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Abstract

Image restoration, as a fundamental research topic of image processing, is to reconstruct
the original image from degraded signal using the prior knowledge of image. Group spatse
representation (GSR) is powerful for image restoration; it however often leads to undesir-
able sparse solutions in practice. In order to improve the quality of image restoration based
on GSR, the sparsity residual model expects the representation learned from degraded
images to be as close as possible to the true representation. In this article, a group resid-
ual learning based on low-rank self-representation is proposed to automatically estimate
the true group sparse representation. It makes full use of the relation among patches and
explores the subgroup structures within the same group, which makes the sparse resid-
ual model have better interpretation furthermore, results in high-quality restored images.
Extensive experimental results on two typical image restoration tasks (image denoising and
deblocking) demonstrate that the proposed algorithm outperforms many other popular or
state-of-the-art image restoration methods.

Evidence demonstrates that image priors are the founda-
tion for image restoration, including total variation (TV) [5-7],

Image restoration is one of elementary task in image process-
ing to reconstruct or recovery the original image from the
degraded or corrupted signal [1]. It has been extensively studied,
in general, can be formulated as

Y =HX+E )

where X € R Y € R and E € R are the origi-
nal, degraded and noise of image, tespectively, and H is a
degradation operator. The restoration problem represented in
Equation (1) can differ greatly in terms of the degradation opet-
ator H. For example, H as an identity matrix corresponds to
image denoising |2|, a diagonal masking corresponds to image
inpainting [3], and a blurting operator cotresponds to image
deblurring [4].

sparsity [2, 8], low-rank [9—11], and deep image prior [12-20].
Particularly, spatsity prior is considered as one of the most
remarkable for natural images [2, 8, 21-24]. On the basis of
the strategies for manipulating sparsity prior, current algorithms
are roughly divided into two classes, that is, patch- |2, 25, 20|
and group-based approaches [8, 22, 27-29], where the former
ones independently perform image restoration for each patch,
and the latter ones execute restoration task for each group of
patches.

In the past decades, patch-based image restoration has
attracted great attention from researchers [2, 30], and those
algorithms are devoted to identify the low-dimensional repre-
sentation (also called patch code) under the assumption that
each patch can be modeled with a linear combination of learned
basis elements, known as dictionary |2]. The typical dictionary
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strategics are classified into two categories, that is, analytic
and learning ones, where former one includes discrete cosine
transform (DCT), and wavelet and curvelet [31]. In compar-
ison of the traditonal analytic approach, dictionary learned
from images is more adoptive and accurate since it can depict
the local structure of images comprehensively. For example,
the well-known dictionary learning method K-SVD [30] is
of strong adaptability, which has been successfully applied to
image denoising and other tasks |2, 30]. Furthermore, by impos-
ing sparse constraint onto patch representation, patch-based
sparse representation (PSR) achieves an excellent performance
for image restoration, where cach patch is represented with a
linear combination of a few atoms of the learned dictionary.

However, those algorithms are criticized for independently
learning the dictionary and representation for each patch, result-
ing in two significant limitations. First, the patch-based methods
are computationally time-consuming, hampering its application
for large-scale image datasct. Second, these algorithms only
exploit the intrinsic structure of each patch but ignores the
correlation among various patches [26, 32|, namely non-local
self-similarity (NSS). To addtess the named issues, group-based
approaches, such as group sparse representation (GSR) [33, 27,
28], learn the sparse coding and dictionary from a group of sim-
ilar patches, where the strong correlation amongst them can be
captured.

Compated to patch-based methods, the GSR models |25, 20]
achieve an outstanding performance in image restoration. For
example, BM3D |26] performs collaborative filtering on groups
of 3D patches. Mairal et al. [33] proposed learned simultaneous
sparse coding (LSSC), which given a certain transform domain
and simultancously sparse encodes similar patches to enforce
them have similar coefficients. Zhang et al. [27] proposed a
GSR-based model for image restoration, which designs the self-
adaptive dictionary for image patch group and solves sparse
coding with €, minimization. Xu et al. [34] learned an NSS
prior for patch groups based on external image databases before
image denoising, which can achieve excellent results when the
distribution of external patch groups and target image patch
groups is similar. To preserve the characteristics of the target
image itself, a series of models combining internal and exter-
nal priors are proposed in [35, 30]. To obtain the more correct
sparsity solution under image restoration problem, Wang et al.
[29] incorporated the nonconvex weighted ¢, minimization into
GSR framework for image denoising. To avoid learning dic-
tionary from patches of images, principal component analysis
(PCA) is adopted to construct dictionary [27, 29]. Recently, Zha
et al. [37] proposed low-rank guided GSR model, which utilizes
low-rankness to guide dictionary learning, However, due to the
degradation of the observed image, the spatse representation
obtained by the above methods can’t reconstruct the original
image faithfully.

To tackle this problem, the residual models |8, 22 assume
that the group of similar patches exist the truth representation,
where the learned representation should not deviate from the
truth one. In contrast to GSR, the residual model is much more
difficult to train since it needs to estimate the truth represen-
tation, which is also the significant difference among vatious

algorithms. For example, nonlocally centralized sparse represen-
tation model (NCSR) [8] utilizes the weighted average of group
sparse representation to estimate the true sparse code, whereas
NSSRC (for nonconvex structural sparsity residual constraint)
[22] integrates structural spatse representation and non-convex
sparsity residual constraint for the estimation of truth coding.
In addition, the low-rank GSR model (LRGSC) [38] which esti-
mates the true sparse code with low-rank prior is proved to
be effective for image compressed sensing in [39]. These meth-
ods significantly improve the accuracy of algorithms for image
restoration, implying that residual model is promising for this
issue.

Even though great efforts have been devoted to the resid-
ual model for image restoration, there still many unsolved
problems. First, the relation among patches of the same
groups is neglected since they only depict the distance between
the patches and the centers of groups, which decreases the
performance and interpretability of patterns. Second, conven-
tional residual models employ the weighted linear function
to obtain true sparse representation, where the weights of
patches are difficult to select since the relative importance
between them and exemplars is hard to measure. Third,
the existing algorithms ignore the specificity of patches
when estimating the truth representation since they assume
that patches within the same group share the same truth
representation.

