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Abstract 

This paper presents a set of novel refined schemes to enhance the accuracy and stability of the 

Updated Lagrangian SPH (ULSPH) for structural modelling. The original ULSPH structure 

model was first proposed by Gray et al. [1] and has been utilised for a wide range of structural 

analyses including metal, soil, rubber, ice etc., although the model often faces several drawbacks 

including unphysical numerical damping, high-frequency noise in reproduced stress fields, 

presence of several artificial terms requiring ad-hoc tunings and numerical instability in presence 

of tensile stresses. In these regards, this study presents a set of enhanced schemes corresponding 

to (1) consistency correction on discretisation schemes for differential operators, (2) a numerical 

diffusive term incorporated in the continuity or the density rate equation, (3) tuning-free 

stabilising term based on Riemann solution, and (4) careful control/switch of stress divergence 

differential operator model under tensile stresses. Qualitative/quantitative validations are 

conducted through several well-known benchmark tests. 
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1. Introduction 

Particle methods are potentially robust computational methods that have been drawing 

great interest these days. Particle methods have Lagrangian and meshfree features that 

lead to advantages in simulating problems characterised by highly deformed interfaces 

including free surfaces, large material deformations or fractures often appearing in a 

variety of engineering fields, as summarised in some review papers [2-5]. Smoothed 

Particle Hydrodynamics (SPH) is one of the most famous particle methods, which was 

originally proposed for astrophysical applications by Gingold and Monaghan [6] and 

Lucy [7]. Since its proposal, the SPH has been applied to various engineering fields 

including fluid mechanics and structural analysis. 

Due to its Lagrangian meshfree nature, the SPH method has been often adopted 

for simulations of free surface fluid flows. The first application of SPH towards free 

surface fluid flows was conducted by Monaghan [8] with Weakly Compressible SPH 

(WCSPH) method [9] along with stabilization by an Artificial Viscosity (AV) term [10]. 

For reliable simulations, continuous efforts have been devoted to enhancement of stability 

and accuracy of SPH for fluid modelling. Specifically, the δ-SPH method [11, 12] is one 

of the most popular and effective enhanced schemes in the WCSPH framework. This 

scheme can result in effective suppression of high frequency acoustic noise and reliable 

reproduction of smooth pressure field through incorporation of a numerical density 

diffusion term (δ-term) in the continuity equation. The other branch of improved WCSPH 

fluid model is the incorporation of Riemann solution in the WCSPH context, resulting in 

the Riemann SPH method [13, 14]. The Riemann SPH improves accuracy and stability 

of WCSPH by providing theoretically minimum required dissipation on the system based 

on the solution of Riemann problem. 
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In general, SPH fluid models experience a so-called tensile instability. Indeed, in 

fluid models where the stress tensor is isotropic and the pressure is a function of density, 

i.e., those that incorporate a polytropic equation of state, the Hessian operator in 

continuum level fails to satisfy the stability condition in the presence of tension [15]. In 

addition, in discrete level, utilisation of an Eulerian kernel with respect to current 

configuration for the estimation of kinematics of Lagrangian moving particles would also 

trigger instabilities in tension [16]. Moreover, the Lagrangian nature of particle motions 

would likely form anisotropic irregular particle distributions. A lot of efforts have been 

devoted to tackling these challenges and a number of enhanced schemes have been 

proposed, including an Artificial Stress (AS) term [17], a Tensile Instability Control (TIC) 

scheme for fluids [18], the so-called XSPH [19] and the particle shifting scheme [20]. As 

a result, the δ-SPH and the Riemann SPH fluid models together with enhanced schemes 

have been successfully applied to a wide range of hydrodynamic problems accompanied 

by free surfaces (e.g., [21, 22]). 

Another important category of SPH applications corresponds to structural 

analyses. The advantage of SPH method in handling complex boundary conditions has 

been proven to be effective towards modelling of complex shaped structures and their 

deformations (e.g., [23-25]). Considering the application of SPH to large deformations 

including topological changes and material fracture, the Updated Lagrangian SPH 

(ULSPH) formulation, would be justifiable, resulting in the so-called ULSPH structure 

models (e.g., [26]). 

Regarding the ULSPH structure model developments, the model by Gray et al. 

[1] is the one of the most widely adopted models as found in the literature (e.g. [27-34]). 

Their model is configured in the Updated Lagrangian framework with incorporation of 

numerical stabilisers including XSPH, artificial viscosity, and artificial stress terms. 
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Although this model has been shown to provide relatively fine results in a wide range of 

applications [27-34] and has been directly adopted in several recent works [29, 31-33], 

there are several serious issues that require careful enhancements. These issues include 

pseudo unphysical decrease of material stiffness or increase of damping [35], inclusion 

of several tuning parameters in incorporated artificial stabilisers [35], and amplification 

of spurious high-frequency noise in stress field due to the rank deficiency [36, 37] and 

the explicit solution process of the stress tensor. 

With regard to the artificial stabilisers in the ULSPH framework, their 

incorporation is mainly linked with rank deficiency [36, 37] due to the collocated nature 

of SPH approximations (as field variables and their derivatives are calculated at the same 

calculation points) as well as the so-called tensile instability [15, 16] or more precisely 

unphysical modes in tensile stress states due to growth of small-scale perturbations in 

particle motions. To be more specific, an artificial viscous term is often applied to 

stabilise the momentum equation and an artificial stress term is utilised to minimise the 

presence of unphysical modes in tensile stress states. With regard to the unphysical modes 

in tensile stress states, the instability may arise at the continuum level where a hypoelastic 

model is used for moderate or large strains or for problems that include physical 

instabilities. Even if the hypoelastic model is stable within the considered range of strains, 

from the SPH discretisation standpoint, the use of an Eulerian kernel function at the 

current nodal positions may trigger tensile instabilities. This is because the discretisation 

of tangent stiffness matrix depends on the current nodal positions which may potentially 

lead to negative eigenvalues [15, 38]. The so-called TLSPH (Total Lagrangian SPH) [39, 

40] or Updated Reference Lagrangian SPH [41, 42] for structural modelling are free from 

tensile instability because the kernel and its derivative remain constant with respect to a 

constant reference configuration. 
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Apart from the issue of artificial stabilisers, the ULSPH model of Gray et al. [1] 

faces two more challenges corresponding to incompleteness of approximations [43, 44] 

and pressure instability due to an explicit solution of an equation of state from 

approximated densities at discrete calculation points. Hence, enhanced schemes can be 

proposed with respect to 1) incompleteness, 2) pressure instability, 3) rank deficiency, 4) 

unphysical modes in tensile stress states or tensile instability. 

Regarding the issue of incompleteness, consistency related corrections [43, 44] 

can be effectively utilised to improve the completeness or the reproducibility of kernel-

based approximations of the gradient operator models. As for the issue of pressure 

instability, conservative diffusive terms can be incorporated in the continuity or the 

density rate equation to enhance the continuity and smoothness of the density and thus, 

the pressure field. In this regard, incorporation of the δ-SPH scheme [11, 12], which is a 

second-order accurate scheme in space, is considered as a proper choice. 

As for the issue of rank deficiency, a relevant approach corresponds to the 

incorporation of stress points [45]. This approach can stabilise the simulations by 

incorporating a set of additional computational points referred to as stress points so that 

field variables and their derivatives will be calculated at separate computational points 

resulting in staggered integrations rather than collocated ones. However, this approach 

leads to a complex coding process and increase of computational cost. In addition, 

calculation of optimum positions of stress points, especially in case of complex structural 

geometries, would bring an additional challenge. Another approach corresponds to 

inclusion of a supplementary set of conservation laws for geometric strain measures along 

with appropriate involutions [41, 46-48]. This approach provides notably accurate, stable, 

and efficient results, however, along with an increased level of complexity in coding and 

implementation. In order to deal with the issue of rank deficiency in a simple yet effective 
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manner, a possible approach is to replace the artificial viscosity term by a Riemann-based 

diffusive term in the momentum equation, in a manner consistent with the δ-term in the 

density rate equation, as the δ-term can be closely linked to a Riemann-term. Accordingly, 

the new Riemann-based stabilisation term would be free of tuning parameters and 

effectively stabilise the discretised momentum equation. 

