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ABSTRACT 

The high integration of distributed energy resources into the domestic level has led to an 

increase in the number of consumers becoming prosumers (producer + customer), 

which creates several challenges for network operators, such as controlling renewable 

energy sources over-generation. Recently, self-consumption as a new approach is 

encouraged by several countries to reduce the dependency on the national grid. This 

work presents two different Energy Management System (EMS) algorithms for a 

domestic Photovoltaic (PV) system: (a) real-time Fuzzy Logic-based EMS (FL-EMS) 

and (b) day-ahead Mixed Integer Linear Programming-based EMS (MILP-EMS). Both 

methods are tested using the data from the Active Office Building (AOB) located in 

Swansea University, Bay Campus, UK, as a case study to demonstrate the developed 

EMSs. AOB comprises a PV system and a Li-ion Battery Storage System (BSS) 

connected to the grid. The MILP-EMS is used to develop a Community Energy 

Management System (CEMS) to facilitate local energy exchange. CEMS is tested using 

the data from six houses located in London, UK, to form a community. Each household 

comprises a PV system and BSS connected to the grid. It is assumed that all six 

households use an EV and are equipped with a bidirectional charger to facilitate the 

Vehicle to House (V2H) mode. In addition, two shiftable appliances are considered to 

shift the demand to the times when PV generation is maximum to maximise community 

local consumption. MATLAB software is used to code the proposed systems.  

 

The FL-EMS exploits day-ahead energy forecast (assumed it is available from a third 

party) to control the BSS with the aim of reducing the net energy exchange with the grid 

by enhancing PV self-consumption. The FL-EMS determines the optimal settings for 

the BSS, taking into consideration the BSS's state of health to maximise its lifetime. The 

results are compared with recently published works to demonstrate the effectiveness of 

the proposed method. The proposed FL-EMS saves 18% on total energy costs in six 

months compared to a similar system that utilises a day-ahead energy forecast. In 

addition, the method shows a considerable reduction in the net energy exchanged between 

the AOB and the grid. 

 

The main objective of the MILP-EMS is to reduce the net energy exchange with the 

grid by including a two days-ahead energy forecast in the optimisation process. The 

proposed method reduces the total operating costs (energy cost + BSS degradation cost) 

by up to 35% over six months and reduces net energy exchanged with the grid 

compared to similar energy optimisation technique. The proposed cost function in 

MILP-EMS shows that it can outperform the performance of alternative cost function 

that directly reduce the net energy exchange. 

 

CEMS uses two days-ahead energy forecast to reduce the net energy exchange with the 

grid by coordinating the distributed BSSs. The proposed CEMS reduces the total 

operating costs (energy costs + BSSs degradation costs) of the community by 7.6% 

when compared to the six houses being operated individually. In addition, the proposed 

CEMS enhances community self-consumption by reducing the net energy exchange 

with the grid by 25.3% over four months compared to similar community energy 

optimisation technique. A further reduction in operating costs is achieved using V2H 
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mode and including shiftable appliances. Results show that introducing the V2H mode 

reduces both the total operating costs of the community and the net energy exchange 

with the grid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



iii 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... i 

TABLE OF CONTENTS ................................................................................................. iii 

DEDICATION ................................................................................................................. vi 

LIST OF PUBLICATIONS ............................................................................................ vii 

LIST OF FIGURES ....................................................................................................... viii 

LIST OF TABLES .......................................................................................................... xii 

ABBREVIATIONS ....................................................................................................... xiii 

NOMENCLATURE ........................................................................................................ xv 

1 INTRODUCTION ......................................................................................................... 1 

1.1 Background ............................................................................................................. 1 

1.2 Toward Sustainability ............................................................................................. 1 

1.3 Photovoltaic (PV) System ....................................................................................... 2 

1.4 Data Processing ....................................................................................................... 3 

1.5 Research Objectives and Contributions .................................................................. 3 

1.6 Thesis Outline ......................................................................................................... 5 

2 LITERATURE REVIEW............................................................................................... 7 

2.1 Introduction ............................................................................................................. 7 

2.2 Electric Power System Transformation .................................................................. 8 

2.3 Potential Challenges and Solutions ......................................................................... 9 

2.3.1 Tariff Schemes ............................................................................................... 11 

2.3.2 Energy Forecast .............................................................................................. 13 

2.3.3 Demand-Side Management (DSM) ............................................................... 13 

2.3.4 Battery Storage Systems (BSSs) .................................................................... 15 

2.3.5 Electric Vehicles (EVs) .................................................................................. 17 

2.3.5.1 EV Challenges and Solutions .................................................................. 18 

2.4 EMS Problem Solving Approaches ...................................................................... 20 

2.4.1 Fuzzy Logic Controller (FL) .......................................................................... 21 

2.4.2 Mixed Integer Linear Programming (MILP) ................................................. 22 

2.5 Residential Energy Management Systems ............................................................ 23 

2.5.1 Real-Time Residential EMSs ......................................................................... 24 

2.5.2 Day-ahead Residential EMSs ......................................................................... 26 

2.6 Community Energy Management Systems ........................................................... 28 

2.6.1 Existing P2P Energy Trading Platforms ........................................................ 28 

2.6.2 P2P Energy Trading ....................................................................................... 29 

2.7 Conclusion............................................................................................................. 32 

3 REAL-TIME RESIDENTIAL ENERGY MANAGEMENT SYSTEM ..................... 33 

3.1 Introduction ........................................................................................................... 33 

3.2 Active Office Building System Configuration ...................................................... 34 

3.3 Forecast Data and Tariff Prices ............................................................................. 34 



iv 

3.4 FL-based EMS ...................................................................................................... 36 

3.4.1 SOC and SOH Battery Estimations ............................................................... 37 

3.4.2 Proposed Fuzzy Logic Control Algorithm ..................................................... 38 

3.4.3 Charging and Discharging FL Control Modes ............................................... 40 

3.5 Case Studies .......................................................................................................... 45 

3.5.1 Performance Comparison ............................................................................... 45 

3.5.2 Operating Costs and Net Energy Exchanged Comparison ............................ 50 

3.5.3 Battery State-of-Health .................................................................................. 54 

3.5.4 Performance of Algorithm as a Function of System Size .............................. 54 

3.6 Conclusion............................................................................................................. 55 

4 DAY-AHEAD RESIDENTIAL ENERGY MANAGEMENT SYSTEM ................... 57 

4.1 Introduction ........................................................................................................... 57 

4.2 MILP-based EMS.................................................................................................. 58 

4.3 Problem Formulation ............................................................................................ 59 

4.3.1 Battery Storage System Model ...................................................................... 60 

4.3.2 System Constraints ......................................................................................... 61 

4.3.3 Mixed Integer Linear Programming .............................................................. 63 

4.4 Case Studies .......................................................................................................... 65 

4.4.1 Performance Comparison ............................................................................... 65 

4.4.2 Comparison of Operational Costs and Net Energy Exchanged ..................... 67 

4.4.3 Comparing Different Cost Functions ............................................................. 70 

4.5 Conclusion............................................................................................................. 71 

5 COMMUNITY ENERGY MANAGEMENT SYSTEM ............................................. 72 

5.1 Introduction ........................................................................................................... 72 

5.2 Community Configuration .................................................................................... 72 

5.3 Forecast Data and Tariff Prices ............................................................................. 74 

5.4 Proposed Community Energy Management System ............................................. 74 

5.5 Central Controller .................................................................................................. 76 

5.5.1 P2P EMS problem formulation ...................................................................... 77 

5.5.1.1 House BSS model ................................................................................... 79 

5.5.1.2 System Constraints for P2P EMS ........................................................... 79 

5.5.2 Selection Level ............................................................................................... 83 

5.6 Case Studies .......................................................................................................... 84 

5.6.1 Performance Comparison ............................................................................... 85 

5.6.2 Operating Costs and Energy Exchange Comparison ..................................... 87 

5.7 Conclusion............................................................................................................. 91 

6 INVESTIGATION OF THE CONTRIBUTION OF EVs TO A COMMUNITY 

ENERGY SYSTEM ........................................................................................................ 92 

6.1 Introduction ........................................................................................................... 92 

6.2 Community Configuration .................................................................................... 92 

6.3 Proposed CEMS .................................................................................................... 94 

6.4 House Energy Management System ..................................................................... 95 



v 

6.4.1 Demand-Side Management ............................................................................ 98 

6.4.2 EV Battery Model .......................................................................................... 99 

6.4.3 House BSS Model ........................................................................................ 101 

6.4.4 System Constraints for HEMS ..................................................................... 101 

6.5 Central Controller ................................................................................................ 104 

6.5.1 P2P Problem Formulation ............................................................................ 104 

6.5.1.1 Demand-side Management ................................................................... 106 

6.5.1.2 EV Battery Model ................................................................................. 106 

6.5.1.3 House BSS Model ................................................................................. 106 

6.5.1.4 System Constraints for P2P-EMS ......................................................... 107 

6.5.2 Selection Level ............................................................................................. 108 

6.6 Case Studies ........................................................................................................ 109 

6.6.1 System Behaviour ........................................................................................ 110 

6.6.2 Comparing Energy Exchange and Energy Costs ......................................... 115 

6.7 Conclusion........................................................................................................... 116 

7 CONCLUSIONS AND FUTURE WORK ................................................................ 118 

REFERENCES .............................................................................................................. 120 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

DEDICATION  

I am grateful to God and the number of people who supported me to carry out this work. 

 

First and foremost, my deepest gratitude goes out to my supervisors Dr. M. Fazeli and 

Dr. M. Monfared for their enormous support, motivation and continuous guidance from 

the beginning to the end of my PhD journey. Their important feedback made several 

works (publications) achievable. My deep appreciation also goes to Dr. A. Fahmy for 

his invaluable guidance and encouragement. 

 

Very special thanks to my friends who have listened to me and supported me during my 

studies at Swansea University. I would like to take this opportunity to thank my father 

who has been always my most incredible role model and my mother for her continuous 

engorgement and love. Thank you so much for making me the person I am today. Also, 

I would gratitude my sister and brothers for their advice and support. 

 

Warm thanks to my lovely daughter Maryam for her love, patience and her smiles that 

motivated me to keep moving forward, thanks for being there for me. 

 

Finally, I would like to also express my sincere gratitude to the Qatar National Research 

Fund (a member of the Qatar Foundation) for funding my PhD study at Swansea 

University. I am hopeful that I can reattribute to my country everything that it has given 

to me and take part in developing my country. 

 

 

 

 

 



vii 

LIST OF PUBLICATIONS 

1. A. Al-Sorour, M. Fazeli, M. Monfared, and A. A. Fahmy, “Investigation of 

Electric Vehicles Contributions in an Optimized Peer-to-Peer Energy Trading 

System,” IEEE Access, vol. 11, pp. 12489-12503, 2023, doi: 

10.1109/ACCESS.2023.3242052. 

 

2. A. Al-Sorour, M. Fazeli, M. Monfared, A. Fahmy, J. R. Searle, and R. P. Lewis, 

“Enhancing PV Self-Consumption Within an Energy Community Using MILP-

Based P2P Trading,” IEEE Access, vol. 10, pp. 93760-93772, 2022, doi: 

10.1109/ACCESS.2022.3202649. 

 

3. A. Sorour, M. Fazeli, M. Monfared, A. A. Fahmy, J. R. Searle, and R. P. Lewis, 

“MILP Optimized Management of Domestic PV-Battery Using Two Days-

Ahead Forecasts,” IEEE Access, vol. 10, pp. 29357-29366, 2022, doi: 

10.1109/ACCESS.2022.3158303. 

 

4. A. Sorour, M. Fazeli, M. Monfared, A. A. Fahmy, J. R. Searle, and R. P. Lewis, 

“Forecast-Based Energy Management for Domestic PV-Battery Systems: A 

U.K. Case Study,”  IEEE Access, vol. 9, pp. 58953-58965, 2021, doi: 

10.1109/ACCESS.2021.3072961. 

 

5. A. Sorour, M. Fazeli, M. Monfared, A. Fahmy, J. Searle, and R. Lewis, 

“Enhancing Self-consumption of PV-battery Systems Using a Predictive Rule-

based Energy Management,” IEEE PES Innovative Smart Grid Technologies 

Europe (ISGT Europe), Finland, 2021, pp. 1-6, doi: 

10.1109/ISGTEurope52324.2021.9640051. 

 

 

 

 



viii 

LIST OF FIGURES 

Fig. 1.1. UK greenhouse gas emissions by sector in 2020 [12]. ....................................... 2 

Fig. 1.2. Data processing. .................................................................................................. 3 

Fig. 2.1. Schematic of the literature review areas. ............................................................ 7 

Fig. 2.2. Electric power network transitions: (A) past, (B) present, and (C) future 

network structures. .................................................................................................... 9 

Fig. 2.3. DERs challenges and solutions. ........................................................................ 10 

Fig. 2.4. Feed in Tariff rates from 2010 to 2019 [31]. .................................................... 12 

Fig. 2.5. Lithium-ion battery price from 2010 to 2030 [55]. .......................................... 16 

Fig. 2.6. Problem solving approaches used in EMSs. ..................................................... 20 

Fig. 2.7. FL controller. .................................................................................................... 22 

Fig. 2.8. Schematic of MG structure. .............................................................................. 24 

Fig. 2.9. Schematic of Peer-to-Peer structures. ............................................................... 30 

Fig. 3.1. Schematic diagram of the AOB configuration. ................................................ 34 

Fig. 3.2. Actual peak energies (EDay) and forecasted peak energies (EDay-f). .................. 35 

Fig. 3.3. Proposed FL-EMS. ........................................................................................... 36 

Fig. 3.4. Flowchart of the proposed FL-EMS algorithm................................................. 40 

Fig. 3.5.  FL structure for charging mode. ...................................................................... 40 

Figs. 3.6. (a), (b), (c), and (d) represent the MFs of PPV - PL, PL - PPV, SOCB, and SOH, 

respectively. ............................................................................................................. 42 

Fig. 3.7.  MFs for the charging mode output battery reference PB. ................................ 42 

Fig. 3.8. System performance of EMS proposed in [1] for the two test days 11th and 12th 

of May 2019. The red line represents SOCB, and the black line represents PPV - PL.

 ................................................................................................................................. 46 

Fig. 3.9. System performance of the proposed FL-EMS for the two test days 11th and 

12th of May 2019. The red line represents SOCB, and the black line represents PPV - 

PL. ............................................................................................................................ 47 

Fig. 3.10. System performance of EMS proposed in [2] for the two test days 11th and 

12th of May 2019. The red line represents SOCB, and the black line represents PPV - 

PL. ............................................................................................................................ 48 



ix 

Fig. 3.11. System performance of EMS proposed in [3] for the two test days11th and 12th 

of May 2019. The red line represents SOCB, and the black line represents PPV - PL.

 ................................................................................................................................. 49 

Fig. 3.12. System performance of the EMS proposed in this work and the EMSs 

proposed in [1], [2], and [3] for 16th and 17th May 2019. The blue, red, green, and 

purple dashed lines are the SOCB of the proposed FL-EMS, EMSs in [1], [2], and 

[3], respectively. The black line represents PPV - PL. .............................................. 49 

Fig. 3.13. Energy exported during peak time from May to October 2019. The blue, 

orange, green, purple, and yellow bars denote the results obtained for the proposed 

FL-EMS, the EMSs used in [1], [2], [3], and the AOB’s EMS, respectively. ........ 51 

Fig. 3.14. Energy imported during off-peak time from May to October 2019. The blue, 

orange, green, purple, and yellow bars denote the results obtained for the proposed 

FL-EMS, the EMSs used in [1], [2], [3], and the AOB’s EMS, respectively. ........ 51 

Fig. 3.15. Energy imported during peak time from May to October 2019. The blue, 

orange, green, purple, and yellow bars denote the results obtained for the proposed 

FL-EMS, the EMSs used in [1], [2], [3], and the AOB’s EMS, respectively. ........ 52 

Fig. 3.16. Absolute net energy exchange with the grid for the six months from May to 

October 2019 for the proposed FL-EMS, the EMSs proposed in [1], [2], [3], and 

the AOB’s EMS, respectively. ................................................................................ 52 

Fig. 3.17. Relationship between the absolute net energy exchanged with different BSS 

size/rated-load and PV generation/peak-load ratios. The X, Y, and Z axes represent 

the ratios of PV generation/peak-load, BSS size/peak-load and the absolute net 

energy exchanged with the grid over six months, respectively. .............................. 55 

Fig. 4.1. Flowchart of the proposed MILP-EMS. ........................................................... 58 

Fig. 4.2. Flowchart of the MILP optimisation process. .................................................. 64 

Fig. 4.3.  Results for 23rd and 24th of May 2019, for the EMS in [4]. The red and black 

lines represent SOCB and PPV - PL, respectively. ..................................................... 66 

Fig. 4.4.  Results for 23rd and 24th May 2019, for the proposed MILP-EMS. The red and 

black lines represent SOCB and PPV - PL, respectively. ........................................... 66 

Fig. 4.5.  Monthly energy exported during peak time from May to October 2019. The 

blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in [4], 

and the AOB’s EMS, respectively. .......................................................................... 67 

Fig. 4.6. Monthly energy imported during peak time from May to October 2019. The 

blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in [4], 

and the AOB’s EMS, respectively. .......................................................................... 68 

Fig. 4.7. Monthly energy imported during off-peak time from May to October 2019. 

The blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in 

[4], and the AOB’s EMS, respectively. ................................................................... 68 



x 

Fig. 4.8. Total imported and exported energy for the six months (May to October 2019). 

The blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in 

[4], and the AOB’s EMS, respectively. ................................................................... 69 

Fig. 5.1. Schematic of the six houses forming the prosumer community. ...................... 73 

Fig. 5.2. Proposed CEMS. ............................................................................................... 76 

Fig. 5.3. Flowchart for P2P EMS. ................................................................................... 83 

Fig. 5.4. Flowchart of the Selection level. ...................................................................... 84 

Fig. 5.5. Power and SOC of the house BSS for the proposed CEMS system applied to 

houses nos. 1, 2, and 3 for the 17th and 18th of June 2014. Figs. (a-1), (a-2), and (a-

3) represent the PPV and PL for houses nos. 1, 2, and 3, respectively. The red and 

black solid lines represent PPV
n and PL

n, respectively. Figs. (b-1), (b-2), and (b-3) 

represent the SOCB
n and PP2P

n for houses nos. 1, 2 and 3, respectively. The red 

solid and blue dashed lines represent SOCB
n and Pp2p

n, respectively. ..................... 86 

Fig. 5.6. The proposed CEMS system applied to house no. 4 for the 17th and 18th of June 

2014. The red solid, blue dashed, and black solid lines represent SOCB
4, PP2P

4, and 

PPV
4-PL

4, respectively. ............................................................................................. 87 

Fig. 5.7. Total imported energy for all six houses during peak and mid-peak periods for 

June to September 2014. The blue and green bars represent the proposed CEMS 

and the method reported in [5], respectively. .......................................................... 90 

Fig. 6.1. System configuration. ....................................................................................... 93 

Fig. 6.2. Proposed CEMS. ............................................................................................... 96 

Fig. 6.3. Flowchart of the HEMS. ................................................................................. 103 

Fig. 6.4. Flowchart of the proposed P2P-EMS. ............................................................ 109 

Fig. 6.5. System performance for houses nos. 1, 2 and 3 for 17th and 18th June 2014. 