To address these problems, a flexible and interpretable image
restoration algorithm based on group sparse representation and
residual learning is proposed in this paper. To make use of
the relation among patches in the same group and remove
the dependence on the exemplars, we define the estimate of
the true spatrse representation as the product of the learned
sparse code and a weight matrix. To adaptively determine the
weight matrix, we integrate the learning of weight matrix into
self-representation learning, which estimates the weight matrix
automatically. Fach column of the weight matrix can be differ-
ent, which enables preservation of the specificity for each patch.
In addition, we impose the low-rank constraint on the weight
matrix using the nuclear norm, which can further explore the
sub-group structutes of each patch group. Finally, the proposed
algorithm jointly learns the sparse representation, sub-group
structure and group residual by combining group spatse rep-
resentation and residual learning. The experiments imply that
the proposed method outperforms many mainstream SOTA
methods of image restoration.

The following is a summary of this research’s main contribu-
tons.

1. To enhance the quality of learned sparse representation,
we propose a residual learning model based on self-
representation, which makes full use of the relation among
patches within the same group. The true sparse represen-
tation is estimated by the self-representation of the learned
sparse representation, which improves the interpretability of
the estimate.

2. To preserve the specificity of the patches within the same
group well, we impose the low-rank constraint on the weight
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matrix using the nuclear norm, which can further capture the
sub-group structures of each patch group.

3. 'The proposed algorithm jointly learns the patch representa-
tion, sub-group structure and group residual by combining
group spatse representation and tesidual learning, In this
case, the residual learning assists sparse representation to
learn better patch representation, and the sub-group struc-
ture of each patch group can ensure that the learned
representation preserves the specificity of patches.

4. The experimental results on image denoising and deblock-
ing, imply that the proposed algorithm outperforms many
popular image restoration basclines in various quality mea-
surements.

The remaining sections of this article are arranged as follows.
Section 2 introduces the preliminaries, Section 3 elaborates the
proposed algorithm for image restoration in detail, Section 4
presents the experimental results, and conclusions are drawn in
Section 5.

2 | PRELIMINARIES

In this section, we will present the notations and preliminaries
that are going to be used for the rest of the papet.

2.1 | Notations
Let the bold upper, bold lower, and lower-case letters denote
matrices, vectors, and scalars, respectively. Let X € R be
a nXm matrix, and x € R? be a vector with d elements,
respectively. X' is the transpose of matrix X.

The Frobenius norm of matrix X is defined as

x| = \/z‘r (x'x) = \/z‘r (xx"), @

where #(X) is the trace of matrix X. €-norm of vector x is

defined as the sum of non-zero elements in 2, that is
llxllo = ) 1. 3
i

€ -norm of vector x is the sum of absolute values of elements
in x, that is

llxllo = ) Ixl. “)
¢ ,-norm (0 < p < 1) of vector x is defined as
1/p
llcll, = O 1) ©)

1Xlo, IX1ly and [IX||, denotes imposing ¢j-norm, ¢4-
norm, and ¢ p-horm on each column of matrix X, respectively.

Nuclear norm of matrix X is defined as

min (7,1)
Ixh.= ) 14l ©)

=1

wherte 4; is the /-th singular value of matrix X.

2.2 | Image restoration

To simplify the model in Equation (1), we set the degradation

matrix H as the identity matrix. Then, given a degraded image
Y, image restoration is formulated as

Y =X +E, ©)

where X € R” and E € R denote the original image
and additive noise, respectively. Without loss of gener-
ality, image prior is denoted by € and then maximum
a posteriori (MAP) framework [8, 27, 40] is employed,
that is, a postetioti function of the form log p(X|Y,0) is
maximized

log pX|Y) = log p(Y | X, 6) + log p(X|0). ®)
The likelihood term is the Gaussian distribution [8]

epc— Y X[, ©)

1
Varay, 205

pY1X,6) =

where the O'é is the variance of noise. And then Equation (8) is
equal to

1 2 2
- - a )
W;éﬂZIIY X|*+0,0(X), (10)

where ©(X) is regularization term derived from prior 6.

2.3 | Sparse representation

Given features dy, ..., d,,, representation learning for a vector x

aims to obtain a linear function such that
x%d1d1+"'+ﬂﬂdﬂ, (11)

where g; is the coefficient for feature x;.
Hquation (11) is solved by minimizing approximation, that is

1
min Ellx—DaHZ, (12)

’ .
where D = |x1,...,x,|,and @ = (a1, ..., a,) , respectively.
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FIGURE 1
learning and group residual learning.

The sparse representation learning expects most of coeffi-
cients are 0, where Equation (12) is formulated as

1
mm?w—pﬂﬁ+mmm, (13)

where ¢ is a parameter.

Furthermore, extension for sparse representation learn-
ing is needed. When multiple objects involve, that is, X =
[%1, ..., %,], GSR simultancously handles # objects into an
objective function, where Equation (13) is re-written as

1
mmqu—DmF+amﬂm (14

where [|A]|j is regularization item, denotes imposing €(-norm
on each column of A.

There are various strategies for constructing sparsity, that is,
¢y-norm [41, 42], and ¢ j-norm (0 < p < 1), to bridge ¢ and
£ [43, 44].

3 | PROPOSED METHOD

In this section, we will present the proposed method in detail,
including testoration model, optimization, parameter selection,
and discussion on its computational complexity.

The overview of the proposed algorithm is shown in
Figure 1, which consists of three major components: patch
grouping, sparse representation learning and group residual
learning. Patch grouping divides sub-blocks of the origi-
nal images into different classes, where patches within the
same groups are highly similar. Sparse representation learning
projects each group of patches into a subspace that spanned
by columns of dictionary matrix to obtain the representation of
patches, whereas group residual learning aims to automatically
learn the true code of patch groups.

The overview of our proposed image restoration algorithm, which consists of three major parts, namely patch grouping, sparse representation

3.1 | Restoration model

In the patch grouping block, like other GSR-based restoration
models |33, 27, 28|, a patch-matching based approach is uti-
lized. Specifically, the degraded image Y is divided into patches,

d X \/; of patches varies with downstream
applications. For ecach reference patch, the closest 7 patches

where the size

within window of / X / are selected as a group, where patches
belonging to multiple groups are allowed. To ensure the quality
of groups, the step size of selected reference patches is small,
where window size is large. In general, we set step size of selec-
tion reference patches as 3 or 4, and that of windows as 25 X 25.
By stacking pixels each reference patch is denoted as 3, and the
corresponding patch group is Y; € R where each column
corresponds to a patch within the group.

