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We present new linear relations among the masses of S-wave tetraquarks with either one flavour 
(Q Q Q̄ Q̄ ) or two (Q Q q̄q̄). Because the relations are sensitive to the hidden-colour, spin, and spatial 
degrees of freedom, comparison to experimental data can help to reveal the internal structure of 
tetraquarks, and discriminate among different theoretical models. Depending on the model, the relations 
are either exact, or valid in perturbation theory, and a thorough comparison with existing literature 
confirms their validity at the MeV level. Additionally, we explore the connections among tetraquark 
models, and show how those with effective (quark or diquark) masses are related to dynamical potential 
models. We also show how the spectrum of diquark models is effectively a limiting case of (more general) 
quark models, and in particular, that the diquark concept is most relevant in the particular combination 
Q Q q̄q̄, where Q is much heavier than q̄.
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1. Introduction

The “November Revolution” provoked by the discovery of 
J/ψ [1,2] is now sometimes known as the “first” charm revolu-
tion, owing to a more recent sequence of discoveries which are 
also deserving of revolutionary status. A characteristic feature of 
the “second” charm revolution, which started at BaBar and Belle, 
and is still ongoing at BESIII and the LHC experiments at CERN, is 
the discovery of states which cannot apparently be understood as 
ordinary qq̄ mesons or qqq baryons; the experimental situation is 
reviewed in Refs. [3–5]. The new class of hadrons, which includes 
states in the charm and bottom quark sector, poses a significant 
challenge to our understanding of the strong interaction. Future 
experiments, such as Belle II [6] and PANDA [7], are designed to 
further explore these hadrons.

The initial flood of new states became known collectively as the 
“XYZ” states, a name strongly suggestive of their mysterious char-
acteristics. Some of the states are by now so well-established that 
their nomenclature reflects the standard conventions of the Parti-
cle Data Group (PDG) [8] – so, for example, the state X(3872) [9]
which launched the second charm revolution is now known as 
χc1(3872). Even so, the underlying nature of many of these states 
is not well understood, and there is considerable ongoing theoret-
ical debate [3,4,10–21].
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A key dividing line in these discussions is between molecular 
models and “compact” multiquark models, which have character-
istically different degrees of freedom. In molecular models, the 
constituents are hadrons, whose interactions can be modelled, for 
example, in terms of pion exchange, or as effective field theory 
contact terms which are fit to data [17,22–31]. Such approaches 
are essentially an extension into the heavy quark sector of ideas 
which are widely applied in nuclear physics.

The focus of this paper is instead on compact multiquarks, 
which, by comparison to molecular models, are more “exotic”, in 
the sense that there is no effective description in terms of interact-
ing hadrons. Instead, taking a Q Q q̄q̄ tetraquark as an example, the 
relevant degrees of freedom are typically assumed to be four inter-
acting quarks, or alternatively, effective Q Q and q̄q̄ diquarks. (Here 
Q and q are not necessarily heavy and light quarks, but rather, any 
distinct quark flavours.) One of our main motivations in this paper 
is to distinguish between these two physical pictures, which we re-
fer to as quark models and diquark models, respectively. (We give 
citations to the relevant literature in the main body of the paper, 
where the different models are described in more detail.)

Models for compact multiquarks have parameters which are 
typically not well-constrained, as they are usually fixed by compar-
ison to the spectrum of conventional mesons and baryons, which 
introduces a systematic uncertainty which is difficult to quantify. 
Absolute predictions for the masses of states are therefore not very 
reliable, and moreover, they cannot be used to distinguish between 
quark and diquark models, whose predictions are similar within 
(large) uncertainties. By contrast, predictions for relations among 
masses (or mass splittings) are more general and, in some cases, 
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are completely independent of parameters. Such relations, which 
are the main focus of this paper, obviously have more predictive 
power, and allow for more direct tests of model assumptions.

For conventional hadrons, the Gell-Mann–Okubo formula [32–
35] is a prototypical example of an empirically successful rela-
tion among hadron masses. Additional relations among the masses 
of conventional mesons and baryons have also been discovered 
and compared favourably to experimental data, for example in 
Refs. [36–42]. In this paper we uncover similar relations among 
the masses of tetraquark states, and since they are based on simi-
lar symmetry arguments, we expect them to be equally reliable.

An analogy with ordinary Q Q̄ mesons is instructive. In that 
case, absolute mass predictions (in quark potential models) have 
considerable uncertainty, but a linear relation among the masses 
in the P -wave multiplet is very reliable and is satisfied in ex-
periments to less than an MeV [43–47], and also served as a 
benchmark for exotic structures in that mass region [48,49]. The 
relations we find in this paper are conceptually very similar. Note 
that in this paper we are concentrating on relations among the 
masses of tetraquark states, as distinct from relations between 
their masses and those of conventional mesons, which have also 
been discussed in the literature [50–52], but remain to be con-
firmed experimentally.