Figs. (a-1), (a-2), and (a-3) present PV and load of houses nos. 1, 2 and 3, 

respectively. The red solid and black solid lines represent PPV
n and PL

n, 

respectively, where n is the house number. Figs. (b-1), (b-2), and (b-3) present the 

SOC of the EV battery and house  BSS, EV departure time, and EV arrival time of 

houses nos. 1, 2, and 3, respectively. The red solid and blue solid lines are SOCEV
n 

and SOCB
n, respectively. The first and second vertical black dashed lines show 

EVD
n and EVA

n, respectively. Figs. (c-1), (c-2), and (c-3) present the power 

exchanged by each house with the grid and neighbours. The red solid and blue 

dashed lines represent PP2P
n and PG

n, respectively. Figs (d-1), (d-2), and (d-3) 

present the schedules of the shiftable appliance in houses nos. 1, 2, and 3, 

respectively. The red solid and blue solid lines represent the users’ requested 

operation for the dishwasher PD-Sh
n and the washing machine PW-Sh

n, respectively. 

The red dashed and blue dashed represent the scheduled operation of the 

dishwasher PD
n and the washing machine PW

n, respectively, as operated by the 

CEMS. ................................................................................................................... 112 



xi 

Fig. 6.6. Power exchanged by house no. 1 during peak time on day-2. The red dashed, 

black solid, and blue solid lines represent PP2P
1, PL

1-PPV
1, and PEV

1, respectively.

 ............................................................................................................................... 113 

Fig. 6.7. Power exchanged by house no. 3 during peak times on day-2. The red dashed, 

black solid, and blue solid lines represent PP2P
3, PL

3-PPV
3, and PEV

3, respectively.

 ............................................................................................................................... 114 

Fig. 6.8. PV and load for house no. 2 for day-3 (19th June 2014). The red solid and black 

solid lines represent PPV
2 and PL

2, respectively. .................................................... 114 

Fig. 6.9. The SOC of the EV battery and house BSS for house no. 2 during day-3 (19th 

June 2014). The blue solid and red solid lines are SOCB
2 and SOCEV

2, respectively. 

The first and second vertical dashed lines show EVD
2 and EVA

2, respectively. .... 115 

 

 

  



xii 

LIST OF TABLES 

Table 2.1. UK governments’ incentives for EV users .................................................... 18 

Table 3.1. Example of charging rules for healthy SOH. ................................................. 43 

Table 3.2. Example of discharge rules for medium SOH. .............................................. 44 

Table 3.3. Operating costs and energy exchanged with the grid for six months. ........... 53 

Table 3.4. Average SOC for different initial SOH conditions. ....................................... 54 

Table 4.1. Operating costs and absolute net energy exchanged with the grid for the six 

months. .................................................................................................................... 69 

Table 4.2. Operating costs and absolute net energy exchanged with the grid for six 

months: May - October 2019. .................................................................................. 71 

Table 5.1. Six houses parameters [171] .......................................................................... 73 

Table 5.2. Tariff rates [5] ................................................................................................ 74 

Table 5.3. Operating costs for individual and community operations for the proposed 

method in this work from June to September 2014. ................................................ 89 

Table 5.4. Operating costs for individual and community operations for the method 

proposed in [5] from June to September 2014. ....................................................... 89 

Table 5.5. Absolute net energy exchange with the grid from June to September 2014.. 90 

Table 6.1. Shiftable appliances ....................................................................................... 93 

Table 6.2. EV parameters [178] ...................................................................................... 94 

Table 6.3. Energy costs for the community with and without V2H mode for four months 

from June to September 2014 ................................................................................ 116 

Table 6.4. Absolute net energy exchange between the houses and grid with and without 

V2H mode for the four months from June to September 2014 ............................. 116 
  



xiii 

ABBREVIATIONS 

PV Photovoltaic  

RESs Renewable Energy Sources  

EVs Electric Vehicles 

SGs Smart Grids 

BSSs Battery Storage Systems 

EMSs Energy Management Systems 

SEG Smart Export Guarantee  

FL Fuzzy Logic 

HEMS House Energy Management System  

MILP Mixed Integer Linear Programming 

AOB Active Office Building 

FL-EMS Fuzzy Logic-based Energy Management System  

MILP-EMS Mixed Integer Linear Programming-based Energy Management 

System 

DERs Distributed Energy Resources 

CEMS Community Energy Management System 

DSM Demand-side Management 

MGs Microgrids 

FIT Feed-in Tariff 

E7 Economy 7 

TOU Time of Use 

RTP Real-Time Pricing 

DR Demand Response 

DE Differential Evolution 

PSO Particle Swarm Optimization 

ACO Ant Colony Optimisation  

AI  Artificial Intelligence 

ANFIS  Adaptive Neural Fuzzy Inference System 

ANN Artificial Neural Network 

Li-ion Lithium-ion 

SOH  State-of-Health 



xiv 

DOD Depth of Discharge 

GA Genetic Algorithm 

LP  Linear Programming 

NLP Non-linear Programming 

ML  Machine Learning 

P2P Peer-to-Peer  

V2G Vehicle to Grid 

V2H Vehicle to House 

H2G House to Grid  

MFs Membership Functions 

GHG Greenhouse Gases 

AI Artificial Intelligence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

NOMENCLATURE 

n The nth house  

EDay-f
n Next day energy forecast (kWh)  

ΔT Sample time (hr) 

SOCB
n (t) House battery state of charge (%) 

SOCB-max
n

  Maximum limit of the house battery state of charge (%) 

SOCB-min
n

   Minimum limit of the house battery state of charge (%) 

PB
n (t)  House battery discharge/charge power (kW) 

PB-rating
n Maximum house battery discharge/charge power (kW) 

PB-disch
n (t) House battery discharge power (kW) 

PB-charg
n (t) House battery charge power (kW) 

Bcapacity
n (t) Estimated house battery capacity (kWh) 

SOCB
n (tα) House battery state of charge at initial time tα (%) 

SOCB
n (tβ) House battery state of charge at final time tβ (%) 

NBcycle
n House battery life cycle 

Pbase Base power (kW) 

SOH (t) Battery state-of-health (%) 

Bnom  Nominal house battery capacity (kWh) 

EB
n (t) Energy stored in the house battery at time t (kWh) 

EB
n (t-1) Energy stored in the house battery at time t-1 (kWh) 

IB
n (τ) House battery charge/discharge current (A) 

Eimport Imported energy from the grid (kWh) 

Eexport Exported energy to the grid (kWh) 

Nhouses Number of houses in the community 

Cbill Energy bill  

CF Optimisation cost function (£) 

Pairno. Number of available pair 

SOCEV
n (t) State of charge of EV battery (%) 



xvi 

SOCEV-max
n Maximum limit of the EV state of charge (%) 

SOCEV-min
n Minimum limit of the EV state of charge (%) 

PEV
n (t)  EV battery discharge/charge power (kW) 

PEV-rating
n Maximum EV battery discharge/charge power (kW) 

PEV-disch
n (t) EV battery discharge power (kW) 

PEV-charg
n (t) EV battery charge power (kW) 

EVcapacity
n (t) Estimated EV battery capacity (kWh) 

NEVcycle
n EV battery life cycle  

EEV
n (t) EV energy at time t (kWh) 

EEV
n (t-1) EV energy at time t-1 (kWh) 

IEV
n (τ) EV battery charge/discharge current (A) 

PL
 n

 (t) Recorded historical data of load power (kW) 

PPV 
n (t) Recorded historical data of PV power (kW) 

PPV-1
n (t) Forecasted PV generation for day-1 (kW) 

PL-1
n (t) Forecasted load demand for day-1 (kW) 

PPV-2
n (t) Forecasted PV generation for day-2 (kW) 

PL-2
n (t) Forecasted load demand for day-2 (kW) 

PG
n (t) Power exchange between the house and the grid (kW) 

PGmax-export
n Maximum allowed exported power to the grid (kW) 

PGmax-import
n Maximum allowed imported power from the grid (kW) 

PG-export
n (t) Exported power to the grid (kW) 

PG-import
n (t) Imported power from the grid (kW) 

Фexport
n (t) Binary variable to indicate the house is exporting energy to the 

grid 

Фimport
n (t) Binary variable to indicate the house is importing energy from the 

grid 

ФB-disch
n (t)  Binary variable to indicate the house battery is discharging 

ФB-charg
n (t)  Binary variable to indicate the house battery is charging 

ФEV-disch
n (t)  Binary variable to indicate the EV battery is discharging 

ФEV-charg
n (t)  Binary variable to indicate the EV battery is charging 



xvii 

CCB
n

    Capital cost of the house battery (£) 

CCEV
n

    Capital cost of the EV battery (£) 

CBSS
n
 House battery degradation cost (£) 

CEV
n
 EV battery degradation cost (£) 

Cbuy
n Price of imported energy from the grid (£/kWh) 

Csell
n
 Price of exported energy to the grid (£/kWh) 

fsell (t)     Tariff for selling energy to the grid (£/kWh) 

fbuy (t)     Tariff for buying energy from the grid (£/kWh) 

Chouse
n Optimisation cost function for the individual house (£) 

Csum-P2P Optimisation cost function for the paired houses (£) 

CP2P
n Cost of energy exchanged between the paired houses (£) 

fP2P-exp
n (t)     Export exchange tariff between the paired houses (£/kWh) 

fP2P-imp
n (t)     Import exchange tariff between the paired houses (£/kWh) 

PP2P
A↔ B (t) The power exchanged between the paired houses (kW) 

PP2P,max
n

 (t) Maximum power exchanged between the houses (kW) 

бexport
n

 (t) Binary variable to indicate the house (n) is exporting energy to the 

neighbour 

бimport
n

 (t) Binary variable to indicate the house (n) is importing energy from 

the neighbour 

Chouse-cost
individual(n) Operational cost per day when a house is operating individually 

(£) 

Chouse-cost
P2P(n) Operational cost per day when a house is operating as paired (£) 

t0  The time of the day starts at 12 AM (hr) 

T The time of the day ends after 24 hours (hr) 

t Current time (hr) 

ƞconv
n House battery DC/DC converter efficiency (%) 

ƞc
n House battery charging efficiency (%) 

ƞd
n

  House battery discharging efficiency (%) 

ƞEVd
n

  EV battery discharging efficiency (%) 

ƞEVc
n

  EV battery charging efficiency (%) 



xviii 

ƞEV
n EV converter efficiency (%) 

TD
n EV travel distance (Km) 

EVA
n EV arrival time (hr) 

EVD
n EV departure time (hr) 

SOCEV-desired
n Desired SOC of the EV for the second trip (%) 

Ereduce
n Estimated energy reduced during the journey (kWh) 

Econs
n Energy consumption per km (kWh/km) 

IEV
n (t) EV battery charge/discharge current (A) 

Tstart
n (i) Appliance start time (hr) 

Twait
n (i) Appliance maximum waiting time (hr) 

PL-sh
n (i, t) Power of the shiftable appliance i at time t (kW) 

бL
n (i,t) Binary variable that indicates the operation status of a shiftable 

appliance i 

бstartup
n (i,t) Binary variable that indicates the starting up of an appliance i 

Tcycle
n (i) Operation time needed for an appliance i (hr) 

Tend
n (i) Finishing time of the appliance operation (hr) 

Prate-L
n (i) Rated power of the appliance i (kW) 



1 

1 INTRODUCTION 

1.1 Background 

The measures taken to reduce Greenhouse Gases (GHG) emissions have dramatically 

increased the use of Renewable Energy Sources (RESs) and Electric Vehicles (EVs) 

at consumption and distribution levels [1]. As a result, national electrical network 

systems are transitioning from conventional power systems to sustainable energy 

systems, often called Smart Grids (SGs) [2]. This transition requires significant 

investments in both EV charging stations and RESs infrastructure [3]. In addition, 

new policies and incentives must be implemented to encourage RESs adoption and 

EV use [4]. 

 

The intermittent nature of RESs necessitates the inclusion of Battery Storage 

Systems (BSSs) to maintain a balance between generation and demand which, in 

turn, requires the use of Energy Management Systems (EMSs) [5]. In this context, 

countries with a high penetration of RESs, such as the UK and Germany, are 

encouraging a self-consumption approach to be utilised in the EMS, with the aim of 

reducing the burden on the network operators [6, 7]. In addition, since the Smart 

Export Guarantee (SEG) scheme was introduced in the UK in 2020, the household 

are no longer receive payments for their energy generation by ceasing the generation 

tariff, and the export tariff has been progressively reduced [8]. As a result, it is more 

cost-effective for households to use their RESs locally to maximise self-consumption 

[8, 9]. One of the main challenges inherent in increasing self-consumption is to 

reduce the net energy exchanged between the house/community and the grid [10].  

1.2 Toward Sustainability  

The worldwide preoccupation with reducing GHG emissions have led to consequent 

changes in countries' energy policies. For example, in 2019, the UK government 

committed to achieving net-zero carbon emissions by 2050 [8]. Hence, the UK is 

undergoing an infrastructure modernisation initiative that replaces traditional 

electricity meters with smart meters, which offers numerous benefits, such as 
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enabling consumers to monitor their energy usage and facilitating the integration of 

EVs with RESs in a cost-effective manner. It is estimated that around 42% of 

domestic households had smart meters in 2020, and smart meter implementation is 

continuing [11]. 

 

Fig. 1.1 shows GHG emissions by sector. In 2020, the transportation sector was the 

most significant source of GHG emissions, representing 24% of the total emission. 

On the other hand, the residential sector contributes 16% of the total emissions [12]. 

The continuous growth in the use of EVs and integration of RESs into power systems 

can help to reduce GHG emissions [13]. In the UK, RESs contributed about 43.1% of 

the total electricity generated in 2020, which was 6% more than in 2019 [11].  

 

 

Fig. 1.1. UK greenhouse gas emissions by sector in 2020 [12]. 

 

1.3 Photovoltaic (PV) System 

Among different RESs, the Photovoltaic (PV) system is the most attractive energy 

source [14]. The PV system is based on cells made of semiconductor p-n junction,  

which convert sunlight into electrical energy [15]. PV system costs have declined 

https://www.energy.gov/eere/solar/solar-radiation-basics
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rapidly over the last decade, making it an increasingly affordable and attractive 

choice for many households and businesses. Globally, PV's cost dropped by 82% 

between 2010 and 2019 [14]. 

1.4 Data Processing   

Fig. 1.2 shows the steps taken for data processing. The data from the AOB and 

community (six houses) were obtained to be used as a case study and prepared before 

coding the proposed systems. It was found that the original measured PV and load 

data for AOB and the community had missing measurements (due to measurement 

problems). Therefore, the missing data was compensated for by using the previous 

available data. Additionally, the data were sampled every 1 minute, while the 

proposed algorithms require a sample time of 10 minutes. Hence, the data were 

averaged in 10 minutes intervals to be used as input. The proposed system was coded 

in MATLAB software, where the uncertainties of PV generation and demand 

(assumed it is available from a third party) are considered when optimisation is 

carried out.  

 

Fig. 1.2. Data processing. 

1.5 Research Objectives and Contributions  

Most recent studies on EMS have mainly focused on minimising operating costs. 

However, this work introduces a new approach that aims to minimise the net energy 

exchange between households/communities and the grid. In addition, numerous 

studies have focused on proposing various forecasting algorithms [7], however, there 

is a significant gap in the literature regarding the optimal utilisation of forecasted 
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data in an EMS. Therefore, in this work, the optimisation process takes into account 

a one/two-day ahead energy forecast and BSS health to reduce the net energy 

exchange with the grid, while extending the lifetime of the BSS.  

 

This work proposed two different EMS algorithms for a domestic PV system: (a) 

real-time Fuzzy Logic-based EMS (FL-EMS) and (b) day-ahead Mixed Integer 

Linear Programming-based EMS (MILP-EMS). Both algorithms aims to maximise 

the PV self-consumption by reducing the net energy exchange between AOB and the 

grid. Then the problem is expanded into how a community energy management 

controller can be more effective when collectively controlling the BSSs, EVs, and 

shiftable appliances, of a community of houses, rather than the houses operating 

individually, confirming the importance of controlling EVs battery charging/ 

discharging cycles and shiftable appliances to reduce the burden on the national grid.  

 

The main contributions of this work are: 

1. To demonstrate that a real-time residential EMS: 

• can extend the lifetime of a household BSS by including SOH in a rule-

based algorithm combined with a Fuzzy Logic (FL) controller. 

• can exploit the day-ahead energy forecast in the proposed algorithm, which 

reduces unnecessary BSS charging/discharging cycles, contributing to an 

extended life for the BSS. 

• facilitates a self-consumption approach that minimises the net exchanged 

energy between a house and the grid, which reduces transmission losses and 

load on the grid. 

2. To demonstrate that the day-ahead residential EMS: 

• can optimise BSS operation using Mixed Integer Liner Programming 

(MILP) and including the cost of degradation of the household BSS in the 

cost function. 
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• uses the two days-ahead energy forecasts to eliminate unnecessary BSS 

charging/discharging cycles.  

• enhances self-consumption approach into the optimisation process to reduce 

transmission losses and burdens on the grid. 

3. Demonstrate that the Community Energy Management System (CEMS): 

• enhances the energy independence of the community. 

• facilitates the self-consumption approach by minimising the net energy 

exchange between the community and the grid. 

• can include EVs, despite the uncertainty relating to their availability, as an 

alternative energy storage which enhances self-consumption of PV energy 

and reduces the need for new charging station infrastructure.  

• optimises the use of EV batteries and BSSs by including degradation costs 

in the cost function. 

• considers shiftable appliances in demand-side management to change 

appliance operation time to times when the energy cost is low or when the 

PV system produces surplus energy, which reduces peak load and net 

energy exchanged between the community and the grid. 

1.6 Thesis Outline 

This thesis consists of seven chapters, including the introduction. The following 

chapters are briefly summarised as follows: 

 

Chapter 2 presents a literature review which discusses the power system revolution. 

This chapter also addresses the main challenges and possible solutions for integrating 

RESs and EVs into the consumption and distribution levels. In addition, it reviews 

the state-of-the-art of different approaches related to residential EMSs and CEMSs. 

The advantages and drawbacks of previous approaches are comprehensively detailed. 

 

Chapter 3 presents a real-time residential EMS based on a FL (FL-EMS) controller. 

The proposed method is tested using measured data obtained from the Active Office 

Building (AOB) located at Swansea University, Bay Campus, UK. The proposed 
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algorithm is compared with three recently published state-of-the-art algorithms and 

with the current EMS installed in the AOB, to demonstrate the effectiveness of the 

proposed strategy. In addition, this chapter investigates the impact of different sizes of 

PV system and BSS capacity on the net amount of energy exchanged with the grid. 

 

Chapter 4 presents a day-ahead residential EMS based on MILP (MILP-EMS). The 

proposed method is tested using measured data and compared with recent state-of-

the-art and with the current EMS utilised in the AOB to show the effectiveness of the 

proposed method. In addition, different cost functions are investigated to show the 

effectiveness of the proposed cost function in reducing net energy exchanged with 

the grid. 

 

Chapter 5 presents a day-ahead CEMS based on MILP. The proposed CEMS is 

tested using real data from six houses located in London, UK. A comparison between 

a house operating individually and as a community member is investigated. 

 

Chapter 6 presents an extended version of the CEMS presented in Chapter 5 to 

investigate the impact of using EVs as alternative energy storage by enabling the 

Vehicle to House (V2H) mode and considering shiftable appliances in the system.  

 

Chapter 7 presents the general conclusion of the work and suggests possible future 

work.  
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2 LITERATURE REVIEW 

2.1 Introduction  

Distributed Energy Resources (DERs) refer to small-scale power generation 

technologies such as Photovoltaic (PV) system panels, wind turbines, and Battery 

Storage Systems (BSSs) installed close to the consumers [16]. Their rapidly 

increasing use during the last decades has fundamentally changed the design and 

operation of electrical power systems. As a result, electrical systems are moving from a 

unidirectional (centralised) market to a bidirectional (decentralised) market which allows 

consumers to become prosumers, both producers and consumers [17]. These changes 

necessitate the electrical system’s operators to include local Energy Management 

Systems (EMSs) to allow conventional prosumers to exchange excess energy not only 

with the grid but within a local community, enhancing self-consumption. According to 

a European Renewable Energies Federation study, the number of clean energy 

prosumers in the UK could reach 24 million by 2050 [18]. However, due to the 

intermittent nature of Renewable Energy Sources (RESs), more Battery Storage 

Systems (BSSs) and advanced control/management methods are essential to balance 

generation with demand. 

