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Abstract
Zero-dimensional graphene quantum dots (GQDs) exhibit many different properties, such as
strong fluorescence, nonzero bandgap and solubility in solvents, compared to two-dimensional
graphene. GQDs are biocompatible and have low toxicity; hence, they are widely used in the
biomedical field. The edge effect of GQDs is of particular interest because edge modification
can regulate the performance of nanomaterials. In this review, various preparation methods for
GQDs, which can be divided into three main categories, namely top-down, bottom-up and
chemical methods, are discussed. The unique optical, electrical, thermal and magnetic
properties of GQDs are reviewed. The functionalization of GQDs by doping with heteroatoms
and forming composites with other materials is studied, and the characteristics of these GQDs
are also discussed. The applications of these GQDs in the fields of optics, electricity,
optoelectronics, biomedicine, energy, agriculture and other emerging interdisciplinary fields are
reviewed to highlight the enormous potential of nanomaterials. This review reports on the recent
advancement in GQD research and suggests future directions for the development of GQDs.

Keywords: graphene quantum dots: preparations, properties, functionalizations and applications

1. Introduction

The discovery of new materials enables the realization of
new physical and chemical phenomena that could result in
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the development of novel technologies and applications. For
example, the discovery of graphene [1] in the 21st century
has enabled the understanding of many excellent physical
and chemical properties of two-dimensional materials [2–8],
which led to the development of many exciting applications.
Carbon materials have been of great scientific interest since
the 1950s, particularly in the discovery of fullerene materials
[9]. The fascinating properties of fullerenes have attracted
the attention of researchers from around the world. Diamond
[10], which is the oldest carbon material, has attracted
scientists [11–20] from different fields because of its physical
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Figure 1. Different dimensions of carbon materials (left) and their related DOS against energy plots (right).

and chemical properties, such as hardness [21–24] and low
dielectric constant [25–30]. Later, scientists from Japan [31]
discovered a new one-dimensional carbon material, known as
carbon nanotube, using the arc-discharge method. The high
electron mobility in the one-dimensional material [32–36],
chiral dependence [37–41] and other unique phenomena [42–
46] have attracted enormous research interest. In 2004, the sci-
entific community was filled with excitement upon the dis-
covery of graphene [1], as its electrons exhibited the Dirac
cone property of having no static mass [47]. Since then, carbon
materials have been categorized according to different dimen-
sions, such as three-dimensional bulk materials (e.g. graphite
[48–50] and diamonds), two-dimensional nanosheets (e.g.
graphene [51–53]), one-dimensional nanowires (e.g. carbon
nanotube [54–56] and graphene nanoribbons [57–60]), and
zero-dimensional dots (e.g. fullerenes [61–65] and graphene
quantum dots (GQDs) [66–70]). These different dimensions of
carbon materials can exhibit different electronic, physical and
chemical properties. The electron densities of states (DOS) for
the different dimensions of carbon materials are illustrated in
figure 1. The electron DOS of a three-dimensional material
is proportional to the 1/2 power of the energy. The DOS of
a two-dimensional material is constant, whereas that of a one-
dimensional material is negative 1/2 power relations. TheDOS
is quantized for a zero-dimensional material.

Among these carbon materials, graphene has attrac-
ted tremendous attention due to its excellent physical and
chemical properties [71–78], which led to the develop-
ment of many novel applications, such as magic-angle
graphene superconductivity [79–81], ultrahigh-performance

photodetector [82–84] and biomedical applications [85–90].
Although graphene has many excellent properties and applica-
tions, it has some limitations, such as a zero-bandgap structure
[91], high preparation cost [92, 93] and difficulty in preparing
large single crystals [73, 94, 95]. In 2008, Geim et al [96], who
discovered graphene, used an electron beam etching technique
to prepare zero-dimensional GQDs from graphene. GQDs,
which are the newest members of the family of carbon mater-
ials, have received much attention because they inherit the
excellent properties of graphene materials, such as high spe-
cific surface area, high carrier mobility, high inertia, high sta-
bility, nontoxicity and high light-to-heat conversion efficiency
[91]. Due to the zero-dimensional properties of GQDs, these
materials also exhibit quantum confinement in all three spa-
tial directions and edge effects. Figure 2 depicts the char-
acteristics of GQDs discussed in this review. Many excel-
lent studies on GQDs have been reported [97–100] since the
first demonstration of the nanomaterials. For example, Tang
et al [100] reported a bottom-up synthesis technique (often
known as the Tang–Lau method) that can effectively control
the size of the GQDs, and hence their energy gap, which is
an important parameter for many optoelectronic applications.
Unlike carbon nanodots, GQDs exhibit crystalline properties
with significant quantum confinement effects. The distinction
between carbon dots and GQDs was discussed in a previ-
ous review [101]. The properties and potential applications of
GQDs have not been fully realized because these nanomateri-
als are relatively new members of the carbon material family.
In recent years, the physical and chemical properties of GQDs
have been studied extensively, and their applications have been
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Figure 2. Schematic of the different properties of GQDs.

demonstrated. Although there already existed several excel-
lent reviews [102–109] onGQDs, recent advancements in nan-
omaterials over the past two to three years have not been
reviewed. Therefore, this review will provide an insight into
recently reported remarkable studies on GQDs that are of sig-
nificant interest to researchers working on similar nanomater-
ials, which offer many exciting and novel applications.

GQDs exhibit a strong fluorescence effect due to the
quantum confinement of carriers in the nanomaterials. The
excellent fluorescence properties of GQDs have drawn signi-
ficant attention in the biomedical field, particularly in applic-
ations such as fluorescent probes [110], monitoring [98] and
cancer treatment [111]. The edge effect of GQDs allows effect-
ive and simple functionalization of nanomaterials via dop-
ing of impurity atoms at the edge [112–116], thereby regulat-
ing the fluorescence wavelength of the GQDs. Such an edge
effect also facilitates the formation of GQD-based compos-
ite materials by hybridizing with other substances [117–122],
paving the way for many novel applications. Previous studies
on GQDs have demonstrated many potential applications of
these nanomaterials in a wide range of fields, such as energy
environment [123], agriculture [124], biomedicine [125], pho-
toelectric detection [126] and gas sensing [127], as depicted in
figure 3. In this review, many new and exciting applications of

GQDs over the past two to three years are introduced in detail.
Research into GQDs continues to gain momentum, as many
of their properties have not yet been fully understood [101].
This review examines recent advancements in the preparation,
functionalization and application of GQDs.

2. Preparation methods

The preparationmethodology of GQDs can significantly affect
their widespread application, as it can influence the yield,
cost and properties of the material. Most studies [108, 128–
130] have divided the preparation methodology of GQDs into
two categories: bottom-up and top-down methods. However,
with the rapid development of new GQD preparation tech-
niques, the two categories must be expanded to include other
preparation methodologies. In this review, an additional cat-
egory, which is a chemical method, is introduced. Chemistry
is the science of reactions that produce changes in substances.
Through the chemical reaction between two substances, an
intermediate product or a precursor of GQDs is synthes-
ized and subsequently converted into GQDs. This prepar-
ation methodology for GQDs is categorized as a chemical
method. The bottom-up approach [131] for the preparation
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Figure 3. Different applications of functionalized GQDs.

of GQDs is based on the polycondensation reaction of small
molecular substances, whereas the top-down approach [132] is
primarily based on the pyrolysis of bulk carbon materials. The
main difference between these two methods and the chemical
method is the formation of intermediates of GQDs in the latter
method. The three categories that comprehensively classify the
different preparation methodologies of GQDs are illustrated in
figure 4. In the following sections, novel preparation method-
ologies of GQDs in all three categories developed over the last
two years are introduced.

2.1. Top-down method

The top-down approach mainly involves the physical reduc-
tion of carbon materials, such as graphite [133], graphene
[134], graphene oxide (GO) [135], carbon nanotubes [136] and
fullerenes [137], into GQDs with sizes ranging from several
nanometers to tens of nanometers by various means, as depic-
ted in figure 5(a).

Laser ablation is a commonly used technique for pre-
paring nanoparticles. It is simple, environmentally friendly,
highly tunable and favored by many researchers for the
preparation of nanomaterials. For example, Kang et al [138,
142] recently prepared GQDs using a technique involving

the use of inexpensive graphene flakes as carbon source.
Nitrogen-doped GQDs with improved optical properties were
prepared in solution using the technique of laser ablation.
Figure 5(b) shows the preparation method. Although this
method is relatively simple and effective, the controllability
of the GQD size is unfavorable. Transmission electron micro-
scopy (TEM) images of the GQDs revealed good crystallinity
of the materials but with nonuniformity in their sizes, as shown
in figure 5(g); hence, GQDs prepared using the laser abla-
tion method might not exhibit an obvious quantum confine-
ment effect. Recently, some interesting techniques similar to
the explosive method used for the preparation of diamond film
[143–146] have been reported for the preparation of GQDs.
Alidad et al [139] used graphite powder as carbon source,
which underwent instantaneous explosive reaction with car-
bon dioxide to transform the graphite powder into GQDs. This
preparation method, illustrated in figure 5(c), produced high-
purity GQDs with a relatively uniform size distribution over
a short period of time; however, it was difficult to control the
size of the GQDs. He et al [147] prepared GQDs from car-
bon nanotubes. As depicted in figure 5(d), during the prepar-
ation process, the GQDs were functionalized with thiomalic
acid (TA), which enhanced the fluorescent properties of the
nanomaterials. Fullerene was also used to prepare GQDs, as
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Figure 4. Schematic of the three categories of GQD preparation methods: top-down, bottom-up and chemical methods.

demonstrated for the first time by Loh et al [137]. Recently,
Chen et al [141] prepared GQDs using fullerenes as a carbon
source in a solvent thermal method (illustrated in figure 5(d)),
which resulted in a high yield of GQDs at a relatively low
cost; however, the nanomaterials were nonuniform in size, as
shown in the atomic force microscope image in figure 5(f).
The quantum yield of the GQDs prepared by this method was
as high as 52.4% in the orange band (e.g. 617 nm), which is
important for the future development of red-emission GQDs.
The preparation of GQDs by electrolysis using carbon-based
materials as electrodes has been reported [148, 149]; however,
this process is time-consuming. Recently, Yang et al [140]
developed a novel carbon cloth electrode coated with nitrogen-
doped nanomesh graphene, which significantly improved the
efficiency of GQD preparation and the carbon source utiliza-
tion rate. The method, illustrated in figure 5(e), can produce a
relatively high concentration of nitrogen-doped GQDs.

In summary, the top-down method allows rapid, low-
cost mass production of GQDs [150–152], but the use of
external energy to click carbon materials into GQDs results
in poor controllability and nonuniformity of the GQD size.
Therefore, this method is unsuitable for producing GQDs with
well-controlled size, which is an essential requirement for
optical applications.

2.2. Bottom-up method

The preparation of GQDs using bottom-up methods mainly
involves the energy of small molecules with external energy.
The formation of GQDs through condensation provides

precise control of their sizes and morphologies, thus exhib-
iting an excellent quantum size effect. However, this method
often requires the use of a ligand, similar to other quantum
dot preparations [153–159], resulting in GQDs with a large
number of ligands.

The size and morphology of GQDs can be controlled by
selecting appropriate carbon sources and preparation condi-
tions. Recently, Park et al [160] reported the preparation of
the hexagonal structure of GQDs using D-glucose as a car-
bon source in a chemical liquid-phase catalytic condensation
polymerization technique. The size of the GQDs was in the
tens of nanometers with a uniform distribution. As shown in
figures 6(a)–(d), the GQDs exhibited a hexagonal structure
with an obvious grain boundary.

The use of microwaves in the synthesis of GQDs was first
demonstrated by Tang et al [164–166], who also demonstrated
the tunability of the optical bandgap of GQDs in their work.
Recently, Gu et al [161] applied the microwave technique to
prepare nitrogen-doped GQDs, as illustrated in figure 6(e).
By regulating the proportion of the precursors, they repor-
ted the synthesis of C3N4 and graphite acetylene quantum
dots, which are considered relatively new carbon materials.
Using the microwave technique, Lee et al [167] prepared
GQDs with functional groups passivated at their surfaces, and
the GQDs were used in green-emitting lasers. The electro-
chemical method is another effective way to synthesize small
molecules into GQDs, as shown in figure 6(f). Yang et al
[162] used a microplasma-assisted electrochemical method
to prepare GQDs with different sizes, which were depend-
ent on the size of precursor molecules. Zhao et al [163]
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Figure 5. Top-down approach for the preparation of GQDs. (a) Schematic illustrating the preparation of GQDs, which involves the physical
reduction of carbon materials. (b) Schematic depicting the use of laser ablation technique in the preparation of nitrogen-doped GQDs from
graphite flakes. Reprinted from [138], © 2019 Elsevier B.V. All rights reserved. (c) Schematic of the exfoliation and cutting mechanism of
graphite into GQDs using a shear mixer in supercritical CO2. Reprinted from [139], © 2018 Elsevier B.V. All rights reserved. (d) Schematic
depicting the synthesis of GQDs from carbon nanotubes or fullerene via a thiol-ene reaction or solvothermal treatment. (e) Schematic of
nitrogen-doped GQD preparation process by electrolysis. Reproduced from [140], with permission from Springer Nature. (f) Atomic force
microscope image of GQDs prepared by solvothermal method. Reprinted with permission from [141]. Copyright (2020) American
Chemical Society. (g) High-resolution transmission electron microscope images of GQDs prepared by pulsed laser ablation. Reprinted from
[138], © 2019 Elsevier B.V. All rights reserved.

revealed that the size of GQDs can be determined by pre-
cursor types. For example, GQDs prepared using a similar syn-
thesis method but different precursors produced GQDs of dif-
ferent sizes and therefore producing GQDs that can generate
blue, green and red fluorescent bands, as shown in figure 6(g).
Extensive research activities [164–166] have shown that the
bottom-up method is an effective technique for controlling
the size and morphology of GQDs. This allows the tuning of
the energy band structure of GQDs, which is invaluable for
many applications.

2.3. Chemical method

In contrast to the first two methods, the chemical method
mainly involves chemical changes of substances during the
formation of GQDs. First, carbon-containing compounds
are converted into the precursors of GQDs by a chemical
method. Next, the precursors are converted into GQDs by
external energy or other means. Many methods [168–172]
reported previously on the preparation of GQDs fall into this
category, but earlier papers often attribute their preparation
methods to either top-down or bottom-up method, according
to the precursors of GQDs. In this review, the preparation

method of GQDs is classified as a chemical method if
the starting materials undergo chemical changes. This
review discusses recent advancements in chemical methods
for preparing GQDs.