As for the challenge corresponding to unphysical modes in tensile stress states, 

the artificial stress term proposed by Gray et al. [1] was set through adding tuning-

required repulsive interparticle forces if the principal stresses were tensile. Instead of 

using tuning-required artificial stresses, we may simply incorporate a tensile instability 

control or a switch analogous to that incorporated in the context of SPH for fluids referred 

to as TIC (Tensile Instability Control) [18]. In such a case, in evaluation of divergence of 

stress tensor, for tensile principal stresses, instead of use of an antisymmetric and 

momentum conservative scheme, we utilise a Taylor-series consistent scheme to recover 

the reproducibility, attaining a more accurate approximation of kinematics (accelerations) 

and thus, minimising the unphysical perturbations prone to be induced and intensified in 

tensile stress states. 

This study aims at showing step-by-step enhancements of stability and accuracy 

for the ULSPH structure model by focusing on the aspects of i) incompleteness, ii) 

pressure instability, iii) rank deficiency, and iv) tensile instability. Accordingly, four 

enhanced schemes are proposed for the ULSPH structure model: (1) incorporation of a 

corrective matrix in discretisations related to divergence of velocity and stress, as well as 

velocity gradient tensor, (2) a second-order numerical diffusive term (d-term) 

incorporated in the continuity or the density rate equation for stabilisation of pressure 

field, (3) a tuning-free second-order Riemann term (in place of the tuning-required 

artificial viscosity scheme) for stabilisation of the discretised momentum equation, and 
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(4) a tensile instability control scheme (in place of the tuning-required artificial stress 

term) to mitigate the issue of tensile instability. The accuracy and robustness of the 

proposed schemes are investigated and validated by reproducing some benchmark tests, 

namely dynamic response of a free oscillating cantilever plate [1], high speed rotation of 

an elastic square plate [49], wave propagation in a homogeneous elastic cable [50], 

collision of two homogeneous elastic rings [1], elastic wave propagation in heterogeneous 

cable [27, 51, 52] and collision of two composite elastic rings. 

 

2. Numerical method 

2.1. Principal equations for the Structure Model  

The principal equations of the structure model correspond to the continuity and Cauchy’s 

equations [1], which are described as: 

  (1) 

  (2) 

where u denotes velocity vector, ρ signifies density, t represents time and σ implies the 

Cauchy’s stress tensor; the operator  represents the gradient evaluated at the current 

configuration. Note that in Eq. (2) the body force in the linear momentum equation has 

been neglected due to the absence of body force in all the benchmark tests performed in 

this paper. 

In the ULSPH structure model, the stress tensor 𝝈	is decomposed into spherical 

and deviatoric parts, i.e.: 
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D
Dt
r r u

1
= Ñ×

D
Dt ρ
u σ

Ñ



8 
 

  (3) 

  (4) 

where p represents the pressure (the spherical part of the stress tensor), S denotes the 

deviatoric part of the stress tensor, ε signifies the strain tensor, I denotes the unit tensor, 

λ and μ indicate the Lame’s constants. 

The pressure can be linked to the density through the EOS (Equation of State), 

which can be written as: 

  (5) 

where c0 is speed of sound, ρ0 denotes the reference density and K represents the bulk 

modulus. Density is evolved in time through application of the continuity equation (Eq. 

1). 

The deviatoric part of the stress tensor would be updated in time as an incremental 

form of the presented Hooke’s law with the use of Jaumann stress rate, i.e., 

  (6) 

  (7) 

where  is the strain rate tensor and  signifies the spin tensor; the superscript T stands 

for the transpose of a tensor. 
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2.2. Updated Lagrangian SPH (ULSPH) Structure Model  

The principal equations presented in section 2.1 are discretised and solved based on the 

Updated Lagrangian SPH (ULSPH) framework. The ULSPH structure model was 

originally developed by Gray et al. [1]. The governing equations are discretised as 

follows: 

  (8) 

  (9) 

  (10) 

where ; V and m respectively signify volume and mass;  is the 

transport/advection velocity; the subscripts i and j respectively represent a target particle 

i and its typical neighbouring particle j. The Cauchy’s stress tensor is obtained from 

summation of pressure and deviatoric stress tensors as shown in Eq. (3). 

For the kernel function w, a fifth-order C2 Wendland kernel is adopted [53]: 

  (11) 

  (12) 
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where rij = rj - ri ; h stands for the smoothing length (in the whole computational domain, 

a constant smoothing length of h = 1.2 d0 is considered in this study: d0 = particle diameter 

or initial particle spacing). 

 For calculation of the Cauchy’s stress tensor or the deviatoric part of stress tensor, 

approximation of the velocity gradient tensor is necessary, which is obtained as follows: 

  (13) 

The transport velocity  is obtained from the XSPH scheme [19] to ensure the 

robustness of simulations. 

  (14) 

where  is tuning parameter, which is recommended to be set in the range of [0, 0.5] 

[19]. The transport  becomes equivalent to actual velocity u when . In this 

study,  is used as recommended in [19]. Note that more precise discussion on 

Arbitrary Lagrangian Eulerian (ALE)-based implementation of transport velocity is 

presented in Michel et al. [54], however, in this study for simplicity we do not include 

advected velocity-related terms in the momentum equation similar to Gray et al. [1] and 

Zhang et al. [55] by considering the fact that the effect of transport velocity-related terms 

in momentum equation is negligible in structure analysis [55]. 

In the ULSPH discretised momentum equation [1], for stabilisation of simulations 

with respect to the rank deficiency and the tensile instability, several numerical stabilisers 

including the artificial viscosity ΠAV and the artificial stress Γ are incorporated. The 

artificial viscosity ΠAV is formulated as: 
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  (15) 

(16) 

where αAV is the tuning parameter for artificial viscosity term (αAV = 1.0, in this study) 

and c denotes the speed of sound. 

The artificial stress term  is written as: 

  (17) 

where ε and n are the tuning parameters for artificial stress term, which are set as ε = 0.15 

and n = 8, in this study for the numerical investigations unless otherwise stated. The 

parameter settings on ε and n are known to have large effect on the stability and accuracy, 

and even bring several adverse effects on the obtained results (Antoci et al. [35]), and 

thus a careful tuning process is necessary based on the target phenomena [56]. In addition, 

a serious issue related to the artificial stress term is related to the absence of consistency, 

i.e., this term is not necessarily diminished as the spatial resolution is continually refined. 

Therefore, incorporation of this artificial stress term would likely affect the convergence 

properties of the ULSPH structure model. In Eq. (17), the tensor R is obtained through 

diagonalisation of the Cauchy’s stress tensor [1], i.e., for the 2D case, 
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  (19) 

  (20) 

  (21) 

where superscripts x and y stand for x and y coordinates and superscripts α and β mean x 

or y coordinates. In the diagonalisation process, the symmetric property of the Cauchy’s 

stress tensor ( ) is considered. Indeed, tensor R can be regarded as the transformed 

tensile principal stress tensor and the artificial stress Γ is added to reproduce repulsive 

interparticle forces when the principal stresses are tensile. 

 

2.3. Time Stepping  

For the time stepping scheme, the first-order Euler explicit scheme is adopted in this 

study, i.e., 

  (22) 
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  (25) 

where Δt is the time step size, which is set by the CFL condition: 

  (26) 

where CCFL denotes the Courant number (CCFL = 1.0, in this study). Note that the accuracy 

of time advancement can be enhanced by implementing high-order schemes (e.g. [1]), 

however, in this study, a simple scheme is adopted for the sake of simplicity and to prove 

the applicability of proposed refined schemes even with a simple time integration scheme. 

