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Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have
potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly
interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical
grounds, for example in reference to the approach to the large-N limit. A particularly compelling research
aim is the determination of the extent of the conformal window in gauge theories with symplectic groups
coupled to matter, for different groups and for field content consisting of fermions transforming in different
representations. Such determination would have far-reaching implications, but requires overcoming huge
technical challenges. Numerical studies based on lattice field theory can provide the quantitative
information necessary to this endeavor. We developed new software to implement symplectic groups
in the Monte Carlo algorithms within the Grid framework. In this paper, we focus most of our attention on
the Spð4Þ lattice gauge theory coupled to four (Wilson-Dirac) fermions transforming in the 2-index
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antisymmetric representation, as a case study. We discuss an extensive catalog of technical tests of the
algorithms and present preliminary measurements to set the stage for future large-scale numerical
investigations. We also include the scan of parameter space of all asymptotically free Spð4Þ lattice gauge
theories coupled to varying number of fermions transforming in the antisymmetric representation.

DOI: 10.1103/PhysRevD.108.094508

I. INTRODUCTION

Gauge theories with symplectic group, Spð2NÞ, in four
space-time dimensions have been proposed as the micro-
scopic origin of several new physics models that stand out
in the literature for their simplicity and elegance. We list
some compelling examples later in this introduction.
Accordingly, lattice field theory methods have been
deployed to obtain numerically a first quantitative charac-
terization of the strongly coupled dynamics of such gauge
theories [1–19]. Different regions of lattice parameter space
have been explored; by varying the rank of the group, N,
the number, Nf; as , and mass, mf;as , of (Dirac) fermions
transforming in the fundamental (f) and 2-index antisym-
metric (as) representation, one can tabulate the properties of
these theories. And, after taking infinite volume and
continuum limits, the results can be used by model builders,
phenomenologists, and field theorists working on potential
applications.
A prominent role in the recent literature is played by the

theory with N ¼ 2, Nf ¼ 2, and Nas ¼ 3. It gives rise, at
low energies, to the effective field theory (EFT) entering the
minimal Composite Higgs model (CHM) that is amenable to
lattice studies [20],1 and also realizes top (partial) compos-
iteness [85] (see also Refs. [86,87]). It hence provides an
economical way of explaining the microscopic origin of the
two heaviest particles in the standardmodel, theHiggs boson
and the top quark, singling them out as portals to new
physics.
The Spð2NÞ gauge theories with Nf ¼ 2 and Nas ¼ 0

find application also in the simplest realizations of the
strongly interacting massive particle (SIMP) scenario for
dark matter [88–96]. They can address observational
puzzles such as the core vs. cusp [97] and too big to fail
[98] problems. In addition, they might have profound
implications in the physics of the early universe and be
testable in present and future gravitational wave experi-
ments [99–116]. This is because they can give rise to a relic
stochastic background of gravitational waves [117–122],
that are the current subject of active study [123–125].

On a more abstract, theoretical side, in Spð2NÞ Yang-
Mills theories one can compute numerically the spectra of
glueballs and strings [126–135], as well as the topological
charge and susceptibility [136–152]. This allows for a
comparison with other gauge groups (SUðNcÞ in particu-
lar), by means of which to test nonperturbative ideas about
field theories and their approach to the large-Nc limit—see,
e.g., Refs. [5,10,153–155]. Indeed, even the pioneering
lattice study of symplectic theories in Ref. [156] was
performed to the purpose of better characterizing on
general grounds the deconfinement phase transition.
A special open problem is that of the highly nontrivial

determination of the extent of the conformal window in
strongly coupled gauge theories with matter field content. It
has both theoretical and phenomenological implications, of
general interest to model-builders, phenomenologists, and
field theorists alike. Particular attention has been so far paid
to SUðNcÞ theories, more than Spð2NÞ (with N > 1) ones.
Let us pause and explain what the problem is, on general
grounds. Robust perturbation-theory arguments show that
if the number of matter fields is large enough—but not so
much as to spoil asymptotic freedom—gauge theories can
be realized in a conformal phase. This is the case when long
distance physics is governed by a fixed point of the
renormalization group (RG) evolution [157,158], and the
fixed point is described by a conformal field theory (CFT).
It is reasonable to believe that such fixed points may exist
also outside the regime of validity of perturbation theory,
when the number of matter fields is smaller. What is the
smallest number of fermions for which the theory still
admits a fixed point, rather than confining in the infrared
(IR), is an open question. While gaining some control over
nonperturbative physics is possible in supersymmetric
theories (see Ref. [159] and references therein), the non-
supersymmetric ones are the subject of a rich and fascinat-
ing literature [160–168], part of which uses perturbative
instruments and high-loop expansions [169–181], but there
is no firm agreement on the results—we include a brief
overview of work in this direction, in the body of the paper.
Knowledge of the extent of the conformal window also

has relevant phenomenological implications. Various argu-
ments suggest that at the lower edge of the conformal
window, the anomalous dimensions of the CFT operators
might be so large as to invalidate naive dimensional
analysis (NDA) expectations for the scaling of observable
quantities [161,182]. And it has been speculated that this
might affect even confining theories that live outside the

1The literature on CHMs in which the Higgs fields emerge as
pseudo-Nambu-Goldstone bosons (PNGBs) from the spontane-
ous breaking of the approximate global symmetries of a new,
strongly coupled theory [21–23], is vast. See, e.g., the reviews in
Refs. [24–26], the summary tables in Refs. [27–29], and the
selection of papers in Refs. [30–84].
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conformal window, with applications to technicolor,
CHMs, top (partial) compositeness, SIMP dark matter
(e.g., see Refs. [24–26,183–188] and references therein).
Lattice studies of the extent of the conformal window

have mostly focused on SUðNcÞ groups, with fermion
matter in various representations of the gauge group.2

Closely related to these studies is the emergence, in
SUð3Þ gauge theories with eight (Dirac) fermions trans-
forming in the fundamental representation [242–250], or
(Dirac) fermions transforming in the 2-index symmetric
representation [251–256], of numerical evidence pointing
to the existence of a light isosinglet scalar state, that is
tempting to identify with the dilaton, the PNGB associated
with dilatations.
It has been predicted long ago that a light dilaton should

exist in strongly coupled, confining theories living in
proximity of the lower end of the conformal window
[257–259], and the EFT description of such state has a
remote historical origin [260,261]. It might have huge
consequences in extensions of the standard model [262]. A
plethora of phenomenological studies exists on the dilaton
(see, for example, Refs. [263–274] and references therein).
The SUð3Þ lattice evidence for the existence of this state
has triggered renewed interest in the dilaton effective field
theory (dEFT), which combines the chiral Lagrangian
description of the PNGBs associated with the internal
global symmetries of the system, with the additional, light
scalar, interpreted as a dilaton [275–290].
The aforementioned lattice studies of symplectic theo-

ries, motivated by CHMs and SIMPs, can be carried out
with comparatively modest resources, and using lattices of
modest sizes, because they require exploring the inter-
mediate mass range for the mesons in the theory. By
contrast, the study of the deep-IR properties of Spð2NÞ
gauge theories requires investigating the low mass regime
of the fermions, for which one needs lattices and ensembles
big enough to overcome potentially large finite size effects
and long autocorrelation times. The supercomputing
demands (both on hardware and software) of these calcu-
lations are such that a new dedicated set of instruments, and
a long-term research strategy, is needed to make these
investigations feasible. With this paper, we make the first,
propaedeutic, technical steps on the path toward determin-
ing on the lattice the extent of the conformal window in
theories with Spð2NÞ group, for N > 1.
To this end, we elected to build, test, and make publicly

available new software [291], that supplements previous
releases of the Grid library [292–295], by adding to it new
functionality specifically designed to handle Spð2NÞ the-
ories with matter fields in multiple representations. The
resulting software takes advantage of all the features
offered by the modularity and flexibility of Grid, in

particular its ability to work both on CPU- as well as
GPU-based architectures. We present two types of pre-
liminary results relevant to this broader endeavor: technical
tests of the algorithm and of the physics outcomes are
supplemented by preliminary analyses, conducted on
coarse lattices, of the parameter space of the lattice theory.
The latter set the stage for future large-scale numerical
studies, by identifying the regions of parameter space
connected to continuum physics. The former are intended
to validate the software, and test its performance for
symplectic theories on machines with GPU architecture.
Unless otherwise specified, we use the Spð4Þ theory,
coupled to Nas ¼ 4 Wilson-Dirac fermions transforming
in the 2-index antisymmetric representation, as a case
study. The lessons we learn from the results we report
have general validity and applicability.
This paper is organized as follows. We start by defining

the Spð2NÞ gauge theories of interest in Sec. II, both in the
continuum and on the lattice. We also summarize briefly
the current understanding of the extent of the conformal
window in these theories. Section III discusses the software
implementation of Spð2NÞ on Grid, and the basic tests we
performed on the algorithm. In Sec. IV we concentrate on
lattice theories in which the fermions do not contribute to
the dynamics, focusing both on the Yang-Mills theory and
the quenched approximation. New results about the bulk
structure of all the Spð4Þ theories coupled to (Wilson-
Dirac) fermions transforming in the 2-index antisymmetric
representation can be found in Sec. V, while Sec. VI
discusses scale setting (Wilson flow) and topology. A brief
summary and outlook concludes the paper, in Sec. VII.
Additional technical details are relegated to the appendix.