In the sparse representation learning block, the most intuitive
strategy is to project each group of patches into a sub-
space, where the low-dimensional representation of patches
is obtained. Specifically, given patch group Y, the low-
dimensional representation of patches is learned by minimizing
the approximation, which is formulated as

1
O) =3 IIY; =DA% (15)

where D, € R and A, € R denotes the dictionary and
coefficient matrix of Y, respectively. Sparse representation
learning [30] expects the learned A; is sparse, that is, the most
elements are 0, which improves computational efficiency and
interpretability of solutions. By imposing ¢ {-norm constraint to
coefficient matrix A;, Fquation (15) is reformulated as

1
O) =5 IY, = DA+ Bl (16)

where parameter 8 determines the relative importance of spat-
sity constraint. Recently, evidence |43, 44| demonstrates that
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¢ ;-norm overcomes limitation of ¢ 1-norm to fulfill sparsity of
representation. Therefore, Equation (10) is re-written as

1
o, = 5 |Y; — DA + BlIAN - (17

However, the coefficient matrix A; in iquation (17) is very
likely to deviate from the true representation of the corre-
sponding group of patches, due to vatious degradations (noise,
compression etc) on Y. Thus, the tesidual model [8, 22|
enforces the learned representation A; to be in consistent with
the truth representation of Y;. Given the truth representation
B, € R™” of patch group Y, the residual is defined as

R,=A,— B, (18)

Obviously, the learned spatse representation A; should be as
close as possible to the truth spatrse representation B, that is,
R; should be as small as possible. Thus, Hquation (17) can be
extended as

1 14
OW) =5 IY,=DAI" +BlAll, + S 14, = Bl (19)

where ¥ determines importance of residual.

The typical advantage of the tesidual models in Equa-
tion (19) is that it learns the low-dimensional representation
of patches by preserving the truth distribution of patch group.
However, solving iquation (19) is a great challenge. In other
words, the dictionary matrix D; and truth representation B;
are pre-requisites. Usually, principal component analysis (PCA)
[27, 8] is a widely adopted strategy to construct dictionary
D;. Specifically, cach column of the dictionary D, consists
of the eigenvectors of the Y,;’s covariance matrix. However,
the truth sparse representation B, is difficult to estimate,
due to we always only have degraded images without ground
truth.

To address this problem, existing algorithms assume that
patches within each group share the common representation
that can be learned from coefficient matrix A;. The most
intuitive and straightforward strategy is to combine the repre-
sentation of patches with a linear function to obtain the shared
truth representation & € R? as [8, 22

n

1
0= LA @)

where w; is the weight for patch Y, as Huclidean distance
between the /-th patch and the center of group, and A, ;
denotes the j-th column of A;, respectively. Then, the truth
representation set as B, = [, ..., b].

In comparison to the sparse representation model, the resid-
ual model of Equations (19) and (20) is more effective and
efficient for image restoration. However, it also has three limita-
tions on the estimation of B;. First of all, it assumes that patches
within the same group share the same truth representation,

ignoring the specificity of patches. In other words, Fiquation (20)
achieves the desirable performance if and only if patches within
the same group are homogeneous. Actually, patches groups can
be further divided into sub-groups, where cach sub-group has
a unique representation, indicating that there are multiple rep-
resentations for the original patch group. Second, the relation
among patches of the same groups is also neglected since Equa-
tion (20) only depicts the distance between patches and centers
of groups decreasing the performance and interpretability of
patterns. Furthermore, Equation (20) employs the weighted
linear function to obtain B;, where weights of patches are dif-
ficult to select since the relative importance between them and
exemplars is hard to measure.

To overcome these issues, we hypothesize that, for each patch
group Y, there is a close relation between the learned and
truth representation of patches, that is, B, can be learned from
A;. Specifically, the proposed algorithm automatically learns B,
from A; as

B, =AW, @1

where the W,; € R is a weight matrix. Equation (21) avoids
sharing the unique center in the residual model in Equation (20),
where multiple centers are allowed. In this case, the relations
among patches within the same groups ate explicitly exploited,
which provides a better strategy to characterize and model the
truth representation of patches.

Substituting Hquation (21) into lquation (19), we have

1 4
O) =5 IY, = DA +BlAall, + 14, = AW,|I”

22

FEquation (22) brings out three consequent advantages. Iirst,
the last term cottesponds to the self-representation of learned
representation A;, that is, B, is represented with linear com-
bination of close patches of groups, improving interpretability
of B;. Second, the relation among patches is further exploited
for learning the low-dimensional representation for patches,
thereby, enhancing quality of representation in return. Third,
the weight matrix W; is automatically learned under the guid-
ance of the representation of patches, extending the application
of models.

Moreover, we also want to explore sub-groups of each patch
group with an immediate purpose to further exploit intrin-
sic structure of representation. Hividence [45] demonstrates the
nuclear-norm of matrix ensures the block structure of matrices.
Therefore, we fulfil the sub-groups of patch group by imposing
constraint on W, with nuclear norm, then Fquation (22) can be
reformulated as

1
o) =;Iy, - DA|I* + BllAll,
+LllA4; = AW + W 23

s.t. Wi = W/i‘
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where T determines the importance of low-rank constraint. The
constraint ensures the symmetry of matrix W, because cach
element of W; can be regarded as similarity between corre-
sponding sparse representations. Hquation (24) jointly learns
the representation of patches, sub-group structute, and resid-
uals for cach patch groups. By summing all patch groups, the
proposed algorithm learns representation of patches that is
formulated as

Ow)=Y0). 24

To restore the degraded image, the main model is to mini-
mize the difference between the degraded and restored images,
that is, ||Y — X||. Thus, the overall objective function of the
proposed algorithm with the prior regulation terms mentioned
above can formulated as

0= lY —X|I” + 0(X)

1
= SIY = XI + 5 Z1IQ,X — D;A* + B X Il4,,

4
+3 2 lA; — AW + 2 Wl
z l

st W; =W, Yi€{1,2,..,n},

(25
where Qi represents the matrix operator for the extraction of
the /-th patch group for X, that is, =QZ.X = X,. In the next
subsection, we will discuss the optimization technique for the
objective function in Equation (25).

3.2 | Optimization

The nuclear norm of W, and ¢ » norm of A; result in the non-
convexity of problem in Equation (25), which cannot be solved
directly with analytical solutions. Thus, an alternative iterative
strategy is adopted by optimizing one variable by fixing the
others until the algorithm converges or termination criteria are
reached.

Step 1. Update weight matrix W ;: By fixing X and A;, and
removing irrelevant items, the objective function of
Iiquation (25) is equivalent to the following one with
respect to W, that is

LI =AW P+ 2| Wl cr. W, = W', 20)

According to [40], Liquation (26) can be effectively solved
with singular value decomposition (SVD) of matrix A;, that is,
A; =U; NV, where A, = diag({A,}) is a diagonal matrix with
singular values on the diagonal, the U; and V; are the left and
right singular vector matrix, respectively. The optimal solution
to Hquation (20) is formulated as [40]

W/ = Vz 7)‘l'/}/ (/11) V,Z! (27)

where Py is defined as

1-— y—;, A >\T/ly,

0, otherwise.

