map in Ch(Psh(A)), where B is fibrant in the local
projective model structure and f satisfies the right lifting property with respect
t0 Jieat = Jproj U (SOlch,,). Then f satisfies the right lifting property with
respect to Jpo5, so f is a fibration in the standard projective model structure.
Since f : A — B and B — 0 satisfy the right lifting property with respect to
SUlch.,, also the composition A — 0 satisfies the right lifting property with
respect to SO/cp,,. By Lemma 2.2.10 it follows that A is fibrant in the local
projective model structure. From [27, Proposition 3.3.16] it follows that f is a
fibration in the local projective model structure. So the local projective model
structure on Ch(Psh(A)) is weakly finitely generated with Jj ., as the set of
weakly generating trivial cofibrations. O

We next want to transfer the local projective model structure along the ad-
junction

Luis : Ch(Psh(A)) = Ch(Shv(A)) : Uy.
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2.2.12 Definition. Given a model category M and an adjunction L : M &= N :
R we say that the left transferred model structure along L ezists if there is a
model structure on N such that a morphism f in N is a weak equivalence (resp.
fibration) if and only if R(f) is a weak equivalence (resp. fibration) in M.

2.2.13 Remark. Let M be a model category and L : M = N : R an adjunction.
If the left transferred model structure along L exists, then the adjunction L : M &
N : R is a Quillen adjunction. If M is cofibrantly generated with generating
cofibrations I and generating trivial cofibrations J and if L(/) and L(J) permit
the small object argument in N, then L([]) is a set of generating cofibrations and
L(J) is a set of generating trivial cofibrations for V.

We next want to show that the left transferred model structure along L, :

Ch(Psh(.A)) — Ch(Shv(A)) exists.

2.2.14 Lemma. The forgetful functor Uy : Ch(Shv(A)) — Ch(Psh(.A)) preserves
filtered colimits.

Proof. This follows from the fact that every covering in the Nisnevich topology

has a finite subcovering. To spell it out in more detail, let I be a filtered diagram

and Ay : I — Shv(A) a functor. Let A := cQIiImUn;s(Ai). We need to show that
1€

the canonical map
A — Un;s(cQIiImAZ-)
1€

is an isomorphism. If we apply L,s to this map then it clearly becomes an
isomorphism in Shv(A). Also the presheaf Un;S(CQIiImAZ») is a sheaf. To prove the
1€

lemma, it now suffices to show that the presheaf A is a sheaf.

Take a Nisnevich covering {Y; — X };c;, and compatible sections s; € A(Yj).
Since every covering has a finite subcovering we can assume without loss of gen-
erality that the index set J is finite. Now for each j € J, there exists some ¢; € 1
so that s; is the restriction of some section t; ; € Uyis(Ay;)(Y;) along the canonical
map Unis(A;;) — A. Since [ is a filtered category, we can find a single k£ € I such
that every s; is the restriction of some section ¢; € Upns(Ax)(Y;) along the map
Unis(Ag) — A. Since Ay, is a sheaf we can glue together all the sections ¢; into a
single section ¢ € Upis(Ag)(X). If we include ¢ into the colimit c?éilmUnis(Ai)(Y})

then we get a section s € A(X) which is a unique gluing of all the s;. So A is a
sheaf, and U,;s preserves filtered colimits. O
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2.2.15 Corollary. Ly : Ch(Psh(A)) — Ch(Shv(.A)) preserves finitely presented
objects.

Proof. Let X € Ch(Psh(.A)) be finitely presented. Let I be a filtered diagram,
and let Ay : I — Ch(Shv(A)) be a functor. Then using Lemma 2.2.14 we get

2.
Homch(shv(a)) (Lnis X, C%i]mAi) = Homch(psh(a)) (X, Unisc?éiImAi>

—_

4

/2\}7
Homcp(psh(a)) (X, C?eliImUnisAi) = C?eﬁlm Homcn(psh(a)) (X, UnisA;) =

C<Z?€|l1m Homch(shy(4)) (Lnis X, A;)

s0 LnisX is finitely presented. ]

2.2.16 Lemma. For the local projective model structure on Ch(Psh(A)), the left
transferred model structure along Lpis : Ch(Psh(A)) — Ch(Shv(A)) exists.

Proof. We use [27, Theorem 11.3.2]. Since Ch(Shv(.A)) is a Grothendieck cate-
gory [1, Proposition 3.4], every object is small, S0 Ijoca1 and Jioca) permit the small
object argument.

Next, we need to show that Uy;s takes relative Lpis(Jiocal)-complexes to stalk-
wise quasi-isomorphisms in Ch(Psh(A)). Since Uy;s preserves filtered colimits, it
commutes with transfinite compositions. Also, stalkwise quasi-isomorphisms are
closed under transfinite composition. It therefore suffices to show that U,;s takes
any pushout of a map from Ls(Jiocal) to a stalkwise quasi-isomorphism.

Let f: A— B be amap in Jiyea, and consider a pushout of the form

Lnisf

LnisA - LnisB
XxX— vy

We need to show that Uysg is a stalkwise quasi-isomorphism. Since Ch(Shv(.A))
is an abelian category, this pushout gives rise to a short exact sequence in

Ch(Shv(A))
0— LyA— LysBX —-Y — 0.

For every point x of the Nisnevich site, we get a short exact sequence on stalks

0—A, - B, X, —>Y,—0
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in Ch(Ab). This short exact sequence of chain complexes induces a long exact
sequence on homology groups

Since f is in Jigcal, it is a stalkwise quasi-isomorphism, so the map H,(A,) —
H,(B,) is an isomorphism. This then implies that H,(X,) — H,(Y;) is also an
isomorphism, so g : X — Y is a stalkwise quasi-isomorphism.

Therefore the transferred model structure on Ch(Shv(.A)) exists, with generat-
ing cofibrations Lpis([joca1) and generating trivial cofibrations Lpis(Jiocal), and the
adjunction Lys : Ch(Psh(A)) = Ch(Shv(A)) : Uys is a Quillen adjunction. O

2.2.17 Lemma. Let M be a model category that is weakly finitely generated
with weakly generating trivial cofibrations Jy,;, and let L : M = N : R be an
adjunction, such that the left transferred model structure along L exists. Assume
that L preserves small objects and finitely presented objects. Then the transferred
model structure on N is weakly finitely generated, and L(J},) is a set of weakly
generating trivial cofibrations for N.

Proof. Let I, denote a set of generating cofibrations and Jy; denote a set of
generating trivial cofibrations for M. Then by definition of the transferred model
structure, L(Iys) is a set of generating cofibrations and L(Jys) is a set of generating
trivial cofibrations for V.

Since L preserves small objects and finitely presented objects, the domains
and codomains from L([y) and L(J}),) are finitely presented, and the domains
from L(Jy) are small.

Take f: A — B in N with B fibrant and f having the right lifting property
with respect to L(J};). To show the lemma we now just have to show that f is
a fibration in N. By adjunction R(f) has the right lifting property with respect
to Jy;. Since R : N — M is a right Quillen functor and B is fibrant in N
we know that R(B) is fibrant in M. Since J}; is a set of weakly generating
trivial cofibrations for M it now follows that R(f) is a fibration in M. From the
definition of the transferred model structure it follows that f is a fibration in N.
Therefore L(.J),) is a set of weakly generating trivial cofibrations for N. O

2.2.18 Corollary. The model category Ch(Shv(A)) is weakly finitely generated,
with Ls(Ji,.a) as a set of weakly generating trivial cofibrations.
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Proof. By Lemma 2.2.15 we know that L, preserves finitely presented objects.
It also preserves small objects, because all objects in Ch(Shv(.A)) are small. The
result now follows from Lemma 2.2.17. ]

There is a symmetric monoidal structure on Ch(Shv(.A)) defined by X @ Y :=
Liis(Unis(X) @ Upis(Y)). With respect to this monoidal structure the adjunction
Lyis : Ch(Psh(A)) &= Ch(Shv(A)) : Uys is a monoidal adjunction. This means
that the left adjoint L, is strong monoidal, while the right adjoint U is lax
monoidal. We use the following lemma to make Ch(Shv(A)) into a monoidal
model category in the sense of [17, Definition 3.1].

2.2.19 Lemma. Let M, N be closed symmetric monoidal categories, and let
L: M <= N : R be a monoidal adjunction. Let M be equipped with a cofibrantly
generated monoidal model structure with generating cofibrations I and generat-
ing trivial cofibrations J. Assume that the left transferred model structure along
L : M — N ezists and that L(I) and L(J) permit the small object argument.
Furthermore assume that the monoidal unit 1y is cofibrant in M. Then the left
transferred model structure on N is a monoidal model structure and the unit 1y
s cofibrant.

Proof. Let I be the generating cofibrations of M, and let J be the generating
trivial cofibrations of M. Then L(I) is a set of generating cofibrations and L(.J) is
a set of generating trivial cofibrations for V. Given two morphisms f, g, we write
fOg to denote the pushout-product of f and g. To verify the pushout-product
axiom for the transferred model structure on N, it suffices by [28, Corollary 4.2.5]
to show that L(I)OL(I) consists out of cofibrations, and L(J)OL(I) consists out
of trivial cofibrations.

Since L is a strong monoidal left adjoint functor, it preserves pushout prod-
ucts, in the sense that for all morphisms f : A — B and g : C — D in M we
have a commutative diagram in which the vertical maps are isomorphisms:

L(f0Og)

LA D] Be(C)
ARC

LA LD) ] LB L) M) 1B)e L(D)
L(A)QL(C)

L(B® D)
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This can also be expressed by saying that L(fOg) = L(f)JL(g) in the arrow
category Arr(N).

So any morphism in L(I)OL(I), respectively L(J)OL(I), is isomorphic to a
morphism in L(IOT1), respectively L(JOI), in the arrow category Arr(IN). Since
M is a monoidal model category, all morphisms from [ITJI, respectively JUII,
are cofibrations, respectively trivial cofibrations. Since L : M — N is a left
Quillen functor it preserves cofibrations and trivial cofibrations. Since cofibrations
and trivial cofibrations are closed under isomorphisms in Arr(N) it follows that
L(I)OL(I) consists out of cofibrations and L(J)OL(I) consists out of trivial
cofibrations. So N satisfies the pushout-product axiom.

Since 1,y is cofibrant in M and L is a left Quillen functor, L(1,) is cofibrant
in N. Since L is strong monoidal L(1,,) = 1y, so 1y is cofibrant in N. This in
particular implies that N is a monoidal model category. O

We will now prove some lemmas to show that Ch(Shv(.A)) satisfies the monoid
axiom.

2.2.20 Lemma. If f € J| ., then Coker(f) € Ch(Psh(A)) is a bounded chain
complex and degreewise free.

Proof. Take f € Ji, ;. Then f € Jyoj or f € SOlch,,. If f € Jproj, then
Coker(f) = A(—, X) ® D"Z

for some X € Smy,n € Z, and that is clearly bounded and free. If f € SOlcy.,,
then f = gllh for some g € Ich,, and some h € S. Since g is just a map of the
form S"Z — D"Z for some n > 0, it suffices to show that h has a bounded and
degreewise free cokernel. Up to a shift, h is either the morphism 0 — A(—, () or
h is a morphism of the form s — to for some Nisnevich square () € Q. The
cokernel of 0 — A(—, ) is clearly bounded and free. So assume now that h is of
the form sg — t¢ for some Nisnevich square () € Q, of the form

U/ﬁX,

L

U——X
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Recall from Definition 2.2.3 that sq is defined via the pushout square

A(—=,U) — T

A(—,U)—=sqg
where C' is the mapping cylinder of A(—,U’) — A(—,X’). By the usual con-
struction of mapping cylinders [55, 1.5.5] we have in each individual degree n an
equality

Cn= A(_a U/)n D A(_v U,)n—l D A(_> X/)n

and the canonical map A(—,U’) — C' is in each individual degree n a coproduct
inclusion.

Thus the pushout defining s¢ is a pushout of bounded and degreewise free
complexes along a morphism which is degreewise a coproduct inclusion. This
then implies that s¢ is bounded and degreewise free.

Next, recall that tg is defined as the mapping cylinder of sq — A(—, X).
Thus the canonical map h : sg — tg is also a degreewise coproduct inclusion
between bounded and degreewise free objects. This then implies that Coker(h)
is bounded and degreewise free.

And then it follows that Coker(f) is bounded and degreewise free. O

2.2.21 Lemma. If f € J| ., and Z € Ch(Psh(A)), then f ® Z is a local quasi-
isomorphism and a monomorphism in Ch(Psh(A)).

Proof. We can calculate f ® Z in degree n € Z by

i+j=n

By Lemma 2.2.1 each f; is a split monomorphism. Then also every f; ® Z; is
a split monomorphism, so their direct sum is a split monomorphism. So f ® Z
is a monomorphism. We now just need to show that f ® Z is a local quasi-
isomorphism. Since it is already a monomorphism, we now just need to show
that Coker(f ® Z) is locally acyclic. Let C' := Coker(f). By Lemma 2.2.20 the
complex C'is bounded and degreewise free. Since f is a local quasi-isomorphism,
we know that C' is locally acyclic. Also we have an isomorphism Coker(f ® Z) =
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Coker(f) ® Z = C ® Z. So to prove the lemma we now just need to show the
following claim:

If C' € Ch(Psh(A)) is bounded, degreewise free and locally acyclic, then C® Z
is locally acyclic.

We will first show this claim for the case where Z is concentrated in degree 0.
So we assume Z € Psh(A). We claim that C' ® Z is locally acyclic.

Take a free resolution of Z in Psh(.A)

o= By - Fy = Fy— Z = 0.

We can tensor this resolution with C' to get the following double complex

..ﬁ'Fl(XJCléFQ@ClﬁZ@Cl

..ﬁFl(XJCOéFQ@COﬁZ@CO

Denote this double complex by D, ,.

Since C' is degreewise free, by Lemma 2.2.6 each C; is also flat, so each row
is exact. This then means that the horizontal homology of D, . vanishes. So we
have for all g € 7Z,

Hyorq(Des) =0

in Ch(Psh(A)).
Associated to the double complex D we have a spectral sequence in Psh(.A)
computing the homology of the total complex [11].

E;QZ Vert,p(Hhor,q(Do,o)) — Hp—}—q(TOt(Do,o))

Since Hpor,q(Deo) = 0 it follows that H,4,(Tot(Dss)) = 0.

If this homology vanishes, then it also locally vanishes. So if Lpis(Ds o) denotes
the sheafification of D,,, and if H nis denotes Nisnevich homology sheaves in
Shv(A), then we have for all p.q € Z that H}® (Tot(Lnis(Da,s)) = 0.
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By mirroring the double complex Lyis(Da o) and then using the double complex
spectral sequence in the Grothendieck category Shv(A), we get another spectral
sequence computing the same homology

(Hnis

vert,q

(LniS(DO,-))) — Hnis

p+q

Epq = His (Tot(Lnis(Dse)))-

hor,p

Since C'is bounded, degreewise free and locally acyclic, and since each F; is free,
we can use an argument similar to [50, Corollary 2.3] to show for every ¢ > 0
that

H™(Lyo(F, ® C)) = 0.

This then means that the Nisnevich homology of all vertical columns of Lpis(De o)
in positive degree vanishes. So for ¢ # 0 and p € Z we have

Hnis

vert,q

(Lnis(Dese))p = H;is(LniS(Fq—l ® C)) =0.

Here we consider the Lyis(Z ® C;) column of Lys(Ds W) to be in degree 0.
(HMs, (Lnis(Dss))) stabilizes at the

Thus the spectral sequence E2 = Hps (HUS,

hor,
second page, and consists only of a single C(flumn whose terms are H}',‘is(Lnis(Z ®
C)). Since the spectral sequence converges against H)' (Tot(Lyis(Dse))) = 0 it
follows that H)*(Lns(Z @ C')) = 0 for every p, so the chain complex Z @ C' is
locally acyclic.

So we have now shown the lemma in the case where Z is concentrated in
degree 0. Let us show the lemma in full generality. Namely, let C' be bounded,
degreewise free and locally acyclic, and let Z € Ch(Psh(.A)) be any chain complex.
We claim that C' ® Z is locally acyclic.

For every k € Z, let 7,,(Z) denote the following truncated chain complex

k+3 k+2
e —> Zk+3 Z Zk+2 EAN Zk-Jrl — ker(@é) — O,

where ker(9%) is in degree k. The chain complex 73,(Z) is k-connected.
For every k € Z there is a canonical map ¢y : 7(Z) — 7—1(Z) with ¢y ; = idy,
for all # > k + 1, as shown in this diagram

8§+2 8§+1
Ziss e Ty 2 Ker(8) —— 0

j 8§+2 l 8§+1 l ok \J

Zk+2 Zk+1 Zk Z ker((‘?@‘l)




A model structure on Ch(Shv(A)) 35

In Ch(Psh(A)) we can consider the Z-indexed diagram
o men(Z) 5 m(Z2) = e (Z2) = -

The colimit of this diagram is obviously Z. In particular C®Z = cglig(C@m(Z ).
S

Since filtered colimits in Ch(Psh(.A)) preserve local quasi-isomorphisms, we
know that filtered colimits of locally acyclic objects are locally acyclic. So to
show that C'® Z is locally acyclic, we now just need to show that each C' ® 74(2)
is locally acyclic. Let k € Z be arbitrary. We have a distinguished triangle in
Ch(Psh(A))

T (2)[ k] = (2K = Hi(Z) = 7ena(Z)[1 — K

where Hy(Z) € Psh(A) is regarded as a chain complex concentrated in degree 0.
So if we consider the following diagram in D(Psh(.A))

o ()R] = T (Z) ) = ()R

then for every ¢ € N, the i-th morphism in the sequence has a cofiber isomorphic
to Hyii(Z)[i]. Also the i-th term in the sequence 74;(Z)[—k| is i-connected.
By Lemma 2.2.6 we know that C' is degreewise flat. So if we tensor the above
diagram with C' we get a diagram

= CRm(Z2) k] — - = C R 11 (2)[—k] —» C @ m(Z)[— k]

in which the i-th morphism has a cofiber isomorphic to C' ® Hy,;(Z)[i]. From
[18, Corollary 6.1.1] we get a strongly convergent spectral sequence

B}, = H}5(C & Hipo(Z)]q)) = Hp5,(C @ mi(Z)[—kK]).

Since Hy44(Z)[q] is concentrated in a single degree, we know that C'® Hy.,(Z)[q]
is locally acyclic. So H)'® (C'® Hyyq(Z)[q]) = 0, and then the spectral sequence

implies that HJ® (C' ® 7,(Z)[—k]) = 0, hence C' ® 7(Z)[—k] is locally acyclic.
Then also C®7(7) is locally acyclic, and then also the colimit C®Z = cgli ?(C ®
€

T,(Z)) is locally acyclic, which then proves the entire lemma. O

2.2.22 Lemma. Let M be a monoidal model category that is weakly finitely
generated. Denote the set of weakly generating trivial cofibrations by J'.



36 Nisnevich sheaves with transfers

Then the monoid axiom for M can be checked on J'. This means with the
notations from [/ 7], that if every element of (J'® M)—cof,ey is a weak equivalence
then M satisfies the monoid axiom.

Proof. Before verifying the monoid axiom we first show that every trivial cofibra-
tion with fibrant codomain lies in J'—cof.

Let f: A ~ B be a trivial cofibration with fibrant codomain B. We claim
that f lies in J'—cof. According to the small object argument [17, Lemma 2.1]
we can factor f as f = ¢i with ¢ € RLP(J’) and i € J'—cof .

LB
N A

Z
Since ¢ has a fibrant codomain and ¢ € RLP(J') it follows that ¢ is a fibration.
Then f has the left lifting property against ¢ so by [28, Lemma 1.1.9] f is a

A

retract of i. Since ¢ € J'—cof,¢, this implies f € J'—cof.

Now we start verifying the monoid axiom. Assume every element of (J' ®
M)—cof e, is a weak equivalence. Let f : A — B be any trivial cofibration, let
Z € M be any object and consider an arbitrary pushout diagram of the form

Ao zl*2 Bz
X" vy

We claim that h is a weak equivalence. Since M is weakly finitely generated, we
know by [14, Lemma 3.5] that transfinite compositions of weak equivalences are
weak equivalences in M. So if we show that h is a weak equivalence, then this
immediately implies the monoid axiom.

Denote the terminal object of M by 1. Factor the map B — 1 into a trivial
cofibration followed by a fibration. We then have a trivial cofibration g : B ~ BI
with B/ fibrant. Then both g : B — Bf and ¢gf : A — B/ are trivial cofibrations
with fibrant codomain. So g and g f both lie in J'—cof. Then Z®g and Z®gf lie
in Z® (J'—cof). By a simple argument using the adjunction —® Z 4 Hom(Z, —)
one can show that Z ® (J'—cof) C (Z ® J')—cof. So Z ® g and Z ® gf lie in
(Z ® J")—cof, and thus also in (M ® J')—cof.
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Consider the pushout diagram

Azl gz Bfgz

L]

X—t -y —5 (Ble2)]]Y
B®Z

Since ¢ ® Z and ¢gf ® Z lie in (J' ® M)—cof, and since (J' ® M)—cof is stable
under pushouts, it follows that k& and kh also lie in (J'® M)—cof. By [17, Lemma
2.1] this means that k£ and kh are retracts of morphisms from (J' @ M)—cof,e,.
Since we assume that all morphisms from (J'® M)—cof e, are weak equivalences,
and since weak equivalences are stable under retracts, it follows that k£ and kh
are weak equivalences. Then by 2-of-3 also h is a weak equivalence. This then
proves the monoid axiom for M. O]

2.2.23 Lemma. Ch(Shv(A)) satisfies the monoid aziom in the sense of [/7].

Proof. By Lemmas 2.2.22 and 2.2.18 it suffices to check the monoid axiom on the
set LNiS(Jllocal)'
Take f: A — B, with f € Lns(J],.) and take Z € Ch(Shv(A)). We claim

that f ® Z is an injective quasi-isomorphism. Since Shv(A) is a Grothendieck
Shv

category, we know that injective quasi-isomorphisms in Ch(Shv(.A)) are stable

under pushouts and transfinite compositions. So if we show that f ® Z is an
Shv

injective quasi-isomorphism, then this proves the entire monoid axiom.
If f € Lyis(J},..;), then there exists f': A" — B’ with f’ € J] ., and Lys(f') =

f. By Lemma 2.2.21 we know f’ ® U,sZ is an injective local quasi-isomorphism
Psh

in Ch(Psh(.A)). Since Ly is strongly monoidal we have an isomorphism of arrows

Lnis(f, ® U”iSZ) = LniS(f,) & LnisUnisZ = f ® Z
Psh Shv Shv

So we just need to show that Ls(f" ® UysZ) is an injective quasi-isomorphism.
Psh
Since [’ ® U,isZ is injective, and the sheafification functor L, is exact, we
Psh
know that Luis(f’ ® UnisZ) is injective. So we now just need to show that Lys(f’ ®
Psh Psh

UnisZ) is a quasi-isomorphism. By definition of the transferred model structure
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on Ch(Shv(A)) we thus need to show that UpisLnis(f' ® UnsZ) is a local quasi-
Psh
isomorphism in Ch(Psh(A)).

We have a commutative diagram, where 7 is the unit of the adjunction L;s -
Unis:
UnisLnis(fl &® UnisZ)
Psh

UnisLnis(A, 2y UnisZ) UnisLnis(B/ ® UnisZ)
Psh Psh
l |
f/ ® UnisZ
A ® UysZ - B' & UysZ
Psh Psh

The diagram commutes by the naturality of . Since 7 is stalkwise an isomor-
phism, it is by Lemma 2.2.5 in particular a local quasi-isomorphism in Ch(Psh(.A)).

Since f' ® UysZ is also a local quasi-isomorphism, it follows from the 2-of-
Psh

3-property that UnisLnis(f' ® UnisZ) is a local quasi-isomorphism. So f ® Z =
Psh
Luis(f' ® UnisZ) is an injective quasi-isomorphism, and this concludes the proof
Psh

of the lemma. O]

2.2.24 Lemma. Ch(Shv(A)) is strongly left proper in the sense of [1/, Definition
4.6].

Proof. For any Grothendieck category B, quasi-isomorphisms in Ch(53) are stable
under pushouts along degreewise monomorphisms. So to show that Ch(Shv(.A)) is
strongly left proper we just need to show that for any cofibration f and any object
Z € Ch(Shv(.A)) the map Z® f is a degreewise monomorphism. The set Lis(Ipro;)
is a set of generating cofibrations for Ch(Shv(.A)) so we have f € Lpis(Ipro;) — cof.
Then

Z® f €(Z® Luis(Iproj)) — cof .

All morphisms from Lpis({pr0;) are degreewise split monomorphisms, so all mor-
phisms from Z ® Lyis(Ipr0;) are degreewise split monomorphisms, and this implies
that all morphisms from (Z ® Lis({proj)) — cof are degreewise split monomor-
phisms. So Z ® f is a degreewise split monomorphism. Therefore Ch(Shv(.A)) is
strongly left proper. O



Chapter 3

First Reconstruction Theorem
for DM 4

In this chapter in Section 3.1 we state two reconstruction theorems that recover
DMy from certain derived categories of enriched functors. The first reconstruc-
tion theorem is Theorem 3.1.8 and recovers DM 4 from enriched functors on an
enriched category C whose objects are powers of G,,. The second reconstruction
theorem is Theorem 3.1.14. It requires inverting the exponential characteristic p
of k, and recovers DM 4[1/p] from enriched functors on an enriched category Sm
whose objects are the smooth schemes. In this chapter we will also prove the first
reconstruction theorem in Section 3.2. The proof of the second reconstruction
theorem will be proven in Chapter 4.

3.1 Statements of the two reconstruction theo-
rems

From now on we will additionally assume that 4 satisfies the cancellation property
in the sense of Definition 2.1.2. We define a Shv(.A)-enriched category Sm, by
letting the objects of Sm be smooth schemes over k&, and by defining

Sm(X7 Y) = HO—mShv(A) <A<_7 X)nis; .A(—, Y)nis)-

We have a Shv(A)-enriched inclusion functor I : Sm — Shv(.A) defined on
objects by I(X) := A(—, X)nis, and which acts on morphism sets as the identity

39
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Sm(X,Y) = Homg;,, 1) (1(X), I(Y)).
Let C be the full enriched subcategory of Sm consisting of the objects G,
where n € Zy.

