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Abstract 26 

The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and 27 

other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The 28 

production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-29 

dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin 30 

synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis 31 

of melanin is stimulated upon exposure to UVR, which can also stimulate local production of 32 

hormonal factors, which can stimulate melanoma development by altering the chemical 33 

properties of eu- and pheomelanin. The process of melanogenesis can be altered by several 34 

pathways. One involves activation of POMC, with the production of POMC peptides including 35 

MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and 36 

helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects 37 

melanogenic activity via posttranslational modifications resulting in proteasomal degradation 38 

and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression 39 

of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates 40 

POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. 41 

The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators 42 

for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune 43 

responses. Therefore, we reviewed natural products that would alter melanin production. Our 44 

special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit 45 

melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also 46 

outlines the current updated pharmacological studies targeting the TYR enzyme from natural 47 

sources and its consequential effects on melanin production. 48 

Keywords: Melanoma, Tyrosinase inhibitors, Melanin, Melanogenesis, Skin Pigmentation, and 49 

Skin cancer. 50 
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Abbreviations 51 

Cutaneous melanoma, CM 52 

Acral lentiginous melanoma, ALM 53 

Ultraviolet, UV 54 

Tyrosinase, TYR 55 

Hypoxia-inducible factor 1-alpha, HIF-1α 56 

Proopiomelanocortin, POMC 57 

Melanin stimulating hormone, MSH 58 

Melanocortin 1 receptor - MC1R 59 

Microphthalmia-associated transcription 60 

factor, MITF 61 

Nitric Oxide synthase, NOS 62 

Nicotinamide adenine dinucleotide 63 

phosphate, NADPH 64 

Tetrahydro-biopterin, 6-BH4 65 

Cyclin-dependent kinase inhibitor 2A, 66 

CDKN2A or p16  67 

Cyclin-dependent kinase 4, CDK4Familial 68 

atypical multiple mole-melanoma, FAMMM 69 

Nucleotide excision repair, NER 70 

Neurofibromatosis type 1, NF1 71 

Phosphatase and tensin homolog, PTEN  72 

Tumor Protein 53, TP53 73 

Telomerase Reverse Transcriptase, TERT  74 

AT-rich interactive domain-containing 75 

protein 2, ARID2 76 

Mitogen-Activated Protein Kinase, MAPK  77 

L-3,4-dihydroxyphenylalanine, L-DOPA 78 

5,6-dihydroxyindole, DHI  79 

5,6-dihydroxyindole-2-carboxylic acid, 80 

DHICA 81 

Tyrosinase-related protein 1, TYRP1 82 

Tyrosinase-related protein 2, TYRP2 83 

Epidermal growth factor, EGF 84 

Endoplasmic reticulum, ER 85 

Menkes copper transporter, MNK 86 

Cysteine, Cys 87 

Copper, Cu 88 

Oculocutaneous albinism type 1, OCA1 89 

Oculocutaneous albinism type 2, OCA2 90 

Oculocutaneous albinism type 3, OCA3 91 

Oculocutaneous albinism type 4, OCA4 92 

Trans-Golgi Network, TGN 93 

ER-associated protein degradation, ERAD 94 

Adrenocorticotropic hormone, ACTH 95 

Corticotropin releasing hormone, CRH 96 

Hypothalamic pituitary adrenal, HPA 97 

Vacuolar ATPase, v-ATPase 98 

Melanogenesis-related gene expression, 99 
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MRGE100 

1.1. Introduction  101 

Melanoma arises through malignant transformation of melanocytes, melanin producing 102 

cells, as shown in Figure 1. Due to its ability to metastasize to other parts of the body, it is one 103 

of the most aggressive types of all skin cancers (DeVita and Lawrence, 2008; Mitchell et al., 104 

2020). It accounts for 1% of all skin tumors but has a mortality rate of up to 60% (Khazaei et 105 

al., 2019). Melanoma is of significant concern for the Caucasian population, and its incidence 106 

is increasing globally. In 2018, there were 2,87,723 cases and 60,712 deaths reported due to 107 

melanoma by WHO, which accounted for 0.6 % of deaths due to melanoma alone (WHO, 108 

2019). The prevalence of cutaneous melanoma (CM) varies significantly among different 109 

populations, and these variations are due to distinct skin phenotypes and different levels of sun 110 

exposure. The acral lentiginous melanoma (ALM) is the most commonly seen variant with the 111 

Asian population (Phan et al., 2006). ALM is a malignant tumor or histological subtype of CM 112 

that occurs in the glabrous skin of the palms, soles, and nails, and it carries one of the worst 113 

prognoses among other subtypes. Furthermore, in contrast to other solid tumors, young to 114 

middle-aged individuals are more often affected by melanoma, and the incidence rate is 115 

augmented linearly between the age of 25 and 50 (Bressac-de-Paillerets et al., 2002; Leonardi 116 

et al., 2018). In addition, climate changes, increased amount of arsenic in water, ozone 117 

depletion, and numerous other factors like naevi have demonstrated to show direct associations 118 

with melanoma (Fabbrocini et al., 2010).  119 

Melanin protects from ultraviolet radiation (UVR) induced malignant transformation 120 

of melanocytes. However, its role in melanoma progression is complex. This is recently 121 

discussed by Slominski and co-workers (Slominski et al., 2022), stated that melanin protects 122 

against the development of skin cancers including cutaneous melanoma, and its presence is 123 

necessary for the transformation of melanocytes (Slominski et al., 2022). Melanocytes produce 124 
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melanin, which contains both eumelanin, and pheomelanin, through a series of oxidoreduction 125 

processes. The enzyme tyrosinase (TYR) catalyses the hydroxylation of L-tyrosine to L-126 

DOPA, which is further oxidized to DOPAquinone, a starting process of melanogenesis 127 

(Hearing and Tsukamoto, 1991; Pawelek et al., 1992; Pawelek, 1993; Chung et al., 2018). The 128 

melanin is then deposited in the melanosomes, which are transported to keratinocytes, finally 129 

defines the skin and hair colour (Wasmeier et al., 2008; Garibyan and Fisher, 2010; Kim et al., 130 

2018). The coordinated levels of eumelanin and pheomelanin regulate the skin physiological 131 

adaptation upon exposure to UVR. This shows a complex role of melanogenesis, defined by 132 

the chemical properties of melanin and the nature generating pathways such as eu- and 133 

pheomelanogenesis, which may affect the process of melanoma development. Thus, eumelanin 134 

acts as an effective antioxidant, and acts as a sunscreen and is believed to provide radio and 135 

photoprotection, whereas pheomelanin, generates mutagenic environment after exposure to 136 

UVR. Intermediates of melanogenesis are highly reactive and have cytotoxic, genotoxic, and 137 

mutagenic activities. Melanogenesis can stimulate glycolysis and hypoxia-inducible factor 1-138 

alpha (HIF-1α) (Slominski et al., 2014), which can lead to the progression of melanoma and 139 

can affect resistance to immunotherapy (Slominski et al., 2022). Thus, dysregulated levels of 140 

eu- and pheomelanin can lead to various skin pathological conditions such as skin diseases and 141 

pigmentary disorders (Garibyan and Fisher, 2010). Although the primary role of melanin is to 142 

defend the skin against UVR and injury (Brenner and Hearing, 2008; Schallreuter et al., 2008), 143 

it can affect radiotherapy (Brozyna et al., 2016) and overall disease-free survival in patients 144 

with stage III and IV melanoma (Brozyna et al., 2013). As TYR plays a pivotal role in 145 

melanogenesis, it is considered to be a putative therapeutic target for combating melanoma 146 

(D'Mello et al., 2016).  147 

Given the increasing incidence of melanoma, considerable attention has focused on to 148 

develop newer and improved strategies such as use of pro-drugs for treating the disease. The 149 
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pro-drugs are activated by TYR targeting melanoma, and could be an interesting in-situ tool 150 

for the treatment of melanoma, but it tends to form toxic metabolites and thus require 151 

alternative approach therapy (Rooseboom et al., 2004; Gasowska-Bajger and Wojtasek, 2008; 152 

Jawaid et al., 2009). Natural products including phytochemicals are reported to possess a wide 153 

number biological activities mainly flavonoids, alkaloids, glycosides, terpenoids 154 

(Hasanpourghadi et al., 2017), and recently have gained more attention towards chemotherapy, 155 

and also shows promising activity against various tumors (Nobili et al., 2009; Turek et al., 156 

2016; Shanmugam et al., 2016). Further, based on these collated reports natural products could 157 

be a potential weapon in combating cancer (Naviglio and Della Ragione, 2013; Shanmugam et 158 

al., 2016). Therefore, this review discusses in detail on the TYR regulation, and its role in 159 

melanogenesis, with potential targeting TYR in treatment of melanoma.  160 

1.2. Role of UVR in melanoma  161 

The UVR from the sun is considered to be the primary ecological reason in the 162 

development of melanoma (Gilchrest et al., 1999; Leonardi et al., 2018). Melanoma develops 163 

when melanocytes proliferate rapidly, occurs due to UVR -induced DNA mutations, which 164 

account for about 65% of melanoma occurrences in skin (Armstrong, and Kricker, 1993). The 165 

skin, is a self-regulating protective barrier, empowered with sensory capabilities to counteract 166 

the environmental stress and helps to maintain and restore the disrupted cutaneous homeostasis 167 

(Slominski and Wortsman, 2000; Slominski et al., 2012; Slominski et al., 2022). These 168 

functions are completely coordinated by cutaneous neuro-endocrine system that communicates 169 

with the central nervous, endocrine, and immune systems in a bidirectional way, and plays a 170 

potential role in controlling body homeostasis (Slominski and Wortsman, 2000; Slominski et 171 

al., 2022). However, the energy obtained from UVR is absorbed by skin, which triggers the 172 

mechanisms that defend skin integrity, and also regulates the body homeostasis (Slominski et 173 

al., 2018). Therefore, the UVR acts by touching the brain and central neuroendocrine system 174 
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in order to reset the body homeostasis (Skobowiat et al., 2011, Slominski et al., 2018). The 175 

epidermal melanin has an important physiological implication in humans, were higher content 176 

of melanin helps to protect against UVR-induced skin damage via optical and chemical 177 

properties (Ahene et al., 1995). The pigment amounts were found higher in regions of lower 178 

latitude and higher UVR levels were observed in skin. This may be directly associated with 179 

humans in early hominids having dark and dense coloured hair. Post et al., reported on the 180 

closely related primate i.e., chimpanzees, and showed to exhibit white or light colour pigment 181 

in the epidermal layer (Post et al., 1975). Interestingly, chimpanzees have active melanocytes 182 

that are present in the epidermis of those areas, which are directly exposed to UVR (Montagna 183 

and Machida, 1966).  184 

Therefore, in order to maintain thermal balance in human epidermis, which leads to an 185 

progressive increase in demands for heat dissipation, and further resulting from enhanced blood 186 

flow to the brain (Pagel and Bodmer, 2003). Thus, an increased epidermal melanization occurs 187 

due to high exposure to UVR in humans, which potentially could lead to adverse effects, such 188 

as sunburns and causes damage to the sweat glands resulting in the suppression of sweating 189 

and abnormal thermoregulation (Pandolf et al., 1992), and can induce carcinogenesis, and 190 

inactivation of nutrient by photolysis (Branda and Eaton, 1978; Slominski et al., 2004).  191 

The epidermal melanocytes, are pigment producing and secretary cells of the neural 192 

crest that communicates with multiple targets. Slominski et al., reported on the normal 193 

epidermal melanocytes, which are sensory and regulatory cells operating in the context of 194 

regulatory network that helps to maintain the epidermal homeostasis in humans (Slominski et 195 

al., 1993a; Slominski, 2009a). Thus, the functions of altered melanocyte, plays a major role in 196 

other diseases like skin disease, and racial pigmentation, which may affect the cutaneous 197 

functions (Slominski et al., 1993; Barsh, 1996). 198 
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The activation of the proopiomelanocortin (POMC) expression, production and release 199 

of POMC derived peptides including ACTH, melanocyte stimulating hormone (MSH) and β-200 

endorphin from keratinocytes, helps to stimulate the melanocytes or fibroblasts causing 201 

melanocyte differentiation (Slominski et al., 2000; Slominski et al., 2004). These melanocytes 202 

respond to the MSH via polymorphic receptor melanocortin 1 receptor (MC1R). Thus, 203 

activation of this receptor causes increase in the cAMP levels and further activates the 204 

transcription of microphthalmia-associated transcription factor (MITF) (Garibyan and Fisher, 205 

2010). This signalling mechanism results in the initiation of melanin synthesis through 206 

stimulation of TYR, and leads to the protection of keratinocytes from DNA damage. In the 207 

keratinocytes, UVR activates nitric oxide synthase (NOS) type 1, leading to increased nitric 208 

oxide and TYR levels, causing subsequent acceleration of melanogenesis. The activity of the 209 

NOS cofactors, including calcium, nicotinamide adenine dinucleotide phosphate (NADPH), 210 

and tetrahydro-biopterin (6-BH4), were also elevated upon exposure to UVR. Among these 211 

cofactors, activation of 6-BH4 leads to the activation of NOS type 1, but still the mechanism 212 

involved in it is unclear (Roméro-Graillet et al., 1997). Apart from that, 6-BH4 is also involved 213 

in modulating the TYR enzyme activity. The 6-BH4 is a vital cofactor and an electron donor 214 

in the conversion of L-phenylalanine to L-tyrosine occurs via hydroxylation. It acts as a rate-215 

limiting factor in controlling the production of L-tyrosine (Schallreuter et al., 1994). 216 

Additionally, the redox switch between 6-BH4 and 6-biopterin controls TYR activity and 217 

regulates melanogenesis, but photo-oxidation of 6-BH4 occurs upon exposure to UVR and 218 

could lead to elevated TYR activity (Wood et al., 1995). Thus, exposure to UVR alters the 219 

regulation of NOS type 1 activity, tyrosine production, and TYR activity. Therefore,  this 220 

showed to elevate the expression of UVR-induced 6-BH4 levels and increased photo-oxidation, 221 

which may also lead to cancer conditions (Wood et al., 1995).  In addition, melanoma develops 222 

as a result of interactions between genetic and environmental factors. Excessive exposure to 223 
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UVR, can cause increase in the melanoma penetrance in melanoma-prone families. For 224 

instance, in a study on melanoma-prone families, patients' with "9p-linked" gene, were altered 225 

due to excessive exposure to UVR regardless of their skin type showed increased chance of 226 

developing melanoma (Cannon-Albright et al., 1994).  227 

Of note, about 5-12% of melanoma with the distinct mutation has been reported to be 228 

of hereditary origin (Rebecca et al., 2012). These mutations in cyclin-dependent kinase 229 

inhibitor 2A (CDKN2A or p16) and cyclin-dependent kinase 4 (CDK4) are most frequently 230 

identified in the families prone to familial atypical multiple mole-melanoma (FAMMM) (Gruis 231 

et al., 1995; Zuo et al., 1996; Soura et al., 2016). Further, changes in the CDKN2A gene 232 

mutation showed to possess about 40% of familial melanomas, which resulted in defective 233 

tumor suppressor proteins p14 (p14ARF) and p16 (p16INK4A), and further stabilizes p53 gene 234 

by regulating the G1 checkpoint (Rebecca et al., 2012; Shain and Bastian, 2016). Interaction 235 

of p16 with CDK4 results in cell cycle arrest, whereas mutations in p16 (p16INK4A), helps to 236 

inhibit the binding of p16 to CDK4, and thereby interrupts the cell cycle arrest (Mehnert and 237 

Kluger, 2012). Mutation in the nucleotide excision repair (NER) pathway, which is another 238 

group of germline mutation, identified to augment the risk of developing melanoma (Davis et 239 

al., 2019). These mutations are more pathogenic, and are less common. Further, intensive 240 

exposure to UVR can causes DNA lesions, which are removed by NER mechanism. Therefore, 241 

genetic mutations in NER pathways results in increased UVR-induced unrepaired DNA 242 

damage.  243 

Melanomas are also associated with recurrent somatic mutations. Most frequently, the 244 

key mutations occur in the signalling pathways are (a) BRAF, NRAS, and neurofibromatosis 245 

type 1 (NF1), which plays an important role in regulating the proliferation of cells (Scolyer et 246 

al., 2011), (b)  Phosphatase and tensin homolog (PTEN) and KIT that coordinates the growth 247 

and metabolism (Read et al., 2016), (c) Tumor Protein 53 (TP53) which regulates resistance to 248 
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apoptosis (Scolyer et al., 2011), (d) Telomerase reverse transcriptase (TERT) – regulates 249 

replicative lifespan (Horn et al., 2013; Read et al., 2016), (e) AT-rich interactive domain-250 

containing protein 2 (ARID2) – responsible for cell identity (Scolyer et al., 2011) and (f) 251 

CDKN2A – responsible for cell cycle arrest (Scolyer et al., 2011; Read et al., 2016). Although 252 

melanomas arise from somatic mutations, most of them could develop due to acquired 253 

mutations. For instance, mitogen-activated protein kinase (MAPK) is the most commonly 254 

mutated pathway, and these mutational events were prevalent in 70% of melanoma patients 255 

(Scolyer et al., 2011). Similarly, about 80% of them contain BRAF mutations, were V600E is 256 

the most common mutation of BRAF that is over >85%, and activates the downstream MAPK 257 

oncogenic pathway. Together, it is apparent that MAPK cascades have potential implications 258 

in UVR-induced carcinogenesis. Yet, the mechanism by which MAPK cascades orchestrate 259 

UVR exposure-driven melanoma remains elusive (Bode and Dong, 2003).  260 

1.3.  Role of melanin and melanogenesis in regulating cellular metabolism 261 

The movement of mature melanosomes from melanocytes into keratinocytes via 262 

lysosomal compartment, occurs in the upper epidermal layer forming melanin granules. 263 

Furthermore, precise mechanism of melanin breakdown or degradation remains to be 264 

investigated. The melanin is highly resistant to enzymatic lysis, and reports showed that 265 

phagosomal NADPH oxidase enzyme degrades the melanin via oxidation (Borovansky and 266 

Elleder, 2003). Unlike those in overlying epidermis, the melanin granules remain intact in the 267 

hair shaft and this occurs mainly in the black hair shaft containing eumelanogenic 268 

melanosomes, which are often seen in East-Asian individuals containing high-density pigment 269 

granules.  270 

Melanin can reduce the effect of UV penetration to blood in humans. The highest UV 271 

absorption for oxyhemoglobin can be identified at a wavelength of 545 nm, which causes 272 

strong erythema reaction with subsequent pigmentary response with individuals having light 273 