 

 

 

3. Step-by-step improvement of ULSPH structure model 

 

3.1. Incorporation of a corrective matrix in discretisation schemes  

For enhancement of accuracy and ensuring the first-order completeness of 

approximations, a kernel gradient correction [43] is implemented, i.e., the consistency-

related corrective matrix Li is multiplied onto the gradient of kernel function . This 

correction is applied in discretisations of the velocity and stress divergence, in the 

continuity and linear momentum equations, respectively, as well as the velocity gradient 

tensor in calculation of deviatoric part of the Cauchy’s stress tensor. Accordingly, as the 

first step improvement, Eqs. (8), (9) and (13) corresponding to the original ULSPH [1] 

are modified as follows: 
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  (27) 

  (28) 

  (29) 

Note that in Eq. (28), divergence of stress is discretised with the corrective matrix in a 

similar manner to the TLSPH structure model by Ganzenmüller [57] or Lee et al. [46]. 

That is, before applying kernel correction, we reformulate the divergence of stress as 

  (30) 

and then apply Li and Lj to  and , respectively. In this formulation, the even 

function property of kernel gradient is considered ( ). In addition, when 

the artificial stress term is considered, the kernel correction is adopted in a similar manner 

to that in the stress divergence term, i.e., 

  (31) 
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3.2. Inclusion of a density diffusive term in the density rate equation 

In explicit SPH fluid models, it is common to add a density diffusive term into the 

continuity equation for obtaining a smooth pressure field. This concept was originally 

proposed by Molteni and Colagrossi [58], and then Antuono et al. [11] proposed a refined 

and well-known form of this diffusive term referred to as the δ-SPH scheme. This scheme 

can well suppress the numerical high-frequency noise in the density and thus the pressure 

fields. 

In this study, the structural analyses are conducted with respect to an Updated 

Lagrangian framework including a density rate equation with respect to the continuity 

equation for a continuum. The structure model does not consider an artificial reduction 

of sound speed as commonly adopted in the WCSPH fluid model; however, the pressure 

is obtained explicitly from an EOS as a function of the density field updated in time with 

respect to the density rate equation. Due to this fact, the described ULSPH structure model 

would also suffer from high-frequency acoustic perturbations in the pressure and thus the 

stress fields. To remove such spurious noises, a density diffusive term comprising 

Laplacian and bi-Laplacian operators, and thus being second-order accurate in space, is 

newly incorporated into the continuity or structural density rate equation: 

  (32) 

  (33) 

  (34) 
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  (35) 

where δ is the density diffusive coefficient. The Ωχ signifies the phase that the particle i 

belongs to, which restricts the density diffusion only among the same phases in 

simulations of composite materials, similar to application of the δ-SPH fluid model to 

multiphase phenomena [59]. By incorporating this diffusive term, a smooth pressure field 

and thus an improved stress field are expected to be achieved. Following the name “δ-

SPH”, we name the present structure model as δ-ULSPH structure model. Density 

diffusive coefficient δ is adjusted as δ = 0.002 in this study from our numerical tests 

including the preliminary results presented in [60]. Note that in this study, as shown in 

the above equations, the density diffusive term is effective only on the spherical part of 

stress tensor, and therefore the deviatoric part is still straightforwardly updated by using 

Eqs. (6) and (24) with the Jaumann stress rate formulation. 

 

 

3.3. Replacement of artificial viscosity with a second-order Riemann SPH-based 

diffusive term 

As shown in Eq. (15), the artificial viscosity term requires tuning on the parameter αAV 

(or two parameters αAV and βAV, as shown in [9, 29] for example). Such ad-hoc tuning 

coefficient is preferable to be removed. For this purpose, in this study, a second-order 

Riemann SPH-based diffusive term is newly incorporated into the momentum equation 

in place of the artificial viscosity term. In the context of Riemann SPH, the discontinuity 

interface is defined between particle i and j along with their relative unit vector, as shown 

in Fig. 1(a). Then, the Riemann solution leads to three waves emanating from the 
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discontinuity, as shown in Fig. 1(b). Herein, the quantities of left and right states, L and 

R, are expressed based on the ones at particles i and j, respectively: 

  (36) 

  (37) 

and also the quantities of left and right star regions (intermediate states) are assumed to 

satisfy  and , where  and  are obtained from a 

Riemann solver along with an assumption of  and  [22]. 

In this study, this concept is applied for the structural analyses. 

First, as shown in Eq. (3), the Cauchy’s stress tensor of particle i is described as: 

  (38) 
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Combining Eqs. (38) and (39) and the assumption of , we have, 

  (42) 

Herein, the newly appeared term, i.e., , corresponds to the minimum required diffusion 

for stabilization calculated based on the Riemann solution. If we write this diffusive term 

in a consistent form with the artificial viscosity term, we have: 

  (43) 

In this study, as further enhancement, Eq. (37) corresponding to the linear reconstruction 

of variables is modified with respect to a second-order reconstruction as follows: 
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test cases that include steeper variations of variables either in kinematics or dynamics, 
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and thus, detailed investigation of the contribution of limiters on the accuracy will be 

conducted in our future works. 

 

3.4. Mitigation of artificial stress by a tensile instability control scheme 

In the momentum equation, several numerical stabilisers corresponding to artificial 

viscosity ΠAV and artificial stress  are incorporated. Such artificial terms are indeed 

necessary for stabilisation of simulations as previously discussed, although they may 

bring adverse effects [35] and require parameter tuning, in general. Therefore, mitigation 

of the effects of these terms would lead to improved reproductions of structural responses. 

 In the previous subsection, the tuning-required artificial viscosity term ΠAV was 

replaced by a second-order Riemann term ΠR. In this subsection, the focus will be on 

reduction of the adverse effects of the artificial stress term. To achieve this purpose, we 

need to recall that the artificial stress term [1] was proposed to minimise the unphysical 

perturbations in particle motions in tensile stress states through introduction of a short-

range and tuning-required repulsive force between two particles. Instead of applying 

tuning-required artificial stress term, we may simply incorporate a so-called tensile 

instability control or a switch analogous to that applied in SPH for fluids [18]. The key 

purpose of this switch is to enhance the approximated kinematics (accelerations) and thus, 

minimise the unphysical perturbations in particle motions in tensile stress states. In 

compressive stress states, an antisymmetric and thus momentum conservative (pressure) 

gradient or (stress) divergence scheme is often preferred because for a regular particle 

distribution and in presence of a full kernel compact support, the first-order consistency 

would be automatically recovered. This is because, for instance, in case of pressure 

gradient in SPH, we can rewrite the Taylor-series consistent scheme as follows, resulting 

in a momentum-conservative and anti-symmetric type pressure gradient model. 

Γ
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  (46) 

The second term on the right-hand side would vanish for a perfectly regular particle 

distribution and in absence of truncated kernel domains. For irregular particle 

distributions and with compressive stress states, i.e., positive pressure, the second term 

would have a regulating effect on the particle distribution. In tensile stress states, or in 

case of negative pressure, however, this term would aggravate the regularity of particle 

distributions as well as the perturbations in particle motions. For this reason, Sun et al. 

[18] introduced a so-called TIC (Tensile Instability Control) scheme to simply switch 

from a momentum conservative, antisymmetric pressure gradient scheme to a Taylor-

series consistent one for negative pressures, i.e., 

  (47) 

  (48) 

where  stands for the inner region of the continuum. The first term on the right-hand 

side in Eq. (47) is the original summation-type pressure gradient component and the 

second term of right-hand side in Eq. (47) is the TIC term. The TIC term is activated only 

for particles in negative pressure located in the inner continuum region. 

 In the case of structural analyses, the momentum equation will include the 

divergence of the Cauchy’s stress, including both volumetric and deviatoric stresses. 

Tensile instability is aggravated by -2Ri corresponding to the positive components of 

stress tensor of particle i, rather than negative pressure 2pi, and therefore -2Ri should be 
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subtracted from the original summation-type antisymmetric stress divergence model. 