Our main results in this paper are for tetraquarks with ei-
ther two flavours in the combination Q Q q̄q̄, or just one flavour 
Q Q Q̄ Q̄ . (For specific examples, Q can be regarded as a heavy 
quark flavour; however, q is not necessarily a light quark, but 
rather, a distinct quark flavour from Q .) Our interest in these 
particular combinations is partly due to recent experimental dis-
coveries and lattice calculations. The one-flavour case has been 
a particularly hot topic recently, owing to a sequence of experi-
mental observations showing apparent candidates for ccc̄c̄ states 
in J/ψ J/ψ decays [53–55]; many of the results of this paper can 
be usefully applied to the phenomenology of these states [56]. 
Similarly, there is a growing body of evidence from experiment, 
lattice QCD and models, for the likely binding of bbq̄q̄′ and ccq̄q̄′
tetraquarks, where q̄ and q̄′ are light flavours [50,51,57–73]. Note 
however that our results would only apply where q̄ and q̄′ are 
identical or, from isospin symmetry, are an isovector ūd̄ combina-
tion.

The possible mixing between compact tetraquark and molecu-
lar state (such as explored in [74,75]) is not considered here. A 
possible caveat is that the potential for such a mixing introduces 
some additional parameter(s) and the derived mass relations will 
be subjected to some level of model dependence.

We begin (Section 2) with some remarks on the main distin-
guishing feature of quark and diquark models, namely the assumed 
colour wavefunctions. We then discuss quark models (Section 3), 
showing that the chromomagnetic quark model (with effective 
quark masses) can be obtained in a symmetry limit from the quark 
potential model. We then do a similar exercise for diquark models 
(Section 4), and show how these are related to quark models in 
a truncated basis of colour. Specialising to tetraquarks with one 
or two flavours (Section 5), we derive formulae for the masses of 
states in both quark and diquark models, and show how the di-
quark model emerges as a limiting case of quark models. Using 
the mass formulae, we identify linear relations among tetraquark 
masses (Section 6), and show how these can discriminate among 
models. Finally (Section 7) we summarise our results and suggest 
how they may be used to inform comparisons with emerging ex-
perimental data.

2. Colour, spin and flavour

The key distinction between quark and diquark models is the 
treatment of colour. A pair of quarks can be coupled to colour 3̄ or 

6, while a pair of antiquarks can be coupled to 3 or 6̄. To form an 
overall colour singlet, the possible combinations are then 3̄ ⊗ 3 or 
6 ⊗ 6̄. A basic assumption of quark models is that both possibilities 
should be considered, and in general, a quark model state can be 
an admixture of the two. In diquark models, by construction, only 
the 3̄ ⊗ 3 configuration is included [76,77].

As well as the treatment of colour, models are also distin-
guished according to whether the constituents (quarks or diquarks) 
have effective masses, or instead are dynamical objects whose con-
tribution to the tetraquark mass is obtained from the Schrödinger 
equation with some confining potential. We will consider both of 
these approaches, and the relation between them.

In this paper we concentrate on tetraquarks with either two 
flavours (in the combination Q Q q̄q̄), or one (Q Q Q̄ Q̄ ). Both sys-
tems are subject to the same constraints, from the Pauli principle, 
on the allowed spin and colour configurations. With reference to 
the Q Q q̄q̄ system, an S-wave Q Q pair can have (colour, spin) 
quantum numbers (3̄,1) or (6,0), while an S-wave q̄q̄ pair can be 
(3,1) or (6̄,0). Forming an overall colour singlet, and combining the 
spins in S-wave to angular momentum J , the allowed combina-
tions (and their J P (C) quantum numbers) are∣∣ϕ2

〉 = ∣∣{(Q Q )1
3̄
(q̄q̄)1

3}2〉 [2+(+)], (1)∣∣ϕ1
〉 = ∣∣{(Q Q )1

3̄
(q̄q̄)1

3}1〉 [1+(−)], (2)∣∣ϕ0
〉 = ∣∣{(Q Q )1

3̄
(q̄q̄)1

3}0〉 [0+(+)], (3)∣∣ϕ′
0

〉 = |{(Q Q )0
6(q̄q̄)0

6̄
}0〉 [0+(+)], (4)

where on the right-hand side, the subscripts are colour, and su-
perscripts are spin. The charge conjugation quantum number C is 
relevant only for the one-flavour case, corresponding to Q = q.

When counting the number of distinct quark flavours, we can 
treat u and d quarks as identical if they come in the isovector 
(symmetric) combination, since they are subject to the same con-
straints from the Pauli principle outlined above. So, for example, 
results we obtain for (I, I3) = (1, ±1) states Q Q d̄d̄ and Q Q ūū
apply equally to the (I, I3) = (1, 0) partner Q Q ūd̄, but would not 
apply to an (I, I3) = (0, 0) partner.

Diquark models are characterised by the inclusion of only 
colour triplet combinations, meaning the spectrum has three states 
(ϕ2, ϕ1 and ϕ0). Quark models, by contrast, include both the colour 
triplet and colour sextet combinations, so there are four states, 
namely ϕ2, ϕ1, and two scalars, which are admixtures of ϕ0 and 
ϕ′

0. Obviously an experimental determination of the number of 
scalar states can distinguish diquark models (one state) from quark 
models (two).