11 
 

skin. Therefore, when exposed to UVR, melanin undergoes photosensitization producing 274 

superoxide radicals, causing harmful injury to cells. This process could possibly lead to a 275 

condition called cell neoplasia, causing low proliferation rate in normal skin cells (Furuya et 276 

al., 2002), and consisting of a linkage between melanin production and UVR-induced DNA 277 

damage, i.e., responsible for maintaining the skin homeostasis and tanning (Gilchrest and Eller, 278 

1999). Therefore, understanding pathophysiology of pigmentation, occurs mainly due to the 279 

exposure of melanin to various toxic metabolites, resulting in higher melanin granules and 280 

deposition, which could be possible reason of pigmentation (Lindquist, 1973; Slominski et al., 281 

2004). 282 

Melanin plays an imperative role in preventing melanoma formation (Gilchrest et al., 283 

1999), as it protects the skin from UVR-induced DNA damage and genetic changes. However, 284 

repetitive exposure decreases its protective function, resulting in cancer progression 285 

(Armstrong and Kricker, 1993). TYR plays a crucial role in the synthesis of melanin as it is the 286 

rate-limiting enzyme of the pathway, possessing both monophenolase and diphenolase 287 

activities, which enable oxidation of tyrosine to L-DOPA, and is said to be the first and most 288 

critical step in the synthesis of melanin. Melanin synthesis involves hydroxylation of L-tyrosine 289 

to L-DOPA and subsequently its oxidation to DOPA-quinone. Next, DOPA-quinone cyclizes 290 

to form DOPA-chrome, leading to the production of 5,6-dihydroxyindole (DHI) and 5,6-291 

dihydroxyindole-2-carboxylic acid (DHICA). TYR catalyses the oxidative polymerization of 292 

DHI. TYR- related protein 1 catalyses the oxidation of DHICA and leads to the formation of 293 

melanochrome and converted to an insoluble eumelanin pigment (Raper, 1928; Korner and 294 

Pawelek, 1982; Wang and Hebert, 2006). Also, in the presence of cysteine and glutathione, 295 

DOPA-quinone is converted to 5-S-cysteinyl-DOPA and cystathionyl-DOPA, respectively 296 

then later converted to pheomelanin (Pillaiyar et al., 2015). 297 

 298 
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1.4. Tyrosinase enzyme and its intrinsic roles 299 

The key regulatory enzyme of melanogenesis, is TYR a product of c-locus that maps to 300 

the chromosome 11q14–21 in humans (Barton et al., 1988) and chromosome 7 in mice, 301 

respectively, consisting of five exons and four introns (Kwon, 1993; Thody, 1995; Nordlund 302 

et al., 1998). The TYR mRNA generates several alternatively spliced products while 303 

posttranscriptional processing occurs (Shibahara et al., 1988; Porter and Mintz, 1991; Kelsall 304 

et al., 1997; Le Fur et al., 1997), of which some are translated to protein products expressing 305 

TYR activity (Muller et al., 1988; Ruppert et al., 1988). It is proposed that the obtained products 306 

from TYR mRNA could be best served as regulatory protein (Slominski and Paus; 1990; 307 

Slominski and Paus; 1994), and acts as a receptor for L-tyrosine and L-DOPA (Slominski and 308 

Paus, 1994). Also, it is noted that non-functional TYR proteins express non-melanocytic cells 309 

(Haninec and Vachtenheim, 1988; Tief et al., 1998). There is evidence that L-tyrosine and L-310 

DOPA, besides serving as a substrates and intermediates for melanogenesis, and also act as a 311 

bioregulatory agents, and inducers, which shows positive regulators of melanogenesis, leading 312 

to regulation of the cellular functions (Slominski and Paus, 1990; Slominski et al., 2012). 313 

TYR catalyses three distinct reactions in the melanogenic pathway; i.e., hydroxylation 314 

of L-tyrosine, dehydrogenation of L-DOPA, and dehydrogenation of DHI; where L-DOPA 315 

serves as cofactor in the first and third reactions (Lerner and Fitzpatrick, 1950; Korner and 316 

Pawelek, 1982; Pawelek and Korner, 1982; Hearing and Tsukamoto, 1991). Both 317 

hydroxylation of tyrosine and dehydrogenation of L-DOPA requires single step, where the 318 

substrate binding site are the same, and the reaction involves exchange of electrons with copper 319 

atoms generating orthoquinone and water as final products (Nordlund et al., 1998; Riley, 2000; 320 

Land et al., 2003a; Land et al., 2003b; Slominski et al., 2004). Slominski et al., reported on the 321 

role of L-tyrosine, L-DOPA, and TYR as a positive-regulators of melanogenesis in Bomirski 322 

Ab amelanotic hamster melanoma cells. Their findings showed that synthesis of subcellular 323 
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level of melanogenesis is initiated by L-tyrosine and is further regulated by TYR and L-DOPA, 324 

which serves as a second messenger to tyrosine hydroxylase activity (Slominski et al., 1989; 325 

Slominski and Paus, 1994). 326 

The TYR protein structure is different among highly conserved species and shows high 327 

homology with other tyrosinase-related proteins, such as tyrosinase-related protein 1 (TYRP1) 328 

and 2 (TYRP2). In this protein the TYR comprises of NH2 terminal domain signalling peptide 329 

responsible for intracellular trafficking and processing, the epidermal growth factor (EGF)-330 

like/cysteine-rich domain, has two histidine regions, and copper (Cu) binding site with a 331 

cysteine region acting as an important catalytic domain, and COOH-terminal with hydrophobic 332 

transmembrane segment and a cytoplasmic tail (Kwon et al., 1987; Shibahara et al., 1988; 333 

Kwon, 1993; Nordlund et al., 1998). These transmembrane and cytoplasmic domains are 334 

important for targeting the enzyme to melanosome (Jimbow et al., 2000a; Jimbow et al., 2000b; 335 

Selaturi, 2000), while the NH2 terminal with cysteine region may serve as a protein 336 

binding/regulatory domain unrelated to enzymatic function. Later, the newly synthesized TYR 337 

has about 55–58 kDa molecular mass with an isoelectric point of 4.2. These requires proper 338 

folding of TYR protein and is crucial for further transport to Golgi apparatus in the endoplasmic 339 

reticulum (ER). Therefore, the proteolytic cleavage of the transmembrane portion of newly 340 

synthesized enzyme generates two soluble forms: a 53-kDa unmodified protein, or a 65-kDa 341 

glycosylated TYR, which may be active in the melanosome or secreted into the extracellular 342 

environment. After glycosylation in the trans-Golgi complex, there is an increase in the size of 343 

TYR of about 65–75 kDa or even 80 kDa (Hearing and Tsukamoto, 1991; Sanchez-Ferrer et 344 

al., 1995; Del Marmol and Beermann, 1996a; Del Marmol et al., 1996; Jimbow et al., 2000). 345 

The higher molecular mass of TYR (Slominski A and Costantino, 1991; Slominski et al., 346 

1991a; Slominski et al., 1991b; Sanchez-Ferrer et al., 1995; Del Marmol and Beermann, 347 

1996a), may possess tight complexes with other melanogenic (Orlow et al., 1994), or high-348 
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molecular-weight TYR proteins. When copper ions, are necessary for the enzymatic activity, 349 

they integrate into apo-TYR, which is still unclear. However, recent data suggests that the 350 

Menkes copper transporter (MNK) is required for copper loading of TYR enzyme necessary 351 

for its activation (Petris et al., 2000). The catalytic site of TYR is represented by two copper 352 

atoms ligated to six histidine residues.  353 

TYR is a metalloenzyme with a highly conserved bi-copper active center (Ramsden 354 

and Riley, 2014); however, its structural properties are distinct in bacteria, plants, and 355 

mammals (Solano, 2014). In the mushrooms and vertebrates, the TYR catalyses the initial steps 356 

in forming the melanin pigment using tyrosine. In contrast, the plants use the composition of 357 

phenols as a substrate (Casanola-Martin et al., 2014). In mammals, it is expressed abundantly 358 

in melanocytes, but it is also present in the epithelial layer of the retina, iris, and ciliary parts 359 

of the eye (Saeki and Oikawa, 1980). TYR is classified under type-I membrane glycoproteins 360 

and consists of three conserved domains; N-terminal signal domain, solitary transmembrane α-361 

helix, and C-terminal cytoplasmic domain. The N-terminal domain of TYR is responsible for 362 

the catalytic activity. It comprises of 17 cysteines (Cys) residues present as 3 clusters and 7 N-363 

linked glycosylation sites present throughout the region. Among 17 Cys residues, 15 residues 364 

are freely available for the disulphide bonding, whereas one residue is removed by signal 365 

sequence locally and another residue is removed in the cytoplasmic tail. The solitary 366 

hydrophobic transmembrane domain consists of 26 amino acid sequences and it anchors the 367 

TYR into the melanosome membrane (Wang and Hebert, 2006). This cytoplasmic domain 368 

harbors a melanosome sorting signal that traffic the protein to the melanosomal membrane. 369 

The two Cu atoms in the active cite of the enzyme are harmonized with three histidine residues 370 

that anchor dioxygen binding to the peroxy configuration (Ramsden and Riley, 2014). This 371 

dioxygen bonds with Cu at the active site comprises of the amino acid sequence of His162, 372 
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184, and 193, which are referred to as CuA whereas, CuB includes His345, 349, and 371, 373 

respectively (Wang and Hebert, 2006). 374 

The enzyme TYR possesses four oxidation states, met-, oxy-, deoxy-, and deact-TYR, 375 

which play an imperative role in melanin production (Ramsden and Riley, 2014). Oxy-TYR or 376 

oxygenated form entails two tetragonal Cu (II) atoms. Both of them are coordinated with strong 377 

dual equatorial and single weak axial NHis ligand, and two Cu atom centers that are linked by 378 

the peroxide, forming exogenous oxygen molecule. Likewise, met-TYR comprises of two 379 

tetragonal Cu (II) ions bridged by water or hydrophobic ligands. In this form, other than 380 

peroxide, there are few hydroxide ligands that are also attached exogenously to the Cu binding 381 

site. Deoxy-TYR comprises of twin Cu (I) ions, which synchronizes parallel to the met form, 382 

and lacks the hydroxide bridge in the ring structure. Therefore, the enzyme that is achieved 383 

after purification will comprise of both met and oxy forms in the ratio 85:15 (Chang, 2009). 384 

The met-TYR has a null role in catalysing the conversion of substrates i.e., catechol and 385 

phenols to ortho-quinones. Conversely, the deoxy-TYR oxidizes phenols and catechols in the 386 

monophenolase and diphenolase phases, respectively. The catechol oxidation in 387 

monophenolase phase by oxy-TYR leads to elimination of Cu atoms in the active site and 388 

irreversible formation of deoxy-TYR, which subsequently results in deactivation of the enzyme 389 

(Ramsden and Riley, 2014).   390 

Defects in the TYR gene leads to a condition called as oculocutaneous albinism type 1 391 

(OCA1) (Tomita et al., 1989; Takeda et al., 1990; Oetting and King, 1999). Due to the 392 

mutations in the Cu binding sites, the entire coding sequence of the gene is susceptible to 393 

mutations, which further leads to abnormalities in splicing (Oetting and King, 1999). Thus, the 394 

mutant TYR proteins are degraded by proteasomes enzyme, and allowing it to pass to the Golgi 395 

apparatus for glycosylation and further stops the transport to premelanosomes (Halaban, 2002; 396 

Halaban et al., 2002a; Halaban et al., 2002b; Kushimoto et al., 2003; Toyofuku et al., 2001a; 397 
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Toyofuku et al., 2001b). Similarly, in oculocutaneous albinism type 3 (OCA3), the TYRP1 398 

mutated is retained within ER and the process of normal TYR is terminated leading to 399 

proteasomal degradation and reduces pigmentation (Kushimoto et al., 2003; Toyofuku et al., 400 

2001a; Toyofuku et al., 2001b). In case of oculocutaneous albinism type 2 (OCA2) and type 4 401 

(OCA4), the TYR from trans-Golgi network (TGN) to melanosomes is disrupted (Chen et al., 402 

2002; Toyofuku et al., 2002; Costin et al., 2003; Kushimoto et al., 2003). The experimental 403 

evidence suggested in various melanocytes, showed that ER is an essential step for TYR 404 

maturation, targeting melanosomes, and is an important step in the production of melanin 405 

pigment (Halaban, 2000; Halaban, 2002; Halaban et al., 2002a; Halaban et al., 2002b; Halaban 406 

et al., 1997; Halaban et al., 2000). Thus, the defects underlying OCA1 via OCA4 showed 407 

melanogenic activity in-vivo, depends on the posttranslational pathways, of which the most 408 

important is the processing of TYR. In fact, the levels of TYR mRNA were found to be similar 409 

in both European and African individuals in cultured melanocytes (Iozumi et al., 1993), and 410 

also shows that TYR gene expression finds to be same among different human groups (Iwata 411 

et al., 1990; Fuller et al., 2001). On the other hand, dysregulation of the TYR melanogenic 412 

activity can be due to the lack of melanosomes, resulting in the accumulation of enzyme or 413 

blockade in the translocation from TGN to melanosomes (Bomirski et al., 1988; Slominski, 414 

1988; Slominski et al., 1989), in the presence of intracellular TYR inhibitors or protein kinase-415 

dependent phosphorylation (Wong and Pawelek, 1975; Korner and Pawelek, 1977; Kameyama 416 

et al., 1989; Park and Gilchrest, 1999; Slominski et al., 2004). 417 

A plethora of studies suggests that UVR modulates the expression of TYR. The 418 

transcription factor MITF acts as a primary regulator of melanogenesis-related gene expression 419 

(MRGE) (Fuller et al., 1990), which subsequently regulates the mRNA levels of TYR and/or 420 

MITF in cultured melanoma (Lin et al., 2002; Ando et al., 2007). Therefore, increase in the 421 

glycosylation of TYR enzyme in the ER helps to inhibit the folding and maturation of melanin, 422 
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resulting in pigmentation (Imokawa, 1989). Thus, proteostasis of TYR is governed by the ER-423 

associated protein degradation (ERAD) regulated by the ubiquitin-proteasome system, E3 424 

ligases Doa10p and Hrd1p have been shown to ubiquitinate TYR, resulting in subsequent 425 

degradation (Hammond and Helenius, 1995; Bordallo et al., 1998). Further, transportation of 426 

TYR into melanosomes for melanogenesis is also dependent on ER. However, mutations in 427 

TYR result in TYR sequestration in ER and binds to ER-chaperones, calnexin, and calreticulin 428 

(Toyofuku et al., 2001a; Toyofuku et al., 2001b). This accumulated TYR is degraded through 429 

ERAD and thus inhibits its function (Smith et al., 2004). Therefore, ER plays a significant role 430 

in the regulation of TYR. 431 

The pH critically modulates the TYR activity, and acidic pH is appropriate for its 432 

optimal tyrosine hydroxylase activity (Bhatnagar et al., 1993). The early melanosomes contain 433 

an acidic environment (Moellman et al., 1988; Raposo et al., 2001), where pH increases as the 434 

melanosomes mature, creating an optimal environment for TYR activity (Tucker and 435 

Goldstein, 2003). The incidence of melanoma is intensively increasing in Western countries 436 

(Fuller et al., 2001). In the Caucasian population, TYR activity for the synthesis of melanin is 437 

relatively less when compared with the darker skin-coloured population, even though the level 438 

of TYR mRNA and the enzyme are in abundance (Giebel et al., 1991), and the gene sequence 439 

were reported similar in both black as well as Caucasian population (Tachibana et al., 1996; 440 

Spritz et al., 1991). Also, the pH of melanosome and activity of TYR is controlled by the 441 

expression of vacuolar ATPase (v-ATPase) (Giebel et al., 1991; Ito and Wakamatsu, 2003). In 442 

the Caucasian population, higher expression of v-ATPase resulted in increased H+ levels and 443 

produces an acidic environment in melanosomes. Conversely, in the African population, the 444 

expression of v-ATPase is low and hence requires to maintain acidic pH. Further, the melanin 445 

content in black skin is six times higher when compared to the white skin, particularly the 446 

levels of eumelanin (Kollias et al., 1991), whereas it was not so true in the case of pheomelanin 447 
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(Brenner and Hearing, 2008). In the black skin population, the melanosomes exist in single 448 

forms and works efficiently in the keratinocytes. In contrast, white skin forms clusters and 449 

translate as complex and work less efficiently (Pillaiyar et al., 2018). Together, these distinct 450 

mechanisms result in lower melanin production, which increases the risk and incidence of 451 

melanoma in Caucasians population. Therefore, it is apparent that the function of TYR is 452 

influenced by its substrates, cofactors, and cellular environmental factors. Also, the oxidation 453 

mechanism by the two Cu atoms present in the active site has been shown to influence the 454 

functions of TYR. 455 

1.5. Role of POMC Expression in Skin 456 

MSH was the first POMC peptide detected in the skin (Thody et al., 1983). Skin 457 

expresses the POMC gene and produces adrenocorticotropic hormone (ACTH) and ꞵ-458 

endorphin (Slominski et al., 1993; Slominski and Mihm, 1996; Wintzen and Gilchrest, 1996; 459 

Luger et al., 1998; Slominski and Pawelek, 1998). The POMC gene transcription and 460 

translation in the mammalian skin was originally observed in C57BL/6 mice (Slominski et al., 461 

1991; Slominski et al., 1992). Subsequently, POMC gene expression has been found in human 462 

skin, as well as in cutaneous cell culture systems (Slominski, 1991; Slominski, et al., 1991; 463 

Slominski, et al., 1992; Farooqui et al., 1993; Schauer et al., 1994; Chakraborty et al., 1995; 464 

Kippenberger et al., 1995; Slominski, et al., 1995; Slominski, et al., 1996; Chakraborty et al., 465 

1996; Ermak and Slominski, 1997; Nagahama et al., 1998; Slominski, 1998; Slominski, et al., 466 

1999; Slominski et al., 2000). 467 

1.6. Role of corticotropin releasing hormone (CRH) in the epidermis 468 

CRH has an important role in regulating the protective and homeostatic functions of 469 

the skin (Slominski et al., 2001; Slominski et al., 2013), where the synthesis of DNA occurs in 470 

the epidermal and dermal compartments, showing proliferation of cells in the keratinocytes 471 