We write ® for the tensor product of Shv(A), and ® for the Day convolution
Shv Day

product on [Sm, Shv(A)] or [C,Shv(A)], as defined in [10]:

(a,b)eSMRSM

F®dG = S b F G(D).
Fo @)= [ Smaxbo s Fa 6w
The Grothendieck category of enriched functors [Sm, Shv(A)] is tensored and

cotensored over Shv(A) by ® . Given any enriched functor F' : Sm — Shv(A)
Shv

and X € Shv(A) we can form an enriched functor F* @ X, given by
Shv

F® X(U)=FU) @ X.
Shv Shv
If X is representable by a scheme U, so that X = A(—,U)s, then we write

F®Utfor F ® X.
Shv Shv

The monoidal structure on Shv(.A) induces a monoidal structure on Sm via
the following easy lemma.

3.1.1 Lemma. Let V be a symmetric monoidal closed category. Let C be a full
V-subcategory of V, such that 1y, is isomorphic to an object of C, and for every
X, Y € C the monoidal product X ®Y is isomorphic to an object of C. Then C can
be made into a symmetric monoidal V-category such that the inclusion functor
C — V 1s strong monoidal.

Proof. Let C be the full V-subcategory of ¥ on all those objects which have the
property of being isomorphic to some object of C. Then 1 € C, and for all
X,Y € C we have X ® Y € C. So the functor @ : ¥V x V — V restricts to a
functor ® : C x C — C. For all X,Y,Z € C we have coherence isomorphisms

gx]l@X;X

px X013 X
QOX7yZX®Y:)Y®X
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axyz (X@Y)@Z S5 X (Y ®Z)

in V. The domains and codomains of all these coherence isomorphisms lie in
C. Since C is a full subcategory of V, all these coherence isomorphisms lie in
C. Obviously these coherences isomorphisms in C still make exactly the same
diagrams commute as in V. So C is a symmetric monoidal V-category, and the
inclusion C — V is a strict monoidal V-functor.

We have an inclusion V-functor C — C. This functor is essentially surjective,
and it is the identity on morphism objects. This then implies that C — C is an
equivalence in the 2-category V — C' AT, and we then get an induced symmetric
monoidal V-category structure on C. [

3.1.2 Corollary. Sm and C are symmetric monoidal Shv(A)-categories.

Proof. The unit of Shv(A) is isomorphic to A(—, pt)ns. We claim that for all
X, Y € Sm we have an isomorphism

A=, X)nis ks A=Y )nis Z A(—, X X Y)pis.
This isomorphism is constructed as follows. The sheafification functor (—)ys :

Psh(A) — Shv(.A) is strongly monoidal, so if ® denotes the presheaf tensor prod-
Psh

uct, then we have a natural isomorphism A(—, X)nis ® A(—, Y )nis = (A(—, X) ®
Shv Psh

A(—=,Y))nis- The presheaf tensor product ® is a Day convolution with respect to
Psh

the monoidal structure on A. The monoidal structure on A is given on objects by
the cartesian product on Smy. By general properties of Day convolution we have
an isomorphism of presheaves A(—, X) ® A(—,Y) = A(—, X x Y) and thus an
Psh
isomorphism of sheaves A(—, X)nis @ A(—, Y )nis = A(—, X X Y)nis. The previous
Shv

lemma now implies that Sm is a symmetric monoidal Shv(.A)-category. Since
A(_upt)nis - A(_vG;;@O)nis and A<_7G§Ln)nis S% A(_,G;Lm)nis = A(—,G;(nn+m)nis

it also follows that C is a symmetric monoidal Shv(.A)-category. m

Since Shv(A) is a closed symmetric monoidal Grothendieck category, and
Sm is a monoidal Shv(A)-category, we can apply [20, Theorem 5.5] to get a
weakly finitely generated monoidal model structure on Ch([Sm, Shv(.A)]), where
the weak equivalences are the pointwise quasi-isomorphisms and the fibrations
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are the pointwise fibrations. We will say that F' € Ch([Sm,Shv(A)]) is locally
fibrant if it is fibrant in this model category. The homotopy category of this model
category is the derived category D([Sm,Shv(A)]) of the Grothendieck category
[Sm, Shv(A)].

We write ® ¥ for the derived tensor product on D([Sm,Shv(A)]). Since
Day

the model structure on Ch([Sm,Shv(A)]) is monoidal by [20, Theorem 5.5],
we can compute this derived tensor product by using cofibrant replacements in
Ch([Sm, Shv(A)]). Also note that every representable functor Sm(X, —) : Sm —
Shv(A) is cofibrant in Ch([Sm, Shv(.A)]), because it is isomorphic to the cofibrant
object Sm(X, —) S(}}Zl)v pt. We similarly have a weakly finitely generated monoidal
model structure on Ch([C, Shv(A)]), whose homotopy category is D([C, Shv(A)]).

We now define two families of morphisms in the enriched functor category

[C,Shv(A)]. The first family of morphisms we call Aj, and it consists of the
morphisms

Shv Shv

induced by the projection map A! — pt for every n € Z-.
The second family of morphisms, denoted by 7, consists for every n € N of
the morphism

s (BRI 1(5)] © G (G, T(-)]

where for every U € Sm; the map [G\"*! [(U)] @ G/ I3 [(U) in Shv(A) is
Shv
given by the counit of the adjunction — ® G/ H [G/N"T1 —]. We also sometimes
Shv

write Sm(G/ " —) or C(G\"T! —) for [GA"T! I(—)], even though G/\"*! is not
in Sm or C strictly speaking.

The domains and codomains of all these morphisms are compact in the derived
category D([C,Shv(A)]) according to [20, Theorem 6.2].

Let ~¢ be the union of both of these classes of morphisms

~e= A% —+ 7
considered as a class of morphisms in [C, Shv(A)].

3.1.3 Definition. Let B be any small Shv(.A)-enriched category.
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We can consider Ch([B, Shv(.A)]) to be a Ch(Shv(.A))-enriched category, and
denote the morphism objects by map“*CV) (A B) € Ch(Shv(A)). These mor-
phism objects are defined on Z € Smy by

map hSV) (A B)(Z) := map ™) (4 ® Z, B) € Ch(Ab)
Shv

where map“AP) refers to morphism objects of the Ch(Ab)-enriched category
Ch([B,Shv(.A)]). Given an object F' € Ch([B,Shv(.A)]) and a class of morphisms
S in Ch([B,Shv(A)]), we say that F' is enriched S-local if for every f: A — B in
S we have a quasi-isomorphism of complexes of sheaves

map P VA (B F) o maphSVA) (4] F)

in Ch(Shv(A)). Furthermore say that F' € Ch([B, Shv(.A)]) is strictly S-local if its
pointwise locally fibrant replacement F/ in Ch([B,Shv(.A)]) is enriched S-local.

3.1.4 Lemma. Let B be a small monoidal Shv(A)-enriched category, and S a
set of morphisms in Ch([B,Shv(A)]). Define a new set of morphisms

S:={(f & Z)ln] |n€Z.Z €Smy, f € S}
in D([B, Shv(A)]).
Let F € Ch([B,Shv(A)]) be locally fibrant, and assume that all domains and
codomains from S are cofibrant.in the local model structure. Then F' is strictly S-
local in the sense of Definition 3.1.3 if and only if F' is S-local in D([B, Shv(A)])

~

in the usual sense, i.e. if and only if for all g : C — D,g € S we have an
1somorphism of abelian groups

g* . HOIIlD([B,Shv(A)])(D7 F) — HomD([B,Shv(.A)])(C; F)

Proof. Suppose F' is strictly S-local. Then for every f: A — B, f € S we have
a quasi-isomorphism of complexes of sheaves

f* : mapCh(Shv(A))(B’ F) N mapCh(Shv(A))(A, F)

in Ch(Shv(A)).
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We claim that map®"S™A) (B F) is locally fibrant. In fact if we have a local

trivial cofibration h : X — Y, then a diagram

X mapCh(Shv(A)) (B, F)

Y - 0
has a lift, by adjunction if and only if
B® X—F
Shv 7
B® hl \
Shv
B®Y—>0

Shv

has a lift. But since B is cofibrant, then B ® h is still a trivial cofibration. Since
Shv

Fis locally fibrant the map F' — 0 is a local fibration, so the lift exists. Therefore
mapChCVA) (B F) and similarly map®CVM) (A F) are locally fibrant. We see
that the quasi-isomorphism

f* : IrlapCh(Shv(.A))(B7 F) N InapCh(Shv(.A))(147 F)

is sectionwise a quasi-isomorphism.
This means that for every n € Z we have an isomorphism of homology
presheaves

H,(map®C™A) (B, F)) — H,(map™CM™A) (4, F)).
Therefore for every Z € Sm;, one has

H, (map®E™A) (B F))(Z) 2 Homp s shay) (B ® Z)[-n], F).

It follows that F is S-local in D([B, Shv(A))).
Conversely, assume that F' is S-local in D([B,Shv(A)]). Then for every f :
A — B in S the map

f* : mapCh(Shv(A))(B’ F) — 1,naJpCh(Shv(.A))(147 F)
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is a sectionwise quasi-isomorphism, because for every n € Z and Z € Sm;, the
map

H,(f)(Z) : Hy(map™ A (B, F))(Z) — Hy(map™ ™A (A, F))(2)
is isomorphic to the map

(f 3 Z)[=n]" : Homp(z,shvay) (B 2 Z)[=n], F') = Homp(,shva)) (A 2 Z)[-nl, F)

and since (f ® Z)[—n| € S and F is S-local this map is an isomorphism. So F
Shv

is strictly S-local if and only if F is S-local in D([B, Shv(A)]). O

We can localize the compactly generated triangulated category D([C, Shv(A)])
with respect to the family of morphisms between compact objects ~¢.

3.1.5 Definition. We write D([C,Shv(A)])/ ~¢ for the localized compactly gen-
erated triangulated category. Furthermore we write DM 4[C]| for the full triangu-
lated subcategory of D([C, Shv(.A)]) consisting of the strictly ~¢-local objects.

It follows from Lemma 3.1.4 that the category D([C,Shv(A)])/ ~¢ is equiva-
lent to DM 4[C].

3.1.6 Definition. An enriched functor F' : C — Ch(Shv(A)) or F' : Sm —
Ch(Shv(.A)) is said to satisfy cancellation, if for every n > 0 the canonical map
F(G)") — [GAY F(GA™1)] is a local quasi-isomorphism.

Note that an enriched functor F satisfies cancellation if and only if it is en-
riched 7-local.

3.1.7 Definition. Let F' € Ch([C,Shv(.A)]). We say that F' is ~c¢-fibrant if it is
pointwise locally fibrant in Ch([C, Shv(A)]) and strictly ~c-local.

Note that F is strictly ~¢-local if and only if it is strictly Al-local and satisfies
cancellation.

Our first theorem is that there is a canonical equivalence of compactly gener-
ated triangulated categories

D([C, Shv(A)])/ ~¢=3 DM,
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The equivalence is constructed as follows. For an enriched functor F' : C —
Ch(Shv(A)) and k € N define

F(G)¥) = F(G)/3 Im(F (1)

There is an isomorphism of categories Ch([C, Shv(.A)]) = [C, Ch(Shv(A))] by [20,
Theorem 5.4]. For this reason we will often implicitly pass back and forth between
those categories without mentioning it.

Let Spg, (Shv(A)) be the category of G)!-spectra in Shv(A). Define

evg,, : Ch([C, Shv(A)]) — Spg,. (Ch(Shv(A)))

by taking F' € Ch([C,Shv(A)]) (regarding it as an enriched functor F' : C —
Ch(Shv(A))) to the GAl-spectrum (F(G)™)),en. We construct the structure maps

@) @ @)l - PG
hv

by applying the tensor-hom adjunction to
G — (G, G = [F(GL), F(GR ).

This functor sends quasi-isomorphisms in Ch([C, Shv(.A4)]) to stable motivic equiv-
alences in Spg, (Ch(Shv(A))), so it induces a functor evg,, : D([C,Shv(A)]) —
DM ,. This functor can then be restricted to the full triangulated subcategory
DM4[C] € D(]C,Shv(A)]). We are now in a position to formulate the following
theorem.

3.1.8 Theorem. The functor
evg,, : DM4[C] — DM 4

1s an equivalence of compactly generated triangulated categories. In particular
there 1s an equivalence

D([C, Shv(A)])/ ~¢=3 DM,
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The proof of this theorem is given in Section 3.2. To state our next result we
now define some additional classes of morphisms in D(|[Sm, Shv(A)]). Firstly, in
Ch([Sm, Shv(A)]) let A} denote the class of morphisms

Sm(U, —) s(% Al — Sm(U,-)
for U € Sm, and let 7 denote the class of morphisms

(G, T(-) © Gl = (G, )

just like in Ch([C,Shv(A)]). By A} we mean the family consisting for every
Y € Smy, of the morphism

Sm(Y,—) — Sm(Y x A', —).

The family of morphisms Nis is defined as follows. For every elementary Nis-

nevich square
!/ /
U — X
Il
U—>X
in Smy, we have a square in Ch([Sm, Shv(.A)])
Sm(U’, —) <ﬁ—*8m(X’, -)
a* ol

Sm(U, —) <C— Sm(X, —)

It induces a map of chain complexes p : hocofib(y*) — hocofib(a*), where hocofib
refers to the naive mapping cone chain complex. The family Nis consists of all
the morphisms p for every elementary Nisnevich square. Denote by ~ the union
of all the four morphism sets defined above. Namely,

~=A] + 7+ A + Nis.

3.1.9 Definition. A functor F' € Ch([Sm,Shv(A)]) is said to satisfy Nisnevich
excision if it sends elementary Nisnevich squares in Smy to homotopy cartesian
squares in Ch(Shv(A)).

Note that we consider here covariant Nisnevich excision in the Sm-variable,
rather than contravariant Nisnevich excision in the A-variable.
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3.1.10 Lemma. Let F' € Ch([Sm,Shv(A)]) be a functor. Then F satisfies Nis-
nevich excision if and only if F' is enriched Nis-local.

Proof. By the Ch(Shv(A))-enriched Yoneda lemma there is a natural isomorphism
in Ch(Shv(.A))
F(X) = map™C™A)(Sm(X, —), F).
So
F(U")—= F(X)
lF(Ot)
F(U) 0L

is homotopy cartesian if and only if

1,napCh(Shv(.A)) (Sm(U’, _)7 F) ? mapCh(Shv(A)) (Sm(X’, _)7 F)

la** ,Y**l

ok

map S (S (U, ~), F) o map VA (Sin(X, ), F)

is homotopy cartesian. This is the case if and only if hocofib(a™) — hocofib(y*)
is a local quasi-isomorphism. The latter holds if and only if the induced mor-
phism p* : maphSV) (hocofib(a*), F) — map®tGhV(A) (hocofib(y*), F) is a lo-
cal quasi-isomorphism, which means that F' is enriched Nis-local. O

3.1.11 Definition. Let F' € Ch(|[Sm,Shv(A)]). We say that F' is ~-fibrant if it
is pointwise locally fibrant in Ch([Sm, Shv(.A)]) and strictly ~-local.

3.1.12 Definition. Let DM 4]Sm| be the full subcategory of D([Sm,Shv(.A)])
of those complexes which satisfy the following properties:

1. For every U € Sm, the complex of sheaves F(U) has A'-invariant cohomol-
ogy sheaves.

2. F satisfies cancellation.

3. F is covariantly Al-invariant, in the sense that F(U x A') — F(U) is a
local quasi-isomorphism.

4. F satisfies Nisnevich excision.
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These properties are similar to the axioms (2)-(5) for special motivic I'-spaces
defined in [25] and axioms for framed spectral functors in the sense of [21, Sec-
tion 6.

3.1.13 Proposition. The category DM 4[Sm)| is equal to the full subcategory of
D([Sm,Shv(A)]) of those complexes F which are strictly ~-local. In particu-
lar, the inclusion from DM4[Sm] to D([Sm,Shv(A)]) induces an equivalence of
triangulated categories

DM 4[Sm] = D([Sm,Shv(A)])/ ~ .
Proof. The proposition follows from the following four claims:

1. A functor F is strictly Aj-local if and only if for every U € Smy,, the complex
F(U) has Al-invariant cohomology sheaves.

2. A strictly Aj-local functor F satisfies cancellation if and only if it is strictly
T-local.

3. A functor F is covariantly Al-invariant if and only if it is strictly Al-local.

4. A functor F satisfies Nisnevich excision if and only if it is strictly Nis-local.
Here are the proofs for those claims.

1. F is strictly Al-invariant if and only if for every U € Sm; the canonical

map
FIU) - FIU)(A' x =)

is a local quasi-isomorphism in Ch(Shv(A)). Since F/(U) and F/(U)(A! x
—) are locally fibrant in Ch(Shv(.A)), it follows that the above map is a local
quasi-isomorphism if and only if it is a sectionwise quasi-isomorphism in
Ch(Psh(A)). This is the case if and only if F/ has Al-invariant cohomology
presheaves in the sense that for each n € Z the map

H,(FH(U)) = Hy(FH(U)(A' x =) = Ho(F/(U))(A" x —)

is an isomorphism in Psh(A). This means that F/(U) is motivically fibrant,
which is the case if and only if F(U) is A'-local. By [33, Theorem 6.2.7]
this is the case if and only if F/(U) has A'-invariant cohomology sheaves.
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2. The Yoneda lemma implies that a functor F' satisfies cancellation if and

only if it is enriched 7-local. We now claim that a strictly Aj-local functor
F is enriched 7-local if and only if it is strictly 7-local. Let F' be a strictly
Allocal functor, and let F/ be its pointwise local fibrant replacement. For
every U € Smy, and n € Z, consider the following diagram in Shv(.A)

Hy (HomCh Shv(A)) (G ,F(U))) —>HO_T%hv(A)(GZ\117 HYs(F(U)))

| l

HE (Homy sy ay) (G Y (U))) —= Homg ) (G, Hi*(FY (U)))

Since F(U) and FY(U) have Al-invariant cohomology sheaves, it follows
from [37, Lemma 4.3.11] that the two horizontal maps in the diagram are
isomorphisms. Since the canonical map F(U) — F/(U) is a local quasi-
isomorphism, the map H"(F(U)) — H"(F/(U)) is an isomorphism in
Shv(.A), so the right vertical map in the above diagram is also an isomor-
phism. This implies the left vertical map in the diagram

Hy (HomCh(Shv (A)) (G ,F(U))) — HQiS<MCh(Shv(A))<GQ¢17 FHU)))
is an isomorphism in Shv(A). Hence
Homeypsh(ay) (G , F(U)) — Homep(shy(a)) (G ,FI(U))

is a local quasi-isomorphism in Ch(Shv(.A)).
Now consider the diagram in Ch(Shv(A)).

F(G))") —— Homcpspy(a)) (G, F(GH)))

| |

FI(Gp") — Homcepshy(ay (Gn's FH(GHMY))

The two vertical maps are local quasi-isomorphisms.

F is enriched 7-local if and only if the upper horizontal map is a local quasi-
isomorphism. This is the case if and only if the lower horizontal map is a
quasi-isomorphism, and that is true if and only if F' is strictly 7-local.
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3. From the Yoneda lemma it follows that a functor F is covariantly A'-
invariant if and only if it is enriched Al-local. And every functor F is
enriched Al-local if and only if it is strictly Al-local, because the rela-
tion A} only affects the covariant Sm-variable and is thus not affected by
pointwise local fibrant replacement. More precisely, consider the following
diagram, in which the vertical maps are local quasi-isomorphisms:

F(X x Al) — = F(X) .

Nl lw
FI(X x A1) — F/(X)

F is enriched Al-local if and only if the upper morphism is a local quasi-
isomorphism, which is the case if and only if the lower morphism is a quasi-
isomorphism, which is the case if and only if F/ is enriched Al-local, which
means that F' is strictly Al-local.

4. By Lemma 3.1.10 a functor F satisfies Nisnevich excision if and only if it is
enriched Nis-local. Just like for A}, since the relation Nis only affects the
covariant argument, it is not affected by pointwise local fibrant replacement,
so that a functor F' is enriched Nis-local if and only if it is strictly Nis-local.

This completes the proof. n

Next, the evaluation functor
evg,, : D([Sm,Shv(A)])/ ~— DMy

is defined as follows. We send F' € D([Sm,Shv(A)])/ ~ to evg, (F’), where
evg,, : D([Sm,Shv(A)]) — DM, is the evaluation functor defined just like the
one in Theorem 3.1.8, and F" is a ~-fibrant replacement of F' in Ch([Sm, Shv(A)]).

When euvg,, is restricted to the subcategory DM 4[Sm], it is the naive G,,-
evaluation functor

evg,, : DM 4[Sm] — DMy

that sends F' to the G,,-spectrum (F(GA¥))y0.
For any pre-additive category B we denote by B[1/p] the pre-additive category
where all hom-sets get tensored with Z[1/p]. Explicitly, for x,y € B we define

B[1/pl(x,y) == B(z,y) ® Z[1/p].
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Another main result of this thesis is as follows.

3.1.14 Theorem. Let p be the exponential characteristic of k. After inverting p
the functor evg,, is an equivalence of compactly generated triangulated categories

evg,, : (D([Sm, Shv(A)])/ ~)[1/p] = DMa[1/p].
In particular the naive G,,-evaluation functor
evg,, : DM4[Sm][1/p] — DMa[1/p]
s an equivalence of compactly generated triangulated categories.

The proof of this theorem is given at the end of Section 4.3.

3.2 Proof of Theorem 3.1.8

In this section we prove Theorem 3.1.8.
We will sometimes write C(G)F, —) for [GF, I(—)] = Homeyspy () (GhF, I(—))-

3.2.1 Lemma. In Shv(A) we have an isomorphism

k
k .
I xk (Y] N©
e =(})ex
=0
K
where (’:) is the binomial coefficient, and (]:)G;\j = PG
j=1
In particular we have an isomorphism in Ch([C,Shv(A)])
N (K
C(GxF, —) = C(GI*F, ).
@t = (et
Proof. First note that G)F ® GN = G so G = (GHH)®F.  Also since
the map pt e G1! splits, the splitting lemma for abelian categories implies
I(GXY) =2 G)! @ I(pt). The binomial theorem, applied to the semi-ring of iso-
morphism classes of the symmetric monoidal closed category Shv(.A), then yields
an isomorphism

k k
Xk\ ~v Al Rk ~v AL\ ®1 Rk—i ~v AV
I[(GXF) = (GL! @ pt)®F = EB(@‘)<G"L) ® pt®hi = G%(Z)Gm

i=0
as required. O
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3.2.2 Definition. 1. We define the Suslin complex functor
C, : Ch(Shv(A)) — Ch(Shv(A))
by sending F, € Ch(Shv(A)) and U € Smy, to
Cy(Fo)(U) := Tot(Fo (A} x U)) € Ch(Ab).

Here Tot is the total complex functor and A} = Spec(klto, ..., t.]/(to +
-+« +t, — 1)) is the algebraic simplex.

2. For X € Sm,, we define the A-motive of X to be
MA(X) = C(I(X)) = Cl A=, X)nis)
in Ch(Shv(A)).
3. The enriched functor M 4(X) : C — Ch(Shv(.A)) defined by
Mu(X)(U) i= Ma(X x U)
will be called the enriched A-motive of X.

4. For X € Sm;, we define its G)\!-suspension spectrum X2 X1 € DMy, by
defining it in weight n as

(55, X:)(n) == G’ @ I(X)

and equipping it with the obvious structure maps.

If F: C — Ch(Shv(A)) is an enriched functor, then we define C.F : C —
Ch(Shv(A)) by (C.F)(U) := C.(F(U)). The endofunctor C, : Ch([C,Shv(A)]) —
Ch([C, Shv(.A)]) preserves pointwise local quasi-isomorphisms, because A satisfies
the strict V-property. Thus C, induces an endofunctor on the derived category

C. : D([C, Shv(A)]) — D([C, Shv(A)]).

For X € Sm; we have the zero inclusion map X — AL Let AL, /X € Ch(Psh(A))
denote the cokernel of the induced morphism

A(—, X) = A(—,AY).
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Then AL /X is cofibrant in Ch(Psh(A)) because it is a direct summand of the

cofibrant object A(—,A%). We write (AL /X)ns € Ch(Shv(A)) for the sheafifi-

cation of AL /X. Let Ty = (C(U,—) ® (AY/X)wis | U € C, X € Smy) be the
L hv

full triangulated subcategory of D([C,Shv(.A)]) that is compactly generated by
(U, ) @ (A/X)us

3.2.3 Lemma. In D([C,Shv(A)]) we have that ker(C,) = Tj.

Proof. Consider a generator C(U, —) @ (A /X )ns of Ty1. We claim that it is in
Shv !

ker(C.). For this we need to show for every V' € C that C,.(C(U,V) ® (AL /X)nis)
Shv

is locally quasi-isomorphic to 0. Take a free resolution of C(U, V') in Ch(Psh(A)):
o= B> F—CUV)—=0

The presheaf AL /X is projective because it is a direct summand of A(—, AL),
and hence it is also flat by Lemma 2.2.6. Thus the following sequence is exact

s @AY/ X = Fy @ AV /X = C(UV) @ ALY /X — 0.
Psh Psh Psh
It then also follows that the sequence is exact in Ch(Psh(.A)) after applying C'
= (P @ AV /X)) = Cu(Fy @ AY/X) — C.(C(U V) ® Ay/X) — 0.
Psh Psh Psh

Since each individual entry of this sequence is a chain complex, we can regard
it as a double complex. Let D, . be the double complex

Ci(Fpq F?@h AL /X)), p>0
D,q =14 C.(C(UV) }()X)h AY/X), p=0
0 p <0

Then all horizontal homology groups of D, . are zero. The double complex spec-
tral sequence

E;q = Hvert,p(-Hhor,q(Do,o)) — Hp—}—q(TOt(Do,o))

implies that H,,(Tot(Ds.)) = 0.
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One can now check that C,(A% /X) is locally quasi-isomorphic to 0 similarly
to [50, Proposition 1.11(1)]. It follows that every C,(F, ® Ak /X) is locally quasi-
Psh

isomorphic to 0, because the F, are free and for all Y € C we have A(—,Y) ®
Psh
AL/ X 2 A /Y x X.
By mirroring the double complex D, o, the double complex spectral sequence
for sheaves and the fact that H,,(Tot(Ds,e)) = 0 imply that C,.(C(U,V) @ AL /X)
Psh

is locally quasi-isomorphic to 0. We argue here similarly to the proof of Lemma

2.2.21. Then C.((C(U,V) ®h AL /X)) =2 CL(C(U,V) S(%) (AL /X)nis) is locally
Ps v

quasi-isomorphic to 0. So C(U, —) S%)V (AL /X)nis is in ker(C,), as claimed.