3. Quark models

In the chromomagnetic quark model, also known as the colour-
magnetic interaction (CMI) model, the quark constituents have ef-
fective (rather than dynamical) masses, and the splitting among 
the S-wave states is induced by chromomagnetic interactions (one-
gluon exchange) [78–92]. The model has been widely applied to 
exotic hadron spectroscopy, as reviewed in Ref. [14]. The Hamilto-
nian for S-wave states is

H = M −
∑
i< j

Ci j λi · λ j σ i · σ j, (5)

where the centre of mass

M =
∑

i

mi (6)
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is the sum of quark masses, λi and σ i are the SU (3) colour and 
SU (2) spin (Pauli) matrices of quark i, respectively, and Cij are 
(positive) parameters which depend on quark flavours. The eigen-
states of H are, in general, admixtures of 3̄ ⊗ 3 and 6 ⊗ 6̄ colour 
configurations, with mixing induced by the λi · λ j term.

The parameters M and Cij are typically fixed by applying the 
same Hamiltonian to the spectrum of conventional mesons and/or 
baryons, and fitting. An explicit assumption is that the same co-
efficients Cij control the interactions between any pair of flavours 
i and j, either as a quark-quark (qiq j) or quark-antiquark (qiq̄ j) 
pair1, and regardless of whether these pairs are in a tetraquark, or 
in a conventional meson or baryon. In some cases, it is further as-
sumed that the coefficients Cij scale inversely with quark masses,

Cij = c

mim j
, (7)

for some constant c (which will be identified later in this section).
Quark potential models [52,57–59,93–116] are a widely-used 

(and somewhat more rigorous) alternative approach, in which 
the quark constituents are dynamical, rather than having effective 
masses. A typical quark model Hamiltonian

H = T + V + U , (8)

has a potential with chromoelectric (V ) and chromomagnetic (U ) 
contributions

V = −
∑
i< j

λi · λ j v(ri j), (9)

U = −
∑
i< j

λi · λ j σ i · σ j u(ri j), (10)

whose radial parts are typically (but not necessarily) of the form

v(ri j) = 3

16

(
b ri j − 4

3

αs

ri j
+ c0

)
, (11)

u(ri j) = π

6

αs

mim j
δ3(ri j) , (12)

where b and αs are the strengths of the confining force (string ten-
sion) and colour-Coulomb potential, respectively, and c0 is mass 
renormalization. Numerical values of these parameters can be ex-
tracted from the hadron spectrum [69,96,109,116].

Comparing the two models, it is clear that U in the potential 
model is closely related to the interaction term in the chromo-
magnetic model (5). To understand the relationship between the 
models, we treat U as a perturbation and consider the Hamilto-
nian

H = T + V , (13)

whose eigenstates are ϕ0, ϕ1, ϕ2 and ϕ′
0 introduced in equations 

(1)-(4). (There is no term in H which mixes ϕ0 and ϕ′
0, due to the 

orthogonality of the spin wavefunctions.) Because H depends on 
colour but not spin, there is degeneracy among the states ϕ0, ϕ1, 
and ϕ2, but not between these and ϕ′

0,〈
ϕ J

∣∣H
∣∣ϕ J

〉 �= 〈
ϕ′

0

∣∣H
∣∣ϕ′

0

〉
. (14)

We will point out that in order to make the connection with the 
chromomagnetic model, an extra symmetry constraint is required, 
which restores this degeneracy.

1 qi, j stands for any quark flavour either heavy or light throughout.

The matrix elements of V , using the colour matrix elements in 
Ref. [108], are〈
ϕ J

∣∣V
∣∣ϕ J

〉 = 8

3

〈
v(r12) + v(r34)

〉
+ 4

3

〈
v(r13) + v(r14) + v(r23) + v(r24)

〉
, (15)〈

ϕ′
0

∣∣V
∣∣ϕ′

0

〉 = −4

3

〈
v(r12) + v(r34)

〉
+ 10

3

〈
v(r13) + v(r14) + v(r23) + v(r24)

〉
(16)

where an integral over all spatial degrees of freedom is implied. 
From the symmetries in T and V , the ground state wavefunctions 
are symmetric under the interchange of quarks (1 ↔ 2), antiquarks 
(3 ↔ 4), or both (12 ↔ 34), so the spatial integral can be reduced 
to two independent terms〈
ϕ J

∣∣V
∣∣ϕ J

〉 = 16

3

〈
v(r12)

〉 + 16

3

〈
v(r13)

〉
, (17)〈

ϕ′
0

∣∣V
∣∣ϕ′

0

〉 = −8

3

〈
v(r12)

〉 + 40

3

〈
v(r13)

〉
. (18)

Note however that the wavefunction does not have an additional 
symmetry under the interchange of a quark and antiquark (such as 
2 ↔ 3), so in general, no further simplification is possible. This ap-
plies not only to states with two flavours (Q Q q̄q̄), but also states 
with one flavour (Q Q Q̄ Q̄ ): the Hamiltonian does not impose a 
symmetry under Q ↔ q̄ or Q ↔ Q̄ , so the wavefunction does 
not have that symmetry. It turns out, however, that this additional 
symmetry is often imposed on the wavefunction as an artefact of 
the calculation. In particular this is often the case when the Gaus-
sian Expansion Method is applied to tetraquarks with one flavour 
(Q Q Q̄ Q̄ ), as in for example Refs. [114,116]. If we impose this ex-
tra symmetry (under 2 ↔ 3), the spatial integral reduces further, 
and the potentials for all states are identical〈
ϕ J

∣∣V
∣∣ϕ J

〉 = 〈
ϕ′

0

∣∣V
∣∣ϕ′

0

〉 = 32

3

〈
v(r12)