II. GAUGE THEORIES WITH
SYMPLECTIC GROUP

The Spð2NÞ continuum field theories of interest (with
N > 1), written in Minkowski space with signature mostly
‘−’, have the following Lagrangian density (we borrow
notation and conventions from Ref. [4]):

L¼−
1

2
TrGμνGμνþ1

2

XNf

i

ðiQi
aγ

μðDμQiÞa− iDμQi
aγ

μQiaÞ

−mf
XNf

i

Qi
aQia

þ1

2

XNas

k

ðiΨk
abγ

μðDμΨkÞab− iDμΨk
abγ

μΨkabÞ

−mas
XNas

k

Ψk
abΨkab: ð1Þ

The fields Qia, with i ¼ 1;…; Nf , are Dirac fermions that
transform in the fundamental representation of Spð2NÞ, as

2See for instance the review in Ref. [189], and references
therein, in particular Refs. [190–241].
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indicated by the index a ¼ 1;…; 2N, while the Ψkab ones,
with k ¼ 1;…; Nas, transform in the 2-index antisymmetric
representation of the gauge group. The covariant deriva-
tives are defined by making use of the transformation
properties under the action of an element U of the Spð2NÞ
gauge group, according to which

Q → UQ; and Ψ → UΨUT: ð2Þ

They can be written in terms of the gauge field Aμ ≡ Aa
μta,

where ta are the generators of Spð2NÞ, normalized so that
Tr tatb ¼ 1

2
δab, to read as follows:

DμQi ¼ ∂μQi þ igAμQi; ð3Þ

DμΨj ¼ ∂μΨj þ igAμΨj þ igΨjAT
μ ; ð4Þ

where g is the gauge coupling. The field-strength tensor is
given by

Gμν ≡ ∂μAν − ∂νAμ þ ig½Aμ; Aν�; ð5Þ

where ½·; ·� is the commutator.
The form of Eq. (1) makes it easy to show that the

SUðNfÞL × SUðNfÞR and SUðNasÞL × SUðNasÞR global
symmetries acting on the flavor indexes of Qi and Ψk,
respectively, are enhanced to SUð2NfÞ and SUð2NasÞ. By
rewriting Eq. (1) in terms of 2-component fermions [4,296],
see Refs. [4,296] for details.

Qia ¼
�

qia

Ωabð−C̃qiþ2;�Þb

�
;

Ψkab ¼
�

ψkab

ΩabΩbdð−C̃qkþ3;�Þcd

�
; ð6Þ

(C̃ ¼ −iτ2, τ2 is the second Pauli matrix) we get the
Lagrangian where the global symmetries are manifest

L¼−
1

2
TrGμνGμνþ1

2

X2Nf

j

ðiðqjÞ†aσ̄μðDμqjÞa− iðDμqjÞ†aσ̄μðqjÞaÞ−
1

2
mf

X2Nf

j;k

ΩjkðqjaTΩabC̃qkb− ðqjÞ†aΩabC̃ðqk�ÞbÞ

þ1

2

X2Nas

k

ðiðψkÞ†abσ̄μðDμψ
kÞab− iðDμψ

kÞ†abσ̄μðψkÞabÞ−1

2
mas

X2Nas

j;k

ωjkðψ jabTΩacΩbdC̃ψkcd− ðψ jÞ†abΩacΩbdC̃ðψk�ÞcdÞ;

ð7Þ

where we defined σ̄μ ≡ ð12×2; τiÞ and ωjk ¼ ωjk≡
ð 0
1Nas

1Nas
0 Þ. The antisymmetric matrix Ω has the same form,

as defined in Eq. (A1) of Appendix A, for both the gauge
and fundamental flavor symmetries, but the indices run
with a ¼ 1;…; 2N for the former and with j ¼ 1;…; 2Nf
for the latter.
The mass terms break the symmetries to the maximal

Spð2NfÞ and SOð2NasÞ subgroups. Bilinear fermion con-
densates arise nonperturbatively, breaking the symmetries
according to the same pattern, and hence one expects the
presence of Nfð2Nf − 1Þ − 1 PNGBs in the (f) sector (for
Nf > 1), and Nasð2Nas þ 1Þ − 1 in the ð as Þ sector.
The main parameters governing the system are hence N,

Nf , and Nas, and in most of the paper we refer to the theory
with N ¼ 2, Nf ¼ 0, and Nas ¼ 4 as a case study. The
running coupling, g, obeys a renormalization group equa-
tion (RGE) in which the beta function at the 1-loop order is
scheme-independent,

β ¼ −
g3

ð4πÞ2 b1; ð8Þ

and is governed by the coefficient b1, which for a non-
Abelian theory coupled to Dirac fermions can be written as

b1 ¼
11

3
C2ðGÞ −

4

3
Nf

df
dG

C2ðfÞ −
4

3
Nas

das
dG

C2 ðasÞ ð9Þ

and, specifically for Spð2NÞ groups, becomes

b1 ¼
11

3
ðN þ 1Þ − 2

3
Nf −

4

3
Nas

Nð2N − 1Þ − 1

Nð2N þ 1Þ N: ð10Þ

The coefficients C2ðGÞ, C2ðfÞ, C2ð as Þ are quadratic
Casimir operators in the adjoint, fundamental and anti-
symmetric representations, while dG, df , das are the
dimensions of these representations, respectively. We
restrict attention to asymptotically free theories, for which
b1 is positive. For Spð2NÞ theories with Nf ¼ 0, this

requirement sets the upper bound Nas <
11ðNþ1Þ
4ðN−1Þ , which for

N ¼ 2 yields Nas < 33=4—perturbatively, as-type fer-
mions make double the contribution of f-type ones, in
Spð4Þ. The spectrum of mesons depends on the mass,
mf;as , of the fermions, by varying which we can test which
of the following three possible classes the theory falls into.

(i) The theory confines, similarly to Yang-Mills theo-
ries. One expects to find a gapped spectrum, and a
set of PNGBs that become parametrically light in
respect to other states, when mf;as → 0. The small
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mass and momentum regime is described by chiral
perturbation theory (χPT) [297–300].

(ii) The theory is IR conformal. In this case, a gap arises
only because of the presence of the mass terms, and
would disappear into a continuum for mf;as → 0.
The spectrum and spectral density exhibit scaling, in
the form described for example in Refs. [195,301–
306]—see also Ref. [307].

(iii) The theory is confining, but has near-conformal
dynamics. As in the confining case, whenmf;as → 0
one finds massless PNGBs. An additional isosinglet
scalar state, the dilaton, is also light, compared to the
other mesons, and long distance physics is described
by dEFT [275–290]—see also the discussions in
Refs. [308–310], and references therein.

A. The conformal window

The three possible classes of gauge theories described
above are determined by whether the theory is, respectively,
far outside, inside or just outside the boundary of the
conformal window. The determination of the conformal
window is tantamount to showing the existence of the IR
fixed point at nonzero coupling so that the theory is
interacting and IR conformal. We provide here some more
detail and information about this challenging endeavor and
what is known to date, starting from perturbative argu-
ments. The coefficient of the (scheme-independent) 2-loop
RG beta function, b2, which is found to be, for generic non-
Abelian gauge theories,

b2 ¼
34

3
C2ðGÞ2 −

4

3
ð5C2ðGÞ þ 3C2ðfÞÞ

df
dG

C2ðfÞNf −
4

3
ð5C2ðGÞ þ 3C2ðasÞÞ

das
dG

C2ðasÞNas; ð11Þ

and for Spð2NÞ groups reduces to

b2 ¼
34

3
ðN þ 1Þ2 − 2

3
Nf

�
5ðN þ 1Þ þ 3

4
ð2N þ 1Þ

�
−
4

3
Nas½3N þ 5ðN þ 1Þ�Nð2N − 1Þ − 1

2N þ 1
; ð12Þ

When b2 is negative, one finds that for a positive and
sufficiently small value of b1, a perturbative IR fixed point
at coupling αIR ≃ αBZ ¼ −4πb1=b2 ≪ 1 arises. This is
referred to as a Banks-Zaks (BZ) fixed point [157,158].
The upper bound of the conformal window therefore
coincides with that of asymptotically free theories, given
by b1 ¼ 0.
The determination of the lower bound of the conformal

window is hindered by the vicinity of the strong coupling
regime. To see this, one can fix the value of N and decrease
the number of flavors Nf;as . The coefficient b2 then
becomes less negative and eventually approaches zero,
while b1 remains finite and positive. Accordingly, the
coupling at the (perturbative) BZ fixed point, αBZ, becomes
larger and larger and the perturbative analysis of the β
function is no longer reliable. Despite such inherent
limitations, several (approximate) analytical methods have
been proposed to estimate the critical value Ncr

f;as corre-
sponding to the lower edge of the conformal window. We
now briefly summarize known results, for the theories of
interests, that can be used to guide dedicated studies using
nonperturbative numerical techniques, such as those based
on lattice field theory.
Let us start by setting Nf ¼ 0 and varying Nas. A naíve

estimate can be derived by taking the perturbative 2-loop
beta function to hold beyond perturbation theory, using it to
compute NBZ;cr

as , and assuming that the fixed point dis-
appears when αBZ → ∞, or equivalently by looking for

solutions of the condition b2 → 0. Doing so yields NBZ;cr
as ≃

3.7 for Spð4Þ. This approach can be systematically
improved by including higher-order loops, up to
lmax > 2, in the expansion of the beta function βðαÞ.
One then seeks values of Nas for which αIR → ∞, with
αIR determined by solving βðαÞ≡ −2α

Plmax
l¼1 blð α4πÞl ¼ 0.