(Slominski et al., 1999). Thus, stimulation of DNA synthesis is mainly achieved by adding 472 
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CRH to the telogen and anagen IV, in the keratinocytes (Slominski et al., 1999). However, in 473 

anagen II, the CRH has a opposite effect towards DNA synthesis, which showed to enhance 474 

the dermal DNA synthesis (Slominski et al., 1999). These reports suggest that CRH plays an 475 

important role in the proliferation of epidermal keratinocyte. Further, the exogenous CRH 476 

showed activity on the cellular levels targeting epidermal cycle dependent expression of CRH-477 

related receptors. In order to determine the various contributing factors involving the 478 

exogenous CRH, which also includes endogenous production of CRH and CRH activated 479 

production of ACTH and MSH. It is well established that CRH at the systemic level regulates 480 

corticosterone (Nicolaides et al., 2015). Further, reports suggested that increased levels of CRH 481 

substantially increases the levels of corticosterone by stimulating the hypothalamic pituitary 482 

adrenal (HPA) axis (Wilson et al., 1998). Further, increased levels of glucocorticosteroid 483 

clearly showed to possess an anagen-inhibitory effect on CRH implants (Paus et al., 1994; 484 

Paus, 1996; Paus et al., 1999; Slominski et al., 2000). 485 

1.7. Skin as a Target for POMC Peptides 486 

The studies on the POMC knock-out mice model showed that surprisingly, these 487 

animals survived till the adulthood (Yawsen et al., 1999). This genotype led to the adrenal 488 

insufficiency, and leads to defects in melanin pigmentation (Yawsen et al., 1999). This is 489 

similar to patients with pituitary POMC gene mutations, which generates allelic forms with 490 

defective production of POMC protein (Hinney et al., 1998; Krude et al., 1998). Thus, the 491 

affected individuals possess red hair pigmentation, and shows adrenal insufficiency. There is a 492 

clinical report on excess POMC peptide syndromes that confirms skin as a potential target for 493 

POMC-derived peptides (Lerner and Mcguire, 1961; Moellmann et al., 1988; Lerner, 1993; 494 

Pawelek, et al., 1992; Pawelek, 1993; Slominski et al., 1993; Siegrist and Eberle, 1995; 495 

Wintzen and Gilchrest, 1996; Jordan and Jackson, 1998; Luger et al., 1998; Luger et al., 1999). 496 

For example, humans with pathologically increased levels of plasma ACTH levels in case of 497 
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Addison disease or excessive ACTH production by tumors in case of Nelson syndrome, 498 

showed hyperpigmentation and skin atrophy (Eberle, 1988), whereas administration of MSH 499 

or ACTH peptides showed in the stimulation of melanogenesis (Lerner, 1993; Lerner et al., 500 

1961). Also, continuous administration of ACTH in humans causes acne, skin atrophy, 501 

hyperpigmentation, and hypertrichosis (Eberle, 1988). Thus, elevated levels of α-MSH in the 502 

serum concentrations are directly associated with skin pigmentation (Pears et al., 1992). 503 

Additional research performed on human and animal models, showed that immune, epidermal, 504 

adnexal, vascular, and dermal structures possessed additional targets for POMC peptides 505 

(Slominski et al., 2000). However, the effect of POMC on melanin pigmentation is conditional 506 

on functional agouti protein, since knocking of POMC gene in C57BL/6 mice, does not affect 507 

melanin production (Slominski et al., 2005). 508 

1.8. Effects of CRH in malignant melanocytes  509 

The CRH has a direct effect on melanocytes, where a study on hamster melanoma cell 510 

line, showed further insight into the mechanism of CRH action in the skin (Fazal et al., 1998; 511 

Slominski et al., 1999, 2000). Skin cells express corticotropin releasing hormone receptor 1 512 

(CRH-R1) gene, where in case of melanoma, the CRH-R1 mRNA transcription was 2.5 kb 513 

long, being 0.2 kb shorter than that detected in normal skin cells (Slominski et al., 1999). 514 

Melanocytes and melanoma cells express G protein-coupled CRH-R1, which responds to CRH 515 

and acts mainly by activation of cAMP, IP3, and other mediated pathways and also acts by 516 

activating the Ca+ signalling to modify the melanocyte phenotype (Slominski et al., 2001; 517 

Slominski et al., 2006a; Slominski et al., 2006b). In normal and immortalized melanocytes, 518 

CRH inhibits the cell proliferation in serum-containing medium, inhibits early and late 519 

apoptosis in serum free media (Slominski et al., 2006a). Concerning melanoma cells, the effect 520 

was found to be heterogenous depending on the cells (Slominski et al., 2006a; Carlson et al., 521 

2001). The variability in CRH action in the melanoma cells could be explained by co-522 
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expression of alternatively spliced CRH-R1 isoforms on the same cells that helps to modify the 523 

action of the CRH-R1α isoform (Slominski et al., 2001; Slominski et al., 2006b). Of 524 

significance, antimelanoma effect for selective CRH-R1 agonists has already been observed in 525 

in-vivo experimental models of melanoma (Carlson et al., 2001). Accordingly, selective 526 

targeting of CRH-R1 has been proposed for the treatment of malignant tumors that also include 527 

melanoma (Patent No: WO0153777).  528 

1.9. Pharmacological approaches modulating TYR activity 529 

A wide number of compounds from medicinal plants have been reported to inhibit 530 

melanogenesis by modulating the glycosylation of TYR enzyme (Imokawa and Mishima, 531 

1982; Imokawa, 1989; Mineko et al., 1992; Petrescu et al., 1997; Pillaiyar et al., 2017). 532 

Selective approaches targeting TYR expression, degradation, and maturation are emerging as 533 

promising leads, including inhibition of TYR enzyme mRNA transcription (Table 1), 534 

abnormal maturation, acceleration of enzyme degradation, and direct modulation of catalytic 535 

activity. The TYR activity modulators were reported to treat hyper- and hypo-pigmentary skin 536 

disorders (Pillaiyar et al., 2017). These TYR enzyme inhibitors are commonly used in 537 

commercial cosmetics, mainly as a skin whitening agent (Pillaiyar et al., 2017). These 538 

medicinal plants and their phytochemicals showing inhibitory and stimulatory effect on TYR 539 

are shown in Tables 2 and Table 3.  540 

Conversely, many inhibitors targeting TYR have been reported to exhibit lesser adverse 541 

effects (Burnett et al., 2010). Intriguingly, it has been revealed that some of the glycosylation 542 

inhibitors, glucosamine, and tunicamycin, do not affect TYR expression, but inhibit the 543 

synthesis of melanin (Swanson et al., 2001). Together, diverse research approaches are 544 

warranted since the conventional methods of TYR enzyme modulators have challenged its 545 

effects in melanoma therapy. Consequently, the current discoveries in melanoma therapy are 546 
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advancing by embracing technology, including nanotechnology-assisted targeted delivery 547 

(Swanson et al., 2001).  548 

1.9.1. POMC gene expression and peptides production in C57BL/6 Mice  549 

POMC is regulated by CRH signal that affects the function of melanocytes and 550 

melanoma cells (Slominski et al., 2013). Furthermore, the role of POMC-derived peptides in 551 

the regulation of melanogenesis is well illustrated in POMC knock out C57BL/6 mice model. 552 

The results showed that the POMC transcription of C57BL/6 mice skin is 0.9 kb long, and the 553 

POMC protein, detected with an anti-ꞵ-endorphin antibody, which has a molecular mass of 554 

30–33 kDa (Slominski et al., 1992). This form of POMC mRNA has been observed in the 555 

epidermis and epidermal Thy-11 dendritic cells in C57BL/6 mice skin (Farooqui et al., 1993; 556 

Farooqui et al., 1995; Slominski et al., 2000). Slominski, demonstrated the effect on non-agouti 557 

C57BL/6 mice, which are POMC deficient, where the skin types are negative for mRNA, 558 

whereas the melanin pigmentation are similar to that of the control C57BL/6 POMC+/+ and 559 

wild-type C57BL/6 mice. Therefore, C57BL/6 POMC -/- mice produces eumelanin hair 560 

pigmentation, in absence of local and systemic αMSH or ACTH ligands (Slominski et al., 561 

2005). Various others studies showed that αMSH and ACTH could regulate melanin 562 

pigmentation in rodents and humans (Nordlund et al., 1988; Lerner, 1993; Slominski et al., 563 

2000). These effects of melanocortin peptide are mediated by signal cascades that includes 564 

their binding to G protein-coupled MC1-R, activation of cAMP-dependent pathways, and 565 

stimulation or induction of eumelanogenesis (Nordlund et al., 1988; Slominski et al., 2000; 566 

Busca and Ballotti, 2000). The eumelanogenic pathway is altered by agouti protein (AGP), via 567 

both functional antagonist of melanocortins and inverse agonist, which inhibits the expression 568 

and activity of melanogenesis-related proteins, melanogenic enzymes, and MC1-R, and 569 

thereby acts as a switch between eu- to pheomelanogenesis (Hearing, 1999; Barsh, et al., 2000; 570 

Wolff, 2003; Rouzaud et al., 2003). Also, note that the switch between pheo- to 571 
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eumelanogenesis in normal agouti is a discontinuous process, usually produced at low levels 572 

of TYR activity (Oyehaug et al., 2002). 573 

A recent report proposed on the role of p53, a key regulator agent for pigmentary 574 

responses in tanning and pigmentation (Cui et al., 2007). Cui et al., proposed on the UV 575 

induction of POMC including α-MSH and ꞵ-endorphin, which is directly controlled by p53, 576 

and proposed that tanning from UVR is started by the activation of p53-mediated POMC 577 

promoter (Cui et al., 2007). As illustrated in Figure 2, UV-induced DNA damage stabilizes the 578 

tumor suppressor protein p53. However, this hypothesis is questionable since POMC knockout 579 

C57BL/6 mice (the same strain used by Cui et al.,) possessed normal capability of melanin 580 

pigment production (Slominski et al., 2004; Slominski et al., 2005a). This obtained result 581 

decreases the strength of Cui’s concept and also questions the validity of the proposed suntan 582 

response and pathological hyperpigmentation (i.e., UV - p53 - POMC - melanin pigmentation). 583 

Later, Slominski and their co-workers have published evidence to support the hypothesis that 584 

it may not be POMC and its products, but rather the MC1-R that could be the key regulator of 585 

pigmentation reported in mice (Slominski et al., 2007). On this background, we consider it 586 

more likely that p53 acts as one important coordinator, but not the main or sole regulator of 587 

pigmentation in the suntan response and pathological hyperpigmentation. 588 

In case of the absence of POMC, it did not result in any changes in the melanogenesis, 589 

when compared with the C57BL/6 mice measured using electron paramagnetic resonance 590 

(EPR) spectroscopy, as well as morphologic and histological examinations. It is noted that the 591 

eumelanogenic phenotype in C57BL/6 POMC-/- mice expresses MC1-R. Mutations in the 592 

MC1R gene leads to fair skin in humans, which is also seen with inactivating human POMC 593 

gene mutations. MC1R mutant receptor expression showed changes in the receptor activity, 594 

which is also listed as one of the etiologic factors responsible for an increased incidence of 595 

melanoma (Han et al., 2006; Rees, 2004). Therefore, these collated findings concluded that the 596 
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overwhelming dominance of POMC-derived peptides in the stimulation of melanogenesis, skin 597 

and hair pigmentation are complex in polygenic traits (Slominski et al., 2004). 598 

1.9.2. In-vitro and clinical reports on melanogenesis  599 

Slominski et al., reported on different methods to inhibit melanogenesis and showed 600 

immunosuppressive and mutagenic effect, which could alter the cellular metabolism. Melanin 601 

helps to protect against malignant melanocytes via chemo, radio, and photodynamic therapy 602 

and proposed to inhibit melanogenesis and also reduces the probability of melanoma 603 

progression (Slominski et al., 1998).  Slominski et al., have studied its effect in human 604 

melanoma cells (SKMEL-188) by producing melanin pigment using tyrosine levels. The 605 

results showed that the pigmented melanoma cells were significantly less sensitive to 606 

cyclophosphamide and also kills the action of IL-2-activated peripheral blood lymphocytes. 607 

This inhibition of melanogenesis can be achieved either by blocking TYR site or chelating Cu 608 

ions to the cytotoxic action of cyclophosphamide towards melanoma cells, and also activates 609 

the IL-2 in the lymphocytes. The exogenous L-DOPA inhibits the proliferation of lymphocyte 610 

causing cell cycle arrest in G1/0 phase and also inhibits the production of IL-1ꞵ, TNF-α, IL-6 611 

and IL-10, respectively. Thus, the cytotoxic action of cyclophosphamide could not impair the 612 

active melanogenesis, but it also possesses immunosuppressive activity. Therefore, this 613 

resistance to a chemotherapeutic or immunotoxic activity of lymphocytes could be reversed by 614 

TYR inhibitors (Slominski et al., 2009). In another study by Slominski et al., showed to inhibit 615 

the behaviour of melanogenesis in regulation with melanoma by altering the expression of HIF-616 

1α and its related pathways. The study was carried out using human (SKMEL-188) and hamster 617 

(AbC1) melanoma cells for their activity using cell culture methods. The results showed to 618 

significantly increase the melanin pigmentation of HIF-1α, in both the cells. In cultured cells, 619 

the result on melanogenesis were significantly stimulated by the expression of HIF-1-620 

dependent target genes that play an important role in angiogenesis and cellular metabolism. 621 
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Therefore, they have concluded that induction of melanogenic pathway could lead to elevated 622 

HIF-1-dependent and independent pathways in cultured melanoma cells, suggesting a key role 623 

for the regulation of cellular metabolism in melanogenesis (Slominski et al., 2014).  624 

Brożyna et al., reported the effects and survival of melanogenesis in patients with stage 625 

III and IV melanoma. The samples were collected from American Joint Committee in 20 626 

patients from stage I, 24 patients from stage II, and 29 patients from stage III cancers and the 627 

results were analysed by Prof Franciszek Łukaszczyk Memorial Hospital, Oncology Centre, 628 

Bydgoszcz, Poland. The results showed that the patients with metastatic disease, and those with 629 

melanomas exhibit significant disease-free survival than those with amelanotic lesions. Thus, 630 

melanogenesis shortens overall survival in patients with metastatic melanoma. Therefore, the 631 

authors concluded that inhibiting the process of melanogenesis appears to be an interesting 632 

approach for the treatment of metastatic melanoma (Brożyna et al., 2013). In another study by 633 

Brożyna et al., studied the activity of melanin content in metastases melanoma and its effect in 634 

radiotherapy using cohort study with two melanoma patients that were diagnosed and treated 635 

at the Oncology Centre in Bydgoszcz, Poland. The study results showed significant decrease 636 

in the melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and pT2 tumors, 637 

respectively. However, melanin levels were measured in pT3-pT4 melanomas developing 638 

metastases stage (pN1-3, pM1) were found to be higher in pN0 and pM0 cases. Therefore, the 639 

results concluded that the presence of melanin in metastatic melanoma cells decreases the 640 

outcome of radiotherapy, and melanin synthesis that is related to higher disease advancement 641 

(Brożyna et al., 2016). Based on our cell-based and clinical research and present research we 642 

also suggest that inhibition of melanogenesis can improve radiotherapy modalities. 643 

1.10. Discussion and Conclusion 644 

Progress in the treatment of melanoma begins with identifying a specific target involved 645 

in the melanoma pathogenesis, and one such interesting target is by altering the TYR enzyme 646 
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(Hodi et al., 2010). The use of pro-drugs could also be a newer and interesting approach in the 647 

treatment of melanoma, but it tends to form toxic metabolites and thus requires alternative 648 

therapy (Rooseboom et al., 2004; Gasowska-Bajger and Wojtasek, 2008; Jawaid et al., 2009). 649 

Therefore, given that TYR reported to have a pivotal activity as a natural photo-protection of 650 

the skin, where several intrinsic and extrinsic factors that could influence its function, and it is 651 

also critical to understand the precise mechanisms of onset and progression of melanoma. 652 

While the etiological aspect is still unclear, were still it is believed that the DNA damage in the 653 

melanocyte is the leading cause of melanocyte's transformation and progression to melanoma.  654 

The UVR from sun is one of the primary ecological reasons in the development of 655 

melanoma, which proliferates due to UVR -induced DNA mutations that occur in skin. The 656 

UV plays an important role in the brain and central neuroendocrine system in order to reset 657 

body homeostasis (Slominski et al., 2018; Skobowiat et al., 2011). Also, Slominski and their 658 

co-workers stated that melanoma can affect some central neuroendocrine axes and how cancer 659 

hijacks the body’s homeostasis through the neuroendocrine system (Slominski et al., 2023). 660 

The epidermal melanocytes, are pigment producing cells of neural crest origin that 661 

communicates with multiple targets. Therefore, alterations in the epidermal melanocytes can 662 

affect the cutaneous functions (Slominski et al., 1993). Therefore, this leads to the activation 663 

of POMC and release of MSH from the keratinocytes, and increases the cAMP levels, which 664 

further activates the MITF transcription (Cui et al., 2007; Garibyan and Fisher, 2010). This 665 

results in the synthesis of melanin from TYR and protects from DNA damage. In keratinocytes, 666 

exposure of UVR activates NOS type 1, which leads to increased nitric oxide and TYR levels 667 

and subsequent acceleration of melanogenesis and also elevates the cofactors such as NADPH 668 

and 6-BH4 (Roméro-Graillet et al., 1997). Later on, Cannon-Albright et al., reported that 669 

exposure to UVR in patient with "9p-linked" gene were altered, which further gives us hint that 670 

mutations may also occur due to hereditary reason. The most commonly identified mutations 671 
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in melanoma are CDKN2A and CDK4, where mutations in the CDKN2A gene results in a 672 

defective p14 and p16, which is stabilized by p53 (Mehnert and Kluger, 2012). Davis et al., 673 

reported that mutations in the NER pathway could develop the risk of melanoma and showed 674 

that NER pathways increase the UVR-induced unrepaired DNA damage (Davis et al., 2019). 675 

There are other signalling pathways such as BRAF, NRAS, NF1, PTEN, TP53, TERT, ARID2 676 

and MAPK, which also showed in altering these genes that are associated with melanoma.  677 

TYR is a rate-limiting step in the melanin production, where it catalyses L-tyrosine to 678 

L-DOPA. Thus, it could be targeted to inhibit the irregular melanin synthesis and the 679 

pathogenesis of melanoma (Buitrago et al., 2016; Pillaiyar et al., 2017; Van Staden et al., 2021). 680 

Slominski et al., reported that both L-tyrosine and L-DOPA, serves as an intermediate for 681 

melanogenesis, and acts as bioregulatory agents that helps to regulate the cellular functions 682 

(Slominski and Paus, 1990; Slominski et al., 2012). The TYR catalyses via three distinct 683 

melanogenic pathways i.e., hydroxylation of L-tyrosine, dehydrogenation of L-DOPA, and 684 

dehydrogenation of DHI, which involves exchange of electrons with copper atoms that 685 

generates orthoquinone and water as final products (Slominski et al., 2004). The TYR is 686 

expressed in two forms of protein TYRP1 and TYRP2. Defects in the TYR gene leads to a 687 

condition called negative oculocutaneous albinism type 1 (OCA1) (Tomita et al., 1989; Takeda 688 

et al., 1990; Oetting and King, 1999). Thus, in oculocutaneous albinism type 3 (OCA3), the 689 