〉
, (19)

which further implies, as distinct from the general case (14), that 
the eigenstates of H are degenerate. Identifying M in equation (5)
as the corresponding eigenvalue,〈
ϕ J

∣∣H
∣∣ϕ J

〉 = 〈
ϕ′

0

∣∣H
∣∣ϕ′

0

〉 ≡ M , (20)

we see that a perturbative treatment of the full quark model 
Hamiltonian

H = H + U , (21)

is equivalent to the chromomagnetic model (5), where the coeffi-
cients Cij are obtained from u(ri j) by integrating over the spatial 
wavefunctions of the eigenstates of H ,

Cij = 〈
u(ri j)

〉
. (22)

Note that with this interpretation, the centre of mass term M is 
no longer just the sum of quark masses, but also absorbs the dy-
namical contributions from the potential model, namely the kinetic 
energy and the confining term. Also, the coefficients Cij depend 
not only on quark masses, as in equation (7), but also depend on 
the spatial wavefunction of the quarks.

In the symmetry limit we are working in, 
〈
ri j

〉
is independent of 

i and j, hence so is Cij . This validates the assumption, in the chro-
momagnetic model, that the same Cij can be used for any pair of 
flavours i and j in a tetraquark, both quark-quark (qiq j) and quark-
antiquark (qiq̄ j) pairs. However it does not establish that one can 
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use the same Cij in tetraquarks as in conventional mesons and 
baryons: this remains an assumption of the model, which could 
however be tested by evaluating equation (22) and the correspond-
ing expression for mesons and baryons.

With the specific form of u(ri j) in equation (12), we reproduce 
the inverse dependence of Cij on quark masses as in equation (7), 
with

c = π

6
αs

〈
δ3(ri j)

〉
. (23)

Note that, in the symmetry limit we are working in, c is indeed 
constant, in the sense of being independent of the flavours i and j
within the tetraquark.

4. Diquark models

A widespread implementation of the diquark model [117–123]
has a Hamiltonian which is very similar to that of the chromomag-
netic model,

H = M + 2
∑
i< j

κi j Si · S j , (24)

where M is the sum of quark or diquark effective masses, Si =
σ i/2 is the spin of quark i, and κi j are (positive) parameters which 
depend on quark flavours and which, unlike the parameters Cij of 
the chromomagnetic model, are not assumed to be the same for 
quark-quark (qiq j) and quark-antiquark (qiq̄ j) combinations. Oth-
erwise, the only distinction between the diquark model and the 
chromomagnetic model is the use of a truncated colour basis 3̄⊗3. 
If we evaluate the chromomagnetic Hamiltonian (5) in the same 
basis, the two models are equivalent provided their couplings are 
related

κi j = −2
〈
λi · λ j

〉
Cij (25)

namely

κi j =
{

16
3 Cij, for qiq j,

8
3 Cij, for qiq̄ j,

(26)

where we have used the colour matrix elements in Ref. [108]. 
In this sense, the diquark model is identical to the chromomag-
netic quark model, but evaluated in a truncated colour basis. We 
will later use this property to extract the spectrum of the diquark 
model as a limiting case of the chromomagnetic quark model.

Referring to the Hamiltonian (24) as a diquark model is some-
what counterintuitive, since the spin degrees of freedom are ac-
tually quarks (not diquarks). The distinction turns out not to be 
important for the particular flavour combinations of tetraquarks 
which are the focus of this paper. For Q Q q̄q̄ states there are three 
independent couplings

κQ Q ≡ κ12 , (27)

κqq ≡ κ34 , (28)

κQ q̄ ≡ κ13 = κ14 = κ23 = κ24 , (29)

with the obvious simplification to two couplings (κQ Q and κQ Q̄ ) 
in the special case Q Q Q̄ Q̄ . We consider the (more general) 
Q Q q̄q̄ case in detail. With the couplings above, the Hamiltonian 
reduces to

H = M + 1

2

(
κQ Q + κqq

) + 2κQ q̄ S12 · S34 , (30)

where here we have evaluated

〈
S1 · S2

〉 = 〈
S3 · S4

〉 = 1

4
, (31)

as appropriate to spin-1 diquarks. The key feature is that the spin-
dependence of the Hamiltonian is now expressed in terms of ef-
fective diquark spin operators

S12 = S1 + S2 , (32)

S34 = S3 + S4 , (33)

corresponding to the total spin of the Q Q and q̄q̄ diquarks, re-
spectively. In this sense, the Hamiltonian defined at quark level 
can be naturally interpreted in terms of diquark degrees of free-
dom. But this is a peculiarity of the flavour combination Q Q q̄q̄ (or 
Q Q Q̄ Q̄ ), which leads to equation (30). For other combinations of 
flavours, such as Q Q Q̄ q̄ and Q qQ̄ q̄, the same does not apply, and 
in general an effective diquark description does not emerge in the 
same way; this is because as well as effective diquark operators 
like (32) and (33), there are other operators S1 − S2 and/or S3 − S4
which mix “diquarks” with different spin.

Diquark potential models are more explicit in treating di-
quarks as effective degrees of freedom. Here the mass spectrum of 
tetraquark states comes from the Schrödinger equation, in which 
diquarks are massive (colour-triplet) objects interacting through a 
confining potential [52,124–133]. The distinctions with the previ-
ous model are that the mass spectrum comes from the Schrödinger 
equation (rather than effective masses fit to data), and that the 
spin dependence is expressed from the outset in terms of diquark 
(not quark) spin operators.