Since ker(CY) is a full triangulated subcategory and T)y1 is compactly generated
by the C(U, —) S(%{)v (A /X)nis it follows that Ty C ker(C).

Now show the other inclusion. Let X € ker(C,). Using [33, Section 5.6] and
[33, Proposition 4.9.1] we can construct a triangle in D([C, Shv(A)])

Y - X - LX
with YV € Tj: and LX orthogonal to Ty1. Apply C, to the triangle to get
Cc,Y - C,X — C,LX.

Since X, Y € ker(C,), we see that C,X = C.Y =0, hence C,LX = 0.

Since LX is orthogonal to T, at, we can deduce that LX is strictly Al-local,
so that for all U € C we have a quasi-isomorphism LX (U)(A! x —) — LX(U)
in Ch(Shv(.A)). From this property it follows that the canonical map LX(U) —
C.LX(U) is a quasi-isomorphism in Ch(Shv(.A)). Since C.LX = 0 this implies
LX =0in D([C,Shv(A)]). But if LX = 0, then the map ¥ — X is an isomor-
phism in D([C, Shv(A)]) and then X € Ty1. So Ty = ker(C). O

Let D([C,Shv(A)])/T,: denote the quotient of D([C,Shv(A)]) by the triangu-
lated subcategory Tj1. By Lemma 3.1.4 D([C, Shv(A)]) /Ty is equivalent to the
full subcategory of D([C, Shv(.A)]) consisting of strictly Aj-local objects.

3.2.4 Lemma. Let L : D([C,Shv(A)]) — D([C,Shv(A)]) be the T-localization
endofunctor, which is the composite of the quotient functor D(|C,Shv(A)]) —
D([C,Shv(A)])/Th1 and the inclusion of Tyi-local objects D([C, Shv(A)])/Ty1 —
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D([C,Shv(A)]). Then the functor L is naturally isomorphic to the endofunctor
C, : D([C,Shv(A)]) — D([C, Shv(A)]).

Proof. For every X € D(|C,Shv(A)]) we have an exact triangle in D([C, Shv(.A)])
Y - X = LX

with Y € ker(L) = Ty1. We can apply C, to this triangle to get another triangle
in D([C,Shv(A)])
c.Y - C.X - C.LX.

Since Y € Ty and by Lemma 3.2.3 Ty = ker(C,) we know that C.Y = 0 in
D([C,Shv(A)]). So we get an isomorphism

. X =C.LX

in D([C,Shv(.A)]). Since the map X — LX is functorial in X € D(|C, Shv(A)]),
it follows that also the map C,.X — C,LX is functorial in X. Therefore the
isomorphism C,X = C,LX is functorial in X. Since LX is strictly Al-invariant
we have a natural quasi-isomorphism LX = LX(A! x —) in Ch(Shv(A)). This
then implies that for every n € N we also have a natural quasi-isomorphism
LX = LX (A} x—). It now follows from the definition of C, that we have a natural
isomorphism LX = C,LX in D([C,Shv(A)]). And then we have isomorphisms

C.X=C,LX=LX

natural in X, which proves the lemma. O

3.2.5 Definition. We say that a morphism f : X — Y in Ch(Shv(A)) is a
motivic equivalence if and only if f is an isomorphism in DMST. Note that
f in Ch(Shv(A)) is a motivic equivalence if and only if C.(f) is a local quasi-
isomorphism in Ch(Shv(A)).

Similarly, we say that a morphism f : X — Y in Ch([C, Shv(.A)]) is a motivic
equivalence if it is an isomorphism in D([C, Shv(A)])/Ty:.

From the previous lemma we can deduce:

3.2.6 Corollary. A morphism f: X — Y in Ch([C, Shv(A)]) is a motivic equiva-
lence if and only if C.(f) is a pointwise local quasi-isomorphism in Ch([C, Shv(A)]).
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3.2.7 Lemma. For every X € Smy the canonical map I(X x —) — Mu(X)
is a motivic equivalence in Ch([C,Shv(A)]). This means it is an isomorphism in

D([C, Shv(A)])/Tys. In particular it is also an isomorphism in D([C, Shv(A)])/ ~c

Proof. By Corollary 3.2.6 we just need to show for every U € Smy, that C\,(1(X X
U)) = Ci(Ma(X x U)) is a local quasi-isomorphism in Ch(Shv(.A)). From the
definition of M 4 we know that M4(X xU) = C.(I(X x U)). So the above map is
equal to the canonical map C,(I(X x U)) = C.C,(I(X x U)) and this is clearly
an isomorphism. O

3.2.8 Lemma. The enriched motive functor M(X) is strictly Ai-local and
strictly T-local. So M 4(X) is an object of DM 4[C].

Proof. The strict Al-locality follows from the Al-invariance of C,(A(—, X))
The cancellation property of A (see Definition 2.1.2) implies that M4(X x —)
satisfies cancellation. Similarly to item (2) of the proof of Proposition 3.1.13, this
implies M 4(X x —) is strictly 7-local. O

The previous two lemmas together imply that M 4(X) is a strictly ~¢-local
replacement of (X x —) in Ch([C,Shv(A)]).

3.2.9 Lemma. If f : X — Y is a local quasi-isomorphism in Ch(Shv(A)), and
X,Y € Ch(Shv(A)) have A-invariant cohomology sheaves, then the map

fe : Homey spy(ay (GoF, X) = Homey spyiay (Gor, Y)
is also a local quasi-isomorphism in Ch(Shv(A)). In particular, the functor
I_IO—mCh(ShV(A)) (G;\nku _) : Ch([cv ShV(A)D - Ch([ca ShV(A)D
preserves pointwise local quasi-isomorphisms between strictly Al-local objects.

Proof. Tt follows from [37, Lemma 4.3.11] that for every X with A'-invariant
cohomology sheaves and for every n € Z, we have a natural isomorphism

HE*(Homysp, ) (G, X)) 2 Homep, 4 (GHF, HE*(X)
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in Shv(A). Soif f: X — Y is a local quasi-isomorphism between objects with
Al-invariant cohomology sheaves, then we have for every n € Z a commutative
diagram

HEE(fx)
HY (HomCh Shv(A (GAk X)) HY (HomCh Shv(A (G ,Y))

| | |

nis HE ()« nis
Homgy, (4)(GF, Hy®(X)) Homgy,(4)(GRF, H®(Y'))

in Shv(A). Since f is a local quasi-isomorphism, the lower horizontal map is an
isomorphism. Therefore the upper horizontal map is an isomorphism. Then f, :
Homep,spy(ay (G, X) = Homeyspy(ay (Gik, Y) is also a local quasi-isomorphism
in Ch(Shv(A)). O

3.2.10 Lemma. The functors
HO—mCh(Shv(A))(G;\mka —) : Ch(Shv(A)) — Ch(Shv(A))

and

Homyshu(an (G, =) : Ch(Shv(A)) — Ch(Shv(A))
preserve motivic equivalences.

Proof. Let f : A — B be a motivic equivalence in Ch(Shv(A)). Consider the
diagram

C. HomCh Shy( (GAk A) C HomCh Shv(A)) (G ,B) .

HO—mCh(Sh (GAk C.A) —)>H0mCh Shv(A)) (G ,C.B)
The vertical maps are isomorphisms. Since f is a motivic equivalence we know
that C.(f) is a local equivalence. Since C,A and C, B have Al-invariant cohomol-
ogy sheaves it follows by Lemma 3.2.9 that the bottom horizontal map (C, f). is
a local equivalence. This implies that the upper horizontal map C,(f.) is a local
equivalence, and hence f, : Homey,sp,a)) (Gl A) — Homeyspya))(GhF, B) is a
motivic equivalence. The second claim for G can be deduced from the claim
for GN* by using Lemma 3.2.1. O



Proof of Theorem 5.1.8 29

Let D([C,Shv(A)])/T denote the localization of D([C,Shv(.A)]) at the family
of morphisms 7. By Lemma 3.1.4 it is equivalent to the full subcategory of
D(|C,Shv(.A)]) of those functors which are strictly 7-local.

We will now prove some lemmas about D([C,Shv(.A)])/7, which show that
C(GAHF, —) is a strongly dualizable object.

The model category Ch([C, Shv(.A)]) can be Bousfield localized along the fam-
ily of morphisms 7, where just like Lemma 3.1.4, the family 7 is defined as

7 ={(f®2)n]|f € ,Z € Smy,n € Z}.
The homotopy category of this Bousfield localization is the derived category
D([C,Shv(A)])/T.

3.2.11 Lemma. The left Bousfield localization of Ch([C,Shv(.A)]) along T is a
monoidal model category. In particular, the category D(|C,Shv(A)])/T is closed
symmetric monoidal and its tensor product @ ¥ coincides with the tensor product

Day
in D([C,Shv(A)]).
Proof. We apply [56, Theorem BJ. Cofibrant objects in Ch([C,Shv(.A)]) are flat,

so the theorem is applicable. The domains and codomains of the generating
cofibrations of Ch([C, Shv(A)]) are of the form C(G ¥, —) ® X for k € N, X € Smy.
Shv

For n € N, let 7,, be the morphism

C(G, ) @ G = CG, —).

We need to show that for every n,m,k € N, X, Z € Sm;, that

R Z L (C(GXk, — X
(7, S<§>V )[m]]gy (C(G,, )S% )

is a T-local equivalence in D([C, Shv(A)]).
Since all involved objects are cofibrant we have

QR Z L (C(Gxk, — X)(r, @ Z C(G*F — X).
(7 s(% )[m}gy (C(G,,", )S% ) = (7, S% )[m]D@gy( (G, )s% )

Also we have

(ra ® Z)[m] ® (C(G,F,—) @ X) = (r ® (C(G,—) ® (X x Z)))[m]

Shv Day Shv Day Shv
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so it suffices to show for every n,k € N, X &€ Sm; that every shift of 7, ®
Day

(C(GxE, —) S(% X) is a 7-local equivalence. This morphism is then equal to the

composite

CGT -) @ G ® (CG)F,—) ® X) =C(G T <G —) © Gl @ X —

Shv Day Shv Shv Shv
- C(G\"x GXF ) ® X.
Shv

To show that it is a 7-local equivalence, let F' € Ch([C,Shv(.A)]) be a 7-fibrant
object, i.e. a functor that is locally fibrant and satisfies cancellation in the sense
that F(G)\") — F(G)\™H)(GA! x —) is a local quasi-isomorphism. Since both
sides are locally fibrant, it is also a sectionwise quasi-isomorphism.

We now just need to show for all m € Z that

HomD([C,Shv(A)])(C(GQLn X G”I)‘:Lk7 _) SQI? X, F[m]) -

— Hompe shay) (C(GL T x GiF, =) @ G ® X, F[m])
Shv Shv

is an isomorphism in Ab.

Since F[m] is locally fibrant and C(G)\" x GXF, —) ® X and C(G)"™ x
Shv

GxF,—) ® GN! ® X are cofibrant, this is isomorphic to the arrow
Shv Shv

Hom g (i sha)) (C(Gp" X G, —) & X, Flm]) =

— Hompg e shvan (C(GM ' x GiF, =) @ G ® X, F[m]).
Shv Shv

And this is isomorphic to the following arrow between homology groups
Hpn(F(G % Gif)(X)) = Ho(F(Gp™ x GiF)(X x Gp)).
So we just need to show that the following arrow is a quasi-isomorphism.

F(G) x GuF)(X) = F(G x G ) (X x Gp)

k
Lemma 3.2.1 implies F(GA" x G2F) = @ (¥) F(GA™*). We have to show that the

=0 "
k
@D (5 F(G)r+1+1) (X x G)}) is a quasi-isomorphism.
i=0

map @ (Y F(GL)(X) -
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This follows from the fact that F(G)") — F(GA"™)(GA! x —) is a sectionwise
quasi-isomorphism for any n € Z. O

3.2.12 Lemma. The enriched functor C(GN, —) : C — Shv(A) is @ L-invertible

Day
in D([C,Shv(A)])/7 and its inverse is IS® GAL.
hv

Proof. The enriched functor C(G}!, —) is cofibrant in Ch([C,Shv(A)]), because
it is representable. The enriched functor C(G)!, —) is a direct summand of
C(Gx!, —), so C(GAL, —) is also cofibrant. For every cofibrant F' € Ch([C, Shv(.A)])

we therefore have C(G)\!, —) @Y F 2 C(G)l,—) @ F. Now let F :=1 ® G,
Day Day Shv

i.e. F is the enriched functor defined by F(X) := I(X) ® G/!. This functor F
Shv
is cofibrant, because it is a direct summand of C(pt, —) @ G}l
Shv
We now show that there is an isomorphism

Day Shv Day Shv

It explicitly looks as follows. Gl ® — is a left adjoint, so it preserves all coends,

. Shv
(a,b)eCRC
CEl e UgeE= [ Caxbogc@lag i) =
(a,b)eCRC
~ GN 8 / Cla x b, c) 8 C(GM, a) 8 I(b) = G 8 (C(GH —) D@y I)

Now [ is the monoidal unit of D(XaJy, so C(G)L, —) D(%yF ~ C(GhL —) & GAL. Fi-
nally, the morphism 7 gives an isomorphism C(G)!, —) 2 GAl — I in the derived
category D([C,Shv(A)])/7. So we ultimately get an isomorphism C(G)!, —) D(%YL
F = [ in D([C,Shv(A)])/7, which shows that C(G)\!, —) is invertible. O

Since I ® G)! is invertible, we also have that I ® GAF is invertible, because
Shv Shv
due to the isomorphism I ® G+ >~ ([ @ GMF) ® (I ® GAY) it is a product
Shv Shv Day Shv

of invertible objects. The inverse of I ® G/* is C(G)F, —). Also note that in
Shv
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every symmetric closed monoidal category, every ®-invertible object is strongly
dualizable. So C(G/*, —) is strongly dualizable in D(|C,Shv(A)])/T.

Since finite sums of strongly dualizable objects are strongly dualizable, and
since Lemma 3.2.1 says that C(GXF, —) is a finite sum of C(G/, —), we get the
following corollary.

3.2.13 Corollary. For all k € N the enriched functors C(G**, —) and C(GF, —)

are strongly dualizable in D(|C,Shv(A)])/T with duals I s® GxF and I S® GH*
hv hv

respectively.

The model category Ch([C, Shv(A)]) can be Bousfield localized along the fam-
ily of morphisms ~¢. The homotopy category of this Bousfield localization is the
derived category D([C,Shv(A)])/ ~ec.

3.2.14 Lemma. The left Bousfield localization of Ch([C,Shv(A)]) along ~¢ is a
monoidal model category. In particular, the category D(]C,Shv(A)])/ ~c is closed
symmetric monoidal and its tensor product ® ¥ coincides with the tensor product

in D(C, Shv(A)]). N

Proof. Similarly to Lemma 3.2.11, we apply [0, Theorem B]. The domains

and codomains of the generating cofibrations of Ch(|C, Shv(A)]) are of the form

C(GXF —) ® X for k € N, X € Smi. We need to show for f in ~¢ that all
Shv

f @ C(GXF —) @ X are <¢-local equivalences. If f € 7, then we know this
Day Shv

from the proof of Lemma 3.2.11. So assume that f € :&\%, so that f is of the form

(c(U,—) s‘% AY ® Z[n] — C(U,—) ® Z[n)

for some U € C. Since all involved objects are cofibrant we know that

foleGHr -y X=f o C(GF -) o X.

Day Shv Day Shv

So f is isomorphic to

(C(U x GXF,—) 8 A ® (X x Z)[n] = C(U x GXF, =) @ (X x Z)[n]

and this morphism lies again in Al. In particular it is a Al-local equivalence, and
therefore also a ~¢-local equivalence. O
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3.2.15 Lemma. There is an isomorphism in D([C,Shv(A)])/ ~¢:

C(GpF, =) ® X 2 [G)F, Ma(X)).

Shv

Proof. We have C(Gf, —) @ X = C(GN*,—) @ (I ® X) Since C(G)F, —) is

Shv Day Shv

strongly dual to I ® GAF with respect to ® L in D([C, Shv(A)])/ ~c we get that
Shv Day

C(G)F,—) D%yL (! ] X) = Homp e shu(a)])/me (L & Gk, 1 & X).

By Lemma 3.2.8 the functor M4(X x —) is strictly ~c-local. Since I @ G)* is
Shv

cofibrant we can therefore compute the above internal hom as

® X) = Hompespuiay (I © GhF, Ma(X x —)).

Ho 1 GM’]
_mD([C,ShV(A)D/NC< S%V ™77 Shy Shv

Let M4(X x —)f be a pointwise local fibrant replacement of M4(X x —) in
Ch([C,Shv(A)]). Then M4(X x —)/ is ~c-fibrant and we have an isomorphism
in Ch([C, Shv(A)]).

_HomD([c,Shv(A)})(IS%GQJC; Ma(X x=)) = [G)F, Ma(X x=)] 2 [G)F, Ma(X x—)].

The last isomorphism follows from the fact that due to Lemma 3.2.9 the functor
[G/*, —] preserves local quasi-isomorphisms between strictly Al-local objects. [

3.2.16 Lemma. DM 4[C] is compactly generated by the set {{GrF, M4(X)] | k €
N, X e Smk}

Proof. Let us first show that [GN*, M 4(X)] is an object of DM 4[C]. By Lemma
3.2.8 the functor M 4(X) is strictly Al-local and strictly 7-local. So if M 4(X)’
is a locally fibrant replacement of M 4(X), then M 4(X)/ is enriched Al-local
and satisfies cancellation. Since it is enriched Aj-local, for every U € Smy the
complex M 4(X x U)/ is motivically fibrant in Ch(Shv(A)). Since G)F is cofi-
brant in Ch(Shv(A)), it follows that [G/*, M 4(X x U)/] is motivically fibrant in
Ch(Shv(A)). This then implies that [GA*, M 4(X)/] is enriched Al-local. Since
M 4(X)/ satisfies cancellation, it also follows that [GN*, M 4(X)/] satisfies can-
cellation.
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By Lemma 3.2.9 the functor [G)*, —] preserves local equivalences between
strictly Al-local objects. Hence it follows that [G\*, M 4(X)/] is a local fibrant re-
placement of [G)*, M 4(X)]. Thus [G)*, M 4(X)] is strictly Al-local and strictly
r-local. So [GAF, M 4(X)] is in DM 4[C].

Let us now show that the objects [GA*, M 4(X)] compactly generate DM 4[C].
According to [20, Theorem 6.2] the category D([C,Shv(.A)]) is a compactly gener-
ated triangulaged category, that is compactly generated by the set {C(c, —) s% gi |

ceC,i eI}, where {g; | i € I} is a set of compact generators of D(Shv(A)).
Since Shv(A) is compactly generated by sheaves of the form I(X) for X €

Smy, we conclude that D([C,Shv(A)]), and hence also D([C,Shv(A)])/ ~c, are

compactly generated by the set {C(GXF, —) S(%) I(X) | ke NNX € Smi}. By

v

Lemma 3.2.1 the enriched functor C(GX*, —) is a direct sum of functors of the
form C(G/*, —). So we conclude that {C(G/*, —) @ I(X) |k € N, X € Smy}is a
Sh

vV

set of compact generators of D([C,Shv(A)])/ ~¢.
Since {C(G)F,—) ® I(X) | k € N, X € Smy} is a set of compact generators
Sh

v

of D([C,Shv(A)])/ ~c we now get that by Lemma 3.2.15 that {[G/F, M 4(X)] |
k € N, X € Smy} is a set of compact generators of D([C,Shv(A)])/ ~c.

Now each functor [GAF, M 4(X)] is in DM4[C]. We remarked in Definition
3.1.5 that the canonical map DM 4[C] — D([C,Shv(A)])/ ~¢ is an equivalence.
Therefore it follows that {[GA¥, M4(X)] | k € N, X € Sm;.} is a set of compact
generators of DM 4[C]. O

3.2.17 Lemma. For every k € N and X € Smy, the canonical map
evg,, (G, Ma(X)]) = O, eve,, (Ma(X))

is a levelwise local quasi-isomorphism in Spg, (Ch(Shv(A))), where M4(X)! is a
pointwise local fibrant replacement of M 4(X).

Proof. Let M4(X x —)! be a locally fibrant replacement of M4(X x —). By
Lemma 3.2.8 we know that M4(X x —)7 is enriched Al-local and enriched 7-
local. So M4(X x —)7 is pointwise Al-invariant and satisfies cancellation. Since
M4(X x —)7 is pointwise Al-invariant it follows that evg, (M4(X x —)7) is
levelwise motivically fibrant. Since M4(X x —)/ satisfies cancellation, we see
that evg,, (M4(X x —)7) is an Qg,,-spectrum. So evg, (Ma(X x —)/) is stably
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motivically fibrant in Spg,(Ch(Shv(A))), and hence Qf, evg,, (Ma(X x —)7) can
be computed in weight n as

0F,, v, (Ma(X x =)7)(n) = [Gpf, Ma(X x Go1)].

But that is also the n-th weight of evg,, ([GA*, M4(X x —)7]). So the canonical
map
evg,, ([GoF, Ma(X x =)]) = QF, evg,, (Ma(X x —))

is isomorphic to
evg,, (G, Ma(X x =)]) = evg,, (G, Ma(X x —)T]).

This is a levelwise local quasi-isomorphism in Spg (Ch(Shv(A))), because due
to Lemma 3.2.9 the functor [G)*, —] preserves local quasi-isomorphisms between
strictly Ai-local objects. O

To prove Theorem 3.1.8 and show that the functor evg,, : DM4[C] — DM 4
is an equivalence, we will use [21, Lemma 4.8], which says the following:

3.2.18 Lemma. Let A, B be compactly generated triangulated categories. Let 3
be a set of compact generators in A. Let ' : A — B be a triangulated functor
such that

1. The collection {F(X)|X € ¥} is a set of compact generators in B

2. For all X, Y € ¥ and n € Z the map

Fxyp : Homy(X,Y[n]) = Homp(F(X), F(Y)[n])

s an isomorphism.
Then F' is an equivalence of triangulated categories.

We are now in a position to prove the main result of this section.

Proof of Theorem 3.1.8. We use Lemma 3.2.18. Here A = DM4[C] and B =
DM 4 are in fact compactly generated triangulated categories. One set of compact
generators of DM, is given by {QF evg,, (Ma(X) )|k € N, X € Smy}, where
M4 (X)/ is a pointwise local fibrant replacement of M 4(X). By Lemma 3.2.16
the set

Y= {[GMF, MA(X)]|k € N, X € Smy.}
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is a set of compact generators of DM 4[C]. This is the set of compact generators
to which we want to apply Lemma 3.2.18. We now check the two conditions of
that lemma.

To show the first condition we use Lemma 3.2.17: For every A € ¥ we have
an isomorphism

" 8217 ;
evg,, (A) = evg,, ([G,, Ma(X)]) = Qg evg,,(Ma(X)')
which is one of the compact generators of DM 4. So
{evg,, (A)|A € X} = {QémevGW(MA(X)fﬂk € N, X € Sm}

which shows condition 1.

Let us now check condition 2. Take X', € DM4[C| and n € Z. We have to
show that Hompa,jc)(X, Y[n]) = Hompa, (evg,, (X), evg,, (Y)[n]). Since ¥ com-
pactly generates DM 4[C] it suffices to show this for the case X € ¥. So assume
without loss of generality that X € ¥ is of the form [G)*, M 4(X)] for some
X € Smy and k£ € N. Furthermore, we may assume without loss of generality
that Y is ~¢-fibrant. So )Y is pointwise motivically fibrant and satisfies cancella-
tion. Then we have with Lemma 3.2.15 that

=

3.2.15
Hompay i) ([GhF, M A(X)], V[n]) = HomD([c,Shv(A)])/Nc(C(fo,—)S%Xay[”]):

= Homp(e sh(an)/~e (C(Gp, =), Homgp, ) (1(X), Y)[n]) = Ha(V(G1)(X).

By Lemma 3.2.17 we have an isomorphism

—_

—

3.2.17

eve,, (GRS, MA(X))) = Ok, eve, (Ma(X)).

12

Since Y satisfies cancellation, evg, ()) is an g, -spectrum, hence evg,, ())
Qf evg,, (V)(k). Since Y is pointwise motivically fibrant, it follows that evg,, (V)
is stably motivically fibrant in DM 4. Therefore,

Hompay, (evg,, ([GHF, M A(X)]), eve,, (V)[n
Hompyy, (Qfémev@,m (M (X)), evg,, (V)
Hompr, (25, evs,,(Ma(X)!), Q5 eve,, (¥
Hompa, (evg,, (M a(X)
Hompy, (X5, X+, eve,, (V) (k) [n]
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We use here the fact that evg,, (M 4(X)7) is a stably motivically fibrant replace-
ment of X X,. We have verified all the conditions of Lemma 3.2.18. So
evg,, : DMy[C] — DMy is an equivalence of triangulated categories. In par-
ticular, we have a zig-zag of equivalences

D([C, ShV(.A)])/ Nc@ DM_A[C] :> DM_A.