TYRP1 is mutated within the ER and the normal processing of TYR is terminated leading to 690 

proteasomal degradation and thus reduces pigmentation (Kushimoto et al., 2003; Toyofuku et 691 

al., 2001a; Toyofuku et al., 2001b). In case of oculocutaneous albinism type 2 (OCA2) and 692 

type 4 (OCA4), the TYR from trans-Golgi Network (TGN) to melanosomes is disrupted (Chen 693 

et al., 2002; Toyofuku et al., 2002; Costin et al., 2003; Kushimoto et al., 2003). Therefore, the 694 

experimental evidence in melanocytes targeting melanosomes, shows that ER is an essential 695 

step for TYR maturation, which is important in the production of melanin pigments (Halaban, 696 
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2000; Halaban, 2002; Halaban et al., 2002a; Halaban et al., 2002b; Halaban et al., 1997; 697 

Halaban et al., 2000). Thus, defects in OCA1 via OCA4 shows melanogenic activity in-vivo, 698 

via posttranslational pathways, which is an important step in the processing of TYR. The MITF 699 

transcription factor regulates the MRGE expression in cultured melanoma, and showed to 700 

increase the glycosylation of TYR in the ER, which results in pigmentation (Imokawa, 1989). 701 

In TYR, the ERAD is regulated by ubiquitin-proteasome system, E3 ligases Doa10p and 702 

Hrd1p, which results in degradation (Hammond and Helenius, 1995; Bordallo et al., 1998). 703 

Thus, mutations in TYR result in TYR sequestration in the ER and is degraded through ERAD 704 

by inhibiting its functions (Smith et al., 2004). Therefore, ER plays a significant role in the 705 

regulation of TYR. Our review collated that various approaches to regulate the abrupt 706 

melanogenesis in melanoma and could modulate the TYR enzyme levels or activity. However, 707 

the clinical safety of TYR modulators in both acute and long-term use is an evolving area of 708 

research focus in the fields of skin cancer therapeutics.  709 

As we discussed, the POMC is regulated by CRH, which affects the functions of 710 

melanocytes and melanoma cells (Slominski et al., 2013). The regulation process by external 711 

agents such as α-MSH and its antagonist agouti, are both mediated by the MC1-R at the surface 712 

of the melanocyte. A mathematical model is developed to improve our understanding of 713 

melanogenic switching, i.e., agouti background, which acts as a switch between eumelanin and 714 

pheomelanin production depending on the extracellular signaling context (Oyehaug et al., 715 

2002). 716 

As reviewed, selective findings have provided intriguing leads and that warrant further 717 

research and a clear understanding of the critical roles of TYR in cell signaling pathways 718 

controlling melanogenesis. Delineation of these leads may unravel new therapeutic targets to 719 

treat melanin-related pigmentary disorders and melanoma. Nonetheless, our review collates 720 

that the TYR enzyme exhibits a critical role in paving melanoma's pathogenesis and is a 721 
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potential druggable target to combat melanoma. However, the quest to unravel the clinically 722 

safe TYR modulators remains elusive.  723 
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 Figure Captions 1708 

Fig. 1. Risk factors of melanoma. UV radiation is the major environmental factor affecting 1709 

melanoma. Other risk factors include skin phenotype, number of naevi and chemical pollutants 1710 

like arsenic; Germ-line mutations in genes regulating cell cycle arrest & DNA repair 1711 

mechanism; Somatic mutations in pathways regulating cell proliferation, growth & 1712 

metabolism, and oncogenic signalling. 1713 

Fig. 2. Role of Tyrosinase in melanin synthesis: Conversion of L-tyrosine to L-DOPA is the 1714 

rate-limiting step in melanin synthesis, and this step is catalyzed by the enzyme Tyrosinase. It 1715 

further converts L-DOPAse to DOPA-quinone, which in turn follows a sequence of steps 1716 

catalyzed by Tyrosinase and forms DHI Melanin (Black), DHICA Melanin (Brown). In the 1717 

presence of cysteine or glutathione, DOPA-quinone is sequentially converted to Pheomelanin 1718 
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(Yellow to Red) which is independent of Tyrosinase. The region highlighted in orange colour 1719 

shows the steps catalysed by Tyrosinase. 1720 
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Table Captions 1730 

Table 1. List of components inhibiting the TYR expression level. 1731 

Table 2. List of reported phytochemicals showing Tyrosinase inhibitory activity with their IC50 1732 

values. 1733 

Table 3. List of reported medicinal plant’s showing Tyrosinase inhibitory activity with their 1734 

IC50 values. 1735 
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molecular dynamics of tyrosinase in a path from melanin to melanoma. 
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Tables 

 

Table 1. List of components inhibiting the Tyr expression level. 

S.No Components Reference 

Mechanism: Inhibiting the mRNA transcription of Tyr enzyme 

1 5-Bromodeoxyuridine 

 

(Pubchem CID: 6035) 

Kidson and De 

Haan, 1990 

2 12-O-Tetradecanoylphorbol-13-acetate 

 

(Pubchem CID: 27924) 

Toyofuku et al., 

2001a 

3 Dihydrolipoic acid 

 

(Pubchem CID: 421) 

Toyofuku et al., 

2001b 

4 Lipoic acid 

 

(Pubchem CID: 6112) 

Toyofuku et al., 

2001b 

5 Sphingosine-1-phosphate Kim et al., 2003 

Table ( Editable version) Click here to access/download;Table ( Editable
version);Tables.docx

https://www.editorialmanager.com/bbacan/download.aspx?id=47979&guid=5797098e-21a9-44ff-be3c-68048938f83d&scheme=1
https://www.editorialmanager.com/bbacan/download.aspx?id=47979&guid=5797098e-21a9-44ff-be3c-68048938f83d&scheme=1
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(Pubchem CID: 5283560) 

6 Lysophosphatidic acid 

 

(Pubchem CID: 5497152) 

(Kim et al., 

2004a)  

7 (-)-Epigallocatechin-3-gallate 

 

(Pubchem CID: 65064) 

(Kim et al., 

2004b) 

8 Hinokitiol 

 

(Pubchem CID: 3611) 

(Kim et al., 

2004b) 

9 Terrein 

 

(Pubchem CID: 6436830) 

(Park et al., 

2004)  

10 Piperlonguminine (Kim et al., 

2006a)  



3 
 

 

(Pubchem CID: 5320621) 

11 Sphingosylphosphorylcholine 

 

(Pubchem CID: 9847290) 

(Kim et al., 

2006b) 

Mechanism: Aberrant Tyr maturation 

12 Glutathione 

 

(Pubchem CID: 124886) 

(Bhatnagar et 

al., 1993)  

13 Feldamycin 

 

(Pubchem CID: 10409115) 

(Raposo et al., 

2001)  

14 N-Butyldeoxynojirimycin 

 

(Pubchem CID: 51634) 

 

 

(Tucker and 

Goldstein, 2003) 
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Mechanism: Acceleration of Tyr degradation 

   

15 Linoleic acid 

 

(Pubchem CID: 5280450) 

(Ando et al., 

1999)  

16 2,20-Dihydroxy-5,50-dipropyl-biphenyl 

(Pubchem CID: SNA) 

(Nakamura et 

al., 2003) 

17 12-O-Tetradecanoylphorbol-13-acetate 

 

(Pubchem CID: 27924) 

(Kageyama et 

al., 2004)  

18 Phospholipase D2 

(Pubchem CID: SNA) 

(Kageyama et 

al., 2004) 

19 25-Hydroxycholesterol 

 

(Pubchem CID: 65094) 

(Hall et al., 

2004)  

20 Phenylthiourea 

 

(Pubchem CID: 676454) 

(Hall and Orlow, 

2005)  

*SNA-Structure not available 
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Table 2. List of reported phytochemicals showing Tyrosinase inhibitory activity with their IC50 

values. 

Sl. 

no 

Compound Name Plant/Extract/ 

Mode of 

Inhibition 

IC50 value References 

1 2-hydroxy-3methylcyclopent-2-enone 

 

(Pubchem CID: 6660) 

NM; (M) 721.91mg/mL 

 

(Hwang et 

al., 2018)  

2 3’,5’di-C-b glucopyranosylphloretin 

(SNA) 

Calamondin 

peel; Water (C) 

0.87mg/ml 

 

(Lou et al., 

2012)  

3 Sanggenon D 

 

(Pubchem CID: 13824422) 

Morus 

mongolica; 

(NC) 

7.3µM 

 

(Lee et al., 

2004)  

4 7,8,4’-trihydroxyflavone 

 

(Pubchem CID: 688853) 

NM; (M) 10.31±0.41µM 

 

(Shang et al., 

2018)  

5 Baicalein 

 

NM; (NC) 0.11 mM 

 

(Guo et al., 

2018; Zhang 

et al., 2021) 
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(Pubchem CID: 5281605) 

6 Vitexin 

 

(Pubchem CID: 5280441) 

Vigna radiatae; 

EtOH (M) 

6.3mg/ml (Yao et al., 

2012) 

7 Isovitexin 

 

(Pubchem CID: 162350) 

Vigna radiatae; 

EtOH (M) 

5.6mg/ml (Yao et al., 

2012)  

8 Mormin 

 

(Pubchem CID: 54587663) 

Morus lhou; 

MeOH (C) 

0.088mM (Ryu et al., 

2008)  

9 Cyclomorusin 

 

(Pubchem CID: 5481969) 

Morus lhou; 

MeOH (C) 

0.092mM (Ryu et al., 

2008) 

10 Morusin Morus lhou; 

MeOH (C)  

0.250mM (Ryu et al., 

2008) 
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(Pubchem CID: 5281671) 

11 Kuwanon C 

 

(Pubchem CID: 5481958) 

Morus lhou; 

MeOH (C) 

0.135mM (Ryu et al., 

2008) 

12 Norartocarpetin 

 

(Pubchem CID: 5481970) 

Morus lhou; 

MeOH (C) 

1.2 µM (Ryu et al., 

2008)  

 

13 7,8,4’-trihydroxyisoflavone 

 

(Pubchem CID: 5466139) 

Soybean; 

 (NM) 

11.21±0.8µM (Park et al., 

2010)  

14 7,3’,4’-trihydroxyisoflavone 

 

(Pubchem CID: 5284648) 

Soybean; 

 (NM) 

5.23±0.6µM (Park et al., 

2010) 

15 6,7,4’-trihydroxyisoflavone NM; (C) 9.2µM (Chang et al., 

2005) 
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(Pubchem CID: 5284649) 

16 Glabridin 

 

(Pubchem CID: 124052) 

Glycyrrhiza 

glabra; (NC) 

0.43µM (Chen et al., 

2016) 

17 Mirkoin 

 

(Pubchem CID: SNA) 

Maackia 

fauriei; EtOH 

70% (NC) 

5µM (Kim et al., 

2010)  

18 Lupinalbin A 

 

(Pubchem CID: 5324349) 

Apios 

americana; 

MeOH (C) 

39.7±1.5µM (Kim et al., 

2018)  

19 20-hydroxygenistein-7-O-gentibioside 

(SNA) 

(Pubchem CID: NA) 

Apios 

americana; 

MeOH (C) 

50.0±3.7µM (Kim et al., 

2018) 

20 Steppogenin 

 

(Pubchem CID: 21596130) 

Morus alba; 

EtOH 70% (C) 

0.98±0.01µM (Zhang et al., 

2016) 

21 2,2’,4,4’-tetrahydroxychalcone Morus alba; 

EtOH 70% (C) 

0.07±0.02µM (Zhang et al., 

2016) 
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(Pubchem CID: 10107266) 

22 Morachalcone A 

 

(Pubchem CID: 9862769) 

Morus alba; 

EtOH 70% (C) 

0.08±0.02µM (Zhang et al., 

2016) 

23 Macrourins E 

(SNA) 

(Pubchem CID: NA) 

Morus 

macroura; 

EtOH (NM) 

0.39µM (Wang et al., 

2018)  

24 Oxyresveratrol 

(Morus alba) 

 

(Pubchem CID: 5281717) 

Morus alba; 

EtOH 70% (C) 

0.10±0.01  

 

(Zhang et al., 

2016) 

25 Neorauflavane 

 

(Pubchem CID: 44257517) 

Campylotropis 

hirtella; MeOH 

(C) 

30 nM (Tan et al., 

2016)  

26 Artocaepin E 

 

(Pubchem CID: 132915900) 

Artocarpus 

heterophyllous; 

MeOH Extract 

(C)  

6.7 ± 0.8 µM (Nguyen et 

al., 2016)  

27 Artocaepin F Artocarpus ˃50 μM (Nguyen et 
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(Pubchem CID: ) 

heterophyllous; 

MeOH Extract 

(C) 

al., 2016) 

28 Orartocarpetin 

 

(Pubchem CID: ) 

Artocarpus 

heterophyllous; 

MeOH Extract 

(C) 

˃50 μM (Nguyen et 

al., 2016) 

29 Artocarpanone 

 

(Pubchem CID: ) 

Artocarpus 

heterophyllous; 

MeOH Extract 

(C) 

2.0 ± 0.1 μM (Nguyen et 

al., 2016) 

30 Liquiritigenin 

 

(Pubchem CID: ) 

Artocarpus 

heterophyllous; 

MeOH Extract 

(C) 

22.0 ± 2.5 μM (Nguyen et 

al., 2016) 

31 Steppogenin 

 

(Pubchem CID: ) 

Artocarpus 

heterophyllous; 

MeOH Extract 

(C) 

7.5 ± 0.5 μM (Nguyen et 

al., 2016) 

32 Dihydromorin 

 

(Pubchem CID: ) 

Artocarpus 

heterophyllous; 

MeOH Extract 

(C) 

˃50 μM (Nguyen et 

al., 2016) 

33 4-butylresorcinol 

 

(Pubchem CID: 205912) 

(C) 13.5 & 21 μM (Kolbe et al., 

2013; Mann 

et al., 2018) 

34 Thiamidol 

(SNA) 

(Pubchem CID: NA) 

(C) 1.1 μM (Mann et al., 

2018)  

35 4-hexylresorcinol (C) 94 μM (Mann et al., 
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(Pubchem CID: 3610) 

2018) 

36 4-phenylethylresorcinol 

(SNA) 

(Pubchem CID: NA) 

NM; (C) 131 μM (Mann et al., 

2018) 

37 Hydroquinone 

 

(Pubchem CID: 785) 

NM; (C) 15 μM (Mann et al., 

2018) 

38 2,4,3′-trihydroxydihydrostilbene 

(SNA) 

(Pubchem CID: NA) 

Morus alba 

wood;  

MeOH Extract 

(NM) 

0.8 ± 0.15 μM (Chaita et al., 

2017) 

39 Dihydrooxyresveratrol 

 

(Pubchem CID: 129650478) 

Morus alba 

wood;  

MeOH Extract 

(NM) 

0.3 ± 0.05 μM (Chaita et al., 

2017) 

40 Oxyresveratrol 

 

(Pubchem CID: 5281717) 

Morus alba 

wood;  

MeOH Extract 

(NM) 

1.7 μM (Chaita et al., 

2017) 

41 Benzofuran moracin M  

(SNA) 

(Pubchem CID: NA) 

Morus alba 

wood;  

MeOH Extract 

(NM) 

8.0 μM (Chaita et al., 

2017) 

42 4,4′-dihydroxybiphenyl NM; (C) 1.91 μM (Kim et al., 
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(Pubchem CID: 7112) 

2005) 

43 Linderanolide B 

 

(Pubchem CID: 53308122) 

Cinnamomum 

subavenium; 

MeOH (NA) 

1 μM (Wang et al., 

2011)  

44 Subamolide A 

 

(Pubchem CID: 16104909) 

Cinnamomum 

subavenium; 

MeOH (NA) 

1 μM (Wang et al., 

2011) 

 

45   

γ-thujaplicin 

 

(Pubchem CID: 12649) 

NM; (C) 1.15 μM (Yoshimori et 

al., 2014) 

46 β-thujaplicin 

 

(Pubchem CID: 3611) 

NM; (C) 8.98 μM (Yoshimori et 

al., 2014) 

47 p-hydroxybenzoic acid 

 

Vitex agnus-

castus;  

(NM) 

16.97 μM (Azizuddin et 

al., 2011) 
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(Pubchem CID: 135) 

48 3,4-dihydroxybenzoic acid  

 

(Pubchem CID: 72) 

Vitex agnus-

castus;  

(NM) 

66.67 μM (Azizuddin et 

al., 2011) 

49 Lupeol   

 

(Pubchem CID: 259846) 

Tannacetum 

polycephalum; 

(NM)  

27.40 μM (Azizuddin et 

al., 2011) 

50 Galangin 

 

(Pubchem CID: 5281616) 

Alpinia 

officinarum; 

(NM) 

3.55 μM (Chung et al., 

2018) 

51 Liquiritigenin 

 

(Pubchem CID: 114829) 

Pueraria 

lobata;  

MeOH Extract 

(NM) 

25.24 ± 6.79 

mM 

(Morgan et 

al., 2016) 

52 Isoliquiritigenin 

 

(Pubchem CID: 638278 ) 

Pueraria 

lobata;  

MeOH Extract 

(NM) 

4.85 ± 2.29 

mM 

(Morgan et 

al., 2016) 

53 Lariciresinol Pueraria 21.49 ± 4.44 (Morgan et 
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(Pubchem CID: 332427) 

lobata;  

MeOH Extract 

(NM) 

al., 2016) 

54 Daidzein 

 

(Pubchem CID: 5281708) 

Pueraria 

lobata;  

MeOH Extract 

(NM) 

17.5 ± 1.29 

mM 

(Morgan et 

al., 2016; El-

Nashar et al., 

2021) 

55 Kaempferol 

 

(Pubchem CID: 5280863) 

R. damascena; 

MeOH Extract 

(C) 

1.58 ± 0.18 

μg/ml 

(Solimine et 

al., 2016) 

56 Quercetin 

 

(Pubchem CID: 5280343) 

R. damascena; 

MeOH Extract 

(C) 

1.27 ± 0.06 

μg/ml 

(Solimine et 

al., 2016) 

57 Ellagic acid 

 

(Pubchem CID: 5281855) 

R. damascena; 

MeOH Extract 

(M) 

1.58 ± 0.09 

μg/ml 

(Solimine et 

al., 2016) 

58 4-hydroxybenzylalcohol Sinapis alba; 

MeOH:Water 

(NM) 

6 μM (Popova et 

al., 2018) 
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(Pubchem CID: 125) 

59 Isoeugenol 

 