 

 

Fig. 2.1. Schematic of the literature review areas. 

 

This chapter explores the main challenges and issues facing prosumers and the grid 

by providing a comprehensive literature review of EMSs. Fig. 2.1 presents the topics 

addressed in the literature review, and this is followed by a brief description of the 

electric power system transformation in Section 2.2. Next, Section 2.3 presents some 
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challenges and possible solutions facing prosumers and the grid. Then, Section 2.4 

presents EMS problem-solving approaches. An overview of recent publications 

concerning state-of-the-art residential EMSs and Community Energy Management 

System (CEMS) is provided in Sections 2.5 and 2.6, respectively. Finally, Section 2.7 

presents the conclusion of Chapter 2. 

 

2.2 Electric Power System Transformation  

The electric power sector is going through a transition, with new technologies being 

introduced on both the customer and network sides. Traditional electricity grid 

structures are being transformed into Smart Grids (SGs). Fig. 2.2. shows the electric 

power network transitions. The transitions can be summarised as following three 

phases: 

• Past generation: As shown in Fig. 2.2 (A), the electric power system flow was 

unidirectional, where electricity flows from large-scale fuel based generators 

to consumers over long distances via transmission and distribution lines [19]. 

Transformers increase the voltage for transmission and then reduce the 

voltage prior to the electricity being delivered to the consumers. It is worth 

mentioning that around 8% to 15% of the total energy transmitted can be 

dissipated during transmission, depending on the line resistance and distance 

[20].  

• Present generation: As shown in Fig. 2.2 (B), the electric power system is a 

bidirectional power flow that allows customers to become prosumers by 

utilising RES generation and Electric Vehicles (EVs). Households can 

purchase/sell their electrical energy from/to a single supplier by adopting a 

control system and so reduce operating costs (requires monitoring of 

consumption through a smart meter) [4]. 

• Future generation: As shown in Fig. 2.2 (C), the electric power system will 

have a complex bidirectional power flow, which enables prosumers to trade 

their surplus energy with different peers within one community, the grid and, 

eventually, other communities. This will require the adoption of RESs and 

https://www.sms-plc.com/smart-homes/how-to-use-a-smart-meter/
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use of EVs to achieve the government's vision of net-zero carbon emissions 

by 2050 [12]. In this regard, Peer-to-Peer (P2P) energy trading is currently 

considered an efficient approach to DERs, which offers local market 

solutions [21]. Furthermore, P2P allows prosumers to trade surplus energy 

generation with their peers over short distances to lessen reliance on the grid, 

reduce transportation losses, and increase user and grid benefits. P2P energy 

trading is able to maximise self-consumption by the community by reducing 

energy exchange with the grid and enabling a more economic dispatch [5]. 

  

 

Fig. 2.2. Electric power network transitions: (A) past, (B) present, and (C) future 

network structures. 

 

2.3 Potential Challenges and Solutions   

The increasing penetration of DERs poses significant challenges for network 

operators due to their intermittent nature [22]. Fig. 2.3 shows some examples of the 

challenges facing both the prosumers and the grid when implementing DERs, with 

associated solutions. One of the main challenges is controlling RES over-generation 

[7]. For example, In 2019, Germany and UK exceeded the expected RES generation 

limit [23, 24]. As a result, the power generation was higher than demand and the 

capacity of their electricity networks. In the UK, this resulted in the utility paying 

(A) (B) (C)

Community

Unidirectional power flow 

Bidirectional power flow  
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customers to use the excess energy generated from wind turbines [24], and in 

Germany, consumers and neighbouring countries were paid to consume the surplus 

energy [23]. However, the quantity of surplus power was so great it overwhelmed the 

capacity of Germany’s neighbours’ systems. According to [25], “Germany's negative 

electricity price rules have caused an estimated €50 million in losses for offshore 

wind projects in February 2020 alone”. Another example is, in 2017, California paid 

Arizona to take surplus PV energy to avoid overloading its own network [26]. 

 

 

Fig. 2.3. DERs challenges and solutions. 

 

Since the uncontrolled nature of RESs export can significantly affect grid stability, 

several countries have already limited the export of RESs energy to the grid. For 

example, in Germany, the export is limited to 50% of the peak power of the PV panels 

[7]. To prevent the need for greater transmission and distribution capacity, self-

consumption, as a new trend, is encouraged by several countries such as the UK [7]. In 

2020, the SEG was proposed, which is similar to a net metering program [8]. However, 

the “generation tariff” has now ended for newly fitted household PV installations 

[27]. Such changes encourage a move towards more advanced local EMSs to reduce 

the prosumers’ dependency on the grid by reducing the net energy exchanged with the 

grid. 

To control excess generation on the prosumer side, one or a combination of the 

measures below can be used:  

i) Installing suitable BSS capacity in house to store the excess power to use 

later instead of exporting to the grid. In addition, EV can be used, if 
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available, as extra storage. However, the cost, size, efficiency, and battery 

management must all be considered in the EMS [1-3, 28].  

ii) Forming communities and trading excess energy within the community 

rather than with the grid [5].  

iii) Implementing Demand-side Management (DSM), to control appliances 

(e.g., water heaters, dishwashers, and air conditioners). However, this 

approach may not be preferred by all customers as it would control their 

daily routine [29].  

Other alternatives for controlling the over-production of RESs are: (i) limiting the 

local RESs, which means more centralised generation is required to supply demand, 

and/or (ii) employing (more) centralised storage to store the excess energy from the 

RES. However, both alternatives imply that the grid must have a higher transmission 

and distribution capacity to handle the exchanged power [28].  

2.3.1 Tariff Schemes  

In the UK, the Feed-in Tariff (FIT) was launched in April 2010 to encourage 

householders to install PV systems and get paid for energy exported to the grid. As a 

result, PV generation capacity has increased from 95 MW in 2010 to 13,800 MW in 

2021 [30]. The rapid increase of PV integration into Microgrids (MGs) led to a 

reduction in generation tariffs from 54.17 p/kWh in 2010 to 3.79 p/kWh in 2019, as 

shown in Fig. 2.4 [31]. In 2020, the FIT was replaced with the Smart Export 

Guarantee (SEG) scheme, whereby the householders receive payback only for the 

energy exported to the grid [8]. Currently, the export tariff has been reduced to 

almost half of the off-peak energy price and one-third of the peak time energy price, 

making it more cost-effective for new installations using local RESs to maximise 

self-consumption [8, 9].  

Different tariff schemes are proposed by utilities in the UK, including: 

• Economy 7 (E7) (also known as the multi-rate plan) was launched in the 

1970s, proposing different tariff prices for peak and off-peak times to 
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incentivise consumers to use the electricity generated from nuclear power 

stations during off-peak hours [32].  

• Time of Use (TOU) is similar to E7 but offers multiple levels throughout the 

day (i.e., peak, mid-peak, and off-peak tariffs) to allow households to have 

more flexibility in controlling their consumption [33].  

•  Real-Time Pricing (RTP), also known as dynamic pricing; the prices in RTP 

are varied and updated almost every 30 mins [24]. A smart meter is required 

to receive information about the consumption and electricity cost [34]. This 

tariff is usually used in real-time energy control as a fast control decision is 

required [35].  

 

 

 Fig. 2.4. Feed in Tariff rates from 2010 to 2019 [31]. 

There are two main types of SEG tariffs in the UK [8]: 

• Fixed-rate, where a fixed amount is paid to prosumers per kilowatt hour of 

electricity exported to the grid, regardless of the time. 

• Flexible rate, where the export price varies depending on when the energy is 

exported to the grid.  
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2.3.2 Energy Forecast  

Generation and demand forecasting are critical for load planning, next day trade and 

BSS operation for both prosumers and network operators [36]. Several approaches 

have been introduced in the literature to forecast generation and demand, such as 

Differential Evolution (DE), Particle Swarm Optimisation (PSO) [37], Fuzzy Logic 

(FL) [38], and Artificial Neural Networks (ANNs) [39].  

 

In recent years, several companies are available to provide forecast data, which can 

be fed into the customers' EMSs, these include DNV [40], VAISALA [41], and 

AleaSoft [42]. Since a forecaster company can provide the forecast data, several 

EMS researchers assumed that developing a forecast methodology is beyond the 

scope of their studies [43]. Alternatively, researchers use historical PV and demand 

data and impose error percentage by using Weibull [44] or Normal (or Gaussian) 

distributions to represent the forecasted data [9, 45, 46]. 

2.3.3 Demand-Side Management (DSM) 

During past years Demand Response (DR) has gained attention for its ability to reduce 

the reliance on the grid by shedding or shifting energy consumption based on users’ 

comfort and grid requirements [29]. Several companies worldwide have designed 

EMSs incorporating DR to control user energy consumption. For example, the British 

Gas in the UK has designed an EMS that controls house appliances through 

smartphones [47].  

 

House appliances can be classified as controlled, semi-controlled, and uncontrolled. 

The start times of appliances such as EVs, washing machines, and dishwashers can 

be controlled/scheduled based on user comfort and grid requirements. Other semi-

controlled appliances such as heaters, fans, and air conditioning units can adjust their 

operating mode to low or high power. Uncontrolled appliance which cannot be 

shifted or have their operational modes adjusted include TVs, refrigerators, and lights 

[48]. 
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Installing a smart meter is essential to enable the exchange of information between 

the customer and the utility. Based on the literature, there are two main approaches to 

DR [49]: 

1. Incentive-based: The scheme aims to reduce and/or shift consumption to off-peak 

times to reduce peak demand. Customers get a discount on energy rates or bill 

credit [29]. The schemes included the following programs: 

• Direct load control program: Based on the contract between the utility 

and the customer, the utility can directly turn on/off a user's electric 

equipment at short notice [49]. 

• Interruptible/curtailable program: The program aims to stabilise the 

grid during emergencies by switching off or shifting the loads to the 

off-peak periods [29]. 

• Demand bidding (also known as buyback program): Consumers can bid 

on specific load reductions in the wholesale electricity market a day in 

advance. Customers will be rewarded if they achieve the target and will 

not be penalised if they do not reduce their energy consumption as 

required [29]. 

2. Price-based: The scheme includes different tariff programs, where customers can 

receive financial rewards for reducing their electricity consumption based on 

electricity tariff time [49], such as: 

• Peak time rebate: Consumers obtain a rebate when reducing their 

consumption during peak time [29]. 

• Critical peak pricing: A reward is given to customers willing to reduce 

or shift their demand to off-peak hours. However, short notice is given 

to the customer to respond as the price can change at any time. This 

program is usually proposed a few times during the year, especially in 

seasons when the demand increases significantly [29]. 

• TOU and RTP are described in Subsection 2.3.1. 

Several researchers encourage householders to schedule their daily electrical 

consumption and increase self-consumption by shifting their appliance loads to the 

times when the RESs are at maximum or when the electricity is at its lowest tariff [29]. 



15 

It should be noted that shifting appliance on times means that the users' overall energy 

consumption during the day remains the same, only the shape of the load curve 

changes. 

 

Various scheduling algorithms have been reported in the literature, including rule-

based, optimisation techniques, and Artificial Intelligence (AI). For example, authors 

of [50] proposed an EMS based on FL and PSO to optimise household energy 

consumption by scheduling the appliances. Similarly, authors of [1, 48] proposed an 

FL rule-based method to control electrical appliances by considering load priority. The 

implementation of a rule-based algorithm is simple as it is based on a set of inputs and 

if-then rules [51]. A FL controller can cope with non-linear and linear systems. In 

addition, it is simple to implement as it depends on linguistic rules, and no 

mathematical model is required [29]. However, rule-based algorithms have several 

shortcomings, such as a lack of ability to extend the system and difficulty dealing with 

extensive data, which makes controlling the appliances in real-time challenging [29].  

 

On the other hand, AI techniques, such as PSO, ANN, and Adaptive Neural Fuzzy 

Inference Systems (ANFISs), require extensive data for training and learning [29]. 

2.3.4 Battery Storage Systems (BSSs) 

BSSs are widely employed in power systems to supply loads, support peak shaving, 

and regulate frequency and voltage. Self-consumption as a new approach necessitates 

utilising BSSs to make the most of the installed RESs. For example, BSSs were 

installed in about 50% of new PV installations in Germany in 2018 [7]. It has been 

shown that a BSS with a capacity of between 0.5-1.0 kWh for each 1 kWp of the 

installed PV system can increase self-consumption by between 13-24% [52]. 

Moreover, BSSs can reduce energy costs by storing the excess RES’s power and 

discharging that power when required. 

 

Presently, the manufacturing market for BSSs is extremely competitive. Comparing 

different types of BSSs, it was found that lithium-ion (Li-ion) has gained high 

popularity worldwide due to their low self-discharge rate, high energy density, and 
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acceptable usage cost [53]. BSS-based Li-ion prices are likely to be reduced further 

in the next few years [54]. As shown in Fig. 2.5, according to a BloombergNEF 

Survey, the average battery pack cost is expected to reach $94 per kWh in 2024 and 

$62 by 2030 [55]. 

 

Several tech brands in the UK, such as Tesla and Samsung, sell house BSSs-based 

PV systems. For example, Tesla sells the Powerwall BSSs of 6.4 kWh and 13.5 kWh 

for £3,000 and £6,300, respectively [5]. In addition, energy companies, such as EDF 

Energy, Eon, and OVO, are also currently selling BSS packages [56].  

 

 

Fig. 2.5. Lithium-ion battery price from 2010 to 2030 [55]. 

 

From a financial perspective, the BSS replacement cost is the household's most 

significant maintenance expense [57]. Therefore, it is essential to include BSS 

lifetime when optimising the performance of a system. The BSS degradation directly 

affects its efficiency and operation [58]. The State-of-Health (SOH) measures the 

amount of energy that can be stored and delivered by estimating the current capacity 

percentage against the initial capacity, and most BSSs have to be replaced when the 

SOH drops to 80% [53].  
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The BSS lifetime is impacted by several factors, including temperature, over 

charge/discharge, the Depth of Discharge (DOD), and the number of charge and 

discharge cycles [59]. Based on the literature, there are two main ways to estimate 

BSS lifetime: 

a) Performance-based models: Experiments are required to examine and measure the 

BSS degradation over time. For example, analytical models, equivalent electrical 

circuit models and ANN [60].  

b) Cycle counting models: Count the number of charging and discharging cycles, 

such as the Rainflow counting algorithm [59]. 

There are several ways to include the BSS lifetime into EMSs, such as considering: 

• BSS maintenance cost [61]. 

• BSS degradation cost [4, 62]. 

• SOH of the BSS [28].   

2.3.5 Electric Vehicles (EVs) 

The integration of EVs into the distribution level, aimed to decarbonise the 

transportation sector, has increased rapidly in the 21st century [63, 64]. Globally, the 

number of EVs had reached about 16.5 million and public chargers of 500 thousand 

in 2021 [65]. In the UK, the number of fully electric car sales increased to about 

100,000 in the first five months of 2022, compared to less than 1,000 in 2011 [66]. 

 

In 2009, the UK government introduced an ultra-low emission vehicle strategy, 

which includes vehicles emitting less than 75 g/km of CO2, to encourage use of pure 

electric and hybrid EVs [64]. Table 2.1 presents some incentives that are given by 

the UK government to EV users. These incentives increased the sales of fully electric 

cars to 100,000 in the first five months of 2022, compared to fewer than 1,000 in 

2011 [66]. In addition, it is estimated that the total number of EVs on UK roads will 

reach about 10 million by 2030 [67]. Furthermore, the growth of EV popularity 

contributes to the rapid improvement in battery technology, greater efficiency, longer 

life and a greater number of life cycles, all at a lower price [68]. Thus, the price of 
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Li-ion battery packs has declined rapidly by about 89% in the last decade, from 

$1,100 per kWh to $137 per kWh, making EVs more affordable [69]. 

 

Table 2.1. UK governments’ incentives for EV users 

Incentives Description 

Discounts for EV 

buyers 

Some discounts are given to brand new low-emissions car 

buyers [70]. 

Grant for EV 

charger installation 

Up to 75% of the EV charger installation cost at UK domestic 

properties is covered by the EV ChargePoint grant [71]. 

Reduction in the 

congestion charge 

EV users receive exemptions and discounts for the congestion 

charge [70]. 

Discounted parking Free or discounted parking is given to EV users [72]. 

Reduction in charge 

battery tax 

The EV users pay a tax of 5% when they charge EV batteries 

at house, lower than VAT on the fuel for cars, which is 20% 

[64, 70]. 

Reduction in road 

tax 

Pure EVs are exempted from road tax, while the tax for 

hybrid EVs users varies depending on the level of CO2 

emission. Compared to fuel-based cars, the hybrid and EV’s 

tax is much lower, usually between £0 - £135 [70]. 

 

2.3.5.1 EV Challenges and Solutions 

From the grid’s perspective, the integration of EVs into the distribution/domestic 

level can be seen as: 

• Uncontrollable load: EV charging is uncontrolled and treated as a household 

load which means it possibly doubling a typical household’s peak load [73], 

contributing to overloading transmission lines, damaging local distribution 

transformers [57, 74], and causing undervoltage [75].  
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• Controllable load: EV charging is controlled by the grid operator or 

local/household EMS. For example, authors of [35] proposed an EMS that 

controls the EV charging time to reduce peak demand and energy costs. 

• Distributed energy resources: The bidirectional EV battery features allow 

EVs to operate as DERs which can be incorporated into several programs to 

mitigate some of the difficulties caused by the increase in the number of both 

RESs and EVs [76]. For example, EV batteries are capable of supporting grid 

frequency and voltage regulation by enabling the Vehicle to Grid (V2G) 

mode [13, 76-79], as in the commercial Project Sciurus in the UK [80]. In 

addition, when the Vehicle to House (V2H) mode is enabled it can reduce 

household electricity costs [81], reduce peak load [82], supply a house during 

outages [83], and improve household self-consumption [74, 84].  

The growth in the number of EVs requires more charging stations with higher 

capacity; however, limited space is available to build new charging stations [68]. 

Thus, to reduce the burden of developing such a new infrastructure; (1) EV batteries 

can be charged using the surplus energy from local RESs [85], and (2) EV 

charging/discharging activities can be controlled as part of P2P energy trading [28, 

62]. Furthermore, P2P trading can increase RESs self-consumption and reduce 

energy costs by using EVs as extra storage for the RESs surplus energy from 

households/neighbours and discharge that energy when required such as during high 

tariff periods [67].  

 

Although EVs can be used for ancillary services and to balance power requirements 

in a similar manner to DR, their primary purpose is transportation. The random 

nature of driving patterns leads to the need to include EV uncertainty in system 

operation and planning. Several stochastic models, such as Markov-Chain models, 

have been proposed to estimate EV availability [75, 86]. In addition, it is essential to 

consider the lifetime of the EV battery when optimising the use of EVs to supply a 

house or the grid.  
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2.4 EMS Problem Solving Approaches 

Different studies have considered different objectives for residential house and 

community operations, such as minimising energy costs, maximising self-

consumption, and minimising CO2 emissions [87, 88]. The decision-making at the 

energy management level can be accomplished by several approaches, as shown in 

Fig. 2.6.  

 

Fig. 2.6. Problem solving approaches used in EMSs. 

 
Optimisation approaches include heuristic algorithms [89, 90] and mathematical 

formulation [91, 92]. The heuristic algorithms are usually built on pre-defined rules 

and do not require a detailed system model [93]. Consequently, decision-making is 

not computationally intensive and can achieve a satisfactory solution in a short time, 

such as with the Genetic Algorithm (GA) and PSO [90]. They usually solve non-

linear programming problems by iteratively searching through all feasible solutions 

[61]. Whereas the mathematical method depends on having a model of the system. 