This completes the proof of Theorem 3.1.8. m



Chapter 4

Second Reconstruction Theorem
for DM 4

The goal of this chapter is to prove Theorem 3.1.14, which recovers DM 4[1/p]
from D([Sm,Shv(A)])/ ~ [1/p]. For this we will need several lemmas. In Section
4.1 we take a ~-fibrant enriched functor F' : Sm — Ch(Shv(A)) and extend it to
a functor F' : fM — Ch(Shv(A)) on the category of finitely presented motivic
spaces fM, such that F' sends motivic equivalences to local equivalences. See
Theorem 4.1.1. This result will be important for proving Theorem 4.2.1 from
Section 4.2, which states that for every ~-fibrant enriched functor F : Sm —
Ch(Shv(.A)) and U € Sm, we have an isomorphism in DM 4[1/p]:

evg,, (F(U x —)) Z evg,, (F) ® E(EgiGmUJr).

m

Here £ : SH(k) — DM, is the left adjoint of the forgetful functor U« : DM 4 —
SH(k), and the construction of those two functors is recalled in Section 4.2. We
call this result the generalized Rondigs—@stveer theorem, because it is close to
the original Rondigs—@stveer theorem of [16, p. 721]. The generalized Rondigs—
Dstveer theorem will be crucial for proving the Reconstruction Theorem 3.1.14
in Section 4.3.

4.1 From motivic to local equivalences

Let M be the category of motivic spaces and fM the category of finitely pre-
sented motivic spaces defined in [15]. Then M has a motivic model structure, as

68
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defined in [15, Theorem 2.12]. The weak equivalences in this model structure are
called motivic equivalences.

Given a Ch(Shv(A))-enriched functor G : Sm — Ch(Shv(.A)), we can extend
G to a (non-enriched) functor G : fM — Ch(Shv(A)) in the following way. We
can apply G levelwise to simplicial objects to get a functor

G2 1 APSm — A°PCh(Shv(A)).
For a finite pointed set n, = {0,...,n} and U € Smy, we write ny @ U for the
n-fold coproduct [[U. We first extend it to G : fM — A°Ch(Shv(A)) by

=1

G(A):= colim G*"(An]y ®U),

(A[n} xU);—A°

where A€ is a cofibrant replacement of A in fM. We then compose it with the
Dold-Kan correspondence

DK™ : ACh(Shv(A)) — Cho(Ch(Shv(A)))
and the total complex functor

Tot : Cho(Ch(Shv(A))) — Ch(Shv(A)), Tot(X), == € X,

to obtain a functor
G : fM — Ch(Shv(A))

A L -1 . A°P
G(A) := Tot(DK ((A[n]cgg)rilﬁAcG (Aln]: @ U))). (4.1)

Note that for U € Smy we have G(U,) = G(U).

Throughout this section let F' : Sm — Ch(Shv(A)) be an enriched func-
tor that is ~-fibrant in Ch([Sm, Shv(.A)]). This means that F' is pointwise lo-
cally fibrant, satisfies Nisnevich excision in the sense of Definition 3.1.9, and
for every X € Smy, there are natural quasi-isomorphisms F(X x A!) — F(X),
F(G)™) — [G), F(GA™)] in Ch(Shv(.A)), and for every X,U € Smy, a natural
quasi-isomorphism

F(X)(U) = F(X)(U x AY)

in Ch(Ab). By the above construction we can extend F to a functor ' : fM —
Ch(Shv(A)).

In this section we prove the following theorem.
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4.1.1 Theorem. F sends motivic equivalences in f M to local quasi-isomorphisms

in Ch(Shv(A)).
The proof is like that of [25, Theorem 4.2] and requires several lemmas.

4.1.2 Lemma. Let H : Sm — Shv(A) be a Shv(A)-enriched functor. Then
H(0) =2 0 and for all U,V € Sm H{U][V) = H({U) @® H(V) in Shv(A). In
particular, if G : Sm — Ch(Shv(A)) is a Ch(Shv(A))-enriched functor we have
G0)=0and GUUIIV)=GU)® G(V) in Ch(Shv(A)).

Proof. By the Shv(.A)-enriched co-Yoneda lemma we can write H as the following
co-end: for U € Sm we have

XeSm XeSm

HU / H(X)®S8m(X,U) = / H(X)® A(—,U)nis(X x —).
By Definition 2.1.1 Axiom (3), we have A(—,D)ns = 0 and for all U,V € Smy,

) U H V)nis = -’4(_, )ms S¥) -/4( )nls

This implies that

XeSm XeSm

H(p) = / H(X) © A= D)X x —) = / H(X)©0=0

and for all U,V &€ Smy,

XeSm
HU]V)= / H(X)® A(—, U [ V)wis(X x =) =
XeSm
/ H(X> ® (.A(—, U)nis(X X _) @A(—,V)niS(X X —)) =

2

([ HO® A DX x ) ( [ HE)® A V)X x )
2HU)® H(V)

as required. O
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4.1.3 Corollary. Let G : Sm — Ch(Shv(A)) be a Ch(Shv(.A))-enriched functor.
Then for every n € N,U € Smy, the canonical map

Glny @ U) = G(ﬁ1+ QU) — éGm ®U) =Pcw)

i=1 =1 i=1

18 an isomorphism.

Recall that A°? Ab is monoidal with respect to the degreewise tensor product,
and Ch>o(Ab) is monoidal with respect to the usual tensor product of chain
complexes.

4.1.4 Lemma. The Dold-Kan equivalence DK ' : A% Ab — Ch(Ab) preserves
tensor products up to chain homotopy equivalence in the following sense. There

are maps

Vap: DK '(A)® DK *(B) - DK '(A® B)
Asp: DK ' (A® B) — DK '(A) ® DK (B)

natural in A, B, such that Ay poV s p = idpx-1(a)epK-1(B), and there is a chain
homotopy Vap o Aap ~ idpg-1(agp). This chain homotopy is natural in the
following sense: for all maps f : A — A', g : B — B’ the chain homotopy
between the maps DK™'(f @ g) o VapoAap ~ DK (f ® g) encoded by the

diagram

DK YA® B) 2~ DK (A)® DK~Y(B) —> DK '(A® B)
DKl(f®g)l lDKl(fé@g)
DK"Y (A ® B') 2> DK"Y (A") ® DK-Y(B')—> DK~(A' ® B')
= —

idDK—l(A’®B/)

is equal to the chain homotopy between the maps DK '(f ® g) o VapoAusp~
DK~ Y(f ® g) encoded by the diagram

-1
DE-'(A® B) -2~ DK-'(A)® DK'(B) —Y> DK~'(A® B) —~ Y% pr-14' o B
W

idDK—l(A®B)
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Proof. Everything except for the naturality of the chain homotopy follows from
[12]. The functor DK ! is the normalized Moore complex, the map A4 p is the
Alexander-Whitney map and V4 p is the Eilenberg-Zilber map. In [20, page 7]
one can find explicit formulas for both of these maps, and one can also find an
explicit formula for the chain homotopy Vi p ® A p ~ idpk-1(agp), Which is
called the Shih operator in that paper. Using that explicit formula one can easily
verify the naturality of the chain homotopy. O

Given a simplicial set K € A Set we can form the free simplicial abelian

group Z¥) € A% Ab and then apply the Dold-Kan equivalence DK ! : A% Ab —
Ch=o(Ab) to get a chain complex which we will denote by Z[K]:

Z|K] := DK(Z%)) € Ch(AbD). (4.2)

The chain complex Z[K] is degreewise free. For example, with this notation Z[S"]
is the chain complex that is Z concentrated in homological degree n.

4.1.5 Lemma. Let G : Sm — Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.
For every finite simplicial set K and every A € fM we have a chain homotopy
equivalence

G(K, NA) S ZIK] @ G(A)
in Ch(Shv(A)) which is natural in K and A. The chain homotopies here are also
also natural in K and A, just like the chain homotopy from Lemma /.1./.

Proof. Since G (A) depends only on the cofibrant replacement A° of A, it suffices
to show the claim for A¢. We can write A° as a filtered colimit of simplicial
schemes A¢ = cQIiImXi for some X; € A°%Sm,, and some filtered diagram I.
1€
Then also Ky A A€ is cofibrant and we have K, N A° = cQIiIm(KJr A X;). Let
1€
G2” 1 A?Sm — A°Shv(A) be the functor that applies G in each simplicial
degree. It follows from Corollary 4.1.3 that for each ¢ € I we have an isomorphism
GA0P<K+ ® X,L) :> Z(K) ® GAOP(XZ)

in A°?Ch(Shv(A)), where Z%) € A% Ab is the simplicial free abelian group on K
and where the tensor product on the right side is degreewise the tensor product
of Ch(Shv(A)), i.e. for each n € N

(25 @ GA”(X;))n = ZU) @ GA™(X;),, € Ch(Shv(A)).
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It follows from Lemma 4.1.4 that the Dold-Kan correspondence DK ! :
A°PCh(Shv(A)) — Cho(Ch(Shv(A))) preserves tensor products up to chain ho-
motopy equivalence, and this chain homotopy equivalence is functorial. So the
above isomorphism then implies that we have a natural chain homotopy equiv-
alence G(K, A X;4) — Z[K] ® G(X;.) in Ch(Shv(A)). Then we get a natural

chain homotopy equivalence

~

G(K, N A°) = colimG(K, A X, ) = colimZ[K] @ G(X; ) =

iel i€l
~ 7K ® CQEIiImCA?(XLJF) = Z[K] @ G(A°)

in Ch(Shv(A)). O

4.1.6 Corollary. Let G : Sm — Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.
Let K be a finite simplicial set, and let f : A — B be a morphism in fM such
that G(f) is a local quasi-isomorphism in Ch(Shv(A)). Then the map G(K_Af) :
G(K. NA) = G(K, AB) is also a local quasi-isomorphism in Ch(Shv(A)).

Proof. By Lemma 4.1.5 the map G(K, A f) : G(K, A A) — G(K4 A B) is chain
homotopic to the map Z[K|®G(f) : Z[K|®G(A) — Z|K]®G(B) in Ch(Shv(A)).
If é( f) is also a local quasi-isomorphism, then since Z[K] is degreewise flat, it
follows that Z[K] ® G(f) is also a local quasi-isomorphism. So G(K, A f) is a
local quasi-isomorphism in Ch(Shv(.A)). O

4.1.7 Lemma. Let G : Sm — Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.
Let K, L be finite simplicial sets, A € fM and lete : K — L be a weak equivalence
of simplicial sets. Then G(ey A A) : G(K4 AN A) = G(Ly A A) is a sectionwise
quasi-isomorphism in Ch(Shv(A)).

Proof. If e : K — L is a weak equivalence of simplicial sets, then it follows from
basic properties of the Dold-Kan equivalence that Zle] : Z[K| — Z[L] is a quasi-
isomorphism in Ch(Ab). Let C := Cone(Z[e]) € Ch(Ab) be the homological
mapping cone of Z[e]. Since Z[e] is a quasi-isomorphism, we know that C' is
acyclic. Since Z[K] and Z[L] are degreewise free, we know that C' is degreewise
free. So 0 — (' is a trivial cofibration in the projective model structure on
Ch(Ab). Since the projective model structure on Ch(Ab) satisfies the monoid
axiom, then for every D € Ch(Ab) the chain complex C' ® D is acyclic. Since
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C ® D is the mapping cone of Z[e] ® D, then for every D € Ch(Ab) the map
Zlel ® D : Z|K] ® D — Z[L] ® D is a quasi-isomorphism in Ch(Ab).

By Lemma 4.1.5 G(eqy A A) : G(K. AN A) = G(Ly A A) is chain homotopic to
the map Z[e] ® G(A) : Z|K] @ G(A) — Z|L] @ G(A) in Ch(Shv(A)). But this is
a sectionwise quasi-isomorphism, because for every V € Sm; the map

Zlel @ G(A) (V) : ZIK] @ G(A)(V) — Z[L] @ G(A)(V)

is a quasi-isomorphism in Ch(Ab), by the above argument with D := G(A)(V).
[l

4.1.8 Definition. 1. Amape: A — X in a category D is called a coprojection
if it is isomorphic to the coproduct inclusion A — AJ[Y for some Y € D.

2. Amap e: A — X in A?’D is called a termwise coprojection, if for every
n € N, the map in the n-th simplicial degree e, : A,, — X, is a coprojection
in D.

3. A pushout square in A’D

e
—_

A B
C—<~D

is called an elementary pushout square, if e and €' are termwise coprojec-

tions.

Recall that throughout this section F' : Sm — Ch(Shv(A)) is a ~-fibrant
enriched functor, and that we have above constructed a non-enriched functor

F: fM — Ch(Shv(A)).

4.1.9 Lemma. F' takes elementary pushout squares in A°’Sm to homotopy
pushout squares in Ch(Shv(A)).

Proof. Take a pushout square in Sm, along coprojections e, e’ :

A—SAT]X

|,

B—%BI[X
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We can apply F' to get a square in Ch(Shv(A)):
F(A)—=F(A]]X)

| l

)
F(B)—= F(B][X)
According to Lemma 4.1.2 this square is isomorphic to
F(A)—F(A)® F(X)
F(B)—= F(B)® F(X)

By taking a local cofibrant replacement F'(X)¢ of F/(X) we see that this square
is locally equivalent to

F(A)—=F(A)® F(X)°

J !

F(B) —= F(B) @ F(X)°

This square is a homotopy pushout, because it is a strict pushout and F(A) —
F(A) @ F(X)¢ is a cofibration. So F' sends pushout squares along coprojections
in Sm to homotopy pushout squares in Ch(Shv(A)).

If we have an elementary pushout square ) in A°?Sm then in every simplicial
degree it will be a pushout along coprojections. Then F(Q) will be a square
in A°?Ch(Shv(.A)) that is in every simplicial degree a homotopy pushout. After
applying the Dold-Kan correspondence we will still have a degreewise homotopy
pushout, and after applying the total complex functor we obtain a single homo-
topy pushout square in Ch(Shv(.A)). So Ia (Q) is a homotopy pushout square in
Ch(Shv(A)). [

The previous lemma immediately implies the following corollary.
4.1.10 Corollary. If we have an elementary pushout square in A?Sm,

A—>B

|

C—=D
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and F(e) is a local quasi-isomorphism, then 13’(6’) is a local quasi-isomorphism

in Ch(Shv(A)).

With all of these lemmas established, we can now prove the main result of
this section.

Proof of Theorem j.1.1. Let ) be an elementary Nisnevich square of the form

U/%X/

]

U——X

In the category of pointed simplicial Nisnevich sheaves M = Shv(Smy, A% Set,)
we can factor the morphism U — X! by using the mapping cylinder C' :=
(UL x Al1]4)IIX] to get a factorization U,>——=C —= X/ where the left
U
map is a coﬁb;ation and the right map is a simplicial homotopy equivalence.
We define s(Q) := U;]]C. We can similarly take a mapping cylinder ¢(Q)
UL
of the map s(Q) — X, to factor it into s(Q) t(Q) = X, where the
left map is a cofibration and the right map a simplicial homotopy equivalence.
We also take the mapping cylinder Cx of (A! x X), — X, to factor it as
(Al x X)), —=Cx ==X, .
Let Jiot = Jproj U Jar U Jpis where

Jproj = {N [n]+ AUy — An] ANUL | U € Smg,n > 0,0 <r < n}

T ={ARj, AUx AL ] 0ARI: ACy — Aln). ACy | U € Smy}
AA[n) £ AU x AL

Juis = {A As(@Q) [] 0AR AHQ) = A+ A Q) | Q € Q)

IA[n]+As(Q)

where Q is the set of elementary Nisnevich squares. We claim that F sends all
morphisms in J,,, to local quasi-isomorphisms. Since A"[n] — Aln| is a weak
equivalence of simplicial sets it follows by Lemma 4.1.7 that F(A"[n], A Uy) —
F(An]. AU,) is a local quasi-isomorphism, so F' sends J,,.,; to local quasi-
isomorphisms.
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Note that £ sends simplicial homotopy equivalences to chain homotopy equiv-
alences, because F(A[1], ® A°) is a cylinder object for F'(A®). Since we have a
local quasi-isomorphism F (X x Al) — F (X) and a simplicial homotopy equiva-
lence C'y — X, we have a local quasi-isomorphism F(X x A') = F(Cy).

Similarly, since F' satisfies Nisnevich excision we have a local quasi-isomor-
phism F(s(Q)) — EF(t(Q)). Let f : A — B be a morphism either of the form
s(Q) — t(Q) or (X xAl), — Cx, and let e : K — L be a cofibration of simplicial
sets. Then e is a termwise coprojection and F (f) is a local quasi-isomorphism.
Consider the diagram

K. NA L, AA

\ao la& ai

KiNnA
&

L, AB

Since F(f) is a local quasi-isomorphism, by Lemma 4.1.6 also the maps F'(ag) =
F(K, A f)and F(ay) = F(Ly A f) are local quasi-isomorphisms. By Corollary
4.1.10 also F (as) is a local quasi-isomorphism. By the 2-out-of-3-property this
then implies that also F(as) is a local quasi-isomorphism. So F' sends all mor-
phisms from J,,,; to local quasi-isomorphisms. Theorem 4.1.1 now follows by

a simple small object argument, exactly like in the proof of Theorem 4.2 from
[25]. O

4.2 The Generalized Rondigs—@stveer Theorem

Recall that the category of motivic spaces M = Shv(Smy, A% Set,) is equipped
with a projective motivic model structure. See [15, Theorem 2.12] for details.
This model structure induces a stable motivic model structure on the category
of (S',G,y,)-bispectra of motivic spaces Spgi g, (M). We also have a motivic
model structure on Ch(Shv(A)), given by taking the left Bousfield localization
of the local model structure on Ch(Shv(.A)) along the motivic equivalences from
Definition 3.2.5. This motivic model structure induces a stable motivic model
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sturcture on the category of G,-spectra of chain complexes Spg (Ch(Shv(A))).
The homotopy category of Spgi g, (M) is SH(k). The homotopy category of
Spg,, (Ch(Shv(A))) is DM 4.

There is a forgetful functor YU : DMy — SH(k) with a left adjoint £ :
SH(k) — DMy. It can be described as follows. The functor U is the derived
functor of the right Quillen functor

DK

Spe,, (Ch(Shv(A))) 5 Spe,, s1(Chso(Shv(A))) 2

Sme751 (AOpShV(A)) Sp([; ,S1 (M)

Here J : Ch(Shv(A)) — SpSI(Ch>0(Shv(.A))) is the right Quillen equivalence that
is called T in [30, Section 3]. If 7o : Ch(Shv(A)) — Chso(Shv(A)) is the good
truncation functor sending A € Ch(Shv(A)) to

0

= AQ — Al — ker(Ag % A*l)

in Ch>o(Shv(A)), then J is defined on A € Ch(Shv(A)) by J(A) = (1=0(A[n]))nen €
Spg1(Chxo(Shv(A))).

The functor DK : Ch-o(Shv(A)) — A°Shv(A) is the Dold Kan equivalence,
whose n-simplices are given by

- @n

U : Shv(A) — M is the functor that forgets transfers and the abelian group
structure. We define U := U o DK o J, so that U is the right derived functor of
U.

We write £ : SH(k) — DMy for the left adjoint of . The adjunction
L:SH(k)= DMy :U is a monoidal adjunction, so that U is lax monoidal and
L is strong monoidal. Furthermore U is a conservative functor. This means that
if f is a morphism in DM 4 such that U(f) is an isomorphism in SH (k), then f
is an isomorphism in DM 4.

In this section we prove the following theorem, which is reminiscient of the
Rondigs-Ostvaer theorem [16, Corollary 56].
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4.2.1 Theorem. Let F' : Sm — Ch(Shv(A)) be an enriched functor that is
~-fibrant in Ch([Sm,Shv(A)])/ ~. Then for every X € Smy, the canonical mor-
phism

evg,, (F1) ® L(X51 g, X+) = evg,, (F(X x —))

is an isomorphism in DM 4[1/p], which is natural in X.

To prove 4.2.1 we will need several lemmas. The most important lemma we
will need is the following one from [16, Corollary 56]:

4.2.2 Lemma. Let X : fM — M be a motivic functor that sends motivic
equivalences between cofibrant objects to motivic equivalences. Let B be a strongly
dualizable object in SH(k)[1/p]. Then the canonical map of (S, G,,)-bispectra

€U517Gm(X N B) — €Usl7Gm(X o (— A B))
is an isomoprhism in SH(k)[1/p].

The following theorem by Riou can be found in [34, Appendix B, Corollary
B.2].

4.2.3 Theorem. IfU € Smy, then % U, is strongly dualizable in SH (k)[1/p].

To apply Lemma 4.2.2 in our situation, we have to convert Ch(Shv(A))-
enriched functors into motivic functors in the sense of [15]. We will now discuss
how to do this.

We can consider the category of motivic spaces M, the category of finitely pre-
sented motivic spaces fM, the category of pointed smooth schemes Smy, ; and the
category of S'-spectra of motivic spaces Spgi (M) to all be M-enriched categories.
In the M-enriched category Spgi (M) the morphism objects Maps, , (v (4, B) €
M, are defined for A, B € Spgi1(M) via an equalizer diagram, like in [29, page
101]. So we have an equalizer diagram:

Ma‘pSpSl(M)(A’ B) — HHo_mM(An, B,) —= HHO_THM(SI N Any Bpyt)

neN neN
(4.3)
This makes Spgi (M) into an M-enriched category.
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In order to relate M-enriched categories and Ch(Shv(.A))-enriched categories,
we need some lax monoidal functors between M and Ch(Shv(.A)). We have a non-
enriched forgetful functor U : Ch(Shv(A)) — Spgi (M), and we have a functor
evy © Spgi(M) — M taking the 0-th weight of a S'-spectrum. The functor
evo o U : Ch(Shv(A)) — M has a left adjoint L : M — Ch(Shv(A)).

4.2.4 Lemma. The functor evy o U : Ch(Shv(A)) — M and its left adjoint
L : M — Ch(Shv(A)) are both lax monoidal functors.

Proof. The functor U is the composite
Ch(Shv(A)) 2 Spgi (Chso(Shv(A))) 25 Spai (A”(Shv(A))) 5 Spgi (M).

Let 750 : Ch(Shv(.A)) — Chx((Shv(A)) be the good truncation functor sending

0
A € Ch(Shv(A)) to -~ — Ay — A; — ker(Ag 22 A_,) in Choo(Shv(A)). Then
the following diagram commutes

Ch(Shv(A)) —L= Spgi (Chso(Shv(A))) 25~ Spei (APShv(A)) —L= Spgi (M) .

evg evg evo
T>0
U

Ch=o(Shv(A)) —25 — A%rShy(A)

To show that evg o U is lax monoidal, we just have to show that U, DK and 1>
are lax monoidal, and to show that L is lax monoidal we just have to show that
each of the left adjoints of U, DK and 7 respectively is lax monoidal.

The left adjoint of 7>¢ is the inclusion functor Chso(Shv(A)) — Ch(Shv(A)).
This inclusion is obviously strong monoidal. This then implies that 7o is lax
monoidal. See [13, Proposition 2.1 or [32, Theorem 1.2].

The quasi-inverse of the Dold-Kan correspondence DK~ : A%(Shv(A)) —
Ch=o(Shv(.A)) is the normalized Moore complex functor. It has a lax monoidal
structure given by the Eilenberg—Zilber map and it has an oplax monoidal struc-
ture given by the Alexander—Whitney map. See [12] or [35, Definition 29.7]. Since
DK ™! has an oplax monoidal structure it follows from [13, Proposition 2.1] that
DK has a lax monoidal structure.

Finally, the forgetful functor U : A°’Shv(A) — M is clearly lax monoidal as
its left adjoint is strong monoidal. So evy o U : Ch(Shv(A)) — M and its left
adjoint L : M — Ch(Shv(A)) are both lax monoidal functors. O
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Let F' : Sm — Ch(Shv(A)) be a Ch(Shv(.A))-enriched functor. We want to

associate to F' an M-enriched functor
FM . f./\/l — Sp51<M)

To do this we will first construct a M-enriched functor Smy . — Spgi (M)
and then Kan extend it to fM.

The M-enriched functor Smg . — Spgi (M) is constructed as follows. On
objects it sends X € Smy,; to U(F(X)) € Spgi(M). To define it on morphisms
we now need to define for each X,Y € Smj a map in M:

Smy+ (X4, Yy) = Maps,_ (o (UFX, UFY).

This map is constructed in three steps. In the following construction X,Y &
Smy are smooth schemes. Recall that L : M — Ch(Shv(.A)) is the left adjoint of
evgo U : Ch(Shv(A)) — M.

1. Since L : M — Ch(Shv(A)) is lax monoidal, we have a map
LHom (X4, Y4) — HO—mCh(Shv(A))(L(XJr)a L(Y}))

in Ch(Shv(A)). See [10, Example 3.1] for the construction of this map. By
adjunction we get a map

Hom (X4, Y} ) — 6UOU_HODHCh(Shv(A)) (L(X5), L(YS))

in M. By construction, we have an isomorphism L(X,) = A(—, X)nis.
Therefore Homep,spy(ay) (L(X ), L(Yy)) = Sm(X,Y). AlsoSmy (X, Y, ) =
Hom (X4, Y} ). We therefore get a map in M.

Smy (X4, Y,) = evgUSM(X,Y).

2. Since F' : Sm — Ch(Shv(A)) is a Ch(Shv(A))-enriched functor we have a
map Sm(X,Y) — Homeyspyay) (FX, FY) in Ch(Shv(A)). We thus also get
a map in M.:

evoUSM(X,Y) — evOUHomCh(ShV(A)) (FX,FY).
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3. For every n € N, and every A, B € Ch(Shv(A)) the chain complex shift
functor [n] gives us an isomorphism

HO_Hkh(Shv(A)) (Aa B) = HO_mCh(Shv(A)) (A[n] ) B[n])

Since evolU is lax monoidal, we can use [10, Example 3.1] to get a canonical
map

evoﬁHomCh(Shv(A))(A[n], Bln]) — Hom ,(evoU A[n], evolU Bln]) =
= Hom ((UA)n, (UB),).