In particular, one finds N4−loop; cr
as ≃ 4.1 from the perturba-

tive beta function at four loops in the MS-scheme [311]. It
should be noted, however, that the results are affected by
uncontrolled systematics, since the coefficients, bl, of the
beta function, βðαÞ, depend on the renormalization scheme
at three or higher loops, when l ≥ 3.
An alternative approach makes use of the Schwinger-

Dyson (SD) equation in the ladder approximation, in which
case conformality is assumed to be lost when αIR ≡ αcr,
with αcr ¼ π=3C2ðRÞ, which yields NSD

as ≃ 6 for Spð4Þ.
Going beyond the perturbative coupling expansion, a
conjectured all-orders beta function βall−ordersðαÞ [164],
which involves the first two universal coefficients of
βðαÞ and the anomalous dimension of fermion bilinear
operator, γψ̄ψðαÞ, has been proposed.3 In this case, the
conformal window is determined by solving the condition
βall-orders ¼ 0 with the physical input for the value of γψ̄ψ at

3A modified version of the all-orders beta function can also be
found in Ref. [165].
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the IR fixed point. For γψ̄ψ ¼ 1, one finds Nall-orders; cr
as ≃ 5.5

for Spð4Þ.4
More recently, the scheme-independent BZ expansion in

the small parameter ΔNas
¼ NAF

as − NIR
as has been exten-

sively applied to the determination of physical quantities
such as the anomalous dimension, γψ̄ψ , at the IR fixed point
—see Ref. [176] and references therein. In Ref. [167],
the authors determined the lower edge of the con-
formal window by imposing the critical condition of
γψ̄ψ ð2 − γψ̄ψÞ ¼ 1. This condition is identical to γψ̄ψ ¼ 1

at infinite order, but displays better convergence at finite
order in the ΔNas

expansion. The 4th order calculation
yields Nγcc; cr

as ≃ 5.5 for Spð4Þ [168].
These analytical approaches can be extended to determine

the conformal window for the theory containing fermions
in the multiple representations, fR1; R2;…; Rkg, in which
case the upper and lower bounds of the conformal window
are described by (k − 1)-dimensional hypersurfaces. For the
Spð4Þ theories of interest with Nf Dirac fermions trans-
forming in the fundamental and Nas in the 2-index anti-
symmetric representation, the results are summarized in
Fig. 1.5 The upper bound is determined by the condition
b1ðNf ; NasÞ ¼ 0. The various alternative determinations of
the lower bound are estimated as follows. The dashed line is
obtained by setting b2ðNf ; NasÞ ¼ 0. The dot-dashed line
corresponds to the result of the all-order beta function with
the input of γΨ̄Ψ ¼ γQ̄Q ¼ 1. The dotted and solid lines
are the results of the SDanalysis and theBZexpansion of γΨ̄Ψ
at the 3rd order in ΔNfðnasÞ [179] with the critical condi-
tions applied to the antisymmetric fermions, αBZ ¼ αcras ¼
π=3C2ðASÞ and γΨ̄Ψð2 − γΨ̄ΨÞ ¼ 1, respectively, as fer-
mions in the higher representation are expected to condense
first, resulting in the larger values of αcr and γIR [313]. It
might be possible to make use of the five-loop computations
inRefs. [169,170], to further improve these estimations of the
conformal window, but this goes beyond the purposes of this
discussion. For the purpose of phenomenological applica-
tions, the most interesting physical quantities one would like
to determinewithin the conformalwindoware the anomalous
dimensions of fermion bilinear operators (mesons) and
chimera baryon operators. Perturbative calculations of the
former are available in the literature, up to the 4th order of the
coupling expansion [314,315] and at the 3rd order of the BZ
expansion [179], while that of the latter is only available at
the leading order in α [62]. All of these considerations,

summarized in Fig. 1, offer some intuitive guidance for what
can be expected, but non-perturbative instruments are needed
to test these predictions and put Fig. 1 on firmer grounds.

B. The lattice theory

In presenting the lattice theory, we borrow again notation
and conventions from Ref. [9]. The theory is defined on a
Euclidean, hypercubic, four-dimensional lattice with spac-
ing a, with L=a sites in the space directions and T=a in the
time direction. The generic lattice site is denoted as x, and
the link in direction μ as ðx; μÞ. The total number of sites is
thus Ṽ=a4 ¼ T × L3=a4. Unless stated otherwise, in the
following we set L ¼ T. The action is the sum of two terms

S≡ Sg þ Sf; ð13Þ

where Sg and Sf are the gauge and fermion action,
respectively. Among the several choices for the former—
the Iwasaki, Symanzik, DBW2, and Wilson gauge actions
—for simplicity, we show our results using the Wilson
action, defined as

Sg ≡ β
X
x

X
μ<ν

�
1 −

1

2N
ReTrPμνðxÞ

�
; ð14Þ

FIG. 1. Estimates of the extent of the conformal window in
Spð4Þ theories coupled to Nf Dirac fermions transforming in the
fundamental and Nas in the 2-index antisymmetric representation.
The black solid line denotes the upper bound of the conformal
window, while different colored and shaped lines denote alter-
native analytical estimates of the lower bound, obtained with
different approximations. The dashed line is obtained by impos-
ing the constraint b2ðNf ; NasÞ ¼ 0. The dot-dashed line is the
result of the all-order beta function with the assumption
that the anomalous dimensions of the fermion bilinears are
γΨ̄Ψ ¼ γQ̄Q ¼ 1. The dotted line is the result of the SD analysis.
The BZ expansion leads to the lower (blue) solid line. Details
about these approximations can be found in the main text and in
the reference list.

4This choice for γψ̄ψ has been argued to be the critical condition
associated with the chiral phase transition through the IR and UV
fixed point merger [182]., and by matching smoothly to the
chiral phase with pions [310]. A less common choice is to
set γψ̄ψ ¼ 2, as suggested by unitarity considerations [312].

5The figure is basically the same as the analogous one found in
Ref. [167], except that the input for the all-orders beta function
analysis has been changed to γΨ̄Ψ ¼ γQ̄Q ¼ 1. The parameter
space has also been extended and the notation adapted to the
conventions of this paper.
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wherePμνðxÞ≡UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ is known as the elementary plaquette operator,UμðxÞ∈ Spð2NÞ is the link
variable defined on link ðx; μÞ, and β≡ 4N=g20, where g0 is the bare gauge coupling. For the fermions, we adopt the massive
Wilson-Dirac action,

Sf ≡ a4
XNf

j¼1

X
x

Q̄jðxÞDðfÞ
m QjðxÞ þ a4

XNas

j¼1

X
x

Ψ̄jðxÞDðasÞ
m ΨjðxÞ; ð15Þ

where Qj and Ψj are the fermion fields transforming, respectively, in the fundamental and 2-index antisymmetric
representation and j is a flavor index, while color and spinor indices are omitted for simplicity. The massive Wilson-Dirac
operators in Eq. (15) are defined as

DðfÞ
m QjðxÞ≡ ð4=aþmf

0ÞQjðxÞ − 1

2a

X
μ

n
ð1 − γμÞUðfÞ

μ ðxÞQjðxþ μ̂Þ þ ð1þ γμÞUðfÞ;†
μ ðx − μ̂ÞQjðx − μ̂Þ

o
; ð16Þ

and

DðasÞ
m ΨjðxÞ≡ ð4=aþmas

0 ÞΨjðxÞ − 1

2a

X
μ

n
ð1 − γμÞUðasÞ

μ ðxÞΨjðxþ μ̂Þ þ ð1þ γμÞUðasÞ;†
μ ðx − μ̂ÞΨjðx − μ̂Þ

o
; ð17Þ

where mf
0 and mas

0 are the bare fermion masses in the
fundamental and 2-index antisymmetric representation, and

UðfÞ
μ ðxÞ ¼ UμðxÞ. The link variables UðasÞ

μ ðxÞ are defined as
in Ref. [9], as follows:

UðasÞ
μ;ðabÞðcdÞ ¼ TrðeðabÞTUðfÞ

μ eðcdÞUðfÞT
μ Þ; ð18Þ

where eðabÞ are the elements of an orthonormal basis in the
ðNð2N − 1Þ − 1Þ-dimensional space of 2N × 2N antisym-
metric and Ω-traceless matrices, and the multi-indices ðabÞ
run over the values 1 ≤ a < b ≤ 2N. The entry ij of each
element of the basis is defined as follows. For b ≠ N þ a,

eðabÞij ≡ 1ffiffiffi
2

p ðδajδbi − δaiδbjÞ; ð19Þ

while for b ¼ N þ a and 2 ≤ a ≤ N,

eðabÞi;iþN ¼ −eðabÞiþN;i ≡
8<
:

1ffiffiffiffiffiffiffiffiffiffiffiffi
2aða−1Þ

p ; for i < a;

1−affiffiffiffiffiffiffiffiffiffiffiffi
2aða−1Þ

p ; for i ¼ a:
ð20Þ

It is easy to verify that each element of this basis satisfies
the Ω-traceless condition TrðeðabÞΩÞ ¼ 0, where the sym-
plectic matrix Ω is defined in Eq. (A1).
Finally, we impose periodic boundary conditions on the

lattice for the link variables, while for the fermions we
impose periodic boundary conditions along the space-like
directions, and anti-periodic boundary conditions along the
time-like direction.