To clarify the relation between the different diquark models, 
we follow a similar procedure to our previous discussion of quark 
models. In the Hamiltonian,

H = T + V + U , (34)

we isolate the spin-independent kinetic (T ) and confining (V ) 
terms, and a spin-dependent term (U ), which in all models is ex-
pressed (for S-wave states) in terms of diquark spin operators,

U = u(r) S12 · S34 , (35)

where here r is the radial component of the vector joining the di-
quark and antidiquark. There is considerable variation among the 
different approaches to diquark potential models, for example, in 
how the effective diquark mass is obtained, the assumed form of 
the confining potential V , and the precise form of the radial com-
ponent u(r) of the spin-spin term. However these differences are 
immaterial to the discussion.

As in the quark model case, we treat U as a perturbation. If we 
identify the eigenvalues of the spin-independent part

H = T + V (36)

with the spin-independent term in equation (30),〈
H

〉 ≡ M + 1

2

(
κQ Q + κqq

)
, (37)

we notice that a perturbative treatment of the full Hamiltonian 
(34) is equivalent to the previous diquark model, with the cou-
plings defined as integrals over the eigenstates of H ,

κQ q̄ ≡ 1

2

〈
u(r)

〉
. (38)

5. Mass formulae

At this stage we have established the underlying connections 
among four different classes of models, distinguished according 
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to the colour structure (quarks versus diquarks), and the mass 
spectrum (effective masses versus dynamical masses from the 
Schrödinger equation). Among the models with effective masses, 
we showed that the quark model (5) and diquark model (24) are 
equivalent, except that the latter is evaluated in a truncated colour 
basis. We also showed that each of these models can be under-
stood by applying perturbation theory to a corresponding (quark 
or diquark) potential model, which gives a dynamical interpreta-
tion for the effective masses, and implies that the couplings are 
sensitive to the spatial wavefunctions.

Having established these connections among models, we will 
now obtain some general results which apply to all four classes of 
model. As a framework for our calculation, we will use the most 
general Hamiltonian (5). By evaluating its spectrum in the full and 
truncated colour basis, respectively, we get results which corre-
spond to quark and diquark models.

When applying the Hamiltonian (5) to Q Q q̄q̄ states, there are 
three possible couplings,

C Q Q = C12 , (39)

Cqq = C34 , (40)

C Q q̄ = C13 = C14 = C23 = C24 , (41)

whereas for Q Q Q̄ Q̄ states there are only two,

C Q Q = C12 = C34 , (42)

C Q Q̄ = C13 = C14 = C23 = C24 . (43)

We will discuss the more general Q Q q̄q̄ case, noting that Q Q Q̄ Q̄
is then a special case with Q = q.

We need the matrix elements of H with respect to the basis 
states (1)-(4). Using, for example, the colour and spin matrix ele-
ments of Ref. [108], we find〈
ϕ J

∣∣H
∣∣ϕ J

〉 = M + 8

3

(
C Q Q + Cqq

) + 8

3
C Q q̄ [ J ( J + 1) − 4] , (44)〈

ϕ′
0

∣∣H
∣∣ϕ′

0

〉 = M + 4(C Q Q + Cqq) , (45)〈
ϕ′

0

∣∣H
∣∣ϕ0

〉 = −8
√

6 C Q q̄ , (46)

which is consistent with the results of Refs. [84,89]. Note that C Q Q

and Cqq appear only in the combination C Q Q +Cqq , and because of 
this, it turns out to be convenient to introduce the dimensionless 
ratio

R = 2C Q q̄

C Q Q + Cqq
(47)

which, in the case of Q Q Q̄ Q̄ states, reduces to the simpler ratio 
of Q Q̄ and Q Q couplings,

R = C Q Q̄

C Q Q
. (48)

If the couplings are parameterised as in equation (7), then for 
two-flavour states (Q Q q̄q̄), R depends only on the ratio of quark 
masses mq and mQ ,

R = 2mq/mQ

1 + (mq/mQ )2
, (49)

and takes values in the range 0 < R < 1, while for one-flavour 
states (Q Q Q̄ Q̄ ) obviously R = 1.

As discussed, the spectrum of the diquark model comes from 
truncating the basis to include only the hidden colour-triplet 
states, namely ϕ2, ϕ1 and ϕ0, but not ϕ′

0. Evaluating equation (44), 
the masses of the tensor (M2), axial (M1) and scalar (M0) are

M2 = M + 8

3

(
C Q Q + Cqq

)
(1 + R) , (50)

M1 = M + 8

3

(
C Q Q + Cqq

)
(1 − R) , (51)

M0 = M + 8

3

(
C Q Q + Cqq

)
(1 − 2R) . (52)

To get results for the quark model, we expand the basis to in-
clude ϕ′

0 which implies, as discussed previously, that the spectrum 
includes two scalar states. The masses of the tensor (M2) and ax-
ial (M1) are as above, but the masses of the scalars (M0 and M ′

0) 
are the eigenvalues of

H = M + (
C Q Q + Cqq

)( 8
3 (1 − 2R) −4

√
6R

−4
√

6R 4

)
, (53)

namely

M0 = M + 2

3

(
C Q Q + Cqq

)
(5 − 4R − 	), (54)