(Pubchem CID: 853433) 

NM; (C) 33.3 μmol/L (Zuo et al., 

2018) 

60 Shikonin 

 

(Pubchem CID: 479503) 

NM; (C, UC, 

M) 

26.67 μmol/L (Zuo et al., 

2018) 

61 Baicalein 

 

(Pubchem CID: 5281605) 

NM; (C) 13.33 μmol/L (Zuo et al., 

2018) 

62 Rosmarinic acid 

 

(Pubchem CID: 5281792) 

NM; (C) 6.67 μmol/L (Zuo et al., 

2018) 

63 Dihydromyricetin 

 

NM; (C) 3.33 μmol/L (Zuo et al., 

2018) 
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(Pubchem CID: 161557) 

64 Kuwanon J 

 

(Pubchem CID: 10394786) 

Morus nigra; 

EtOH Extract 

(NM) 

0.17 μM (Hu et al., 

2018) 

65 Sanggenon O 

 

(Pubchem CID: 15479637) 

Morus nigra; 

EtOH Extract 

(NM) 

1.15 μM (Hu et al., 

2018) 

66 Broussoflavonol J 

(SNA) 

(Pubchem CID: NA) 

Broussonetia 

papyrifera; 

EtOH (NM) 

9.29 ± 0.28 

μM 

(Tian et al., 

2019a) 

67 Broussoflavonol H 

(SNA) 

(Pubchem CID: NA) 

Broussonetia 

papyrifera; 

EtOH (NM) 

13.69 ± 3.17 

μM 

(Tian et al., 

2019a) 

68 Broussoflavonol I 

(SNA) 

(Pubchem CID: NA) 

Broussonetia 

papyrifera; 

EtOH (NM) 

29.56 ± 4.22 

μM 

(Tian et al., 

2019a) 

69 Broussoflavonol K 

(SNA) 

Broussonetia 

papyrifera; 

17.56 ± 2.83 

μM 

(Tian et al., 

2019a) 
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(Pubchem CID: NA) EtOH (NM) 

70 Glycyrrhiza flavonol A  

 

(Pubchem CID: 5317765) 

Broussonetia 

papyrifera; 

EtOH (NM) 

20.67 ± 2.90 

μM 

(Tian et al., 

2019a) 

71 Papyriflavonol A 

 

(Pubchem CID: 10343070) 

Broussonetia 

papyrifera; 

EtOH (NM) 

29.56 ± 3.64 

μM 

(Tian et al., 

2019a) 

72 Broussoflavonol F 

 

(Pubchem CID: 9866908) 

Broussonetia 

papyrifera; 

EtOH (NM) 

29.65 ± 3.86 

μM 

(Tian et al., 

2019a) 

73 broussoflavonol B 

 

(Pubchem CID: 480828)  

Broussonetia 

papyrifera; 

EtOH (NM) 

31.74 ± 1.96 

μM 

(Tian et al., 

2019a) 

74 Isolicofavonol 

 

(Pubchem CID: 5318585) 

Broussonetia 

papyrifera; 

EtOH (NM) 

24.71 ± 3.59 

μM 

(Tian et al., 

2019a) 

75 7,8-dihydroxy-6-(3-methylbut-2-en-1- Broussonetia ＞50 μM (Tian et al., 
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yl)-2H-chromen-2-one  

(SNA) 

(Pubchem CID: NA) 

papyrifera; 

EtOH (NM) 

2019a) 

76 Pterocarpan 

 

(Pubchem CID: 6451349) 

Dalbergia 

parviflora; 

(NM) 

16.7 ± 5.0 μM  (Promden et 

al., 2018)  

77 Khrinone B 

 

(Pubchem CID: 44613667) 

Dalbergia 

parviflora; 

(NM) 

54.0 ± 6.0 μM (Promden et 

al., 2018) 

78 Cajanin 

 

(Pubchem CID: 5281706) 

Dalbergia 

parviflora; 

(NM) 

67.9 ± 6.2 μM (Promden et 

al., 2018) 

79 5,5-dimethoxylariciresinol-4-O-βD-glucopyranoside  

(SNA) 

(Pubchem CID: NA) 

Opilia 

Amentacea; 

EtOH (NM) 

42.1 μM (Magid et al., 

2017) 

80 Eleutheroside E1 

 

(Pubchem CID: 443024) 

Opilia 

Amentacea; 

EtOH (NM) 

28 μM (Magid et al., 

2017) 

81 Isosilybin A Silybum 2.1 ± 0.2 μM (Kim et al., 
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(Pubchem CID: 11059920) 

marianum; 

MeOH (M) 

2019) 

82 Isosilybin B 

 

(Pubchem CID: 10885340) 

Silybum 

marianum; 

MeOH (M)  

4.9 ± 0.5 μM (Kim et al., 

2019) 

83 Silydianin 

 

(Pubchem CID: 11982272) 

Silybum 

marianum; 

MeOH (M) 

2.6 ± 0.1  μM (Kim et al., 

2019) 

84 2,3-dihydrosilychristin 

 

(Pubchem CID: 121232948) 

Silybum 

marianum; 

MeOH (M) 

7.6 ± 0.3 μM (Kim et al., 

2019) 

85 Silychristin A Silybum 

marianum; 

MeOH (M) 

3.2 ± 0.3 μM (Kim et al., 

2019) 
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(Pubchem CID: 441764) 

86 Silychristin B 

 

(Pubchem CID: 12442785) 

Silybum 

marianum; 

MeOH (M) 

4.5 ± 0.4  μM (Kim et al., 

2019) 

87 Silybin 

 

(Pubchem CID: 31553) 

Silybum 

marianum; 

MeOH (M) 

1.7 ± 0.07 μM (Kim et al., 

2019) 

88 3'-O-methyltaxifolin 

 

 (Pubchem CID: 26194552) 

Silybum 

marianum; 

MeOH (C) 

51.2 ± 1.2 μM (Kim et al., 

2019) 

89 Dihydrokaempferol 

 

(Pubchem CID: 122850) 

Silybum 

marianum; 

MeOH (C) 

73.6 ± 1.8 μM (Kim et al., 

2019) 

90 Taxifolin Silybum 

marianum; 

MeOH (C) 

23.0 ± 0.9 μM (Kim et al., 

2019) 
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(Pubchem CID: 439533) 

91  1-(2,3,5-trihydroxy-4-methylphenyl)hexane-1-one 

 

(Pubchem CID: 132275589) 

Syzygium 

polyanthum; 

MeOH (NM) 

125.34 μM (Setyawati et 

al., 2018) 

92 1-(2,3,5-trihydroxy methylphenyl)octane1-one 

(SNA) 

(Pubchem CID: NA) 

Syzygium 

polyanthum; 

MeOH (NM) 

480.51 μM (Setyawati et 

al., 2018) 

93 (4E)-1-(2,3,5-trihydroxy-4-methylphenyl)decan-1- 

one 

(SNA) 

(Pubchem CID: NA) 

Syzygium 

polyanthum; 

MeOH (NM) 

83.98 μM (Setyawati et 

al., 2018) 

94 1-(2,3,5-trihydroxy-4-methylphenyl)decan-1-one 

 

(Pubchem CID: 129862762) 

Syzygium 

polyanthum; 

MeOH (NM) 

> 1000 μM (Setyawati et 

al., 2018) 

95 Seguinoside A p-coumarate 

(SNA) 

(Pubchem CID: NA) 

Breynia 

officinalis; 

MeOH (NM) 

16.9 ± 2.3 μM (Sasaki et al., 

2018) 

96 Curcumin 

 

(Pubchem CID: 969516) 

Curcuma 

longa; (M) 

326.5 μM (Athipornchai 

et al., 2021) 

97 Demethoxycurcumin Curcuma 470.0 μM (Athipornchai 
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(Pubchem CID: 5469424) 

longa; (M) et al., 2021) 

98 Bisdemethoxycurcumin 

 

(Pubchem CID: 5315472) 

Curcuma 

longa; (M) 

46.5 μM (Athipornchai 

et al., 2021) 

NA= Not Available SNA= Structure Not Available 

NC= Non-competitive; C= Competitive; M= Mixed; NM= Not Mentioned; NT= Not Tested 

 

Table 3. List of reported medicinal plant’s showing Tyrosinase inhibitory activity with their IC50 

values. 

Sl. 

no 

Medicinal Plant Name/ Part Used Extract/Mode of 

Inhibition 

IC50 value References 

1 Red koji extracts Water; (C) 5.57mg/mL (Wu et al., 

2003) 

2 Pueraria lobata - Stem extract MeOH, CHCl3, EtOAc, and 

BuOH; (NM) 

52.6%, 63.9%, 

36.6%, and 

7.3% 

(Tan et al., 

2016) 

3 Dalbergia parviflora – Heartwood extract NM 2.6 ± 0.4 

µg/mL 

(Promden 

et al., 

2018) 

4 Ficus virens - Leaves, Fruit, and Stem 

bark extracts  

Acetone; (M)  131.67, 99.89, 

& 

106.22; 

128.42, 43.07, 

& 74.27 μg/ml  

 

(Chen et 

al., 2014) 

5 Vigna angularis – Seed extract Acetone; (M) 130.0 (MP) & (Chai et al., 
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35.1 (DP) 

µg/mL 

2019) 

6 Leucaena leucocephala – Leaf and fruit 

extract 

Acetone: water (70:30); (M) 52.3 (MP) & 

16.1 (DP) 

µg/mL 

(Chen et 

al., 2018) 

7 Vigna radiata – Seed extract Acetone: water (70:30); (M) 80 (MP) & 20 

(DP) µg/mL 

(Chai et al., 

2018) 

8 Prunus cerasifera – Leaf extract Acetone: water (70:30); (M) 738.37 (MP) 

& 137.69 (DP) 

µg/mL 

(Song et 

al., 2018) 

9 Annona squamosa – Fruit (pericarp) 

extract 

Acetone: water (70:30); (C) 46.5 (MP) & 

37.3 (DP) 

µg/mL 

(Chai et al., 

2017b) 

10 Clausena lansium – Fruit (pericarp) 

extract 

Acetone: water (70:30); 

(MC) 

23.6 (MP) & 

7.0 (DP) 

µg/mL 

(Chai et al., 

2017c) 

11 Ficus altissima – Leaf extract Acetone: water (70:30); (M) 256.7 (MP) & 

41.3 (DP) 

µg/mL 

(Deng et 

al., 2016) 

12 Rhododendron pulchrum - Leaf extract Acetone: water (70:30); 

(MC) 

200 (MP) & 

200 (DP) 

µg/mL 

(Chai et al., 

2015a) 

13 Persea americana – Fruit extract Acetone: water (70:30); (C) 40 (MP) & 

19.5 (DP) 

µg/mL 

(Chai et al., 

2015b) 

14 Syzygium polyanthum – Leaf extract MeOH; (NM) 35.45 µg/mL (Setyawati 

et al., 

2018) 

15 Harpephyllum caffrum – Leaf & Bark 

extract 

EtOH; (NM)   51 ± 0.002 & 

40 ± 0.035 

µg/mL 

(Mapunya 

et al., 

2012) 
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16 Hyaenanche globose – Aerial part extract MeOH; (NM) 27.1 ± 042 

µg/mL 

(Momtaz et 

al., 2008) 

17 Pituranthos scoparius – Aerial part extract Aqueous ethanol (50 %); 

(NM) 

125.01 ± 0.72 

µg/mL 

(Jdey et al., 

2017) 

18 Cleome arabica - Aerial part extract Aqueous ethanol (50 %); 

(NM) 

124.4 ± 0.69 

µg/mL 

(Jdey et al., 

2017) 

19 Haloxylon articulatum - Shoot extract Aqueous ethanol (50 %); 

(NM) 

160 µg/mL (Jdey et al., 

2017) 

20 Rorippa nasturtium-aquaticum – Leaf 

extract 

Aqueous ethanol (70 %); 

(NM) 

1.513 & 22.24 

µg/mL 

(Thibane et 

al., 2019a; 

Thibane et 

al., 2019b) 

21 Cassipourea flanaganii – Bark extract Aqueous ethanol (70 %); 

(NM) 

22.24 ± 1.32 

& 1.425 

µg/mL 

(Thibane et 

al., 2019a; 

Thibane et 

al., 2019b) 

22 Ormocarpum trichocarpum – Leaf and 

stem extract 

EtOH; (C) 2.95 ± 1.76 

µg/mL 

(Stapelberg 

et al., 

2019) 

23 Vachellia karroo – Root extract EtOH; (C) 6.84 µg/mL (Stapelberg 

et al., 

2019) 

24 Acacia nilotica – Pod extract MeOH extract (NM) 8.61 ± 0.94 & 

12.97 ± 1.07 

µg/mL 

(Muddathir 

et al., 

2017; Lall 

et al., 

2019) 

25 Plectranthus ecklonii – Aerial part extract Ethyl acetate & chloroform; 

(NM) 

61.73 ± 2.69 

& 21.58 

µg/mL 

(Nyila, 

2011) 

26 Greyia flanaganii – Leaf extract (NM) 17.86 µg/mL (Mapunya 
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and Lall, 

2011) 

27 Greyia radlkoferi - Leaf extract EtOH; (NM) 17.96 µg/mL (Lall et al., 

2016) 

28 Myrsine Africana – Shoot extract MeOH; (NM) 22.51 ± 0.42 

& 27.4 µg/mL 

(Kishore et 

al., 2018) 

29 Sesamum angolense – Leaf extract MeOH; (C) 24 µg/mL (Kamagaju 

et al., 

2013) 

30 Dolichopentas longiflora – Leaf extract MeOH; (C) 26 ± 2 µg/mL (Kamagaju 

et al., 

2013) 

 

C= Competitive; M= Mixed; MC= Mixed competitive; NM= Not Mentioned; MP- 

Monophenolase Activity; DP- Diphenolase Activity.  
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Abstract 26 

The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and 27 

other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The 28 

production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-29 

dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin 30 

synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis 31 

of melanin is stimulated upon exposure to UVR, which can also stimulate local production of 32 

hormonal factors, which can stimulate melanoma development by altering the chemical 33 

properties of eu- and pheomelanin. The process of melanogenesis can be altered by several 34 

pathways. One involves activation of POMC, with the production of POMC peptides including 35 

MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and 36 

helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects 37 

melanogenic activity via posttranslational modifications resulting in proteasomal degradation 38 

and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression 39 

of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates 40 

POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. 41 

The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators 42 

for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune 43 

responses. Therefore, we reviewed natural products that would alter melanin production. Our 44 

special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit 45 

melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also 46 

outlines the current updated pharmacological studies targeting the TYR enzyme from natural 47 

sources and its consequential effects on melanin production. 48 

Keywords: Melanoma, Tyrosinase inhibitors, Melanin, Melanogenesis, Skin Pigmentation, and 49 

Skin cancer. 50 
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Abbreviations 51 

Cutaneous melanoma, CM 52 

Acral lentiginous melanoma, ALM 53 

Ultraviolet, UV 54 

Tyrosinase, TYR 55 

Hypoxia-inducible factor 1-alpha, HIF-1α 56 

Proopiomelanocortin, POMC 57 

Melanin stimulating hormone, MSH 58 

Melanocortin 1 receptor - MC1R 59 

Microphthalmia-associated transcription 60 

factor, MITF 61 

Nitric Oxide synthase, NOS 62 

Nicotinamide adenine dinucleotide 63 

phosphate, NADPH 64 

Tetrahydro-biopterin, 6-BH4 65 

Cyclin-dependent kinase inhibitor 2A, 66 

CDKN2A or p16  67 

Cyclin-dependent kinase 4, CDK4Familial 68 

atypical multiple mole-melanoma, FAMMM 69 

Nucleotide excision repair, NER 70 

Neurofibromatosis type 1, NF1 71 

Phosphatase and tensin homolog, PTEN  72 

Tumor Protein 53, TP53 73 

Telomerase Reverse Transcriptase, TERT  74 

AT-rich interactive domain-containing 75 

protein 2, ARID2 76 

Mitogen-Activated Protein Kinase, MAPK  77 

L-3,4-dihydroxyphenylalanine, L-DOPA 78 

5,6-dihydroxyindole, DHI  79 

5,6-dihydroxyindole-2-carboxylic acid, 80 

DHICA 81 

Tyrosinase-related protein 1, TYRP1 82 

Tyrosinase-related protein 2, TYRP2 83 

Epidermal growth factor, EGF 84 

Endoplasmic reticulum, ER 85 

Menkes copper transporter, MNK 86 

Cysteine, Cys 87 

Copper, Cu 88 

Oculocutaneous albinism type 1, OCA1 89 

Oculocutaneous albinism type 2, OCA2 90 

Oculocutaneous albinism type 3, OCA3 91 

Oculocutaneous albinism type 4, OCA4 92 

Trans-Golgi Network, TGN 93 

ER-associated protein degradation, ERAD 94 

Adrenocorticotropic hormone, ACTH 95 

Corticotropin releasing hormone, CRH 96 

Hypothalamic pituitary adrenal, HPA 97 

Vacuolar ATPase, v-ATPase 98 

Melanogenesis-related gene expression, 99 
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MRGE100 

1.1. Introduction  101 

Melanoma arises through malignant transformation of melanocytes, melanin producing 102 

cells, as shown in Figure 1. Due to its ability to metastasize to other parts of the body, it is one 103 

of the most aggressive types of all skin cancers (DeVita and Lawrence, 2008; Mitchell et al., 104 

2020). It accounts for 1% of all skin tumors but has a mortality rate of up to 60% (Khazaei et 105 

al., 2019). Melanoma is of significant concern for the Caucasian population, and its incidence 106 

is increasing globally. In 2018, there were 2,87,723 cases and 60,712 deaths reported due to 107 

melanoma by WHO, which accounted for 0.6 % of deaths due to melanoma alone (WHO, 108 

2019). The prevalence of cutaneous melanoma (CM) varies significantly among different 109 

populations, and these variations are due to distinct skin phenotypes and different levels of sun 110 

exposure. The acral lentiginous melanoma (ALM) is the most commonly seen variant with the 111 

Asian population (Phan et al., 2006). ALM is a malignant tumor or histological subtype of CM 112 

that occurs in the glabrous skin of the palms, soles, and nails, and it carries one of the worst 113 

prognoses among other subtypes. Furthermore, in contrast to other solid tumors, young to 114 

middle-aged individuals are more often affected by melanoma, and the incidence rate is 115 

augmented linearly between the age of 25 and 50 (Bressac-de-Paillerets et al., 2002; Leonardi 116 

et al., 2018). In addition, climate changes, increased amount of arsenic in water, ozone 117 

depletion, and numerous other factors like naevi have demonstrated to show direct associations 118 

with melanoma (Fabbrocini et al., 2010).  119 

Melanin protects from ultraviolet radiation (UVR) induced malignant transformation 120 

of melanocytes. However, its role in melanoma progression is complex. This is recently 121 

discussed by Slominski and co-workers (Slominski et al., 2022), stated that melanin protects 122 

against the development of skin cancers including cutaneous melanoma, and its presence is 123 

necessary for the transformation of melanocytes (Slominski et al., 2022). Melanocytes produce 124 
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melanin, which contains both eumelanin, and pheomelanin, through a series of oxidoreduction 125 

processes. The enzyme tyrosinase (TYR) catalyses the hydroxylation of L-tyrosine to L-126 