III. NUMERICAL IMPLEMENTATION: GRID

Our numerical studies are performed using Grid
[292–294]: a high level, architecture-independent, Cþþ
software library for lattice gauge theories. The portability
of its single source-code across the many architectures that
characterize the exascale platform landscape makes it an
ideal tool for a long-term computational strategy. Grid has
already been used to study theories based on SUðNcÞ gauge
groups with Nc ≥ 3, and fermions in multiple representa-
tions [316,317]. In this section, we describe the changes
that have been implemented in Grid in order to enable the
sampling of Spð2NÞ gauge field configurations. With the
aim of including dynamical fermions in future explorations
of Spð2NÞ gauge theories, we focused our efforts6 on the
Hybrid Monte Carlo (HMC) algorithm and on its variation,
the rational HMC (RHMC), used whenever the number of
fermion species is odd.
The (R)HMC algorithms generate a Markov chain of

gauge configurations distributed as required by the lattice
action described in Sec. II B. The ideas underpinning these
two algorithms can be summarized as follows. Firstly,
bosonic degrees of freedom ϕ and ϕ†, known as pseudo-
fermions, are introduced replacing a generic number nf of
fermions. Powers of the determinant of the hermitian Dirac
operator, QR

m ¼ γ5DR
m, in representation R can then be

expressed as

6An implementation of the Cabibbo-Marinari method [318] for
pure gauge theories would be useful to explore general Spð2NÞ
theories and extrapolate to the large-Nc limit. We postpone this
task to future work.
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ðdetDR
mÞnf ¼ ðdetQR

mÞnf

¼
Z

DϕDϕ†e−a
4
P

x
ϕ†ðxÞðQ2

mÞ−nf=2ϕðxÞ; ð21Þ

where flavor and color indices of ϕ and ϕ† have been
suppressed for simplicity. For odd values of nf, the rational
approximation is used to compute odd powers of the
determinant above, resulting in the RHMC.
Second, a fictitious classical system is defined, with

canonical coordinates given by the elementary links and Lie-
algebra-valued conjugate momenta πðx; μÞ ¼ πaðx; μÞta,
where ta are the generators of the spð2NÞ algebra in the
fundamental representation. The fictitious Hamiltonian is

H ¼ 1

2

X
x;μ;a

πaðx; μÞπaðx; μÞ þHg þHf; ð22Þ

where Hg ¼ Sg and Hf ¼ Sf. The molecular dynamics
(MD) evolution in fictitious time τ is dictated by

dUμðxÞ
dτ

¼ πðx; μÞUμðxÞ;
dπðx; μÞ

dτ
¼ Fðx; μÞ; ð23Þ

where Fðx; μÞ, known as the HMC force, is defined on the
Lie algebra spð2NÞ, and can be expressed as Fðx; μÞ ¼
Fgðx; μÞ þ Ffðx; μÞ. The detailed form for Fgðx; μÞ and
Ffðx; μÞ [191], the gauge and fermion force can be found in
Sec. III A of Ref. [191].
Numerical integration of the MD equations thus leads to

a new configuration of the gauge field, which is then
accepted or rejected according to a Metropolis test. The
update process can hence be described as follows:

(i) pseudofermions distributed according to the inte-
grand in Eq. (21) are generated with the heat bath
algorithm,

(ii) starting with Gaussian random conjugate momenta,
the MD equations in Eq. (23) are integrated nu-
merically,

(iii) the resulting gauge configuration is accepted or
rejected by a Metropolis test.

In this section we provide details on the implementation
of the operations listed above, focusing on the alterations
made to the pre-existing structure of the code designed for
SUðNcÞ gauge theories. We then describe and carry out
three types of technical checks, followingRef. [191].We test
the behavior of the HMC and RHMC algorithms. We
produce illustrative examples of the behavior of the molecu-
lar dynamics (MD). Finally, we carry out a comparison
between HMC and RHMC algorithms. The purpose of these
tests is to verify that the dynamics is implemented correctly.

A. Software development

As in the case for the preexisting routines handling the
theories with gauge group SUðNcÞ, our implementation of

Spð2NÞ allows for a generic number of colors. The starting
point of the MD is the generation of random Lie-algebra-
valued conjugate momenta. The generators of the spð2NÞ
Lie Algebra in the fundamental representation, as they
appear in Grid, are provided by the relations described in
Appendix B, where conventions for their normalization are
also established. Generators in higher representations of the
gauge group can be derived from the fundamental ones
[191,316]. In particular, the generators of the algebra of
Spð2NÞ in the antisymmetric representation can be
obtained from the definition in Eq. (18), by Taylor
expanding to first order around the unit transformation,

ðtaasÞðabÞðcdÞ ¼ TrðeðabÞTtaf eðcdÞ þ eðabÞTeðcdÞtaTf Þ: ð24Þ

In the numerical integration of Eq. (23), it is required to
project the HMC force on the Lie algebra of the gauge
group. In Grid, the embedding of the force-projection
within the integrator requires the forces to be anti-
Hermitian. Hence, a projection operation to the matrices
of the algebra spð2NÞmust be defined. This can be done in
analogy with the projection to suðNcÞ, defined for a
generic matrix M as

PtrPaHM; ð25Þ

where PtrM ≡M − 1Nc
TrðMÞ=Nc and PaHM ≡ ðM −

M†Þ=2 are the projectors to its traceless and to its anti-
Hermitian parts, respectively. For spð2NÞ, the projection is
instead defined as,

PaHP−
SpPtrM; ð26Þ

where

P�
SpM ≡M � ΩM�Ω

2
: ð27Þ

Notice that P−
Sp returns an anti-Hermitian matrix, while Pþ

Sp

projects on a space of Hermitian matrices.
The resympleticization of gauge links to the Spð2NÞ

group manifold has also been implemented in Grid. The
algorithm [1] is a modification of the Gram-Schmidt
process designed to take into account the condition in
Eq. (A3). After normalizing the first column of the matrix
U, the (N þ 1)-th column is set to

colðUÞjþN ¼ −ΩcolðUÞ�j : ð28Þ

The second column is then obtained by orthonormalization
with respect to both the first and the N þ 1-th column. An
iteration of this process leads to a Spð2NÞ matrix. This
procedure, performed after every update, prevents the
gauge fields from drifting away from the group manifold
due to the finite precision of the simulation.
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B. Basic tests of the algorithm

In this subsection, we follow closely Secs. III and IV of
Ref. [191]. Our MD evolution is implemented using a
second-order Omelyan integrator [319]. However, in this
work, the inversion of the fermion matrix is treated without
preconditioning [9,320].
We now restrict attention to the theory with N ¼ 2,

Nf ¼ 0, and Nas ¼ 4, and perform a set of preliminary
checks on the algorithms we use. We present the results in
Figs. 2–6, obtained, for convenience, setting the lattice
parameters to β ¼ 6.8, and am0 ¼ −0.6, on an isotropic
lattice with volume Ṽ ¼ ð8aÞ4.
The first test pertains to Creutz equality [321]: by

measuring the difference in Hamiltonian, ΔH, evaluated
before and after the MD evolution, one should find that

hexp
�
−ΔH

�
i ¼ 1: ð29Þ

This is supported by our numerical results: Fig. 2 shows the
value of hexp ð−ΔHÞi for five different choices of the time-
step used in the MD integration, withΔτ ¼ τ=nsteps, and the
choice τ ¼ 1. The numerical results are obtained by
considering a thermalized ensemble consisting of 3400
trajectories, that we find has integrated autocorrelation time
τc ¼ 6.1ð2Þ, measured using the Madras-Sokal windowing
process [322]. A closely related test is shown in Fig. 3: the
value of the ensemble average of the plaquette is indepen-
dent of Δτ.
A third test pertains to the dependence of hΔHi on Δτ,

which for a second-order integrator is supposed to scale as
hΔHi ∝ ðΔτÞ4 [323]. In Fig. 4 we show our measurements,

FIG. 2. Test of Creutz equality, hexpð−ΔHÞi ¼ 1; dependence
of hexpð−ΔHÞi on the time–step Δτ in the MD integration, for
N ¼ 2, Nf ¼ 0, and Nas ¼ 4. The relevant parameters of this
study are the trajectory length τ ¼ 1, number of steps nsteps ¼ 14,
16, 18, 22, 26 (Δτ ¼ τ=nsteps), for an ensemble with lattice
volume Ṽ=a4 ¼ 84, β ¼ 6.8, and amas

0 ¼ −0.6.

FIG. 3. Test of independence of the plaquette on the time–step
Δτ used for the MD integration, for N ¼ 2, Nf ¼ 0, and Nas ¼ 4.
The relevant parameters of this study are the trajectory length
τ ¼ 1, number of steps nsteps ¼ 14, 16, 18, 22, 26, Δτ ¼ τ=nsteps,
for an ensemble with lattice volume Ṽ=a4 ¼ 84, β ¼ 6.8, and
amas

0 ¼ −0.6. The horizontal line corresponds to the plaquette
value obtained averaging over trajectories having different a
number of step values, nsteps.

FIG. 4. Dependence of hΔHi on the time-step, Δτ, used for the
MD integration, forN ¼ 2,Nf ¼ 0, andNas ¼ 4. The expectation
value hΔHi is proportional to ðΔτÞ4, consistently with the use of a
second-order integrator. The plot is shown in log-log scale. The
relevant parameters of this study are the trajectory length τ ¼ 1,
number of steps nsteps ¼ 14; 16; 18; 22; 26 (Δτ ¼ τ=nsteps),
for an ensemble with lattice volume Ṽ=a4 ¼ 84, β ¼ 6.8, and
am0 ¼ −0.6.