The mathematical approach is achieved by solving the optimisation problem and 

ensuring that the most favourable solution has been determined, such as Linear 

Programming (LP), Non-linear Programming (NLP), and Mixed integer linear 

programming (MILP) [91, 92]. In addition, it is possible to implicitly define the 

system behaviour via a cost function and make “the best” choice by resolving an 

optimisation problem [91]. 
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In order to overcome the computational complexity faced by optimisation 

approaches, Machine Learning (ML), such as ANN can be preferred because it 

reduces computational complexity by using only historical data to extract general 

features. However, a large amount of data is required for the training to be reliable 

[60]. 

 

Other techniques used in recent P2P energy trading schemes in residential 

communities are:  

1. Game theory: A set of models used to investigate interactions between the 

members of the P2P energy market [94-96].  

2. Auction theory: A technique that allows sellers and buyers to cooperate and 

trade their electricity [97-99].  

3. Blockchain technology: A decentralised distributed database allows the 

transactions/information to be shared between users securely [100, 101]. 

This study uses FL controller and MILP, which will be discussed in more details in 

the following subsections.  

2.4.1 Fuzzy Logic Controller (FL) 

The FL controller is a powerful tool that is modelled on the human expert for decision-

making, where the system's complexity can be transformed into a crisp quantifiable 

parameter [1]. In addition, the human experience is translated into “IF-THEN” rules 

based on the given system inputs and outputs. The FL uses the truth value concept that 

varies between 0 and 1 [102]. Due to its simplicity, the FL controller has been widely 

used in energy system planning as it can provide pragmatic solutions. For example, the 

FL approach has been applied for PV forecast [7], PV maximum power point tracking 

[103], DSM and battery power control [1].  

 

The FL operation comprises three main steps, as shown in Fig. 2.7 and listed below:  

1. Fuzzifier: The crisp input or real input, such as either 0 or 1, is transformed into a 

linguistic variable (also called a classical set, where its value is between 0 and 1) to 
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represent fuzzy data through the Membership Function (MF). In this process, the input 

is normalised based on the MF’s scale.  

2. Inference process: A collection of “IF-THEN” statements is generated based on 

expert knowledge. In addition, the MFs are combined via sets of rules to generate the 

fuzzy output [104]. 

3. Defuzzifier: Converts the fuzzy output into the desired crisp value.  

 

Based on previous literature, several types of MFs are used in energy systems 

modelling, such as ‘Π’ trapezoidal, ‘Λ’ triangular, ‘Γ’ function, ‘L’ function, ‘S’ 

function, and Gaussian fuzzy set [102]. 

 

 

Fig. 2.7. FL controller. 

 

2.4.2 Mixed Integer Linear Programming (MILP) 

MILP is a mathematical modelling approach used for analysing and optimising large, 

complex systems. It provides insight into potential trade-offs between conflicting 

objectives, which can assist decision-makers in determining sustainable solutions for 

the optimised objective function [105, 106]. The associated variables and constraints 

can be integers and non-integers [107]. The MILP can be solved by three different 

approaches Cutting Plane, Branch and Bound, and Feasibility Pump [108]. The 

mathematical formulation of the MILP problem is as follows [3]:  

Objective: minimise = Cx     
Constraints: A. x ≤ b

xmin≤ x ≤ xmax

} (2.1) 

where x ∈ 𝑍𝑛, A is a matrix, b, C are vectors, and Z is a set of integer numbers. 
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The optimum solution is a solution that attains the best value of the objective 

function. A feasible solution is a solution that satisfies all the constraints. Generally, 

MILP problems are usually solved via a Branch and Bound algorithm based on 

Linear Programming (LP) (also known as the Tree Search) [108].  

 

A Branch and Bound algorithm begins with the original MILP without the 

limitations (i.e., the same objective and constraints as the original MILP but without 

integer constraints), which is called the ‘‘linear programming relaxation’’ of the 

original problem [108]. Three main steps are used to identify the solution [108, 109]: 

1. Branching: The problem is recursively divided into two sub-problems by choosing a 

non-integer variable from the relaxed LP solution. On one branch, the variable is 

rounded down to the nearest integer, whereas on the other branch, it is rounded up to 

the nearest integer. 

2. Bound: The best objective value for the node is determined using LP relaxation.  

3. Prune: If the solution is not feasible, that tree branch is pruned, i.e., the tree will 

not be developed any further along this node. 

MILP is used in chapters 4, 5, and 6, where different constraints are defined, such as 

BSS, EV, and grid limitations, to find optimal system operation by reducing the net 

energy exchanged with the grid.    

2.5 Residential Energy Management Systems  

The typical MG structure is presented in Fig. 2.8. MG can be defined as low-voltage 

distribution network, including BSSs, EVs, and RESs connected to local loads [110]. 

Local loads come in different scales, from residential houses to large buildings and 

communities (i.e., neighbourhood) [20]. A MG can operate in either island mode or 

grid-tied [111]. 
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Fig. 2.8. Schematic of MG structure. 

 

With the integration of RESs and EVs into EMSs at the domestic level, it is 

necessary to understand how to control these power sources while considering tariff 

prices to achieve optimal system operation. Different objectives can be defined for 

EMSs. For example, several studies have focused on reducing energy bills by 

scheduling the BSS operation [112], while other studies proposed scheduling 

domestic appliances based on tariff prices and load priority to maximise user comfort 

[113-115]. A residential EMS is essential for lowering energy costs, maximising 

RESs self-consumption, and enabling residents to participate in community energy 

schemes. Therefore, it is crucial to first understand the individual residential EMS 

operation before developing CEMS. 

 

In terms of the implementation of EMS at the domestic level, the optimisation process 

can be carried out either in real-time (online) [1] or day-ahead (off-line) [4]. These two 

approaches will be discussed briefly in the following subsections.  

2.5.1 Real-Time Residential EMSs   

Numerous control techniques have already been proposed in the literature for real-time 

operations considering different tariff schemes. For example, an online rule-based RTP 

controller is proposed in [116]. Their work assessed the possibility of curtailing loads 

during interruptions and supplying energy from the EV by enabling the Vehicle to 

House (V2H) mode when required. The authors of [117] proposed a rule-based EMS 

Local loads
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Microgrid
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that maintains the MG's power balance while reducing energy costs. The impact of 

shiftable appliances and the charging and discharging of EVs on three individual 

houses is conducted in [57] without considering RESs or BSSs in their rule-based 

EMS. The aim target is to reduce the burden on the local distribution transformer by 

facilitating the V2H mode. However, their approach considered houses individually, 

and the possibility of mutually beneficial exchanges of excess energy between the 

three houses is ignored. 

 

Among the rule-based EMS techniques, FL controllers are gaining popularity. Work in 

[88] used a variable price scheme in a FL rule-based controller to reduce energy costs 

and minimise CO2 emissions. A FL-based EMS is proposed in [93] to minimise energy 

costs. The authors of [2] proposed a FL-based EMS to minimise operating costs for a 

residential MG. The main disadvantage of the proposed system in [2] is that FL's 

output acts mainly as a binary logic switch since the net power and output controller 

have no overlapping area in the MFs. In addition, the system limited the BSS 

capacity to 50%. The authors of [118] and [119] control the power switching signals 

of the BSS converter using an FL controller, but neither took into account different 

price tariffs. Additionally, the authors of [119] limit the battery SOC to 50%.  

 

In [120] two different FL-based EMS algorithm are used to control an electric ship to 

reduce greenhouse gas emissions and operating costs. The first FL-based algorithm 

regulates the power exchanged between the generation and a BSS, and the other 

controls the inter-linking converters between the AC and the DC buses by modifying 

the duty cycle. However, the lifetime of the BSS is not considered. Authors of [1] 

proposed a real-time FL-based EMS to control power flows in a MG and show that 

the proposed EMS saves up to 5% of the energy cost. 

 

Although rule-based and FL controllers can deal with the MG components' 

nonlinearities and avoid complex mathematical formulation, they rely on the designer's 

rules, which may not necessarily be comprehensive. Furthermore, extending the 

system when dealing with extensive data is challenging [29]. For example, the authors 

of [121] generated 25 FL rules based on two inputs, while [122] generated 50 FL 
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rules based on three inputs. A larger system can lead to a complex and 

computationally intensive programming process. 

 

Other heuristic algorithms, such as PSO and Ant Colony Optimisation (ACO), are used 

in a real-time EMS [90]. Authors of [89] proposed an online EMS-based PSO for 

stand-alone hybrid wind and micro-turbine energy systems to achieve economic 

dispatch.  

 

Alternatively, the ANN method can provide a fast solution to problem in real-time 

control [29]. For example, an ANN-based EMS developed in [123] to control house 

appliances is able to reduce energy consumption without affecting customer comfort. 

However, this approach requires training using historical data, which increases the 

computational time. In addition, a larger and more powerful central server may be 

required, leading to higher costs and inflexible systems. Although the online EMS 

does not require forecast data, it is challenging to deal with parameter uncertainty 

when the system becomes more extensive. Thus, for a larger system, prior planning 

is required (i.e., day-ahead scheduling).     

2.5.2 Day-ahead Residential EMSs 

Extensive research has been carried out on the forecasting methods to be utilised in 

EMSs, including intra-day [7] and day-ahead [124]. For instant, the authors of [125] 

proposed a rule-based EMS that optimises the day-ahead BSS charge/discharge 

power for peak shaving. In [84], a rule-based EMS controls MG energy flow and 

reduces energy costs using EVs as additional energy sources. Likewise, in [126], a 

rule-based House Energy Management System (HEMS) is proposed to reduce energy 

costs by enabling the V2H mode. However, the authors of [84, 125, 126] did not 

consider BSS and EV degradation in their EMS decision-making process. This 

omission is remedied in [61], where a MILP-based EMS is developed to optimise the 

EV battery use to extend its lifetime by including the maintenance costs of the EV 

battery. 
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An intra-day forecast-based EMS is designed for an islanded MG to reduce the BSS 

degradation and increase RESs self-consumption [127]. In [128], a day-ahead LP-

based EMS is used for BSS scheduling to reduce greenhouse gas emissions and 

energy costs. The authors of [129] proposed day-ahead PSO-based EMS to reduce 

operational costs by including PV and BSS degradation costs in the objective 

function. A HEMS that exploits MILP to optimise the scheduling of shiftable 

appliances, EV, and BSS is introduced in [130], with the primary objective of 

compensating for reactive power while simultaneously reducing household energy 

costs. This is achieved by enabling V2H and House-to-Grid (H2G) modes. The 

authors of [130] assumed that energy sold to the grid is more expensive than energy 

purchased from the grid, which is not the case for most countries, such as the UK. 

Work in [131] facilitated V2H and V2G modes in a MILP-based HEMS to reduce 

peak power on the assumption that consumption behaviour is known. The authors of 

[132] proposed a hybrid algorithm comprising optimisation and rule-based 

prioritisation. The main target is to find optimal settings for EV and BSS to reduce 

energy costs. 

 

The authors of [133] showed that a forecast-based EMS could extend the BSS 

lifetime by storing the following day's energy forecast. However, the export prices 

from the surplus PV energy are neglected. Likewise, authors of [3] state that the 

forecasted energy required for the next day is stored during off-peak times. However, 

their EMS did not use the surplus energy stored to supply load during the off-peak 

time, resulting in higher operating costs and increased net energy exchanged with the 

grid. 

 

The main target of most EMSs reported in the literature is to reduce energy costs 

relative to existing tariffs. None of the above works considered two days-ahead 

energy forecast to increased self-consumption. It is noted that utilising the two days-

ahead energy forecasts reduces unnecessary energy exchange with the grid and BSS 

charge/discharge cycles. For example, lack of knowledge of the day-2 energy 

forecast will invariably lead to the export of surplus RES energy during day-1 to the 

grid rather than storing it in the BSS and using it later during day-2.  
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The most common drawback of previous work reported in the literature is that the 

lifetime of a BSS, which requires avoiding unnecessary BSS discharging/charging 

cycles, is not considered as part of the decision-making process. To overcome this 

drawback, work reported in [2, 119, 134] restricted the battery SOC to 

charge/discharge to half its capacity (i.e., 50%). Similarly, the authors of [135] limited 

BSS capacity to between 35% and 60%. Although this method does extend BSS 

lifetime, it reduces the useable BSS capacity, which increases capital costs and 

undermines the self-consumption approach. An alternative solution is to include BSS 

degradation cost as an indication of the SOH of the BSS [4, 136, 137] or to include the 

BSS lifecycle in the optimisation process [28].  

2.6 Community Energy Management Systems   

P2P energy trading is becoming increasingly popular as it allows exchanging excess 

energy with neighbouring prosumers, communities, and organisations, not just with 

the main supplier (i.e., grid) [22]. The term “Peers” in P2P refers to individuals or 

groups of customers/prosumers where some can have their local generators, such as 

RESs and EVs.   

 

The number of communities in the UK has gradually grown. Around 5,000 

community groups have been formed since 2008 that used their RESs generation 

locally and produced more than 60 MW of generation capacity in 2013 [138].  

2.6.1 Existing P2P Energy Trading Platforms   

Several energy utilities in the UK have encouraged P2P energy trading. For example,  

EDF energy began a P2P energy trading trial at a social housing estate in south London 

using blockchain technology that allows participants to manage their energy usage 

through a P2P platform (accessible through an app) [67]. Similarly, Centrica (owner of 

British Gas) is also involved in P2P in  a social housing scheme in Hackney, north-east 

London [67]. Another government-funded project called Project Piclo matches 

consumption with generation according to household preferences [139].  
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There are other existing P2P energy trading platforms worldwide, including 

PeerEnergyCloud in Germany [140], SOLshare in Bangladesh [141], and Enerchain, 

a blockchain-based initiative initially supported by over 40 European utility companies 

[142]. The major technological bases of these platforms are Auction theory [97, 98], 

Blockchain technology [96, 100, 143], Constrained optimisation algorithms [5, 144], 

and Game theory [94, 95]. 

2.6.2 P2P Energy Trading  

P2P energy trading can be categorised into cooperative and non-cooperative models. 

Profits are shared equally among community members in cooperative models. In 

contrast, non-cooperative models, such as bidding, competition, and games, can 

result in unequal profit distributions among community members [145]. Based on 

recent studies, P2P energy trading can be roughly divided into three structures [146], 

as shown in Fig. 2.9. 

1. Centralised: Peers trading with each other through a central controller, which 

can be an aggregator or utility. Customers' appliance requested start times and 

preferences are collected through smart meters to manage electricity usage 

within the neighbourhood and schedule the appliance operation and BSS in each 

house. Centralised control can be considered as cooperative model, as it provides 

cooperative scheduling to achieve optimal system setting considering the overall 

system parameters. Some of the limitations of this structure are: 

a) As the system becomes more complex and larger in scale, the server 

computing power must be upgraded. 

b)  A failure in the central controller may lead to shutting down the entire 

system. 

In the centralised P2P power supply market, scalability, robustness, security 

and privacy issues are the primary concerns. To overcome the above 

backwords, networks are moving toward more intelligent network 

communication, from a centralised infrastructure to a decentralised system 

[111]. 
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2. Decentralised: Peers trade excess energy with each other directly without a 

mediator [147]. All required information is distributed among community 

members, the control is used to manage energy transactions and coordinate 

energy exchange activities to achieve each house’s target (e.g., minimising its 

electricity costs). This structure offers more autonomy than the central 

structure, allowing each household to make its own decisions. This structure 

can be used for auction-based P2P energy trading as it allows local energy 

markets to be fully decentralised. Pairing houses in a decentralised manner 

can avoid failure of the inter-system when one-unit collapses. In addition, it is 

more flexible and easier to add more nodes to the network. However, one 

limitation of a decentralised structure is that it may not effectively achieve the 

overall system target [148]. 

3. Hybrid: Combines both centralised and decentralised structures, where peers 

are allowed to trade directly with other peers or through a mediator. 

 

 

Fig. 2.9. Schematic of Peer-to-Peer structures. 

 

This thesis uses hybrid coordination topology to minimise the overall energy 

exchange between the community and the grid. More details will be presented in 

Chapter 5. 

 

As stated in Section 2.4, recent studies have identified four main techniques for P2P 

energy trading, which are Game theory, Auction theory, Blockchain technology, and 
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Constrained optimisation. This thesis focuses on P2P energy trading-based 

constrained optimisation approach. Thus, this section is concerned mainly with the 

state-of-the-art related to the mathematical formulation of the P2P problem. For 

example, a hierarchical MILP-based P2P EMS is proposed in [5] to reduce the 

operating costs of the four houses in the community. The import/export tariff for 

energy exchanged between the paired houses is set to zero, which may not be 

acceptable for some prosumers because it means they cannot profit. The authors of 

[149] used centralised P2P EMS to run a community consisting of four houses by 

feeding the required information into a central controller to make the optimal setting 

of each house. The main target is to reduce the operating costs of the whole 

community. The main drawback of their system is that profits are evenly distributed 

among houses in the community, resulting in the possibility of uneven profit 

distribution.  

 

The authors of [150] proposed a centralised controller that reduces the 

neighbourhood’s demand peaks and energy costs. The authors of [145] proposed 

rule-based P2P energy trading to choose the best pairs of houses. In [21], a P2P EMS 

is suggested to run a community of 5 prosumers to reduce energy bills. However, 

their system does not consider BSS lifetime, and the cost evaluation was only for one 

day. The authors of [151] proposed P2P energy sharing and a three-stage evaluation 

methodology to reduce the operating costs of 10 residential prosumers in a 

community. However, they did not consider BSSs in their system. Similarly, the 

authors of [9] proposed a P2P EMS for energy exchange between 5 buildings to 

minimise energy costs. Their system does not consider the BSS.  

 

Several works consider EVs in the P2P EMS, focusing on controlling EV battery 

charging time. For example, the authors of [152] proposed a decentralised P2P EMS 

that controls the EV charging time and shares the excess energy between smart 

buildings to maximise social welfare. Similarly, a P2P EMS based on a bidding 

strategy to compensate for uncertainties associated with PV generation at the 

community level is proposed in [146]. However, neither [146, 152] consider using 

EV batteries as extra storage for the system; considering EVs as only flexible loads. 
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It has been demonstrated in [153] that P2P EMS can reduce community energy costs 

by up to 30% compared to conventional energy trading only with the grid. However, 

using EVs as extra storage can support grid frequency and voltage regulation by 

enabling the V2G mode, and enhancing self-consumption and lowering energy costs 

by enabling the V2H mode. For example, in [154], a centralised MILP-based EMS 

selects the best house pairs based on their consumption and locations. The main goal 

of [154] is to reduce the peak load and energy costs by supplying the neighbour with 

excess energy stored in EV and BSS. However, their system does not consider the 

BSS or EV lifetimes. The use of unidirectional EV chargers and bidirectional 

chargers that can discharge an EV battery to supply a house and/or grid are 

investigated in [22]. However, the EV use pattern remained constant throughout the 

year. In [155] a P2P EMS between buildings and EV charging stations is proposed to 

reduce energy costs and maximise the use of generated power from RESs. However, 

the SOC of the EVs’ batteries are limited to 30%-85% to prolong their lifespan.  

 

There are already initiatives across the world that limit the amount of energy a 

prosumer can inject into the grid. Most recent studies on P2P energy trading have 

focused on minimising operating costs rather than reducing net energy exchange 

between the community and the grid. However, minimising energy costs can lead to 

higher net energy exchange with the grid. Therefore, this thesis proposes a new 

approach that minimises net energy exchange between the community and the grid 

through P2P energy trading. Importantly, this thesis introduces the use of the two 

days-ahead energy forecast to reduce the energy exchange with the grid by storing 

the next-day energy forecast. 