7)r/y @) = (28)

Step 2. Update group sparse representation A;: By removing other
items, the objective function of Hquation (25) in terms
of A; is reformulated as

@ 4
SIX; = DA + S 14, = AW + BllA .

29)

iven though ¢ -norm of A; leads to non-convexity of Iiqua-
tion (29), the generalized soft-thresholding (GST) algorithm
[47] provides an efficiently iterative strategy to achieve desired
solution. Specifically, the update rule for A; is formulated
as

A,‘ = GST(S/’ /'t’_p’ t)’ (30)

where 7 is the number of iterations, §; and ¢ are defined as

S,=a(A, =D X)) +yA, (I=W,= W', + W, ")),

B8

k= e

Step 3. Update restored image X: By fixing matrix A; and W,
the restoration of images is formulated as

1 2, & 2
Iy =X+ 5 Z IQX DA’ (1)

Fquation (31) is convex with respect to X. By setting the
partial derivative of X to zero, the closed-form solution for
Hquation (31) is deduced as

-1

X = (1 +a ZQ’Q) <Y +a Z,Q’,-D,-A,-) . (32

where D;A; denotes the reconstructed patch for X,, @,
is treated as the operatotr to put the restored patch back
into the original image. Actually, (I +a Y, Q' Q) is a diago-

nal matrix, whose inverse can be solved lat the element-wise
division.

Therefore, Equation (32) is interpreted as the weighted aver-
age of overlapped reconstructed patches and degraded image to
reconstruct the image.
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3.3 | Parameter selection

In order to achieve optimal performance results, we also employ
the adaptive parameter adjustment strategy to adapt the pro-
posed algorithm to vatious image structures. First, we update
the noise variance O'jzr using the iterative regulatization strategy

[6]

(s o (£)
ol = fo\/ (o2 -1y =x"2), (33)

where £ denotes the £-th iteration and 4, is a positive constant.

Furthermore, inspired by the maximum a posteriori (MAP)
framework [8], we assume that sparse code A; obeys a hypet-
Laplacian distribution [29, 48] and the sparsity residual R,
follows a Gaussian distribution, then we have

2
0%
s o
2
o
e

where J; is the standard variance of A;, estimated as in [10], and
€ is a very small constant to avoid dividing by zero.
We also dynamically adjust the parameters o and 7 as

=0 02, (36)

T=036, (37)

where ¢ and ¢, are predefined positive constants. It means that
the parameters & and T are proportional to the noise variance
62 and standatd vatiance §; of A;, respectively.

34 |

Method overview
In summary, the proposed algorithm for image restoration can
be implemented through the above alternating updating steps

and parameter adjustment mechanism. The pseudocode of our
proposed algorithm can be found in Algorithm 1.

3.5 | Computational complexity analysis

We further analyze the computational complexity of our pro-
posed method in theory in this subsection. For the space
complexity of the proposed algorithm, it requires space (#°#).
The space for matrix W, is O(#) for each group. The space for
matrix A; and X, is O(dm) for each group, where 4 is the num-
ber of rows of A; and X, . Therefore, the total space complexity
of our proposed algorithm is O(#”#), where 7 is the number of
groups. For the time complexity analysis of our proposed algo-
rithm, it consists of three major components, that is: 1) group
residual learning, 2) sparse tepresentation and 3) reconstruc-
tion. The time complexity for updating W, is O(#n”), where

ALGORITHM 1 The proposed algorithm for image restoration.

Input: The degraded image Y.
Output: The restored image X.

1: Tnitalize X = ¥, £ =0, 0

e

2: Set the parameters ¢, ¢, ¢ and p.

3:  while (£ <= Max-Iter) do

4 for cach reference patch x; in XU@ do

5: Scarch similar patches to construct patch group X .
6: Build dictionary D; by X; using PCA.

7 Update A, by A; = D/, X ;.

8: Update T by Equation (37).

9: Update W; by Equation (27).

10: Update a, B and ¥ by Equations (36), (34) and (35).
11 Update A, by Fiquation (30).

12:  end for

~ (K
13:  Update x© by Equation (32).
14:  Update Ug'] by Equation (33).
15: Until the convergence condition is met.

16: end while

¢ is the number of iterations. The time complexity for updating
A; is O(tndm). The time complexity for group reconstruction
is O(tnl?m). Thus, the total time complexity of the proposed
algorithm is O(tnn?”).

4 | EXPERIMENTAL RESULTS

To fully validate the performance of the proposed algo-
rithms, extensive experiments are conducted on two typical
image restoration tasks: denoising and deblocking. Please find
the source code for this research at https://github.com/
xkmaxidian/GSR_SRI.R_IR.

4.1 | Experimental setting

1. Benchmark: As the proposed algorithm is self-supervised
learning, only testing data is needed to verify the proposed
algorithm performance.

For image denoising task, the benchmark dataset Set12 [49]
(including 12 grayscale images) is used to validate the perfor-
mance with comparisons. The noisy images are synthesized by
adding Gaussian noise given a noise level.

Fot image deblocking, we adopt two widely used datasets:
LIVE1 dataset [50] and Classic5 dataset |51], including 29 and
5 natural images, respectively, Compress images are obtained
by encoding each test image with the MATLAB jpeg encoder
under different compression quality @ and then the JPEG
deblocking input images can be generated by a standard JPLG
decoder. In addition to T.IVIi1 and Classic5, we also use 8
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TABLE 1 Average PSNR (dB) results of comparison with classic methods for image denoising on the Set12 datasct.

oE BM3D EPLL NCSR PGPD aGMM AST-NLS GSRC NSSRC LGSR Ours
20 31.01 30.70 31.02 31.02 31.02 31.16 30.93 31.19 31.27 31.28
30 29.14 28.75 29.04 29.12 29.08 29.22 29.09 29.28 29.36 29.40
40 27.65 27.40 27.65 27.82 27.67 27.81 27.80 27.97 28.04 28.07
50 26.72 26.35 26.60 26.81 26.62 26.86 26.81 27.00 27.00 27.09
75 2491 24.48 24.65 24.98 24.67 24.98 25.04 25.15 25.25 25.28
100 23.61 23.21 23.29 23.69 23.37 23.71 23.67 23.84 23.95 23.97
Average 27.17 26.82 27.04 27.24 27.07 27.29 27.22 27.41 27.48 27.52