FIG. 5. Test of the relation between acceptance probability and
ΔH, for N ¼ 2, Nf ¼ 0, and Nas ¼ 4. The expected behavior
Pacc ¼ erfcð ffiffiffiffiffiffiffiffi

ΔH
p

=2Þ is supported. The relevant parameters of
this study are the trajectory length τ ¼ 1, number of steps nsteps ¼
14; 16; 18; 22; 26 (Δτ ¼ τ=nsteps), for an ensemble with lattice
volume Ṽ=a4 ¼ 84, β ¼ 6.8, and am0 ¼ −0.6.
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together with the result of a best-fit to the curve loghΔHi ¼
K1 logðΔτÞ þK2, with K1 ¼ 3.6ð4Þ determined by mini-
mizing a simple χ2. We find good agreement, as quantified
by the value of the reduced χ2=Nd:o:f: ¼ 0.6, and K1 is
compatible to 4. A closely related test is displayed in Fig. 5,
confirming the prediction that the acceptance probability of
the algorithm, Pacc, obeys the relation [324]:

Pacc ¼ erfc

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔHi

p �
: ð30Þ

The final test of this subsection is displayed in Fig. 6. We
refer the reader to Refs. [191,325], for discussions, rather
than reproduce them here. Following Refs. [191,325], we
also want to ensure that the reversibility of our updates is
respected. Reversibility is one of the fundamental proper-
ties required in order to pursue a correct HMC update.
Our update algorithm, based on leapfrog, is reversible
analytically. Yet, when using this algorithm numerically on
computers, because of the finite precision, exact revers-
ibility is lost. It is therefore important to verify that
implementation of the fundamental steps of the algorithm
can be considered as reversible to good approximation, in
order to avoid that rounding errors introduce a significant
bias in our calculations. One can show that the quantity
jδHj—the average difference of the Hamiltonian evaluated
by evolving the MD forward and backward and flipping the
momenta at τ ¼ 1—does not change significantly in our
simulations. Since the Hamiltonian in these tests is of order
∼106 and the typical δH ∼ 10−11, the results show that the
violation of reversibility is consistent with having jδHj=H
of the order of the numerical accuracy. This is the expected
relative precision for double-precision floating-point num-
bers. Moreover, the violation jδHj is independent of Δτ. As
a “microscopic” and related effect, reversibility violations
may occur while updating the gauge link variables and
momenta updates during the MD evolution. To ensure this
does not occur we update the gauge links through the
exponentiation of the momenta, so that UðπÞUð−πÞ ¼ 1.

FIG. 6. Reversibility test, showing jδHj for various choices of
Δτ, for N ¼ 2, Nf ¼ 0, and Nas ¼ 4. The relevant parameters of
this study are the trajectory length τ ¼ 1, number of steps
nsteps ∈ ½16; 26� (Δτ ¼ τ=nsteps), for an ensemble with lattice
volume Ṽ=a4 ¼ 84, β ¼ 6.8, and am0 ¼ −0.6.

FIG. 7. Field contribution to the MD force for the theory with N ¼ 2, Nf ¼ 0, and Nas ¼ 4, on isotropic lattice with Ṽ ¼ ð8aÞ4, and
lattice coupling β ¼ 6.8. The two blocks are respectively indicating the gauge (light shading, left) and the fermion (dark shading, right)
contribution, the latter computed with the HMC algorithm. Fermion contributions are summed over flavor. The six panels correspond to
different choices of bare mass: amas

0 ¼ −0.9;−0.1;þ0.6;þ1.8;þ15;þ50 (left to right, top to bottom).
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Moreover, thanks to the double-precision nature of the
variables we use, the entity of relative violations for
momenta results to be within machine-accuracy in our
simulations, as in the global reversibility violation case.

C. More about the molecular dynamics

For illustration purposes, we find it useful to monitor the
contribution to the MD of the fields, and how this changes
as we dial the lattice parameters. We focus on the theory
with N ¼ 2, Nf ¼ 0, and Nas ¼ 4, and consider a few
ensembles with isotropic lattice with Ṽ ¼ ð8aÞ4, and lattice
coupling β ¼ 6.8, but vary the mass amas

0 . We show in
Fig. 7 the force, F, as defined in Eq. (23), split in its
contribution from the gauge and fermion dynamics, the
latter computed using the HMC for all fermions. The results
are normalized so that the gauge contribution is held
constant. As can be clearly appreciated, for large and
positive values of amas

0 the fermions can be neglected, as
for these choices of the mass, one expects to be in the
quenched regime. When decreasing the mass, the fermion
contribution increases. For large, negative values of the
Wilson bare mass (close to the chiral limit), the fermion
contribution is even larger than the contribution of the
gauge part of the action.

D. Comparing HMC and RHMC

While in this paper we are mostly interested in the theory
with N ¼ 2, Nf ¼ 0, and Nas ¼ 4, and hence we can use
the HMC algorithm, for the general purpose of identifying
the extent of the conformal window in this class of lattice
gauge theories it may be necessary to consider also odd
numbers of fermions, for which we resort to the RHMC
algorithm. The latter relies on a rational approximation in
the computation of the fermion force, but the presence of a
Metropolis accept-reject step ensures that the algorithm is
exact. Thus, a preliminary test must be made to check the
consistency of the implementation—as was done for SUð3Þ
theories, see for instance Ref. [326].7 To gauge whether the
numerical implementation is working at the desired level of
accuracy and precision, we performed the exercise leading
to Fig. 8. We computed the average plaquette, hPi, where P
is defined as

P≡ a4

6Ṽ

X
x

X
μ<ν

�
1

2N
ReTrPμνðxÞ

�
ð31Þ

for ensembles having lattice volume Ṽ ¼ ð8aÞ4 and cou-
pling β ¼ 6.8, for a few representative choices of the bare

mass −1.4 ≤ amas
0 ≤ 0.0. We repeated this exercise three

times: at first, we treated all fermions with the HMC, then
we treated them all with the RHMC, and finally we used a
mixed strategy, treating two fermions with the HMC, and
two with the RHMC. We display, in the two plots in the
figure, the differences of the second and third approaches to
the first one, respectively. We detect no visible discrepan-
cies. For most of the data, the differences are compatible
with zero within the statistical uncertainties. More gener-
ally, given the number of observables, the probability to
find a deviation larger than 3σ from the null value results to
be ∼12%.

IV. THE N = 2 LATTICE YANG-MILLS THEORY

In this section, we start to analyse the physics of the
Spð4Þ theory of interest. We begin from the pure Yang-
Mills dynamics, with Nf ¼ 0 ¼ Nas. We verify that center
symmetry, ðZ2Þ4, is broken at small volumes, but restored
at large volumes, by looking at the (real) Polyakov loop, in
a way that is reminiscent of Ref. [218]. Following
Ref. [316], we then consider the spectrum of the Dirac
operator in the quenched approximation, both for

FIG. 8. Compatibility between plaquette averages hPi obtained
with HMC and RHMC algorithms for the theory with N ¼ 2,
Nf ¼ 0, and Nas ¼ 4. hPiHMC is obtained running two couples of
fermions with HMC. For hPiRHMC (top panel), RHMC was
applied individually to each of the fermions. hPi2HMCþ2RHMC
(bottom panel) is obtained running two fermions with HMC,
while the other two were run with RHMC. The lattice coupling is
β ¼ 6.8, with the bare mass in the range −1.4 ≤ amas

0 ≤ 0.0. The
lattice is isotropic and has volume Ṽ ¼ ð8aÞ4.

7We note that to check the correctness of the Remez imple-
mentation, one could in principle use any function of an arbitrary
matrix M. In particular, choosing diagonal matrices would make
the comparison straightforward. Grid makes use of this meth-
odology in its test suite.
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fundamental and 2-index antisymmetric fermions, to verify
the symmetry-breaking pattern expected from random
matrix theory.
The results for the first of these tests are shown in Fig. 9.

At a coupling β ¼ 9.0, we generate four ensembles in the
pure Spð4Þ theory, at different values of the space-time
volume, Ṽ ¼ ð2aÞ4; ð4aÞ4; ð12aÞ4; ð20aÞ4. For each con-
figuration, we compute the spatial averaged (real) Polyakov
loop, defined as

Φ≡ 1

NcN3
s

X
x⃗

Tr

� Yt¼Nt−1

t¼0

U0ðt; x⃗Þ
�
; ð32Þ

whereU0ðt; x⃗Þ is the time-like link variable. For our current
purposes, we choose the lattice to be isotropic in all four
directions,Nt ¼ Ns ¼ L=a. For each ensemble, we display
the frequency histogram of the values ofΦ. The expectation
is that the zero-temperature Spð4Þ lattice theory should
preserve the ðZ2Þ4 symmetry of the center of the group in
four Euclidean space-time dimensions. This is indeed the
case for sufficiently large volumes, as shown by the
bottom-right panel of Fig. 9, for which Nt ¼ Ns ¼ 20,
that exhibits a Gaussian distribution centred at the origin.
But for small enough lattice volumes, this expectation is
violated. This is visible in the other three panels in Fig. 9, in
which the distribution is non-Gaussian, and two other peaks

emerge. In the extreme case of Ns ¼ Nt ¼ 2, the two peaks
at finite value of Φ dominate the distribution, which is
otherwise symmetrical around zero. Interestingly, Polyakov
loops can be used also to perform the more physical study
of the finite-temperature confinement/deconfinement phase
transition. In this case, one would consider Nt ≠ Ns, vary
the coupling β to identify the transition temperature, and
then perform continuum and infinite volume extrapola-
tions. The characterization of the deconfinement phase
transition is of interest for both theoretical as well as
phenomenological reasons—see Ref. [156] and the review
in Ref. [19]—but requires a dedicated, extensive pro-
gramme of numerical work, and possibly cutting-edge
new technology to address some of the difficulties faced
by conventional Monte Carlo sampling methods (see, e.g.,
the discussions in Refs. [327,328]), while the simpler
analysis performed here suffices for the more modest
purposes of this paper.
Ensembles of gauge configurations without dynamical

fermions can also be used to verify that our implementation
of the Dirac operators is correct. To this purpose, following
Ref. [316] (and Ref. [9]), we consider the theory with
quenched fermions in either the fundamental or 2-index
antisymmetric representation, and compute the spectrum of
eigenvalues of the Hermitian Wilson-Dirac operator
Qm ¼ γ5Dm. The numbers of configurations are Nconf;f ¼
88 and Nconf; as ¼ 47, while the number of eigenvalues in