DOPA, which is further oxidized to DOPAquinone, a starting process of melanogenesis 127 

(Hearing and Tsukamoto, 1991; Pawelek et al., 1992; Pawelek, 1993; Chung et al., 2018). The 128 

melanin is then deposited in the melanosomes, which are transported to keratinocytes, finally 129 

defines the skin and hair colour (Wasmeier et al., 2008; Garibyan and Fisher, 2010; Kim et al., 130 

2018). The coordinated levels of eumelanin and pheomelanin regulate the skin physiological 131 

adaptation upon exposure to UVR. This shows a complex role of melanogenesis, defined by 132 

the chemical properties of melanin and the nature generating pathways such as eu- and 133 

pheomelanogenesis, which may affect the process of melanoma development. Thus, eumelanin 134 

acts as an effective antioxidant, and acts as a sunscreen and is believed to provide radio and 135 

photoprotection, whereas pheomelanin, generates mutagenic environment after exposure to 136 

UVR. Intermediates of melanogenesis are highly reactive and have cytotoxic, genotoxic, and 137 

mutagenic activities. Melanogenesis can stimulate glycolysis and hypoxia-inducible factor 1-138 

alpha (HIF-1α) (Slominski et al., 2014), which can lead to the progression of melanoma and 139 

can affect resistance to immunotherapy (Slominski et al., 2022). Thus, dysregulated levels of 140 

eu- and pheomelanin can lead to various skin pathological conditions such as skin diseases and 141 

pigmentary disorders (Garibyan and Fisher, 2010). Although the primary role of melanin is to 142 

defend the skin against UVR and injury (Brenner and Hearing, 2008; Schallreuter et al., 2008), 143 

it can affect radiotherapy (Brozyna et al., 2016) and overall disease-free survival in patients 144 

with stage III and IV melanoma (Brozyna et al., 2013). As TYR plays a pivotal role in 145 

melanogenesis, it is considered to be a putative therapeutic target for combating melanoma 146 

(D'Mello et al., 2016).  147 

Given the increasing incidence of melanoma, considerable attention has focused on to 148 

develop newer and improved strategies such as use of pro-drugs for treating the disease. The 149 
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pro-drugs are activated by TYR targeting melanoma, and could be an interesting in-situ tool 150 

for the treatment of melanoma, but it tends to form toxic metabolites and thus require 151 

alternative approach therapy (Rooseboom et al., 2004; Gasowska-Bajger and Wojtasek, 2008; 152 

Jawaid et al., 2009). Natural products including phytochemicals are reported to possess a wide 153 

number biological activities mainly flavonoids, alkaloids, glycosides, terpenoids 154 

(Hasanpourghadi et al., 2017), and recently have gained more attention towards chemotherapy, 155 

and also shows promising activity against various tumors (Nobili et al., 2009; Turek et al., 156 

2016; Shanmugam et al., 2016). Further, based on these collated reports natural products could 157 

be a potential weapon in combating cancer (Naviglio and Della Ragione, 2013; Shanmugam et 158 

al., 2016). Therefore, this review discusses in detail on the TYR regulation, and its role in 159 

melanogenesis, with potential targeting TYR in treatment of melanoma.  160 

1.2. Role of UVR in melanoma  161 

The UVR from the sun is considered to be the primary ecological reason in the 162 

development of melanoma (Gilchrest et al., 1999; Leonardi et al., 2018). Melanoma develops 163 

when melanocytes proliferate rapidly, occurs due to UVR -induced DNA mutations, which 164 

account for about 65% of melanoma occurrences in skin (Armstrong, and Kricker, 1993). The 165 

skin, is a self-regulating protective barrier, empowered with sensory capabilities to counteract 166 

the environmental stress and helps to maintain and restore the disrupted cutaneous homeostasis 167 

(Slominski and Wortsman, 2000; Slominski et al., 2012; Slominski et al., 2022). These 168 

functions are completely coordinated by cutaneous neuro-endocrine system that communicates 169 

with the central nervous, endocrine, and immune systems in a bidirectional way, and plays a 170 

potential role in controlling body homeostasis (Slominski and Wortsman, 2000; Slominski et 171 

al., 2022). However, the energy obtained from UVR is absorbed by skin, which triggers the 172 

mechanisms that defend skin integrity, and also regulates the body homeostasis (Slominski et 173 

al., 2018). Therefore, the UVR acts by touching the brain and central neuroendocrine system 174 
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in order to reset the body homeostasis (Skobowiat et al., 2011, Slominski et al., 2018). The 175 

epidermal melanin has an important physiological implication in humans, were higher content 176 

of melanin helps to protect against UVR-induced skin damage via optical and chemical 177 

properties (Ahene et al., 1995). The pigment amounts were found higher in regions of lower 178 

latitude and higher UVR levels were observed in skin. This may be directly associated with 179 

humans in early hominids having dark and dense coloured hair. Post et al., reported on the 180 

closely related primate i.e., chimpanzees, and showed to exhibit white or light colour pigment 181 

in the epidermal layer (Post et al., 1975). Interestingly, chimpanzees have active melanocytes 182 

that are present in the epidermis of those areas, which are directly exposed to UVR (Montagna 183 

and Machida, 1966).  184 

Therefore, in order to maintain thermal balance in human epidermis, which leads to an 185 

progressive increase in demands for heat dissipation, and further resulting from enhanced blood 186 

flow to the brain (Pagel and Bodmer, 2003). Thus, an increased epidermal melanization occurs 187 

due to high exposure to UVR in humans, which potentially could lead to adverse effects, such 188 

as sunburns and causes damage to the sweat glands resulting in the suppression of sweating 189 

and abnormal thermoregulation (Pandolf et al., 1992), and can induce carcinogenesis, and 190 

inactivation of nutrient by photolysis (Branda and Eaton, 1978; Slominski et al., 2004).  191 

The epidermal melanocytes, are pigment producing and secretary cells of the neural 192 

crest that communicates with multiple targets. Slominski et al., reported on the normal 193 

epidermal melanocytes, which are sensory and regulatory cells operating in the context of 194 

regulatory network that helps to maintain the epidermal homeostasis in humans (Slominski et 195 

al., 1993a; Slominski, 2009a). Thus, the functions of altered melanocyte, plays a major role in 196 

other diseases like skin disease, and racial pigmentation, which may affect the cutaneous 197 

functions (Slominski et al., 1993; Barsh, 1996). 198 
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The activation of the proopiomelanocortin (POMC) expression, production and release 199 

of POMC derived peptides including ACTH, melanocyte stimulating hormone (MSH) and β-200 

endorphin from keratinocytes, helps to stimulate the melanocytes or fibroblasts causing 201 

melanocyte differentiation (Slominski et al., 2000; Slominski et al., 2004). These melanocytes 202 

respond to the MSH via polymorphic receptor melanocortin 1 receptor (MC1R). Thus, 203 

activation of this receptor causes increase in the cAMP levels and further activates the 204 

transcription of microphthalmia-associated transcription factor (MITF) (Garibyan and Fisher, 205 

2010). This signalling mechanism results in the initiation of melanin synthesis through 206 

stimulation of TYR, and leads to the protection of keratinocytes from DNA damage. In the 207 

keratinocytes, UVR activates nitric oxide synthase (NOS) type 1, leading to increased nitric 208 

oxide and TYR levels, causing subsequent acceleration of melanogenesis. The activity of the 209 

NOS cofactors, including calcium, nicotinamide adenine dinucleotide phosphate (NADPH), 210 

and tetrahydro-biopterin (6-BH4), were also elevated upon exposure to UVR. Among these 211 

cofactors, activation of 6-BH4 leads to the activation of NOS type 1, but still the mechanism 212 

involved in it is unclear (Roméro-Graillet et al., 1997). Apart from that, 6-BH4 is also involved 213 

in modulating the TYR enzyme activity. The 6-BH4 is a vital cofactor and an electron donor 214 

in the conversion of L-phenylalanine to L-tyrosine occurs via hydroxylation. It acts as a rate-215 

limiting factor in controlling the production of L-tyrosine (Schallreuter et al., 1994). 216 

Additionally, the redox switch between 6-BH4 and 6-biopterin controls TYR activity and 217 

regulates melanogenesis, but photo-oxidation of 6-BH4 occurs upon exposure to UVR and 218 

could lead to elevated TYR activity (Wood et al., 1995). Thus, exposure to UVR alters the 219 

regulation of NOS type 1 activity, tyrosine production, and TYR activity. Therefore,  this 220 

showed to elevate the expression of UVR-induced 6-BH4 levels and increased photo-oxidation, 221 

which may also lead to cancer conditions (Wood et al., 1995).  In addition, melanoma develops 222 

as a result of interactions between genetic and environmental factors. Excessive exposure to 223 
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UVR, can cause increase in the melanoma penetrance in melanoma-prone families. For 224 

instance, in a study on melanoma-prone families, patients' with "9p-linked" gene, were altered 225 

due to excessive exposure to UVR regardless of their skin type showed increased chance of 226 

developing melanoma (Cannon-Albright et al., 1994).  227 

Of note, about 5-12% of melanoma with the distinct mutation has been reported to be 228 

of hereditary origin (Rebecca et al., 2012). These mutations in cyclin-dependent kinase 229 

inhibitor 2A (CDKN2A or p16) and cyclin-dependent kinase 4 (CDK4) are most frequently 230 

identified in the families prone to familial atypical multiple mole-melanoma (FAMMM) (Gruis 231 

et al., 1995; Zuo et al., 1996; Soura et al., 2016). Further, changes in the CDKN2A gene 232 

mutation showed to possess about 40% of familial melanomas, which resulted in defective 233 

tumor suppressor proteins p14 (p14ARF) and p16 (p16INK4A), and further stabilizes p53 gene 234 

by regulating the G1 checkpoint (Rebecca et al., 2012; Shain and Bastian, 2016). Interaction 235 

of p16 with CDK4 results in cell cycle arrest, whereas mutations in p16 (p16INK4A), helps to 236 

inhibit the binding of p16 to CDK4, and thereby interrupts the cell cycle arrest (Mehnert and 237 

Kluger, 2012). Mutation in the nucleotide excision repair (NER) pathway, which is another 238 

group of germline mutation, identified to augment the risk of developing melanoma (Davis et 239 

al., 2019). These mutations are more pathogenic, and are less common. Further, intensive 240 

exposure to UVR can causes DNA lesions, which are removed by NER mechanism. Therefore, 241 

genetic mutations in NER pathways results in increased UVR-induced unrepaired DNA 242 

damage.  243 

Melanomas are also associated with recurrent somatic mutations. Most frequently, the 244 

key mutations occur in the signalling pathways are (a) BRAF, NRAS, and neurofibromatosis 245 

type 1 (NF1), which plays an important role in regulating the proliferation of cells (Scolyer et 246 

al., 2011), (b)  Phosphatase and tensin homolog (PTEN) and KIT that coordinates the growth 247 

and metabolism (Read et al., 2016), (c) Tumor Protein 53 (TP53) which regulates resistance to 248 



10 
 

apoptosis (Scolyer et al., 2011), (d) Telomerase reverse transcriptase (TERT) – regulates 249 

replicative lifespan (Horn et al., 2013; Read et al., 2016), (e) AT-rich interactive domain-250 

containing protein 2 (ARID2) – responsible for cell identity (Scolyer et al., 2011) and (f) 251 

CDKN2A – responsible for cell cycle arrest (Scolyer et al., 2011; Read et al., 2016). Although 252 

melanomas arise from somatic mutations, most of them could develop due to acquired 253 

mutations. For instance, mitogen-activated protein kinase (MAPK) is the most commonly 254 

mutated pathway, and these mutational events were prevalent in 70% of melanoma patients 255 

(Scolyer et al., 2011). Similarly, about 80% of them contain BRAF mutations, were V600E is 256 

the most common mutation of BRAF that is over >85%, and activates the downstream MAPK 257 

oncogenic pathway. Together, it is apparent that MAPK cascades have potential implications 258 

in UVR-induced carcinogenesis. Yet, the mechanism by which MAPK cascades orchestrate 259 

UVR exposure-driven melanoma remains elusive (Bode and Dong, 2003).  260 

1.3.  Role of melanin and melanogenesis in regulating cellular metabolism 261 

The movement of mature melanosomes from melanocytes into keratinocytes via 262 

lysosomal compartment, occurs in the upper epidermal layer forming melanin granules. 263 

Furthermore, precise mechanism of melanin breakdown or degradation remains to be 264 

investigated. The melanin is highly resistant to enzymatic lysis, and reports showed that 265 

phagosomal NADPH oxidase enzyme degrades the melanin via oxidation (Borovansky and 266 

Elleder, 2003). Unlike those in overlying epidermis, the melanin granules remain intact in the 267 

hair shaft and this occurs mainly in the black hair shaft containing eumelanogenic 268 

melanosomes, which are often seen in East-Asian individuals containing high-density pigment 269 

granules.  270 

Melanin can reduce the effect of UV penetration to blood in humans. The highest UV 271 

absorption for oxyhemoglobin can be identified at a wavelength of 545 nm, which causes 272 

strong erythema reaction with subsequent pigmentary response with individuals having light 273 
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skin. Therefore, when exposed to UVR, melanin undergoes photosensitization producing 274 

superoxide radicals, causing harmful injury to cells. This process could possibly lead to a 275 

condition called cell neoplasia, causing low proliferation rate in normal skin cells (Furuya et 276 

al., 2002), and consisting of a linkage between melanin production and UVR-induced DNA 277 

damage, i.e., responsible for maintaining the skin homeostasis and tanning (Gilchrest and Eller, 278 

1999). Therefore, understanding pathophysiology of pigmentation, occurs mainly due to the 279 

exposure of melanin to various toxic metabolites, resulting in higher melanin granules and 280 

deposition, which could be possible reason of pigmentation (Lindquist, 1973; Slominski et al., 281 

2004). 282 

Melanin plays an imperative role in preventing melanoma formation (Gilchrest et al., 283 

1999), as it protects the skin from UVR-induced DNA damage and genetic changes. However, 284 

repetitive exposure decreases its protective function, resulting in cancer progression 285 

(Armstrong and Kricker, 1993). TYR plays a crucial role in the synthesis of melanin as it is the 286 

rate-limiting enzyme of the pathway, possessing both monophenolase and diphenolase 287 

activities, which enable oxidation of tyrosine to L-DOPA, and is said to be the first and most 288 

critical step in the synthesis of melanin. Melanin synthesis involves hydroxylation of L-tyrosine 289 

to L-DOPA and subsequently its oxidation to DOPA-quinone. Next, DOPA-quinone cyclizes 290 

to form DOPA-chrome, leading to the production of 5,6-dihydroxyindole (DHI) and 5,6-291 

dihydroxyindole-2-carboxylic acid (DHICA). TYR catalyses the oxidative polymerization of 292 

DHI. TYR- related protein 1 catalyses the oxidation of DHICA and leads to the formation of 293 

melanochrome and converted to an insoluble eumelanin pigment (Raper, 1928; Korner and 294 

Pawelek, 1982; Wang and Hebert, 2006). Also, in the presence of cysteine and glutathione, 295 

DOPA-quinone is converted to 5-S-cysteinyl-DOPA and cystathionyl-DOPA, respectively 296 

then later converted to pheomelanin (Pillaiyar et al., 2015). 297 

 298 
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1.4. Tyrosinase enzyme and its intrinsic roles 299 

The key regulatory enzyme of melanogenesis, is TYR a product of c-locus that maps to 300 

the chromosome 11q14–21 in humans (Barton et al., 1988) and chromosome 7 in mice, 301 

respectively, consisting of five exons and four introns (Kwon, 1993; Thody, 1995; Nordlund 302 

et al., 1998). The TYR mRNA generates several alternatively spliced products while 303 

posttranscriptional processing occurs (Shibahara et al., 1988; Porter and Mintz, 1991; Kelsall 304 

et al., 1997; Le Fur et al., 1997), of which some are translated to protein products expressing 305 

TYR activity (Muller et al., 1988; Ruppert et al., 1988). It is proposed that the obtained products 306 

from TYR mRNA could be best served as regulatory protein (Slominski and Paus; 1990; 307 

Slominski and Paus; 1994), and acts as a receptor for L-tyrosine and L-DOPA (Slominski and 308 

Paus, 1994). Also, it is noted that non-functional TYR proteins express non-melanocytic cells 309 

(Haninec and Vachtenheim, 1988; Tief et al., 1998). There is evidence that L-tyrosine and L-310 

DOPA, besides serving as a substrates and intermediates for melanogenesis, and also act as a 311 

bioregulatory agents, and inducers, which shows positive regulators of melanogenesis, leading 312 

to regulation of the cellular functions (Slominski and Paus, 1990; Slominski et al., 2012). 313 

TYR catalyses three distinct reactions in the melanogenic pathway; i.e., hydroxylation 314 

of L-tyrosine, dehydrogenation of L-DOPA, and dehydrogenation of DHI; where L-DOPA 315 

serves as cofactor in the first and third reactions (Lerner and Fitzpatrick, 1950; Korner and 316 

Pawelek, 1982; Pawelek and Korner, 1982; Hearing and Tsukamoto, 1991). Both 317 

hydroxylation of tyrosine and dehydrogenation of L-DOPA requires single step, where the 318 

substrate binding site are the same, and the reaction involves exchange of electrons with copper 319 

atoms generating orthoquinone and water as final products (Nordlund et al., 1998; Riley, 2000; 320 

Land et al., 2003a; Land et al., 2003b; Slominski et al., 2004). Slominski et al., reported on the 321 

role of L-tyrosine, L-DOPA, and TYR as a positive-regulators of melanogenesis in Bomirski 322 

Ab amelanotic hamster melanoma cells. Their findings showed that synthesis of subcellular 323 
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level of melanogenesis is initiated by L-tyrosine and is further regulated by TYR and L-DOPA, 324 

which serves as a second messenger to tyrosine hydroxylase activity (Slominski et al., 1989; 325 