All these maps GUOUHOHICh(ShV(A))(A, B) — Hom \((UA),,, (UB),) yield a map

A~ A

evoUHomcyspy(ay (A, B) = [ [Hom v ((TA)n, (UB),).

neN

We want to show that it factors over Mapspsl(M)(UA, UB). Since U(A) is a
St-spectrum we have for every A € Ch(Shv(A)) a map

St A evgU(A[n]) — evoU(Aln + 1))

in M. Since U is a functor, this map is natural in A. Using this naturality one
can check that for all A, B € Ch(Shv(.A)) the following diagram commutes:

evoU Homcyspy(ay) (Aln], Bln]) == evgU Homeyspy(ay) (Al + 1], Bln + 1])

| |

~ A~

Hom (T A).., (UB),) Hom y, (0 A1, (UB)s1)

o] |

Hom (S A (UA),, S* A (UB),)) — Hom ((S* A (UA),, (UB),41)

By the equalizer universal property of Maps,_, M)(U AU B) from diagram (4.3)
we get a dotted map like in the following diagram

6U0l7ligﬂllch(5hvﬁ4))(/1’13)

Maps,_, (v (UA, UB) = [ Hom ((UA),, (UB),) = [ Hom  (S* A (UA)n, (UB)n41)
neN neN
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In particular, we have a map
evoUHomep sy (F X, FY) = Maps, | (v (UFX,UFY).

And then we have maps

Smye (X4, Y1) = evgUSm(X,Y) — evgUHomepspy(ay) (FX, FY) —
— Maps,_, (v (UFX,UFY).

By composing these three steps together we get a map
Smy (X, Y) = Maps, , (ag(UF X, UFY)

in M. This map preserves identity morphisms and is compatible with composi-
tion, so we get an M-enriched functor Smy . — Spgi (M), sending X to UFX.

We now define F™ : fM — Spgi (M) to be the M-enriched Left Kan ex-
tension of this M-enriched functor Smg . — Spgi1(M) along the M-enriched
inclusion functor Smy . — fM.

Smy — Spgi (M)
M

The functor FM can be explicitly computed on A € fM as

X1€eSmy 4

A

FUA) = [ OPC0) A Homa (X, 4).

Note that FM respects filtered colimits, because X € Smy, is finitely presented
in M.

4.2.5 Lemma. Let F' : Sm — Ch(Shv(A)) be a ~-fibrant functor. For every
finitely presented motivic space A € f M with cofibrant replacement A°, we have a
natural isomorphism (Uo F)(A) = FM(A°) in Spgi(M). Here U : Ch(Shv(A)) —

Spg1(M) is the forgetful functor and F : fM — Ch(Shv(A)) is the extension of
F defined by equation (4.1) in Section j.1.
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Proof. If A= X, for some X € Smy, we have U(F(X,)) = U(F(X)) and by the

M-enriched co-Yoneda lemma we have

Y, €eSmy 4

~ ~

U(F(X)) = / U(F(Y)) A Hom(Yy, X,) = FM(X,).

So the claim is true for A = X . The claim then also follows for all other objects
Ain fM, because A¢ is a filtered colimit of simplicial schemes, and FM respects
filtered colimits. O

4.2.6 Lemma. Let F': Sm — Ch(Shv(A)) be a pointwise locally fibrant functor,
and let A € fM be a finitely presented motivic space. Then F'(A) is locally fibrant
in Ch(Shv(A)).

Proof. For every scheme X we know that F(X) is locally fibrant in Ch(Shv(.A)).

If A is a finitely presented motivic space, then A¢ is a filtered colimit of simplicial

schemes. A€ = cQIi]mXi for some X; € A°Sm,;, and filtered diagram I, and we
1€

have FI(A) = cQIiImF(Xi). The fact that F' is pointwise locally fibrant implies
1€

for each i € I that F(X;) is locally fibrant in Ch(Shv(A)). By Lemma 2.2.18
the model category Ch(Shv(.A)) is weakly finitely generated, so it follows by [14,
Lemma 3.5] that filtered colimits of fibrant objects are fibrant. So F'(A4) is locally
fibrant in Ch(Shv(.A)). O

For every n € N we can take the n-th level of the functor FM : fM —
Spg1(M) to get an M-enriched motivic functor

The functor F™ is then a motivic functor as defined in [15].

4.2.7 Lemma. Let F': Sm — Ch(Shv(A)) be a ~-fibrant enriched functor. For
every n € N the motivic functor FM : fM — M sends motivic equivalences
between cofibrant objects to local equivalences.

Proof. By Theorem 4.1.1 we know that F : fM — Ch(Shv(A)) sends mo-
tivic equivalences to local quasi-isomorphisms. By Lemma 4.2.6 we know that
F sends all objects of fM to locally fibrant objects. With respect to the

St-stable local model structure on Spgi(M) and the local model structure on
Ch(Shv(.A)), the functor U : Ch(Shv(A)) — Spgi(M) is a right Quillen functor,
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so it preserves weak equivalences between fibrant objects. It then follows that
UoF: fM — Spgi(M) sends motivic equivalences to stable local equivalences
between locally fibrant S'-spectra in Spgi(M). Hence U o I sends motivic equiv-
alences to levelwise local equivalences. By Lemma 4.2.5 this then means that
FM . fM — Spgi (M) sends motivic equivalences between cofibrant objects to
levelwise local equivalences in Spgi(M). So for every n € N the motivic functor
FM ' fM — M sends motivic equivalences between cofibrant objects to local
equivalences. O

Before proving the main theorem of this section, we need an additional lemma
about (S', S, G,,)-trispectra. To avoid confusion between the two S'-directions
we now introduce an extra notation. We write S7 for the first S'-direction and we
write S3 for the second S!-direction. Therefore, whenever we discuss (S*, S, G,,)-
spectra, we deal with (S],S3,G,,)-spectra following this notation. For every
F : Sm — Ch(Shv(A)) we consider FM : fM — Spsi(M) to be a functor
landing in S3-spectra.

Given a Gy,-spectrum of chain complexes A € Spg, (Ch(Shv(A))) we let Z[S]X
A € Spgig,, (Ch(Shv(A))) refer to the (S, G,y,)-bispectrum of chain complexes
that is given in Si-weight n by

(Z[S]X A),, == Z[S"] ® A € Spg,, (Ch(Shv(A))).

The definition of Z[S"] is in Section 4.1, equation (4.2). It is the chain complex
that is Z concentrated in homological degree n.

The functor U : Spg,, (Ch(Shv(A))) — Spgi g, (M) can naively be extended
to a functor denoted by the same letter

U SPSII,Gm(Ch(ShV(A))) - SPS%,S%,G,”(M)
by applying it S{-levelwise.

4.2.8 Lemma. Let F : Sm — Ch(Shv(A)) be a ~-fibrant functor. For every
X € Smy, we have a natural map of (53,53, G,,)-trispectra

evst e, (FM(= % X)) = U(Z[S] R evg,, (F(= x X))
in Spgi g1 G, (M). This map is a Si-levelwise (S, G,,)-stable motivic equivalence.

Proof. Since we are only evaluating F* on simplicial schemes, by Lemma 4.2.5 we
just need to show that there is a Si-levelwise (Si, G,,)-stable motivic equivalence

evsi e, (U o F)(— x X)) = U(Z[S| B evg,, (F(— x X))).
And this follows from Lemma 4.1.5. OJ
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We are now in a position to prove the main theorem of this section.

Proof of Theorem /.2.1. Let F': Sm — Ch(Shv(A)) be a ~-fibrant functor. Due
to Lemma 4.2.7 and Lemma 4.2.3 we can apply Lemma 4.2.2 to get an isomor-
phism
1o (FMYASS o Xy D evg g (FM(— x X))
eUs G, \L'n S1.Gp 2+ 7 €USL G, L'y

in SH(k)[1/p]. These combine into a Si-levelwise (5], G,,)-stable motivic equiv-
alence of (57,93, G,,)-trispectra

evs%7Gm(FM) NG g, Xy = evSiGm(FM(— x X))

in Spg1 s16,,(M)[1/p]. By Lemma 4.2.8 we have a commutative diagram

€U5117Gm(FM) /\Zg?,GmX"" ~ e'Us%’Gm(FM(— X X))

| | |

U(Z[S| R evg,, (F)) A% ¢, X1 = U(Z[S] R evg,, (F(— x X)))

where the vertical maps are S}-levelwise (S5, G,,)-stable equivalences. It follows
that the bottom horizontal map is a (S}, S3, G,,)-stable equivalence. By Lemma
4.2.3 we know that ¥% . X, is strongly dualizable in SH(k)[1/p]. Since £ and
U are a monoidal adjurfction, we can apply [3, Lemma 4.6] to get for every n € N
that

U(Z[S"] @ evg,, (F)) A EGi 6, Xy ULIS"] © eve,, (F) © L(55i ¢, X))

in SH(k)[1/p]. These assemble into a Si-levelwise (S3, G,,)-stable equivalence of
trispectra

A~

U(Z[S| B evg,, (F)) A2 . X+ = U(Z[S]| R evg,, (F) ® L(EF 5, X+)).

We then have a commutative diagram

A~ A

U(Z[S] R evg,, (F) @ L(X31 ¢, X)) — U(Z[S]| W evg,, (F(= x X))

S

U(Z[S| R evs,, (F)) ASS ¢ Xy
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in Spgi g1, (M)[1/p], where the two lower maps are (57, S5, G, )-stable motivic
equivalences. It follows that the upper horizontal map is a (S7, S5, G,,)-stable
motivic equivalence in Spgi g1, (M)[1/p].

Since U : DM4[1/p] — SH(k)[1/p] is conservative, we then get a (S7,G,,)-
stable motivic equivalence

Z[S) W evg,, (F) ® L(XS ¢, X1) = Z[S] W evg,,(F(— x X))
in Spgi g, (Ch(Shv(A)))[1/p]. Since the functor
Z[8"] ® — : Spg,, (Ch(Shv(A)))[1/p] = Sp,, (Ch(Shv(A)))[1/p]

is an auto-equivalence, it follows from [29, Theorem 5.1] that

Z[S] W — - Spg,, (Ch(Shv(A)))[1/p] = Spsi g, (Ch(Shv(A)))[1/p]

is a Quillen equivalence, where Spgi ¢ (Ch(Shv(A))) is equipped with the stable

model structure of Z[S']-spectra in Spg_(Ch(Shv(A))). Since Z[S] K — preserves
weak equivalences between all objects from Spg (Ch(Shv(A)))[1/p], this then
implies that

evg,, (F) ® L(XF ¢, X4) = evg,, (F(— x X))

is an isomorphism in DM 4[1/p]. O

4.3 Proof of Theorem 3.1.14

In this section we will prove Theorem 3.1.14, but we first need a few lemmas.

4.3.1 Lemma. The category D([Sm,Shv(A)])/ ~ [1/p] is compactly generated
by the set
{[GI" I(-)]® Z | neN,Z € Sm}.

Proof. The objects [G)™, I(—)] ® Z are compact by [20, Theorem 6.2]. Let F' €
D([Sm,Shv(.A)])/ ~ [1/p] be an enriched functor such that for alln € N, Z € Sm;,

Hom p ((sm.shv(ay)/~1/p (G, I(—)] @ Z, F) = 0.

Without loss of generality, F' is ~-fibrant. Then we get for all n € N, Z € Sm,
that F(G)™)(Z) = 01in D(Ab)[1/p]. This implies that evg,, (F') = 0in DM4[1/p].
It follows Theorem 4.2.1 that for every U € Smy,

evg,, (F'(U x —)) & evg,, (F) ® L(X51 g, Uy) =0
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in DM 4[1/p]. Since F(U x —) is ~-fibrant, the G,,-spectrum evg, (F(U x —))
is motivically fibrant in DM 4[1/p]. Then

F(U)2 F(U x pt) = evg,, (F(U x —))(0) =0
in D(Shv(A))[1/p]. This means that F = 0 in D([Sm, Shv(A)])/ ~ [1/p]. So
(G, I(-)|® Z |n €N, Z € Smy,}
is a set of compact generators for D([Sm, Shv(A)])/ ~ [1/p]. O

4.3.2 Lemma. The enriched functor (G, M a(—)] : Sm — Ch(Shv(A)) satisfies

Nisnevich excision in the sense of Definition 3.1.9.
Proof. Take an elementary Nisnevich square:
T
a gl
U—sX
From Definition 2.1.1 it follows that there is an exact sequence
0= A(—, UNpis = A(—, U)pis ® A(—, X nis = A(—, X)pis — 0.
Since A is a strict V-category of correspondences, by applying C, we get a triangle
Ma(U") = Ma(U) & Ma(X') = Ma(X)

in D(Shv(A)). We can take local fibrant replacements M4(X)? of each of these
terms M4(X), and then apply QF to get a triangle of locally fibrant complexes

Qg (MaAU)) = Qg (MaU)) & Qg (Ma(X')) = QF, (Ma(X)T)

in D(Shv(A)). Lemma 3.2.9 says that Homey,sp,a))(Gn's =) © Ch(Shv(A)) —
Ch(Shv(A)) preserves local equivalences between A'-local complexes. This implies
that (G, M4(X)] is locally equivalent to [G)", Ma(X)/] = Q% (Ma(X)%). So
we ultimately get a triangle

(G, Ma(U')] =[G, Ma(U)] @ (G, Ma(X')] =[G, Ma(X)]
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in D(Shv(A)). This means that

(Gt Ma(U")] =~ (G, Ma(X'))]

l“* %l

(G, Ma(U)] =2 [GL", Ma(X)]

is homotopy cartesian, so [G)", M4(—)] : Sm — Ch(Shv(.A)) satisfies Nisnevich
excision. U

4.3.3 Lemma. For every Z € Smy, the enriched functor [G)", My(— x Z)] :
Sm — Ch(Shv(A)) satisfies Nisnevich excision in the sense of Definition 3.1.9.

Proof. Take an elementary Nisnevich square

U/ X/

-l

U-—2-X

Then the square
UxZ——X'x2Z
Bx1

laxl 'yxll
ox1

Ux/Z——XxZ

is again an elementary Nisnevich square. The result now follows from Lemma
4.3.2. O]

Proof of Theorem 5.1.14. Let
Tc = <[G7>7<1n, —] ® X ’ n € N,X S Smk)

be the full triangulated subcategory of D([Sm,Shv(A)]) that is compactly gen-
erated by [G)", —] ® X for all n € N and X € Smy. According to [2], Lemma
4.10] the composite

Te — D([Sm, Shv(A)]) ™ D([C, Shv(A)])

is an equivalence of triangulated categories, where the first map is the inclusion
map and the second map is the map restricting functors from Sm to C.
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Let ~¢ be the set of morphisms, following the notation from Lemma 3.1.4 by
~e ={(f®2Z)n]| f€~e,Z € Smi,n € N}.

Here ~¢ is defined in Section 3.1 on page 42. We can consider ~¢ to be a set
of morphisms in Te. We write T¢z/ ~¢ for the localization of T¢ along the set of
morphisms ~¢ between compact objects.

The equivalence Tz — D([C,Shv(.A)]) then induces an equivalence of com-
pactly generated triangulated categories

Tc/ ~e—r D([C,ShV(A)])/ ~c .
By Theorem 3.1.8 we have that
evs,, : D([C, Shv(A)])/ ~e— DM.4

is an equivalence of compactly generated triangulated categories. So we have an
equivalence of compactly generated triangulated categories

evg,, - Te/ ~e— DM 4.
Next, the inclusion T¢ — D([Sm, Shv(A)]) induces a triangulated functor
O : T/ ~ec— D([Sm,Shv(A)])/ ~ .
We will now use Lemma 3.2.18 to show that

O[1/p] - Te/ ~c [1/p] = D([Sm, Shv(A)])/ ~ [1/p]

is an equivalence of triangulated categories. Following the notation of Lemma
3.2.18, here A =T/ ~c [1/p] and B = D([Sm,Shv(A)])/ ~ [1/p] are compactly
generated triangulated categories.

Due to Lemma 3.2.1 and the definition of T, the set

L={[G)"I(-)]®X|neN X e Sm;}

is a set of compact generators for T/ ~¢ [1/p]. This is the set of compact
generators to which we apply Lemma 3.2.18. Due to Lemma 4.3.1, the functor
®[1/p] sends ¥ to a set of compact generators for D([Sm, Shv(A)])/ ~ [1/p], so
the first condition of Lemma 3.2.18 is satisfied. Let us check the second condition.



Proof of Theorem 3.1.1 91

Since T¢/ ~¢ is equivalent to D([C,Shv(.A)])/ ~¢, by Lemma 3.2.15 we have an
isomorphism

G5 1(-)] © X =[G Ma(X)]

in T/ ~¢. From Lemma 4.3.3 it follows that the enriched functor |G, M _4(X)] :
Sm — Ch(Shv(A)) satisfies Nisnevich excision. Similarly to Lemma 3.2.8, it is
also strictly local with respect to the relations Al, 7. The definitions of these
relations is in Section 3.1, page 47. Since the map M4(X x Al) — M4(X) is
an isomorphism in DM between Al-local complexes, so it is also a local quasi-
isomorphism. Since [G/", —] preserves local quasi-isomorphisms between A'-local
objects, it follows that [G", M 4(X)] is strictly local with respect to Al. So the
enriched functor [G)", M 4(X)] : Sm — Ch(Shv(A)) is strictly ~-local. Also for
every d € N the shifted functor [G)", M4(X)][d] : Sm — Ch(Shv(A)) is strictly
~-local.

The functor ¢ : T/ ~¢c— D([Sm, Shv(.A)])/ ~ is by construction fully faithful
on strictly ~-local objects, in the sense that if A, B € T¢z/ ~¢ are strictly ~-local
then the map

Homg, /.. (A, B) = Homp(sm shia/~(P(A), 2(B))

is a bijection of abelian groups. In particular ® is fully faithful on all shifts of
objects of the form [G)", M 4(X)], where n € N, X € Smj. Since the objects
(G, M 4(X)] are isomorphic to the objects (G, I(—)]® X in T¢/ ~¢, it follows
that ® is fully faithful on all shifts of objects from the set of compact generators
3.

This verifies the second condition from Lemma 3.2.18. It now follows that

®:Te/ ~c [1/p] = D([Sm, Shv(A)])/ ~ [1/p]

is an equivalence of triangulated categories. Recall that by Lemma 3.1.13 we have
a canonical equivalence of triangulated categories

DM 4[8m] — D([Sm,Shv(A)])/ ~ .
We then have a commutative diagram

DM a[Sm][1/p] —= D([Sm, Shv(A)])/ ~ [1/p]

VG,
¢ ~

Te/ ~e [1/p) —ar—= DMA[1/2)
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which shows that the evaluation functor
evg,, : DMu[Sm][1/p] — DMa[1/p]

is an equivalence of categories. This completes the proof of Theorem 3.1.14. [



Chapter 5

Enriched motivic spaces

So far we have studied the category [Sm, Ch(Shv(A))] of enriched functors of
unbounded chain complexes. We are now passing to the study of the category
[Sm, A°’Shv(A)] of enriched functors of simplicial sheaves.

Also from now on we will assume that the exponential characteristic p of & is
invertible in A. So A is an additive category of correspondences, that is symmet-
ric monoidal, satisfies the strict V-property, the cancellation property, and the
exponential characteristic p of k is invertible in A. Note that for any additive
category of correspondences A we can form an additive category of correspon-
dences A[1/p| in which p is invertible by tensoring all morphism groups of A with
Z[1/p].-

In this chapter we introduce enriched motivic A-spaces. In Section 5.2 we
construct a model structure on the category A°’Shv(A) of simplicial Nisnevich
sheaves.

5.1 Preliminaries

We shall adhere to the following notations from [19]. Let Spg: g, (k) denote the
category of symmetric (S', G,,)-bispectra, where the G,,-direction is associated
with the pointed motivic space (G,,,1). It is equipped with a stable motivic
model category structure. Denote by S H (k) its homotopy category. The category
SH (k) has a closed symmetric monoidal structure with monoidal unit being the
motivic sphere spectrum S. Given p > 0, the category Spgi g, (k) has a further
model structure whose weak equivalences are the maps of bispectra f : X — Y
such that the induced map of bigraded Nisnevich sheaves f, : ﬂf;(X V)R Z[1/p] —

93
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E‘f;(Y) ® Z[1/p] is an isomorphism. In what follows we denote its homotopy
category by SH(k)[1/p]. The category SH(k)q is defined in a similar fashion.
Recall from Section 3.1 that there is a Shv(.A)-enriched category Sm, whose

objects are those of Smy, and whose morphism sheaves are defined by
Sm(XJ Y) = msrw(/l) (A<_> X)nis; A(_a Y)nis>‘

In Section 5.2 we will define a natural local model structure on A°Shv(A).
Weak equivalences in this model structure are the local equivalences.

According to [9, Theorem 4.3.12], if G is a Grothendieck category with a
generator (7, then the category of simplicial objects A°P’G in G is also Grothendieck
and the set {G ® A[n] | n > 0} is a family of generators for A°?G. In particular,
a family of generators for the Grothendieck category A°”Shv(.A) is given by the
set

{A(—, X)nis @ Aln] | X € Smy,n > 0}.
Also, the category of enriched functors [Sm, Shv(A)] is Grothendieck by [1]. Its
family of generators is given by {Sm(X, =) ®spya) A(— Y )nis | X, Y € Smy}.
Hence A[Sm, Shv(A)] is Grothendieck by [9]. Its family of generators is given
by {Sm(X, —) ®shv(a) A(—=, Y )nis ® Aln] | X, Y € Smy,n > 0}.

Note that A?[Sm, Shv(A)] and [Sm, A°?Shv(A)] are equivalent, and we will
freely pass back and forth between the two.

5.1.1 Definition. An enriched motivic A-space is an object of the Grothendieck
category A?[Sm, Shv(A)]. Similarly to [25, Axioms 1.1], an enriched motivic
A-space X is said to be special if it satisfies the following axioms:

1. For all n > 0 and U € Sm, the presheaf of homotopy groups V +—
7, (X(U))(V) is Al-invariant.

2. (Cancellation) Let G/ denote the cokernel of the 1-section A(—, pt)ns —
A(—=, G,)nis in Shv(A) and for n > 1 inductively define G/\" := G\"@ Gl
For all n > 0 and U € Sm;, the canonical map

X(GY'xU) — Ho_mAOPShV(A)(GTAnl,X(GQfH x U))
is a local equivalence.

3. (Al-invariance) For all U € Smy, the canonical map X (U x A') — X (U)
is a local equivalence.
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4. (Nisnevich excision) For every elementary Nisnevich square in Smy,

U—V'

o

U——V

the induced square
XU —Xx (V")

|

X(U) —=X(V)
is homotopy cartesian in the local model structure on A°’Shv(.A).

For n > 0 and every finitely generated field extension K/k, we have the
standard algebraic n-simplex

At = Spec(K|xg, ..., xn]/(xo + -+ + x, — 1)).

For every 0 < 7 < n we define a closed subscheme v; of A% by the equations
x; = 0 for j # i. We write A, " for the semilocalization of the standard algebraic
n-simplex A% with closed points the vertices vy, ..., v, € AlL.

5.1.2 Definition. Similarly to [25, Axioms 1.1], we say that X is very effec-
tive or satisfies Suslin’s contractibility if for every U € Sm and every finitely
generated field extension K/k the diagonal of the bisimplicial abelian group

~

X (G x U)(A%/) is contractible.
Since we assume that p is invertible in A the following lemma holds.

5.1.3 Lemma. If FF : A — Ab is an additive functor, then F factors over
the full subcategory of Z[1/p]-modules Modzp ;) € Ab. In particular the inclu-

sion functor Modgp ;) — Ab induces an equivalence of categories Shv(A, Ab) ~
ShV(.A, MOdZ[l/p]).

Proof. If F : A — Ab is additive, then F' is an Ab-enriched functor. By the
Ab-enriched co-Yoneda lemma we can write F' as the following coend: for all
U € Sm;, we have an isomorphism in Ab,

XeSmy

F(U) = /F(X)@A(U,X).
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Since p is invertible in A(U, X) we have a canonical isomorphism A(U, X)
A(U, X) ® Z[1/p]. Since the functor — ® Z[1/p] : Ab — Ab is a left adjoint, it
preserves coends, so we can compute

XeSmy XESmy

F(U) = /F(X)@;A(U,X)g /F(X)@@(A(U,X)@Zu/p])g

XeESmy

Ziyple [ FOO®AUX) 22Ul @ FO)
which shows that F(U) is a Z[1/p]-module. O

For some of our results we will also have to make additional assumptions on
the category of correspondences A.

5.1.4 Definition. Let Fr,(k) be the category of Voevodksy’s framed correspon-
dences (see [23, Definition 2.3]). For each V' € Smy let oy : V' — V be the level
1 explicit framed correspondence ({0} x V, Al x V, pr,:, pry).

1. We say that the category of correspondences A has framed correspondences
if there is a functor ® : Fr.(k) — A which is the identity on objects and
which takes every oy to the identity of V.

~

2. We say that A salisfies the A-property if for every n > 0 and for every

finitely generated field extension K/k the diagonal of Ma(G;")(AY ) is

quasi-isomorphic to 0. Here M 4 : Sm — Ch(Shv(.A)) is the enriched motive
functor M4(U) := CLA(—, U)pis.

Basic examples satisfying both items are given by the categories of finite corre-
spondences C'or or Milnor-Witt correspondences Cor.

5.2 The local model structure

In Section 2.2 we constructed a model structure on Ch(Shv(.A)) that is cellular,
strongly left proper, weakly finitely generated, monoidal and satisfies the monoid
axiom. In this section we construct a model structure on Ch-o(Shv(.A)) that is
cellular, strongly left proper, weakly finitely generated, monoidal, satisfies the
monoid axiom, and in which weak equivalences are local quasi-isomorphisms.
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We construct the model structure by taking the right transferred model struc-
ture along the inclusion Chy((Shv(A)) — Ch(Shv(A)). We then transfer the
model structure along the Dold-Kan correspondence, to get a model structure
on A%Shv(A) that is cellular, strongly left proper, weakly finitely generated,
monoidal, satisfies the monoid axiom, and in which weak equivalences are stalk-
wise weak equivalences of simplicial sets.