Inspired by the preparation of graphene from silicon
carbide (SiC) epitaxy, Cho et al [173] prepared high-
crystallinity and high-purity GQDs by hydrogen-assisted
pyrolysis of SiC. The preparation process is illustrated in
figure 7(a). GQDs were formed on the SiC surface by con-
trolling the process conditions, such as annealing temperat-
ure and vacuum pressure. The morphology of the GQDs was
characterized, as shown in figures 7(b)–(d), and they showed
good uniformity in size. Another frequently used chemical
method for the preparation of GQDs involves the use of small
molecules that contain carbon to prepare graphene through
hydrothermal synthesis, followed by etching or other tech-
niques to prepare GQDs. Recently, Nie et al [174] repor-
ted the preparation of graphene by a hydrothermal method
using l- or d-cysteine as a precursor; the graphene was sub-
sequently etched into GQDs. Figure 7(e) shows the prepara-
tion process and morphology of the GQDs. The fluorescence
quantum efficiency of the GQDs prepared using this method
was as high as 41.26%. Because of the etching process, the
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Figure 6. Bottom-up approach for the preparation of GQDs. (a) TEM image of 5 nm GQDs dispersed in methanol. (b) Self-assembled array
of 5 nm GQDs upon solvent transfer to hexane. (c) Low-magnification and (d) high-resolution images of 70 nm GQDs in methanol.
Reprinted with permission from [160]. Copyright (2019) American Chemical Society. (e) Schematic of the SPMA process used for the
preparation of 2D nanostructures. Reproduced from [161] with permission from the Royal Society of Chemistry. (f) Synthesis of
diameter-controlled colloidal GQDs using microplasmas. Schematic of the experimental setup for the microplasma-assisted electrochemical
synthesis of colloidal GQDs (left). Photograph showing the experimental setup for microplasma-assisted electrochemical synthesis of
GQDs (top right). Schematic of the microplasma-assisted electrochemical synthesis of diameter-controlled colloidal GQDs using
organosulfate micelles (bottom right). Reproduced from [162] with permission from the Royal Society of Chemistry. (g) Schematic of the
preparation of red, green and blue GQDs. Reprinted from [163], © 2020 Elsevier Inc. All rights reserved.

GQDs exhibited relatively poor crystallinity but good uni-
formity in size. Kapoor et al [175] demonstrated the synthesis
of graphene nanosheets from graphite electrodes via elec-
trochemical exfoliation method and subsequently performed
hydrothermal cutting of the graphene into GQDs with con-
trollable size and morphology. Natural materials are often
used as source [176–180] for the preparation of GQDs. These
materials would undergo chemical reactions to produce pre-
cursors necessary for the synthesis of GQDs. Therefore, it
is possible to introduce dopants into GQDs using a chem-
ical method, which can improve the doping efficiency. For
example, Xu et al [176] used lignosulfonates as the source
material, which underwent chemical reaction to produce pre-
cursors for hydrothermal synthesis of GQDs. During the syn-
thesis, small moleculeswere condensed intoGQDs dopedwith
sulfur, as illustrated in figure 7(f). Recent advances in chem-
ical methods have demonstrated many advantages, such as the
large volume production of GQDs at a relatively low cost and
good controllability.

In summary, the three methods of preparing GQDs have
advantages and disadvantages, which are summarized in
table 1. It can be seen from table 1 that the fluorescence
properties of GQDs can be significantly affected by the

preparation method, which can influence the morphology of
the GQDs and therefore their essential properties [181–183],
such as size (e.g. affecting quantum confinement), uniformity
(e.g. affecting fluorescence peak width) and edge effect (e.g.
affecting functionalization). Next, this review describes the
recent work performed to study the new properties of GQDs to
provide ideas for developing novel applications based on the
use of GQDs.

3. Properties of GQDs

GQDs exhibit many unique properties because of the charac-
teristics of graphene, which is confined to all three directions.
The quantum confinement and edge effect of GQDs manifest
extraordinary optical, electrical, thermal and magnetic prop-
erties. There has been a growing number of studies [200–
208] exploring new properties of GQDs that could potentially
lead to the development of novel applications. The optical
and thermal properties of GQDs have been studied extens-
ively because of their excellent fluorescent properties and
high thermal efficiency. Other properties of GQDs have also
received much attention over the past years. In this review, the
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Figure 7. Preparation of GQDs using chemical methods. (a) Schematic layout of the synthesis of high-quality GQDs via hydrogen-assisted
pyrolysis of SiC. Field-emission scanning electron microscope images of (b) pristine SiC plate and (c) GQDs on the SiC plate after
annealing at 1500 ◦C in hydrogen etching gas. (d) Transmission electron microscope (TEM) image of the detached GQDs (inset:
high-resolution transmission electron microscope image of the GQDs with their lattice spacing). Reproduced from [173]. CC BY 4.0. (e)
Schematic (top) depicting the synthesis of chiral CDs by hydrothermal treatment of chiral cysteines. TEM (left) and atomic force
microscope (middle) images of the GQDs. [174] John Wiley & Sons.© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (f)
Two-step synthesis method of GQDs from lignosulfonates. Reprinted from [176], © 2019 Elsevier B.V. All rights reserved.

optical, thermal, electrical and magnetic properties of GQDs
are discussed in detail.

3.1. Optical property

The optical properties of GQDs are completely different from
those of graphene. This is because of the quantum confine-
ment effect of GQDs, which leads to the opening of the energy
bandgap in graphene. The optical absorption of GQDs can be
in the UV-visible and near-infrared (NIR) range by controlling
the size and functionalization of GQDs. In addition, GQDs
also demonstrate excellent fluorescence properties because
of their quantum confinement and edge effects. The optical
properties of GQDs are focused on the modulation of the
optical absorption band as well as the fluorescence band of
GQDs and the improvement in their fluorescence efficiency. It
often requires the understanding of the up-conversion lumin-
escence mechanism, which involves the absorption of low-
energy excitation light and the emission of high-energy ultra-
violet or visible light [209–212].

The optical properties of GQDs have been studied
extensively [213–216]. The size, functionalization (e.g. dop-
ing) and morphology of GQDs have a significant impact on
their optical properties. For example, there is a relationship

between the size of GQDs and their optical bandgap [216].
As shown in figure 8(a), the optical bandgap decreased
as the transverse size of the GQDs increased. Sahu et al
[217] demonstrated this remarkable fluorescence properties
of GQDs, which showed different fluorescence wavelengths
for the GQD solutions with varying nanomaterial sizes (e.g.
from blue to red for GQDs with reduced size, as shown in
the inset of figure 8(a)). The morphology of GQDs can also
affect their optical properties. Several theoretical studies [218,
219] have reported the influence of the morphology of GQDs
on their optical properties. Recently, Yang et al [220] repor-
ted an experimental study on the optical properties of trian-
gular GQDs. Figures 8(b)–(c) show the TEM images of the
triangular GQDs. In addition to the modulation of the fluores-
cence spectrum by controlling the size of the triangular GQDs,
they found that the triangular GQDs had a significant influ-
ence on the fluorescence color purity. The optical proper-
ties of GQDs can also be affected by their edge effects. For
example, different functional groups at the edges of GQDs
can result in different optical properties. Theoretical studies
reported by Geethalakshmi et al [221] suggested that it is
unfavorable to obtain infrared fluorescence by increasing the
size of GQDs to reduce their energy bandgap. Instead, the
fluorescence of GQDs in the infrared band can be obtained
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Figure 8. Optical properties of GQDs. (a) Schematic of the change of optical bandgap with different sizes of GQDs (inset: fluorescence of
GQDs having different sizes). Reprinted with permission from [217]. Copyright (2019) American Chemical Society. (b) Synthesis route of
the NBE-T-CQDs by solvothermal treatment of PG triangulogen. Typical aberration-corrected HAADF-STEM image of R-NBE-T-CQDs
(inset: corresponding high-resolution image). (c) Wide-area TEM image of G-NBE-T-CQDs. The triangular projections are highlighted by
white contour lines. Reproduced from [220]. CC BY 4.0. (d) Reasonable mechanism behind blue shift of O-CDs at pH 13. Reprinted with
permission from [217] Copyright (2019) American Chemical Society. (e) Predicted energy level diagrams for graphene with different
functional groups: i, H-GQDs; ii, NH2-GQDs; iii, pMR-GQDs; iv, DAN-GQDs. The schematics show the chemical structures used for the
theoretical calculations. The isosurface presents the HOMO and LUMO [224]. John Wiley & Sons.© 2020 The Chemical Society of Japan
& Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) Schematic of the possible energy levels of the PL-tunable GQDs. Reprinted from
[231], © 2020 Elsevier B.V. All rights reserved.

through the action of the edge functional groups. This was
demonstrated experimentally by Sahu et al [217] and Xiong
et al [222]. They reported the influence of oxygen functional
groups at the edges of GQDs on the fluorescence properties
of GQDs. The fluorescence spectral range of GQDs can be
influenced by their size and surface functional groups, as illus-
trated in the left diagram of figure 8(d). GQDs with different
functional groups in solutions and films would result in a shift
in their fluorescence peaks, as observed by Wang et al [223]
and illustrated in the right diagram of figure 8(d). Figure 8(e)
shows schematics illustrating the modulation of the optical
energy bandgap of the GQDs functionalized with different
functional groups. The energy bandgap of GQDs functional-
ized with H, NH2, pMR and DAN functional groups can vary
from 3.8 to 2.3 eV [224]. The degree of graphitization can
influence the optical properties of GQDs, as reported by Wei
et al [225]. They observed a reduction in the optical bandgap
of GQDs (i.e. leading to a fluorescence redshift) as the degree
of graphitization of GQDs increased. The optical properties
of GQDs can also be affected by the introduction of hetero-
geneous atoms, such as elements from Group V and/or VI,
into the GQDs [226–230]. The introduction of sulfur atoms

into GQDs is commonly studied to determine their influence
on the optical properties of GQDs. Recently, Fan et al [231]
introduced two different elements, namely nitrogen and sulfur
atoms, into GQDs and observed a change in their fluorescence
properties, which were attributed to the impurity level pro-
duced by the heterogeneous atoms, as illustrated in figure 8(f).
Other optical properties of GQDs have been studied recently,
such as the stress of GQDs for optical modulation at infrared
wavelengths [232], intrinsic GQDs exhibiting a single-photon
emission phenomenon [233] and nonlinear optical proper-
ties of GQDs [234, 235]. An enhanced understanding of the
optical properties of GQDs allows further exploration and
development of GQD applications, particularly in integrated
photonic devices [236].

3.2. Thermal property

The transformation between field and heat conduction can be
observed in GQDs due to the quantum confinement of the nan-
omaterials. When energy is incident on the GQDs, electrons
are confined within the GQDs, with their edges as boundaries.
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Figure 9. Other properties of GQDs. (a) Schematic of the photothermal conversion of GQDs. (b) Infrared thermal images of GQDs
(100 µg ml−1) under NIR irradiation (808 nm; 2 W cm−2). Reprinted from [238], © 2020 Elsevier B.V. All rights reserved. (c) Optical
absorption spectrum of GQDs in the NIR region from 650 to 1300 nm (inset: TEM image of GQDs (left), infrared thermographic images of
GQD solutions filled in centrifuge tubes under continuous 808 and 1064 nm laser irradiation from 0 to 5 min (middle) and photograph of the
solution (right)). Reprinted from [239], © 2020 Elsevier Ltd. All rights reserved. (d) Schematic of electron injection from GQDs into
organic materials. Reprinted from [243], with permission from AIP Publishing. (e) Carrier mobility, concentration and resistivity for the
ITO substrate, GQDs with different wet transfer numbers and graphene film. Reprinted from [244], © 2019 Elsevier B.V. All rights
reserved. (f) Dependence of magnetic moment of GQDs on annealing temperature (inset: synthetic scheme of GQD samples). Reprinted
from [245], © 2019 Elsevier B.V. All rights reserved. (g) Spin density isosurfaces of GQDs in antiferromagnetic (left) and ferromagnetic
(right) couplings at the inter-edges. The red and blue isosurfaces represent the spin-up and spin-down states, respectively. Reproduced from
[246]. CC BY 4.0. (h) Variation in dc conductivity of GQDs with temperature. Reprinted from [247] with permission from AIP Publishing.
(i) Schemes of GQDs/SWCNTs. Reprinted with permission from [240]. Copyright (2020) American Chemical Society.

Because of the localized electrons and high electron mobil-
ity of the GQDs, the edges of the GQDs become charge
aggregation regions that ease the transfer of charge in GQD-
hybrid materials [237]. Li et al [238] found that GQDs can
convert infrared light into heat energy. Figure 9(a) shows the
photothermal conversion of the GQDs. The temperature of
the GQD solution irradiated by the NIR laser was reported
to change drastically within 8 min, as shown in figure 9(b).
Shen et al [239] reported that GQDs with nitrogen-containing
groups exhibited greater absorption effect to NIR band of 808
and 1064 nm, as shown in figure 9(c). When the nitrogen con-
tent of the GQDs was increased from 1.68 at. % to 4.3 at. %,
the photothermal conversion efficiency increased from 43.6%
to 81.3% under laser irradiation of 808 and 1064 nm. The tem-
perature of the GQD solution increased rapidly in less than 5
min, as shown in figure 9(c). The morphology and solution of
the GQDs are shown in figure 9(c). In addition, the coupling of
GQDs with carbon nanotubes can improve the thermoelectric
properties of carbon nanotubes, as demonstrated by Du et al
[240]. They reported an improvement in the power factor and
a reduction in the thermal conductivity of carbon nanotubes

upon coupling of GQDs with carbon nanotubes, as shown in
figure 9(i). The thermal conductivity of GQDs has attracted
significant interest [208, 241, 242]. Studies include function-
alization of GQDs and the preparation of soluble GQDs to
enhance heat dissipation and thermal control in a solution.

3.3. Electronic property

To date, only a few experimental studies have been performed
to study the electrical properties of GQDs because of the small
size of the nanomaterials, ranging from a few nanometers to
tens of nanometers. Recently, Lin et al [243] reported the
effective injection of electrons from GQDs into organic com-
pounds, as illustrated in figure 9(d). They performed steady-
state and time-resolved photoluminescence techniques in their
studies. To understand the electrical properties of materials, it
is often necessary to study their electrical parameters, such as
carrier mobility and resistivity. Fu and Lin [244] studied the
carrier mobility, resistivity and carrier concentration of GQDs
with different numbers of layers. They found that the elec-
trical properties of GQDs were significantly influenced by the
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number of layers; for example, GQDs with an increased num-
ber of layers would lead to a decline in their carrier mobility,
which can be attributed to the interlayer coupling that influ-
ences the ability to transfer charge. Figure 9(e) shows a plot of
several electrical parameters against the number of GQD lay-
ers. Interestingly, GQDs can be converted from insulators to
semiconductors at a certain critical temperature, as discovered
by Sinha et al [247]. They recorded a large change in the elec-
trical conductivity of the GQDs when the temperature was
approximately 400 K, as shown in figure 9(h). More recently,
superconductivity has been reported in a new carbon material
[248], which is of great interest to the scientific community.
Although there are only a few studies on the electrical prop-
erties of GQDs [249, 250], this topic continues to attract the
attention of many researchers, as it has significant implications
for the use of GQDs in nanoelectronic devices.

3.4. Magnetic property

Owing to the high edge-to-area ratio of GQDs, a large number
of spin-polarized edge states may exist that could theoretically
generate attractive magnetic properties [251]. The magnetic
properties of GQDs can be modulated by their morphology
[252], size [253] and other external factors [254] due to the
effect of localized electrons at the edge states. Sun et al [245]
found that the magnetic properties of GQDs with oxygen-
containing functional groups were significantly modulated by
annealing temperature. For example, the magnetic moment of
the GQDs decreased significantly when the annealing temper-
ature increased and the oxygen content decreased, as shown in
figure 9(f). The discovery of this phenomenon will enable the
development of novel applications of GQDs in spin devices.
By coupling antiferromagnetic and ferromagnetic with GQDs,
Yang et al [246] found that the spin states at the edges of
the GQDs experienced significant changes, suggesting that the
magnetic properties of the GQDs were determined by the local
electronic states at their edges, as illustrated in figure 9(g).
Much of the research performed [255, 256] on the magnetic
properties of GQDs is intended for the potential use of car-
bon materials in spin devices, which would benefit from the
quantum confinement and edge effects of GQDs.