Slominski and Paus, 1994). 326 

The TYR protein structure is different among highly conserved species and shows high 327 

homology with other tyrosinase-related proteins, such as tyrosinase-related protein 1 (TYRP1) 328 

and 2 (TYRP2). In this protein the TYR comprises of NH2 terminal domain signalling peptide 329 

responsible for intracellular trafficking and processing, the epidermal growth factor (EGF)-330 

like/cysteine-rich domain, has two histidine regions, and copper (Cu) binding site with a 331 

cysteine region acting as an important catalytic domain, and COOH-terminal with hydrophobic 332 

transmembrane segment and a cytoplasmic tail (Kwon et al., 1987; Shibahara et al., 1988; 333 

Kwon, 1993; Nordlund et al., 1998). These transmembrane and cytoplasmic domains are 334 

important for targeting the enzyme to melanosome (Jimbow et al., 2000a; Jimbow et al., 2000b; 335 

Selaturi, 2000), while the NH2 terminal with cysteine region may serve as a protein 336 

binding/regulatory domain unrelated to enzymatic function. Later, the newly synthesized TYR 337 

has about 55–58 kDa molecular mass with an isoelectric point of 4.2. These requires proper 338 

folding of TYR protein and is crucial for further transport to Golgi apparatus in the endoplasmic 339 

reticulum (ER). Therefore, the proteolytic cleavage of the transmembrane portion of newly 340 

synthesized enzyme generates two soluble forms: a 53-kDa unmodified protein, or a 65-kDa 341 

glycosylated TYR, which may be active in the melanosome or secreted into the extracellular 342 

environment. After glycosylation in the trans-Golgi complex, there is an increase in the size of 343 

TYR of about 65–75 kDa or even 80 kDa (Hearing and Tsukamoto, 1991; Sanchez-Ferrer et 344 

al., 1995; Del Marmol and Beermann, 1996a; Del Marmol et al., 1996; Jimbow et al., 2000). 345 

The higher molecular mass of TYR (Slominski A and Costantino, 1991; Slominski et al., 346 

1991a; Slominski et al., 1991b; Sanchez-Ferrer et al., 1995; Del Marmol and Beermann, 347 

1996a), may possess tight complexes with other melanogenic (Orlow et al., 1994), or high-348 
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molecular-weight TYR proteins. When copper ions, are necessary for the enzymatic activity, 349 

they integrate into apo-TYR, which is still unclear. However, recent data suggests that the 350 

Menkes copper transporter (MNK) is required for copper loading of TYR enzyme necessary 351 

for its activation (Petris et al., 2000). The catalytic site of TYR is represented by two copper 352 

atoms ligated to six histidine residues.  353 

TYR is a metalloenzyme with a highly conserved bi-copper active center (Ramsden 354 

and Riley, 2014); however, its structural properties are distinct in bacteria, plants, and 355 

mammals (Solano, 2014). In the mushrooms and vertebrates, the TYR catalyses the initial steps 356 

in forming the melanin pigment using tyrosine. In contrast, the plants use the composition of 357 

phenols as a substrate (Casanola-Martin et al., 2014). In mammals, it is expressed abundantly 358 

in melanocytes, but it is also present in the epithelial layer of the retina, iris, and ciliary parts 359 

of the eye (Saeki and Oikawa, 1980). TYR is classified under type-I membrane glycoproteins 360 

and consists of three conserved domains; N-terminal signal domain, solitary transmembrane α-361 

helix, and C-terminal cytoplasmic domain. The N-terminal domain of TYR is responsible for 362 

the catalytic activity. It comprises of 17 cysteines (Cys) residues present as 3 clusters and 7 N-363 

linked glycosylation sites present throughout the region. Among 17 Cys residues, 15 residues 364 

are freely available for the disulphide bonding, whereas one residue is removed by signal 365 

sequence locally and another residue is removed in the cytoplasmic tail. The solitary 366 

hydrophobic transmembrane domain consists of 26 amino acid sequences and it anchors the 367 

TYR into the melanosome membrane (Wang and Hebert, 2006). This cytoplasmic domain 368 

harbors a melanosome sorting signal that traffic the protein to the melanosomal membrane. 369 

The two Cu atoms in the active cite of the enzyme are harmonized with three histidine residues 370 

that anchor dioxygen binding to the peroxy configuration (Ramsden and Riley, 2014). This 371 

dioxygen bonds with Cu at the active site comprises of the amino acid sequence of His162, 372 
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184, and 193, which are referred to as CuA whereas, CuB includes His345, 349, and 371, 373 

respectively (Wang and Hebert, 2006). 374 

The enzyme TYR possesses four oxidation states, met-, oxy-, deoxy-, and deact-TYR, 375 

which play an imperative role in melanin production (Ramsden and Riley, 2014). Oxy-TYR or 376 

oxygenated form entails two tetragonal Cu (II) atoms. Both of them are coordinated with strong 377 

dual equatorial and single weak axial NHis ligand, and two Cu atom centers that are linked by 378 

the peroxide, forming exogenous oxygen molecule. Likewise, met-TYR comprises of two 379 

tetragonal Cu (II) ions bridged by water or hydrophobic ligands. In this form, other than 380 

peroxide, there are few hydroxide ligands that are also attached exogenously to the Cu binding 381 

site. Deoxy-TYR comprises of twin Cu (I) ions, which synchronizes parallel to the met form, 382 

and lacks the hydroxide bridge in the ring structure. Therefore, the enzyme that is achieved 383 

after purification will comprise of both met and oxy forms in the ratio 85:15 (Chang, 2009). 384 

The met-TYR has a null role in catalysing the conversion of substrates i.e., catechol and 385 

phenols to ortho-quinones. Conversely, the deoxy-TYR oxidizes phenols and catechols in the 386 

monophenolase and diphenolase phases, respectively. The catechol oxidation in 387 

monophenolase phase by oxy-TYR leads to elimination of Cu atoms in the active site and 388 

irreversible formation of deoxy-TYR, which subsequently results in deactivation of the enzyme 389 

(Ramsden and Riley, 2014).   390 

Defects in the TYR gene leads to a condition called as oculocutaneous albinism type 1 391 

(OCA1) (Tomita et al., 1989; Takeda et al., 1990; Oetting and King, 1999). Due to the 392 

mutations in the Cu binding sites, the entire coding sequence of the gene is susceptible to 393 

mutations, which further leads to abnormalities in splicing (Oetting and King, 1999). Thus, the 394 

mutant TYR proteins are degraded by proteasomes enzyme, and allowing it to pass to the Golgi 395 

apparatus for glycosylation and further stops the transport to premelanosomes (Halaban, 2002; 396 

Halaban et al., 2002a; Halaban et al., 2002b; Kushimoto et al., 2003; Toyofuku et al., 2001a; 397 
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Toyofuku et al., 2001b). Similarly, in oculocutaneous albinism type 3 (OCA3), the TYRP1 398 

mutated is retained within ER and the process of normal TYR is terminated leading to 399 

proteasomal degradation and reduces pigmentation (Kushimoto et al., 2003; Toyofuku et al., 400 

2001a; Toyofuku et al., 2001b). In case of oculocutaneous albinism type 2 (OCA2) and type 4 401 

(OCA4), the TYR from trans-Golgi network (TGN) to melanosomes is disrupted (Chen et al., 402 

2002; Toyofuku et al., 2002; Costin et al., 2003; Kushimoto et al., 2003). The experimental 403 

evidence suggested in various melanocytes, showed that ER is an essential step for TYR 404 

maturation, targeting melanosomes, and is an important step in the production of melanin 405 

pigment (Halaban, 2000; Halaban, 2002; Halaban et al., 2002a; Halaban et al., 2002b; Halaban 406 

et al., 1997; Halaban et al., 2000). Thus, the defects underlying OCA1 via OCA4 showed 407 

melanogenic activity in-vivo, depends on the posttranslational pathways, of which the most 408 

important is the processing of TYR. In fact, the levels of TYR mRNA were found to be similar 409 

in both European and African individuals in cultured melanocytes (Iozumi et al., 1993), and 410 

also shows that TYR gene expression finds to be same among different human groups (Iwata 411 

et al., 1990; Fuller et al., 2001). On the other hand, dysregulation of the TYR melanogenic 412 

activity can be due to the lack of melanosomes, resulting in the accumulation of enzyme or 413 

blockade in the translocation from TGN to melanosomes (Bomirski et al., 1988; Slominski, 414 

1988; Slominski et al., 1989), in the presence of intracellular TYR inhibitors or protein kinase-415 

dependent phosphorylation (Wong and Pawelek, 1975; Korner and Pawelek, 1977; Kameyama 416 

et al., 1989; Park and Gilchrest, 1999; Slominski et al., 2004). 417 

A plethora of studies suggests that UVR modulates the expression of TYR. The 418 

transcription factor MITF acts as a primary regulator of melanogenesis-related gene expression 419 

(MRGE) (Fuller et al., 1990), which subsequently regulates the mRNA levels of TYR and/or 420 

MITF in cultured melanoma (Lin et al., 2002; Ando et al., 2007). Therefore, increase in the 421 

glycosylation of TYR enzyme in the ER helps to inhibit the folding and maturation of melanin, 422 
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resulting in pigmentation (Imokawa, 1989). Thus, proteostasis of TYR is governed by the ER-423 

associated protein degradation (ERAD) regulated by the ubiquitin-proteasome system, E3 424 

ligases Doa10p and Hrd1p have been shown to ubiquitinate TYR, resulting in subsequent 425 

degradation (Hammond and Helenius, 1995; Bordallo et al., 1998). Further, transportation of 426 

TYR into melanosomes for melanogenesis is also dependent on ER. However, mutations in 427 

TYR result in TYR sequestration in ER and binds to ER-chaperones, calnexin, and calreticulin 428 

(Toyofuku et al., 2001a; Toyofuku et al., 2001b). This accumulated TYR is degraded through 429 

ERAD and thus inhibits its function (Smith et al., 2004). Therefore, ER plays a significant role 430 

in the regulation of TYR. 431 

The pH critically modulates the TYR activity, and acidic pH is appropriate for its 432 

optimal tyrosine hydroxylase activity (Bhatnagar et al., 1993). The early melanosomes contain 433 

an acidic environment (Moellman et al., 1988; Raposo et al., 2001), where pH increases as the 434 

melanosomes mature, creating an optimal environment for TYR activity (Tucker and 435 

Goldstein, 2003). The incidence of melanoma is intensively increasing in Western countries 436 

(Fuller et al., 2001). In the Caucasian population, TYR activity for the synthesis of melanin is 437 

relatively less when compared with the darker skin-coloured population, even though the level 438 

of TYR mRNA and the enzyme are in abundance (Giebel et al., 1991), and the gene sequence 439 

were reported similar in both black as well as Caucasian population (Tachibana et al., 1996; 440 

Spritz et al., 1991). Also, the pH of melanosome and activity of TYR is controlled by the 441 

expression of vacuolar ATPase (v-ATPase) (Giebel et al., 1991; Ito and Wakamatsu, 2003). In 442 

the Caucasian population, higher expression of v-ATPase resulted in increased H+ levels and 443 

produces an acidic environment in melanosomes. Conversely, in the African population, the 444 

expression of v-ATPase is low and hence requires to maintain acidic pH. Further, the melanin 445 

content in black skin is six times higher when compared to the white skin, particularly the 446 

levels of eumelanin (Kollias et al., 1991), whereas it was not so true in the case of pheomelanin 447 
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(Brenner and Hearing, 2008). In the black skin population, the melanosomes exist in single 448 

forms and works efficiently in the keratinocytes. In contrast, white skin forms clusters and 449 

translate as complex and work less efficiently (Pillaiyar et al., 2018). Together, these distinct 450 

mechanisms result in lower melanin production, which increases the risk and incidence of 451 

melanoma in Caucasians population. Therefore, it is apparent that the function of TYR is 452 

influenced by its substrates, cofactors, and cellular environmental factors. Also, the oxidation 453 

mechanism by the two Cu atoms present in the active site has been shown to influence the 454 

functions of TYR. 455 

1.5. Role of POMC Expression in Skin 456 

MSH was the first POMC peptide detected in the skin (Thody et al., 1983). Skin 457 

expresses the POMC gene and produces adrenocorticotropic hormone (ACTH) and ꞵ-458 

endorphin (Slominski et al., 1993; Slominski and Mihm, 1996; Wintzen and Gilchrest, 1996; 459 

Luger et al., 1998; Slominski and Pawelek, 1998). The POMC gene transcription and 460 

translation in the mammalian skin was originally observed in C57BL/6 mice (Slominski et al., 461 

1991; Slominski et al., 1992). Subsequently, POMC gene expression has been found in human 462 

skin, as well as in cutaneous cell culture systems (Slominski, 1991; Slominski, et al., 1991; 463 

Slominski, et al., 1992; Farooqui et al., 1993; Schauer et al., 1994; Chakraborty et al., 1995; 464 

Kippenberger et al., 1995; Slominski, et al., 1995; Slominski, et al., 1996; Chakraborty et al., 465 

1996; Ermak and Slominski, 1997; Nagahama et al., 1998; Slominski, 1998; Slominski, et al., 466 

1999; Slominski et al., 2000). 467 

1.6. Role of corticotropin releasing hormone (CRH) in the epidermis 468 

CRH has an important role in regulating the protective and homeostatic functions of 469 

the skin (Slominski et al., 2001; Slominski et al., 2013), where the synthesis of DNA occurs in 470 

the epidermal and dermal compartments, showing proliferation of cells in the keratinocytes 471 

(Slominski et al., 1999). Thus, stimulation of DNA synthesis is mainly achieved by adding 472 
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CRH to the telogen and anagen IV, in the keratinocytes (Slominski et al., 1999). However, in 473 

anagen II, the CRH has a opposite effect towards DNA synthesis, which showed to enhance 474 

the dermal DNA synthesis (Slominski et al., 1999). These reports suggest that CRH plays an 475 

important role in the proliferation of epidermal keratinocyte. Further, the exogenous CRH 476 

showed activity on the cellular levels targeting epidermal cycle dependent expression of CRH-477 

related receptors. In order to determine the various contributing factors involving the 478 

exogenous CRH, which also includes endogenous production of CRH and CRH activated 479 

production of ACTH and MSH. It is well established that CRH at the systemic level regulates 480 

corticosterone (Nicolaides et al., 2015). Further, reports suggested that increased levels of CRH 481 

substantially increases the levels of corticosterone by stimulating the hypothalamic pituitary 482 

adrenal (HPA) axis (Wilson et al., 1998). Further, increased levels of glucocorticosteroid 483 

clearly showed to possess an anagen-inhibitory effect on CRH implants (Paus et al., 1994; 484 

Paus, 1996; Paus et al., 1999; Slominski et al., 2000). 485 

1.7. Skin as a Target for POMC Peptides 486 

The studies on the POMC knock-out mice model showed that surprisingly, these 487 

animals survived till the adulthood (Yawsen et al., 1999). This genotype led to the adrenal 488 

insufficiency, and leads to defects in melanin pigmentation (Yawsen et al., 1999). This is 489 

similar to patients with pituitary POMC gene mutations, which generates allelic forms with 490 

defective production of POMC protein (Hinney et al., 1998; Krude et al., 1998). Thus, the 491 

affected individuals possess red hair pigmentation, and shows adrenal insufficiency. There is a 492 

clinical report on excess POMC peptide syndromes that confirms skin as a potential target for 493 

POMC-derived peptides (Lerner and Mcguire, 1961; Moellmann et al., 1988; Lerner, 1993; 494 

Pawelek, et al., 1992; Pawelek, 1993; Slominski et al., 1993; Siegrist and Eberle, 1995; 495 

Wintzen and Gilchrest, 1996; Jordan and Jackson, 1998; Luger et al., 1998; Luger et al., 1999). 496 

For example, humans with pathologically increased levels of plasma ACTH levels in case of 497 



20 
 

Addison disease or excessive ACTH production by tumors in case of Nelson syndrome, 498 

showed hyperpigmentation and skin atrophy (Eberle, 1988), whereas administration of MSH 499 

or ACTH peptides showed in the stimulation of melanogenesis (Lerner, 1993; Lerner et al., 500 

1961). Also, continuous administration of ACTH in humans causes acne, skin atrophy, 501 

hyperpigmentation, and hypertrichosis (Eberle, 1988). Thus, elevated levels of α-MSH in the 502 

serum concentrations are directly associated with skin pigmentation (Pears et al., 1992). 503 

Additional research performed on human and animal models, showed that immune, epidermal, 504 

adnexal, vascular, and dermal structures possessed additional targets for POMC peptides 505 

(Slominski et al., 2000). However, the effect of POMC on melanin pigmentation is conditional 506 

on functional agouti protein, since knocking of POMC gene in C57BL/6 mice, does not affect 507 

melanin production (Slominski et al., 2005). 508 

1.8. Effects of CRH in malignant melanocytes  509 

The CRH has a direct effect on melanocytes, where a study on hamster melanoma cell 510 

line, showed further insight into the mechanism of CRH action in the skin (Fazal et al., 1998; 511 

Slominski et al., 1999, 2000). Skin cells express corticotropin releasing hormone receptor 1 512 

(CRH-R1) gene, where in case of melanoma, the CRH-R1 mRNA transcription was 2.5 kb 513 

long, being 0.2 kb shorter than that detected in normal skin cells (Slominski et al., 1999). 514 

Melanocytes and melanoma cells express G protein-coupled CRH-R1, which responds to CRH 515 

and acts mainly by activation of cAMP, IP3, and other mediated pathways and also acts by 516 

activating the Ca+ signalling to modify the melanocyte phenotype (Slominski et al., 2001; 517 

Slominski et al., 2006a; Slominski et al., 2006b). In normal and immortalized melanocytes, 518 

CRH inhibits the cell proliferation in serum-containing medium, inhibits early and late 519 

apoptosis in serum free media (Slominski et al., 2006a). Concerning melanoma cells, the effect 520 

was found to be heterogenous depending on the cells (Slominski et al., 2006a; Carlson et al., 521 

2001). The variability in CRH action in the melanoma cells could be explained by co-522 
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expression of alternatively spliced CRH-R1 isoforms on the same cells that helps to modify the 523 

action of the CRH-R1α isoform (Slominski et al., 2001; Slominski et al., 2006b). Of 524 

significance, antimelanoma effect for selective CRH-R1 agonists has already been observed in 525 

in-vivo experimental models of melanoma (Carlson et al., 2001). Accordingly, selective 526 

targeting of CRH-R1 has been proposed for the treatment of malignant tumors that also include 527 

melanoma (Patent No: WO0153777).  528 

1.9. Pharmacological approaches modulating TYR activity 529 

A wide number of compounds from medicinal plants have been reported to inhibit 530 

melanogenesis by modulating the glycosylation of TYR enzyme (Imokawa and Mishima, 531 