2.7 Conclusion  

This chapter presented a literature review which addressed the main challenges and 

present solutions for integrating DERs into the consumption and distribution levels. 

In addition, it provides a review of the state-of-the-art approaches relevant to 

residential EMSs and CEMSs. 
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3 REAL-TIME RESIDENTIAL ENERGY MANAGEMENT 

SYSTEM 

3.1 Introduction 

The residential EMS can play a vital role in maximising self-consumption and 

reducing energy costs. This chapter proposes a real-time residential Fuzzy logic-

based Energy Management System (FL-EMS). The proposed method has been tested 

using the Active Office Building (AOB) data located in Swansea, Bay Campus, UK, 

as a case study. The FL-EMS algorithm is compared with recently published state-of-

the-art algorithms and with the current Energy Management System (EMS) utilised 

in the AOB to demonstrate the effectiveness of the proposed strategy. The analysis in 

this chapter has been performed by coding the previous state-of-the-art algorithms 

and the FL-EMS in MATLAB software.  

 

Note that the results presented in this chapter have been published in IEEE Access 

journal: 

 

A. Sorour, M. Fazeli, M. Monfared, A. A. Fahmy, J. R. Searle and R. P. Lewis, 

“Forecast-Based Energy Management for Domestic PV-Battery Systems: A U.K. 

Case Study,”  IEEE Access, vol. 9, pp. 58953-58965, 2021, doi: 

10.1109/ACCESS.2021.3072961. 

 

This chapter is structured as follows. First, Section 3.2 describes the AOB system 

configuration. Section 3.3 describes the forecast data and tariff prices. The proposed 

FL-EMS is presented in Section 3.4. Section 3.5 discusses the results and demonstrates 

the impact of different Battery Storage System (BSS) capacities and Photovoltaic (PV) 

sizes on the energy exchange with the grid. Finally, Section 3.6 presents the conclusion 

of Chapter 3. 
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3.2 Active Office Building System Configuration 

The AOB schematic diagram is presented in Fig. 3.1, comprises a PV system of 22.3 

kWp and a Li-ion BSS of 110 kWh connected to a 48 V-DC bus. Moreover, three 

single-phase inverters of 230 V-AC, 48 V-DC, and 15 kVA are used. The PV DC-

DC converter rating and the maximum power load are 23.2 kW and 32.5 kW, 

respectively. The BSS rated charge/discharge power (PB-rating) is 102.4 kW [156]. 

The minimum SOC (SOCB-min) and the maximum SOC (SOCB-max) limits are set to 

20% and 98%, respectively [1]. The BSS's capital cost (CCB) is assumed to be 

£273/kWh, though the costs are expected to reduce as BSS technology advances [157, 

158]. The number of the BSS life cycles (NBcycle ) is 6,000 [159]. 

 

 

Fig. 3.1. Schematic diagram of the AOB configuration. 

 

3.3 Forecast Data and Tariff Prices  

In this study, two different rates are chosen for the peak and off-peak times, according 

to Economy 7 obtained from an electricity utility company in the UK. The peak and 

off-peak prices are £0.1666/kWh and £0.1104/kWh, respectively [160]. The peak and 

off-peak times are from 8:00 AM - 8:00 PM and 8:00 PM - 8:00 AM, respectively. 

The price of the PV power exported to the grid is £0.055/kWh [8]. 
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The uncertainties of PV generation and demand are considered when optimisation is 

carried out. Several approaches are available in the literature for PV and demand 

forecast, as discussed in Chapter 2- Subsection 2.3.2. This study does not consider any 

specific forecast technique to avoid diverting attention from a forecast-based EMS to a 

forecasting method. Instead, as explained in [43, 45, 46], an error with a normal 

distribution is added to the recorded historical data of PV power (PPV) and load power 

(PL) to represent the one day-ahead forecasted PV power (PPV-1) and load power (PL-1). 

The accuracy of the forecast is measured using the Mean Absolute Percentage Error 

(MAPE) metric and calculated as [161]: 

 

MAPE =
100

N
∑

 | (PPV (t) –PL (t)) dt – (P𝑃𝑉-1 (t) – PL-1 (t)) dt |

(PPV (t) –PL (t)) dt

N

i=1

% (3.1) 

where N is number of samples.  

 

The MAPE is 30% over six months. It is worth noting that the choice of 30% energy 

forecast error is very pessimistic, as under most circumstances, the forecast methods 

are much more accurate, e.g., a 10% forecast error is reported in [7, 161]. Fig. 3.2 

illustrates actual peak time energy (EDay) against each day's forecasted peak time (EDay-

f). The forecasted peak time energy for each day is calculated as: 

EDay-f =∫ (PPV-1 (τ) – PL-1 (τ))
t=8 PM

t=8 AM
dτ)  (3.2) 

 

 

Fig. 3.2. Actual peak energies (EDay) and forecasted peak energies (EDay-f). 
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3.4 FL-based EMS  

The FL-EMS has been designed to optimise the utilisation of the BSS, maximise PV 

self-consumption, and extend BSS life span. In addition, it regulates the difference 

between the demand and PV generation by determining the BSS charge/discharge 

power considering the one day-ahead peak time energy forecast. The proposed method 

is illustrated in Fig. 3.3 and follows the following procedures: 

1- Input measured values and forecasted data for the one day-ahead (day-1) 

assuming that it is provided by a forecasting company: measured PV 

generation (PPV), measured load demand (PL), day-1 forecasted PV generation 

(PPV-1), day-1 forecasted load demand (PL-1). 

2- Estimate the SOC and SOH of the BSS.  

3- Calculate the peak period energy demand for the one day-ahead (EDay-f) using 

(3.2). 

4- Optimise the BSS operation using FL by considering EDay-f . 

5-  Send the setting to the BSS. 

 

 
Fig. 3.3. Proposed FL-EMS. 

Obtain one day-ahead forecasts and measured 

values: PPV-1,  PL-1, PPV, and PL.

Determine EDay-f  using forecasted data for day-1  

Optimise the BSS operation using FL controller 

by considering EDay-f  (Fig 3.4)

Send the parameter to the BSS 

Start

End

Estimate SOC and SOH of the BSS 
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3.4.1 SOC and SOH Battery Estimations   

Accurate SOC and SOH estimations are necessary for EMS to deliver the optimum 

energy supply to customers while maintaining BSS health. SOH defines BSS aging, 

which is reflected in the capacity loss estimation [162]. Several studies during the 

past years have investigated SOC estimation using, for example, online parameter 

identification of Recursive Least Square algorithm [163-165], ANN [166-168], the 

Open-Circuit-Voltage method, the Kalman filter algorithm [169], and the Coulomb-

counting method [1]. 

 

SOH is an important factor, as a longer BSS life has positive influences, such as less 

maintenance and fewer replacement. Several studies have proposed a degradation 

model based on incremental capacity analysis [170]. This study estimates the battery's 

SOC using the Coulomb-counting method [1]: 

SOCB(t)=SOCB(0) – 
1

Bcapacity (t) 
∫PB (τ) dτ

t

0

 (3.3) 

And the SOH is estimated as [162]: 

SOH (t) = 
Bcapacity  (t)

Bnom

 
(3.4) 

where SOCB (0) is the initial value of SOC (%), PB (τ) is the BSS charge/discharge 

power (kW), Bcapacity (t) is the estimated BSS capacity (kWh), and Bnom is nominal 

BSS capacity (kWh). The new capacity is estimated as [162]: 

Bcapacity (t)=
1

SOCB (tα) - SOCB (tβ) 
∫ IB (τ) dτ

tβ

tα

 (3.5) 

where IB (τ) is the BSS current (A). SOCB (tα) and SOCB (tβ) are the SOC of the BSS 

at initial time tα and final time tβ (%), respectively. The new estimate of BSS capacity 
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is updated following each charge/discharge cycle (∆t=10 min) and is fed back into 

(3.3) to estimate the new SOC.  

3.4.2 Proposed Fuzzy Logic Control Algorithm  

The flowchart of the proposed FL-EMS algorithm is presented in Fig. 3.4, which is 

divided into two operating modes (a) peak time and (b) off-peak time. 

 

a) Peak time:  

As shown by the red solid lines in Fig. 3.4, if PPV > PL and SOCB < 98%, the BSS is 

charged using the FL charging mode. Since the export price is considerably less than 

the grid purchase price, the BSS will be charged using PV surplus power regardless 

of the off-peak time forecast. Otherwise, if PPV > PL and SOCB ≥ 98%, the PV 

surplus power will be exported to the grid (hence PB = 0). This process enables 

storage of excess energy from the PV and use of that energy during off-peak or 

during the next peak period. In addition, it will reduce emissions by reducing energy 

purchased from the grid.  

 

As shown by the red dotted lines in Fig. 3.4, if PPV < PL and SOCB > 20%, then the 

BSS is discharged using the FL discharging mode. Otherwise, if PPV < PL and SOCB 

≤ 20%, any energy shortage will be purchased from the grid (hence PB = 0).  

 

b) Off-peak time: 

As shown by the black solid lines in Fig. 3.4, if PPV > PL and SOCB < 98%, the BSS 

will be charged using all the PV surplus power until it is fully charged using the FL 

charging mode. Otherwise, if PPV > PL and SOCB ≥ 98%, the PV surplus power will 

be fed into the grid (hence PB = 0).  

 

As shown by the blue solid lines in Fig. 3.4, if PPV < PL and SOCB ≤ 30%, the BSS 

will be charged up to 30% according to (3.6):  
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PB=
(30% – SOCB (t)) Bcapacity  (t)

∆T
 (3.6) 

where ΔT is the sampling time of 10 minutes (i.e., the flowchart is re-executed every 

10 min). This process ensures that SOC is at least 30% before the next peak period. 

A 10% safety margin is considered (from SOCB-min = 20%) to account for PV/load 

uncertainties during peak periods.   

 

As shown in Fig. 3.4 in black dotted lines, if PPV < PL and SOCB > 30%, the BSS will 

be discharged or charged based on the next day peak time energy forecast (EDay-f). If 

EDay-f > 0, this means generation is higher than demand during the peak period. Thus, 

the BSS will discharge to supply the load during the off-peak period using the FL 

discharging mode to avoid purchasing energy from the grid and to charge the BSS next 

day from PV surplus power. If EDay-f < 0, this means the generation is less than the 

demand during peak period. Therefore, the system will check the BSS stored energy 

against the forecasted energy requirement, using (3.7) to calculate the required energy.  

EB= │EDay-f │–(SOCB (t) – 30%) Bcapacity  (t) (3.7) 

where, EB represents required BSS energy. If EB > 0, this mean the available stored 

energy is not sufficient for the peak period. Therefore, the BSS will be charged 

according to (3.8). 

PB=
EB

Time
 (3.8) 

where the ‘‘Time’’ is the remaining time of the off-peak period at each cycle of the 

flowchart.  

 

If EB < 0, this means the BSS has sufficient energy to supply the loads during the 

peak period, and the FL discharge mode will be used to supply the load using the 

excess energy stored in the BSS. This process will guarantee that the predicted 

required energy needed for the peak period is stored in the BSS during the off-peak 

period. In addition, this process reduces energy exchange with the grid and the 

operational cost by purchasing only the estimated energy needed. 
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Fig. 3.4. Flowchart of the proposed FL-EMS algorithm. 

3.4.3 Charging and Discharging FL Control Modes 

The charge and discharge power of the BSS is controlled by the FL controller. To 

extend BSS lifetime the SOC and SOH contribute to charge/discharge decision 

making. Fig. 3.5 illustrates the charging mode of the BSS, where the inputs are PPV - 

PL, SOCB, and SOH, and the output is BSS reference PB. The inputs for discharging 

mode are PL - PPV, SOCB, and SOH. 

 

 

Fig. 3.5.  FL structure for charging mode. 
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Figs. 3.6 (a) and (b) represent the fuzzy variable inputs, PPV - PL and PL - PPV, for 

charging and discharging modes, respectively. Figs. 3.6 (c) and (d) represent the 

Membership Functions (MFs) of SOC and SOH of the BSS, respectively, where both 

are used for charging and discharging modes.   

 

As shown in Figs. 3.6 (a) and (b) the power is classified as power very low (PVL), 

power low (PL), power medium (PM), power high (PH), and power very high 

(PVH), where the values are in per unit (pu). The base power (Pbase) is chosen to be 

the nominal load of the system, which is 32.5 kW. 

 

Fig. 3.6 (c) shows the MFs of the SOCB are between 0 and 1, where 1 represents the 

full capacity of the BSS (100%). The MFs of SOC, are classified as very low (VL), 

low (L), medium (M), high (H), and Full (F). Fig. 3.6 (d) shows the MFs of the SOH 

are divided into three ranges namely: low (L), medium (M), and healthy (H), where 1 

represents a brand-new BSS. It is worth mentioning that most BSSs need to be 

replaced when the SOH drops to 70-80% depending on BSS type. In this study, a Li-

ion BSS is used and this needs to be replaced when its SOH drops to 80% [162]. 

 

Fig. 3.7 shows MFs for the charging mode output variable, PB, and is classified as 

very low (VL), low (L), medium (M), high (H), and maximum (MAX). The 

maximum limit for PB MF is chosen as the PB-rating. The output for the discharging 

mode is similar to the charging mode but with a negative sign (PB < 0).  

 

The FL inference rules are applied on the input MFs to infer the output. These rules 

were created based on SOCB, SOH, and mismatched power between PPV and PL to 

maintain BSS lifetime while maximising PV self-consumption. There are 150 rules 

generated for BSS charge and discharge modes, with one half representing the 

charging mode and the other half representing the discharging mode. 
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Figs. 3.6. (a), (b), (c), and (d) represent the MFs of PPV - PL, PL - PPV, SOCB, and 

SOH, respectively. 

 

 

Fig. 3.7.  MFs for the charging mode output battery reference PB. 
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Table 3.1. Example of charging rules for healthy SOH. 

Input/ 

output 
MFs 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

 

17 

 

18 

 

19 

 

20 

 

21 

 

22 

 

23 

 

24 

 

25 

 

PPV –PL 

PVL                          

PL                          

PM                          

PH                          

Pmax                          

SOCB 

VL                          

L                          

M                          

H                          

F                          

SOH 

H                          

M                          

L                          

PB 

VL                          

L                          

M                          

H                          

Max                          

 

 



44 

Table 3.2. Example of discharge rules for medium SOH. 

Input/ 

output 
MFs 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 
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17 

 

18 

 

19 

 

20 

 

21 

 

22 

 

23 

 

24 

 

25 

 

PL -PPV 

PVL                          

PL                          

PM                          

PH                          

Pmax                          

SOCB 

VL                          

L                          

M                          

H                          

F                          

SOH 

H                          

M                          

L                          

PB 

VL                          

L                          

M                          

H                          

Max                         
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Table 3.1 presents an example of the charging mode rules for a healthy BSS. As can be 

seen, when the BSS is in a healthy condition, it can be charged to a greater extent to 

reduce the energy exchange with the grid.   

 

Table 3.2 presents an example of the discharging mode rules for medium SOH. As 

shown the BSS cannot be used to such a great extent as in Table 3.1 because the SOH of 

the BSS has deteriorated. 

 

The FL controller prevents the BSS from being fully discharged. For example, during 

peak periods, PPV  < PL, and SOCB is just above SOCB-min (e.g., SOCB = 21%), the BSS 

will discharge (red dotted lines in Fig. 3.4). However, based on the rules in Table 3.2, 

the FL makes sure that the discharge rate is very low (VL), which prevents the BSS 

from being drastically discharged in one cycle (i.e., Δt = 10 min). As result, the BSS 

will not discharge further in the following cycle of the flowchart, since SOCB < 20%. As 

indicated by the solid blue lines in Fig. 3.4, the algorithm consistently maintains SOCB 

> 30% during off-peak hours.  

3.5 Case Studies 

Comparisons of BSS performance and energy exchanged with the grid between the 

proposed FL-EMS, the commercial EMS system utilised in the AOB, and the EMSs 

proposed in recent publications [1], [2], and [3] are carried out in this section. The 

effects of different BSS capacities and PV system ratings on the net energy exchange 

with the grid are also investigated.  

3.5.1 Performance Comparison 

Figs. 3.8, 3.9, 3.10, and 3.11 present the system behaviour of the EMS proposed in [1], 

the FL-EMS proposed in this study, and the EMSs proposed in [2] and [3], for the two 

test days, 11th and 12th of May 2019, respectively. The red lines represent the SOCB and 

the black lines represent the values of PPV - PL. It can be seen from the figures that on 

both days the PV generation exceeds demand most of the time (PPV >PL). 
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Fig. 3.8 shows the BSS is charged to full on day-1 during off-peak and peak periods 

from the grid and PV surplus, respectively. However, due to the lack of knowledge 

about the next day peak time energy forecast (on day-2), the BSS remains fully charged 

during the off-peak period. The main objective of the EMS in [1] is to keep the BSS 

fully charged during the off-peak period to avoid purchasing energy at a high cost. The 

main disadvantage of this system is that if the BSS is fully charged during the off-peak 

period, any PV surplus generated during the subsequent peak period will be fed into the 

grid rather than being used to charge the BSS. This can lead to higher energy costs 

because the grid will charge the BSS during off-peak time, eliminating the opportunity 

of charging BSS from the PV surplus. In addition, energy stored in the BSS is not used 

on the days when PPV > PL, as shown in Fig. 3.8, on day-2.  

 

As shown in Fig. 3.9, unlike the EMS proposed in [1], the FL-EMS proposed in this 

work maintains the SOC at 30% because the following peak period does not require 

energy (i.e., EDay-f > 0). During peak time, when the generation exceeds the demand (PPV 

> PL), the PV power will supply the load and charge the BSS. During off-peak period, 

the BSS can supply the load depending on the next day peak-time energy forecast (EDay-

f). These processes follow the black dotted, red solid, and blue solid lines in Fig. 3.4. 

 

 

Fig. 3.8. System performance of EMS proposed in [1] for the two test days 11th and 12th 

of May 2019. The red line represents SOCB, and the black line represents PPV - PL. 
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Fig. 3.9. System performance of the proposed FL-EMS for the two test days 11th and 

12th of May 2019. The red line represents SOCB, and the black line represents PPV - PL. 

 

The system performance of the EMS proposed in [2] is presented in Fig. 3.10. Their 

system ensures that the SOC of the BSS always remains above 50% to maintain the 

BSS’s health. Moreover, the system does not consider tariff prices and only charges the 

BSS from the PV surplus power, which may increase operating costs. The FL rules 

employed in [2] imply that if the SOC is between 85% and 100% (considered the full 

range) and the net power required is small, then the BSS is discharged, as shown in Fig. 

3.10. During the off-peak period in day-2, the BSS discharged until the SOC fell to 

85%. The BSS will be disconnected if the SOC is in the medium or low ranges and the 

power required is in the small range. 

 

The system performance of the EMS proposed in [3] is presented in Fig. 3.11, which 

shows the PV surplus power is used to charge the BSS during day-1. However, the BSS 

stays fully charged throughout the off-peak period. The EMS proposed in [3] aims to 

ensure the BSS is charged during off-peak times according to the next day forecast EDay-f. 

The main disadvantage of their system is that the excess energy stored in the BSS does 
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not contribute to the off-peak load, which undermines the PV self-consumption for the 

next day. It also increases energy exchanged with the grid and operational costs. 

 

Fig. 3.12 presents the results obtained for the two days, 16th and 17th May 2019, for the 

proposed FL-EMS and the three EMSs proposed in [1], [2], and [3]. The blue, red, green, 

and purple dashed lines are the SOCB of the proposed FL-EMS, EMSs in [1], [2], and [3], 

respectively. The black line represents PPV - PL. Unlike in Figs. 3.8, 3.9, 3.10, and 3.11, as 

shown in Fig. 3.12, the demand is higher than the generation most of the time (PPV < PL). 