M ′
0 = M + 2

3

(
C Q Q + Cqq

)
(5 − 4R + 	), (55)

where

	 =
√

232R2 + 8R + 1 , (56)

and we are adopting the convention that M ′
0 > M0. The eigenstates 

ψ0 and ψ ′
0 corresponding to masses M0 and M ′

0 are orthogonally 
mixed∣∣ψ0

〉 = cos θ
∣∣ϕ0

〉 + sin θ
∣∣ϕ′

0

〉
, (57)∣∣ψ ′

0

〉 = − sin θ
∣∣ϕ0

〉 + cos θ
∣∣ϕ′

0

〉
, (58)

with mixing angle

θ = tan−1
(

	 − 1 − 4R

6
√

6R

)
. (59)

The mass formulae above imply unambiguous orderings for the 
masses of states, regardless of parameters. For diquark models, the 
ordering is

M0 < M1 < M2 , (60)

whereas in quark models it is

M0 < M1 < M2 < M ′
0 . (61)

This can help to assign quantum numbers to experimental candi-
dates, as discussed in Ref. [56].

The results in this section are exact for (quark or diquark) mod-
els with effective masses, whereas for potential models (whether 
quark or diquark), they apply in the limit of perturbation theory. In 
the particular case of the quark potential model, there is an addi-
tional caveat: recalling the discussion at the end of Section 3, the 
results derived above are valid only subject to the additional as-
sumption that the spatial wavefunction of the tetraquark is totally 
symmetric under the interchange Q ↔ q̄ (or Q ↔ Q̄ , in the one 
flavour case). As discussed, in many papers this assumption ap-
plies (even if implicitly), and we have found that in such cases (for 
example Refs. [114,116]) the results agree with all of our results 
above (for masses, mixing angles, and mass orderings). In quark 
model studies which do not use that assumption, there are some 
differences, which are immediately apparent in violations of the 
mass ordering (61), for example in Ref. [112].

There is an intriguing connection between quark and diquark 
models in the limit of small R . In this limit 	 ≈ 1 + 4R , meaning 
the scalar masses are

5
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M0 ≈ M + 8

3

(
C Q Q + Cqq

)
(1 − 2R) , (62)

M ′
0 ≈ M + 4

(
C Q Q + Cqq

)
, (63)

which is equivalent to a perturbative treatment of the Hamilto-
nian (53) to first order in R . Note that the lighter scalar M0 repro-
duces the result of the diquark model, equation (52). In the same 
limit θ ≈ 0 so the lighter scalar is purely ϕ0, again coinciding with 
the diquark model result. So apart from the existence of a heavier 
scalar state, we have found that spectra of the quark and diquark 
models coincide in the limit of small R , both in terms of masses 
and wavefunctions. With reference to the definitions (47) and (48), 
small R means that quark-antiquark interactions are small com-
pared to quark-quark interactions. That is precisely the limit in 
which the diquark concept is physically reasonable.

From equation (49), the small R limit applies to Q Q q̄q̄
tetraquarks with mQ 
 mq . On this basis we suggest that the di-
quark model is a sensible approximation to the quark model in 
such cases (modulo the absent heavier scalar state). Otherwise, 
the spectra of the quark and diquark models are rather different, 
and we explore this further in the next section. The one-flavour 
case Q Q Q̄ Q̄ actually deviates maximally from the small R limit, 
as it has R = 1, which is the upper limit on R from equation (49).

Returning to the Q Q q̄q̄ case, it is clear from above that as 
mQ → ∞, the lighter scalar decouples from ϕ′

0 and becomes 
purely ϕ0. This effect has been discussed previously for Q Q q̄q̄
states [101,134]. In terms of colour, it is exactly what was observed 
also for the isoscalar Q Q ūd̄ tetraquark [113]: as mQ → ∞, the 
ground state decouples from 6 ⊗ 6̄ and becomes purely 3̄ ⊗ 3. The 
comparison suggests that the effect may be generic, noting that in 
spite of its apparent similarity, the isoscalar Q Q ūd̄ system is very 
different to our Q Q q̄q̄ system, because of the isospin asymmetry, 
which implies different spin-colour configurations for ūd̄ compared 
to q̄q̄.

6. Mass relations

The mass formulae in the previous section imply relations 
among the masses of the states, and as far as we know these have 
not yet been identified in the literature. For diquark models, the 
situation is very simple: equations (50), (51) and (52) imply that 
the masses M2, M1, M0 satisfy the following linear relation,

M1 = 1

3
(2M0 + M2) , (64)

independently of model parameters.
For quark models, the situation is only slightly more compli-

cated. From equations (50), (51), (54), and (55), it is clear that any 
mass splitting among M2, M1, M0 and M ′

0 is independent of M , 
while any ratio of such splittings is independent of C Q Q + Cqq , 
leaving a function of R only. By taking ratios of different combina-
tions of mass splittings, we get linear relations among the masses, 
similar to equation (64) for the diquark model, but in this case 
involving R . In this way, we can find a linear relation among any 
combination of three masses out of the four (M2, M1, M0 and M ′

0), 
meaning a total of four relations. We concentrate on the following 
two:

M1 = M0 + 	 − 1

	 − 1 + 8R
(M2 − M0) , (65)

M ′
0 = M0 + 2	

	 − 1 + 8R
(M2 − M0) , (66)

noting that the first of these is the closest analogue of the di-
quark model result (64), in the sense of offering a formula for M1
in terms of M0 and M2. Indeed, it reduces to the diquark model 

result (64), in the limit of small R (taking 	 ≈ 1 + 4R). This re-
inforces our previous observation that the quark model reduces 
(apart from the heavier scalar) to the diquark model, in the limit 
of small R .