1982; Imokawa, 1989; Mineko et al., 1992; Petrescu et al., 1997; Pillaiyar et al., 2017). 532 

Selective approaches targeting TYR expression, degradation, and maturation are emerging as 533 

promising leads, including inhibition of TYR enzyme mRNA transcription (Table 1), 534 

abnormal maturation, acceleration of enzyme degradation, and direct modulation of catalytic 535 

activity. The TYR activity modulators were reported to treat hyper- and hypo-pigmentary skin 536 

disorders (Pillaiyar et al., 2017). These TYR enzyme inhibitors are commonly used in 537 

commercial cosmetics, mainly as a skin whitening agent (Pillaiyar et al., 2017). These 538 

medicinal plants and their phytochemicals showing inhibitory and stimulatory effect on TYR 539 

are shown in Tables 2 and Table 3.  540 

Conversely, many inhibitors targeting TYR have been reported to exhibit lesser adverse 541 

effects (Burnett et al., 2010). Intriguingly, it has been revealed that some of the glycosylation 542 

inhibitors, glucosamine, and tunicamycin, do not affect TYR expression, but inhibit the 543 

synthesis of melanin (Swanson et al., 2001). Together, diverse research approaches are 544 

warranted since the conventional methods of TYR enzyme modulators have challenged its 545 

effects in melanoma therapy. Consequently, the current discoveries in melanoma therapy are 546 
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advancing by embracing technology, including nanotechnology-assisted targeted delivery 547 

(Swanson et al., 2001).  548 

1.9.1. POMC gene expression and peptides production in C57BL/6 Mice  549 

POMC is regulated by CRH signal that affects the function of melanocytes and 550 

melanoma cells (Slominski et al., 2013). Furthermore, the role of POMC-derived peptides in 551 

the regulation of melanogenesis is well illustrated in POMC knock out C57BL/6 mice model. 552 

The results showed that the POMC transcription of C57BL/6 mice skin is 0.9 kb long, and the 553 

POMC protein, detected with an anti-ꞵ-endorphin antibody, which has a molecular mass of 554 

30–33 kDa (Slominski et al., 1992). This form of POMC mRNA has been observed in the 555 

epidermis and epidermal Thy-11 dendritic cells in C57BL/6 mice skin (Farooqui et al., 1993; 556 

Farooqui et al., 1995; Slominski et al., 2000). Slominski, demonstrated the effect on non-agouti 557 

C57BL/6 mice, which are POMC deficient, where the skin types are negative for mRNA, 558 

whereas the melanin pigmentation are similar to that of the control C57BL/6 POMC+/+ and 559 

wild-type C57BL/6 mice. Therefore, C57BL/6 POMC -/- mice produces eumelanin hair 560 

pigmentation, in absence of local and systemic αMSH or ACTH ligands (Slominski et al., 561 

2005). Various others studies showed that αMSH and ACTH could regulate melanin 562 

pigmentation in rodents and humans (Nordlund et al., 1988; Lerner, 1993; Slominski et al., 563 

2000). These effects of melanocortin peptide are mediated by signal cascades that includes 564 

their binding to G protein-coupled MC1-R, activation of cAMP-dependent pathways, and 565 

stimulation or induction of eumelanogenesis (Nordlund et al., 1988; Slominski et al., 2000; 566 

Busca and Ballotti, 2000). The eumelanogenic pathway is altered by agouti protein (AGP), via 567 

both functional antagonist of melanocortins and inverse agonist, which inhibits the expression 568 

and activity of melanogenesis-related proteins, melanogenic enzymes, and MC1-R, and 569 

thereby acts as a switch between eu- to pheomelanogenesis (Hearing, 1999; Barsh, et al., 2000; 570 

Wolff, 2003; Rouzaud et al., 2003). Also, note that the switch between pheo- to 571 
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eumelanogenesis in normal agouti is a discontinuous process, usually produced at low levels 572 

of TYR activity (Oyehaug et al., 2002). 573 

A recent report proposed on the role of p53, a key regulator agent for pigmentary 574 

responses in tanning and pigmentation (Cui et al., 2007). Cui et al., proposed on the UV 575 

induction of POMC including α-MSH and ꞵ-endorphin, which is directly controlled by p53, 576 

and proposed that tanning from UVR is started by the activation of p53-mediated POMC 577 

promoter (Cui et al., 2007). As illustrated in Figure 2, UV-induced DNA damage stabilizes the 578 

tumor suppressor protein p53. However, this hypothesis is questionable since POMC knockout 579 

C57BL/6 mice (the same strain used by Cui et al.,) possessed normal capability of melanin 580 

pigment production (Slominski et al., 2004; Slominski et al., 2005a). This obtained result 581 

decreases the strength of Cui’s concept and also questions the validity of the proposed suntan 582 

response and pathological hyperpigmentation (i.e., UV - p53 - POMC - melanin pigmentation). 583 

Later, Slominski and their co-workers have published evidence to support the hypothesis that 584 

it may not be POMC and its products, but rather the MC1-R that could be the key regulator of 585 

pigmentation reported in mice (Slominski et al., 2007). On this background, we consider it 586 

more likely that p53 acts as one important coordinator, but not the main or sole regulator of 587 

pigmentation in the suntan response and pathological hyperpigmentation. 588 

In case of the absence of POMC, it did not result in any changes in the melanogenesis, 589 

when compared with the C57BL/6 mice measured using electron paramagnetic resonance 590 

(EPR) spectroscopy, as well as morphologic and histological examinations. It is noted that the 591 

eumelanogenic phenotype in C57BL/6 POMC-/- mice expresses MC1-R. Mutations in the 592 

MC1R gene leads to fair skin in humans, which is also seen with inactivating human POMC 593 

gene mutations. MC1R mutant receptor expression showed changes in the receptor activity, 594 

which is also listed as one of the etiologic factors responsible for an increased incidence of 595 

melanoma (Han et al., 2006; Rees, 2004). Therefore, these collated findings concluded that the 596 
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overwhelming dominance of POMC-derived peptides in the stimulation of melanogenesis, skin 597 

and hair pigmentation are complex in polygenic traits (Slominski et al., 2004). 598 

1.9.2. In-vitro and clinical reports on melanogenesis  599 

Slominski et al., reported on different methods to inhibit melanogenesis and showed 600 

immunosuppressive and mutagenic effect, which could alter the cellular metabolism. Melanin 601 

helps to protect against malignant melanocytes via chemo, radio, and photodynamic therapy 602 

and proposed to inhibit melanogenesis and also reduces the probability of melanoma 603 

progression (Slominski et al., 1998).  Slominski et al., have studied its effect in human 604 

melanoma cells (SKMEL-188) by producing melanin pigment using tyrosine levels. The 605 

results showed that the pigmented melanoma cells were significantly less sensitive to 606 

cyclophosphamide and also kills the action of IL-2-activated peripheral blood lymphocytes. 607 

This inhibition of melanogenesis can be achieved either by blocking TYR site or chelating Cu 608 

ions to the cytotoxic action of cyclophosphamide towards melanoma cells, and also activates 609 

the IL-2 in the lymphocytes. The exogenous L-DOPA inhibits the proliferation of lymphocyte 610 

causing cell cycle arrest in G1/0 phase and also inhibits the production of IL-1ꞵ, TNF-α, IL-6 611 

and IL-10, respectively. Thus, the cytotoxic action of cyclophosphamide could not impair the 612 

active melanogenesis, but it also possesses immunosuppressive activity. Therefore, this 613 

resistance to a chemotherapeutic or immunotoxic activity of lymphocytes could be reversed by 614 

TYR inhibitors (Slominski et al., 2009). In another study by Slominski et al., showed to inhibit 615 

the behaviour of melanogenesis in regulation with melanoma by altering the expression of HIF-616 

1α and its related pathways. The study was carried out using human (SKMEL-188) and hamster 617 

(AbC1) melanoma cells for their activity using cell culture methods. The results showed to 618 

significantly increase the melanin pigmentation of HIF-1α, in both the cells. In cultured cells, 619 

the result on melanogenesis were significantly stimulated by the expression of HIF-1-620 

dependent target genes that play an important role in angiogenesis and cellular metabolism. 621 
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Therefore, they have concluded that induction of melanogenic pathway could lead to elevated 622 

HIF-1-dependent and independent pathways in cultured melanoma cells, suggesting a key role 623 

for the regulation of cellular metabolism in melanogenesis (Slominski et al., 2014).  624 

Brożyna et al., reported the effects and survival of melanogenesis in patients with stage 625 

III and IV melanoma. The samples were collected from American Joint Committee in 20 626 

patients from stage I, 24 patients from stage II, and 29 patients from stage III cancers and the 627 

results were analysed by Prof Franciszek Łukaszczyk Memorial Hospital, Oncology Centre, 628 

Bydgoszcz, Poland. The results showed that the patients with metastatic disease, and those with 629 

melanomas exhibit significant disease-free survival than those with amelanotic lesions. Thus, 630 

melanogenesis shortens overall survival in patients with metastatic melanoma. Therefore, the 631 

authors concluded that inhibiting the process of melanogenesis appears to be an interesting 632 

approach for the treatment of metastatic melanoma (Brożyna et al., 2013). In another study by 633 

Brożyna et al., studied the activity of melanin content in metastases melanoma and its effect in 634 

radiotherapy using cohort study with two melanoma patients that were diagnosed and treated 635 

at the Oncology Centre in Bydgoszcz, Poland. The study results showed significant decrease 636 

in the melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and pT2 tumors, 637 

respectively. However, melanin levels were measured in pT3-pT4 melanomas developing 638 

metastases stage (pN1-3, pM1) were found to be higher in pN0 and pM0 cases. Therefore, the 639 

results concluded that the presence of melanin in metastatic melanoma cells decreases the 640 

outcome of radiotherapy, and melanin synthesis that is related to higher disease advancement 641 

(Brożyna et al., 2016). Based on our cell-based and clinical research and present research we 642 

also suggest that inhibition of melanogenesis can improve radiotherapy modalities. 643 

1.10. Discussion and Conclusion 644 

Progress in the treatment of melanoma begins with identifying a specific target involved 645 

in the melanoma pathogenesis, and one such interesting target is by altering the TYR enzyme 646 
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(Hodi et al., 2010). The use of pro-drugs could also be a newer and interesting approach in the 647 

treatment of melanoma, but it tends to form toxic metabolites and thus requires alternative 648 

therapy (Rooseboom et al., 2004; Gasowska-Bajger and Wojtasek, 2008; Jawaid et al., 2009). 649 

Therefore, given that TYR reported to have a pivotal activity as a natural photo-protection of 650 

the skin, where several intrinsic and extrinsic factors that could influence its function, and it is 651 

also critical to understand the precise mechanisms of onset and progression of melanoma. 652 

While the etiological aspect is still unclear, were still it is believed that the DNA damage in the 653 

melanocyte is the leading cause of melanocyte's transformation and progression to melanoma.  654 

The UVR from sun is one of the primary ecological reasons in the development of 655 

melanoma, which proliferates due to UVR -induced DNA mutations that occur in skin. The 656 

UV plays an important role in the brain and central neuroendocrine system in order to reset 657 

body homeostasis (Slominski et al., 2018; Skobowiat et al., 2011). Also, Slominski and their 658 

co-workers stated that melanoma can affect some central neuroendocrine axes and how cancer 659 

hijacks the body’s homeostasis through the neuroendocrine system (Slominski et al., 2023). 660 

The epidermal melanocytes, are pigment producing cells of neural crest origin that 661 

communicates with multiple targets. Therefore, alterations in the epidermal melanocytes can 662 

affect the cutaneous functions (Slominski et al., 1993). Therefore, this leads to the activation 663 

of POMC and release of MSH from the keratinocytes, and increases the cAMP levels, which 664 

further activates the MITF transcription (Cui et al., 2007; Garibyan and Fisher, 2010). This 665 

results in the synthesis of melanin from TYR and protects from DNA damage. In keratinocytes, 666 

exposure of UVR activates NOS type 1, which leads to increased nitric oxide and TYR levels 667 

and subsequent acceleration of melanogenesis and also elevates the cofactors such as NADPH 668 

and 6-BH4 (Roméro-Graillet et al., 1997). Later on, Cannon-Albright et al., reported that 669 

exposure to UVR in patient with "9p-linked" gene were altered, which further gives us hint that 670 

mutations may also occur due to hereditary reason. The most commonly identified mutations 671 
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in melanoma are CDKN2A and CDK4, where mutations in the CDKN2A gene results in a 672 

defective p14 and p16, which is stabilized by p53 (Mehnert and Kluger, 2012). Davis et al., 673 

reported that mutations in the NER pathway could develop the risk of melanoma and showed 674 

that NER pathways increase the UVR-induced unrepaired DNA damage (Davis et al., 2019). 675 

There are other signalling pathways such as BRAF, NRAS, NF1, PTEN, TP53, TERT, ARID2 676 

and MAPK, which also showed in altering these genes that are associated with melanoma.  677 

TYR is a rate-limiting step in the melanin production, where it catalyses L-tyrosine to 678 

L-DOPA. Thus, it could be targeted to inhibit the irregular melanin synthesis and the 679 

pathogenesis of melanoma (Buitrago et al., 2016; Pillaiyar et al., 2017; Van Staden et al., 2021). 680 

Slominski et al., reported that both L-tyrosine and L-DOPA, serves as an intermediate for 681 

melanogenesis, and acts as bioregulatory agents that helps to regulate the cellular functions 682 

(Slominski and Paus, 1990; Slominski et al., 2012). The TYR catalyses via three distinct 683 

melanogenic pathways i.e., hydroxylation of L-tyrosine, dehydrogenation of L-DOPA, and 684 

dehydrogenation of DHI, which involves exchange of electrons with copper atoms that 685 

generates orthoquinone and water as final products (Slominski et al., 2004). The TYR is 686 

expressed in two forms of protein TYRP1 and TYRP2. Defects in the TYR gene leads to a 687 

condition called negative oculocutaneous albinism type 1 (OCA1) (Tomita et al., 1989; Takeda 688 

et al., 1990; Oetting and King, 1999). Thus, in oculocutaneous albinism type 3 (OCA3), the 689 

TYRP1 is mutated within the ER and the normal processing of TYR is terminated leading to 690 

proteasomal degradation and thus reduces pigmentation (Kushimoto et al., 2003; Toyofuku et 691 

al., 2001a; Toyofuku et al., 2001b). In case of oculocutaneous albinism type 2 (OCA2) and 692 

type 4 (OCA4), the TYR from trans-Golgi Network (TGN) to melanosomes is disrupted (Chen 693 

et al., 2002; Toyofuku et al., 2002; Costin et al., 2003; Kushimoto et al., 2003). Therefore, the 694 

experimental evidence in melanocytes targeting melanosomes, shows that ER is an essential 695 

step for TYR maturation, which is important in the production of melanin pigments (Halaban, 696 
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2000; Halaban, 2002; Halaban et al., 2002a; Halaban et al., 2002b; Halaban et al., 1997; 697 

Halaban et al., 2000). Thus, defects in OCA1 via OCA4 shows melanogenic activity in-vivo, 698 

via posttranslational pathways, which is an important step in the processing of TYR. The MITF 699 

transcription factor regulates the MRGE expression in cultured melanoma, and showed to 700 

increase the glycosylation of TYR in the ER, which results in pigmentation (Imokawa, 1989). 701 

In TYR, the ERAD is regulated by ubiquitin-proteasome system, E3 ligases Doa10p and 702 

Hrd1p, which results in degradation (Hammond and Helenius, 1995; Bordallo et al., 1998). 703 

Thus, mutations in TYR result in TYR sequestration in the ER and is degraded through ERAD 704 

by inhibiting its functions (Smith et al., 2004). Therefore, ER plays a significant role in the 705 

regulation of TYR. Our review collated that various approaches to regulate the abrupt 706 

melanogenesis in melanoma and could modulate the TYR enzyme levels or activity. However, 707 

the clinical safety of TYR modulators in both acute and long-term use is an evolving area of 708 

research focus in the fields of skin cancer therapeutics.  709 

As we discussed, the POMC is regulated by CRH, which affects the functions of 710 

melanocytes and melanoma cells (Slominski et al., 2013). The regulation process by external 711 

agents such as α-MSH and its antagonist agouti, are both mediated by the MC1-R at the surface 712 

of the melanocyte. A mathematical model is developed to improve our understanding of 713 

melanogenic switching, i.e., agouti background, which acts as a switch between eumelanin and 714 

pheomelanin production depending on the extracellular signaling context (Oyehaug et al., 715 

2002). 716 

As reviewed, selective findings have provided intriguing leads and that warrant further 717 

research and a clear understanding of the critical roles of TYR in cell signaling pathways 718 

controlling melanogenesis. Delineation of these leads may unravel new therapeutic targets to 719 

treat melanin-related pigmentary disorders and melanoma. Nonetheless, our review collates 720 

that the TYR enzyme exhibits a critical role in paving melanoma's pathogenesis and is a 721 
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potential druggable target to combat melanoma. However, the quest to unravel the clinically 722 

safe TYR modulators remains elusive.  723 
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 1702 

 1703 

 1704 

 1705 

 1706 

 1707 

 Figure Captions 1708 

Fig. 1. Risk factors of melanoma. UV radiation is the major environmental factor affecting 1709 

melanoma. Other risk factors include skin phenotype, number of naevi and chemical pollutants 1710 

like arsenic; Germ-line mutations in genes regulating cell cycle arrest & DNA repair 1711 

mechanism; Somatic mutations in pathways regulating cell proliferation, growth & 1712 

metabolism, and oncogenic signalling. 1713 

Fig. 2. Role of Tyrosinase in melanin synthesis: Conversion of L-tyrosine to L-DOPA is the 1714 

rate-limiting step in melanin synthesis, and this step is catalyzed by the enzyme Tyrosinase. It 1715 

further converts L-DOPAse to DOPA-quinone, which in turn follows a sequence of steps 1716 

catalyzed by Tyrosinase and forms DHI Melanin (Black), DHICA Melanin (Brown). In the 1717 

presence of cysteine or glutathione, DOPA-quinone is sequentially converted to Pheomelanin 1718 

https://doi.org/10.1186%2Fs13020-018-0206-9
https://doi.org/10.1038/ng0196-97
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(Yellow to Red) which is independent of Tyrosinase. The region highlighted in orange colour 1719 

shows the steps catalysed by Tyrosinase. 1720 

 1721 

 1722 
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 1727 

 1728 

 1729 

Table Captions 1730 

Table 1. List of components inhibiting the TYR expression level. 1731 

Table 2. List of reported phytochemicals showing Tyrosinase inhibitory activity with their IC50 1732 

values. 1733 

Table 3. List of reported medicinal plant’s showing Tyrosinase inhibitory activity with their 1734 

IC50 values. 1735 
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