Let us now start by constructing the model structure on Ch((Shv(A)). We
have an inclusion functor ¢ : Ch>o(Shv(A)) — Ch(Shv(A)). The inclusion functor
¢ has a left adjoint Tpaive : Ch(Shv(A)) — Ch-o(Shv(.A)), called the naive trun-
cation functor. It sends --- — A, — Ay — A1 — ... to --- = A} — A,.
The inclusion functor ¢ also has a right adjoint 74,04, called the good truncation
functor. It sends

"'—>A1—>A08—A)A_1—)...

to -+ — A; — ker(9%). So we have Tyaive ¢ 3 Tgood-

5.2.1 Lemma. The endofunctor tThae : Ch(Shv(A)) — Ch(Shv(A)) preserves
cofibrations.

Proof. Since tThaive is a left adjoint functor, it suffices to check it on the set of
generating cofibrations

Tch(shv(a)y) = {A(—=, X)nis ® S"Z — A(—, X)nis ® D"Z | n € Z, X € Smy}.
So take n € Z, X € Sm;, and consider the map
fot A(=, X)nis @ S"Z — A(—, X)nis @ D"Z.
If n > 0 then tTaive(fn) = fu is a cofibration. If n < —2 then t7aive(fn) = 01is a

cofibration. If n = —1 then (Tyaive(f_1) is the map 0 — A(—, X)nis ® S°Z which
is a cofibration, due to the following pushout square

A(—, X)nis & S_IZ_>A(_> X)nis ® D_IZ

| |

0 A(—,X)nis®SOZ

as required. O
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5.2.2 Definition. Given a model category M and an adjunction L : N = M : R,
we say that the right transferred model structure along the adjunction L 4 R
exists, if there exists a model structure on N, such that a morphism f is a
weak equivalence (respectively cofibration) in N if and only if L(f) is a weak
equivalence (respectively cofibration) in M.

5.2.3 Lemma. The left transferred model structure on Ch=o(Shv(A)) along the
adjunction

¢ : Ch3o(Shv(A)) = Ch(Shv(A)) : Tyo0d
exists. The resulting model structure on Chso(Shv(.A)) is cofibrantly generated.

Proof. We use [1, Theorem 2.23|. All involved categories are locally presentable,
and Ch(Shv(A)) is cofibrantly generated, so the theorem is applicable. We now
have to show that

RLP(: ! ({cofibrations})) C +~ ! ({weak equivalences}).

So take p : X — Y with p € RLP(. ! ({cofibrations})). We want to show
that ¢(p) is a weak equivalence in Ch(Shv(.A)). We will show that ¢(p) is a trivial
fibration, by showing that it has the right lifting property with respect to cofi-
brations. Let f : A — B be a cofibration in Ch(Shv(.A)) and consider a lifting
problem

A—1X

7
|
/7
B——1Y

By adjunction this diagram has a lift, if and only if the following diagram has a
lift

TnaiveA = X

7
-
Trlaivefl P 4 lp
7

Thaive B =Y

Since p € RLP (¢! ({cofibrations})), we can solve this lifting problem if Taivef €
171 ({cofibrations}). So we have to show that (Tyavef is a cofibration. As f is a
cofibration, this follows from Lemma 5.2.1. O

We now have a model structure on Chy¢(Shv(A)), in which a morphism f
is weak equivalence (respectively cofibration) if and only if ¢f is a weak equiva-
lence (respectively cofibration) in Ch(Shv(A)), and a morphism is a fibration in
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Ch-o(Shv(.A)) if and only if it has the right lifting property with respect to all
trivial cofibrations. Furthermore, the adjunction

t : Ch3o(Shv(A)) = Ch(Shv(A)) : Teood

is a Quillen adjunction. Since weak equivalences in Ch(Shv(A)) are the local
quasi-isomorphisms, it follows that also weak equivalences in Chs,(Shv(A)) are
the local quasi-isomorphisms.

5.2.4 Lemma. Ch-,(Shv(A)) is a monoidal model category.

Proof. Let us verify the pushout product axiom. Let f,g be two cofibrations in
Ch(Shv(.A)), and let fOg be their pushout-product. Since ¢ : Ch-o(Shv(A)) —
Ch(Shv(A)) is a strong monoidal left adjoint functor, we have an isomorphism
of arrows «(fOg) = «(f)0(g). As f, g are cofibrations in Ch5¢(Shv(.A)), we see
that «(f),¢(g) are cofibrations in Ch(Shv(A)). Since Ch(Shv(.A)) is a monoidal
model category, ¢(f)0e(g) is a cofibration in Ch(Shv(A)). So fOg is a cofibration
in Chso(Shv(A)). Also, if f or g is a trivial cofibration in Ch>o(Shv(A)), then
t(f) or «(g) is a trivial cofibration in Ch(Shv(A)). Thus ¢(f)0u(g) is a trivial
cofibration, hence fOg is a trivial cofibration. Therefore Ch(Shv(A)) satisfies
the pushout-product axiom.

Let us verify the unit axiom. If 1. is the monoidal unit of Ch>o(Shv(.A)), and
1 is the monoidal unit of Ch(Shv(.A)), then since ¢ is strong monoidal we have an
isomorphism ¢159 = 1. As 1 = A(—, pt)nis is cofibrant in Ch(Shv(A)) it follows
that 1. is cofibrant in Ch-o(Shv(.A)). This implies the unit axiom. O

5.2.5 Lemma. Ch((Shv(A)) satisfies the monoid axiom.

Proof. Let W, denote the class of weak equivalences and CWs, denote the
class of trivial cofibrations in Ch-o(Shv(.A)). Let W denote the class of weak
equivalences and CW denote the class of trivial cofibrations in Ch(Shv(A)). We
need to show that

((CWxp) @ Cho(Shv(A))) — cof C Wy

Since Wy = =1 (W), this means we have to show that
(((CW=o) ® Cho(Shv(A))) — cof) S W.
Since ¢ is a strong monoidal left adjoint functor we have

L(((CWsp) @ Cho(Shv(A))) — cof) C (L(CWsg) @ Ch(Shv(A))) — cof .
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Since ¢ preserves trivial cofibrations we have («(CW~y) C CW. Since Ch(Shv(.A))
satisfies the monoid axiom (see Lemma 2.2.23), it follows that

(L(CWsp) ® Ch(Shv(A))) — cof C (CW ® Ch(Shv(A))) — cof C W.
Hence Ch-o(Shv(.A)) satisfies the monoid axiom. O

5.2.6 Lemma. Let Icnsh(ay) be a set of generating cofibrations for Ch(Shv(.A)).
Then the set Tpaive(Ich(shv(a))) s a set of generating cofibrations of Ch>o(Shv(A)).
In particular, Ch-o(Shv(A)) has a set of generating cofibrations with finitely pre-
sented domains and codomains.

Proof. By Lemma 5.2.1 all morphisms from 7yaive(Ich(shv(4))) are cofibrations in
Ch>o(Shv(A)). Let f be a cofibration in Ch3¢(Shv(A)). We claim that f €
(Thaive(Lch(shv(a)))) — cof . Since f is a cofibration in Ch3(Shv(A)), also ¢f is a
cofibration in Ch(Shv(.A)). Since Ich(shv(a)) is a set of generating cofibrations for
Ch(Shv(A)), it follows that ¢f € Icnshv(a)) — cof . But then

f = Tnaivebf € Tnaive(]Ch(Shv(.A)) - COf) - (Tnaive(ICh(Shv(A)))) — cof .

Therefore Thaive(Zcn(shv(a))) s a set of generating cofibrations for Ch-o(Shv(.A)).
Since the set

[A(=, X)nis @ S"Z — A(—, X)ois @ D"Z | X € Smy,n € Z}

is a set of generating cofibrations with finitely presented domains and codomains
for Ch(Shv(A)), it follows that the union of {A(—, X)ns ® S"Z — A(—, X)nis @
D"Z | X € Sm,n > 0} and {0 — A(—, X)ns ® S°Z | X € Sm;} together form a
set of generating cofibrations with finitely presented domains and codomains of
Ch-o(Shv(A)). O

Next, we want to show that Chso(Shv(.A)) is weakly finitely generated. To
this end, we need to define a set of weakly generating trivial cofibrations J’. For
this we need to construct a certain set of morphisms similar to Definition 2.2.3.

5.2.7 Definition. For every elementary Nisnevich square ) € Q of the form



The local model structure 101

we have a square

/ B /
A(_uU)nis_> (_7X)nis

la* l')/*

A=, U)nie = A(=, X )i
in Ch(Shv(A)). Take the homological mapping cyinder C of the map A(—, U’)nis —
A(—, X')nis, so that the map factors as A(—,U')ns = C — A(—, X')nis. Let
sg = A(—,U)ns I C. Next take the homological mapping cylinder t¢g of

A(_vU/)nis

the map sg = A(—U)ns JI C — A(—, X)ns, so that it factors as sqg g

-A(*vU,)nis
to = A(—, X)nis. The map pg : sg — tg is a trivial cofibration between finitely
presented objects of Ch-q(Shv(A)).

Let Q be the set of all elementary Nisnevich squares. Define a set of morphisms

Jo == {pg | @ € Q}. Let Ich ,(ap) be a set of generating cofibrations with
finitely presented domains and codomains for Quillen’s standard projective model
structure on Ch(Ab)s,. We define sets of morphisms in Ch(Shv(.A))

Joroj = {0 = A(—, X)nis ® D"Z | X € Smy,n > 0}
and
J" = Tproj U (JoOlcho g (ab))

where JoUIch_ o (ab) s the set of all morphisms which are a pushout product of a
morphisms from Jg and Icpab)s,-

Note that all morphisms from Icp_,an) are cofibrations and all morphisms
from Jy; and Jg are trivial cofibrations. Since Chso(Shv(.A)) is a monoidal
model category it follows that all morphisms from J are trivial cofibrations.

5.2.8 Lemma. A morphism f : A — B in Ch>o(Shv(A)) has the right lifting
property with respect to Jywo; if and only if for every n > 1 the map f, : A, — B,
18 sectionwise surjective.

Proof. For every n > 0, X € Smy we can solve the lifting problem
0 A

A(=, X )nis ® D"Z —> B

in Ch>o(Shv(A)) if and only if f,11 1 A(X)py1 — B(X)n41 is surjective in Ab. [
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5.2.9 Lemma. For an object A in Ch>o(Shv(A)) the following are equivalent:
1. 1(A) is fibrant in Ch(Shv(A)).
2. Ais fibrant in Chso(Shv(A)).
3. A — 0 has the right lifting property with respect to JoUlch.,(ab)-

Proof. (1) = (2). If «(A) is fibrant in Ch(Shv(A)), then A = 7,,04(c(A)) is
fibrant in Ch((Shv(.A)) because Tgooq is a right Quillen functor.

(2) = (3). If A is fibrant in Ch-o(Shv(.A)), then A — 0 has the right lifting
property with respect to all trivial cofibrations, hence it has the right lifting
property with respect to JoUch_yab)-

(3) = (1). Assume that A — 0 has the right lifting property with respect to
JoOIch_o(an). We want to show that ¢(A) is fibrant in Ch(Shv(A)). By Lemma
2.2.4 we have to show that A(()) — 0 is a quasi-isomorphism, and that A sends
elementary Nisnevich squares to homotopy pullback squares. Since A is a chain
complex of sheaves, we have A(()) = 0. Let us now show that A sends elemen-
tary Nisnevich squares to homotopy pullback squares. Let () be an elementary
Nisnevich square. For X,V € Cho(Shv(A)) let Homey_(spyay(X,Y) be the
internal hom of Ch-((Shv(A)) and let

map“"(X,Y) € Choo(Ab)

be defined by
map™"(X,Y) := Homey,_ (shv(ay) (X: Y) (p2).

The square A(Q) will be a homotopy pullback square in Ch(Ab) if and only
if the map
PO - map“"(tg, A) — map"(sq, A)

is a quasi-isomorphism in Ch>¢(Ab). To show that p, is a quasi-isomorphism,
it suffices to show that pf, is a trivial fibration in Ch>(Ab). For that we need
to show that py, has the right lifting property with respect to Ich(ab).,. Now for
every map f: M — N in Icpab),, @ square

>0

M —— map®(tg, A)

N —=map(sg, A)
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has a lift in Ch>o(Ab) if and only if the square

tQ & M H SQ (24 N —;— A
sQ@M
pQDfl

tQ®N

has a lift in Ch3o(Shv(.A)). This lift exists, because A — 0 has the right lifting
property with respect to Jollch(ab)s,- O

In what follows, let Ch(Psh(.A))p0; be the model category Ch(Psh(.A)) with
standard projective model structure. Let Ch(Psh(A)),s be the model category
Ch(Psh(.A)) with local projective model structure. See Section 2.2 for details.
Let Lys : Ch(Psh(A)) = Ch(Shv)A : Uys be the adjunction consisting of the

sheafification and the forgetful functors.

5.2.10 Proposition. Let f : A — B be a morphism in Ch-o(Shv(A)) such that
B is fibrant and f has the right lifting property with respect to J'. Then f is a
fibration in Ch=o(Shv(A)).

Proof. Our first claim is that A is fibrant. Since B is fibrant, by Lemma 5.2.9
B — 0 has the right lifting property with respect to JoUlIch.,(ap). Since f has
the right lifting property with respect to Jolllcp_,(ab) it follows that A — 0 has
the right lifting property with resepct to JoUlcp, ab)- Lemma 5.2.9 implies A
is fibrant.

Next, let D' By € Ch(Shv(A)) denote the chain complex

...()—>0—>Boi—d>B0—>O—>...

that is By in degree 0 and —1, and which is 0 everywhere else. We claim that
D™1B,y is fibrant in Ch(Shv(A)). Indeed, the map UyusD 'By — 0 is a trivial
fibration in Ch(Psh(A))pw0;, hence it is also a trivial fibration in Ch(Psh(.A))us.
Therefore D~'By — 0 is a trivial fibration in Ch(Shv(A)), and so D~! By is fibrant.
Note that Tgo0d(D™'By) = 0 in Ch-o(Shv(A)).

In particular, t(A) & D' By is fibrant in Ch(Shv(A)) and we have that

Taood (L(A) & D_IBO) = Teood (L(A)) @ Tgood(D_lBo) A0 =A.



104 Enriched motivic spaces

Define g : D™'By — «(B) in Ch(Shv(A)) as the map

0 By —4- B, 0
N
B, By 0 0

Then ¢(f) + g : t(A) @ D~'By — «(B) is a map between fibrant objects, and
we have a commutative diagram where the horizontal maps are isomorphisms
Taood (L(A) ® D'By) == Ap0——=A
Tgood(b(f)Jrg)l jf+0 lf
Taood (L(B)) —— B——B

We want to show that f is a fibration in Ch3o(Shv(A)). Since 7yp0q is a right
Quillen functor, we now just need to show that ¢(f)+g is a fibration in Ch(Shv(.A)).
For this it suffices to show that Uys(¢(f)+g) is a fibration in Ch(Psh(.A))s. Since
Unist(A ® D7'By) and Upst(B) are fibrant in Ch(Psh(A))ns, it suffices by [27,
Proposition 3.3.16] to show that Uys(¢(f)+ ¢g) is a fibration in Ch(Psh(A))pro;. So
we have to show that the map ¢(f) + ¢ is sectionwise an epimorphism in Ch(Ab).
In degree n > 1 the map ¢(f) : t(A) — «(B) is sectionwise surjective, because of
Lemma 5.2.8 and the fact that f satisfies the right lifting property with respect
to Jproj- In degree n < —1 the map «(f) + g is sectionwise surjective, because
t(B), = 0. Finally, in degree n = 0 the map ¢(f) + ¢ is sectionwise surjective,
because g : D™'By — «(B) is sectionwise surjective in degree 0. So Upnis(t(f) + g)
is a fibration in Ch(Psh(A))proj. Then ¢(f) + ¢ is a fibration in Ch(Shv(A)), and
then f = 7y00a(¢(f) + ¢) is a fibration in Chso(Shv(.A)). O

5.2.11 Corollary. Ch-o(Shv(A)) is weakly finitely generated and J' is a set of
weakly generating trivial cofibrations for Chso(Shv(A)).

Proof. By Lemma 5.2.3 Ch5¢(Shv(.A)) is cofibrantly generated, so there exists
a set J of generating trivial cofibrations. Since every object in Chsq(Shv(.A))
is small, the domains and codomains from J are small. By Lemma 5.2.6 the
category Ch>o(Shv(.A)) has a set of generating cofibrations with finitely presented
domains and codomains. All morphisms from J’' are trivial cofibrations with
finitely presented domains and codomains, so Proposition 5.2.10 implies that J’
is set of weakly generating trivial cofibrations for Cho(Shv(.A)). O
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5.2.12 Lemma. The model category Chso(Shv(.A)) is cellular.

Proof. Due to Corollary 5.2.11 we know that Ch-o(Shv(A)) is cofibrantly gen-
erated with a set of generating cofibrations with finitely presented domains and
codomains. We now just need to show that cofibrations in Chso(Shv(A)) are
effective monomorphisms. If f is a cofibration in Ch5¢(Shv(.A)), then ¢(f) is a
cofibration in Ch(Shv(A)). Then f is a monomorphism in Ch(Shv(A)) and in
Chso(Shv(.A)). Since Ch>¢(Shv(.A)) is an abelian category, every monomorphism
is effective. Hence f is an effective monomorphism. m

5.2.13 Lemma. The model category Ch=o(Shv(.A)) is strongly left proper in the
sense of [1/, Definition 4.6/

Proof. 1f we have a pushout square

Aozl B

o

in Ch3(Shv(A)) with f a weak equivalence and g : A — C a cofibration, then
the square
(A) @ (7)== (A e 2) s (B)
L(g)®t(2)l L(g®2)l l

(C)RUZ)—1(C® Z) e (D)
is a pushout square in Ch(Shv(A)). Since «(f) is a weak equivalence, ¢(g) is a
cofibration, and Ch(Shv(.A)) is strongly left proper by Lemma 2.2.24, it follows
that «(h) is a weak equivalence in Ch(Shv(A4)). So h is a weak equivalence in

Ch=o(Shv(A)). O

In summary, we have a model category Ch-o(Shv(A)) that is cellular, weakly
finitely generated and whose weak equivalences are the local quasi-isomorphisms.
With respect to the usual tensor product of chain complexes ® it is monoidal,
strongly left proper and satisfies the monoid axiom.

We can transfer this model structure along the Dold-Kan correspondence

DK : Chso(Shv(A)) <+ A%(Shv(A)) : DK
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So we define a model structure on A°?(Shv(A)), where a morphism f is a weak
equivalence (respectively fibration, cofibration), if and only if DK ~!(f) is a weak
equivalence (respectively fibration, cofibration) in Chyo(Shv(A)). Then weak
equivalences in A°?Shv(.A) are the stalkwise weak equivalences of simplicial sets.
Furthermore A°Shv(A) is weakly finitely generated and cellular. From now
on, weak equivalences in A%Shv(A) be called local equivalences, fibrations in
A°PShv(A) will be called local fibrations, and fibrant objects in A’Shv(A) will
be called locally fibrant objects.

Let ® be the degreewise tensor product of A%Shv(A). We want to show
that A°’Shv(.A) is monoidal, strongly left proper and satisfies the monoid axiom
with respect to ®. The Dold-Kan correspondence is unfortunately not strongly
monoidal with respect to the degreewise tensor product @ on A°Shv(A) and
the usual tensor product of chain complexes on Chso(Shv(A)). We define on
Ch=o(Shv(.A)) the Dold-Kan twisted tensor product g% by

AJS%B = DK Y(DK(A) ® DK(B)).

Then the Dold-Kan correspondences is strongly monoidal with respect to the

degreewise tensor product ® on A°Shv(A) and the Dold-Kan twisted tensor

product ® on Ch>o(Shv(.A)). So to show that A°’Shv(.A) is monoidal, strongly
DK

left proper and satisfies the monoid axiom with respect to ®, we now just need to
show that Ch-,(Shv(.A)) is monoidal, strongly left proper and satisfies the monoid

axiom with respect to ® .
DK

5.2.14 Lemma. Let f be a cofibration and Z an object in Chso(Shv(A)). Then
f ® Z is a monomorphism.
DK

Proof. 1f f : A — B is a cofibration in Ch>y(Shv(.A)) then f is a degreewise split
monomorphism. The functor DK : Ch-o(Shv(A)) — A°Shv(.A) can be explicitly
computed in degree n > 0 by

- D X

[n]—[K]
surjective

So DK (f) is computed as the morphism

@fk' @Ak% @Bk

[n] =[] [n]— K] [n]— K]

surjective surjective surjective
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This is a direct sum of split monomorphisms. So DK (f) is a degreewise split
monomorphism in A?Shv(A). Hence, if Z is an object in Ch>o(Shv(A)), then
the degreewise tensor product DK (f) ® DK(Z) is again a split monomorphism
in A?Shv(A). Since DK ™! preserves monomorphisms, this then implies that

f g% Z =DK YDK(f)® DK(Z))

is a monomorphism in Chsq(Shv(A)). O

5.2.15 Lemma. Ch-((Shv(A)) satisfies the monoid axiom with respect to @ .
DK

So A°PShv(A) satisfies the monoid axiom with respect to .

Proof. Since Shv(A) is a Grothendieck category, we know that injective quasi-
isomorphisms in Ch>q(Shv(A)) are stable under pushouts and transfinite compo-
sitions. So to prove the monoid axiom we just need to show that for every trivial
cofibration f : A — B in Ch>((Shv(.A)) the morphism f 1581)( Z is an injective

quasi-isomorphism. By Lemma 5.2.14 we know that it is injective. So we just
need to show that it is a weak equivalence.

By [12] we have for all X, Y € Ch¢(Shv(.A)) a natural chain homotopy equiv-
alence

VXY =X QY
DK

between the usual tensor product of chain complexes and the Dold-Kan twisted
tensor product. We then get a commutative diagram

fD®KZ
AR Z—B ® 7
DK DK
\v4 \v4
T ez T

AR Z—=B®Z

where vertical maps are chain homotopy equivalences, and the lower horizontal
map is a weak equivalence because Ch-o(Shv(.A)) satisfies the monoid axiom with
respect to ®. It follows that the upper horizontal map is a weak equivalence. So
Chx((Shv(.A)) satisfies the monoid axiom with respect to g% : O

5.2.16 Lemma. Ch.o(Shv(A)) is strongly left proper with respect to & . So
DK

A°PShv(A) is strongly left proper with respect to .
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Proof. Since Shv(A) is a Grothendieck category, quasi-isomorphisms in the cate-

gory Chs(Shv(A)) are stable under pushouts along monorphisms. For any cofi-

bration f the map f ® Z is a monomorphism by Lemma 5.2.14. So Ch>(Shv(.A))
DK

is strongly left proper with respect to ® . O
DK

5.2.17 Lemma. Ch-((Shv(A)) is a monoidal model category with respect to @ .
DK

So A°P’Shv(A) is a monoidal model category with respect to .
Proof. The unit for ® is the chain complex Z concentrated in degree 0. That
DK

is a cofibrant object, so Ch-o(Shv(A)) satisfies the unit axiom. Let us now
show the pushout-product axiom. The category of simplicial abelian groups
A° Ab is monoidal and satisfies the monoid axiom with respect to the degree-
wise tensor product of chain complexes ®. If we define a Dold-Kan twisted
tensor product 1%{ on chain complexes of abelian groups Ch¢(Ab) by X 58])( Y =

DK Y(DK(X) ® DK(Y)) then Chso(Ab) with the standard projective model

structure and tensor product ® is a monoidal model category satisfying the
DK

monoid axiom. Similarly, we can also define a Dold-Kan twisted tensor prod-

uct ® on chain complexes of presheaves Ch-o(Psh(A)), and it coincides with
DK

the Day convolution product induced by the Dold-Kan twisted tensor product
on Ch-o(Ab) and the monoidal structure of A. By [20, Theorem 5.5] it fol-
lows that Ch>o(Psh(.A)) with standard projective model structure and the Dold-
Kan twisted tensor product g% is a monoidal model category. For Ch-o(Shv(.A))

the set {A(—, X)nis ® S"Z — A(—, X)nis @ D"Z | X € Smy,n > 0} U{0 —
A(—, X)nis®SZ | X € Smy} is a set of generating cofibrations. All these generat-
ing cofibrations are sheafifications of cofibrations from Ch-o(Psh(.A)). So if f and
g are generating cofibrations in Chso(Psh(A)), and fOg is the pushout-product
with respect to g%, then we can find cofibrations f’ and ¢’ in Ch-q(Psh(A)) such

that f = Lus(f') and g = Lyis(¢'). Then fOg = Lys(f’0g’), where the pushout-
product f'00¢" in Chso(Psh(.A)) is taken with respect to ® . Since Chsq(Psh(.A))
DK

is a monoidal model category with respect to ® it follows that f'[0¢’ is a cofibra-
DK

tion in Chso(Psh(.A)), and therefore flg is a cofibration in Chs((Shv(A)). All
we need to show now is that a pushout-product of a cofibration with a trivial
cofibration is a weak equivalence in Ch3((Shv(A)). So let f : A — B be a cofi-
bration and g : C' — D be a trivial cofibration in Ch>y(Shv(A)). We need to
show that the pushout-product f[g with respect to g% is a weak equivalence in
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Ch=o(Shv(.A)). Consider the diagram

| |

B C—L-A9 D] BeC
DK DK Ag@c DK
DK

BD®Kg B ® D

The morphism h is a base change of A ® ¢. Since g is a trivial cofibration and
DK
Ch>o(Shv(.A)) satisfies the monoid axiom with respect to ® , this means that h
DK
is a weak equivalence in Ch>o(Shv(A)). Similarly B ® g is a weak equivalence
DK

in Ch>o(Shv(A)). So by 2-of-3 it follows that f{g is a weak equivalence in
Ch>o(Shv(A)). So Ch>¢(Shv(A)) is a monoidal model category. O

We document the above lemmas as follows.