Therefore, the stress divergence model adopting the TIC concept can be written as: 

  (49) 

  (50) 

 From Eq. (49), for principal tensile stresses of a target particle i, i.e., for positive 

components of Ri, a more accurate approximation of corresponding kinematics 

(accelerations) would be achieved, resulting in minimisation of unphysical modes in 

tensile stress states. Indeed, the TIC scheme can be regarded as a switch in approximation 

of stress divergence for the principal tensile stresses rather than a stabilisation scheme. 

Bonet and Kulasegaram [15] have also shown that for constant or linear tensile stress 

fields, incorporation of first-order consistent SPH gradient or divergence operator would 

alleviate the tensile instability. 

 If the TIC scheme is adopted, robust calculations are achievable without the use 

of the artificial stress term  for the inner domain of the continuum. On the other hand, 

for the surface and surface-vicinity particles, due to the absence of a complete kernel 

support and inaccuracies associated with incomplete SPH approximations [63], utilisation 

of the momentum conservative form of the stress divergence becomes important to avoid 

unphysical accelerations and thus ensure the stability. In particular, unlike fluid 

simulations where pi has negligible values at and in the vicinity of free-surfaces (truncated 

kernel domains), stress components may have large values near structural surfaces and 

the issue of incompleteness, even with first-order consistency corrections, becomes 
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prominent. Once the momentum conservative form of stress divergence is utilised, in 

presence of tensile stresses, slight perturbations in particle motions can be amplified and 

thus, the artificial stress term needs to be utilised to suppress such unphysical tensile stress 

modes. Therefore, the artificial stress term is still necessary for particles located at 

structural surfaces to ensure a perfect control of tensile stress modes. With corrective 

matrix being incorporated, the final form of the momentum equation with the TIC control 

becomes: 

(51) 

Here it should be noted that the parameters of (ε, n) = (0.15, 8) are used for the artificial 

stress term in Eq. (51), which is used only for the surface and surface-vicinity particles. 

Regarding the categorization of particle types, structural surface particles can be 

simply detected by: 

  (52) 

where C is the color function. When a target particle i satisfies the above condition, it is 

considered as a surface particle. Then, the particles adjacent to the detected surface 

particles (|rij| < 1.2 d0) are set as vicinity particles. Others are regarded as the inner region 

particles. Note that since the benchmark tests in this paper do not include considerable 

change or splitting/merging process of structural surfaces, the current simple detection 

scheme will work well, however, for test cases including considerable deformations or 
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topological changes of surface boundaries, more refined detection schemes such as 

parachute-shape detection algorithm [64] should be considered. 

 

4. Numerical validations and investigations 

The performances of the proposed enhanced schemes are verified through a set of 

numerical examples, namely, dynamic response of a free oscillating cantilever plate [1], 

high speed rotation of an elastic square plate [49], wave propagation in a homogeneous 

elastic cable [50], collision of two homogeneous elastic rings [1], elastic wave 

propagation in a heterogeneous cable [27, 51, 52], and collision of two composite elastic 

rings.  

 Fig. 2 portrays a conceptual presentation of the enhancements proposed in this 

study. As this figure illustrates, four refined schemes are proposed so as to address four 

corresponding challenges in the original ULSPH structure model [1]. The enhancing 

effect by each proposed scheme will be illustrated in a step-by-step manner in this section. 

The enhanced ULSPH which benefits from four enhancements will be abbreviated as δ-

ULSPH-R-TIC, which includes consistency-related corrections, a second-order d-term or 

density diffusive term in the density rate equation, a second-order Riemann term in the 

momentum equation and a Tensile stress Instability Control (TIC) scheme. Table 1 is 

presented to list the abbreviations of the applied and proposed schemes used for 

descriptions of structure models in this study. 

4.1. Dynamic response of a free oscillating cantilever plate 

First verification test is a classical benchmark corresponding to the dynamic response of 

a free oscillating cantilever plate [1, 65-67]. Fig. 3 presents the computational setup. The 

plate is subjected to an initial velocity distribution of uy(x). In this figure, kw is the wave 
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number (kwL = 1.875); ξ is a velocity amplification factor (ξ = 0.01). Particle diameter is 

set as d0 = 1.0E-3 m. 

 First, the effect of incorporation of the consistency-related corrective matrix 

(section 3.1) is investigated. Fig. 4 demonstrates the deflection time histories measured 

at the free end of cantilever plate reproduced by ULSPH-AV-AS without corrective 

matrix (h = 1.2 d0 or 1.8 d0), ULSPH-AV-AS (with corrective matrix) (h = 1.2 d0) and δ-

ULSPH-AV-AS (h = 1.2 d0). It is clear from this figure that the ULSPH models 

incorporating the consistency-related corrective matrix (Eqs. 27, 28 and 29) could well 

suppress the unphysical damping of deflection and provide closer results to the analytical 

solution in comparison with the models without the corrective matrix. In addition, 

according to this figure, the model using δ-term (or density diffusive term) shows 

consistent result with respect to the one without δ-term, indicating that the inclusion of δ-

term with the value of δ = 0.002 does not bring serious adverse effects such as numerical 

damping of energy. 

 In this work, for the tuning parameters of the AS term (ε and n), we adopt ε = 0.15 

and n = 8. In order to explain the properness of this tuning parameter setting, in Fig. 5, 

(a) deflection time histories at the free end of cantilever plate and (b) total energy time 

histories by ULSPH-AV-AS with a set of different AS tuning parameters are plotted. In 

this figure, parameters of (ε, n) = (0.30, 4) (recommended values in [1]), (ε, n) = (0.15, 

8.00) (recommended values in [56]), (ε, n) = (0.15, 8) and (ε, n) = (0.5, 8) are presented. 

As this figure shows, the setting of (ε, n) = (0.15, 8) has resulted in the closest deflection 

curve with respect to the theoretical solution with minimum unphysical energy variations. 

 Fig. 6 plots (a) deflection time histories at the free end of cantilever plate and (b) 

total energy time histories simulated by δ-ULSPH-AV-AS, δ-ULSPH-R-AS and δ-

ULSPH-R-TIC. This figure portrays that the replacement of AV term with R term does 
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not deteriorate the accuracy and stability of the model and the use of TIC instead of AS 

could lead to improved estimation of both deflection curve and energy time variation. In 

other words, the tuning-required AV could be successfully replaced by a second-order 

accurate Riemann term in the momentum equation and the TIC could be implemented 

instead of the AS term, resulting in enhanced accuracy in terms of deflection and energy 

variation. 

 Fig. 7 shows the deflection time histories at the free end of cantilever plate by δ-

ULSPH-R-TIC with a set of different particle diameters (d0 = 2.0E-3 m, 1.0E-3 m and 

5.0E-4 m). From the presented figure, refinement of the spatial resolution has resulted in 

improved estimations of the deflection curve with respect to the theoretical solution, 

portraying that δ-ULSPH-R-TIC possesses a good convergence property. Table 2 

presents RMSE (Root Mean Square Error) and NRMSE (Normalized RMSE) with 

respect to the analytical solution corresponding to Fig. 7, where gradual convergence of 

the numerical results to the reference solution is confirmed and the convergence property 

of the proposed model is validated quantitatively. 

 

4.2. High speed rotation of an elastic square plate 

To investigate the stability of the proposed method under the continuous tensile stresses, 

a second benchmark test corresponding to a high-speed rotation of an elastic square plate 

[49] is performed. Fig. 8 represents the initial condition of simulation. An elastic square 

plate with a length of 1.0 m (L = 1.0 m) is subjected to a rotational motion with the angular 

velocity of ω = 105.0 s−1. The physical properties of the square plate, namely, density, 

Young’s modulus and Poisson’s ratio are respectively set as ρ = 1.1E+3 kg/m3, E = 
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17.0E+6 Pa and ν = 0.45. The horizontal and vertical motions of the reference point at 

(x,y) = (0.5L, 0.5L) are measured. The particle diameter is set as d0 = 4.0E-2 m. 