4. Functionalization

Themany unique properties described in the preceding section
are attributed to the quantum confinement and edge effects
of the GQDs. To explore other functionalities of GQDs for
novel applications or to improve their unique properties, the
nanomaterials can be modified by means of functionalization,
which either takes the form of doping or composite forma-
tion. Similar to their parent material (i.e. graphene), intrinsic
GQDs have limited chemically active sites [257, 258] that
restrict the performance of the nanomaterials, resulting in
low fluorescence quantum efficiency and chemical catalytic
activity. Doping is highly effective for GQDs due to their
edge effect and can significantly improve the chemical activ-
ity of the nanomaterials. The large specific surface area of

intrinsic GQDs makes them attractive for forming composites
with other materials. GQDs can form composites with organic
[259–261] and inorganic [262–266] materials. In this section,
progress in the functionalization of GQDs over the past two
years is discussed in detail.

4.1. Doping

Doping is an effective method to improve the properties
of materials. Single-element [267–269] and multielement
[270–272] doping of GQDs has been studied extensively.
Nitrogen-doped GQDs [273–276] have been studied extens-
ively and have three different carbon–nitrogen atomic com-
binations: graphitic nitrogen, pyridinic nitrogen and pyrrolic
nitrogen. Interestingly, graphitic nitrogen had the greatest
influence on the performance of the GQDs. Hence, the prop-
erties and performance of GQDs can be enhanced by doping
them with heterogeneous atoms, as illustrated in figure 10(a).
Controlled doping of GQDs and the ability to control their
properties is of great importance. Kim et al [277] demon-
strated the use of laser ablation technique in liquid to pro-
duce nitrogen-doped GQDs from carbon nano-onions in a
mixed solution containing nitrogen. The nitrogen content in
GQDs can be regulated by controlling the laser paramet-
ers and nitrogen concentration in the solution. This tech-
nique is illustrated in figure 10(b). Zhang et al [278] repor-
ted a simple, environmentally friendly, one-step method for
preparing nitrogen-doped GQDs. This involved the opening
of fullerenes using the microwave-activated nitrogen plasma
technique, as illustrated in figure 10(c). The method produced
crystalline nitrogen-doped GQDs, which exhibited blue fluor-
escence in a solution. Furthermore, the fluorescence intens-
ity decreases when the concentration of iron ions in the solu-
tion increases; hence, the nitrogen-doped GQDs can be used in
biosensing applications.

Chemical vapor deposition (CVD) is often used to pre-
pare graphene films. However, Kumar et al [279] demon-
strated the use of CVD to produce nitrogen-doped GQDs
using chitosan as a carbon and nitrogen source. Chitosan
was decomposed at high temperature into carbon compounds
containing nitrogen, which were absorbed at the surface of
copper foil. The nucleation of the compounds subsequently
led to the formation of nitrogen-doped GQDs, as illustrated
in figure 10(f). Doping of GQDs with nitrogen can effect-
ively improve their optical properties, as demonstrated by
Khan and Kim [281]. They found that the absorption spec-
tra of nitrogen-doped GQDs would extend into the low-energy
photon range, as shown in figure 10(f). Moreover, doping
GQDs with nitrogen introduced more chemically active sites
and enhanced the fluorescence quantum efficiency to 99%.
Kuo et al [283] found that the fluorescence of nitrogen-
doped GQDs could cover a wide spectrum range (e.g. from
ultraviolet to NIR) when the size of the doped GQDs was
regulated, hence indicating that the size-dependent fluores-
cence of GQDs is still significant. The doping of metallic
elements in GQDs has recently received much attention. As
shown in figure 10(g), isopropyl alcohol containing aluminum,
gallium salt and nonmetallic boric acidwere used to synthesize

13



Mater. Futures 3 (2024) 022301 Topical Review

Figure 10. Doping of GQDs by heteroatoms. (a) Schematic of doping of GQDs with heteroatoms for enhancing their performance. (b)
Schematic of controlled nitrogen doping of GQDs through laser ablation in aqueous solutions. Reprinted with permission from [277].
Copyright (2019) American Chemical Society. (c) Illustration of the nitrogen-doped GQD fabrication process. Reprinted with permission
from [278]. Copyright (2018) American Chemical Society. (d) Schematic of the synthesis of nitrogen-doped GQDs by chemical vapor
deposition. Reprinted with permission from [279]. Copyright (2018) American Chemical Society. (e) Schematic depicting
nitrogen-and-iron-co-doped GQDs for the detection of ferric ions in biological fluids and cellular imaging. Reproduced from [280] with
permission from the Royal Society of Chemistry. (f) Jablonski diagram (top) representing the energy levels of nitrogen-doped GQDs along
with associated absorption, PLE and PL spectra (bottom) and optical image of nitrogen-doped GQD solution. Reprinted with permission
from [281]. Copyright (2018) American Chemical Society. (g) Synthesis scheme of GQDs with different doping elements via solvothermal
method. Reprinted from [282], © 2020 Elsevier B.V. All rights reserved.

aluminum-, gallium- and boron-doped GQDs, respectively
[282]. These metal-doped GQDs demonstrated a significant
improvement in their fluorescence quantum efficiency, which
was due to the chemical bonds of carbon–nitrogen–metal–
oxygen. Gao et al [280] reported on the synthesis of nitrogen-
and-iron-co-doped GQDs using hydrothermal method. These
GQDs were used for the detection of iron ions in biological
samples and for cellular imaging, as shown in figure 10(e).

There has been a significant amount of research con-
ducted on the subject of doping GQDs, which includes
single-element doping with elements, such as sulfur [184,
284, 285], phosphorus [286], nitrogen [287], fluorine [288],
boron [289] and silicon [290], as well as multielement dop-
ing with combinations, such as nitrogen–sulfur [291–296],
nitrogen–phosphorus [297, 298], nitrogen–boron [299–301]
and nitrogen–oxygen [302, 303]. To achieve better per-
formance, multielement doping consisting of four elements
has also been reported [304]. Recently, much progress has
been made in the development of metal-doped GQDs. For
example, the doping of GQDs with magnesium [305] and
rare metal elements [306] has been studied for biological
sensing and imaging applications. Furthermore, GQDs doped

with selenium [307] have been explored for therapeutic
applications, such as in the treatment of acute kidney injury. In
summary, doping of GQDs [308–316] has been demonstrated
to be an effective way to improve the performance of GQDs,
which are beneficial for many applications.

4.2. Composite

GQDs can form composites with other materials, which can be
inorganic [317–321] or organic [322–331], either to develop
a novel material system with new properties or to enhance
the properties of the secondary material, as illustrated in
figure 11(a). For example, the edge effect of GQDs would
facilitate charge transfer between two materials, leading to an
enhancement in the performance of GQD composite materi-
als. This section of the review provides a detailed description
of the GQD composite materials.

4.2.1 Composite with organic materials. The formation
of GQD composites with organic materials has several
advantages. For example, GQDs can be embedded in organic
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Figure 11. Composite of GQDs with other functional materials. (a) Schematic of the GQD composite with organic or inorganic materials to
improve performance. (b) Illustrative representation of the formation and entrapment of CQDs within the PMMA structure. Reprinted from
[332], © 2020 Elsevier Ltd. All rights reserved. (c) Chemical structure of the GQD: aerogel. Reprinted with permission from [333].
Copyright (2018) American Chemical Society. (d) Strategy for designing of F-WLED using DCM@N-GQDs0.7 LD as the light emitter and
n-UV light-emitting diode as the pumping source (inset: digital photograph of DCM@NGQDs0.7 LD in the PVA matrix under UV
radiation). (e) Variation of CIE color coordinates of the FRET-based LD system with different DCM concentrations. Reprinted from [334],
© 2020 Elsevier Inc. All rights reserved. (f) High-resolution transmission electron microscope (HRTEM) images of GQDs (left inset:
related size distribution). (g) Pulverized GQD–MF microspheres and (h) HRTEM images of the GQD–MF microspheres. (i) SEM image of
the GQD–MF microspheres (inset: related size distribution). Reproduced from [335]. CC BY 4.0. (j) Scheme of assembly process of GQDs
and PEDOT:PSS. Reproduced from [336]. CC BY 4.0.

materials, allowing for effective charge transfer. Moreover, the
functional groups at the edge of the GQDs can form a strong
and effective bond with the organic materials, thus easing the
preparation of the GQD composites. Arthisree and Madhuri
[337] prepared a composite film consisting of GQDs, polypro-
pylene nitrile and polyaniline. The composite film was used
to prepare a supercapacitor, which exhibited excellent per-
formance of several orders of magnitude better than a film
without the GQDs. The implementation of GQDs in poly-
mer compounds can also improve the optical properties of
the polymer, as demonstrated by Arthisree et al [338]. They
prepared a composite of GQDs and polyvinyl butyral and
reported an enhancement in the fluorescence spectrum of the
GQD/polymer composite. This is due to the bonding of the
GQD edge with hydroxyl and carboxyl groups in the poly-
mer, leading to an increase in the number of chemical activ-
ity sites, which are favorable to the fluorescence performance
of the composite. Using the bottom-up synthesis method, a
composite of GQDs and polymer can be prepared using a
one-step method. As shown in figure 11(b), Sarno et al [332]
prepared a composite of GQDs and poly (methyl methac-
rylate) using oleic and citric acids via a one-step method.
Traces of GQDs, acting as lubricant additives were found
in the composite, which resulted in a remarkable improve-
ment in the lubrication characteristics of the polymer. Such

a GQD/polymer composite can therefore offer a new type of
lubricant. He et al [335] reported the preparation of a white
light-emitting device using a composite film of GQDs and
melamine formaldehyde (MF). The GQDswere aggregated by
encapsulation in theMFmicrosphere, and the concentration of
the GQDs can effectively alter the fluorescence properties of
the composite film. The TEM images of the GQD–MF micro-
sphere are shown in figures 11(f)–(i).

In addition, polymers containing GQDs exhibit excellent
thermoelectric properties. Du et al [336] reported on the
synthesis of GQDs/PEDOT:PSS composite that significantly
improved the thermoelectric properties of PEDOT:PSS and
demonstrated 550% increase in power consumption factor
compared to pure PEDOT:PSS. The assembly process of the
GQDs and PEDOT:PSS is illustrated in figure 11(j). The sta-
bility of GQDs can be enhanced by developing a strong chem-
ical bond with organic compounds. Martín–Pacheco et al
[333] reported on the synthesis of GQD composite based on
cationic covalent network, as depicted in figure 11(c). The
polymeric network containing GQDs exhibited remarkable
physical and optical stabilities, which are crucial for bio-
sensing applications. The properties of the GQD composite
could be influenced by both GQDs and organic compounds,
as demonstrated by Pramanik et al [334]. They reported the
preparation of white light-emitting luminescent composite
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Figure 12. Composite of GQDs with various inorganic substances. (a) Schematic of the photoluminescence-functionalized composite
PCMs. Reprinted from [348], © 2018 Published by Elsevier B.V. (b) Schematic of the adsorption mechanism of H2O molecules on
composite sensing layer. Reprinted with permission from [352]. Copyright (2020) American Chemical Society. (c) Synthesis scheme of
interlayer-embedded GQDs endows V2O5 with the hydrothermal method. Reproduced from [361] with permission from the Royal Society
of Chemistry. (d) Schematic of the fabrication of GQD@boron oxynitride by microwave heating [370]. John Wiley & Sons.© 2018
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Schematic of the band configuration at the interface of the GQD−SnO2/ZnO
nanostructure in different atmospheres. Reprinted with permission from [353]. Copyright (2020) American Chemical Society. (f) Schematic
of the structure of Ag@S-GQDs nanocomposite. Reproduced from [373] with permission from the Royal Society of Chemistry.

films by tuning the concentrations of GQDs and DCM dye, as
illustrated in figures 11(d)–(e).

4.2.2 Composite with inorganic materials. Much research
has been reported on the synthesis of GQD-based compos-
ites with different inorganic materials, which can enhance
the properties of inorganic materials for specific applica-
tions. For example, there are reports on the preparation
of GQD-based composites with inorganic materials in the
form of flakes [339], layers [340], rods [341], nanowires
[342], networks [343] and other shapes [344–347], result-
ing in a remarkable improvement in the properties of inor-
ganic materials. Chen et al [348] demonstrated the integ-
ration of GQDs in a metal–organic framework to form a
fluorescence-functionalized phase change material (PCM),
which was excellent in thermal energy and fluorescence har-
vesting, as illustrated in figure 12(a). In addition, compos-
ites of GQDs and zinc oxide have been widely studied for
applications in solar cells, photodetectors, photocatalysis and
other fields [349–351]. Recently, Wu et al [352] developed a
flexible wearable humidity sensor based on GQDs and zinc
oxide nanowire composites. The formation of a p-n junc-
tion between the GQDs and zinc oxide nanowires and the

large specific surface areas of the nanomaterials contributed
to the ultrahigh sensitivity of the device, as illustrated in
figure 12(b). In addition, Shao et al [353] prepared a highly
selective and responsive gas sensor based on GQD-modified
metal oxide materials, consisting of porous and layered struc-
tures of tin dioxide and zinc oxide nanomaterials forming n-p-
n heterojunctions with p-type GQDs, as shown in figure 12(e).
Furthermore, Ahmadi et al [354] prepared electrochemical
and photoelectrochemical sensors based on nanocomposites
of GQDs, titania and ceria for the detection of dopamine.
Compared with the electrochemical sensor, the photoelectro-
chemical sensor exhibited a lower limit of detection, better
sensitivity and a wider detection range. The use of GQD-
based composites with inorganic materials in capacitors for
energy storage applications has also attracted considerable
attention [355–359]. GQDs have significant advantages for
improving the performance of capacitors because of their large
specific surface area and good electrical conductivity. Yun
et al [360] prepared a 3D composite aerogel, comprising of
GQDs, reduced graphene oxide (rGO) and porous iron oxide.
The composite was used as an anode material for alkaline
aqueous batteries, which demonstrated an ultrahigh specific
capacity and excellent cycle performance, partly due to the
good electrical conductivity of the GQDs. Furthermore, GQDs
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play an important role in the future development of all solid-
state capacitors, thereby circumventing the need for electro-
lytes in capacitors. Recently, Ganganboina et al [361] intro-
duced GQDs between layers of vanadium oxide nanosheets to
form nanocomposites of GQDs and vanadium oxide for use as
anode electrodes in energy storage, as shown in figure 12(c).
A small amount of GQDs can significantly improve the per-
formance of energy storage batteries. Their work demon-
strated the novel use of GQDs in developing nanocomposites
with multilayers of two-dimensional materials for energy stor-
age applications. The enhancement of the optical properties
of GQD-based composites with inorganic materials has been
reported by several groups [362–369]. Park et al [370] syn-
thesized GQDs and boron oxynitride composite using a one-
step microwave heating process, as illustrated in figure 12(d).
The composite exhibited a high photoluminescence quantum
yield (PL-QY) of up to 36.4%, which was eightfold higher
than that of pristine GQD in water. Charge transfer between
GQDs and titanium dioxide nanoplates in nanocomposites
was studied by Murali et al [371]. The large specific sur-
face area and edge effect of the GQDs would promote charge
transfer between the two materials, which was used in gas
sensing of nitric oxide. Cobalt/nickel-based capacitors can
be found in many commercial applications; hence, improve-
ment in their performance is of great commercial interest. Luo
et al [372] reported on the synthesis of composites consist-
ing of tremella-like NiCo2O4 coated with GQDs. The com-
posite exhibited an excellent specific capacitance and energy
density due to the abundant edge sites of the GQDs. GQD-
based composites can also be used for antibacterial applic-
ations, as demonstrated by Kadian et al [373]. They pre-
pared nanocomposites consisting of silver nanoparticles dec-
orated with sulfur-doped GQDs, as shown in figure 12(f). The
nanocomposites demonstrated good dispersion and stability
with a significant improvement in antibacterial activity. Cyclic
stability and thermal safety are of paramount importance in
supercapacitors. Sun et al [374] coated the surface of cobalt–
lithium nanoparticles with GQDs, thus forming a stable con-
ductive layer at the surface of the nanoparticles. The thermal
safety and cycling performance of the cobalt–lithium capa-
citors improved remarkably due to the excellent conductiv-
ity and stability and the large specific surface area of GQDs.
Yuan et al [375] reported the synthesis of nanocomposite con-
sisting of graphitic carbon nitride nanorods decorated with
GQDs using a hydrothermal method, which allowed the form-
ation of closely contacted nanorods and GQD interface. An
improvement in the photocatalytic activity of the nanocom-
posite for the removal of antibiotics was observed compared
to that of the pristine nanorods. GQDs decorated on the surface
of multiwall carbon nanotubes were studied by Arumugasamy
et al [376]. The nanocomposite was used in electrochem-
ical sensor for the detection of dopamine. The incorporation
of GQDs enhanced the electrocatalytic activity, sensitivity,
selectivity and reproducibility of the sensor. The properties of
inorganic materials have been shown to improve significantly
upon incorporation of GQDs [377–390]. The excellent proper-
ties of the GQD-based composite materials could lead to many
novel applications.