Fig. 3.12 shows that during off-peak time, the proposed FL-EMS enables the BSS to 

store the energy required for the day-ahead peak period only, which follows the black 

dotted line in Fig. 3.4. As shown in Fig. 3.12, the SOC of the proposed FL-EMS is 

maintained at 70% during the off-peak period via continuous checking of the following 

day energy forecast (EDay-f). However, in [1] (red line), the BSS is fully charged 

throughout the off-peak period, irrespective of the energy required for the next day. In [2] 

(green line), the BSS is charged only from PV power. This adversely affects purchasing 

energy from the grid during peak periods when the tariff is highest. The proposed EMS in 

[3] (dashed purple line), keeps the SOC at 95%, because the energy is not needed for the 

following peak period (EDay-f  > 0). However, surplus energy stored in the BSS is not used 

during the off-peak time.  

 

 

Fig. 3.10. System performance of EMS proposed in [2] for the two test days 11th and 

12th of May 2019. The red line represents SOCB, and the black line represents PPV - PL. 
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Fig. 3.11. System performance of EMS proposed in [3] for the two test days11th and 12th 

of May 2019. The red line represents SOCB, and the black line represents PPV - PL. 

 

Fig. 3.12. System performance of the EMS proposed in this work and the EMSs 

proposed in [1], [2], and [3] for 16th and 17th May 2019. The blue, red, green, and purple 

dashed lines are the SOCB of the proposed FL-EMS, EMSs in [1], [2], and [3], 

respectively. The black line represents PPV - PL. 
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In comparison, the proposed FL-EMS charges the BSS based on the required energy EDay-

f only to maximise PV self-consumption, while the proposed EMS in [1] fully charges the 

BSS during the off-peak period. Therefore, any surplus energy from the PV system will 

be fed to the grid. The proposed EMS in [2], limits BSS capacity to 50 % and feeds any 

PV surplus energy to the grid. The proposed EMS in [3], despite determining the energy 

forecast for the following day, does not use surplus energy stored in the BSS to meet off-

peak loads. The FL-EMS proposed in this work (the blue line in  Fig. 3.12) decreases the 

amount of energy purchased during peak times by using energy stored in the BSS. In 

addition, it reduces unnecessary energy exchange with the grid which reduces 

transmission losses and the requirement for central storages.  

3.5.2 Operating Costs and Net Energy Exchanged Comparison  

Figs. 3.13, 3.14, and 3.15 show the energy exported during the peak time, the energy 

imported during the off-peak time and the energy imported during the peak time, 

respectively, for the six months from May to October 2019. The blue, orange, green, 

purple and yellow bars denote the results obtained for the proposed FL-EMS, the EMSs 

used in [1], [2], [3], and the AOB’s EMS, respectively. 

 

Fig. 3.13 shows that the proposed FL-EMS enabled maximum usage of PV power by 

charging the BSS and minimising energy exported to the grid during peak time. 

 

Figs 3.14 and 3.15 show that proposed FL-EMS achieved better management because it 

purchased less energy during both off-peak and peak periods. Obviously, greater cost 

reduction is achieved by importing and exporting less energy, i.e., maximising use of 

the PV power generated. However, the proposed EMS in [1] imported slightly less 

energy during peak time compared to the proposed FL-EMS, because it adopted the 

approach that the BSS should be fully charged during off-peak time regardless of the 

energy forecast for the following peak time. 
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Fig. 3.13. Energy exported during peak time from May to October 2019. The blue, 

orange, green, purple, and yellow bars denote the results obtained for the proposed FL-

EMS, the EMSs used in [1], [2], [3], and the AOB’s EMS, respectively. 

 

 
Fig. 3.14. Energy imported during off-peak time from May to October 2019. The blue, 

orange, green, purple, and yellow bars denote the results obtained for the proposed FL-

EMS, the EMSs used in [1], [2], [3], and the AOB’s EMS, respectively. 
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Fig. 3.15. Energy imported during peak time from May to October 2019. The blue, 

orange, green, purple, and yellow bars denote the results obtained for the proposed FL-

EMS, the EMSs used in [1], [2], [3], and the AOB’s EMS, respectively. 

 

Fig. 3.16. Absolute net energy exchange with the grid for the six months from May to 

October 2019 for the proposed FL-EMS, the EMSs proposed in [1], [2], [3], and the 

AOB’s EMS, respectively. 
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Fig. 3.16 shows the absolute net energy exchange with the grid for the six months from 

May to October 2019 for the proposed FL-EMS, the proposed EMSs in [1], [2], [3], and 

the AOB’s EMS, respectively. The proposed FL-EMS promoted PV self-consumption 

and reduced the burden on the grid by minimising the total energy exchange with the grid 

as shown in Fig. 3.16. 

 

Table 3.3 presents the operating costs and net energy exchanged with the grid for the 

proposed FL-EMS, EMSs proposed in [1], [2], [3], and the AOB’s EMS. The proposed 

FL-EMS in this work achieves savings in energy cost of 33%, 92%, 18%, and 95%, in 

six months period when compared to [1], [2], [3], and the AOB’s EMS, respectively. 

The proposed FL-EMS uses BSS more frequently, resulting in higher BSS degradation 

costs compared to [1], [2], and [3]. In addition, it reduced the total operating costs 

(energy cost + BSS degradation cost) and absolute net energy exchanged with the grid 

by up to 44% and 69%, respectively, compared to the previous works. Reducing the net 

energy exchanged with the grid decreases transmission losses and the need for extra 

energy storage capacity and central generation. 

 

Table 3.3. Operating costs and energy exchanged with the grid for six months.  

EMS 
Energy 

cost (£) 

Degradation 

cost (£) 

Total operating 

costs (£) 

Absolute net energy exchange 

(MWh) 

FL-EMS 419 298 717 6.127 

Ref [1] 556 199 755 12.11 

Ref [2] 806 116 922 13.40 

Ref [3] 495 185 680 8.751 

AOB 816 463 1279 19.84 
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3.5.3 Battery State-of-Health  

Table 3.4 compares the average SOC for the proposed FL-EMS with the EMSs 

proposed in [1], [2], [3], and AOB’s EMS. The FL-EMS monitors the SOH and 

modifies the BSS utilisation to reduce energy exchanged with the grid. While the SOH 

remains healthy, the system makes good use of the BSS to reduce the energy exchange 

with the grid. However, as the SOH degrades, the system considers less BSS utilisation 

to maintain its heath. It can be seen from Table 3.4, that the average SOC of the new 

BSS (SOH=100%) for the proposed FL-EMS is 58%; however, it increased to 63% 

when the SOH dropped to 85%. While the EMSs proposed in [1], [2], [3], and AOB’s 

EMS remain constant. This indicates that the system proposed in [1], [2], [3], and 

AOB’s do not change the BSS performance when the BSS degrades.  

 

Table 3.4. Average SOC for different initial SOH conditions. 

Initial SOH FL-EMS Ref [1] Ref [2] Ref [3] AOB’s EMS 

100% 58% 84% 85% 66% 72% 

90% 61% 84% 85% 66% 72% 

85% 63% 84% 85% 66% 72% 

 

3.5.4 Performance of Algorithm as a Function of System Size 

Fig. 3.17, demonstrates how the BSS capacity and size of the PV system affect energy 

exchange with the grid. The X, Y, and Z axes represent the ratio of PV generation/peak 

load, the ratio of BSS size/peak load and the net absolute energy exchanged with the 

grid over six months, respectively. As can be seen from Fig. 3.17, the minimum 

absolute net energy exchange occurs when the ratio of BSS size/peak load and the ratio 

of PV size/peak load are 7.3 kWh/kW and 0.6 kWp/kW, respectively. Either decreasing 

or increasing the PV size/peak load ratio results in increasing the absolute net energy 

exchange for a given BSS size/peak load. In addition, it can be observed from Fig. 3.17, 

that at any ratio of BSS capacity/peak load, the minimum absolute net energy 

exchanged occurs at a ratio of PV/peak load of 0.6 kWp/kW. It has been observed that, 



 

55 

as BSS size increases the absolute net energy exchanged with the grid decreases. This is 

logical as more capacity is accessible for storing energy. If the ratio of BSS size/peak 

load is increased from 1.0 to 7.3 kWh/kW, the reductions in energy exchanges are 6.4%, 

49%, and 39%, corresponding to PV size/peak-load ratios of 0.2, 0.6, and 1.0 kWp/kW, 

respectively. This confirms that there is an optimum PV size/peak load (in this case 0.6 

kWp/kW) that uses the BSS most advantageously and produces the greatest reduction in 

energy exchange with the grid. 

 

 

Fig. 3.17. Relationship between the absolute net energy exchanged with different BSS 

size/rated-load and PV generation/peak-load ratios. The X, Y, and Z axes represent the 

ratios of PV generation/peak-load, BSS size/peak-load and the absolute net energy 

exchanged with the grid over six months, respectively. 

 

3.6 Conclusion  

This chapter presents a real-time FL-EMS designed to enhance PV self-consumption and 

reduce net energy exchanged with the grid. The proposed FL-EMS was compared with 

various EMS approaches. Results demonstrate its effectiveness in reducing both the total 

energy cost and the net energy exchanged with the grid over a period of six months when 
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compared with previous EMSs approaches. The proposed FL-EMS optimised BSS 

performance by avoiding unnecessary charge/discharge cycles and efficiently regulating 

the difference between the generated PV power and demand. The effect of PV system size 

and BSS capacity on the net energy exchanged with the grid was also explored.  
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4 DAY-AHEAD RESIDENTIAL ENERGY MANAGEMENT 

SYSTEM 

4.1 Introduction 

Day-ahead planning is required for complex Energy Management Systems (EMSs) to 

achieve optimal operation of different components. Thus, this chapter proposed a Mixed 

Integer Linear Programming based Energy Management System (MILP-EMS) which 

will also be used for developing a Community Energy Management System (CEMS) in 

the next chapter. The proposed method has been tested using the Active Office Building 

(AOB) presented in Chapter 3- Section 3.2, as a case study. In addition, it is compared 

with a recently published state-of-the-art algorithm and with the current EMS utilised in 

the AOB, to demonstrate the effectiveness of the proposed strategy. The analysis in this 

chapter has been performed by coding the previous state-of-the-art algorithm and the 

MILP-EMS in MATLAB software. 

 

Note that the results presented in this chapter have been published in IEEE Access 

journal: 

 

A. Sorour, M. Fazeli, M. Monfared, A. A. Fahmy, J. R. Searle and R. P. Lewis, “MILP 

Optimized Management of Domestic PV-Battery Using Two Days-Ahead 

Forecasts,” IEEE Access, vol. 10, pp. 29357-29366, 2022, doi: 

10.1109/ACCESS.2022.3158303. 

 

This chapter is structured as follows. Section 4.2 introduces the MILP-EMS. Then, 

Section 4.3 presents the problem formulation. Section 4.4 discusses the results and 

compares the proposed MILP-EMS with another cost function that directly promotes 

reducing the absolute net energy exchange. Finally, Section 4.5 presents the conclusion of 

Chapter 4. 



 

58 

4.2 MILP-based EMS 

The main target of the proposed MILP-EMS is to reduce the net energy exchange with 

the grid by scheduling the day-ahead Battery Storage System (BSS) setting. 

 

 

Fig. 4.1. Flowchart of the proposed MILP-EMS. 

 

The proposed MILP-EMS follows the process presented in Fig. 4.1 and the following 

steps:  

1. Input the initial SOC of the BSS. 

2. Input the forecasted data for the next two days ( day-1 and day-2) assuming that it 

is provided by a forecasting company, using a 10 minutes sample time, 144 

points for each day: day-1 Photovoltaic (PV) generation (PPV-1), day-1 load 

demand (PL-1), day-2 PV generation (PPV-2), and day-2 load demand (PL-2). 

3. Determine the predicted peak-time energy requirement (EDay-f) based on day-2 

forecasted data using (4.1): 

Obtain initial SOC of the BSS 

Obtain optimal settings for PB and PG

Obtain two days-ahead forecasts: PPV-1, PL-1 , PPV-2, 

and PL-2 with 10 minutes sample time, 144 points 

for each day

Determine EDay-f  using forecasted data for day-2  

Perform the MILP optimisation for day-1 (one 

day-ahead) based on EDay-f  

(Fig4.2)

Deliver PB to the BSS for day-ahead scheduling 

Start

End
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EDay-f =∫ (PPV-2(τ) – PL-2(τ))

t=8 PM

t=8 AM

dτ (4.1) 

4. The MILP optimisation is then carried out for one day-ahead (i.e., day-1) to 

obtain the optimal BSS scheduling and grid reference.  

5. Finally, obtain the decision variables and send the signal to the BSS.  

4.3 Problem Formulation  

The cost function CF in (4.2) aims to minimise the absolute net energy exchange with 

the grid while reducing operating costs. The CF comprises the costs of the energy 

purchased from the grid Cbuy, energy sold to the grid Csell and the degradation cost of the 

BSS (CBSS). 

Minimise CF=   |Cbuy
 |+ |C sell

 |+CBSS (4.2) 

Cbuy=∑∆T×f
buy 
(t)×PG (t) 

T

 t0

  , PG (t)>0 (4.3) 

C sell=∑∆T×f
sell
 (t)×PG (t)

T

t0

   , PG (t)<0 (4.4) 

where T is the duration of the day (24 hours), t0 is the time of day starting at 12 AM, ΔT 

(hr) is the sampling time of 10 mins, fbuy (t) is the purchasing tariff from the grid 

(£/kWh), fsell (t) is the selling tariff to the grid (£/kWh), PG (t)
 is the grid import/export 

power (kW), CCB represents the cost of a new BSS (£) (without considering the power 

converters), NBcycle is the number of BSS life cycles, ƞconv is the converter efficiency of 

CBSS=  ∑
CCB×η

Conv
×η

c
×∆T×|PB-charg (t)| 

2×NBcycle×Bcapacity (t)

T

𝑡0

+  

CCB×∆T×|PB-disch (t)|

η
Conv

×η
d
×2×NBcycle ×Bcapacity (t) 

 

(4.5) 
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the BSS (%), PB-disch (t) 
 is the BSS discharge power (kW), PB-charg (t) is the BSS charge 

power (kW), ƞd is the discharging efficiency of the BSS (%), and ƞc
 is the charging 

efficiency of the BSS (%), Bcapacity (t) is the current estimated BSS capacity (kWh). The 

value of PG
 (t) is positive when the house imports from the grid and negative when it 

exports. The values of PB-disch (t) and PB-charg (t) are positive and negative, respectively. It 

worth mentioning that cost function CF in (4.2) considers the Csell and Cbuy as absolute 

values to reduce the total energy transactions. 

 

The system power balance equation is represented as (4.6): 

where PB (t) is the BSS charge/discharge power (kW). 

 

The energy bill Cbill is calculated by subtracting Csell and Cbuy (note that Cbuy has a 

positive value and Csell has a negative value): 

Cbill=C buy+C sell (4.7) 

4.3.1 Battery Storage System Model  

The BSS model is presented in this subsection as follows: Equations (4.8), (4.9), and 

(4.10) are used to estimate the stored energy, SOC and current capacity of the BSS, 

respectively [4]. 

Bcapacity (t) =
1

SOCB (tα) - SOCB (t𝛽) 
∫ 𝐼B (τ) dτ

𝑡𝛽

𝑡𝛼

 
(4.10) 

 PL-1 (t)-PPV-1 (t) = P
G
 (t)+PB (t) (4.6) 

𝐸B (t)=  𝐸B (t–1) – 
∆T×PB-disch (t)

η
d

– ∆T×η
c
× PB-charg (t) (4.8) 

SOCB (t)=
EB (t)

Bcapacity (t)
×100 (4.9) 
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where EB (t) is BSS stored energy at time t (kWh), EB (t-1) is BSS energy at time t-1 

(kWh), and IB (t) is the BSS charge/discharge current (A). SOCB (tα) and SOCB (tβ) are 

the SOC of the BSS at times tα and tβ (%), respectively. The new estimated BSS 

capacity is fed back into (4.9) to estimate the SOC.  

 

The instantaneous BSS power is given by (4.11) and the BSS maximum and minimum 

allowable charge/discharge power by (4.12) [4]: 

It is worth mentioning that the SOC limit of the BSS depends on when it occurs, at a 

peak or an off-peak time. During peak time (high tariff), the BSS can be discharged to 

its minimum limit (i.e., SOCB-min) to supply the load. The allowable limits for the SOC 

during peak time are represented by (4.13). 

During the off-peak time, the day-2 forecasted energy requirement for the peak period 

(i.e., EDay-f) is considered to ensure that any energy needed is stored in the BSS during 

the off-peak period. The allowable limits for the SOC during off-peak time are given in 

(4.14). 

4.3.2 System Constraints  

This subsection introduces four binary variables that act as flags for state transitions of 

the BSS and the grid. These are Фimport, Фexport, ФB-disch, and ФB-charg. Where ФB-disch and 

PB(t)= PB-disch (t)×η
conv

+ 
PB-charg (t)

η
conv

 (4.11) 

 - PB-rating ≤ PB (t)  ≤  PB-rating (4.12) 

SOCB-min ≤ SOCB (t) ≤ SOCB-max (4.13) 

SOCB-min+ (100×
EDay-f

Bcapacity (t)
) ≤ SOCB (t)≤ SOCB-max 

(4.14) 
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ФB-charg are used to guarantee that the BSS is either discharging or charging at any 

instant by using constraints (4.15)-(4.17) [4]. 

where ФB-disch (t) is equal to 1 when the BSS is discharging, otherwise is equal to 0, ФB-

charg (t) is equal to 1 when the BSS is charging, otherwise is equal to 0.  

 

Constraints (4.18) and (4.19) are introduced to link the BSS power limits and the binary 

variables [4]. 

where Фimport (t) and Фexport (t) are used to guarantee that the building being considered 

is either importing from, or exporting to, the grid at any time instant using the 

constraints (4.20) to (4.22) [4]. 

ФB-disch (t)+ ФB-charg (t)≤1 (4.15)  

 

ФB-disch (t)= {
1    , PB (t)>0 

0    , PB (t)<0
 (4.16) 

ФB-charg (t)= {
1    , PB (t)<0 

0    , PB (t)>0 
 (4.17) 

PB-dish (t)≤ФB-disch (t)×PB -rating (4.18) 

|PB-charg (t)|≤ФB-charg (t)×PB -rating (4.19) 

Фimport (t)+Фexport (t)≤ 1   (4.20) 

Фimport (t)= { 
1    , PG (t)>0 

0    , PG (t)<0
  

 
(4.21) 
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where Фimport (t) is equal to 1 when the building is importing power from the grid, 

otherwise is equal to 0, Фexport (t) is equal to 1 when the building is exporting power to 

the grid, otherwise is equal to 0. 

 

Constraints (4.23) and (4.24) are introduced to link the grid power limits and the binary 

variables [4]. 

where PG-import (t) is the imported power from the grid, PG-export (t) is the exported power 

to the grid, while PGmax-import and PGmax-export are the maximum limits for the power 

exchanged with the grid, these values are set to infinity unless otherwise specified.  

 

Grid power is represented by (4.25).  