5.2.18 Proposition. The model category A°?Shv(A) with the usual degreewise
tensor product is cellular, weakly finitely generated, monoidal, strongly left proper
and satisfies the monoid axiom.

From now on, weak equivalences in A°’Shv(.A) be called local equivalences,
fibrations in A°’Shv(A) will be called local fibrations, and fibrant objects in
A°PShv(A) will be called locally fibrant objects.



Chapter 6

Relation to framed motivic
|'-spaces

Recall that framed motivic I-spaces introduced in [25] model connective motivic
spectra. They are a motivic counterpart of the celebrated Segal I'-spaces [18].

In this chapter we associate framed motivic I'-spaces to enriched motivic A-
spaces, when the category of correspondences A has framed correspondences. In
Section 6.2 we also associate enriched functors of unbounded chain complexes to
enriched motivic A-spaces.

For every natural number n > 0 let n, be the pointed set {0,...,n} where 0
is the basepoint. We write ['? for the full subcategory of the category of pointed
sets on the objects n,. I'? is equivalent to the category of finite pointed sets.
We write I' for the opposite category of I'P?. This category is equivalent to the
category called I' in Segal’s original paper [15].

6.1 Relation to ['-spaces

In the additive context we do not need the category I' as a variable in contrast
to framed motivic T-spaces in the sense of [25]. This section is to justify this fact
(see Proposition 6.1.6). We also associate framed motivic I'-spaces to enriched
motivic A-spaces (see Proposition 6.1.7).

Let B be an additive model category. By I'Spc® (B) we denote the full subcat-
egory of the functor category Fun(I'°?, B) consisting of those functors X : '’ — B

such that for every n € N the canonical map X (ny) — [[X(14) is a weak equiv-

=1

110
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alence in B. This category is called the category of special I'-spaces in B.
We have a functor EM : B — I['Spc®”(B) given by the Eilenberg Maclane

construction EM(A)(ny) := @A. If f:my — ny is a function between pointed
i=1
finite sets, then f is a morphism in I'?, and we define

A)(f): éfl — éA
j=1 i=1

as follows. For 0 < ¢ < n the i-th component EM(A)(f); : A — A is
j=1
EM(A)(f)i:= >, mj;, where m; : @A — A is the j-th projection morphism.
jef~' (i) =1
We have another functor evy : I'Spc™(B) — B given by ev; (X)) := X(1,).

6.1.1 Lemma. The functor ev, : I'Spc®(B) — B is left adjoint to EM : B —
['Spc?(B).

Proof. Given a morphism ¢ : X(1,) — Ain B, we get for every n € N a morphism

X(ny) — @X<1+) — @A = EM(A4)(n4),

which together assemble into a morphism ®(¢) : X — EM(A) in I'Spc*(B).
Conversely, given a morphism ¢ : X — EM(A) in I'Spc®(B), we can evaluate
it at 1, to get a morphism W(¢) : X(14) — EM(A)(14) = A. For every ¢ :
X(14) — A we have ¥(P(p)) = ¢. Now take a morphism ¢ : X — EM(A) in
I'Spc*?(B). We claim that ®(V(¢y)) = ¢. Take n € N and show that ¢(n+) :

X(n) — EM(A) = EBA is equal to (U (¢))(ny) : X(ny) — @X(m = @A

By the universal property of the product € we need to take 1 Wlth 0<1 < n
and show that the following diagram commutes

But this just follows from the naturality of ¢ : X — EM(A). O
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6.1.2 Definition. (1) Let B be an additive model category. A morphism f :
X — Y in I'Spc®(B) is called a weak equivalence if and only if for every n € N
the map f(ny): X(ny) — Y(ny) is a weak equivalence in the model category B.
We write W for the class of weak equivalences in I'Spc™(B).

(2) We write Ho(I'Spc*(B)) for the localization of I'Spc™(B) with respect to
the class of weak equivalences W: Ho(I'Spc™(B)) := I'Spc™(B)[IW 1.

6.1.3 Remark. (1) All isomorphisms in I'Spc*”(B) are weak equivalences. Weak
equivalences in I'Spc®(B) satisfy the 2-out-of-3 property.

(2) The functors EM : B — I'Spc®(B) and ev; : I'Spc*”(B) — B preserve all
weak equivalences.

(3) It is a priori not obvious that the hom-sets of the category Ho(I'Spc*(B))
are small. However, Proposition 6.1.6 below implies that they are in fact small.

6.1.4 Lemma. A morphism ¢ : evy(X) — A is a weak equivalence in B if
and only if its adjoint morphism ®(p) : X — EM(A) is a weak equivalence in
['Spc(B).

Proof. Let ¢ : evi(X) — A be a weak equivalence. Take n € N. Then ®(yp)
evaluated at n, is defined as the composite

X(ny) - Px(1y) - PA=EM(A)(ny).

i=1 =1

The first map is a weak equivalence, because X is a special I'-space. The second
map is a weak equivalence, because ¢ : X(1;) — A is a weak equivalence.
Therefore ®(p) : X — EM(A) is a weak equivalence.

Conversely, let ¢ : ev1(X) — A be a map such that ®(p) is a weak equivalence
in I'Spc™(B). Then ¢ = ®(p)(14) is also a weak equivalence. O

The following lemma is folklore.

6.1.5 Lemma. Let C,D be categories, each equipped with a class of morphisms,
called the weak equivalences, satisfying the 2-out-of-3-property. Let Ho(C), Ho(D)
be the homotopy categories of C, D, i.e. the categories obtained by inverting the
weak equivalences. Let {c : C — Ho(C) be the localization functor of C, and
lp : D — Ho(D) be the localization functor of D. Let F,G : C — D be functors
sending weak equivalences in C to weak equivalences in D. Let 7 : F — G be a
natural transformation. Then the functors F,G induce functors Ho(F'),Ho(G) :
Ho(C) — Ho(D) satisfying Ho(F') o le = lp o F, Ho(G) o b = Ip o G, and
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7 : F — G induces a natural transformation Ho(7) : Ho(F') — Ho(G) such that
for every A € C, the component of Ho(T) at A is given by Ho(7)4 = {p(Ta).

The following statement informally says that ['-spaces in an additive category
B are entirely recovered by B itself (up to homotopy).

6.1.6 Proposition. The adjunction ev; 4 EM induces an equivalence of cate-
gories

Ho(ev;) : Ho(I'Spc*™(B)) = Ho(B) : Ho(EM).

Proof. Since ev; and EM preserve weak equivalences, they induce two functors
Ho(ev;) : Ho(I'Spc™(B)) — Ho(B) and Ho(EM) : Ho(B) — Ho(I'Spc*?(B))
on the homotopy categories. For the adjunction ev; 4 EM there is a unit 7 :
Idrgpesp(3) — EMoev;. By Lemma 6.1.5, applied to F' = Idrgpesr(s), G = EMoeuv;
and 7 = 7, it induces a natural transformation Ho(7) : Iduo(rspese(s)) — Ho(EM)o
Ho(evy).

For every X € I'Spc™(B) the identity morphism ev;(X) — ev;(X) is a weak
equivalence, so by Lemma 6.1.4 applied to A = ev;(X), the adjunction unit map
ny : X — EM(ev;(X)) is a weak equivalence. This implies that the natural
transformation Ho(n) is in fact a natural isomorphism of functors.

Furthermore we have a strict equality ev; o EM = Idg, which implies that
Ho(ev;) o Ho(EM) = Idpe(s). So Ho(ew;) is an equivalence with pseudo-inverse
Ho(EM). O

Let Fr.(k) be the category of framed correspondences. For each V' € Smy,
let oy : V. — V be the level 1 explicit framed correspondence ({0} x V,A! x
V,pra1, pry ). For the next result, assume that A has framed correspondences in
the sense of Definition 5.1.4. So there is a functor ® : Fr,(k) — A which takes
every oy to the identity on V. Let M/" be the category of pointed simplicial
Nisnevich sheaves on Fr,(k): M/" := A°?Shv(Fr,(k), Set.,).

® induces a forgetful functor Us : A%Shv(A) — M/". The category M/" is
enriched in M where for X, Y € M/ the enriched morphism object M/ (XY €
M is defined on Z € Smy, and [n] € A% by

MIT(X,Y)NZ)n == Homy (X, Y (Z x A" x —)).

We have a monoidal adjunction L : M = A°Shv(A) : Upy, where the right
adjoint Upy is the forgetful functor. For X,Y € A°Shv(.A) we have a canonical
map

Upt(Hom nopspy(4) (X, Y)) = M (Us(X), Us(y))
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defined on Z € Smy and [n] € A? by the map

U pa (Hom popgpy ) (X, Y))(Z) = Homaospy(a) (X, Y (Z x A" x —)) 23
— Hom s (Us(X), Us(Y)(Z x A™ x —)).

Let Sm/k, be the category of framed correspondences of level 0 as defined in [25,
Example 2.4]. Tts morphism objects are defined by

Sm/k,(X,Y) = Hom,, (X, Y,).

Since Ly, is lax monoidal, we have for every X,Y € Smj a canonical map
Ly(Sm/k(X,Y)) — Sm(X,Y) in A°Shv(A), which induces by adjunction
a canonical map Sm/ky(X,Y) — Um(Sm(X,Y)) in M. For every enriched
motivic A-space X we can now define a M-enriched functor

Sm/ky — M Vs Up(X(V)).
It acts on morphism sets via the composite
Sm/k (X, Y) = Um(Sm(X,Y)) = Unp(Hompop(spy(ay (X (X), X(Y))) —
= M7 (Us(X (X)), Ua(X(Y))).

With this enriched functor we can then also define a framed motivic I'-space
EM/"(X) in the sense of [25, Definition 3.5] by defining

EM/™(X) : T x Sm/ky — M", EM/"(X)(ny,U) = Up(X(U))".

6.1.7 Proposition. Suppose that A has framed correspondences in the sense of
Definition 5.1.4. For every special enriched motivic A-space X the framed motivic
I'-space

EM/"(X) : T x Sm/k, — MI", EM/"(X)(ny,U) = Us(X(U))",
is a very special framed motivic T-space in the sense of [25, Azioms 1.1].

Proof. We verify the axioms 1)-5) and 7) for very special motivic I'-spaces from
[25, Axioms 1.1]. For Axiom 1) we need to check that EM/"(X)(0,,U) = 0,
EM/"(X)(n,0) = 0 and that

EM/™(X)(ny,U) = ﬁEMf“(X)(h, U)

i=1
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is a local equivalence. We have that EM/"(X)(0,,U) = Us(X(U))° = 0, and
MY () (1, U) = Ua(X(U))" = [[EMI(X)(1,, 1)
i=1

is an isomorphism. According to Lemma 4.1.2 we have that X(§) = 0. This
implies that EM/"(X)(ny, ) = 0, hence Axiom 1) holds. Axioms 2)-5) for motivic
I-spaces follow directly from axioms 1)-4) of special enriched motivic A-spaces,
except for Axiom 2) we need to check that the presheaf of stable homotopy groups

V= S EMIT(X)(S,U)(V)

is radditive and o-stable. The o-stability follows from the fact that ® : Fr, (k) —
A sends oy to the identity. Let us now check that it is radditive. For every
U € Smy, we have that X'(U) is a sheaf of simplicial abelian groups. This implies
that EM/"(X)(S,U) is a sheaf of S'-spectra. So we have isomorphisms of S'-
spectra EM/"(X)(S,U)(#) = 0 and

EM/"(X)(S,U)(\ ]_[ Va) = EMY7(X)(S,U)(Vy) x EMI"(X)(S,U) (V).
Since stable homotopy groups 7 preserve products and zero objects, we get that
Vi mEM/(X)(S,U)(V)

is radditive. Axiom 7) follows from the fact that &' lands in sheaves of abelian
groups. O

6.1.8 Lemma. Suppose that A has framed correspondences in the sense of Def-
inition 5.1.4. Let X be an enriched motivic A-space and let EM/™(X) be its
associated framed motivic I'-space from Proposition 6.1.7. Then X s very effec-
tive in the sense of Definition 5.1.2 if and only if EMI™(X) is very effective in
the sense of [25, Axioms 1.1].

Proof. This follows from the definitions of effectiveness for X and EM/"(X). O

6.2 Enriched functors of chain complexes

In the previous section we associated framed motivic I'-spaces to enriched mo-
tivic A-spaces. In this section we associate Ch(Shv(A))-enriched functors in
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[Sm, Ch(Shv(A))] to enriched motivic A-spaces. There is a canonical isomor-
phism of categories Ch([Sm,Shv(A)]) = [Sm, Ch(Shv(A))] constructed in [20].

Likewise, there is a canonical isomorphism of categories A% ([Sm,Shv(A)]) =
[Sm, A% (Shv(A))]. In what follows we shall freely use these isomorphisms.

6.2.1 Definition. Let X be an special enriched motivic A-space and let
DK™ : A%[Sm, Shv(A)] — Chso([Sm, Shv(A)])

be the normalized Moore complex functor from the Dold-Kan correspondence.
Denote by A the composite functor

A?[Sm, Shv(A)] 2575 Chao([Sm, Shv(A)]) — Ch([Sm, Shv(A)]).

6.2.2 Proposition. Let X € A%[Sm,Shv(A)| be an enriched motivic A-space.
Then X is special if and only if A(X) is in DM 4[Sm)|, where the latter category
1s defined in Section 3.1.

Proof. Four axioms defining special enriched motivic A-spaces correspond to four
properties of functors in DM 4[Sm]. More precisely, the following four properties
are true.

(1) X satisfies axiom (1) of special enriched motivic A-spaces if and only if
for every U € Smy, the complex of sheaves A(X)(U) has A'-invariant cohomology
sheaves.

(2) X satisfies the cancellation axiom (2) if and only if A(X') satisfies cancel-
lation in the sense of Definition 3.1.6.

(3) X satisfies the Al-invariance axiom (3) if and only if A(X) is covari-
antly Al-invariant in the sense that A(X)(U x A') — A(X)(U) is a local quasi-
isomorphism.

(4) X satisfies the Nisnevich excision axiom (4) if and only if A(X) satis-
fies Nisnevich excision in the sense of Definition 3.1.9. Here the functor DK ! :
A°PShv(A) — Chso(Shv(A)) preserves homotopy cartesian squares for the follow-
ing reason: Since DK ! preserves all weak equivalences, it is naturally weakly
equivalent to its right derived functor RDK ™!, and by [2, Proposition 4.10] the
right derived functor RDK ! preserves all homotopy limits, including homotopy
pullback squares. O



Chapter 7

Reconstructing SH(k)>O,Q

Based on the material and techniques developed in the previous chapters, we
prove four reconstruction theorems in this chapter. Firstly we prove Theorem
7.3.3 and Theorem 7.3.11 which recover DMy o and DM from special en-
riched motivic A-spaces. Secondly we prove Theorem 7.4.2 and Theorem 7.4.4
which recover SH(k)s o and SH"*%(k)q from rational special enriched motivic
A-spaces.

7.1 The Rondigs—Ostveer Theorem for enriched
motivic spaces

Throughout this section X is a pointwise locally fibrant special enriched motivic
A-space.

7.1.1 Definition. We can extend X to an enriched functor
EM(X) : T'? x Sm — AShv(A) (ny,U) — X(U)".

We can take the (S!,G,,)-evaluation of EM(X) to get a motivic bispectrum
evgi g, (EM(X)) € SH(k). We define the bispectrum associated to X to be
this bispectrum evgi g, (X) = everg, (EM(X)). If A has framed correspon-
dences, then evgi g, (X) is also the evaluation of the framed motivic I'-space
EM/"(X) from Proposition 6.1.7. Then by [25, Section 2.7] the bispectrum
evsi g, (X) = evgrg, (EM/T(X)) is a framed bispectrum in the sense of [24,
Definition 2.1]. In this case we say that evgi g, (X) is the framed bispectrum
associated to X .

117
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In this section we prove the following theorem extending Rondigs—Ostveer’s
Theorem [16].

7.1.2 Theorem. For every U € Smy, we have a natural isomorphism
evst g, (X) A Y36, Us = evgt g,, (X (U x —))
in SH(k)[1/p], where p is the exponential characteristic of k.

To prove it we will need a few lemmas. For a finite pointed set ny = {0,...,n}

and U € Smy, let ny ®U be the n-fold coproduct [[U. Let fM be the category of
i=1
finitely presented motivic spaces in the sense of [15]. Given an enriched motivic

A-space X we can define an extended functor X : fM — A%Shv(A) by
A= s e (Bl @ O

where A° is a cofibrant replacement of A in fM. We have for all U € Sm
that X(U) = X(U) in AShv(A). Let evgi g, (X) be the (S, G,,)-evaluation
bispectrum of the extended functor X : fM — A%Shy(A).

7.1.3 Lemma. We have a canonical isomorphism of motivic (S, G,,)-bispectra
evsi g, (X) = evsig,, (X) between the (S*, G, )-evaluation of the extended functor
X, and the bispectrum associated with X in the sense of Definition 7.1.1.

Proof. By Lemma 4.1.2 we have for all U,V € Sm;, an isomorphism X (U [[V) &

X(U) @ X(V) in AShv(A). This implies that we have for all U € Smg,n > 0

an isomorphism X (ny @U) = PX(U) = EM(X)(ny,U) in A°?Shv(A). We then
i=1

compute for A € fM that

(A)n (A[kff(l]l)TﬁAcX(A[k]n& & U)n (A[kff(!fl)TaAcEM<X>(A[k]n’+7 U)n

So X naturally extends EM(X) from T x Sm/k, to fM. This then implies
that

evgr g, (X) = evgr g, (EM(X)) = evgi g, (X)

as required. O
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Proof of Theorem 7.1.2. Using Definition 6.2.1 we can associate to X an enriched
functor A(X) : Sm — Ch(Shv(A)). By Proposition 6.2.2 the functor A(&X) is in
DM 4[Sm). By Proposition 3.1.13 this implies that A(X) is strictly ~-local in
the sense of 3.1.3. Since X' is pointwise locally fibrant, it follows that A(X) is
~-fibrant in the sense of Definition 3.1.11.

Using Section 4.2 we can associate to A(X) an M-enriched functor A(X)M :
fM — Spgi(M). We can take the 0-th level of this functor to get a motivic func-
tor A(X))1: fM — M. By Lemma 4.2.7 the motivic functor A(X))* preserves
motivic equivalences between cofibrant objects. By [34, Appendix B, Corollary
B.2] the suspension bispectrum X U, is strongly dualizable in SH(k)[1/p].
From Lemma 4.2.2 it follows that we have an isomorphism

evgt g,, (M) A %6, Ur Zevag,, (A(X)(U x =)

in SH(k)[1/p]. To prove the theorem, we now just need to show that there is a
natural isomorphism

€Vs1 G,, (A(X)'S/l) — eVS1 G,, (X)

in SH (k). For this we need some intermediate steps. Firstly, by Lemma 7.1.3 we
have an isomorphism

~

evs1 G, (X) = evs g, (X).
So we now just need to find an isomorphism
evsi e, (A(X)") = evsi g, (X)

in SH(k).
In what follows, we let

DK™ : A°?Shv(A) — Chso(Shv(A))

be the Dold-Kan equivalence, i.e. the normalized Moore complex functor, for the
Grothendieck category Shv(.A4). We let

Dthl(Shv(A)) : A’Ch(Shv(.A)) — Ch-((Ch(Shv(A)))

be the Dold-Kan correspondence for the Grothendieck category Ch(Shv(A)). And
we let
DK ! . APA%Shy(A) — Ch-o(Ch=o(Shv(A)))
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be the Dold-Kan correspondence applied twice, so that it takes bisimplicial ob-
jects to double complexes.
Using Section 4.1, equation (4.1) we can extend A(X) to a functor

A(X) : fM — Ch(Shv(A)),
— o 1 . Aop
A(X)(A) = TOt(DKCh(Shv(A))((A[k]cflljl)T_)AcA(X) (Akl+ ® U))).
Now for every A € fM we have a natural quasi-isomorphism

DK"Y (X (A)) — A(X)(A)

in Ch(Shv(A)) for the following reason: X'(A) is the diagonal of the bisimplicial
sheaf
li X(A U).

@St Ak 2 )
By [8, page 37, equation 24|, or [12, Theorem 2.9], for every bisimplicial object
S € A’ A°Shv(A) there is a quasi-isomorphism

DK™ (diag(S)) — Tot( DK e (S))

in Ch((Shv(.A)). So for every A € fM there is a quasi-isomorphism

DK™ (X(A)) = Tot(DKZ . .(  colim  X(Alm], @ U))) =

(A[m] XU)+—>AC

—

= TOt(DKC_hl(Shv(A))((A[m}cglljim_}AcDK_l(X(A[m]ﬁ- ®U)))) = AX)(A).

By construction H)?) lands in Ch-((Shv(.A)), so we can take the functor

—

DK o A(X) : fM — A%Shv(A)

and form the naive (S', G,,)-evaluation bispectrum

—

evsi g, (DK o A(X)) € SH (k).
The above quasi-isomorphism, then induces an isomorphism

evgi g, (DK o /@) — 6051,Gm(2\?)
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in SH(k). So to prove the theorem we now just need an isomorphism

—

€Vs1 G,, (A(X)éw) — €Vs1 G,, (DK o A(X))

in SH(k).
By Lemma 4.2.5, for every A € fM with cofibrant replacement A¢ we have
an isomorphism

U o A(X)(A) = A(X)M(A9)

in Spgi(M), where U : Ch(Shv(A)) — Spgi (M) is the canonical functor defined
in Section 4.2. Let evy : Spgi(M) — M be the functor taking the 0-th level of
a Sl-spectrum. So A(X)}M = evg o A(X)M™. By the proof of Lemma 4.2.4, the
functor evy o U is isomorphic to the composite

Ch(Shv(A)) 2 Cho(Shv(A)) 25 APShv(A4) 5 M,

where 7 is the good truncation functor and U is the forgetful functor. Since

m lands in Ch>o(Shv(.A)), it does not get changed by truncation. So we get
that

—

evooUo/@ =2 UoDKoA(X).
So for every A € fM we have a natural isomorphism
(U o DK o A(X))(A) — A(X)M(A°)

in M. Since S! and G,, are cofibrant in f M, we get an isomorphism

—_—

€Vs1 G,, (A(X)é\/l) — evgst G,, (DK o A(X))

in SH(k), as claimed.
Putting it all together, we get a commutative diagram

6U51’Gm(A(X)6M) VAN Ekos‘ol,GmU-I- = evsl’Gm(A<X>0/Vl(U X —))

~ ~

— —

evsi g, (DK o A(X)) ANXG o Uy —=evsig,, (DK o A(X)(U x —))

~ ~

61}517@"1(/?) NEG g, Ut evslmeQ)E(U X —))

~ ~

evs G, (X) AN E5i g, Us Vst G,, (X (U X —))
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in which all the vertical maps and the top horizontal map are isomorphisms in
SH(k)[1/p]. It follows that the bottom horizontal map is also an isomorphism in
SH(k)[1/p]. This completes the proof. O

7.2 A motivic model structure for enriched mo-
tivic A-spaces

In Section 5.2 we showed that A°’Shv(A) with the degreewise tensor product
® has a model structure that is cellular, weakly finitely generated, monoidal,
strongly left proper and satisfies the monoid axiom (see Proposition 5.2.18). We
can apply [14, Theorem 4.2] to this model structure to get a weakly finitely
generated model structure on the category of enriched functors [Sm, A’Shv(.A)]
in which the weak equivalences, respectively fibrations, are the Sm-pointwise
local equivalences, respectively Sm-pointwise local fibrations. We call this the
local model structure on [Sm, A?Shv(A)]. By [11, Theorem 4.4] the local model
structure on [Sm, AShv(A)] is monoidal with the usual Day convolution prod-
uct. By [14, Corollary 4.8] the local model structure on [Sm, A?Shv(A)| is left
proper. Since [Sm, A°?Shv(.A)] is weakly finitely generated, and all cofibrations in
A°Shv(A) are monomorphisms, it follows that [Sm, A°?Shv(A)] is cellular. Note
that for every U € Sm;, the representable functor Sm(U, —) = Sm(U, —) ® pt is
cofibrant in [Sm, A%Shv(A)].

In this section we define another model structure on [Sm, A°?Shv(.A)] such
that the fibrant objects are the pointwise locally fibrant special enriched motivic
A-spaces.

7.2.1 Definition. Similarly to Section 3.1 we define four families of morphisms

in [Sm, A?Shv(A)].
1. We let Al be the family of morphisms consisting of
Sm(U,—) @ A" — Sm(U, -)
for every U € Smy.
2. We let 7 be the family of morphisms consisting of the evaluation map
Sm(G)" x U, —) @ G — Sm(G)" x U, —)

for every n > 0 and U € Smy.
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3. We let Al be the family of morphisms consisting of
Sm(U,—) — Sm(U x A', —)
for every U € Smy,.

4. We let Nis be the following family of morphisms: For every elementary
Nisnevich square ) of the form

7_) -TS?TL(X, _)

in [Sm, A’Shv(A)], which induces a map on homotopy fibers
pg : hofib(7*) — hofib(a™).

We let Nis be the family of morphisms consisting of pg for every elementary
Nisnevich square ).

Finally, we let ~ denote the union of all these four classes of morphisms.
~= A + 7+ A) + Nis.
7.2.2 Definition. For XY € [Sm, A%Shv(A)] let
map™ S (X V) € APShv(A)

be the simplicial sheaf of morphisms from X to Y. It is defined by taking the
internal hom Homg,, rorshy(a) (X, Y) and evaluating it at the point pt € Sm.

map®” ™ (X, Y) = Homys,, aersheay) (X, Y) (p).
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For U € Sm;, and n > 0 we have
mapAOpSh"(A) (X,Y)(U),, = Homsm aorshv(ay (X @ U @ Aln],Y)

in Ab.

Similarly to Definition 3.1.3, given a class of morphisms S in [Sm, A%Shv(.A)]
and an object X € [Sm, A’Shv(A)] with pointwise locally fibrant replacement
X7 we say that X is strictly S-local if for every s : A — B with s € S the
morphism

s* mapA"pShv(A) (B, Xf) N mapAOPShv(A)(B’ Xf)

is a local quasi-isomorphism of sheaves.