TABLE 2 Average SSIM results of comparison with classic methods for image denoising on the Set12 datasct.

op BM3D EPLL NCSR PGPD aGMM AST-NLS GSRC NSSRC LGSR Ours

20 0.8719 0.8681 0.8711 0.8074 0.8716 0.8705 0.8660 0.8736 0.8738 0.8740
30 0.8320 0.8223 0.8308 0.8286 0.8290 0.8260 0.8279 0.8339 0.8347 0.8350
40 0.7944 0.7827 0.7951 0.7965 0.7909 0.7847 0.7965 0.8030 0.8044 0.8051
50 0.7681 0.7475 0.7673 0.7666 0.7569 0.7618 0.7664 0.7780 0.7798 0.7784
75 0.7065 0.6738 0.7095 0.7070 0.6832 0.7003 0.7101 0.7219 0.7236 0.7248
100 0.6566 0.6154 0.6642 0.6525 0.6230 0.6578 0.6575 0.6807 0.6821 0.6827
Average 0.7716 0.7516 0.7730 0.7698 0.7591 0.7669 0.7707 0.7819 0.7831 0.7833

FIGURE 2  The visual comparison denoising results of image Monarch on the Set12 dataset with o = 75. (a) Original image. (b) Noisy image. () BM3D
(PSNR = 23.91 dB, SSIM = 0.7557). (d) EPLL (PSNR = 23.72 dB, SSIM = 0.7396). (¢) NCSR (PSNR = 23.68 dB, SSIM = (.7657). (f) Ours (PSNR = 24.38 dB,
SSIM = 0.7790).
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FIGURE 3  The visual comparison denoising results of image Parrot on the Set12 dataset with 0 = 75. (a) Original image. (b) Noisy image. (c) BM3D
(PSNR = 24.19 dB, SSIM = (0.7307). (d) EPLL (PSNR = 24.04 dB, SSIM = 0.7029). (¢) NCSR (PSNR = 23.89 dB, SSIM = (1.7363). (f) Ours (PSNR = 24.48 dB,

SSIM = 0.7469).

TABLE 3 Average PSNR (dB)/SSIM results of comparison with
DNN-based models for image denoising on the Set12 dataset.

Methods o =15 o =25 o =50 Average
TRND 32.51 30.04 26.78 29.78
0.8970 0.8523 0.7672 0.8388
DnCNN 32.50 30.17 26.98 29.88
0.8966 0.8549 0.7700 0.8405
S28 32.07 29.94 26.12 29.38
0.8891 0.8475 0.7382 0.8249
Ours 32.65 30.24 27.09 29.99
0.8980 0.8535 0.7784 0.8433

fingerprint images to further verify the superiority of the
proposed algorithm.

1. Parameter setting: For image denoising, the parameter settings
of the proposed algorithm are as follows. The patch size is
setto7X 7,8 X 8and 9 X 9foroy < 30,30 < 0 < 50and
50 < gz < 100. The number of similar patches in a group is
set to 60, 70, 80, 90, 100 for g, < 30, 30 < g, < 40, 40 <
or <50,50 <oy £75and 75 < g < 100. The parame-
ter pis set to 0.8, 0.85 and 0.9 for o5 < 30,30 < o <40
and 40 < o < 100.

For image deblocking, the patch size is set to 7 X 7. The
number of similar patches in a group is set to 60. The param-

eter p is set to 0.9, 0.8 and 0.2 for O <10, 10 < O < 20 and
20 < O < 40.

4.2 | Compared methods

In image denoising task, we first compared the proposed algo-
rithm with many SOTA image denoising basclines, including
BM3D [26], IIPLL [52], NCSR [8], PGPD [34], aGMM [53],
AST-NLS [54], GSRC [55], NSSRC [22] and LGSR [37]. These
methods are based on sparse representation or image non-local
self-similarity prior. Among these methods, NCSR, AST-NLS,
GSRC and NSSRC are models based on group sparsity resid-
ual, and NSSRC is the SOTA of these methods. In addition, we
also compared our proposed algorithm with several deep learn-
ing image denoising models, including TRND [56], DnCNN
[49], S2S [57], where TRND and DnCNN are supervised
learning-based image denoising benchmark algorithms, and S2S
is self-supervised learning algorithm.

Fot image deblocking, we compated our proposed method
against BM3D [26], SA-DCT [58], PC-LRM [59], WNNM [60],
ANCE [61], SSR-QC [62], COGL [63], JPG-SR [64], NSSRC
[22]. To further demonstrate the superiority of our proposed
method, we also compared it with several DNN-based image
deblocking baselines, including AR-CNN [65], TRND [56],
DnCNN [49], DCSC [66], and MDDU (for model-driven deep
unfolding method) [67]. Among these competing methods, AR-
CNN is the most common deep learning model benchmark for
compressed image artifacts removal, the TRND and DnCNN
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(d) (e ®

FIGURE 4  The visual comparison denoising results of image //ouse on the Set12 dataset with oz = 50. (a) Original image. (b) Noisy image. (c) TRND
(PSNR = 29.40 dB, SSIM = (.8058). (d) DnCNN (PSNR = 29.74 dB, SSIM = 0.8059). (¢) S2S (PSNR = 27.47 dB, SSIM = (.7032). (f) Ours (PSNR = 30.36 dB,
SSIM = 0.8221).

/‘1'; .

|

FIGURE 5 The visual comparison denoising results of image Barbara on the Set12 dataset with o = 50. (a) Original image. (b) Noisy image. (c) TRND
(PSNR = 25.78 dB, SSIM = 0.7450). (d) DnCNN (PSNR = 25.53 dB, SSIM = 0.7361). (¢) S28 (PSNR = 26.82 dB, SSIM = 0.7840). (f) Ours (PSNR = 27.92 dB,
SSIM = (.8231).
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FIGURE 6 The visual results of real image 1 denoising. (a) Real image 1. (b) The result of S2S. (¢) The result of our method.
FIGURE 7  The visual results of real image 2 denoising. (a) Real image 2. (b) The result of 828, (¢) The result of our method.
R
opdttBy g
FIGURE 8  The visual results of real image 3 denoising. (a) Real image 2. (b) The result of S2S. (c) The result of our method.

are universal image restoration methods, and the DCSC and
MDDU are SOTA image deblocking methods.

It should be emphasized that all comparison methods were
tested using the default parameters set by the original authors.
In particular, deep learning-based methods were tested using the
official pre-training model.