FIG. 9. Study of finite-size effects on the lattice, for the Spð4Þ Yang-Mills theory. The histograms depict the distribution of (real)
Polyakov loops for ensembles with β ¼ 9.0 and four choices of space-time volume: Ṽ ¼ ð2aÞ4; ð4aÞ4; ð12aÞ4; ð20aÞ4. The histograms’
areas are normalized to 1.
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each configuration used is 3696 for fundamental fermions
and 5120 for antisymmetric fermions. Then, we compute
the distribution of the folded density of spacing, PðsÞ.
Finally, we compare the results to the exact predictions of
chiral random matrix theory (chRMT) [329,330]. Because
the spectrum captures the properties of the theory, in
particular the pattern of chiral symmetry breaking [331],
the distribution PðsÞ differs, depending on the symmetry-
breaking pattern predicted. The folded density of spacing is

PðsÞ ¼ Nβ̃s
β̃ exp ð−cβ̃s2Þ; where

Nβ̃ ¼ 2
Γβ̃þ1

�
β̃
2
þ 1

�

Γβ̃þ2
�
β̃þ1
2

� ; cβ̃ ¼
Γ2
�
β̃
2
þ 1

�

Γ2
�
β̃þ1
2

� ; ð33Þ

where β̃ is the Dyson index. This index can take three
different values: β̃ ¼ 2 corresponds to the symmetry break-
ing pattern SUðNfÞ × SUðNfÞ → SUðNfÞ, β̃ ¼ 1 to
SUð2NfÞ → Spð2NfÞ, β̃ ¼ 2 corresponds to the symmetry
breaking pattern SUðNfÞ × SUðNfÞ → SUðNfÞ and β̃ ¼ 4

to SUð2NfÞ → SOð2NfÞ. The latter two are the cases we
are interested in, corresponding to fundamental and 2-index
antisymmetric fermions for the symplectic theory.
In order to make a comparison with the chRMT

prediction in Eq. (33), we compute the eigenvalues of
Qm for Nconf configurations. This process yields a set of

eigenvalues λðcÞi with c ¼ 1;…; Nconf . The eigenvalues are

arranged in one long list, in which λðcÞi are ordered in
ascending order. Any degeneracy that is present in the
2-antisymmetric case is discarded. Then, for each
c ¼ 1;…; Nconf , a new list of values is produced, that

contains nðcÞi , the positive integer position of the eigenvalue

λðcÞi in the long list ordered in ascending order, instead of

λðcÞi . The density of spacing, s, is replaced by the expression

s ¼ nðcÞiþ1 − nðcÞi

N
: ð34Þ

The constantN is defined so that the density of spacing has
unit average over the whole ensemble, hsi ¼ 1. Finally, the
(discretized) unfolded density of spacings, PðsÞ, is
obtained by binning numerical results for s and normal-
izing it.
In Fig. 10, we show an example of the folded distribution

of eigenvalues of the Wilson-Dirac operator, computed
numerically. As it can be seen, in the case of fermions in the
fundamental representation, one finds a distribution that is
compatible with the symmetry breaking pattern leading to
the coset SUð2NfÞ=Spð2NfÞ. Conversely, for fermions in
the 2-index antisymmetric representation, our numerical
results reproduce the prediction associated with the coset
SUð2NasÞ=SOð2NasÞ. The spectacular agreement with
chRMT confirms that there are no inconsistencies in our
way of treating fermions. The size of the lattices we have
considered has been chosen in order to make finite-size
effects negligible reduce finite-size effects. These effects, as
shown in Ref. [9], can become evident in smaller lattices
and they lead to discrepancies due to some abnormally
large spacings for the smallest and largest eigenvalues. This
was interpreted to be an artefact due to the finiteness of the
lattice size. We observe that, as in previous studies,
the antisymmetric representation already matches the
predictions in a 44 volume, while for the fundamental to

FIG. 10. Distribution of the folded density of spacing between subsequent eigenvalues of the hermitian Dirac-Wilson operator
Qm ¼ γ5Dm, and comparison with predictions from chRMT, computed in the quenched approximation, with ensembles having β ¼ 8.0,
am0 ¼ −0.2, and lattice volume Ṽ ¼ ð4aÞ4, in the Spð4Þ theory. The left panel shows the case of fermions transforming in the
fundamental representation, and the right is for fermions in the 2-index antisymmetric one.
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reproduce the predictions chRMT, we had to remove the
200 lowest and highest eigenvalues (reducing the number
of eigenvalues from 4096 to 3696). In this fashion, the
differences with chRMT are no longer visible to the naked
eye even for lattices with modest volume, Ṽ ¼ ð4aÞ4.

V. THE N = 2 THEORIES COUPLED TO
FERMIONS: BULK PHASE STRUCTURE

In this section, we present our main results for the theory
with N ¼ 2, Nf ¼ 0, and varying number of fermions
transforming in the antisymmetric representation, starting
from Nas ¼ 4—for which we apply the HMC algorithm.
We performed a coarse scan of the lattice parameter space,
to identify phase transitions in the ðβ; m0Þ plane, by
studying the average plaquette, hPi, its hysteresis, and
its susceptibility. We provide an approximate estimate of
the upper bound coupling for the bulk phase, β�, above
which there is no bulk phase transition, and hence one can
safely perform lattice numerical calculations at finite lattice
spacing, yet confident that the results can be extrapolated to
the appropriate continuum limit.
Figure 11 displays the average plaquette, hPi, obtained

in ensembles generated using a cold start. The lattice size is
V̂ ¼ ð8aÞ4, and each point is obtained by varying the lattice
coupling β¼ 7.0;6.8;6.6;6.5;6.4;6.3;6.2;6.0;5.8;5.6 and
the bare mass −1.4 ≤ amas

0 ≤ 0.0. The figure shows that,
for small values of β and large, negative values of the bare
mass, the average plaquette displays an abrupt change at a
particular value amas�

0 , while being a smooth, continuous
function elsewhere. This is a first indication of the existence
of a first-order bulk phase transition.

To better understand whether a first-order phase tran-
sition is taking place, we study the effect of adopting two
different strategies in the generation of the ensembles,
repeating it using of thermalized (hot) starts, and redoing
the measurements. Figure 12 shows the comparison
of the average plaquette, hPi, computed for several fixed
choices of the coupling β, while varying the bare mass
−1.4 ≤ amas

0 ≤ 0.0. The two curves in the plots represent
the behavior measured in ensembles obtained from a cold
and hot start configuration. The effects of hysteresis are
clearly visible for β < 6.4 and are an indication of the
presence of a first-order phase transition taking place at a
critical value of the bare mass amas�

0 .
The final test of the nature of the phase transition is

shown in Fig. 13. For illustration purposes, we choose two
values of the coupling for which we have evidence of a
phase transition (β ¼ 6.2), or of smooth behavior of hPi for
all value of amas

0 (β ¼ 6.5), respectively. We compute the
plaquette susceptibility, defined as

χP ≡ Ṽ
a4

ðhP2i − ðhPiÞ2Þ; ð35Þ

and compare the numerical results obtained with ensembles
having two different volumes, Ṽ ¼ ð8aÞ4 and Ṽ ¼ ð16aÞ4.
The results indicate that the peak height scales as the
4-volume when β is small, in which case the position of the
peak also moves to a different value of amas

0 . These are
indeed the expected signature of a first order phase
transition. For large β, the curved obtained for different
volumes are compatible with one another,we observe a shift
in values of amas

0 and no clear and large change in entity for
the peak heights between the two volumes. This is a clear
indication of a smooth crossover. We hence conclude that,
in the theory with N ¼ 2, Nf ¼ 0, and Nas ¼ 4, there is
numerical evidence of a line of first-order phase transitions
turning into a crossover at β > β� ¼ 6.4.

A. Varying Nas

We repeat the parameter scan for other choices of Nas,
using the RHMC for all fermions when Nas is odd, and the
HMC algorithm otherwise. The purpose of the exercise is to
study the dependence of the upper bound coupling for the
bulk phase β� on the number of fermions, Nas. Indeed, it is
expected that for small Nas we expect the theory to confine,
while for larger values of Nas ∼ Nc

as the theory should
approach the lower end of the conformal window, and
eventually lose asymptotic freedom—we recall that the
latter requires to impose the bound Nas < 33=4 in Spð4Þ,
while setting the stage for a first truly nonperturbative
determination of the former is the main motivation for
this study.
The results of these studies are shown in Fig. 14, which

displays our measurements of the average plaquette, hPi, as

FIG. 11. Parameter scan of the Spð4Þ theory with Nas ¼ 4
fermions transforming in the 2-index antisymmetric representation,
with ensembles generated from a cold start, using the HMC. We
show the value of the average plaquette, hPi, as a function of
the bare mass, for a few representative values of the coupling. The
lattice size is Ṽ ¼ ð8aÞ4, and each point is obtained by varying the
lattice coupling β ¼ 7.0; 6.8; 6.6; 6.5; 6.4; 6.3; 6.2; 6.0; 5.8; 5.6
and the bare mass −1.4 ≤ amas

0 ≤ 0.0.
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a function of the bare parameters of the theories. For the
pure gauge Spð4Þ theory, we get plaquette values that are in
agreement with the ones shown in Ref. [156]. The
corresponding upper bound value of the coupling is
roughly estimated to be β� ≃ 7.2.
For theories with dynamical fermions, we vary both the

masses and the coupling of the theories. As can be seen
from Fig 14, for Nas ¼ 1 the upper bound is β� ≃ 6.7. For
Nas ¼ 2 the upper bound is β� ≃ 6.7, and for Nas ¼ 3 it is
β� ≃ 6.5, in agreement with the values found in Ref. [2].