Ultimately the utility of these mass relations is that, given 
any two experimental candidates, we may predict the mass of 
the other state (in diquark models), or the other two states (in 
quark models). Since these predictions are independent of (or only 
weakly dependent on) parameters, they provide a very direct test 
of models, which can be checked against future experimental data. 
In Ref. [56] we apply this approach to a putative multiplet of ccc̄c̄
states observed at LHCb, CMS and ATLAS.

The relations also lead to a simple and very general understand-
ing of the pattern of masses which characterise quark and diquark 
models. In Fig. 1 we show the mass spectrum in arbitrary units, 
having fixed M0 and M2, and using the relations (64), (65) and 
(66) to predict M1 and M ′

0. Note of course that in quark models, 
the pattern of masses in the multiplet is sensitive to R , whereas 
in diquark models, it is not. As a reminder, if the couplings Cij are 
parameterised as in equation (7), then Q Q Q̄ Q̄ states have R = 1, 
while Q Q q̄q̄ states have 0 < R < 1, with R ≈ 0 for mQ 
 mq . No-
tice in Fig. 1 that as R → 0, the scalar masses in the quark and 
diquark models become degenerate, as anticipated above.

Comparison of the spectrum in Fig. 1 to experimental candi-
dates can help to reveal the underlying dynamics of a multiplet of 
tetraquark states. In particular, apart from in the limit of small R , 
quark and diquark models can be differentiated by the relative po-
sition of the axial (M1) compared to the scalar (M0) and tensor 
(M2). The difference is particularly pronounced for larger R , in-
cluding R = 1 which applies to the single flavour case (Q Q Q̄ Q̄ ).

We have been assuming that the couplings satisfy equation (7), 
but empirically this is not universally reliable; see for example 
the couplings fitted to mesons and baryons in Refs. [84,91]. More-
over, in quark potential models, it applies only in a symmetry limit 
which is not strictly justified by the Hamiltonian (see Section 3). If 
we no longer assume equation (7), then of course R is no longer 
constrained to 0 < R ≤ 1, and for this reason in Fig. 1 we extend 
the plot to larger values of R .

Without equation (7), for one-flavour states (Q Q Q̄ Q̄ ) it is no 
longer true that R = 1 exactly. Using the more general definition 
of R in equation (48), we expect deviations from R = 1 due to 
asymmetry in Q Q and Q Q̄ spatial wavefunctions. In this context 
it is reassuring that the spectrum in Fig. 1 is not very sensitive to 
the choice of R , for values near R = 1.

Although the relations (64), (65) and (66) have seemingly not 
been discussed previously, they are actually apparent in the quoted 
mass predictions throughout the literature, for each of the four 
classes of model we consider in this paper. In the Table 1 (Ap-
pendix) we compile the masses M0, M1, M2 and M ′

0 quoted in 
many different model calculations. To check the validity of the re-
lations, for each model we have taken M0 and M2 as inputs and, 
using the mass relations, we have computed the masses of the ax-
ial M̃1 and (if appropriate) the heavy scalar M̃ ′

0, which we can then 
compare to the corresponding quoted values of M1 and M ′

0. In the 
last two columns in Table 1, and also in Fig. 2, we show the differ-
ences M̃1 − M1 and M̃ ′

0 − M ′
0, which in most cases are 1 MeV or 

less. This is a striking confirmation of the validity of the relations, 
across all classes of model.

From previous discussions, we know that the mass relations are 
exact for (quark and diquark) models based on effective masses 
(corresponding to Refs. [89,91,135,136] in Table 1 and Fig. 2). In 
such cases, where M̃1 − M1 or M̃ ′

0 − M ′
0 deviate from zero, this can 

be attributed to rounding errors, from having applied the relations 
using inputs which are quoted to a particular number of significant 
figures.
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Fig. 1. The mass spectrum (in arbitrary units) as a function of R , where M0 and M2 are fixed, M1 (diquark model) is given by equation (64), while M1 (quark model) and 
M ′

0 (quark model) are given by equations (65) and (66), respectively.

Fig. 2. The left and right panels show, for the axial and heavy scalar, respectively, the 
difference between the mass obtained from the relations (64), (65) and (66), and 
the quoted mass taken from the literature, including examples of all four classes 
of model: the chromomagnetic quark model (CQM), quark potential model (QPM), 
diquark model (DM), and diquark potential model (DPM).

In (quark and diquark) potential models, the relations apply 
strictly in the limit of perturbation theory. Many of the masses 
in Table 1 and Fig. 2 have been computed in perturbation the-
ory, so we would expect the mass relations to be satisfied exactly, 
up to small rounding errors as mentioned previously. Notably, the 
masses of Ref. [132] are not computed in perturbation theory, and 
the somewhat larger deviation from exact agreement in this case 
can be understood for that reason.