To guarantee that the building is not exporting power from its BSS when exporting 

excess PV power to the grid, constraint (4.26) is used [4]: 

4.3.3 Mixed Integer Linear Programming  

In this work, the MILP optimisation technique and the Gurobi® optimiser tool are used 

to solve the problem formulation in the MATLAB environment. MILP is a 

mathematical approach to determining the optimum solution for an objective function 

Фexport (t)= { 
1    , PG (t)<0 

0    , PG (t)>0
  

 
(4.22) 

|PG-export (t)|≤Фexport (t)×PGmax -export (4.23) 

PG-import (t)≤Фimport (t)×PGmax -import (4.24) 

PG(t)=PG-import (t) + PG-export (t) (4.25) 

ФB-disch
 (t)+ Фexport

 (t)≤1 (4.26) 
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based on constraints and variables [105, 106]. As described in Chapter 2- Subsection 

2.4.2, there are three different approaches to solve the MILP problem, namely, Cutting 

Plane, Feasibility Pump, and Branch and Bound. This study solves the problem using 

the Branch and Bound algorithm (also known as the Tree search algorithm) [108]. 

 

This study achieves the optimal one day-ahead (day-1) BSS scheduling by optimising 

the cost function in (4.2) using the following steps [109]: 

1. The process began with the initial MILP problem, with all constraints removed, 

the so-called relaxation of the original LP problem. 

2. The results obtained are subjected to constraints, and those that are not feasible 

are rejected.  

3. The retained variables generate another generation of variables, then one 

iteration after another takes place until a solution is found. An optimal solution 

satisfies the constraints and corresponds to the best objective function value.  

 

 

Fig. 4.2. Flowchart of the MILP optimisation process. 

Start

Inputs PPV-1, PL-1 , SOCB, EDay-f, and Time 

Minimize {(4.2)}

Subjected to (4.3)-(4.6)

Output  PB and PG

Time of day Off-peak timePeak  time

Satisfy 

(4.13)

Satisfy 

(4.14)

YES YES

NO

Calculate (4.8)-(4.12)

NO

Satisfy

(4.15)-(4.26)
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Fig. 4.2 shows a detailed flowchart of the optimisation process, demonstrating how the 

constraints are met: 

• First input PPV-1, PL-1, EDay-f, and SOCB of the BSS to minimise the cost function 

(4.2), subject to constraints (4.3) and (4.6).  

• Then calculate (4.8)-(4.12). Then, if it is a peak time, satisfy (4.13), otherwise 

satisfy (4.14).  

• The constraints (4.15)-(4.26) must be satisfied. 

•  Finally, send the optimal day-ahead setting to the BSS. 

4.4 Case Studies 

This study uses the forecast data and tariff prices in Chapter 3- Section 3.3. The 

proposed algorithm has been tested using the AOB data described in Chapter 3- Section 

3.2 This section compares the proposed MILP-EMS performance with the proposed 

EMS in [4] and the AOB’s EMS to emphasise the proposed method's advantages, 

particularly reducing net energy exchanged with the grid and operating costs. The 

algorithm in Fig. 4.1 is carried out for each day of the six months from May to October 

2019 with a sample time (ΔT) of 10 mins. 

4.4.1 Performance Comparison  

Figs. 4.3 and 4.4 present the results obtained for BSS performance for the EMS in [4] and 

the proposed MILP-EMS, respectively, for the two test days (23rd and 24th of May 2019). 

The red and black lines represent SOCB and PPV - PL, respectively. As shown in Figs. 4.3 

and 4.4, on the first day (day-1), the PV generation exceeds demand most of the time, but 

on the second day (day-2), demand exceeds PV generation most of the time.  

 

Fig. 4.3 demonstrates that the algorithm proposed by [4] limits BSS charging and does not 

maximise the use of the excess PV power. Instead, the excess PV power is exported to the 

grid to reduce operating costs as the energy is not needed during day-1. This algorithm 

does not include energy forecasts for day-2 (EDay-f) in its EMS. As a result, on day-2, 

during off-peak (after 12 AM), the BSS is charged from the grid to meet the peak load 

requirements. The main objective of the work proposed in [4] is to reduce energy costs 
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and BSS degradation costs. However, their method results in significant power exchange 

with the grid and increases energy costs because the system feeds PV power into the grid 

when it would be more cost-effective to charge the BSS to meet the load for the following 

day, day-2. 

 

 
 

Fig. 4.3.  Results for 23rd and 24th of May 2019, for the EMS in [4]. The red and black 

lines represent SOCB and PPV - PL, respectively. 

 

 

Fig. 4.4.  Results for 23rd and 24th May 2019, for the proposed MILP-EMS. The red and 

black lines represent SOCB and PPV - PL, respectively. 
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As shown in Fig. 4.4, unlike the EMS in [4], the PV excess power is used to charge the 

BSS rather than be exported to the grid to increase PV self-consumption because it has 

prior knowledge of day-2’s energy forecast (EDay-f). Moreover, the BSS will discharge the 

stored energy from PV when required to avoid purchasing energy from the grid during 

peak time. This process maximises the use of PV generated power by reducing absolute 

net energy exchange with the grid. 

4.4.2 Comparison of Operational Costs and Net Energy Exchanged  

Fig. 4.5 presents exported energy during peak time, for the six months from May to 

October 2019. The blue, orange, and yellow bars represent the results obtained for the 

proposed MILP-EMS, the EMS in [4], and the AOB’s EMS, respectively. It is seen from 

Fig. 4.5 that the proposed MILP-EMS increased utilisation of the PV generated power by 

reducing the energy exported to the grid during peak time.  

 

 

Fig. 4.5.  Monthly energy exported during peak time from May to October 2019. The 

blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in [4], and 

the AOB’s EMS, respectively. 

 

Figs. 4.6 and 4.7 present the energy imported from the grid during peak and off-peak 

times, respectively, for the six months from May to October 2019. The blue, orange and 

yellow bars represent the proposed MILP-EMS, the EMS in [4], and the AOB’s EMS, 
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respectively. As shown in Figs. 4.6 and 4.7, the proposed MILP-EMS imported the least 

energy of the three systems being considered.  

 

 

Fig. 4.6. Monthly energy imported during peak time from May to October 2019. The 

blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in [4], and 

the AOB’s EMS, respectively. 

 

 

Fig. 4.7. Monthly energy imported during off-peak time from May to October 2019. 

The blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in [4], 

and the AOB’s EMS, respectively. 
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Fig. 4.8. Total imported and exported energy for the six months (May to October 2019). 

The blue, orange, and yellow bars represent the proposed MILP-EMS, the EMS in [4], 

and the AOB’s EMS, respectively. 

 

Fig. 4.8 shows the total energy imported/exported from/to the grid for the six months 

from May to October 2019. The blue, orange, and yellow bars represent the proposed 

MILP-EMS, the EMS in [4], and the AOB’s EMS, respectively. Fig. 4.8 shows that the 

proposed MILP-EMS imported and exported the least energy. 

 

Table 4.1. Operating costs and absolute net energy exchanged with the grid for the six 

months. 

EMS 
Energy 

cost (£) 

BSS degradation 

cost (£) 

Total operating 

costs (£) 

Absolute net 

energy exchange 

(MWh) 

MILP-EMS 598 234 832 6.536 

Ref [4] 874 24 898 14.47 

AOB 816 463 1279 19.84 
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Table 4.1 compares the absolute net energy exchange with the grid and the operating 

costs (energy cost + BSS degradation cost) for the proposed MILP-EMS with the EMS 

in [4] and the AOB’s EMS for the six months from May to October 2019. It can be seen 

from Table 4.1 that compared to the MILP-EMS, the EMS proposed in [4] increased the 

absolute net energy exchanged with the grid by 121%. In addition, Table 4.1 shows that 

the proposed MILP-EMS reduced the absolute net energy exchange by using the BSS to 

a greater extent, reducing energy cost by £276 (a 32% reduction) compared to the EMS 

in [4], but at the expense of an increase in BSS degradation costs of £210. However, the 

BSS degradation cost is more than compensated for by the savings on the energy bill, 

giving a total operating cost reduction of £66 (a 7% reduction). Table 4.1 also shows that 

compared to the AOB’s EMS, the proposed MILP-EMS reduced energy costs by £218 

(a 27% reduction) and degradation costs by £229 (a 49% reduction). In addition, the 

proposed MILP-EMS reduced the total operating cost and absolute net energy exchange 

by 35% and 67% , respectively, compared to AOB’s EMS.  

4.4.3 Comparing Different Cost Functions 

The main objective when considering cost function (4.2) is to minimise absolute net 

energy exchanged with the grid and to minimise energy costs, considering tariff prices. 

From a network operator’s viewpoint, minimising net energy exchange might be more 

favourable since it reduces the transmission losses and the requirement for more central 

generation/storage systems. Minimised energy exchange with the grid can be used as an 

indication of the energy independence of a prosumer which, in future networks, with very 

high integration of distributed generators, might be a definitive factor. With this 

motivation in mind, this subsection investigates the impact of using the objective function 

(4.27) on the performance of the proposed MILP-EMS. 

CF=   |Eexport
 |+ |E import

 | (4.27) 

where the Eexport and Eimport are energy exported to and imported from the grid, 

respectively. Minimising the sum of the absolute values of the exported and imported 

energies results directly in minimising net energy exchange, maximising self-
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consumption of the available Renewable Energy Source (RES). Table 4.2 compares the 

results for cost functions (4.2) and (4.27).  

 

Table 4.2. Operating costs and absolute net energy exchanged with the grid for six 

months: May - October 2019. 

Cost function  Energy 

cost (£) 

Degradation 

cost (£) 

Total operating 

costs (£) 

Absolute net energy 

exchanged (MWh) 

(4.2) 598 234 832 6.536 

(4.27) 642 233 875 6.544 

 

Table 4.2 shows that the cost function (4.27) increases the energy cost by 7% compared to 

cost function (4.2). However, there is no significant difference in the absolute net energy 

exchanged between cost functions (4.2) and (4.27). This shows that cost function (4.2) 

can be considered optimal and best for fulfilling the goals of minimising net energy 

exchanged with the grid and energy cost.  

4.5 Conclusion  

The proposed day-ahead MILP-EMS is compared with recent state-of-the-art and the 

EMS of the AOB to show the effectiveness of the proposed method. The proposed 

method reduced the total operating cost by up to 35% over six months compared to the 

other methods. In addition, it reduced net energy exchanged with the grid. The proposed 

cost function in MILP-EMS shows that it can outperform the performance of alternative 

cost function that directly reduce the net energy exchange. 
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5 COMMUNITY ENERGY MANAGEMENT SYSTEM  

5.1 Introduction 

Several projects reported in the literature have focused on residential house/building 

Energy Management Systems (EMSs) as standalone systems, but developing smarter 

electrical networks promises more efficient energy communities [151]. Therefore, a 

Community Energy Management System (CEMS) that exploits the forecasted two days-

ahead demand and Photovoltaic (PV) generation to optimise Battery Storage Systems 

(BSSs) performance is proposed in this chapter. It should be noted that a “peer” in this 

chapter refers to a domestic end-user (house) rather than a commercial/industrial end-

user. The analysis in this chapter has been performed by coding the previous state-of-

the-art algorithm and the CEMS in MATLAB software. 

 

Note that the results presented in this chapter have been published in IEEE Access 

journal: 

 

A. Al-Sorour, M. Fazeli, M. Monfared, A. Fahmy, J. R. Searle and R. P. Lewis, 

“Enhancing PV Self-Consumption Within an Energy Community Using MILP-Based 

P2P Trading,” IEEE Access, vol. 10, pp. 93760-93772, 2022, doi: 

10.1109/ACCESS.2022.3202649. 

 

This chapter is organised as follows. First, Section 5.2 describes the community 

configuration. Then, Section 5.3 presents the forecast data and tariff prices. The proposed 

CEMS is presented in Section 5.4. Section 5.5 describes the Central Controller that 

includes the P2P EMS and Selection level. Section 5.6 compares the results with a 

recently published state-of-the-art algorithm. Finally, Section 5.7 presents the conclusion 

of Chapter 5. 

5.2 Community Configuration  

This study uses measured data obtained from six residential houses located in London, 

UK [171]. Fig. 5.1 shows that each household comprises a PV system and BSS of 4 
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kWh connected to the grid. The PV rating, house location and the total load energy for 

the four months June to September 2014 are shown in Table 5.1. The capital cost of the 

4 kWh BSS is assumed to be £3,000 [56]. However, the price of the BSSs is expected to 

reduce by up to 50% by 2025 [54].  In addition, the rated charge/discharge power (PB-

rating), charge/discharge efficiency (ηc
n/ηd

n), and life cycle (NBcycle
n) of the BSS are 2.7 

kW, 95%, and 5,000, respectively [56, 172]. The maximum SOC (SOCB-max) and 

minimum SOC (SOCB-min) BSS limits are 98% and 20%, respectively [28].  

 

 

Fig. 5.1. Schematic of the six houses forming the prosumer community. 

 

Table 5.1. Six houses parameters [171] 

House number House location PV rating (kWp) Four month load (kWh) 

1 Maple Drive East 0.45 430 

2 Suffolk Road 0.50 1072 

3 Bancroft Close 3.50 870 

4 Alverston Close 3.0 1212 

5 YMCA 4.0 1252 

6 Forest Road 3.0 732 

 

Central Controller

House 2

PG
5

PG
4PG

3PG
2PG

1 PG
6

House 3 House 4 House 5 House 6  House 1

HEMS HEMS HEMS HEMS HEMS HEMS

Bidirectional power flow  
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5.3 Forecast Data and Tariff Prices  

A time of use tariff is used in this study, as shown in Table 5.2, whereby a peak rate of 

24.99 p/kWh is applied from 4 PM to 7 PM, a mid-peak tariff of 11.99 p/kWh from 6 

AM to 4 PM and 7 PM to 11 PM, and an off-peak tariff of 4.99 p/kWh from 11 PM to 6 

AM. The tariff for energy exported from the houses to the grid is 3.79 p/kWh [8]. The 

import/export tariff for energy exchange between pairs of houses is chosen to be 4 

p/kWh. The maximum export power from the house to the grid is limited to 3.68 kW 

[173]. 

 

Table 5.2. Tariff rates [5] 

Tariff Time of Day Price per kWh 

Off-peak 11 PM - 6 AM 4.99 p 

Mid-peak 
6 AM – 4 PM 

7 PM – 11 PM 
11.99 p 

Peak 4 PM – 7 PM 24.99 p 

 

The forecasting methodology is outside the scope of this thesis. Instead, as explained in 

Chapter 3- Section 3.3, an error with a normal distribution is added to the recorded 

historical data of PV power (PPV) and load power (PL) to represent forecasted data. It is 

assumed that the MAPE for the forecasted energy is 30% over four months.  

5.4 Proposed Community Energy Management System 

The main objective of the proposed CEMS is to minimise the net absolute energy 

exchange between the grid and the community, to enhance self-consumption while 

reducing the community operating costs. As shown in Fig. 5.2, the proposed CEMS 

consists of three layers:  

1. Data collection: The inputs to the House Energy Management System (HEMS) 

and P2P EMS are (1) initial SOC of the house BSS (SOCB
n), and (2) two days-

ahead forecasts for each house, assuming that it is provided by a forecasting 

company: day-1 PV generation (PPV-1
n), day-1 load demand (PL-1

n), day-2 PV 
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generation (PPV-2
n), and day-2 load demand (PL-2

n). Where n refers to the number 

of the house within the community. 

2. House Energy Management System: Each house has a HEMS installed. This 

enables the prosumers to manage their energy consumption and production. The 

optimum house BSS setting is obtained by considering the peak and mid-peak 

energy forecasts for day-2 (EDay-f 
n) as in (5.1): 

EDay-f
n =∫ (PPV-2

n(τ) – PL-2
n(τ))

t=11 PM

t=6 AM

dτ (5.1) 

The HEMS enables the energy exchange between each house and grid to be 

minimised but does not exchange excess energy with other members of the 

community. The HEMS results are uploaded to the Central Controller. HEMS in 

this study uses the MILP-EMS system described in Chapter 4. 

3. Central Controller consists of two stages: 

a) P2P energy trading for every pair of houses is optimised sequentially via a 

Central Controller using the data accessible and data uploaded from the 

HEMS. In this layer, the houses are paired to minimise energy exchanged 

between the community and the grid while reducing operating costs. The 

optimum house BSS settings for houses A and B are obtained by considering 

the peak and mid-peak energy forecasts for day-2 (EDay-f 
n) using (5.1). The 

possible number of pairs of houses (Pairno.) is:  

Pairno. =
Nhouses(Nhouses − 1)

2
 (5.2) 

where Nhouses is the number of houses in the community, here Nhouses is 6, 

resulting in 15 possible pairs. The decision variables are sent to the Selection 

level to select the best pairs.  

b) The Selection level is where the pairs are chosen based on the percent cost 

reduction of each house. After obtaining the optimal settings from the 
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selected pairs of houses, the optimal BSS setting is delivered to each house. 

A detailed formulation of the P2P EMS problem and Selection level are 

presented in Section 5.5. 

 

 

Fig. 5.2. Proposed CEMS. 

 

5.5 Central Controller 

The Central Controller is responsible for pairing the houses and choosing the best house 

pair via P2P EMS and Selection level, respectively. Each pair of houses exports the PV 

surplus to the grid after satisfying their demands and charging their BSSs sufficiently to 

meet the energy requirements based on the day-2 forecast (i.e., EDay-f
n). The energy 

consumption is prioritised from high to low as follows:  

1. Consumption of each house. 

2. The SOC limit required for each house BSS at the end of the day based on EDay-f
n. 

3. Paired house consumption. 
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4. The SOC limit required for the pair of houses at the end of the day based on EDay-

f
n. 

5. Export energy to the grid.  

5.5.1 P2P EMS problem formulation  

For the paired houses A and B, the cost function (Csum-P2P) is formulated as (5.3): 

 Minimise Csum-P2P = ∑ |C
buy

n
|+|C

sell

n
|+CBSS

n − |CP2P
n

 

n=A ,B

| (5.3) 

Cbuy
n
=∑∆T×f

buy
 (t)×PG

n (t), 

T

 𝑡0

 PG
n (t)>0 (5.4) 

C sell
n
=∑∆T×f

sell
 (t)×PG

 n (t),

T

𝑡0

    PG
n (t)<0 (5.5) 

CP2P
n
=

{
 
 

 
 

∆T×∑ f
P2P- exp

 (t)×PP2P
A↔B (t)

T

𝑡0

, PP2P
A↔B (t)>0

∆T×∑  f
P2P-imp

 (t)×PP2P
A↔B(t)

T

𝑡0

, PP2P
A↔B (t)<0

 (5.6) 

CBSS
n
=∑

CCB
n
×η

Conv
n×η

c
n×∆T×|PB-charg

n (t)| 

2×NBcycle
n×Bcapacity

n (t)

T

t0

+ 

CCB
n
×∆T× |PB-disch

n (t)| 

η
Conv

n×η
d

n×2×NBcycle
n×Bcapacity

n (t)
 

(5.7) 

where n refers to the house number of A and B, Cbuy
n is cost of energy purchased from 

the grid (£), Csell
n is the price of the energy sold to the grid (£), CBSS

n is the BSS 

degradation cost (£), CP2P
n is the cost of energy exchanged per day between paired 
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houses A and B (£), T is the duration of the day (24 hours), t0 is the time of day starting 

at 12 AM, ΔT is the sampling time (hr), fbuy (t) is the purchasing tariff from the grid 

(£/kWh), fsell (t) is the selling tariff to the grid (£/kWh), PG
n (t) is power exchanged 

between house and the grid (kW), fP2P-exp (t) is the tariff for energy exported from one 

house in the pair to the other (£/kWh), fP2P-imp(t) is the tariff for energy imported by one 

house in the pair from the other (£/kWh), PP2P
A↔B(t) is the power exchanged between 

the paired houses (kW), CCB
n is the cost of a new BSS for a house (£) (without 

considering the power converters), NBcycle
n is the number of house BSS life cycles, ƞconv

n
 

is converter efficiency of the house BSS (%), PB-disch
n(t) is the house BSS discharge 

power (kW), PB-charg
n(t) is the BSS charge power (kW), ƞd

n is the discharging efficiency 

of the house BSS (%), ƞc
n is the charging efficiency of the house BSS (%), and Bcapacity

n 

(t) is the current estimated house BSS capacity (kWh). The value of PG
n (t) is positive 

when the house n imports from the grid and negative when it exports. The values of PB-

disch
n (t) and PB-charg

n (t) are positive and negative, respectively. The value of PP2P
A↔B (t) 

is positive when the house is exporting energy and is negative when it is importing 

energy from its neighbour. 