Fig. 9 presents snapshots of particles illustrating the pressure field (p) at t = 0.09 

s and 0.15 s by δ-ULSPH-R-AS with a set of different AS tuning parameters and δ-

ULSPH-R-TIC. As shown in this figure, the accuracy of the model using AS is highly 

dependent on the selection of tuning parameters, and stress noises cannot be fully 

eliminated in all tested parameter cases. On the other hand, the model with the TIC 

scheme could provide stable and noiseless stress field at both instants t = 0.09 s and 0.15 

s. 

Fig. 10 shows snapshots of particles together with the pressure field (p) at t = 0.15 

s related to a set of different spatial resolutions of d0 = 8.0E-2 m, 4.0E-2 m and 2.0E-2 m, 

by δ-ULSPH-R-AS with two different AS tuning parameters and δ-ULSPH-R-TIC. From 

the presented figure, through refinement of spatial resolution, the noise in pressure field 

is aggravated for structure models using the AS term. While, for the model benefitting 

from the TIC scheme, such unphysical outcome is not found. 

To assess the accuracy of δ-ULSPH-R-TIC, the same simulation of plate rotation 

is carried out by a well-developed and rigorously validated FVM code [68, 69]. The FVM 

simulation is performed by using a second order vertex-centred finite volume algorithm 

combined with an explicit Runge-Kutta time integrator as well as using an acoustic 

Riemann solver together with linear reconstruction for the evaluation of the numerical 

fluxes (Aguirre et al. [68]; Hassan et al. [69]). In the FVM simulation, the plate was 

discretised by linear triangular elements with a spatial resolution of 25×25×2 (676 

nodes/1250 elements). Fig. 11 demonstrates snapshots of particles illustrating the 

pressure field (p) at t = 0.09 s and 0.15 s by either FVM or δ-ULSPH-R-TIC. For the δ-

ULSPH-R-TIC simulation d0 = 4.0E-2 m, corresponding to a spatial resolution of 25×25. 
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According to the presented figure, the rotated plate and the pressure distributions 

reproduced by δ-ULSPH-R-TIC are in good agreement with respect to the results by the 

FVM code [68, 69]. 

Fig. 12 plots time histories of x- and y- positions at the edge point of square plate 

originally located at (x, y) = (0.5L, 0.5 L) simulated by δ-ULSPH-R-TIC. According to 

this figure, the square plate is quantitatively shown to rotate smoothly.  

 Fig. 13 shows a comparison among d-ULSPH-R-TIC without (a) and with (b) the 

Artificial Stress (AS) term for the surface and surface-vicinity particles. The presented 

figure portrays the incidence of tensile instability at the surface region when the AS term 

is excluded for the surface and surface-vicinity particles. In order to completely eliminate 

the use of AS term we may use virtual (ghost) particles at the surface region along with 

the TIC scheme. 

 

4.3. Wave propagation in a homogeneous elastic cable 

The third considered benchmark is wave propagation in a homogeneous elastic cable [50]. 

The initial configuration is presented in Fig. 14. An elastic cable with geometry of L = 10 

m × H = 0.2 m is attached onto a fixed wall boundary on the left. The quarter region of 

the cable from the right free end is subjected to an initial constant rightward velocity U0 

= 5.0 m/s. The physical quantities of the cable are set as ρ = 8.0E+3 kg/m3 in density, E 

= 2.0E+11 Pa in Young’s modulus and ν = 0.0 in Poisson’s ratio. The particle diameter 

is set as d0 = 2.5E-2 m. 

 Fig. 15 shows displacement time histories at the edge of the cable simulated by δ-

ULSPH-AV-AS, δ-ULSPH-AV-TIC and δ-ULSPH-R-TIC. As shown in this figure and 

its enlarged part, the use of TIC in place of AS has resulted in an improved estimation of 
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displacement. In addition, replacement of the AV with the R term has resulted in 

suppression of the spike noise. 

 The improvement by the R term is more evident in Fig. 16, where the velocity 

time histories at the edge of cable by δ-ULSPH-AV-AS, δ-ULSPH-AV-TIC and δ-

ULSPH-R-TIC are shown. The figure and its enlarged portions demonstrate that the spike 

noises appearing in the models with the AV term are well eliminated by using the R term. 

 Fig. 17 plots (a) displacement and (b) velocity time histories at the edge of cable 

by δ-ULSPH-R-TIC with a set of different particle diameters (d0 = 5.0E-2 m, 2.5E-2 m 

and 1.25E-2 m). From the presented figure, gradual approach of the numerical results to 

the theoretical solution by refinement of spatial resolution can be confirmed, indicating 

the convergence property of δ-ULSPH-R-TIC. 

Fig. 18 plots displacement time histories at the edge of cable by (a) δ-ULSPH-R-

TIC and (b) δ-ULSPH-R-AS with a set of different particle diameters (d0 = 5.0E-2 m, 

2.5E-2 m and 1.25E-2 m). From this figure, refinement of spatial resolution in case of δ-

ULSPH-R-AS has not resulted in clear improvement of results. On the other hand, use of 

TIC instead of AS has clearly improved the convergence property of ULSPH. Table 3 

shows RMSE and NRMSE corresponding to Fig. 18, quantitatively confirming the 

superior convergence property of δ-ULSPH-R-TIC in comparison with δ-ULSPH-R-AS. 

From Fig. 18 and Table 3, the issue of absence of consistency of the AS term discussed 

in section 2.2 can be confirmed. 

 

4.4. Collision of two homogeneous elastic rings 

As the fourth benchmark, the test case of collision of two homogeneous elastic rings [1] 

is considered. Fig. 19 illustrates the computational setup of this benchmark test. Two 
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elastic rings with inner/outer diameters of 0.03 m/0.04 m are subject to initial horizontal 

approaching velocities of U0 = 1.0 m/s, eventually resulting in a strong collision of the 

rings. In this test case, acoustic pressure noises would become dominant due to the 

presence of material impact, leading to severe noise in stress field and numerical 

instability, and thus the effect of density diffusive term is expected to be clearly observed. 

The physical properties of the rings are set as ρ = 1.0E+3 kg/m3 in density, E = 2.0E+6 

Pa in Young’s modulus and ν = 0.495 in Poisson’s ratio. The rings are discretised in a 

cylindrical arrangement with a particle diameter of d0 = 1.0E-3 m. 

 Since the assumption of continuum material is true for single ring and rigorously 

not true for interaction between two different rings, interaction between rings should be 

treated as contact of two different materials, rather than SPH analysis including both rings. 

For this sake, SPH interactions between particles belonging to different rings are switched 

off and the interaction of two rings is modelled by using the following contact force [70]: 

  (53) 

  (54) 

The collision acceleration term  is added into the momentum equation. 

Fig. 20 shows snapshots of particles illustrating stress field (σxx) at t = 0.013 s, 

0.023 s and 0.034 s by ULSPH-R-TIC and δ-ULSPH-R-TIC. According to the figure, the 

severe noises in stress fields observed in the ULSPH-R-TIC results are effectively 
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suppressed in δ-ULSPH-R-TIC results, thanks to the incorporated density diffusive term 

(δ-term). 

Fig. 21 demonstrates snapshots of particles illustrating the stress field (σxy) at t = 

0.013 s by ULSPH-R-TIC and δ-ULSPH-R-TIC, where both results show almost 

consistent stress fields. It should be recalled that the density diffusion term in δ-ULSPH 

is directly effective on the spherical part of stress tensor and theoretically does not have 

any smoothing effect on the deviatoric part. 

Fig. 22 presents snapshots of particles illustrating the stress field (σxx) at t = 0.013 

s and 0.034 s by ULSPH-R-TIC and δ-ULSPH-R-TIC with a refined particle diameter of 

d0 = 5.0E-4 m. The figure portrays the enhancing effect of the δ-term in a fine resolution 

case, especially during the rings impact. Comparing Fig. 22 with Fig. 20, refinement of 

resolution has resulted in a smoother stress field (σxx) by the δ-ULSPH-R-TIC. 