At a larger number of fermions species, we obtain
progressively smaller values of β for the upper bound
of the bulk phase β: for Nas ¼ 5, we get β� ≃ 6.3. For
Nas ¼ 6, the upper bound coupling is β� ≃ 6.2. For
Nas ¼ 7, we get β� ≃ 6.1 ÷ 6.2 and for Nas ¼ 8,
β� ≃ 6.1. Overall, we notice a trend according to which
the more fermion flavors are present in the Spð4Þ, the
smaller the upper bound value of the coupling we find and

the bigger is the corresponding critical bare mass amðasÞ�
0 .

FIG. 13. Plaquette susceptibility, χP, in the Spð4Þ lattice theory with Nas ¼ 4 fermions in the 2-index antisymmetric representation.
We use two values of the lattice size, Ṽ ¼ ð8aÞ4 and Ṽ ¼ ð16aÞ4. The ensembles have β ¼ 6.2, −1.18 ≤ am0 ≤ −1.04 (left panel), and
β ¼ 6.5, −1.01 ≤ am0 ≤ −0.91 (right panel).

FIG. 12. Hysteresis between hot (red) and cold (other colors) starts for the Spð4Þ theory with Nas ¼ 4 fermions in the 2-index
antisymmetric representation. The lattice coupling is β ¼ 6.4; 6.3; 6.2; 6.0; 5.8; 5.6 (left to right, and top to bottom). The lattice size is
Ṽ ¼ ð8aÞ4, and each point is obtained by varying the bare mass −1.4 ≤ amas

0 ≤ 0.0.
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FIG. 14. Parameter scan in the Spð4Þ theorywithNas ¼ 0; 1; 2; 3; 5; 6; 7; 8 (left to right and top to bottom panels) fermions in the 2-index
antisymmetric representation, obtainedwith ensembles generated from a cold start. ForNas > 0, we show thevalue of the average plaquette,
hPi, as a function of the bare mass, for a few representative values of the coupling. For pure gauge, we just vary the value of β. All the
fermions are treated with the HMC/RHMC algorithms. The lattice size is Ṽ ¼ ð8aÞ4 and the base mass is chosen in the range −1.4 ≤
amas

0 ≤ 0.0 for Nas ≥ 2, and −1.5 ≤ amas
0 ≤ 0.0 for Nas ¼ 1. For the pure gauge theory, the coupling is chosen to be 1.0 ≤ β ≤ 16.0. For

Nas ¼ 1, we have chosen β ¼ 7.1; 7.0; 6.9; 6.8; 6.7; 6.6, while for Nas ¼ 2 we have β ¼ 6.8; 6.7; 6.6; 6.5; 6.4; 6.2. For Nas ¼ 3, the
coupling is β ¼ 6.8; 6.7; 6.6; 6.5; 6.4; 6.2; 6.0; 5.8, while forNas ¼ 5we have chosen β ¼ 6.6; 6.5; 6.4; 6.3; 6.2; 6.1; 6.0; 5.8. ForNas ¼ 6,
β ¼ 6.4; 6.3; 6.2; 6.1; 6.0; 5.8. For Nas ¼ 7, β ¼ 6.4; 6.2; 6.1; 6.0; 5.9; 5.8 and for Nas ¼ 8, β ¼ 6.3; 6.1; 6.0; 5.9; 5.8; 5.7.
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VI. SCALE SETTING AND TOPOLOGY

We return now to the theory with N ¼ 2, Nf ¼ 0, and
Nas ¼ 4. We discuss a scale setting procedure that uses the
Wilson flow.We alsomonitor the evolutionof the topological
charge, to show that topological freezing was avoided. We
focus the discussion on a few representative examples,
although we checked that our conclusions have general
validity for all choices of parameter relevant to this study.
The gradient flow [332], and its discretized counterpart,

the Wilson flow [333], are useful for two complementary
purposes. On the one hand, the Wilson flow provides a
universal, well defined way to set the scale in a lattice
theory, that is unambiguously defined irrespectively of the
properties of the theory and of model-dependent consid-
erations. On the other hand, the process we will describe
momentarily consists of taking gauge configurations and
evolving them with a flow equation, which results in the
smoothing of such configurations, and the softening of
short-distance fluctuations. The former property is benefi-
cial because it allows to compare to one another different
theories for which no experimental information is available
(yet), and that might have different matter content. The
latter characteristic allows, in practical terms, to reduce the
short-distance numerical noise and the effects of discreti-
zation in the lattice calculation of observables, such as the
topological charge,Q, which are sensitive to fluctuations at
all scales.
We follow Refs. [1,11] (and references therein). One

introduces the flow time, t, as an additional, fifth compo-
nent of the space-time variables, and solves the defining
differential equation

dBμðx; tÞ
dt

¼ DνGνμðx; tÞ; ð36Þ

subject to the boundary conditions Bμðx; 0Þ ¼ AμðxÞ. Here
AμðxÞ are the gauge fields, and the covariant derivatives are
Dμ ≡ ∂μ þ ½Bμ; ·�, and GμνðtÞ ¼ ½Dμ; Dν�. As anticipated,
the main action of the flow is to introduce a Gaussian
smoothing of the configurations, with mean-square radiusffiffiffiffi
8t

p
.

In order to use this object to introduce a scale, one
defines the quantities

EðtÞ≡ t2

2
hTr½GμνðtÞGμνðtÞ�i; ð37Þ

WðtÞ≡ t
d
dt

EðtÞ; ð38Þ

and introduces a prescription that defines the scale on the
basis of a reference value for either of the two. Two
common choices in the literature are the scale, t0, defined
by setting

EðtÞjt¼t0 ¼ E0; ð39Þ
or the scale, w0, defined implicitly by the condition

WðtÞjt¼w2
0
¼ W0: ð40Þ

Both E0 and W0 are set on the basis of theoretical
considerations. For example, Ref. [11] advocates to set
W0 ¼ cwC2ðFÞ, where C2ðFÞ ¼ ð1þ 2NÞ=4 is the quad-
ratic Casimir operator of the fundamental representation in
Spð2NÞ theories, and one sets cw ¼ 0.5, though other
choices are possible.
On the discretized lattice, one replaces the gauge field,

AμðxÞ, with the link variable, UμðxÞ, and the flow equation
is rewritten by replacing Bμðx; tÞ with the new Vμðx; tÞ

FIG. 15. Wilson Flow [332,333] energy density EðtÞ (left panel) andWðtÞ (right), computed as in Refs. [1,11], from the standard (pl)
and the clover-leaf (cl) plaquette defined in Refs. [334,335], for the Spð4Þ theory with Nas ¼ 4 fermions transforming in the 2-index
antisymmetric representation. The lattice size is Ṽ ¼ ð12aÞ4, and we display two representative choices of bare parameters, with β ¼ 6.8
or 6.9 and common bare mass amas

0 ¼ −0.8. The time step is 0.01, tmax ¼ 4.5 to reduce finite-size effects. Errors are computed by
bootstrapping. We have chosen W0 ¼ 1

2
C2ðFÞ for the topological charge. The corresponding values of w0 from the plaquette and the

clover-leaf are w0;pl: ¼ 1.485ð3Þ and w0;cl: ¼ 1.495ð2Þ for β ¼ 6.8 and w0;pl: ¼ 2.005ð2Þ and w0;cl: ¼ 2.026ð2Þ for β ¼ 6.9. We have set
a ¼ 1, for notational convenience.
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[with Vμðx; 0Þ ¼ UμðxÞ]. There are then at least two ways
to replace Gμν with a discretized variable. We introduced
the elementary plaquette Pμν when defining the lattice
action in Eq. (14). The clover-leaf plaquette operator, Cμν,
provides an alternative to the elementary plaquette, and can
be seen as a simple form of improvement. We borrow the
definition from Refs. [334,335], that for generic link
variables UμðxÞ reads:

CμνðxÞ≡1

8
fUμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞ

þUνðxÞU†
μðxþ ν̂− μ̂ÞU†

νðx− μ̂ÞUμðx− μ̂Þ
þU†

μðx− μ̂ÞU†
νðx− ν̂− μ̂ÞUμðx− ν̂− μ̂ÞUνðx− ν̂Þ

þU†
νðx− ν̂ÞUμðx− ν̂ÞUνðx− ν̂þ μ̂ÞU†

μðxÞ−H:c:g:
ð41Þ

In principle, one would like to set the scale in a way that
does not depend crucially on microscopic details. The scale
setting using Wilson flow depends on the way the flow
equation in Eq. (36) is latticized and how the observable
Tr½GμνGμν� in Eq. (37) is discretized. Therefore, different
choices lead to different values for the scale at a given
cutoff, but choosing a suitable flow time t allows us to set
the scale while reducing drastically these effects. To
this purpose, in Fig. 15 we consider the Spð4Þ theory with
Nf ¼ 0 and Nas ¼ 4, for two representative choices of β,
and a representative choice of volume, Ṽ, and bare mass,
amas

0 , and we show EðtÞ and WðtÞ as functions of the flow
time, t, by comparing explicitly the results obtained by
adopting either the elementary or the cloverleaf plaquette as
defining the lattice regularization of the action. The plots
illustrate the general trend evidenced elsewhere in the
literature, according to which the function WðtÞ displays
a milder dependence on the short distance regulator. In the
following, we set the scale w0 by conventionally setting
W0 ¼ 1

2
C2ðFÞ. Recently, several studies for the usage of

the Wilson flow observables were performed to define a
nonperturbative running coupling–see, e.g., Refs. [336–
340] and [341] for a review. This is a very intriguing
application of these tools, but it requires a dedicated study
with non-negligible effort and large lattices, which exceed
the lattice sizes we explored in this introductory paper.
The topological charge density is defined as

qLðx; tÞ≡ 1

32π2
εμνρσTr½Cμνðx; tÞCρσðx; tÞ�; ð42Þ

and the topological charge is QLðtÞ≡P
x qLðx; tÞ, where,

again, t is the flow time. In general, the topological charge on
the lattice is not quantized, and in cases where it is the
physical quantity of interest—for example because one
is working toward a determination of the topological

susceptibility, as in Ref. [11] and references therein—one
needs to evolve to large t, and introduce a rounding process.
For the current purposes, we do not need a discretization

algorithm: what we want to verify is that there is no
evidence of topological freezing, and to this purpose we
perform three simple tests. In Fig. 16 we display the value
of QLðt ¼ w2