5. Applications

GQDs have many exciting applications in various fields due
to their excellent properties and facile preparation techniques.
The size dependence of GQDs on their optical and electronic
properties has enabled the application of nanomaterials in the
field of photoelectronics, such as broadband photodetectors
[391], solar cells [273], white light-emitting diodes (LEDs)
[141], fluorescent probes [110], lasers [167] and integrated
optics [224]. As GQDs are members of the carbon family and
have similar biological compatibility, especially GQDs in the
nanometer regime, the nanomaterials have been explored for
use in various biological applications, such as biomedicine
[307], biological markers [98] and cancer treatment [111].
The ease of functionalization of GQDs has enabled them
to find important applications in the field of agriculture for
the removal of contaminants and detection of hazardous ana-
lytes, as well as agricultural nitrogen engineering using GQD-
based nanocomposites [392]. The large specific surface area
of GQDs has led to their utilization in various applications,
such as in anticorrosion [393] and gas sensor [394]. In addi-
tion, Janus micromotors have been developed using modified
GQDs to provide ultrafast detection of bacterial endotoxins
[395]. In recent years, the characteristics and properties of
GQDs have been studied extensively, which has brought
benefits to many different fields of application. This section
provides an overview of the different applications of GQDs,
ranging from biomedical to energy applications.

5.1. Biomedical applications

GQDs have attracted considerable attention from research-
ers in the field of biomedicine due to their nanometer-scale
size and biocompatibility [125, 396–404]. The nanometer-
scale size of GQDs allows them to penetrate cells for dia-
gnostic and therapeutic applications. Furthermore, the ease
of functionalization of the edges of GQDs has led to the
use of nanomaterials for drug delivery into cells, thereby
improving the therapeutic effects of drugs. The remarkable
thermal and electrical properties of GQDs allow the effect-
ive transformation of light energy into heat energy under
NIR light irradiation, making them suitable for use in pho-
tothermal and photodynamic therapies. In addition, GQDs
have been found to exhibit special properties that act as
peroxidase or oxidase via electron transportation to con-
vert certain biomolecules from normal species (e.g. H2O2

and 3O2) to cytotoxic reactive oxygen species (ROS) (e.g.
˙OH and 1O2) upon light irradiation [237], thus promoting
wound healing. The strong and broad fluorescence properties
of GQDs have benefitted applications, such as bio-imaging
[405, 406] and metal ion detection [407–412] in a variety of
fields. Indeed, GQDs have many important applications in the
biomedical field, ranging from diagnostics to treatment, as
illustrated in figure 13(a).

5.1.1 Cancer cell and tumor therapy. Recently, Ruiyi et al
[413] reported the use of GQDs functionalized with folic
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Figure 13. Biological applications of GQDs. (a) Bionanotechnology applications of GQDs, ranging from drug carriers and biotherapy to
bioimaging and probe applications. (b) Schematic of the fabrication of an electrochemical sensing platform for cancer cells. Reprinted from
[413], © 2020 Elsevier B.V. All rights reserved. (c) Schematic of the synthesis process of FA-SGQDs and their application in targeted
bioimaging of FR overexpressed cancer cells. Reproduced from [414], with permission from Springer Nature. (d) Schematic of attaching
anti-PSMA antibody on GQDs. Reproduced from [415] with permission from the Royal Society of Chemistry. (e) Theranostic platform for
intracellular miRNA detection and combined photothermal therapy (PTT)/photodynamic therapy (PDT) [416]. John Wiley & Sons.© 2020
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

acid and glutamic acid in gold-coated palladium nanoparticles
(acting as redox probes) for electrochemical detection of
circulating cancer cells in human blood. Figure 13(b) shows
the preparation process of the hybrid nanomaterials. The folic
acid- and glutamic acid-functionalized GQDs would offer
strong binding to cancer cells and provide reversible redox
reactions that produce electrochemical signals upon binding.
Such a hybrid significantly enhances the electrocatalytic activ-
ity and redox characteristics, leading to a low detection limit
of two cells per milliliter. Kadian et al [414] prepared sulfur-
doped GQDs functionalized with folic acid and used them
as a fluorescent probe, which exhibited high quantum effi-
ciency of 78%. The functionalized GQDs were capable of
identifying folate receptor (FR)-positive and FR-negative can-
cer cells, as depicted in figure 13(c). The edge of the GQDs can
be modified with antibodies specific to cancer-derived exo-
somes for medical diagnosis, as demonstrated by Barati et al
[415]. Figure 13(d) shows a schematic of the GQDs immob-
ilized with antibodies that can be used for the detection of
exosomes. The ability to immobilize antibodies in GQDs will
allow the future development of GQD-based immunosensors
for the rapid detection of diseases. GQDs exhibit a high photo-
thermal conversion efficiency under NIR light irradiation. This
characteristic has enabled the development of photochromic
nanoparticles for photoacoustic imaging-guided photothermal

chemotherapy [416]. Once the GQDs enter cells, such as viral
or cancer cells, the temperature of the GQDs increases upon
irradiation with NIR light, resulting in selective cell death due
to the elevated temperature, hence leading to biological ther-
apy. This is the basic principle of photothermal therapy (PTT)
using GQDs. In addition, functionalized GQDs, which exhibit
high singlet oxygen generation, are suitable for use in pho-
todynamic therapy (PDT). The production of singlet oxygen
promotes the redox reaction in cells, thus causing rapid decay
of cells. The mechanism of these two therapeutic strategies
using GQDs for cancer treatment related to irradiation with
light energy is shown in figure 13(e).

The use of GQDs to improve disease diagnosis and treat-
ment has been demonstrated by several research groups [417–
421]. Composites based on GQDs have also been studied by
many researchers to further enhance their efficiency in bio-
medical applications. Recently, Zheng et al [422] prepared
porous copper sulfide nanoparticles decorated with GQDs for
controlled intracellular drug release. Anti-cancer drugs, such
as doxorubicin, were embedded in the porous copper sulf-
ide nanoparticles. Upon irradiation with NIR light, the drug
was released due to an increase in temperature experienced
by the nanocomposite of doxorubicin, GQDs and copper sulf-
ide nanoparticles. Therefore, the nanocomposite provided a
combination of PTT and chemotherapy for the treatment of
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Figure 14. (a) Schematic representation of multifunctional DOX-CuS@GQDs NPs: fabrication process and illustration of controlled
intracellular release and combined photothermal chemotherapy. (b) Schematic representation of targeted RBC-membrane-enveloped
nanosponge-mediated tumor accumulation and drug/GQD penetration. Reprinted with permission from [423]. Copyright (2018) American
Chemical Society. (c)–(f) Confocal images of MDA-MB-231 cells after different treatments and co-staining with calcein AM and PI; the
green and red areas represent the regions of living and dead cells, respectively. Reproduced from [422], with permission from Springer
Nature. (g)–(l) Confocal cell imaging (488 nm laser excitation) of HeLa cells with R-GQDs at different temperatures: 32 ◦C (g), (j), 37 ◦C
(h), (k), and 42 ◦C (i), (l). (g), (h) and (i) are the fluorescence images of HeLa cells; (j), (k) and (l) are the merged (dark field merged with
bright field) pictures. Reprinted with permission from [424]. Copyright (2020) American Chemical Society. (m) Schematic display of
GQD-based nanocomposites for diagnosing cancer biomarker APE1 in living cells. Reprinted with permission from [425]. Copyright
(2020) American Chemical Society. (n)–(s) Effects of nontoxic doses of GO-100 and GQDs-50 (15 µg ml−1) on MMP. The cells were
stained with rhodamine 123. Fluorescence microscopy images of MCF-7. Reprinted from [426], © 2020 Elsevier Ltd. All rights reserved.
(t) Laser confocal scanning microscopy (LCSM) images of merged images of breast CSCs incubated with CSCNP-R-CQDs (200 µl
1 mg ml−1) for 12 h and breast CSCs stained with DAPI (inset: photographs of the CSCNP-R-CQD aqueous solution under UV light
(365 nm)). Reprinted with permission from [427]. Copyright (2020) American Chemical Society.

cancer, as illustrated in figure 14(a). Figures 14(c)–(f) show
confocal images of cancer cells after different treatments.
Sung et al [423] reported on the preparation of GQDs and
docetaxel composite supported with red blood cell membrane.
The nanocomposite served as a stealth agent and photolytic
carrier, which could deliver drugs deep into the tumor tissue
via the bloodstream. A combination of chemotherapy and pho-
tolytic effects from the GQD-based nanocomposite upon irra-
diation with NIR light effectively damaged and inhibited the
tumor cells, as illustrated in figure 14(b). GQDs are often used
as markers for biological imaging. Interestingly, the fluores-
cence properties of GQDs are not only dependent on their size
and functional groups but also on their temperature, as dis-
covered by Gao et al [424]. Figures 14(g)–(l) show the con-
focal images of HeLa cells with GQDs as fluorescent labels
at different temperatures. Their work suggests that GQDs are
suitable for use as biological thermoprobes and selective tem-
perature detectors, hence adding new functionalities to GQD
fluorescent probes. Early detection of cancer is important for

the successful treatment of the disease. Much effort has been
made to study the use of GQDs for cancer diagnosis. Zhang
et al [425] designed and prepared nanocomposites of GQDs
and single-molecule DNA as diagnostic probes to detect cel-
lular apurinic/apyrimidinic endonuclease 1 (APE1), which
has been identified as a predictive cancer biomarker. A large
accumulative fluorescent signal in living cells can be gener-
ated by a small quantity of cellular APE1 through repeated
enzyme catalytic circulation, as depicted in figure 14(m).
The nanocomposite can also be used for the highly sensit-
ive and specific detection of other APE1-dysregulated dis-
eases. GQDs are attractive nanomaterials for application in
the field of biotherapy due to their excellent biocompatib-
ility and nontoxicity. The toxicity of GQDs and GO was
studied by Hashemi et al [426]. They found that GQDs
exhibited lower toxicity than GO, as the latter had a greater
influence on the basal level of genes and mitochondrial mem-
brane potential (MMP). Figures 14(n)–(s) show the fluores-
cence microscopy images of MCF-7 cells with nontoxic doses
of GO and GQDs.
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Figure 15. (a) Morphology of His-GQD/hemin, as recorded by TEM. (b) Proposed structure of His-GQD/hemin containing hemin,
histidine functional groups and the hydrophobic basal plane of GQD. Reproduced from [428], with permission from Springer Nature. (c)
Molecular dynamics simulations confirmed the dependency of A30 ssDNA adsorption on the GQD oxidation level. The final configurations
of A30 ssDNA with GQD-0%, GQD-2% and GQD-17% (from left to right) for a 100 ns simulation. Reproduced from [429]. CC BY 4.0. (d)
TEM images of preformed α-syn fibrils at various time points (6 and 12 h, and 1, 3 and 7 d) in the absence (top) and presence (bottom) of
the GQDs. Reproduced from [430], with permission from Springer Nature. (e) Photograph of the doxorubicin-loaded CMC/GQDs.
Reprinted from [433], © 2019 Elsevier B.V. All rights reserved. (f) An in vivoMRI of a nude mouse is shown (left) pre-injection, and then
(right) 30 min post-injection with GP6G-3 via the tail vein. The mouse was injected subcutaneously and imaged using a 7.0 T animal MRI
scanner; the portion in the carmine circle was a tumor. Reprinted from [434], © 2020 Elsevier Ltd. All rights reserved. (g) The zeta
potentials of nitrogen-doped GQDs toward different Fe3+ concentrations in the system. Reprinted from [439], © 2020 Elsevier B.V. All
rights reserved. (h) Schematic of the Cu2+ ion sensor based on solution-gated graphene transistors. Reprinted with permission from [440].
Copyright (2020) American Chemical Society. (i) The invasion capacity was examined by transwell chamber assays after incubation with
2DG-g-GQD for 24 h. Reproduced from [441] with permission from the Royal Society of Chemistry.

By coating GQDs with anticancer drugs at their surface,
nanomaterials can be used to deliver drugs to cancer cells to
treat the disease. Recently, Fan et al [427] reported the prepar-
ation of GQDs loaded with doxorubicin (an anticancer drug)
and found that the drug-loaded GQDs could penetrate can-
cer cells and cancer stem cells. The doxorubicin-loaded GQDs
demonstrated remarkable therapeutic effects by killing cancer
stem cells. Figure 14(t) shows a laser confocal scanningmicro-
scopy image of the drug-loaded GQDs in cancer stem cells.
Over the last couple of years, there have been an increasing
number of reports on the use of GQDs to treat cancer with
some intriguing experimental results, thus bringing the pos-
sibility of curing cancer closer to reality.