Fig. 23 plots (a) time histories of elastic strain, kinetic and total energies 

reproduced by δ-ULSPH-R-TIC and (b) total energy time histories by ULSPH-R-TIC and 

δ-ULSPH-R-TIC. From Fig. 23a, the total energy is shown to largely dissipate after 

collision takes place, which is due to the irreversible dissipation by numerical stabilising 

terms in the momentum equation. After the rings collide, some amount of kinetic energy 

is converted to elastic strain energy and vice versa as the collision process proceeds. 

According to Fig. 23b, the δ-ULSPH-R-TIC shows almost consistent energy time 

variation in comparison with that of ULSPH-R-TIC. In other words, the δ-term 

effectively suppresses the high-frequency acoustic noises in density, pressure and thus 

stress fields without serious adverse effects on the energy conservation property. 

The simulation of rings impact is repeated by using an FVM code [68, 69] for 

further validation of δ-ULSPH-R-TIC. Fig. 24 portrays snapshots of particles illustrating 

stress field (σxx) at t = 0.013 s, 0.023 s and 0.034 s by either δ-ULSPH-R-TIC or FVM. 
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The spatial resolutions are set as d0 = 1.0E-3 m (4386 particles) for δ-ULSPH-R-TIC and 

1364 nodes/2480 elements for FVM. From the presented figure, the configuration of rings 

and the stress distributions reproduced by δ-ULSPH-R-TIC agree well with the results by 

the FVM code [68, 69]. 

 

 

4.5. Elastic wave propagation in a heterogeneous cable 

In order to investigate the applicability of the proposed schemes in simulations of 

composite materials that include discontinuity of material properties [71], the benchmark 

test of elastic wave propagation in heterogeneous cable [27, 51, 52] is conducted as the 

fifth validation test case. This test involves material discontinuity at the centre of the cable 

between aluminium and copper, as shown in the schematic sketch of this test in Fig. 25. 

The aluminium and copper cables with 1 m length are connected, resulting in a 

composite cable of 2 m long. The physical properties of the aluminium are set as ρ = 

2.785E+3 kg/m3 in density, E = 79.1E+9 Pa in Young’s modulus and ν = 0.43 in Poisson’s 

ratio, while those of the copper are set as ρ = 8.930E+3 kg/m3 in density, E = 138.1E+9 

Pa in Young’s modulus and ν = 0.48 in Poisson’s ratio. 

For generation of stress wave on the system, a monochromatic axial displacement 

is imposed at its left extremity as follows: 

  (55) 

where ud(x,t) is the axial displacement, A1 = 5.0×10-5 m is the amplitude, and ω = π×104 

rad/s is the frequency. In the simulation code, to impose this condition, the left extremity 

particles are enforced to have the following velocity condition: 
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  (56) 

After t = 1.0×10-4 s, the left boundary particles are released and begin to act as free 

extremity. Also, since the analytical solution is obtained based on a 1D elastic wave 

propagation problem, the speed of sound for the 1D problem is used instead, similar to 

Oger et al. [27] as: 

  (57) 

The derivation of analytical solution for this benchmark test will be described in detail in 

Appendix A. 

 Fig. 26 shows snapshots of particles illustrating stress field (σxx) reproduced by δ-

ULSPH-R-TIC. From the snapshots, it is clear that the proposed model could result in a 

smooth stress field. Propagation of stress wave is well simulated, and focusing on the 

material interface, reflecting/transmitting processes of the stress wave are robustly 

reproduced. 

Fig. 27 presents the stress (σxx) profiles at t = 1.0E-4 s, 1.5E-4 s, 2.0E-4 s, 2.5E-4 

s, 3.0E-4 s and 3.5E-4 s reproduced by δ-ULSPH-AV-AS, δ-ULSPH-AV-TIC and δ-

ULSPH-R-TIC along with the corresponding analytical solution. It can be seen from the 

presented figure and its enlarged portions that the model using the TIC scheme has 

provided almost consistent results with respect to the analytical solution compared to the 

one using the AS term. In addition, from Fig. 27, incorporation of the R term has been 

effective in suppressing the unphysical stress noises. 

Fig. 28 presents stress (σxx) profiles at t = 1.0E-4 s, 1.5E-4 s, 2.0E-4 s, 2.5E-4 s, 

3.0E-4 s and 3.5E-4 s reproduced by δ-ULSPH-R-TIC with a set of different particle 
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diameters (d0 = 4.8E-3 m, 2.4E-3 m and 1.2E-3 m). According to the figure, the 

refinement of spatial resolution has resulted in enhanced reproductions of the stress 

profile with respect to the reference solution, in specific, in terms of the magnitudes of 

peak stresses. 

 

4.6. Collision of two composite elastic rings 

The sixth conducted benchmark is the collision of two composite elastic rings. This test 

case involves material and shock discontinuities where acoustic pressure noises would be 

dominant, resulting in severe noise in the stress field and likely, instability of the 

calculation. Fig. 29 presents the initial setup of this benchmark test. Basic calculation 

settings are the same as the homogeneous case in section 4.4, except for the presence of 

material discontinuity and difference in the Young’s modulus. The two elastic rings with 

inner and outer diameters of 0.03 m and 0.04 m have the approaching horizontal velocity 

of 1.0 m/s. The density and Poisson’s ratio are ρ = 1.0E+3 kg/m3 and ν = 0.495. Composite 

elastic rings with the Young’s modulus of EA = 10EB = 5.0E+6 Pa are considered, where 

each ring consists of material A (outer) and B (inner) as half and half in the thickness 

direction. The rings are discretised in a cylindrical arrangement with a particle diameter 

of d0 = 1.0E-3 m. 

Fig. 30 shows snapshots of particles illustrating stress field (σxx) at t = 0.014 s, 

0.022 s and 0.040 s reproduced by ULSPH-R-TIC and δ-ULSPH-R-TIC. From the figure, 

through the comparison of the reproduced stress fields by ULSPH-R-TIC and δ-ULSPH-

R-TIC, the density diffusive term (δ-term) is proven to work well in suppression of the 

severe stress noises in the impact problem of composite materials. 
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Fig. 30 shows the plots of (a) time histories of elastic strain, kinetic and total 

energies reproduced by δ-ULSPH-R-TIC and (b) total energy time histories by ULSPH-

R-TIC and δ-ULSPH-R-TIC. Overall results and tendencies are shown to be consistent 

with the ones in homogeneous ring impact in section 4.4, i.e., the use of δ-term (density 

diffusive term) does not deteriorate the method’s conservation properties of energy. In 

addition, from the presented results the structure model benefitting from four proposed 

enhancements, namely, δ-ULSPH-R-TIC has been shown to be capable of reproducing 

structural mechanics problems corresponding to both homogeneous and composite 

materials. 

The discontinuity in the material properties for the composite elastic ring impact 

corresponded to the Young’s modulus only (Fig. 29). The same test case is repeated by 

considering an additional discontinuity in the materials’ densities as depicted in Fig. 32(a). 

The ratios of the materials’ densities and the Young’s moduli are both set as 1:10. Fig. 

32(b) shows typical snapshots illustrating the stress field (σxx) at t = 0.014 s, 0.023 s and 

0.036 s, reproduced by ULSPH-R-TIC and δ-ULSPH-R-TIC. The figure illustrates the 

effect of d term as well as the robustness of δ-ULSPH-R-TIC in reproducing the collision 

of composite rings with discontinuities in both density and Young’s modulus. Fig. 33 

plots (a) elastic strain, kinetic and total energy time variations reproduced by δ-ULSPH-

R-TIC and (b) total energy time histories by ULSPH-R-TIC and δ-ULSPH-R-TIC, where 

a similar tendency of energy time variations is seen for Young’s modulus and density 

discontinuities with respect to the results of homogeneous elastic rings and composite 

ones of only Young’s modulus discontinuity. 
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5. Concluding remarks 

In this study, four numerical aspects or shortcomings related to a commonly applied 

Updated Lagrangian SPH (ULSPH) structure model are targeted. These aspects include: 

i) incompleteness of approximations, ii) pressure instability, iii) rank deficiency and iv) 

tensile instability control. For aspects i and ii, no consideration was considered in the 

original ULSPH structure model [1]. For aspects iii and iv, the original ULSPH [1] 

incorporated artificial stress and artificial viscosity terms that include tuning parameters. 