0Þ in the Spð4Þ theory coupled to Nf ¼ 0 and
Nas ¼ 4 fermion species, for two values of the coupling, β,
and a common value of the bare mass. We show how the
topological charge evolves along the trajectories, and
supplement it with a histogram displaying its distribution.
Both visual tests confirm that there is no evidence of
topological freezing. We can make these tests more

FIG. 16. Evolution with the ensemble trajectories of the
topological charge QLðt ¼ w2

0Þ≡
P

x
1

32π2
εμνρσTr½CμνðxÞCρσðxÞ�,

computed (without rounding) at flow time t ¼ w2
0 for the Spð4Þ

theory with Nas ¼ 4 fermions transforming in the 2-index
antisymmetric representation. The lattice size is Ṽ ¼ ð12aÞ4.
The lattice parameters characterizing the ensembles are β ¼ 6.8
(top panel) and β ¼ 6.9 (bottom), with bare mass amas

0 ¼ −0.8.
The histograms of the measurements (right panels) are compat-
ible with a normal distribution centered at zero, with reduced chi-
square χ2=Nd:o:f ¼ χ̃2 ¼ 1.1 for both panels. The integrated
autocorrelation time computed using the Madras-Sokal window-
ing algorithm is τQ ¼ 7.11ð64Þ (top) and τQ ¼ 59.58ð92Þ
(bottom)τQ ¼ 31ð3Þ (top) and τQ ¼ 238ð12Þ (bottom).
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quantitative by applying the standard Madras-Sokal win-
dowing algorithm [322], and provide estimates of the
integrated autocorrelation time τQ of the topological
charge, which in both examples, as shown in Fig. 15,
turns out to be many orders of magnitude smaller than the
number of trajectories. Furthermore, fits of the histograms
are compatible with a Gaussian distribution centered at
hQLðt ¼ w2

0Þi ¼ 0.
The main message from this section is that the behavior

of the Wilson flow and of the topological charge, computed
using the new software based on Grid, and tested on GPU
architecture machines, to examine the properties of the
lattice Spð2NÞ gauge theory with N ¼ 2, Nf ¼ 0, and
Nas ¼ 4, provide results that are broadly comparable to
those in the literature for related, though different, field
theories. This suggests that the implementation of the
simulation routines and of the observables are both free
from unwanted effects.

VII. SUMMARY AND OUTLOOK

A number of new physics models based upon Spð2NÞ
gauge theories has been proposed in the literature, in such
diverse contexts to include Composite Higgs Models, top
partial compositeness, dilaton-Higgs models, strongly
interacting dark matter models, among others. It is essential
to the development of all these new physics ideas to provide
model builders and phenomenologists with nontrivial
information about the nonperturbative dynamics.
The programme of systematic characterization of Spð2NÞ

theories is still in its early stages, though. Prominently, the
challenging question of identifying the lower end of the
conformal window in these theories coupled to matter fields
in various representations of the group requires the non-
perturbative instruments of lattice field theory. As a neces-
sary step in this direction, we developed and tested new
software, embedded into the Grid environment to take full
advantage of its flexibility. In this paper we reported the
(positive) results of our tests of the algorithms, that set the
stage for future large-scale dedicated studies. We focused
particularly on the Spð4Þ theory coupled to Nas ¼ 4 (Dirac)
fermions transforming in the antisymmetric representation,
that might be close to the onset of conformality.
We performed a long list of non-trivial exercises. We

both tested the effectiveness of the algorithm and software
implementation, but also provided a first characterization of
lattice theories that had never been studied before—
although for present purposes we used comparatively small
and coarse lattices. We reported in this paper illustrative
examples demonstrating that there are no obvious problems
in the software implementation. We computed effectively
such observables as the averages of the plaquette and (real)
Polyakov loop, the plaquette susceptibility, the Wilson
flow, and the topological charge. We cataloged the first
measurements of the critical couplings in Spð4Þ lattice
theories with Nas < 33=4—below the bound imposed by

asymptotic freedom—hence identifying the portion of
lattice parameter space connected with the continuum
theories of interest.
This paper, and the software we developed for it, set the

stage needed to explore and quantify the extent of the
conformal window in these theories. The tools we devel-
oped can be used also in the context of the recent literature
discussing the spectroscopy of Spð2NÞ theories with
various representations [1–19], in broad regions of their
parameter space, considering both bosonic bound states as
well as fermionic ones, relevant for example in Spð2NÞ
theories with mixed representations. This effort can be
complemented and further extended by applying new
techniques based on the spectral densities [342]—see also
the applications in Refs. [317,343–351]. One can envision
many more uses and applications of this powerful and
flexible open-source software.

Research Data Access Statement. The data generated for
this manuscript can be downloaded from Ref. [352] and the
analysis code from Ref. [353].
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APPENDIX A: GROUP-THEORETICAL
DEFINITIONS

We denote as Spð2NÞ the subgroup of SUð2NÞ pre-
serving the norm induced by the antisymmetric matrix Ω,

Ω ¼
�

0 1N
−1N 0

�
; ðA1Þ

where 1N is the N × N identity matrix. This definition can
be converted into a constraint on the group element U

UΩUT ¼ Ω: ðA2Þ

Due to unitarity, the previous condition can be also
written as

UΩ ¼ ΩU�; ðA3Þ

which implies the following block structure

U ¼
�

A B

−B� A�

�
; ðA4Þ

where Eq. (A2) implies, for A and B, that

ABT ¼ BAT; AA† þ BB† ¼ 1N: ðA5Þ

The algebra can be defined by expanding UΩ ¼ ΩU� in
terms of the Hermitian generators ta, i.e., U ¼ expðiωataÞ
for real parameters ωa. We arrive at the following condition
on the generic element of the algebra T ¼ P

a ω
ata

TΩ ¼ −ΩT�; ðA6Þ
which also implies that

T ¼
�

X Y

Y� −X�

�
: ðA7Þ

Hermiticity imposes the conditions X ¼ X† and Y ¼ YT .
The number of independent degrees of freedom is then
2NðN þ 1Þ, the dimension of the group.

APPENDIX B: GENERATORS
OF THE ALGEBRA IN GRID

Let taf be the generators of the Lie algebra of Spð2NÞ in
the fundamental representation. They are implemented in
Grid as Hermitian, meaning that they follow the block
structure of Eq. (A7). Their normalization is such that

Trðtaf tbf Þ ¼
δab

2
: ðB1Þ

The generators taf , with a ¼ 1;…; 2N2 þ N, are imple-
mented in Grid according to the following scheme.
The 2N2 off-diagonal generators are identified by the
following six relations among their matrix elements:

tai;j ¼ taj;i ¼ −taiþN;jþN ¼ −tajþN;iþN ¼ 1

2
ffiffiffi
2

p ; i ¼ 1;…N − 1; i < j ≤ N; ðB2Þ

with a ¼ 1…NðN − 1Þ=2,

tai;j ¼ −taj;i ¼ taiþN;jþN ¼ −tajþN;iþN ¼ i

2
ffiffiffi
2

p ; i ¼ 1;…; N − 1; i < j ≤ N; ðB3Þ

with a ¼ NðN − 1Þ=2þ 1…NðN − 1Þ,

tai;jþN ¼ taj;iþN ¼ taiþN;j ¼ tajþN;i ¼
1

2
ffiffiffi
2

p ; i ¼ 1;…; N − 1; i < j ≤ N − 1; ðB4Þ

with a ¼ NðN − 1Þ þ 1…3NðN − 1Þ=2,
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tai;jþN ¼ taj;iþN ¼ −taiþN;j ¼ −tajþN;i ¼
i

2
ffiffiffi
2

p ; i ¼ 1;…; N − 1; i < j ≤ N − 1; ðB5Þ

with a ¼ 3NðN − 1Þ=2þ 1…2NðN − 1Þ

tai;iþN ¼ taiþN;i ¼
1

2
; i ¼ 1;…; N; ðB6Þ

with a ¼ 2N2 − 2N þ 1…; 2N2 − N,

tai;iþN ¼ −taiþN;i ¼
i
2
; i ¼ 1;…; N; ðB7Þ

with a ¼ 2N2 − N þ 1;…; 2N2. The remaining N gener-
ators in the Cartan subalgebra are

ðtaÞi;i ¼ −ðtaÞiþN;iþN ¼ 1

2
; i ¼ 1;…N; ðB8Þ

with a ¼ 2N2 þ 1…2N2 þ N, the dimension of the
group. It is useful to provide an explicit representation
for 2N ¼ 4:

t1f ¼
1

2
ffiffiffi
2

p

0
BBB@
0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA t6f ¼

1

2

0
BBB@
0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCA

t2f ¼
1

2
ffiffiffi
2

p

0
BBB@

0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0

1
CCCA t7f ¼

1

2

0
BBB@

0 0 i 0

0 0 0 0

−i 0 0 0

0 0 0 0

1
CCCA

t3f ¼
1

2
ffiffiffi
2

p

0
BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCA t8f ¼

1

2

0
BBB@
0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

1
CCCA

t4f ¼
1

2
ffiffiffi
2

p

0
BBB@

0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

1
CCCA t9f ¼

1

2

0
BBB@
1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

1
CCCA

t5f ¼
1

2

0
BBB@
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA t10f ¼ 1

2

0
BBB@
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

1
CCCA: ðB9Þ
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