5.1.2 Therapy for other diseases. GQDs have demonstrated
a wide range of applications in the biological field due to
their ease of functionalization and biocompatibility. Recently,
Gong et al [428] designed and prepared an artificial enzyme
consisting of histidine-functionalized GQDs and a hemin

(His-GQDs/hemin) complex. Figures 15(a) and (b) show the
TEM images and structure of the artificial enzyme, respect-
ively. The His-GQDs/hemin complex, which can detect hydro-
gen peroxide and blood glucose, exhibited a relatively high
catalytic performance and excellent acid resistance and can
operate over a wide temperature range. The use of GQDs in
the design of artificial enzymes provides an effective platform
for practical applications. The functional groups of GQDs can
significantly influence their optical and electrical properties.
Landry et al [429] found that the degree of oxidation of GQDs
has a remarkable effect on the adsorption of biopolymers, such
as single-strand DNA (ssDNA). For example, the adsorption
of ssDNA was weak at low-oxidized GQDs, whereas strong
adsorption of ssDNA was observed in nonoxidized GQDs, as
illustrated in figure 15(c). The intrinsic fluorescence of the
GQDs was reduced dramatically when ssDNA was absorbed
onto low-oxidized GQDs, suggesting that the GQD prop-
erties can be regulated by the polymer sequence and type.
GQDs have also been shown to be effective in treating dis-
eases, such as Alzheimer’s disease [430], diabetes [431] and
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mitochondrial dysfunction [432]. For example, aggregation
and transmission of α-synuclein (α-syn) in the midbrain may
be related to the pathogenesis of Parkinson’s disease. Kwon
et al [430] found that GQDs could inhibit fibrillization of
α-syn and interact directly with mature fibrils to trigger dis-
aggregation, as depicted in figure 15(d). Hence, GQDs can
be potentially used to treat Parkinson’s disease. GQDs have
been studied for use as drug carriers due to their biocompat-
ibility. Namazi et al [433] reported on the use of GQDs as
cross-linker for carboxymethyl cellulose. The nanocomposite
hydrogel was biocompatible and exhibited pH-sensitive swell-
ing and degradation properties. It can be loaded with drugs,
and the release of drugs can be triggered by the pH. Using
doxorubicin as an example, the researchers investigated the
drug delivery properties of the nanocomposite hydrogel, as
shown in figure 15(e). Recently, GQDs were used as con-
trast agents in magnetic resonance imaging (MRI), as repor-
ted by Li et al [434]. They prepared Gd3+-loaded polyethyl-
ene glycol-modified GQDs as contrast agent for MRI. They
found that changing the localized superacid microenviron-
ment of the nanocomposite can significantly improve its mag-
netic relaxivity, which was much higher than that of com-
mercially available contrast agents, thus enhancing the per-
formance of MRI, as shown in figure 15(f). Furthermore,
the nanocomposite modified with folic acid was suitable for
MRI-fluorescent dual-mode targeted tumor imaging with low
biotoxicity, both in vitro and in vivo. The GQD-based con-
trast agent is of great interest in its applications in MRI, as it
provides accurate monitoring and diagnosis of diseases. The
use of GQDs as metal ion probes in biosensing applications
has attracted much research interest [435–438]. Wang et al
[439] prepared nitrogen-doped GQDs exhibiting yellow emis-
sion with high quantum yield. The doped GQDs were used
to detect iron ions in natural water and potentially for intra-
cellular iron ion detection. Complexation between iron ions
and nitrogen-doped GQDs can significantly quench the fluor-
escence intensity of the dopedGQDs, which is highly selective
for iron ions, as illustrated in figure 15(g). Another example of
the use of GQDs as metal ion probes was demonstrated by Fan
et al [440]. Theymodified a solution-gated graphene transistor
with GQDs, as shown in figure 15(h). A change in the elec-
trical double-layer capacitance at the gate due to the interac-
tion between copper ions and GQDs results in a change in the
channel current. They found that copper ions exhibited excel-
lent binding characteristics with GQDs, making the sensor
highly sensitive and selective to copper ions. GQDs have sig-
nificant therapeutic effects on tumors. In addition to the com-
bined PTT, PDT and drug delivery therapy, GQDs also play an
important role in tumor radiotherapy. Tung et al [441] repor-
ted on the use of GQDs grafted with 2-deoxy-d-glucose as
radiosensitizer to treat osteosarcoma, which showed improve-
ment in the therapeutic efficacy, as shown in figure 15(i). The
improved therapeutic effect is due to a significant increase
in oxidative stress response and DNA damage in osteosar-
coma cells caused by the GQD complex, which selectively tar-
gets tumor cells. Therefore, the GQD complex has the poten-
tial to achieve low-dose high-precision radiotherapy treatment
for osteosarcoma. In recent years, GQDs have been used in

many applications in the biomedical field, such as biomed-
ical imaging [442–446], immune probes [447], fluorescence
probes [448–456], drug carriers [457, 458], sterilization [459–
462], wound healing [463–465] and cancer treatment and
diagnosis [421, 425, 433, 441]. The effectiveness of nanod-
rugs to different age groups has also been studied [466]. In
summary, the excellent properties of GQDs will significantly
impact the biomedical field in the near future, ranging from
diagnosis to treatment of diseases.

5.2. Energy applications

GQDs have wide-ranging applications in the field of energy,
which covers energy generation to consumption (as illustrated
in figure 16(a)), because of their excellent properties and low-
cost facile preparation methods. In energy generation, GQDs
have been explored for use in solar photovoltaic devices [467–
472] and hydrogen production from photo-hydrolysis of water
[473–477]. In energy storage, GQDs have been used in the pre-
paration of electrodes for supercapacitors due to their large
specific surface areas and good electrical properties [478–
482]. In terms of energy consumption, GQDs have been used
to enhance the brightness and tailor the color of light-emitting
devices due to their excellent optical properties [483–486].
Therefore, this review provides a detailed description of the
applications of GQDs in the three aspects of energy gen-
eration, storage and consumption, especially the important
research achievements in recent years.

Many efforts in the field of solar energy research have
been directed toward achieving a high level of efficiency in
the utilization of solar energy. In addition to achieving high
solar energy conversion efficiency, researchers are investig-
ating means to reduce the cost of solar energy utilization,
store solar energy and improve the ability to capture solar
energy. Recently, many research groups have studied the use
of GQDs in solar cells [380, 491–505] and in solar hydro-
lytic hydrogen production [369, 506–514]. Both solar cells and
solar hydrolytic hydrogen production provide clean sources of
energy, and the former convert light energy directly into elec-
tricity; hence, it can be considered as an efficient means of
solar energy utilization. GQDs can play a significant role in
improving the performance of solar cells due to their remark-
able electrical and optical properties. For example, Kim et al
[281] found that GQDs exhibit a significant photon down-
conversion effect, which is particularly significant when doped
with nitrogen. The nitrogen-doped GQDs exhibited fluores-
cence quantum efficiency of 99% and large Stokes shift of
98 nm. When combining nitrogen-doped GQDs with copper
indium gallium selenide (CIGS), the conversion efficiency
of the thin-film solar cell reached 15.3%. The enhancement
in performance was due to the photon down-conversion and
light-trapping effect of the nitrogen-doped GQDs. Perovskite
solar cells have attracted much research interest in recent
years due to their many advantages, such as low cost and
high conversion efficiency. Gan et al [276] used nitrogen-
doped GQDs as functional semiconductor additives in per-
ovskite thin films. The nitrogen active sites in the GQDs pas-
sivated the grain boundary trap states. The matching of the
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Figure 16. Energy applications of GQDs. (a) Schematic of the energy applications of GQDs from energy generation to energy storage to
utilization. (b) Schematic of the engineered interfaces throughout the entire perovskite solar cell via the incorporation of N-and-S-co-doped
GQDs. Reprinted with permission from [487]. Copyright (2020) American Chemical Society. (c) Schematic of the positive role of FGQDs
in perovskite films. Reprinted with permission from [488]. Copyright (2020) American Chemical Society. (d) Schematic of nitrogen-doped
GQDs for solar hydrogen production. Reprinted with permission from [489]. Copyright (2020) American Chemical Society. (e) Photographs
of nitrogen-doped GQD solution under light irradiation at different times. Reprinted from [490], © 2020 Elsevier Ltd. All rights reserved.

energy structure of the GQDs at the grain boundary with that
of the perovskite enabled charge transport at the grain bound-
aries. Furthermore, the n-type behavior of the nitrogen-doped
GQDs significantly improved the electronic properties of the
perovskite thin film, resulting in an improvement in charge
transport as well as a reduction in interface recombination.
The conversion efficiency of the solar cells was reported to
be as high as 19.8%. Moreover, the solar cell exhibited stable
performance without encapsulation due to the protected grain
boundaries and the hydrophobicity of the modified film with
the addition of nitrogen-doped GQDs. Chen et al [487] also
studied the effect of adding GQDs to perovskite solar cells
and found that GQDs have several functions, such as promot-
ing crystal growth of perovskite, easing extraction of charge at
cathode and anode interfaces, inducing defect passivation and
inhibiting charge recombination. Upon introducing GQDs into
Fe2O3-based perovskite solar cells (as shown in figure 16(b)),
the conversion efficiency of the solar cells increased from
14% to 19.2%. The solar cells also demonstrated a signific-
ant improvement in durability, including humidity, ultravi-
olet light and temperature stabilities. To date, although the
performance of most flexible solar cells is not as good as
that of rigid solar cells, the wearable and portable nature of
flexible solar cells has attracted much research effort, as they
offer many exciting applications. Yang et al [488] found that
fluorine-doped GQDs can effectively reduce defect density
at the perovskite thin film by passivating the grain bound-
aries and surface, thus increasing the conversion efficiency
of the solar cell to 20.40%. The perovskite solar cell with

fluorine-doped GQDs exhibited excellent thermal and envir-
onmental stabilities, as it could prevent the invasion of external
water molecules and the spread of ions outside the perovskite,
as depicted in figure 16(c). A solar cell converts light energy
into electrical energy, whereas a photodetector converts light
energy into electrical signals. Although these two devices yield
different results, the design of the solar cell is similar to that
of a photovoltaic detector. Shin et al [515] reported the use of
GQDs as hole transport layers in perovskite solar cells. They
found that GQDs improved the crystallinity of the perovskite
film and increased the work function of the hole transport
layer, resulting in enhanced solar cell performance. They also
suggest that GQDs in perovskite films, whether as solar cells
or photodetectors, would have the same effect. To understand
the passivation of grain boundary in a perovskite film using
GQDs, Ma et al [516] added GQDs containing hydroxyl and
carbonyl functional groups to a perovskite solution. The addi-
tion of GQDs led to an improvement in the photoluminescence
intensity of the film and carrier lifetime, thereby suggesting a
reduction in nonradiative recombination due to the passivation
of the grain boundary at the film. Furthermore, the addition
of GQDs increased the thickness of the perovskite film, res-
ulting in an improved conversion efficiency of up to 18.24%
for this solar cell. Silicon is currently the most widely used
material for commercially available solar cells. The perform-
ance of silicon solar cells has almost reached itsmaximum effi-
ciency due to the maturity of the silicon technology. However,
researchers are still making relentless efforts to reduce the
cost and increase the conversion efficiency of silicon solar
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cells. Diao et al [517] reported the fabrication of heterojunc-
tion solar cells consisting of GQDs and silicon. The GQDs
were used as the hole transport layer and electron-blocking
layer. They separate the photogenerated electron–hole pairs
and inhibit carrier recombination at the anode. These het-
erojunction solar cells could achieve a conversion efficiency
of 12.35%. In recent years, much research effort has been
devoted to studying the use of GQDs in solar cell applications.
Table 2 provides a list of the GQD-based solar cells with their
performance indicators.

GQDs have also been used to produce hydrogen using
solar energy. Hydrogen can be used as a green energy source,
and recent research has focused on methodologies to produce
hydrogen efficiently. The key to efficient hydrogen production
is to improve the catalytic performance of the photocatalyst.
Huang et al [518] prepared a ternary composite photocatalyst
that comprises BiOCl, GQDs and rGO. The GQDs signific-
antly improved the photocatalytic performance by 8.4 times
compared to pure BiOCl due to an enhancement in charge sep-
aration and injection. Compared with rGO, the GQDs demon-
strated much better performance. The study found that the
GQDs did not significantly enhance the light absorption and
showed that the improvement in photocatalytic performance
was not necessary due to an enhancement in optical absorp-
tion; however, the electrical properties of the composite were
also of particular importance. GQDs doped with nitrogen
exhibited remarkable optical and electrical properties, which
could affect their photocatalytic performance. Tsai et al [489]
found that C–N bond induced visible light absorption when
GQDs were doped with nitrogen, as shown in figure 16(d).
Moreover, an increase in the carrier lifetime and concentra-
tion was reported upon increasing the nitrogen concentration
in the GQDs. Compared to intrinsic GQDs, the nitrogen-doped
GQDs demonstrated an increase in photocatalytic hydrogen
production efficiency due to an enhancement in charge dynam-
ics and reaction kinetics and increased carrier concentration.
This finding suggests that doping of GQDs is an effective way
to improve their photocatalytic performance. The use of GQD-
based composites, consisting of other photocatalyticmaterials,
is another effectiveway to improve the efficiency of photocata-
lytic hydrogen production. Chang et al [519] demonstrated the
use of GQDs in CdSe-sensitized TiO2 nanorods to improve
the photocatalytic efficiency for solar hydrogen production. It
was found that the introduction of GQDs resulted in vectorial
charge transfer and improved reaction kinetics. Importantly,
the GQDs reduced the photoetching at CdSe, thereby ensur-
ing the long-term stability of the electrode. In addition, Xue
et al [520] prepared a CdS–GQD–titanate nanotube ternary
nanocomposite for hydrogen production. The nanocompos-
ite demonstrated remarkable photocatalytic performance due
to its enhanced ability to capture visible light, longer life-
time of photogenerated carrier, faster interfacial charge trans-
port rate and longer electron transport distance. In addition to
improving the catalytic performance for the solar photolysis
of water, GQDs can also perform photocatalytic hydrolysis of
certain pollutants [521–524]. Dejpasand et al [490] prepared
nitrogen-doped GQDs with a broad absorption spectrum and
down-conversion effect. The photodegradation of methylene

blue using nitrogen-doped GQDs under illumination was stud-
ied using energy states. Figure 16(e) shows the degradation
of the methylene blue solution using nitrogen-doped GQDs
under different illumination durations. Therefore, the afore-
mentioned studies clearly indicate the important role of GQDs
in improving the photocatalyic performance.

Energy storage is critical for the implementation of renew-
able energy. It is also important for mobile devices and elec-
tric vehicles. A battery is used to store electrical energy and
has a device structure similar to that of a capacitor consisting
of a dielectric material sandwiched between two electrodes to
charge and discharge electric charges. Much research has been
conducted on the development of environmentally friendly
and low-cost capacitors that exhibit high energy densities and
stabilities. Carbon was first used as an electrode material in
lithium-ion batteries in the 1980s [525]. Subsequently, many
groups have studied other forms of carbon materials, such
as graphite, carbon nanotubes, graphene and GQDs, as elec-
trode materials. Li et al [526] prepared nitrogen-doped GQDs
onto a carbonized metal–organic framework (cMOF), which
was used as an electrode material for supercapacitors. The
nitrogen-doped GQDs played a vital role in improving the
pseudocapacitive activity and surface wettability of the elec-
trodes, leading to enhanced performance of the supercapacitor.
Figure 17(a) shows the structure of the supercapacitor consist-
ing of nitrogen-doped GQDs/cMOF as the anode and activated
carbon as the cathode.

The low-cost, facile preparation of supercapacitor elec-
trodes is of great commercial interest. Zhang et al [527]
prepared composite electrodes consisting of porous wood
carbon (PWC), MnO2 and GQDs. After pyrolyzing natural
wood to produce PWC, MnO2 and GQDs were decorated
on PWC using a facile hydrothermal method. A schematic
of the PWC/MnO2/GQDs composite electrode is shown in
figure 17(b). The GQDs significantly promoted the transport
of ions and protected MnO2 from falling off from the sur-
face of the PWC, leading to an improvement in the elec-
trochemical performance of the electrodes and demonstrat-
ing good rate capability and cycling stability. GQD-modified
composite materials have attracted much research interest
for the development of low-cost high-performance energy
storage devices. Qiu et al [528] reported the synthesis of
histidine-functionalized GQD/layered double hydroxide (His-
GQDs/LDH) composite using a microwave method. The com-
posite exhibited flower ball-like structures and was used as
the anode material. The large specific surface area and elec-
trical conductivity of the composite resulted in high specific
capacitance and remarkable cycling stability. They also pro-
duced a supercapacitor exhibiting excellent energy storage
performance and cycling stability using the His-GQDs/LDH
composite and active carbon as the positive and negative elec-
trodes, respectively, as shown in figure 17(c). In addition
to being used as electrode materials, GQDs can form com-
posites with other materials for use as separators in capa-
citors because of their large specific surface area and small
size. Pang et al [529] developed a separator coated with a
composite of multiwall carbon nanotubes and nitrogen-doped
GQDs and used it in Li–S batteries. This provided a physical
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Table 2. Properties of GQD-based solar cells.