In this paper, step-by-step enhancements for the ULSPH structure model are presented 

through a systematic consideration of these four aspects, and proposal of simple, yet 

effective schemes.  

 The first enhancement corresponds to incorporation of a consistency-related 

corrective matrix to ensure the first-order consistency of approximations related to the 

velocity divergence (in the continuity equation), stress divergence (in the momentum 

equation) and the velocity gradient tensor (in calculation of deviatoric part of the 

Cauchy’s stress tensor). The second enhancement is inclusion of a second-order diffusive 

term (δ-term) into the continuity or density rate equation to tackle the issue of pressure 

instability. The third improvement corresponds to incorporation of a second-order 

Riemann term in place of the artificial viscosity or the AV term in the momentum 

equation with regard to the issue of rank deficiency. The third enhancement is consistent 

with the second one, as δ-term can be regarded as a Riemann diffusive term. The fourth 

improvement focuses on enhanced approximations of kinematics (accelerations) for the 

principal tensile stresses in order to mitigate the tensile stress instability or growth of 

unphysical perturbations in tensile stress states. Through incorporation of a switch in 

estimation of the stress divergence, referred to as the TIC (Tensile Instability Control) 

scheme, we have shown that the artificial stress or the AS term which includes several 
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tuning-required parameters, can be eliminated at least for inner structural particles that 

have a full kernel compact support. 

A total number of six benchmark tests are conducted for a scrupulous and 

systematic validation of proposed enhancements. The results show that step-by-step 

improvements are achievable through incorporation of the proposed enhanced schemes. 

In specific, the refined structure model which benefits from all four enhancements, 

namely, δ-ULSPH-R-TIC, is shown to provide reliable results even for challenging 

problems that include structural impacts in presence of material discontinuities. 

In our future works, a detailed and theoretical investigation of the optimum 

diffusive parameter δ will be conducted similar to the one performed by Antuono et al. 

[72]. The extension of the present enhanced ULSPH method to 3D as well as its 

comprehensive comparisons with other advanced SPH structure methods [41] is also 

among our future targets. Furthermore, development of variationally consistent [47, 71] 

ULSPH formulations should also be targeted especially when possession of excellent 

features in both conservation and consistency are of interest. In addition, specific focus 

will be devoted to extension of the enhanced ULSPH structure model for reproduction of 

dynamics of viscoelastic or elastoplastic materials as well as damage/fracture modelling. 

Development of an entirely Lagrangian meshfree FSI solver with incorporation of the 

enhanced ULSPH structure model is also among our future works. 

 

Appendix A. Theoretical solution of elastic wave propagation (section 4.5) 

In this appendix, the analytical solution of 1D elastic wave propagation 

corresponding to the benchmark test in section 4.5 is derived based on elementary rod 

theory [52]. In this theory, the rod is assumed to be long and slender so that the lateral 

contraction could be negligibly small. 
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The equation of motion is obtained as follows. Let us consider an element inside 

a rod. Let q(x,t) be the external force per unit volume, u(x,t) be the displacement in x-

direction, A be the area of cross-section, Δx be the length of the element in x-direction 

supposed to be infinitesimal value, ρ be the density of the rod and F be the force acting 

on the face of cross-section, as shown in Fig. A1.  

Consider the force balance for an element of the rod as: 

  (A.1) 

where ρA denotes the mass per unit length of the rod. The above momentum equation can 

be expressed as: 

  (A.2) 

The relationship between the strain ε and displacement u can be written as: 

  (A.3) 

The Hooke’s Law in one-dimensional form can be described as: 

  (A.4) 

where  stands for stress. Substituting Eq. (A.3) and Eq. (A.4) into Eq. (A.2), we obtain 

Eq. (A.5) as: 

  (A.5) 

If the external force q(x,t) does not exist and the rod is homogeneous material, we can 

obtain wave equation: 
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  (A.6) 

where C represents the speed of sound corresponding to the velocity of propagating wave. 

We can solve this wave equation under the provided initial conditions and boundary 

conditions. 

For composite rod, i.e., the rod consisting of physically different materials with 

clear phase interface, we consider general d’Alembert solution of Eq. (A.6) for each 

material phase. In case of the test case in section 4.5, left component (phase 1: aluminium) 

and right component (phase 2: copper) are connected at the centre of the rod with clear 

material interface. The wave reflects at the interface due to the discontinuity of materials. 

Considering displacement and stress are continuous across the material interface, we can 

find the reflection coefficient  and transmission coefficient . 

For phase 1, the displacement and the stress induced by the incident wave 

(coefficient of ) can be written with using angular frequency ω and wave number k 

as: 

  (A.7) 

  (A.8) 

The displacement and the stress occurred by reflection wave are obtained as: 

  (A.9) 

  (A.10) 

For phase 2, the displacement and the stress can be calculated as: 

  (A.11) 
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  (A.12) 

Since the displacement and stress are continuous across the material interface, the 

following relationship would hold: 

  (A.13) 

  (A.14) 

Thus, the reflection coefficient and transmission coefficient can be obtained as: 

  (A.15) 

  (A.16) 

Since the components would have difference in both Young’s modulus and 

density, Eqs. (A.15) and (A.16) will be further formulated to the form including density. 

We now consider the continuous of angular frequency across material interface as: 

  (A.17) 

We obtain the relationship of wave number between two phases as: 

  (A.18) 

Eq. (A.15) can be rewritten by substituting Eq. (A.18) as: 
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  (A.19) 

  (A.20) 

Substituting Eq. (A.19) into Eq. (A.13), we can obtain the amplitude of the transmission 

wave as: 

  (A.21) 

 

 

Appendix B. Discussion on the similarity among Riemann diffusive term, 

artificial viscosity and d-SPH 

The continuity equation including the d or the density diffusive term can be written as 

(also discussed in section 3.4):  
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  (B.1) 

  (B.2) 

  (B.3) 

  (B.4) 

Eqs. (B.3) and (B.4) correspond to 0th and 1st order corrected functions ([58] and [12], 

respectively).  

In Riemann SPH, for the case of linear reconstruction of variables, the continuity 

equation is written as: 

  (B.5) 

  (B.6) 

  (B.7) 

  (B.8) 

  (B.9) 

From the equation of state, we have: 

  (B.10) 
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  (B.11) 

Comparing Eq. (B.1) and (B.11), the density diffusion by Riemann solution DR can be 

written as: 

  (B.12) 

  (B.13) 

Therefore, the density diffusion by Riemann solution has close similarity with the d-

SPH diffusion term without a first-order correction [58]. 