4.3 | Image denoising

Image denoising is the most common and basic image restora-
ton task. In order to verify the effectiveness of our proposed
model for image denoising, we use MATLAB’s random numbet
generator to synthesize Gaussian White Noise (GWN) images
for testing, In addition, we also selected some real images for
denoising.

1.

Comparison with classic image denoising methods: We evaluated all
the comparison classic denoising methods using six noise
levels: o5 = 20, 30, 40, 50, 75, and 100. To quantify the
effectiveness of the algorithms, we employ two quality mea-
surements for restored image: PSNR and structural similarity
(SSIM) [68]. The image denoising average results on dataset
Set12 are summarized in Tables 1 (PSNR) and 2 (SSIM). The
best results are highlighted in bold and it is obvious that
our proposed algorithm outperforms all other competing
methods on both PSNR and SSIM. It is worth noting that
our method achieves better performance than other spat-
sity tesidual-based methods, especially the NSSRC, where
the rationale is two folds. On one hand, the proposed resid-
ual learning considers the relation among patches, where
the quality of sparse representation in return is enhanced.
On the other hand, the weight matrix automatically learned
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TABLE 4  Avecrage PSNR (dB) results of comparison with classic methods for image deblocking on the LIVEL datasct (image size: 256 X 256) and the Classic5
dataset (image size: 256 X 256).

LIVE1 dataset (image size: 256 X 256)

Q JPEG BM3D SA-DCT PC-LRM  ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours
10 26.37 27.16 27.23 27.24 27.24 27.25 27.26 27.38 27.29 27.43 27.45
20 28.55 29.21 29.24 29.28 29.29 29.29 29.33 29.46 29.37 29.53 29.54
30 29.86 30.45 30.48 30.54 30.57 30.55 30.60 30.74 30.75 30.85 30.87
40 30.80 31.35 31.37 3145 31.51 31.46 31.57 31.66 3171 31.82 31.84
Average 28.90 29.54 29.58 29.63 29.65 29.64 29.69 29.81 29.78 29.91 29.93

Classic5 dataset (image size: 256 X 256)

Q JPEG BM3D SA-DCT PC-LRM  ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours
10 27.57 28.69 28.72 28.79 28.77 28.78 28.83 28.93 28.78 28.97 29.03
20 29.90 30.87 30.89 30.98 30.96 30.98 31.07 31.13 31.12 31.23 31.26
30 31.21 32.07 32.09 32.21 32.22 32.21 32.34 32.39 32.50 32.55 32.58
40 32.14 32.94 32.96 33.09 33.16 33.10 33.30 33.29 33.46 33.54 33.54
Average 30.21 31.14 31.17 31.27 31.28 31.27 31.39 31.43 31.47 31.57 31.60

TABLE 5  Average SSIM results of comparison with classic methods for image deblocking on the LIVEL datasct (image size: 256 X 256)) and the Classic5
dataset (image size: 256 X 256).

LIVE1 dataset (image size: 256 X 256))

Q JPEG BM3D SA-DCT PC-LRM  ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours

10 0.7611 0.7877 0.7869 0.7835 0.7879 0.7824 0.7859 0.7957 0.7931 0.7956 0.7979
20 0.8423 0.8591 0.8571 0.8550 0.8585 0.8542 0.8576 0.8042 0.8630 0.8045 0.8658
30 0.8791 0.8917 0.8903 0.8892 0.8913 0.8888 0.8913 0.8952 0.8967 0.8963 0.8976
40 0.8998 0.9103 0.9093 0.9089 0.9102 0.9087 0.9099 0.9129 0.9145 0.9148 0.9155
Average 0.8456 0.8622 0.8609 0.8592 0.8620 0.8585 0.8612 0.8670 0.8668 0.8678 0.8692

Classic5 dataset (image size: 256 X 256))

Q JPEG BM3D SA-DCT PC-LRM  ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours

10 0.7715 0.8087 0.8060 0.8043 0.8081 0.8033 0.8094 0.8134 0.8134 0.8168 0.8199
20 0.8519 0.8753 0.8728 0.8723 0.8730 0.8714 0.8740 0.8751 0.8796 0.8802 0.8811
30 0.8844 0.9018 0.9002 0.9003 0.9002 0.8998 0.9017 0.9012 0.9063 0.9060 0.9065
40 0.9036 0.9178 0.9168 0.9170 0.9172 0.9167 0.9180 0.9175 0.9225 0.9226 0.9225
Average 0.8529 0.8759 0.8740 0.8735 0.8746 0.8728 0.8758 0.8768 0.8805 0.8814 0.8825

FIGURE 9  The visual comparison deblocking results of image Capr on the LIVE (image size: 256 X 256) datasct at ) = 10. (a) Original image. (b) JPHG
compressed image (PSNR = 30.75 dB, SSTM = 0.8232). (c) SA-DCT (PSNR = 31.24 dB, SSIM = 0.8634). (d) Ours (PSNR = 31.70 dB, SSIM = 0.8734).
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FIGURE 10  The visual comparison deblocking results of image Light/ fonse3 on the LIVIL (image size: 256 X 256) datasct at 0 = 10. (a) Original image. (b)
JPEG compressed image (PSNR = 27.52 dB, SSIM = 0.7561). (c) SA-DCT (PSNR = 28.33 dB, SSIM = 0.7786). (d) Ours (PSNR = 28.78 dB, SSIM = (.7951).

TABLE 6  Average PSNR (dB)/SSIM results of comparison with
DNN-based models for image deblocking on the Classic5 dataset.

Methods 0=10 0=20 0=30 Average
AR- 29.08 31.25 32.60 30.98
CNN 0.7909 0.8514 0.8808 0.8410
TRND 29.29 3148 32.79 31.19
0.7996 0.8581 0.8841 0.8473
DnCNN 29.40 31.63 3291 3131
0.8026 0.8610 0.8861 0.8499
DCSC 29.62 31.81 33.06 31.50
0.8096 0.8641 0.8882 0.8540
MDDU 29.95 32,11 33.33 31.80
0.8171 0.8689 0.8916 0.8592
Ours 2936 3152 32.88 31.25
0.8041 0.8602 0.8857 0.8500

TABLE 7  Average PSNR (dB)/SSIM results of comparison with
DNN-based models for image deblocking on the Fingerprint Images dataset.