Device structure
Doped
elements

Rigid/
flexible

Short-circuit
current (mA
cm−2)

Open-circuit
voltage (V)

Fill factor
(%)

External
quantum
efficiency
(%)

Power
conversion
efficiency
(%) References

Gr/Mo/CIGS/CdS/ZnO/NGQDs/
Ni-Al

N Rigid 31.77 0.668 73.09 80 at 600 nm 15.31 [281]

N-GQDs
PMMA/FTO/ZnO:Al/ZnO/CdS/
CIGS/Au

N Rigid 36.13 0.6592 67.91 — 16.13 [273]

NiOx/GN-
GQDs + PVK/PCBM/BCP/Ag

N Rigid 23.4 1.06 80 95 at 500 nm 19.8 [276]

Glass/ITO/PANI-GQDs/Al PANI — 25.11 0.34 0.10 — 0.86 [323]
FTO/PEDOT:PSS/GQDs/PVK/
PCBM/Ag

— Flexible 21.41 1.002 75.31 — 16.15 [324]

ZnO/GQDs (DSSCs) — Rigid 12.2 0.68 63 — 5.27 [347]
TFSA-
GR/MoS2/P3HT:PCBM:GQDs/Al

— Flexible 10.88 0.588 66.08 70 at 500 nm 4.23 [467]

FTO/TiO2/GQDs/N719/Iodolyte
(DSSCs)

— Rigid 13.77 0.7 44 — 5.1 [470]

PEDOT:GQDs/porous
Si/n-Si/TiO2

— Rigid 28.53 0.537 68.48 80 at 500 nm 10.49 [471]

Gr/GQDs/Si — Rigid 29.33 0.51 66.59 — 9.97 [472]
FTO/α-Fe2O3/N,S-
GQDs/PVK/N,S-GQDs/Spiro-
OMeTAD/Au

N,S Rigid 23.6 1.047 79 — 19.2 [487]

Gr/GQDs/n-Si/In-Ga — Rigid 30.74 0.58 63 85 at 500 nm 12.35 [517]
FTO/S,N-GQDs-sensitized
C-ZnO (DSSCs)

S,N Rigid 1.84 0.36 45.28 — 0.293 [380]

ITO/SnO2/SnO2:GQDs/PVK — Rigid 24.4 1.11 78 90 at 550 nm 21.1 [491]
FTO/N-GQDs-
N719/TiO2/Pt/FTO
(DSSCs)

N Rigid 17.65 0.72 59 — 7.49 [492]

FTO/TiO2-GQDs-N719/Pt/FTO
(DSSCs)

— Rigid 20.03 0.73 61 — 8.92 [493]

FTO/TiO2-GQDs-Ulva/Pt/FTO
(DSSCs)

— Rigid 2.04 0.75 52 — 0.81 [494]

FTO/TiO2/GQDs/PVK/Spiro-
OMeTAD/Au

— Rigid 21.92 0.97 67 82 at 400 nm 14.36 [495]

ITO/NiOx/NiOx:
AGQDs/PVK/PCBM/BCP/Ag

Amino Flexible 22.3 1.05 83.1 — 19.4 [496]

FTO/SnO2:GQDs/PVK/Spiro-
OMeTAD/Au

— Flexible 23.5 1.08 77 90 at 500 nm 19.6 [497]

ITO/NiO/NiO:GQDs/PVK/
PCBM/Ag

— Rigid 20.22 1.08 77.15 — 16.97 [498]

In-Ga/Si/CNTs/GQDs/PVP/Ag — Rigid 35.58 0.598 70.22 90 at 700 nm 14.94 [499]
Glass/ITO/PEDOT:PSS/P3HT:
PCBM:GQDs/Al

— Rigid 18.9 0.55 32 — 3.32 [500]

FTO/ZnO:GQDs/PVK/Spiro-
OMeTAD/Au

— Rigid 24.7 1.02 70 — 17.63 [501]

ITO/TiO2:GQDs/N719/Pt
(DSSCs)

— Flexible 14.32 0.68 53.2 — 5.18 [502]

GQDs/PVK N Rigid 24.7 0.81 43.8 — 8.77 [504]
GQDs/Si N Rigid 31.94 0.601 70 — 13.4 [505]

Note: PTAA, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]; PVK, perovskite; PANI, polyaniline; DSSCs, dye sensitized solar cells; CIGS, copper indium
gallium selenide; TFSA-GR, bis-(trifluoromethanesulfonyl)-amide-doped graphene.
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Figure 17. Applications of GQDs in energy storage batteries. (a) Schematic of asymmetric nitrogen-doped GQD/cMOF-5/AC
supercapacitor. Reproduced from [526] with permission from the Royal Society of Chemistry. (b) Schematic of ions and charge transfer
inside the PWC/MnO2/GQDs electrode. Reprinted from [527], © 2020 Elsevier Ltd. All rights reserved. (c) Illustration of the composition
of a supercapacitor. Reprinted from [528], © 2020 Elsevier Inc. All rights reserved. (d) Schematic representation of lithium–sulfur (Li–S)
batteries employing a commercial PP separator and the MWCNT/NCQD-coated separator [529]. John Wiley & Sons.© 2018 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. (e) Illustration of the generation of the hydrophilic group and GQDs on CF with different acid
treatments. Reprinted with permission from [530]. Copyright (2020) American Chemical Society. (f) Cycling performances of the Li|Cu
cells using electrolyte with and without GQDs at the current density of 1 mA cm−2 with 1 mAh cm−2 plating capacity in each cycle.
Reprinted from [531], © 2019 Elsevier Ltd. All rights reserved. (g) Cycling performance at 100 mA g−1 for GQD powders, original CNTs,
as-prepared and GQD@CNTs annealed at 400 ◦C. Reproduced from [532], Copyright © 2020, Tsinghua University Press and
Springer-Verlag GmbH Germany, part of Springer Nature. (h) Cyclic stability curve of GQD, NGQD and BGQD. Reprinted from [533], ©
2019 Elsevier B.V. All rights reserved.

barrier against polysulfide movement and chemical adsorption
of polysulfides by the composite, as illustrated in figure 17(d).
The composite-coated separator significantly improved the
cycle life and anti-self-discharge performance of Li–S batter-
ies. This development is important for practical applications
of lithium-ion batteries. The use of GQD heterostructure elec-
trodes can effectively improve the energy density of aqueous
supercapacitors by increasing their potential window, as repor-
ted by Jia et al [534]. They found that heterostructure elec-
trodes consisting of GQDs and MnO2 provided good inter-
facial bonding via Mn–O–C bonds. Using the GQDs/MnO2

electrodes, the potential window can be extended to 1.3 V
(more than the theoretical value) due to a potential drop in
the built-in electric field of the heterostructure. Flexible capa-
citors have attracted much interest in recent years [535, 536].
One of the key components is a flexible electrode material,
and carbon fiber is known to be an ideal candidate. Hsiao and
Lin [530] treated carbon fiber with a mixture of nitric acid
and sulfuric acid at different ratios. They found that GQDs
and functional groups were formed on the surface of the car-
bon fiber after acid treatments, as depicted in figure 17(e). At

the same time, the treatment roughened the surface of car-
bon fiber. Both the formation of GQDs and roughening of the
carbon fiber led to a large specific surface area at the elec-
trode, which significantly increased the energy storage capa-
city of the flexible capacitors. GQDs can also be added to the
electrolyte to regulate the electrochemical interface, thereby
improving the performance of the capacitor. Hu et al [531]
found that the addition of GQDs into the electrolyte would
prevent the growth of dendrite in Li–S batteries containing
high sulfur loading. The GQDs acted as heterogeneous sites
for uniform nucleation and provided continuous regulation
for dendrite-free lithium deposition under the control of an
electric field and ion flux. This improved the cycling stabil-
ity of the Li–S batteries, as demonstrated in figure 17(f). This
study provides a solution to the inherent problems of the Li–S
battery anode. A composite of GQDs and carbon nanotubes
was explored for use as an electrode material for capacitors.
Zhao et al [532] prepared a coaxial structure of GQD-coated
carbon nanotubes as electrode material for energy storage of
lithium ions. The GQDs were grafted onto 3D carbon nan-
otube frameworks to avoid agglomeration of the GQDs. These
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Figure 18. Applications of GQDs in light-emitting devices. (a) Schematic structure of the GQD-VCSEL, consisting of top and bottom
dielectric Ta2O5/SiO2 DBRs with synthesized GQDs sandwiched between them. (b) Cross-sectional SEM image of the fabricated
GQD-VCSEL. (c) Photograph of the fabricated DBR under room light. Reprinted with permission from [167]. Copyright (2019) American
Chemical Society. (d) Schematic of Förster resonance energy transfer (FRET)-assisted generation of white light in doped GQD-DCM dye
luminescent duo (LD) system for fabrication of light-emitting LEDs (WLEDs) (inset: picture of WLEDs). Reprinted from [334], © 2020
Elsevier Inc. All rights reserved. (e) Cross-sectional TEM image of GQD–LEDs (inset: photograph of characteristic deep blue light
emitted from the GQDs–LEDs at an applied voltage of 4.75 V). Reprinted with permission from [160]. Copyright (2019) American
Chemical Society.

GQDswith oxygen functional groups provided enormous stor-
age sites for lithium ions and were therefore responsible for
the enhanced performance of the lithium-ion battery anode.
Figure 17(g) shows the remarkable cycling performance and
stability of the annealed GQD-coated carbon nanotubes as a
lithium-ion battery anode. The introduction of impurities in
GQDs can create defect states that have a significant effect
on the properties of GQDs. Vijaya Kumar Saroja et al [533]
reported that the edge defects of both GQDs and doped GQDs
contributed to the improvement in the energy storage perform-
ance of the capacitors. As shown in figure 17(h), the GQDs
dopedwith either nitrogen or boron atoms showed an improve-
ment in the energy storage capacity with good cycling sta-
bility. The GQDs can improve the performance of capacitors
when applied as electrodes, electrolytes and separators [537–
549]. These strategies provide ideas for the development of
new and improved capacitors.

Efficient energy use is an important topic in the field of
energy application. Because of their unique optical proper-
ties, GQDs have been found to improve the performance of
light-emitting devices. This is mainly due to the formation
of a composite membrane that can be coated on the sur-
face of monochrome LEDs. The fluorescence effect of the
GQDs changes the wavelength of the light emitted from the

LED. In recent years, GQDs have been used to develop light
emitters that utilize the quantum confinement effect of the
nanomaterials. White LEDs have been of great interest in the
field of luminescence because of their energy-saving charac-
teristic. Pramanik et al [334] reported the generation of white
light using a combination of Förster resonance energy trans-
fer and rare-earth-free luminescent material duo, as illustrated
in figure 18(d). The white LEDs were prepared using com-
posite colloids comprising nitrogen-doped GQDs and DCM
dye. The energy gap can be regulated by nitrogen doping in
GQDs, thereby tuning and widening the luminescence range
of the dye.

Instead of using rare-earth material, Wang et al [550]
found that chloride-doped GQDs can emit white light dir-
ectly when under the irradiation of UV light. The chloride-
doped GQDs were embedded in a silicon resin to form a
composite film, which exhibited high transparency, flexibil-
ity, excellent optical stability and thermal stability. The film
was attached directly to the LEDs to produce a white light.
As the chlorine-doped GQDs were dispersed homogeneously
within the film, the resultant natural white light was uni-
formwithout defects. These rare-earth-free white-luminescent
chlorine-doped GQDs not only prevent the shortcomings of
multicolor phosphors, but they also provide a green alternative
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for producing light emitters. There are reports on the formation
of other GQD-based composite films, whose optical properties
can be regulated by adjusting the concentration of the doped
GQDs. Wu et al [335] prepared GQDs encapsulated MF poly-
mer microspheres. The emission wavelength was extended
from blue to full visible range under UV irradiation, result-
ing in white-light luminescence. The luminescence proper-
ties were tunable by varying the doping concentration of the
GQDs. A flexible thin film was formed by dispersing the
GQD–MF microspheres in the polymer matrix and was used
on LEDs to produce high-quality white-light emission and
light diffusion. However, the aggregation of GQDs due to
the interaction of π bonds often leads to photoluminescence
quenching, thus limiting the performance of GQD-based light
emitter devices. Recently, Park et al [370] incorporated GQDs
with boron oxynitride (GQDs@BNO), which resulted in high
PL-QY. The effective dispersion of GQDs in the BNO matrix
significantly suppressed the aggregation of GQDs and there-
fore minimized photoluminescence quenching. An increase in
the spontaneous emission rate of the GQDs was observed as
the GQDs were surrounded by the BNO matrix having a high
refractive index and enabled fluorescence energy transfer from
the BNO donor with a larger bandgap to the GQD acceptor
with a smaller bandgap, thus enhancing its electrolumines-
cence activity. The optical properties of the GQDs are also
influenced by the morphology of the nanomaterials. Lee et al
[160] found that the edge states of GQDs have a significant role
in their luminescence properties. They studied the relation-
ship between the GQD crystalline size and their exciton life-
time by effectively controlling the morphology of the GQDs.
Figure 18(e) shows the device structure of the GQD-based
light-emitting device, which exhibited blue luminescence, as
shown in the inset. Interestingly, the blue emission was not
affected by the doping level of GQDs. In addition to LED,
laser is also an important optoelectronic device, especially for
optical communication. There are only a few reports on the
use of GQDs in lasers because of the complexity of the struc-
tural design of lasers compared to that of LEDs. Lee et al
[167] prepared a vertical optical cavity consisting of GQDs
and distributed Bragg reflectors (DBRs). Figures 18(a) and (b)
show the device structure of the GQD-based vertical-cavity
surface-emitting laser. The design of the DBR provided a
broad stopband that spectrally overlapped with the emitted
GQDs and allowed high transmittance of light excitation in
the UV region. An optical image of the fabricated DBR is
shown in figure 18(c). The emission wavelength of the GQD-
based laser was mainly concentrated in the green-light band.
These results demonstrate that theGQDs can be used as optical
gain materials.

In summary, GQDs can be used as fluorescent and light-
emittingmaterials. Furthermore, the facile, low-cost and envir-
onmentally friendly preparation process for GQDs would
allow widespread applications. GQDs have many important
applications in the field of energy, ranging from energy gener-
ation to storage and utilization, because of their unique phys-
ical and chemical properties. The research and development of
GQDs will continue to grow and find many novel applications
in the field of energy.

5.3. Detector and sensor applications

The bandgap of GQDs can bemodulated bymeans of size con-
trol and dopants, which can result in tunable spectral responses
ranging from UV to NIR bands.

When GQDs form heterojunctions with other photoelec-
tric materials, the quantum confinement effect of GQDs can
reduce the recombination of electron–hole pairs, thereby
increasing the exciton lifetime and resulting in a high gain. The
photoelectric properties of GQDs are not affected by external
compressive stress when coated on flexible substrates due to
their small dimensions. Therefore, GQDs are suitable for the
preparation of wideband, high detectivity and responsivity-
flexible photodetectors. The large specific surface area and
edge effect of GQDs make them attractive for use in gas
sensors. In particular, GQDs with functional groups are highly
selective to gas; thus, they are also suitable as the active layer
in gas sensors. The excellent characteristics of GQDs could
lead to high-performance photodetectors and gas sensors, in
which the mechanism is based on the absorption of either
incident photons or gases, causing a change in the electronic
properties of the GQDs, as illustrated in figure 19(a). This
section provides a review of the recent developments in GQD-
based photodetectors and gas sensors.