In the specific case of quark (not diquark) potential models, we 
recall the additional caveat mentioned previously: our mass formu-
lae – hence the resulting mass relations – apply only subject to the 
assumption that the wavefunction is symmetric under the inter-
change Q ↔ q̄ (or Q ↔ Q̄ , in the one flavour case). The particular 
examples shown in Table 1 and Fig. 2 (Refs. [114,116]) satisfy this 
requirement, because in their implementation of the Gaussian Ex-
pansion Method, the symmetry is automatic for degenerate quarks 
(ccc̄c̄ and bbb̄b̄). This is to some extent an artefact of the calcu-
lation, since the symmetry is not actually imposed by the sym-
metries of the Hamiltonian (see Section 3). In models where the 

symmetry is not imposed (such as Refs. [112,137]) the relations 
are not satisfied. Effectively this is because the chromoelectric term 
in the Hamiltonian induces a splitting between the ϕ0,1,2 and ϕ′

0
states which, before spin splitting, would otherwise be degener-
ate. For precisely the same reason, the relations also do not apply 
to the extended chromomagnetic model of Refs. [92,138] which, 
unlike the ordinary chromomagnetic model, have a chromoelectric 
splitting in the centre of mass term.

7. Conclusions

One of the main obstacles to progress in understanding the na-
ture of exotic hadrons is that models are not very well constrained. 
This is because of the intrinsic ambiguity in identifying the rel-
evant degrees of freedom and their interactions, and also because 
model parameters are only weakly constrained by comparison with 
the spectra of conventional hadrons. Consequently, absolute mass 
predictions for tetraquark states are subject to systematic uncer-
tainties which are large and difficult to quantify, so comparing 
these to experimental candidates can hardly discriminate among 
models.

Our perspective is that it is considerably more useful to ex-
amine not absolute mass predictions, but relations among masses. 
As well as being more reliable – in the sense of depending only 
weakly on model parameters, or not at all – such relations are 
considerably more direct, and therefore effective, as a way of dis-
criminating among competing models.

The most important distinguishing feature of models is whether 
they include all colour configurations (quark models) or only a 
subset (diquark models). For each class of model, we showed 
that the corresponding potential model is equivalent (in perturba-
tion theory) to a simpler model with effective (quark or diquark) 
masses – though in the case of quark models, the equivalence 
relies on an assumption of spatial symmetry which, though com-
monplace, is not strictly justified.

We derived general formulae for the mass spectrum of S-wave 
Q Q q̄q̄ and Q Q Q̄ Q̄ states in quark and diquark models, and 
showed how the two models coincide in an appropriate limit. From 
the formulae, we identified several resulting linear relations which 
are independent of, or only weakly dependent on, model param-
eters. The relations are exact for (quark or diquark) models with 
effective masses, or valid in perturbation theory for (quark or di-
quark) potential models. Although the relations have seemingly not 
been discussed in the literature before, they are apparent in the 
quoted mass predictions in all classes of models.

The relations reveal how quark and diquark models have a 
characteristically different pattern of masses, which can be tested 
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against future experimental data. In particular, given any two ex-
perimental candidates, using the relations one can predict the 
masses of the additional one or two states (in diquark or quark 
models, respectively). In a forthcoming paper [56] we apply this 
concept (and some other results from the present work) to the ap-
parent ccc̄c̄ states observed at LHCb, CMS and ATLAS.
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Appendix A

Table 1
The masses M0, M1, M2 and M ′

0 are taken from literature calculations in different models, whereas M̃1 and M̃ ′
0 are computed from the 

mass relations (64), (65) and (66), having taken M0 and M2 as inputs. In the last two columns we show the differences M̃1 − M1 and 
M̃ ′

0 − M ′
0, as a measure of the accuracy of the mass relations.

M0 M1 M2 M ′
0 M̃1 − M1 M̃ ′

0 − M ′
0

Chromomagnetic quark model [89] bbb̄b̄ 20155.4 20211.6 20242.5 20275.5 0.0 0.0
ccc̄c̄ 6796.6 6899.2 6955.7 7016 0.0 −0.1
bbc̄c̄ 13496.5 13559.7 13594.9 13633.8 0.3 −1.7

Chromomagnetic quark model [91] bbūū 10642 10676 10699 10738 0.6 0.0
bbs̄s̄ 10858 10901 10926 10954 0.4 0.8
ccūū 4000 4124 4194 4277 −0.2 −0.8
ccs̄s̄ 4227 4358 4430 4502 0.6 0.1

Quark potential model [116] bbb̄b̄ 19200 19216 19225 19235 0.1 −0.5
ccc̄c̄ 6411 6453 6475 6500 −0.7 −0.8

Quark potential model [114] bbb̄b̄ 19306 19329 19341 19355 −0.4 −0.8
ccc̄c̄ 6455 6500 6524 6550 −0.5 0.1

Diquark model [135,136] bbb̄b̄ 18754 18808 18916 0.0
ccc̄c̄ 5966 6051 6223 0.7

Diquark potential model [133] bbb̄b̄ 18723 18738 18768 0.0
ccc̄c̄ 5960 6009 6100 −2.3

Diquark potential model [125] bbūū 10648 10657 10673 −0.7
bbs̄s̄ 10932 10939 10950 −1.0
ccūū 4056 4079 4118 −2.3
ccs̄s̄ 4359 4375 4402 −1.7

Diquark potential model [132] ccc̄c̄ 5969.4 6020.9 6115.4 −2.8
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