Methods o=10 0=20 0=30 Average
AR- 30.23 33.04 34.76 32.68
CNN 0.8859 0.9291 0.9480 0.9210
TRND 30.42 33.19 34.87 32.83
0.8899 0.9317 0.9492 0.9236
DnCNN 3031 33.07 34.73 32.70
0.8894 0.9308 0.9485 0.9229
DCSC 30.52 33.13 34.78 32.81
0.8934 0.9330 0.9497 0.9254
MDDU 30.45 32.95 3435 32.58
0.8961 0.9349 0.9508 0.9273
Ours 30.84 33.59 35.19 33.21
0.8971 0.9348 0.9506 0.9275

with the low-rank constraint can explore sub-groups of cach
patch group, which enables the sparse representation learned
to preserve the specificity of each patch within the same

group.

For further intuitive demonstration, we have made visual
comparison with three representative methods: BM3D [20],
EPLL [52] and NCSR [8]. BM3D is based on collaborative fil-
tering after block matching, EPLL is based on statistical model
(GMM), and NCSR is based on sparse residual model. The
visual results on images Monarch and Parrot in Set12 with
oy =75 are presented in Figures 2 and 3, respectively. It can
be seen that the images restored by BM3D are blurred or
oversmoothed, and the images restored by EPLL and NCSR
suffer from undesired visual artifacts. The proposed method
not only reduces the noise more effectively than other meth-
ods, but also preserves many image details like edges and
textures.

1. Comparison with DININ-based image denoising models: Deep neu-
ral networks (DNN) have achieved great success in vatious
downstream tasks for both high level image understanding
and low-level image processing. We therefore compared the
proposed algorithm with several mainstream DNN-based
image denoising models, including

TRND [56], DnCNN [49], S2S |57]. The PSNR and SSIM
results on the Set12 dataset are summarized in Table 3.

Opverall, the results show that our proposed method achieves
better results even competing with DNN-based methods in
image denoising tasks. Selected qualitative results with gz = 50
are illustrated in Figures 4 and 5, in comparison with TRND,
DnCNN and S28. It can be scen that the deep learning-based
methods are prone to produce some artifacts or to be over-
smoothing, while our method can restore image with more
cleatly details. Therefote, we conclude that although supervised
deep learning can fit diverse image structures with the large
training dataset, they hardly to capture the prior of the image
itself, such as sparsity and NSS, while our algotithm can make
good use of these priors.
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FIGURE 11  The visual comparison deblocking results of image Barbara on the Classic5 datasct at @ = 10. (a) Original image. (b) JPEG compressed image
(PSNR = 25.78 dB, SSIM = 0.7621). (c) ARCNN (PSNR = 26.89 dB, SSIM = 0.7934). (d) TRND (PSNR = 27.24 dB, SSIM = 0.8104). (¢) DnCNN

(PSNR = 27.59 dB, SSTM = 0.8161). () Ours (PSNR = 27.91 dB, SSTM = 0.8287).

FIGURE 12  The cight fingerprint test images from NIST dataset.

To fully verify the effectiveness of our proposed algorithm,
we also selected two real noisy images for experiments. Since
our model requires the noise variance of noisy image as a pri-
ori, we adopt a fast noise estimation method [69] to obtain
the noise variance of the real image in advance. The denoising

results are shown in Figures 6—8. We compare our method with
the deep learning-based S2S [57] which is also a self-supervised
model. Tt can be clearly seen that the restoration result of S2S
is over-smoothed, while our method preserved more image
details.

ASUQOIT SUOWIIO)) AANEAI)) d[qeatjdde ay) Aq PaUIdA0S AIe SAOILIE VO O8N JO SA[NI 10§ AIRIqIT dUI[UQ AS[IAL UO (SUOHIPUOI-PUB-SULIA} WO K1m AIeIqI[aul[uo//:sdiy) SUORIPUO)) PUB SWId] ay) 39S “[£70T/11/17] o Areiqry auruQ Ad1iam 1891 Aq 786717416010 1/10p/wod: Ad[imAreaquiaurjuo-yoreasanal//:sdpy woyy papeojumod ‘0 “L9961SL [



CATET AL.

15

FIGURE 13  The visual comparison deblocking results of izage 07 on the fingerprint datasct at () = 10. (a) Original image. (b) JPHIG compressed image
(PSNR = 28.41 dB, SSIM = 0.8737). (c) ARCNN (PSNR = 29.57 dB, SSIM = 0.8969). (d) TRND (PSNR = 29.73 dB, SSIM = 0.9008). (¢) DnCNN

(PSNR = 29.72 dB, SSIM = 0.9019). (f) DCSC (PSNR = 29.82 dB, SSIM = 0.9045). (g MDDU (PSNR = 29.82 dB, SSIM = 0.9081). (h) Ours (PSNR = 30.17 dB,
SSIM = 0.9089).

4.4 | Image deblocking

To further comprehensively verify the effectiveness of our
proposed algorithm, we investigated the JPEG deblocking
problem [58, 62, 65], reducing the block artifacts in the JPEG
compressed images. Different to image denoising, the additive
noise £ is quantization noise in image deblocking. Thus, we
employ a classical Gaussian model [58] which characterizes the
noise quantization by estimating the noise standard variance

gr.

1. Comparison with classic image deblocking methods: We evaluated the
performance of all competing classic deblocking methods
on two public benchmarks: the LTVE1 dataset [50] and the
Classic5 dataset [51]. Similar to image denoising, we adopted
two evaluation metrics, PSNR and SSIM, and the results are
shown in Tables 4 and 5. It is clear that our method outper-
forms other classical methods apart from SSIM metric on
Classic5 with @ = 40. In particular, the proposed method
is significantly superior to other competing methods on low
compression quality images (Q = 10, 20, 30), and close to or
even exceeds SOTA methods on high compression quality
images (Q = 40).

The SA-DCT [58] is the most popular image deblocking
method, thus we present the visual compartisons shown in
Figures 9 and 10. From the qualitative results, we can conclude

TABLE 8 The average computational time (in seconds) of ours method

for image denoising and deblocking,

Denoising on 13 widely used test images (256 X 256)

9k

20 40 75 100

Time 136.50 116.49 171.02 249.60

Deblocking on LIVE1 dataset (256 X 256)

Q

10 20 30 40

Time 81.16 61.68 90.25 69.61

that the proposed method can effectively remove the block

artifacts and preserve more image details.

1.