7.2.3 Lemma. A enriched motivic A-space X : Sm — Shv(A) is special if and
only if it is strictly ~-local.

Proof. By Lemma 6.2.2 we know that X is special if and only if A(X) lies in
DM 4[Sm). By Proposition 3.1.13 this is the case if and only if A(X) is strictly
~-local in the sense of Definition 3.1.3, and this is the case if and only if X is
strictly ~-local in the sense of Definition 7.2.2. m

7.2.4 Definition. Given a class of morphisms S in [Sm, A%Shv(A)], we write 5
for the class of morphisms

S:={s®Z|se€S ZecSm}.

We define the enriched motivic model structure on [Sm, A°?Shv(A)] to be the
left Bousfield localization of the local model structure on [Sm, A?Shv(A)] with
respect to the class of morphisms ~. This model category will be denoted by

(S, APShv(A)] o

7.2.5 Lemma. Let S be a class of morphisms with cofibrant domains and co-
domains in [Sm, A’Shv(A)]. Then an object F' € [Sm, A?Shv(A)| is strictly
S-local if and only if its local fibrant replacement F/ is S-local in the usual model
category theoretic sense of [27, Definition 3.1.4).

Proof. Let F f be a pointwise locally fibrant replacement of . For every s : A —
B,s e S let s°: A° — B¢ be a cofibrant replacement of s. This means we have a
commutative square
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such that the vertical maps are trivial fibrations, A¢ and B¢ are cofibrant and s¢
is a cofibration. R

Note that for every s € S the domain A and codomain B are already cofibrant,
but s is not neccessarily a cofibration.

For X,Y € [Sm, A%Shv(A)] let map®™5(X,Y) € A% Set denote the non-
derived simplicial mapping space. It can be defined by

map™" (X, Y) = Homys,, onshua) (X, Y) (1) ().

Now F/ isA:S’\—local in the usual model category theoretic sense if and only if
for every s € S the map

SO - mapA"p Sets(Bc’ Ff) — mapA"p Sets(Ac’ Ff)
is a weak equivalence. We have a commutative square

map®” 5B, F/) &, map®” S5et(A, F/)

l |

mapA"p Set(Bc7Ff) &_mapAOP Set(Ac, Ff)
Since the functor map®™Sts(— F/) sends trivial cofibrations to trivial fibra-
tions, it follows by Ken Brown’s lemma [28, Lemma 1.1.12], that the functor
map®” e (— F/) sends weak equivalences between cofibrant objects to weak
equivalences. Since the maps A° — A and B — B are weak equivalences
between cofibrant objects, it follows that the vertical maps in the above com-
mutative diagram are weak equivalences. Therefore F' f'is S-local if and only if
for every s € S the map

s* : map®” Sets(B, Ff) — map®” Sets( A, FT)

is a weak equivalence. Every s € S is of the form ¢t ® Z for some Z € Sm;, and
t:C — D witht € S. We have a commutative diagram in which the vertical
maps are isomorphisms:

map?”Sets(D g 7, F7) Y21 (t®2)” map?” 8 (C' @ Z, F7)

. |-

map®”SMA(D, FF)(Z) ~ mapA7SA (C, F)(2)
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So F7 is S-local if and only if for every t : C' = D,t € S the map
t* - map” VA (D, FF) - map®™SVA () BT

is a sectionwise weak equivalence in A°?Shv(A). Since C, D are cofibrant and F/
is locally fibrant, the domain and codomain of t* are fibrant. So t* is a sectionwise
weak equivalence if and only if it is a local weak equivalence. Therefore F7ig
S-local if and only if F is strictly S-local. O]

So the fibrant objects of [Sm, A?Shv(A)]met are the pointwise locally fibrant
special enriched motivic A-spaces.

7.2.6 Definition. Let D([Sm, A°’Shv(.A)]) be the homotopy category of the
category [Sm, A’Shv(A)] with respect to the pointwise local model structure.
Define Spc,[Sm| as the full subcategory of D(|[Sm, A?Shv(A)]) consisting of
special enriched motivic A-spaces.

We document above lemmas as follows.

7.2.7 Theorem. The category Spc4[Sm]| is equivalent to the homotopy category
of the model category [Sm, APShv(A)|mot- The fibrant objects of the model cate-
gory [Sm, APShv(A)|met are the pointwise locally fibrant special enriched motivic
A-spaces.

The preceding theorem is also reminiscent of Bousfield-Friedlander’s theo-
rem [5] stating that fibrant objects in the model category of classical I-spaces are
given by very special I'-spaces.

7.3 Reconstructing DM;’{;O

7.3.1 Definition. For U € Smy, define M5 (U) € DM 4 by
M3 (U) = (Ma(U % G)"))azo,

where M4(X) := CLA(—, X)ns is the A-motive of X. We call M§™(U) the big
A-motive of U.

Let U : DM 4 — SH(k) be the forgetful functor, and let £ : SH(k) — DM4
be its left adjoint.
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7.3.2 Lemma. The natural morphism
L(ZF 6, Us) = My~ (U)
18 an isomorphism in DM 4.
Proof. In weight n this morphism is the motivic equivalence
A=, U)nis = CLA(=, U)nis = Ma(U).

So the map L(XF 5 Uy) — MG (U) is a levelwise motivic equivalence, and
therefore an isomorphism in DM 4. ]

Let DM 40 be the full subcategory of DM 4 consisting of those G,,-spectra
of chain complexes which are connective chain complexes in each weight. Note
that by construction, for every U € Sm;, we have Mﬁ’m(U ) € DM 4 >o.

7.3.3 Theorem. The naive G,,-evaluation functor is an equivalence of categories

evg,, : Spca[Sm| — DM 4 >o.

m

Proof. Since the exponential characteristic p of k is invertible in A, it follows
from 3.1.14 that the naive G,,-evaluation functor is an equivalence of categories

evgG,, - DMA[Sm] — DMA

Here DM 4[Sm] consists of those enriched functors F' : Sm — Ch(Shv(.A)) which
satisfy contravariant Al-invariance, cancellation, covariant Al-invariance and Nis-
nevich excision (see 3.1 for details).

Let DM4[Sm]so be the full subcategory of DM4[Sm] on those functors
F : Sm — Ch(Shv(.A)) which factor over Ch-o(Shv(A)). The equivalence evg,,
restricts to a fully faithful functor on connective chain complexes

€UG,,,>0 1 DMa[Sm]z0 — DMazo.

The functor evg,, : Spcy[Sm| — DM >0 of the theorem will factor through
evg,,,>0- We claim that this restricted G,,-evaluation functor evg,, >0 is an equiv-
alence. Since it is fully faithful we only need to show essential surjectivity.

Take F' € DMy >o. Since evg,, is essentially surjective on non-connective
chain complexes, there exists G € DM 4[Sm] such that evg, (G) = F. Let

750 : Ch([Sm, Shv(A)]) — Ch-o([Sm, Shv(A)])
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be the good truncation functor for chain complexes of the Grothendieck category
of enriched functors [Sm,Shv(A)]. Also denote by 7> : Spg, (Ch(Shv(A))) —
Spg,, (Ch=o(Shv(\A))) the good truncation functor of Ch(Shv(A)) applied in each
weight. Consider the commutative diagram

evg,, (T20(G)) — 7=0(F)

J X

evg,, (G) — F

We know the bottom horizontal map and the right vertical map are isomorphisms
in DM 4. We claim that 7-¢(G) — G is an isomorphism in D([Sm, Shv(.A)]). For
this it suffices to show that for every U € Smy the negative homology sheaves of
G(U) are zero. We have a chain of isomorphisms in D(Shv(.A))

GWU) = G(U x pt) = evg,, (G(U x —))(0)
By Theorem 4.2.1 we have isomorphisms in DM 4
evg,, (G(U x —)) 2 evg,, (G) A MG™(U) =2 F A MG (U).

Since DM 40 is closed under the smash product of DMy, we have that F' A
M5™(U) € DMy 5o. Therefore G(U) = evg, (G(U x —))(0) has vanishing neg-
ative homology sheaves. So 750(G) — G is an isomorphism in D([Sm, Shv(.A)]),
and then it follows that the composite map

evg,, (T>0(G)) — evg,, (G) — F
is an isomorphism in DM 4. So
€VG,,,>0 - DMA[Sm]>0 — DMA,>0

is essentially surjective, and hence an equivalence.
Let D([Sm, Ch-o(Shv(A))]) be the homotopy category of [Sm, Ch-o(Shv(.A))]
with respect to the local model structure. The Dold-Kan correspondence induces

an equivalence of categories A : D(|[Sm, A°?Shv(A)]) — D([Sm, Ch-o(Shv(A))]).
From Proposition 6.2.2 it now follows that we have a commutative diagram

D([Sm, APShv(A)]) 2> D([Sm, Chso(Shv(A))])

! |

Spc4[Sm] DM 4[Sm]=0




Reconstructing DM;{;O 129

where the vertical maps are the inclusion maps. Proposition 6.2.2 implies that
the bottom horizontal arrow is essentially surjective. Since the the vertical maps
and the top horizontal map are also fully faithful, we know that the bottom
horizontal map is fully faithful, so it is an equivalence of categories. So we get an
equivalence of categories evg,, : Spc4[Sm| — DM 4> as was to be shown. n

From now on assume that A has framed correspondences in the sense of
Definition 5.1.4.

7.3.4 Proposition. Let X be a special enriched motivic A-space with associated
framed bispectrum evg: g, (X) € SH(I{:){:; as in Definition 7.1.1. Then the framed
bispectrum evg: g, (X) is effective, in the sense of [2/, Definition 3.5] if and only
if X is very effective, in the sense of Definition 5.1.2.

Proof. Suppose that X is very effective. By Lemma 6.1.8 the enriched motivic
A-space X is very effective if and only if the associated framed motivic I'-space
EM(X) is very effective. If EM(X) is very effective, then this clearly implies that
the framed bispectrum evg: g, (X), from Definition 7.1.1, is very effective in the
sense of [24, Definition 3.5].

Now let us prove the other direction. Assume that evg: g, (X) is very effective
in the sense of [24, Definition 3.5]. Then for every n > 0 the diagonal of the
bisimplicial abelian group X (G;\n”)(ﬁj( /1) is contractible.

We need to show that X' satisfies Suslin’s contractibility, i.e. that for every
U € Sm, the diagonal of X(G/! x U)(A¥%/x) is contractible. So take U € Sm.
Then the functor X(U x —) : Sm — AShv(A) is again a special enriched
motivic A-space, so we can form the framed bispectrum evgi g, (X' (U x —)). Let
evg g, (X (U x =) be alevelwise local fibrant replacement of evg: g, (X (U x —)).
From [24, Lemma 2.8] it follows that evgi g, (X (U x —))7 is motivically fibrant.

By Theorem 7.1.2 we have an isomorphism

evs1 G, (X) AN EGi g, Uy Zevai g, (X (U x —))

in SH(k)[1/p]. So after inverting p, the bispectrum evgi g, (X(U x —))/ is a
motivically fibrant replacement of evsi g, (X) A XG5 ¢ U

Since both evgi g, (X) and Y5 g, Us are very effective, this implies that
evgi g, (X (U x =) is very effective in SH(k)[1/p).

From Lemma 5.1.3 it now follows that evgi g, (X(U x —))f is very effective
when regarded as an object in SH (k). With [24, Lemma 3.2] it follows that the
diagonal of X(G)! x U )(ﬁ}< )1,) 1s contractible, so X satisfies Suslin’s contractibil-
ity. 0
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The proof of Proposition 7.3.4 also implies the following corollary.

7.3.5 Corollary. Let X be a special enriched motivic A-space. Then X is very
effective in the sense of Defintion 5.1.2 if and only if for everyn > 1 the diagonal
of X(G")(A%,,) is contractible.

Let U : DMy — SH(k) be the canonical forgetful functor, and let £ :
SH(k) — DMy be its left adjoint. Let DMST be the full triangulated sub-
category of DM 4 compactly generated by the set {ME”(U) | U € Smy}. See
7.3.1 for the definition of M§™(U). Recall that SH*"(k) is the full subcategory
of SH(k) generated by the suspension bispectra X% ; U, for U € Smy,.

7.3.6 Lemma. Let C and D be triangulated categories, and let F : C — D be
a triangulated functor. Assume that F preserves small coproducts. Let Sc be a
full triangulated subcategory of C compactly generated by a set ¥c. Let Sp be a
full triangulated subcategory of D closed under small coproducts. Assume that for
every A € X we have F(A) € Sp. Then for every A € S¢ we have F(A) € Sp.
In particular F' restricts to a triangulated functor F' : S¢ — Sp.

Proof. Consider the full subcategory F'~1(Sp) in C consisting of all those objects
A € C for which F(A) € Sp. We need to show that S C F~!'(Sp). Since
Ye € F!(Sp), it suffices due to [41, Theorem 2.1] to show that the subcat-
egory F~1(Sp) is a triangulated subcategory closed under triangles and small
coproducts in C.

If we have a triangle X —Y — Z — 3 X in C with X,Y € F~!(Sp), then

F(X) = F(Y) = F(Z) = SF(X)

is a triangle in D with F(X), F(Y) € Sp. Since Sp is closed under triangles it
follows that F(Z) € Sp, so Z € F~(Sp), so F~!(Sp) is closed under triangles.
Since F' preserves small coproducts and Sp is closed under small coproducts, it
follows that F~'(Sp) is closed under small coproducts. Therefore F~!(Sp) is
closed under triangles and small coproducts. We get that Sec C F~!(Sp), which
proves the lemma. O]

7.3.7 Lemma. If X € SH(k), then L(X) € DMS. So the functor L :
SH(k) — DMy restricts to a functor

£ SH (k) — DM
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Proof. By Lemma 7.3.2 we have L(X% ; Uy) = MG™(U) € DM, Since the
X3 g, Uy compactly generate SH ¢ (k) the result now follows from Lemma 7.3.6.
[

7.3.8 Lemma. The triangulated functor U : DMy — SH(k) preserves small
coproducts.

Proof. Let I be a set, and {A; | i € I} a family of objects. We want to show that

the canonical morphism
[Jua) — uJ4)

el i€l

is an isomorphism in SH (k) The triangulated category SH (k) is compactly
generated by the set Yspp) = {E% o Uy NG [ U € Smy,n € Z}. Thus to
show that the above morphlsm is an 1somorphlsm it suffices to show that for all
G € Ysu k) that the map

Homgg ) (G, HU ) — Homgp(x (G,U(HAZ‘))

el el

is an isomorphism of abelian groups.
The objects X3 Uy AG)" are compact in SH (k), and also each L(Xg ; UyA
G;") is compact in DM 4. So for all G € Xgp k) we get a chain of bijections

HOHlSH(k)(G, HZ/{( HHomSH(k: G Z/{ HHOIHSH ) A) &
icl iel icl
= Homgy ) (L(G), | [Ai) = Homspa (G U] [A))
iel icl

Therefore

[Jua) — uJ4)

il el
is an isomorphism in SH (k), and U preserves small coproducts. [

7.3.9 Lemma. Assume that A satisfies the ﬁ—property in the sense of Definition
5.1.4. Then for all X € DMy we have X € DM if and only if U(X) €
SHe (k).

Proof. Our first claim is that U(M§™(U)) € SH (k) for every U € Smy.
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Let 14 € DM 4 be the monoidal unit. Then

I

UMZ™(U) = UM (U) A La).
We can regard SHT(k)[1/p] as a full subcategory of SH*T(k). From Lemma 5.1.3
it follows that the adjunction U : DM 4 = SH(k) : L restricts to an adjunction

U: DMy s SH(K)[1/p]: L.

By [34, Appendix B, Corollary B.2] the suspension spectrum g1 ¢, U is strongly
dualizable in SH(k)[1/p]. So we can apply [3, Lemma 4.6] to get an isomorphism

UMG™(U)ANLQ) ZULES g, Us) AL) E Sai6, Up AU(L)

in SH(k)[1/p]. Now g1 g, Us is effective, and SH"(k) is closed under the A
product, so to show that U(M3"(U)) € SH(k) , we now just need to show
that U(14) € SHe(k). The bispectrum U(14) is isomorphic to the bispectrum
MG™(pt) = (MA(GL))j50. By construction, the latter bispectrum is a framed
bispectrum in the sense of [21], because A has framed correspondences. Since A
also has the ﬁ—property, the bispectrum Mﬁ’" (pt) is effective in the sence of [21,
Definition 3.5]. And by [24, Theorem 3.6] this implies that U(14) € SH*"(k). So
we now have for every U € Smy, that U(M ™ (U)) € SH* (k).

Due to Lemma 7.3.8 we can now apply Lemma 7.3.6 to get for every E €
DM that U(E) € SH*(k) (This argument is similar to an argument used in
the proof of [3, Corollary 5.4]). So the functor U : DM, — SH(k) restricts to
a functor U : DM — SH"(k). This shows one direction of the lemma. Let
us now show the other direction of the lemma. According to Lemma 7.3.7 the
functor £ : SH(k) — DM 4 restricts to a functor £ : SH(k) — DMS. The
functor £5% is left adjoint to /¢%.

By [53, Remark 2.1] the inclusion functors ¢ : DM$ — DMy and ¢ :
SHe"(k) — SH(k) have right adjoints rq : DMy — DM and ry : SH(k) —
SHe(k).

The following diagrams commute:

DM <=L e (k) DM L SHe (k)

(P (A

DM, <~— SH(k) DM, —%~ SH(k)
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From the commutativity of the left diagram it follows by adjunction that also the
following diagram commutes:

DML SH (k)

DM, —Y~ SH(k)

Take X € DM 4 such that U(X) € SH*(k). We need to show that X € DM
Since U(X) € SH(k) the counit ¢ of the adjunction ¢ : SH*(k) = SH (k) : rq
is an isomorphism at U(X). So ey(x) : t(ro(U(X))) = U(X) is an isomorphism
in SH(k). By the commutativity of the above diagram this implies that the
composite

U(i(ro(X))) = eU (ro(X))) = 1(ro(U(X))) = UX)

is an isomorphism in SH (k). But this composite is equal to U(ex) where ex :
t(ro(X)) — X is the counit map of the adjunction ¢ : DM = DMy : r.
Now the forgetful functor & : DM 4 — SH(k) is conservative, so if U(ex) is an
isomorphism in SH(k), then also ex is an isomorphism in DM 4. But this then
implies that X lies in DMST, which proves the lemma. O

We have an evaluation functor
evg,, : Ch([Sm, Shv(A)]) — Spg, (Ch(Shv(A))).
For X € [Sm, A?Shv(A)] we define evg,, (X)) := evg,, (A(X)).
7.3.10 Lemma. For X € Spc 4[Sm] we have a canonical isomorphism in SH (k)
U(eve,, (X)) = evsi g, (X).

Proof. Let Z°" be the reduced free simplicial abelian group on the pointed sim-
plicial set S™. The bispectrum evg g, (X) = evgi g, (EM(X)) can be computed
in the (n,m)-th level as

evgt g,, (X)[n](m) = 75" ® X(G)™)

in M. The bispectrum U(evg,, (X)) = U(evg,,(A(X))) can be computed in the
(n,m)-th level as

U(evs,, (X))[n](m) = DK(DK™H(X)(G,")[m])
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in M. We claim that there is a natural homotopy equivalence
DK (DK™ (X)(G,")[m]) — Z°%" @ X(G,")

in M. The chain complex DK ~1(Z°") is Z in degree n and 0 in all other degrees.
It follows for every chain complex A that A[n] &2 A ® DK~Y(Z%"). According
to [12] the Dold-Kan correspondence preserves tensor products up to homotopy
equivalence. We then get a homotopy equivalence

DK(A(X)(G)™)[m]) = DK (DK~ (X)(G,") ® DK~H(Z%")) —
DK (DK (X (G\'™) ® Z%")) =2 X(G\™) @ Z°".

These maps assemble together into an isomorphism U(evg,, (X)) = evsig,, (X)
in SH (k). O

Let Spc%™[Sm] be the full subcategory of Spc ,[Sm] consisting of the very
effective special enriched motivic A-spaces. By definition it is then also full sub-
category of D([Sm, A’Shv(A)]) consisting of the very effective special enriched
motivic A-spaces.

7.3.11 Theorem. Assume that A satisfies the ﬁ—property in the sense of Def-
wnition 5.1.4. Then the naive Gy, -evaluation functor induces an equivalence of
categories

evg,, - Spc"jff [Sm] — DMjf;O.

Proof. By Theorem 7.3.3 we have an equivalence
evg,, : Spc[Sm| — DM 4 >o.

So we just need to show for X € Spc4[Sm] that X € Spcs"[Sm] if and only if
evg,, (X) € DMST. ;. By Proposition 7.3.4 we know that X € Spce[Sm] if and

only if evgi ¢, (X) € SHI (k) is effective. By [24, Theorem 3.6] this is the case
if and only if evgi g, (X) lies in SH*(k). By Lemma 7.3.10 we have a canonical
isomorphism

evst g, (X) = U(evg,, (X))

in SH(k). So evgig, (X) € SHM(k) if and only if U(evg,, (X)) € SH (k) and
by Lemma 7.3.9 this is the case if and only if evg, (X) € DM, which proves
the theorem. O
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7.4 Reconstructing SH""(k)g

In this section we apply the techniques and results from the previous sections

to give new models for the stable motivic homotopy category of effective and

very effective motivic bispectra with rational coefficients. It also requires the

reconstruction theorem by [19] and the theory Milnor-Witt correspondences [3,
, 7,11, 16, 17].

Let (/J\o/rﬁge the category of finite Milnor-Witt correspondences in the sense of
[7]. Then Cor is a strict V-category of correspondences satisfying the cancellation
property (See [10] for details). Furthermore it has framed correspondences by [11].
It also satisfies the ﬁ-property by [3].

Denote by SH(k)g the category of motivic bispectra E whose sheaves of
stable motivic homotopy groups Wﬁi (E) are sheaves of rational vector spaces. The
category SH (k) is also called the rational stable motivic homotopy category. It is
the homotopy category of a stable model structure in which weak equivalences are
those morphisms of bispectra f : £ — E’ for which ﬂﬁi( f)®Q is an isomorphism.
Let SH(k)g>o be the full subcategory of SH(k)g on the connective objects.
Here a bispectrum object X € SH(k)g with rational stable Al-homotopy groups
Eﬁ;(X) ® Q is called connective, if ﬂﬁq(X) ®Q =0 for all p < gq.

Throughout this section we assume the base field k to be perfect of charac-
teristic different from 2. The assumption on the characteristic is typical when
working with finite Milnor-Witt correspondences. A theorem of Garkusha [19,
Theorem 5.5] states that the forgetful functor U : DMg; , — SH(k)g is an
equivalence of categories. This theorem was actually proven under the assump-
tion that k is also infinite. The latter assumption is redundant due to [13, A.27]
saying that the main result of [22] about strict invariance for Nisnevich sheaves
with framed transfers is also true for finite fields.

7.4.1 Definition. We define Spca;rQ[Sm], respectively DMgs -, to be the

category Spc4[Sm], respectively DM 40, associated to the category of corre-

—

spondences A = Cor ® Q. We call Spegg; [Sm] the category of rational enriched

—_—

motivic Cor-spaces.

The following theorem says that the special rational enriched motivic Cor-
spaces recover SH(k)g >o-

7.4.2 Theorem. The (S, G,,)-evaluation functor is an equivalence of categories

evst G,, - SpC(’)BJLQ[Sm] — SH(]C)Q}().
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Proof. By Theorem 7.3.3 the G,,-evalulation functor is an equivalence of cate-
gories
: Spca;Q[Sm] — DM Q50"

By [19, Theorem 5.5] the forgetful functor U : DMgg,  — SH(k)q is an equiva-

lence of categories, and this implies that the forgetful functor U:DMgs -0 —

SH(k)g>o is an equivalence of categories. So by Lemma 7.3.10 the (S, G,,)-
evaluation functor

€VS1 G, 1 SPCao lS™M] = SH(k)g,>0

is an equivalence of categories. O

Let SH"*%(k)q be the full subcategory of SH(k)g on the very effective bispec-
tra. Here an object X € SH(k)g is said to be very effective if it is both effective
and connective:

SHY"(k)g = SH(k)o N SH(Kk)g>0.

7.4.3 Definition. We define Spc"‘a‘cF [Sm] respectively DME- eff 0,500 1O be the
eff e

category Spc"efF [Sm] respectively DM A0, associated to the category of corre-

spondences A = Cor ® Q. We call Spc"efF [Sm] the category of very effective

rational enriched motivic Cor—spaces.

We finish with the following result stating that very effective rational enriched
motivic Cor-spaces recover SH (k).

7.4.4 Theorem. The (S, G,,)-evaluation functor is an equivalence of categories
evgg,, : Spc"e'cF [Sm] — SHM(k)qg.

Proof. By Theorem 7.4.2 the (S',G,,)-evaluation functor is an equivalence of
categories
€VS1 G,y 1 SPCag olS™M] = SH(k)g,>0-

We want to show that it restricts to an equivalence of categories
evgig,, - Spc"e'cF [Sm] — SHY (k).

For this we just need to show that a special enriched motivic A-space X is very
effective if and only if evg: g, (X) is very effective in SH (k).
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According to Proposition 7.3.4 the special enriched motivic A-space X is very
effective if and only if the framed bispectrum evg: g,, (X) is effective in SH (k)IT.
By [24, Theorem 3.6] this is the case if and only if evgi g, (X) is effective in
SH (k). This concludes the proof of the theorem. O

We conclude this project with the following remarks. This project provides
new models for Voevodsky’s fundamental categories of big motives DM 4, DM 4 >
and DM as well as for the categories SH(k)g o and SH**"(k)g. In the future
we expect the techniques developed in this project to be applicable to non-linear
categories of motives. Other applications are expected in equivariant motivic
homotopy theory. Our approach also demonstrates the importance of enriched
categories in motivic homotopy theory.
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