There have been reports on the application of GQDs in
photodetectors. However, the mechanism of charge transport
in heterojunctions formed between GQDs and other mater-
ials, especially those of van der Waals heterojunctions, is
still unclear. Shan et al [551] applied femtosecond pump–
probe spectroscopy, two-phase electron injection model and
modified rate equations to quantitatively solve the charge
transfer rate at the interface of a mixed van der Waals
GQD/MoS2 heterostructure. A schematic of the device struc-
ture is shown in figure 19(b). Understanding the electron
transfer and relaxation processes in the heterostructure would
assist in developing methods to alter the optical perform-
ance of the device. They found that the cascaded relaxation
of hot electrons in GQDs, due to the quantum confinement
effect, can significantly influence the interfacial dynamics.
This finding can be used to optimize the performance of photo-
electric devices based on mixed-dimensional heterostructures.
The use of graphene in photodetectors is limited because of
its low optical absorption coefficient. Therefore, modifying
graphene with materials having high absorption coefficients
is an effective way to develop high-performance graphene-
based photodetectors. Zhu et al [554] attached GQDs onto
vertically oriented graphene (VOG), which was used to form
a heterojunction with germanium. A photodetector consist-
ing of GQDs/VOG/Ge with enhanced performance in the
detection of NIR light was prepared. The improved prop-
erties of the photodetector were caused by the synergistic
effect of the GQDs and VOG, which resulted in enhanced
light absorption and increased electron transport. The modi-
fication of VOG with GQDs is an effective way to con-
trol the Fermi level of VOG, increase the internal electric
field of the Schottky junction and promote the separation
of photoinduced electron–hole pairs. Under 1550 nm light
irradiation, the responsivity and detectivity of the prepared
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Figure 19. Applications of GQDs in photodetectors. (a) Schematic of photodetector and gas sensor based on GQDs. (b) Schematic of
ultrafast pump–probe measurements in reflection configuration. The 400 nm pulse pumps the GQD/MoS2 heterostructures, and the 650 nm
probe arrives at the sample with a delay time of ∆τ . Reprinted from [551],© 2019 Elsevier Ltd. All rights reserved. (c) Schematic of the
hybrid architecture of the GQD/two-dimensional material heterojunction photodetector. (d) Photograph of S,N–GQDs–rGO–cotton
photodetector during twisting. Reproduced from [552], with permission from Springer Nature. (e) SEM image of a typical GQD.
Reproduced from [553] with permission from Springer Nature.

devices were 1.06 × 106 A W−1 and 2.11 × 1014 cm Hz1/2

W−1, respectively. The use of plasmonic nanostructures is
another effective way to improve the performance of photo-
detectors, especially in extending the response range of the
detector. Thakur et al [555] directly synthesized gold nano-
particle/GQD nanohybrid using micro-plasmas and used it in
photodetectors. Due to the plasmonic absorption of gold nano-
particles, the spectral response range of the photodetector was
extended. The synergistic effect was attributed to the strong
fluorescence quenching in AuNPs@GQDs combined with 2D
graphene layer in the device, resulting in ultrahigh respons-
ivity and detectivity of 103 A W−1 and 1013 Jones (1 Jones
is equal to 1 cm Hz1/2W−1), respectively. Flexible photoelec-
tric devices, especially wearable photoelectric detectors, have
attracted much interest recently. Luo et al [552] prepared a
flexible photodetector by spraying S-and-N-co-doped GQDs
on rGO-coated cotton substrate, as shown in figure 19(d). The
photodetector demonstrated high responsivity and detectivity
of 0.2–1.25 A W−1 and 3.86 × 1010 Jones, respectively, in
the broad wavelength range between UV and NIR. This can
be attributed to the charge transfer between S,N-doped GQDs
and rGO, resulting in the separation of the photogenerated car-
riers. The strong optical absorption of GQDs and the good
conductivity of rGO are believed to contribute to the excellent
performance of the flexible photodetector. Jang et al [556]
reported a flexible deep UV photodetector based on GQDs

sandwiched between two graphene layers on a polyethylene
terephthalate substrate. The photodetector exhibited respons-
ivity and detectivity of 0.1 A W−1 and 1.1 × 1013 Jones,
respectively, when irradiated at a wavelength of 254 nm.
Figure 19(c) shows a schematic of the photodetector based
on multidimensional graphene structures. Further study on the
use of a hybrid multidimensional nanostructures for photo-
detectors was conducted by Nguyen et al [378]. They pre-
pared a high-performance photodetector based on 2D tungsten
diselenide (WSe2) coated with nitrogen-doped GQDs. The
enhanced photoluminescence was due to the neutral exciton
emission caused by the nitrogen-doped GQDs. In addition, the
strong optical absorption of GQDs and effective charge trans-
fer from the GQDs to 2DWSe2 resulted in a 480% increase in
photoresponsivity compared to the pristine 2DWSe2 photode-
tector. It was found that the photogating effect has an import-
ant role in enhancing the performance of the multidimen-
sional heterojunction photodetector. The luminescent down-
shifting effect of GQDs has been discovered for a long time.
Kumbhakar et al [557] have taken the advantage of such an
effect of graphene to improve the performance of photocon-
ductive cells. More recently, Hasan et al [558] discovered that
the optical properties of nitrogen-doped GQDs can change
upon exposure to short- (254 nm), medium- (302 nm) and
long-wave (365 nm) UV irradiation, resulting in a reduction
in absorption from 200 to 320 nm and improvement beyond

28



Mater. Futures 3 (2024) 022301 Topical Review

320 nm. TheUV treatment of the nitrogen-dopedGQDswould
lead to the quenching of blue and NIR fluorescence along with
a substantial increase in green/yellow emission; hence, this
phenomenon can be used as a potential UV sensing mechan-
ism. The change in the optical properties wasmainly attributed
to the increase in the size of the nitrogen-doped GQDs driven
by free radicals and the decrease in their functional groups.
As the GQDs exhibit strong absorption and high sensitivity to
UV radiation, they can find potential applications in UV pho-
todetectors. In addition to their response to high-energy ultra-
violet and visible bands, GQDs have also been explored for
use in detecting the NIR band. El Fatimy et al [553] prepared
GQD bolometers that demonstrated excellent performance at
temperatures of up to 77 K. This is attributed to the quantum
confinement of GQDs that resulted in a remarkably high vari-
ation in electrical resistance with temperature. This is also
due to the intrinsic properties of graphene; for example, light
absorption in graphene causes a large change in electron tem-
perature, making graphene suitable for hot-electron bolomet-
ers in the terahertz frequency range, as shown in figure 19(e).
Recently, there has been much research interest and activit-
ies in the development of GQD-based photodetectors [559–
564], especially in areas, such as the use of GQD composite
materials, array-type photodetectors [565], broadband detec-
tion and terahertz detectors [566]. Table 3 provides a list of
the recently developed GQD-based photodetectors and their
performance indicators.

GQDs have also been studied for use in gas sensors because
of their zero-dimensional properties and large specific sur-
face areas. Arunragsa et al [569] prepared a room-temperature
ammonia gas sensor by functionalizing the edges of GQDs
with hydroxyl (OH) and deposited the functionalized GQDs
onto nickel interdigitated electrode, as shown in figure 20(a).
The results obtained from both experimental and theoretical
studies showed that the hydroxyl functional group was the
main factor affecting the sensitivity and selectivity of the
sensor in detecting ammonia gas, which suggests that edge
functionalization of GQDs is an effective way to obtain high-
performance gas sensors with excellent selectivity to target
gas. Composite materials based on GQDs have been studied
to improve the selectivity of gas sensors. Shao et al [353]
loaded ZnO nanosheets with GQDs and SnO2 nanoparticles in
the preparation of a highly selective gas sensor for the detec-
tion of H2S. The resultant gas sensor exhibited high response
speed, quick response/recovery time and excellent selectivity
toward H2S, as illustrated in figure 20(b). The heterojunction
between p-type GQDs and n-type SnO2 and ZnO widened the
resistance variation upon gas adsorption. Another example of
usingGQD-based compositematerials to improve the selectiv-
ity of gas sensors was demonstrated by Purbia et al [570], who
prepared a gas sensor based on a nitrogen-doped GQDs/SnO2

quantum dot heterostructure for the detection of NO2. The
improved sensitivity and selectivity of the sensor can be attrib-
uted to the enhanced electron transfer between SnO2 and the
nitrogen-doped GQDs, as well as the preferential absorption
of NO2 on the GQDs. Furthermore, the 0D heterostructure
provided a large specific surface area, more active sites and a
better nanoscale interface, thereby improving the performance

of the gas sensor. Increasing the specific surface area and elec-
tron transfer characteristics of sensing materials is a way to
improve the performance of gas sensors. Lv et al [319] repor-
ted the modification of a three-dimensional ordered macro-
porous In2O3 with nitrogen-doped GQDs. Figures 20(c)–(f)
show the SEM images of the GQD/In2O3 composites. The
formation of a heterojunction between the three-dimensional
ordered macroporous In2O3 and nitrogen-doped GQDs, as
well as the nitrogen doping in GQDs, are believed to play vital
roles in improving the sensitivity, selectivity, response/recov-
ery time and stability of NO2 gas sensors. The mechanism of
the gas sensor is illustrated in figure 20(g). As demonstrated,
GQDs have shown great potential for the development of
high-performance gas sensors due to their high specificity and
ease of functionalization.

5.4. Other applications

Many novel applications of GQDs are still being explored and
developed, as the nanomaterials are still in the early stages of
research. For example, there are reports on the application of
GQDs in corrosion resistance [571–574] because GQDs tend
to form complexes with other substances. Jiang et al [575]
prepared a composite coating of nitrogen-doped GQDS and
polymethyltrimethoxysilane (PMTMS) on the surface of mag-
nesium alloy. Because of the chemical bonding of nitrogen-
doped GQDs with the Mg substrate and PMTMS, the cor-
rosion resistance performance of the composite coating was
enhanced remarkably, as shown in figure 21(a). Interestingly,
GQDs also have potential applications in agriculture. Xu et al
[576] found that GQDs can be used as catalysts for the absorp-
tion of water and nutrients, as theywould significantly increase
the specific surface area of epidermis cells at the root surface,
hence promoting plant growth. They also discovered that the
size of the GQDs has an effect on plant growth; for example,
large GQDs neither promoted nor inhibited plant growth,
whereas GQDs with a size of 10 nm promoted plant growth, as
shown in figure 21(c). Based on both experimental and theor-
etical studies, the mechanism by which GQDs promote plant
growth is illustrated in figure 21(b). GQDs have also been
explored in the preparation of micro-motor, as demonstrated
by Maria-Hormigos et al [577] and shown in figures 20(d)–
(g). Other applications of GQDs are in fuel cells as previ-
ously reported [265].Mohamad Nor et al [578] prepared a pro-
ton exchange membrane for fuel cell application using cross-
linked highly sulfonated polyphenylsulfone (SPPSU) mem-
brane that comprised of GQDs. Because of the cross-linking of
GQDs and SPPSU after annealing at 180 ◦C, the proton con-
ductivity of the cross-linked membrane was higher than that of
the pristine SPPSU membrane. Furthermore, the cross-linked
membrane also exhibited excellent dimensional stability. The
schematic of the proton-conductive membrane is shown in
figure 21(h). In addition, there are reports on the applications
of GQDs as catalysts in a new type of fuels [579, 580], which
can address challenges relating to energy shortage and envir-
onmental pollution. There are many other novel applications
of GQDs [581], which are of great interest. Indeed, GQDs have
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Table 3. List of recent GQD-based photodetectors and their performance indicators.

Device structure

Detected
wavelength
(nm)

Response time (rise/fall
time) (ms)

Detectivity
(cm Hz1/2

W−1)
Responsivity
(A W−1)

Operating
temperature
(K) Rigid/flexible References

ZnO/GQDs/ZnO 385 0.37 1.54 × 1014 89.3 RT Rigid [351]
WSe2/N-GQDs 405 — — 2578 RT Rigid [378]
GQDs/VOG/Ge 1550 0.051/0.054 2.11 × 1014 1.06 × 106 RT Rigid [554]
Au@GQDs/Gr 325–808 65/53 5.1 × 1013 4535 — Rigid [553]
S,N-GQDs/rGO 300–808 — 3.86 × 1010 0.2–1.25 — Flexible [555]
Gr/GQDs/Gr 256 24/17 1.1 × 1013 0.11 RT Flexible [556]
CdS/N-GQDs@PVA 395 — 9 × 1013 3 — Rigid [557]
N-GQDs 254–365 — 1.03 × 1011 0.59 — Rigid [558]
GQDs THz — — 1 × 1010

VW−1
6 Rigid [553]

N-GQDs 1550 0.05/0.053 1.3 × 1010 0.058 — Rigid [559]
GQDs/n-Si 300–1100 — — 3.5 — Rigid [560]
ZnO/GQDs 365 — 3.5 × 107 0.14 RT Rigid [563]
GQDs 1064 — — 0.96× 10−3 533 Rigid [565]
GQDs THz — — — 0.17 Rigid [566]
ZnO/GQDs/Poly-TPD 365 0.37 × 10−3/0.78 × 10−3 2 × 1011 0.56 — Rigid [567]
GQDs/ZnO/GaN 200–800 159/68.7 7 × 1011 3.2 × 103 — Rigid [568]

Note: PVA, poly(vinyl alcohol); poly-TPD, poly(NN′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine.

Figure 20. Applications of GQDs in gas sensors. (a) Schematic of the fabrication process of OH-GQD gas sensors. Reprinted from [569],
© 2020 Elsevier B.V. All rights reserved. (b) Pattern recognition based on the principal component analysis method to show the selectivity
of the GQD−SnO2/ZnO sensor. Reprinted with permission from [353]. Copyright (2020) American Chemical Society. (c–f) SEM images of
(c) PS microspheres, (d), (e), (f) three-dimensional ordered macroporous In2O3 under different magnifications and (g) N-GQDs/In1.
Reprinted with permission from [319]. Copyright (2020) American Chemical Society.
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Figure 21. Other applications of GQDs. (a) Surface morphologies of the samples with different coatings before and after immersion tests in
3.5 wt% NaCl. Bare Mg alloy (¬), PMTMS (¯), N-GQDs (²) and N-GQDs/PMTMS specimens (µ); (­, °, ³, 11⃝) corresponding
specimens of (¬, ¯, ², µ) after immersing 8 h; bare Mg alloy (®), PMTMS (±) and N-GQD (´) specimens after immersing 26 h;
N-GQD/PMTMS specimen after immersing 194 h ( 12⃝). Reprinted from [575], © 2019 Elsevier Ltd. All rights reserved. (b) Mechanism of
the influence of GQDs on the growth of Zephyranthes grandiflora with ions and GQDs attached to the surfaces of the epidermal cells. (c)
Photographs of (top) shallots and (bottom) Zephyranthes. grandiflora treated with GQDs having dimensions of 5, 10, 20 and 30 nm.
Reproduced from [576] with permission from the Royal Society of Chemistry. (d)–(g) Time-lapse images (taken from Video S3, ESI†) and
the corresponding trajectories of GQD micromotors moving in 1% and 2% peroxide solutions. Reproduced from [577] with permission
from the Royal Society of Chemistry. (h) Schematic of cross-linked GQDs with high SPPSU as proton exchange membranes for fuel cell
applications. Reprinted from [578], © 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

many important and wide-ranging applications that warrant
our attention.

6. Conclusions

The essential properties of GQDs include quantum confine-
ment and edge effects. While GQDs inherit many properties of
graphene, they also exhibit strong fluorescence characteristics,
strong optical absorption and excellent solubility. As an emer-
ging member of the carbon material family, GQDs have many
advantages over other carbonmaterials, such as biocompatibil-
ity, low toxicity and environmental friendliness. In this review,
the unique properties of zero-dimensional GQDs are described
in detail and compared to those of different low-dimensional
carbon materials. From the perspective of GQD preparation,
there are many different preparation methods of GQDs, which
can be divided into three main categories: top-down, bottom-
up and chemical methods. These methods were compared
according to the size, functionalization, cost of production
and other aspects of GQDs. The electrical, optical, magnetic,
thermal and other properties of GQDs were also discussed
in detail. Some of these properties can be controlled by the
functionalization of GQDs, which has attractedmuch attention
and has therefore been an important part of this review. This
includes the introduction of impurity atoms and the formation

of composites with other substances to modify the properties
of GQDs. The excellent properties of GQDs and their compos-
ite materials have led to numerous exciting and wide-ranging
applications in many different fields, such as biomedicine,
energy, optoelectronics, agriculture and other emerging areas.
The widespread applications of GQDs demonstrate their great
variety of functionalities. As researchers continue to discover
new properties of GQDs, novel applications based on the nan-
omaterials will continue to emerge. This review on the recent
development of GQDs provides an important insight into the
future research directions and applications of GQDs. It also
provides a summary of recent research achievements of GQDs.