Comparison with DINN-based image deblocking models: To fut-
ther demonstrate the advantage of our proposed method
on image deblocking task, we also compared it against sev-
eral DNN-based methods, including AR-CNN [65], TRND
[56], DnCNN [49], DCSC [66], and MDDU [67]. The
evaluation was carried out on the Classic5 [51] dataset, a
popular benchmark for image deblocking, The results of
the average PSNR and SSIM with different compression
quality O ate listed in the Table 6. It shows that our pro-
posed method achieves better result than AR-CNN and
TRND, meanwhile it is comparable to DnCNN, DCSC, and
MDDU.
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TABLE 9  Avecrage PSNR (dB) results of ablation study on image denoising with the 13 widely used test images.
Modules o =20 or =30 or =40 op =50 op =175 or =100 Average
SR 31.17 28.57 27.35 27.24 24.87 23.74 27.16
RL 31.08 29.81 28.32 25.90 22.73 23.33 26.86
SR+RL 3223 30.24 28.81 21.73 25.72 24.40 28.79
It is worth noting that these supervised deep learning 27 , v
methods require the large-scale image datasets to train image 581, = |
deblocking model. We notice that if the distribution of the train- -
ing image dataset and the test images is identical or similar, 25¢ 1
then the deep learning model can effectively fit diverse image i8], |
structures. —~
However, we found that the deep learning method is prone 9\8/ 23 .
to over-smoothing, especially for images with rich textures, as % - |
shown in Figure 11. To further verify this finding, we collected v
cight fingerprint images from the NIST dataset as a testing 21+ J
benchmark. The eight ﬁngérpfmt images are.shown in F1gur§ 12 -0l ——airplane starfish — parrot| |
and the results for fingerprintimage deblocking are summarized
in Table 7. Our proposed method achieves better results than 19 —— peppers——monarch 1
all the other competing deep learning-based image deblock-
ing method. The visual comparison examples are shown in 180 5 {0 1‘5 2‘0 25
Figure 13, where our proposed method can reconstruct better Iteration Number
texture details than others.
(@)
30 T T
4.5 | Convergence
2951 1
It is difficult to provide a theotetical proof for local conver-
gence of our proposed algorithm, due to its patch grouping 297 ]
operations, non-convex optimization, and parameter updates. 285
Therefore, the empirical evidence is provided to verify the 2
convergence of our proposed algorithm. We selected 5 test = 28¢ B -
images from the Set12 dataset, and recorded the process of =
restoring these images. Figures 14a and 14b show variation e 2751 il
curve of PSNR value during algorithm iteration process for b / |
image denoising with noise level o = 50 and image deblock-
ing with compression quality @ = 10, respectively. It can be 26.5- ——airplane starfish ——parrot| |
cleatly seen that as the algorithm iterates, all PSNR curves ——peppers——monarch
of restored images are initially monotonically increasing and 26 : ' ‘ :
0 3 10 15 20 25

then gradually stabilizing. Therefore, the proposed algorithm
possesses a good convergence propetty.

4.6 | Computational time

It is worth noting that our proposed method is based on a
group sparse representation model, and each group can be pro-
cessed independently. Therefore, we implement the algorithm
with parallel code in MATLAB. All experiments wete tun on a
laptop with Intel(R) Xeon(R) W-2223 CPU at 3.60 GHz with
32-GB memory. We recorded the average time (in seconds)
consumed by our algorithm for denoising on the 13 images of
size 256 X 256 shown in Figure 15 and the average time con-
sumed for deblocking on the LIVE1 dataset [50]. The statistical

Iteration Number
(b)

FIGURE 14  Convergence behaviour. (a) PSNR values curve with the
number of iterations for image denoising with noise level o = 50. (b) PSNR
values curve with the number of iterations for image deblocking with
compression quality O = 10.

results are shown in Table 8. Our algorithm can complete
image denoising in 2—4 min, and image deblocking in about
1.5 min. Like other self-supervised algorithms, our method is
difficult to achieve real-time, but it is suitable for scenes lacking
ground truth (clean images) and high demand for restoration
quality.
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FIGURE 15 The 13 test images used for computational time and ablation study.

; o

(d)

FIGURE 16  The visual comparison denoising results of image Miss with g = 75. (a) Original image. (b) Noisy image. (c) SR (PSNR = 26.38 dB,
SSIM = 0.7646). (d) RL (PSNR = 23.52 dB, SSIM = 0.5758). (¢) SR+RL (PSNR = 27.61 dB, SSIM = 0.7944).

FIGURE 17  The visual comparison denoising results of image Starfish with 0z = 75. (a) Original image. (b) Noisy image. (c) SR (PSNR = 23.12 dB,
SSIM = 0.6716). (d) RI. (PSNR = 21.67 dB, SSIM = 0.5711). (¢) SR+RI. (PSNR = 23.47 dB, SSIM = 0.6788).

4.7 | Ablation study

To investigate the effectiveness of these different modules in
our algorithm, we present the ablation study in this subsec-
tion, by removing the group residual constraint (¥ = 0) and
the sparsity constraint (8 = 0), respectively. Tts variants are
simplified into group sparse representation-based restoration
model (denoted as SR) and group residual learning-based
restoration model (denoted as RL). In order to examine the
contributions of SR, RL and our proposed model (SR+RL),
we selected 13 test images which are widely used (as shown in
Figure 15) and applied these variants to image denoising, The
average PSNR results are shown in Table 9. One can observe

that both the group sparse representation and group residual
learning play crucial roles in the success of our proposed
model.

To further reveal the role of each component of the proposed
algorithm, we illustrated some image examples teconstructed
by SR model, RL. model and the proposed model (SR+RL). As
shown in Figures 16c and 17¢, the SR model is indeed an ideal
image restoration tool, but it can be affected by noise leading
to undesirable results. As shown in Figures 16d and 17d, the
group tesidual learning model we proposed can also achieve
the purpose of image restoration, but there are many artifacts
in the results. Therefore, we consider that SR model provides
initial denoising, while RI. model provides constraints for
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the SR model. The mutual promotion of these two com-
ponents makes the proposed algorithm successful in image
restoration,

5 | CONCLUSION

In this paper, a novel algorithm was proposed for image restora-
ton, where group sparse representation and sparsity residual are
simultaneously learned. Unlike conventional sparsity residual
models which estimate the true sparse representation using the
weighted average method, we first define the estimate of the true
sparse representation as the product of the learned sparse rep-
tresentation and a weight matrix, and then our proposed group
sparsity residual learning model automatically learns adaptive
weight matrix via self-representation learning, Moreover, we
explore the sub-group structure of cach patch group using
the low-rank constraint to better leverage the relation among
patches within the same group. The proposed algorithm is com-
prehensively validated and compared with many other popular
or SOTA image testoration methods on public benchmatks.
The results demonstrate that, in image restoration tasks such
as denoising and deblocking, our suggested approach performs
better than those baselines.

However, there are still shortcomings in this work, as it can
only handle Gaussian additive noise. In future work, we will
consider other distributions of noise, even multiplicative noise.
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