Linear momentum equation with the artificial viscosity term can be written as: 

  (B.14) 

  (B.15) 

(B.16) 

In the Riemann SPH, linear momentum continuity equation is written as (see 

section 3.3): 

  (B.17) 
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  (B.18) 

  (B.19) 

  (B.20) 

  (B.21) 

where Eqs. (B.20) and (B.21) correspond to linear and second-order constructions of 

variables. Here, considering linear construction of variables (Eq. B. 20), since we have 

   

thus, we can reformulate Eq. (B.18) as: 

  (B.22) 

  (B.23) 
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δ vs. Riemann density diffusive terms as well as artificial viscosity vs. Riemann 

momentum diffusive terms is presented in Fig. B1. 
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Fig. 1 (a) Construction of 1D-Riemann problem along with the relative vector between 

particles i and j, (b) Riemann problem with two intermediate states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 2 Conceptual presentation of the enhancements proposed in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 3 Schematic sketch of computational setup - dynamic response of a free oscillating 

cantilever plate 

 

 

 

 

 

 

 

 

 

 



 
Fig. 4 Deflection time histories at the edge of plate by ULSPH-AV-AS without 

corrective matrix (h = 1.2 d0 or 1.8 d0), ULSPH-AV-AS (with corrective matrix) (h = 

1.2 d0) and δ-ULSPH-AV-AS (h = 1.2 d0) - dynamic response of a free oscillating 

cantilever plate 

 

 

 



 
Fig. 5 (a) Deflection time histories at the edge of plate and (b) total energy time 

histories by ULSPH-AV-AS with a set of different AS tuning parameters - dynamic 

response of a free oscillating cantilever plate 

 

 

 



 
Fig. 6 (a) Deflection time histories at the edge of plate and (b) total energy time 

histories by δ-ULSPH-AV-AS, δ-ULSPH-R-AS and δ-ULSPH-R-TIC - dynamic 

response of a free oscillating cantilever plate 

 

 

 

 



 
Fig. 7 Deflection time histories at the edge of plate by δ-ULSPH-R-TIC with a set of 

different particle diameters - dynamic response of a free oscillating cantilever plate 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 8 Schematic sketch of computational setup - high speed rotation of an elastic square 

plate 

 



 
Fig. 9 Snapshots of particles illustrating pressure field (p) at t = 0.09 s and 0.15 s by δ-

ULSPH-R-AS with a set of different AS tuning parameters and δ-ULSPH-R-TIC - high 

speed rotation of an elastic square plate 



 
Fig. 10 Snapshots of particles illustrating pressure field (p) at t = 0.15 s by δ-ULSPH-R-

AS with different AS tuning parameters and δ-ULSPH-R-TIC under different spatial 

resolutions - high speed rotation of an elastic square plate 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 11 Snapshots of particles illustrating pressure field (p) at t = 0.09 s and 0.15 s by 

either FVM or δ-ULSPH-R-TIC - spatial resolutions are 25×25×2 (676 nodes/1250 

elements) for FVM and 25×25 (d0 = 4.0E-2 m) for δ-ULSPH-R-TIC - high speed 

rotation of an elastic square plate 

 

 

 



 
Fig. 12 Time histories of x- and y- positions at the edge point of square originally 

located at (x, y) = (0.5L, 0.5L) reproduced by δ-ULSPH-R-TIC - high speed rotation of 

an elastic square plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 13 Snapshots of particles illustrating pressure field (p) at t = 0.09 s and 0.15 s by δ-

ULSPH-R-TIC without/with AS term for the surface and surface-vicinity particles - 

high speed rotation of an elastic square plate 

 

 

 

 

 

 

 

 

 



 
Fig. 14 Schematic sketch of computational setup - wave propagation in a homogeneous 

elastic cable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 15 Displacement time histories at the edge of cable by δ-ULSPH-AV-AS, δ-

ULSPH-AV-TIC and δ-ULSPH-R-TIC - wave propagation in a homogeneous elastic 

cable 

 

 

 

 

 

 



 
Fig. 16 Velocity time histories at the edge of cable by δ-ULSPH-AV-AS, δ-ULSPH-

AV-TIC and δ-ULSPH-R-TIC - wave propagation in a homogeneous elastic cable 

 

 

 



 
Fig. 17 (a) Displacement and (b) velocity time histories at the edge of cable by δ-

ULSPH-R-TIC with a set of different particle diameters - wave propagation in a 

homogeneous elastic cable 

 

 

 

 



 
Fig. 18 Displacement time histories at the edge of cable by (a) δ-ULSPH-R-TIC and (b) 

δ-ULSPH-R-AS with a set of different particle diameters - wave propagation in a 

homogeneous elastic cable 

 



 
Fig. 19 Schematic sketch of computational setup - collision of two homogeneous elastic 

rings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 20 Snapshots of particles illustrating stress field (σxx) at t = 0.013 s, 0.023 s and 

0.034 s by ULSPH-R-TIC and δ-ULSPH-R-TIC - collision of two homogeneous elastic 

rings 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 21 Snapshots of particles illustrating stress field (σxy) at t = 0.013 s by ULSPH-R-

TIC and δ-ULSPH-R-TIC - collision of two homogeneous elastic rings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 22 Snapshots of particles illustrating stress field (σxx) at t = 0.013 s and 0.034 s by 

ULSPH-R-TIC and δ-ULSPH-R-TIC with particle diameter of d0 = 0.0005 m - collision 

of two homogeneous elastic rings 

 

 

 



 
Fig. 23 (a) Time histories of elastic strain, kinetic and total energies reproduced by δ-

ULSPH-R-TIC and (b) total energy time histories by ULSPH-R-TIC and δ-ULSPH-R-

TIC - collision of two homogeneous elastic rings 

 

 

 

 

 

 

 

 



 
Fig. 24 Snapshots of particles illustrating stress field (σxx) at t = 0.013 s, 0.023 s and 

0.034 s by either δ-ULSPH-R-TIC or FVM - spatial resolutions are d0 = 1.0E-3 m (4386 

particles) for δ-ULSPH-R-TIC and 1364 nodes/2480 elements for FVM - collision of 

two homogeneous elastic rings 

 

 

 

 

 

 

 

 

 



 
Fig. 25 Schematic sketch of computational setup - elastic wave propagation in 

heterogeneous cable 

 

 

 

 

 

 

 

 



 
Fig. 26 Snapshots of particles together with stress field (σxx) reproduced by δ-ULSPH-

R-TIC - elastic wave propagation in heterogeneous cable 



 
Fig. 27 Stress (σxx) profiles at t = 1.0E-4 s, 1.5E-4 s, 2.0E-4 s, 2.5E-4 s, 3.0E-4 s and 

3.5E-4 s reproduced by δ-ULSPH-AV-AS, δ-ULSPH-AV-TIC and δ-ULSPH-R-TIC 

along with analytical solution - elastic wave propagation in heterogeneous cable 

 



 
Fig. 28 Stress (σxx) profiles at t = 1.0E-4 s, 1.5E-4 s, 2.0E-4 s, 2.5E-4 s, 3.0E-4 s and 

3.5E-4 s reproduced by δ-ULSPH-R-TIC under a set of different particle diameters 

along with analytical solution - elastic wave propagation in heterogeneous cable 

 



 
Fig. 29 Schematic sketch of computational setup - collision of two composite elastic 

rings 

 

 

 

 

 

 

 

 



 
Fig. 30 Snapshots of particles illustrating stress field (σxx) at t = 0.014 s, 0.022 s and 

0.040 s by ULSPH-R-TIC and δ-ULSPH-R-TIC - collision of two composite elastic 

rings 

 

 

 

 

 



 
Fig. 31 (a) Time histories of elastic strain, kinetic and total energies reproduced by δ-

ULSPH-R-TIC and (b) total energy time histories by ULSPH-R-TIC and δ-ULSPH-R-

TIC - collision of two composite elastic rings 

 

 

 

 

 

 

 

 



 

Fig. 32 (a) Schematic sketch of computational setup for the case of both Young’s 

modulus and density discontinuities; (b) snapshots of particles illustrating stress field 

(σxx) at t = 0.014 s, 0.023 s and 0.036 s by ULSPH-R-TIC and δ-ULSPH-R-TIC - 

collision of two composite elastic rings 

 

 



 
Fig. 33 (a) Time histories of elastic strain, kinetic and total energies reproduced by δ-

ULSPH-R-TIC and (b) total energy time histories by ULSPH-R-TIC and δ-ULSPH-R-

TIC under both Young’s modulus and density discontinuities - collision of two 

composite elastic rings 

 

 

 

 

 

 



 
Fig. A1 Element of rod with subjected loads  

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. B1 A concise summary of δ vs. Riemann density diffusive terms as well as 

artificial viscosity vs. Riemann momentum diffusive terms 