7. Future perspectives

The rapid development of GQDs is mainly due to their many
potential applications in a wide variety of fields, such as bio-
medicine, sensors, optoelectronics, agriculture, environmental
protection and robotics. In this section, future research dir-
ections and applications of GQDs are highlighted based on
their unique characteristics and functions. The preparation
technique of GQDs is the key to their application. Unlike
other quantum dots, GQDs are nontoxic; hence, they have
great potential for important applications in biomedical and
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environmental protection. However, many preparation tech-
niques for GQDs require the use of toxic chemical reagents.
Therefore, further research on the preparation of GQDs using
green and environmentally friendly techniques is crucial for
the future application of GQDs. The application of GQDs
in optoelectronics is still in its initial stage. At present, the
application of GQDs in optoelectronics has two main prob-
lems: ability to prepare high-quality GQD films and abil-
ity to broaden the response wavelength of GQDs without
losing their quantum confinement effect. To overcome the
aforementioned problems, there is a need to perform in-depth
research on the edge and quantum confinement effects of
GQDs. In addition, only a few studies have investigated the
electrical and magnetic properties of GQDs. Further research
on GQDs can effectively develop more applications in emer-
ging fields, such as the application of GQDs in solar cells and
energy generation.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 61106098, 51201150 and
11374250), Key Project of Applied Basic Research of Yunnan
Province, China (Grant No. 2012FA003), PolyU Grant (1-
ZVGH) and Research Grants Council of Hong Kong (Project
Nos. PolyU 153030/15P and PolyU 153271/16P).

ORCID iD

Libin Tang https://orcid.org/0000-0002-7174-2963

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,
Dubonos S V, Grigorieva I V and Firsov A A 2004
Electric field effect in atomically thin carbon films Science
306 666–9

[2] Novoselov K S, Fal′ko V I, Colombo L, Gellert P R,
Schwab M G and Kim K 2012 A roadmap for graphene
Nature 490 192–200

[3] Zhang Y, Tan Y-W, Stormer H L and Kim P 2005
Experimental observation of the quantum Hall effect and
Berry’s phase in graphene Nature 438 201–4

[4] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D,
Miao F and Lau C N 2008 Superior thermal conductivity
of single-layer graphene Nano Lett. 8 902–7

[5] Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of
the elastic properties and intrinsic strength of monolayer
graphene Science 321 385–8

[6] Geim A K and Novoselov K S 2007 The rise of graphene
Nat. Mater. 6 183–91

[7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S
and Geim A K 2009 The electronic properties of graphene
Rev. Mod. Phys. 81 109–62

[8] Geim A K 2009 Graphene: status and prospects Science
324 1530–4

[9] Kroto H W, Heath J R, O’Brien S C, Curl R F and
Smalley R E 1985 C60: buckminsterfullerene Nature
318 162–3

[10] Kunz G F 1884 Five brazilian diamonds Science 3 649–50

[11] Gao J, Niu J, Qin S and Wu X 2016 Ultradeep diamonds
originate from deep subducted sedimentary carbonates
Sci. China Earth Sci. 60 207–17

[12] Szunerits S and Boukherroub R 2007 Different strategies for
functionalization of diamond surfaces J. Solid State
Electrochem. 12 1205–18

[13] Wu B R 2007 Structural and vibrational properties of the 6H
diamond: first-principles study Diam. Relat. Mater.
16 21–28

[14] Chen X, Huang G, Tan Y, Yu Y, Guo H and Xu X 2018
Percent reduction in transverse rupture strength of metal
matrix diamond segments analysed via discrete-element
simulations Materials 11 1048

[15] Wang X-G and Smith J R 2001 Copper/diamond adhesion
and hydrogen termination Phys. Rev. Lett. 87 186103

[16] Gracio J J, Fan Q H and Madaleno J C 2010 Diamond growth
by chemical vapour deposition J. Phys. D: Appl. Phys.
43 374017

[17] Shibata T, Kitamoto Y, Unno K and Makino E 2000
Micromachining of diamond film for MEMS applications
J. Microelectromech. Syst. 9 47–51

[18] Robertson J 2002 Diamond-like amorphous carbon Mater.
Sci. Eng. R 37 129–281

[19] Jian-Bing Z, Yan-Hui W and Liang D 2017 Recent progress
in diamond-based electrocatalysts for fuel cells J. Inorg.
Mater. 32 673–80

[20] Mochalin V N, Shenderova O, Ho D and Gogotsi Y 2011
The properties and applications of nanodiamonds Nat.
Nanotechnol. 7 11–23

[21] Huang Q et al 2014 Nanotwinned diamond with
unprecedented hardness and stability Nature 510 250–3

[22] Vetter J 2014 60 years of DLC coatings: historical highlights
and technical review of cathodic arc processes to
synthesize various DLC types, and their evolution for
industrial applications Surf. Coat. Technol. 257 213–40

[23] Robertson J 1991 Hard amorphous (diamond-like) carbon
Prog. Solid State Chem. 21 199–333

[24] Shakun A, Vuorinen J, Hoikkanen M, Poikelispää M and
Das A 2014 Hard nanodiamonds in soft rubbers: past,
present and future–a review Composites A 64 49–69

[25] Robertson J 1992 Properties of diamond-like carbon Surf.
Coat. Technol. 50 185–203

[26] Wang L, Xia Y, Zhang M, Fang Z and Shi W 2004 The
influence of deposition conditions on the dielectric
properties of diamond films Semicond. Sci. Technol.
19 L35–L8

[27] Wang Z L, Li J J, Sun Z H, Li Y L, Luo Q, Gu C Z and Cui Z
2007 Effect of grain size and pores on the dielectric
constant of nanocrystalline diamond films Appl. Phys.
Lett. 90 133118

[28] Grill A 1999 Electrical and optical properties of
diamond-like carbon Thin Solid Films 355 189–93

[29] Demichelis F, Pirri C F and Tagliaferro A 1992 Evaluation of
the [C(sp3)]/[C(sp2)] ratio in diamondlike films through
the use of a complex dielectric constant Phys. Rev. B
45 14364–70

[30] Volksen W, Miller R D and Dubois G 2010 Low dielectric
constant materials Chem. Rev. 110 56–110

[31] Iijima S 1991 Helical microtubles of graphitic carbon Nature
354 56–58

[32] Horton M, Hong H, Li C, Shi B, Peterson G P and Jin S 2010
Magnetic alignment of Ni-coated single wall carbon
nanotubes in heat transfer nanofluids J. Appl. Phys.
107 104320

[33] Baughman R H, Zakhidov A A and de Heer W A 2002
Carbon nanotubes—the route toward applications Science
297 787–92

[34] Thess A et al 1996 Crystalline ropes of metallic carbon
nanotubes Science 273 483–7

32

https://orcid.org/0000-0002-7174-2963
https://orcid.org/0000-0002-7174-2963
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature11458
https://doi.org/10.1038/nature11458
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1021/nl0731872
https://doi.org/10.1021/nl0731872
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/nmat1849
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1126/science.1158877
https://doi.org/10.1126/science.1158877
https://doi.org/10.1038/318162a0
https://doi.org/10.1038/318162a0
https://doi.org/10.1126/science.ns-3.69.649
https://doi.org/10.1126/science.ns-3.69.649
https://doi.org/10.1007/s11430-016-5151-4
https://doi.org/10.1007/s11430-016-5151-4
https://doi.org/10.1007/s10008-007-0473-3
https://doi.org/10.1007/s10008-007-0473-3
https://doi.org/10.1016/j.diamond.2006.03.013
https://doi.org/10.1016/j.diamond.2006.03.013
https://doi.org/10.3390/ma11061048
https://doi.org/10.3390/ma11061048
https://doi.org/10.1103/PhysRevLett.87.186103
https://doi.org/10.1103/PhysRevLett.87.186103
https://doi.org/10.1088/0022-3727/43/37/374017
https://doi.org/10.1088/0022-3727/43/37/374017
https://doi.org/10.1109/84.825776
https://doi.org/10.1109/84.825776
https://doi.org/10.1016/S0927-796X(02)00005-0
https://doi.org/10.1016/S0927-796X(02)00005-0
https://doi.org/10.1038/nnano.2011.209
https://doi.org/10.1038/nnano.2011.209
https://doi.org/10.1038/nature13381
https://doi.org/10.1038/nature13381
https://doi.org/10.1016/j.surfcoat.2014.08.017
https://doi.org/10.1016/j.surfcoat.2014.08.017
https://doi.org/10.1016/0079-6786(91)90002-H
https://doi.org/10.1016/0079-6786(91)90002-H
https://doi.org/10.1016/j.compositesa.2014.04.014
https://doi.org/10.1016/j.compositesa.2014.04.014
https://doi.org/10.1016/0257-8972(92)90001-Q
https://doi.org/10.1016/0257-8972(92)90001-Q
https://doi.org/10.1088/0268-1242/19/3/L08
https://doi.org/10.1088/0268-1242/19/3/L08
https://doi.org/10.1063/1.2718484
https://doi.org/10.1063/1.2718484
https://doi.org/10.1016/S0040-6090(99)00516-7
https://doi.org/10.1016/S0040-6090(99)00516-7
https://doi.org/10.1103/PhysRevB.45.14364
https://doi.org/10.1103/PhysRevB.45.14364
https://doi.org/10.1021/cr9002819
https://doi.org/10.1021/cr9002819
https://doi.org/10.1038/354056a0
https://doi.org/10.1038/354056a0
https://doi.org/10.1063/1.3428450
https://doi.org/10.1063/1.3428450
https://doi.org/10.1126/science.1060928
https://doi.org/10.1126/science.1060928
https://doi.org/10.1126/science.273.5274.483
https://doi.org/10.1126/science.273.5274.483


Mater. Futures 3 (2024) 022301 Topical Review

[35] De Volder M F L, Tawfick S H, Baughman R H and Hart A J
2013 Carbon nanotubes: present and future commercial
applications Science 339 535–9

[36] Wilder Jeroen W G, Venema L C, Rinzler A G, Smalley R E
and Dekker C 1998 Electronic structure of atomically
resolved carbon nanotubes Nature 391 59–62

[37] Bachilo S M, Strano M S, Kittrell C, Hauge R H,
Smalley R E and Weisman R B 2002 Structure-assigned
optical spectra of single-walled carbon nanotubes Science
298 2361–6

[38] Sfeir M Y et al 2006 Optical spectroscopy of individual
single-walled carbon nanotubes of defined chiral structure
Science 312 554–6

[39] Strano M S 2003 Probing chiral selective reactions using a
revised kataura plot for the interpretation of single-walled
carbon nanotube spectroscopy J. Am. Chem. Soc.
125 16148–53

[40] O’Connell M J, Eibergen E E and Doorn S K 2005 Chiral
selectivity in the charge-transfer bleaching of
single-walled carbon-nanotube spectra Nat. Mater.
4 412–8

[41] Cambré S, Schoeters B, Luyckx S, Goovaerts E and
Wenseleers W 2010 Experimental observation of
single-file water filling of thin single-wall carbon
nanotubes down to chiral index (5,3) Phys. Rev. Lett.
104 207401

[42] Bachtold A, Strunk C, Salvetat J-P, Bonard J-M, Forró L,
Nussbaumer T and Schönenberger C 1999
Aharonov–Bohm oscillations in carbon nanotubes Nature
397 673–5

[43] Lebedeva O S, Lebedev N G and Lyapkosova I A 2020 Effect
of isomorphic impurities on the elastic conductivity of
chiral carbon nanotubes Russ. J. Phys. Chem. A
94 1647–56

[44] Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T,
Namazu T, Miyauchi Y and Itami K 2019 Strength of
carbon nanotubes depends on their chemical structures
Nat. Commun. 10 3040

[45] Sam A, K. V P and Sathian S P 2019 Water flow in carbon
nanotubes: the role of tube chirality Phys. Chem. Chem.
Phys. 21 6566–73

[46] Gifford B J, Saha A, Weight B M, He X, Ao G, Zheng M,
Htoon H, Kilina S, Doorn S K and Tretiak S 2019
Mod(n-m,3) dependence of defect-State emission bands in
aryl-functionalized carbon nanotubes Nano Lett.
19 8503–9

[47] Novoselov K S, Geim A K, Morozov S V, Jiang D,
Katsnelson M I, Grigorieva I V, Dubonos S V and
Firsov A A 2005 Two-dimensional gas of massless Dirac
fermions in graphene Nature 438 197–200

[48] Volovik G E and Pudalov V M 2016 Graphite on graphite
JETP Lett. 104 880–2

[49] Zhu J, Wang X, Guo L, Wang Y, Wang Y, Yu M and Lau K-T
2007 A graphite foam reinforced by graphite particles
Carbon 45 2547–50

[50] Chattopadhyay J, Mukherjee A, Hamilton C E, Kang J,
Chakraborty S, Guo W, Kelly K F, Barron A R and
Billups W E 2008 Graphite epoxide J. Am. Chem. Soc.
130 5414–5

[51] Hu Y et al 2020 An ultraviolet photoelectron spectroscopy
study on bandgap broadening of epitaxial graphene on SiC
with surface doping Carbon 157 340–9

[52] Craciun M F, Russo S, Yamamoto M and Tarucha S 2011
Tuneable electronic properties in graphene Nano Today
6 42–60

[53] Zhao X-J et al 2019 Molecular bilayer graphene Nat.
Commun. 10 10

[54] Jung W R, Choi J H, Lee N, Shin K, Moon J-H and Seo Y-S
2012 Reduced damage to carbon nanotubes during

ultrasound-assisted dispersion as a result of
supercritical-fluid treatment Carbon 50 633–6

[55] Zhang H W, Zhang Z Q and Wang L 2009 Molecular
dynamics simulations of electrowetting in double-walled
carbon nanotubes Curr. Appl. Phys. 9 750–4

[56] Park D, Kim Y H and Lee J K 2003 Synthesis of carbon
nanotubes on metallic substrates by a sequential
combination of PECVD and thermal CVD Carbon
41 1025–9

[57] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Energy
band-gap engineering of graphene nanoribbons Phys. Rev.
Lett. 98 206805

[58] Aigner S, Pietra L D, Japha Y, Entin-Wohlman O, David T,
Salem R, Folman R and Schmiedmayer J 2008 Chemically
derived, ultrasmooth graphene nanoribbon semiconductors
Science 319 1226–9

[59] Son Y-W, Cohen M L and Louie S G 2006 Energy gaps in
graphene nanoribbons Phys. Rev. Lett. 97 216803

[60] Son Y-W, Cohen M L and Louie S G 2006 Half-metallic
graphene nanoribbons Nature 444 347–9

[61] Lu J P and Yang W 1994 Shape of large single- and
multiple-shell fullerenes Phys. Rev. B 49 11421–4

[62] Pinto Y, Fowler P W, Mitchell D and Avnir D 1998
Continuous chirality analysis of model stone-wales
rearrangements in fullerenes J. Phys. Chem. B
102 5776–84
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