 

Note, in (5.3) the Cbuy
n and Csell

n are absolute values to reduce the total grid energy 

transactions. In addition, CP2P
n is an absolute value subtracted from the overall cost 

function, so when minimising Csum-P2P the total energy exchanged between neighbours 

is maximised. Note also that Csum-P2P includes the term CBSS
n to take into consideration 

the lifetimes of the BSSs.  

 

The system power balance equation for houses A and B and when they are paired are: 

For house A: 

PL-1
A(t)-PPV-1

A(t)  = PG
A(t)+PB

A(t)-PP2P
A↔B(t) (5.8) 

For house B: 

PL-1
B(t)-PPV-1

B(t)=PG
B(t)+PB

B(t)-PP2P 
B↔A(t) (5.9) 
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For houses A and B: 

∑ PG
n (t)+PB

n (t)

 

n=A ,B

 = ∑ PL-1
n (t)-PPV-1

n (t)

 

n=A ,B

 (5.10) 

where PB
n (t) is the house BSS charge/discharge power (kW). 

5.5.1.1 House BSS model  

The house BSS model presented in Chapter 4- Subsection 4.3.1 is used for houses A and 

B.  

5.5.1.2 System Constraints for P2P EMS 

Each house is associated with six binary variables: ФB-disch
n, ФB-charg

n, Фimport
n, Фexport

n, 

бimport
n, and бexport

n. Where ФB-charg
n and ФB-disch

n are used for house BSS charge and 

discharge modes, respectively. Фimport
n and Фexport

n
 are used for energy import from and 

export to the grid, respectively. бimport
n

 and бexport
n

 are used for energy import from and 

export to the neighbour.  

 

To ensure that the power flowing between houses A and B is always in only one 

direction, constraint (5.11) is used [5]. 

 

бimport
n (t)+бexport

n (t)≤1 (5.11)  

бexport (t)= { 
1    ,   PP2P

A ↔ B (t)>0 

0    ,   PP2P
A ↔ B (t)<0

  
 

(5.12) 

бimport(t)= { 
1    ,   PP2P

A ↔ B (t)<0 

0    ,   PP2P
A ↔ B (t)>0

  
 

(5.13) 
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where бexport
n (t) is equal to 1 when house n is exporting power to its neighbour, 

otherwise is equal to 0. бimport
 n

 (t) is equal to 1 when house n is importing power from 

its neighbour, otherwise is equal to 0.  

 

Constraints (5.14) and (5.15) link binary variables and exchanged power between paired 

houses [5]. 

|  PP2P
A ↔ B (t)| ≤ бimport

n (t) × PP2P-max
n (t) (5.14) 

  PP2P
A ↔ B (t) ≤ бexport

n (t) × PP2P-max
n (t) (5.15) 

where PP2P-max
n (t) is the maximum permitted value of power exchanged between houses 

A and B, which is set to infinity unless otherwise specified. 

 

To prevent the condition where one house in a pair exports power to the grid whilst 

simultaneously importing power from the other house, constraint (5.16) is applied [5].  

бimport
n (t)+ Фexport

n (t)≤1 (5.16) 

To prevent one house in a pair importing power from the grid whilst simultaneously 

exporting power to the other house, constraint (5.17) is applied [5]. 

бexport
n (t)+ Фimport

n (t)≤1 (5.17) 

where Фimport
n (t) is equal to 1 when house n is importing power from the grid, otherwise 

is equal to 0.  

 

Constraint (5.18) prevents the house BSS from charging and discharging at the same 

time [5]. 

ФB-disch
n (t)+ ФB-charg

n (t)≤1 (5.18) 

The house BSS discharges when ФB-disch
n
 (t) is equal to 1, and charges when ФB-charg

n
 (t) 

is equal to 1. When the ФB-disch
n

 (t) and ФB-charg
n
 (t) are equal to 0, the BSS is neither 

charging nor discharging and hence PB
n

 (t) is equal to 0. 
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Constraints (5.19) and (5.20) link binary variables and house BSS power [5]. 

PB-disch
n (t)≤ ФB-disch

n (t)×PB-rating
n (5.19)  

|PB-charg
n(t)| ≤ ФB-charg

n (t)×PB-rating
n (5.20)  

Constraint  (5.21) ensures that the house only imports or exports power at any one instant 

[5]. 

Фimport
n (t)+Фexport

n (t)≤ 1  (5.21) 

When a house imports power from the grid, Фimport
n (t) is equal to 1, otherwise is equal 

to 0. Similarly, if a house exports power to the grid, Фexport
n (t) is equal to 1, otherwise is 

equal to 0.  

 

Constraints (5.22)-(5.24) link the binary variables with the grid power [5]. 

PG-import
n(t)≤Фimport

n (t)×PG-max-import
n (5.22) 

|PG-export
n|(t)≤Фexport

n (t)×PG- max -export
n (5.23) 

PG
n(t)=PG-import

n (t) + PG-export
n(t) (5.24) 

where PG-import
n (t) and PG-export

n (t) are power transferred from and to the grid, 

respectively. PG-max-import
n and PG-max-export

n
 are the limits of power transferred from and to 

the grid, respectively. 

 

To prevent the house BSS discharging when the PV system is transferring surplus 

power to the grid, constraint (5.25) is used [5].   

ФB-disch
n (t)+Фexport

n(t)≤1 (5.25) 
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where ФB-disch
n (t) is equal to 1, when the BSS is discharging and otherwise equal to 0. 

Фexport
n (t) is equal to 1 when the house transfers power to the grid and otherwise equal 

to 0.  

 

Constraint (5.26) ensures that any solution obtained from P2P optimisation for houses A 

and B is more cost-effective than the houses operating individually (i.e., solution from 

HEMS) [5]. 

Chouse-cost
P2P(n)

 ≤ Chouse-cost
individual(n)

  (5.26) 

Chouse-cost
individual(n)

 =Cbuy
n
+Csell

n
+CBSS

n
 (5.27) 

Chouse-cost
P2P(n)

=Cbuy
n
+Csell

n
+CBSS

n − CP2P
n
 (5.28) 

where Chouse-cost
individual(n) is the daily operational cost when a house operates 

individually, Chouse-cost
P2P(n) is the daily operational cost for house n when paired with 

another house. 

 

Fig. 5.3 represents the process described above for P2P EMS and follows the steps: 

• First input PPV-1
n, PL-1

 n, SOCB
 n and EDay-f 

n along with operating costs of the house 

being operating individually (Chouse-cost
individual (n)) from HEMS; for the pair of 

houses A and B, in order to minimise the cost function (5.3), subject to constraints 

(5.4)-(5.10).  

• Then calculate (4.8)-(4.12). 

• During off-peak hours, the system determines whether the house BSS has enough 

energy for the next mid-peak and peak periods by satisfying constraint (4.14), else 

constraint (4.13) must be satisfied.  

• Finally, system constraints (5.11)-(5.28) must be satisfied and the output 

parameters are uploaded into the Selection level. 
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Fig. 5.3. Flowchart for P2P EMS. 

 

5.5.2 Selection Level 

Fig. 5.4 presents the process used to identify and select the pairs of houses from the P2P 

EMS results:  

1. Determine operating costs for every possible pair of houses from the P2P EMS 

and operating costs of each house when operating individually from HEMS. 

2. Determine the percentage reduction for every pair of houses using (5.29). 

∑ Chouse-cost
individual(n) − ∑ Chouse-cost

P2P(n) 
n=A ,B

 
n=A ,B

∑ Chouse-cost
individual(n) 

n=A ,B

× 100%      (5.29) 

3. Arrange all the percentage reductions in descending order to choose the pair of 

houses with the greatest reduction. 

Start

Inputs the following for houses A and B:

 and  Time , 
n

 f-DayE ,
n

 BSOC, 
n

1-LP ,
n 

1-PVP, 
)n(individual

cost-houseC

   

Minimise {(5.3)}

Subjected to (5.4)-(5.10)

Send the parameters to Selection level

YES

Time of day Off-peak time
 Mid-peak & 

peak times

Satisfy (4.13) Satisfy (4.14)

YES YES

NO NO

Satisfy (5.11)-(5.28) NO

Calculate (4.8)-(4.12)
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4. Remove from the list every other score which includes either of these houses to 

prevent these houses being a member of multiple pairs. Then repeat steps 3 until 

all P2P scores are determined. 

5. Send optimal settings for all houses. 

 

 

Fig. 5.4. Flowchart of the Selection level. 

 

5.6 Case Studies 

The proposed system is implemented in MATLAB software and compared with the 

system proposed in [5]. The proposed system in [5] is chosen for comparison as it has a 

similar system configuration (i.e., P2P EMS at the domestic community level) and aims 

to minimise operating costs while maximising self-consumption. The proposed 

algorithm has been tested using the community data described in Section 5.2. The 

algorithm in Fig. 5.2 is carried out for each day of the four months from June to 

September 2014 with a sample time (ΔT) of 10 mins.  

Start

Get the operating costs of the all possible house pairs from P2P EMS 

and when house operating individually from HEMS.

 

 Chouse-cost
individual(n)

 and Chouse-cost
P2P(n)

Send optimal battery setting for all houses (PB 
n 
).

Calculate the percentage reduction for all possible pairs using (5.29). 

Sort all reduction percentages in descending order and select the house 

pair which has the greatest reduction.

Eliminate all other reduction percentages related to the selected 

houses. Repeat previous step until all P2P are set.  
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5.6.1 Performance Comparison  

This subsection presents the performance of the proposed CEMS on four houses chosen 

from the community (houses nos. 1, 2, 3, and 4), because they are sufficient to 

demonstrate the method and concepts involved.  

 

Figs. 5.5 (a-1), (a-2), and (a-3) show generation and load for houses nos. 1, 2, and 3, 

respectively, for the two days 17th and 18th of June 2014. The red and black solid lines 

represent PPV
n and PL

n, respectively. Figs 5.5 (b-1), (b-2), and (b-3) present the optimal 

house BSS settings for each house and the power exchanged with neighbours for houses 

nos. 1, 2, and 3, respectively. The red solid and blue dashed lines represent SOCB
n and 

Pp2p
n, respectively. Where n refers to the house number.  

 

Figs 5.5 (a-1) and (a-2) show the energy consumed by houses nos. 1 and 2 is greater 

than the power generated from the PV for most of the time during day-1 and day-2. 

However, house no. 3 generates more in PV power than it consumes, as shown in Fig. 

5.5 (a-3).  

 

Figs 5.5 (b-1), (b-2), and (b-3), illustrate that house no. 1 exchanges power with house 

no. 2 during day-1, and with house no. 3 during day-2. Fig. 5.5 (b-2) illustrates that 

during day-2 house no. 2 does not exchange energy with its neighbours (PP2P
n

 = 0). 

Instead, during the off-peak period the BSS is charged to just above 40% and holds the 

charge from 5 AM to 8 AM, then it is again charged from the surplus PV power 

(according to the EDay-f 
n). Similarly, as shown in Fig. 5.5 (b-3), house no. 3 does not 

exchange energy with its neighbours on day-1. This reduces the household’s energy cost 

by maximising PV self-consumption. 
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Fig. 5.5. Power and SOC of the house BSS for the proposed CEMS system applied to 

houses nos. 1, 2, and 3 for the 17th and 18th of June 2014. Figs. (a-1), (a-2), and (a-3) 

represent the PPV and PL for houses nos. 1, 2, and 3, respectively. The red and black 

solid lines represent PPV
n and PL

n, respectively. Figs. (b-1), (b-2), and (b-3) represent the 

SOCB
n and PP2P

n for houses nos. 1, 2 and 3, respectively. The red solid and blue dashed 

lines represent SOCB
n and Pp2p

n, respectively. 
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Fig. 5.6 shows the performance of house no. 4 for the two days 17th and 18th June 2014. 

The red solid, blue dashed, and black solid lines represent SOCB
4, PP2P

4, and PPV
4-PL

4, 

respectively. During day-1, the PV power generated is greater than the demand 

(PPV
4>PL

4), the surplus energy is used to charge the BSS. As can be seen the SOC is 

maintained at 45% during the off-peak period as it knows the day-2 energy forecast 

(i.e., EDay-f). Thus, during day-1 and day-2, house no. 4 did not share excess energy with 

its neighbours. This process maximises PV self-consumption and reduces the net energy 

exchanged with the grid. In addition, storing the energy required for day-2 prevents 

purchasing unnecessary energy from the grid or neighbours.  

 

 

Fig. 5.6. The proposed CEMS system applied to house no. 4 for the 17th and 18th of June 

2014. The red solid, blue dashed, and black solid lines represent SOCB
4, PP2P

4, and PPV
4-

PL
4, respectively. 

 

5.6.2 Operating Costs and Energy Exchange Comparison  

Table 5.3 compares the total operating costs of the proposed CEMS for the four months 

from June to September 2014 for each household operating as part of the community, 

compared to operating individually. The proposed CEMS reduced the total operating 
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cost of the community by 7.6% when compared to the six houses being operated 

individually. 

 

Table 5.4 compares the total operating costs of the proposed method in [5] for the four 

months June to September 2014 for each household when they are operating as part of 

the community, compared to operating individually. The method proposed in [5] 

reduces the operating costs of all houses (except house no. 5) by up to 45%. In addition, 

the total operating cost of the community is reduced by 11% when compared to the six 

houses being operated individually. 

 

Comparing Tables 5.3 and 5.4, it is seen that the proposed CEMS in this work operates 

at higher cost than the method proposed in [5]. This is because the proposed CEMS 

aims to reduce the net energy exchange with the grid rather than reducing the operating 

costs, which promotes a self-consumption approach. As a result, the BSSs will be used 

more frequently compared with the method described in [5], which increases the 

operating costs of each house. Nevertheless, since the method in [5] exchanges more 

energy with the grid (see Table 5.5), it requires more distribution/transmission and 

storage capacity on the network side; consequently, the overall network operating cost 

increases. Therefore, if the network operators are interested in promoting self-

consumption, the energy tariff and/or storage price must be changed accordingly.  

 

Table 5.5 compares the total absolute net energy exchange of the proposed CEMS with 

the method proposed in [5] from June to September 2014. The proposed CEMS reduces 

the total absolute net energy exchange for the six houses by 25.3% compared to the 

method in [5].  

 

Fig. 5.7 illustrates the total imported energy during peak and mid-peak periods for the 

four months from June to September 2014. The blue and green bars represent the 

proposed CEMS and the method proposed in [5], respectively. The proposed CEMS 

reduces the total energy imported from the grid during peak and mid-peak periods, 

which is most beneficial as it is at these times that the tariffs are highest. 
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Table 5.3. Operating costs for individual and community operations for the proposed 

method in this work from June to September 2014. 

House 

number 

Operating costs for 

individual operation 

(HEMS) (£) 

Operating costs for 

community operation  

 (CEMS) (£) 

Percentage  

(%) 

1 32 26 18.8 

2 112 96 14.2 

3 32 31 3.1 

4 47 49 4.3 

5 47 48 2.1 

6 61 56 8.2 

Total 331 306 7.6 

 

 

Table 5.4. Operating costs for individual and community operations for the method 

proposed in [5] from June to September 2014. 

House 

number 

Operating costs for 

individual operation 

(HEMS) (£) 

Operating costs for 

community operation  

 (CEMS) (£) 

Percentage  

(%) 

1 19 18 5.3 

2 116 105 9.5 

3 40 22 45 

4 32 31 3.1 

5 27 27 0 

6 63 62 1.6 

Total  297 265 11 
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Table 5.5. Absolute net energy exchange with the grid from June to September 2014. 

House 

number 

Absolute net energy 

exchanged (kWh) (Ref [5]) 

Absolute net energy 

exchanged (kWh) (CEMS) 

Percentage  

(%) 

1 1166 818 29.9 

2 681 624 8.4 

3 1427 1052 26.3 

4 1378 964 30 

5 1660 1188 28.4 

6 351 328 6.6 

Total 6663 4974 25.3 

 

 

Fig. 5.7. Total imported energy for all six houses during peak and mid-peak periods 

for June to September 2014. The blue and green bars represent the proposed CEMS 

and the method reported in [5], respectively. 
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5.7 Conclusion  

This chapter used the proposed MILP-EMS in Chapter 4 as the foundation for a CEMS 

based on the energy trading between prosumers. The main target of the CEMS was 

enhancing self-consumption within the community and reducing: (1) energy exchange 

between the community and the grid, (2) operating costs of the community, (3) 

transmission losses and (4) the required central generation, transmission, and storage 

facilities. In addition, the proposed CEMS optimised BSS performance by avoiding 

unnecessary charge/discharge cycles by including the next day-ahead forecast (i.e., day-

2) and BSS degradation cost in the optimisation process. Results compared with a 

similar state-of-the-art approach showed a significant reduction in energy exchange 

between the grid and community by 25.3% over four months. The proposed CEMS also 

reduced community operating costs by 7.6%. However, based on the outcomes, it 

should be pointed out that with today's energy tariffs and storage costs, enhancing a 

self-consumption approach may not be economical for individual houses. Consequently, 

if network operators intend to enhance self-consumption, energy tariffs and/or storage 

prices must be changed. 
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6 INVESTIGATION OF THE CONTRIBUTION OF EVs TO 

A COMMUNITY ENERGY SYSTEM 

6.1 Introduction  

The widespread use of Electric Vehicles (EVs) has created many new challenges for 

network operators and the need for new infrastructure [73]. In addition, the EV 

charging/discharging activities can increase peak demand, overload transmission lines, 

and damage local distribution transformers [57, 74]. In this regard, several countries, 

including the UK, promote a self-consumption approach to reduce infrastructure 

development costs and the burden on the grid [6, 7]. This chapter focuses on investigating 

the impact of EVs and shiftable appliances on the proposed Community Energy 

Management System (CEMS) presented on Chapter 5. The analysis in this chapter has 

been performed by coding the system in MATLAB software. 

 

Note that the results presented in this chapter have been published in IEEE Access 

journal: 

 

A. Al-Sorour, M. Fazeli, M. Monfared, and A. A. Fahmy, “Investigation of Electric 

Vehicles Contributions in an Optimized Peer-to-Peer Energy Trading System,” IEEE 

Access, vol. 11, pp. 12489-12503, 2023, doi: 10.1109/ACCESS.2023.3242052. 

 

This chapter is organised as follows. First, Sections 6.2 and 6.3 describe the community 

configuration and structure of the proposed CEMS, respectively. Next, Sections 6.4 and 

6.5 describe the House Energy Management System (HEMS) and Central Controller, 

respectively. The results are presented in Section 6.6. Finally, Section 6.7 presents the 

conclusion of Chapter 6. 

6.2 Community Configuration  

This study uses the community described in Chapter 5- Section 5.2, which consists of 

six houses, each occupied with a Battery Storage System (BSS) and Photovoltaic (PV) 

system. However, it is assumed that all six households use an EV and are equipped with 

a bidirectional charger to facilitate the V2H mode, as shown in Fig. 6.1. Two types of 
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EVs are used, which are Nissan and Tesla. The EV battery costs of Nissan and Tesla are 

equivalent to 110£/kWh and 100£/kWh, respectively [174]. It is assumed that the 

charge/discharge efficiency (ηEVc
n/ηEVd

n) and the life cycle (NEVcycle
n) of both types of 

EV battery are 90% and 5,000, respectively [57]. The maximum SOC (SOCEV-max
n) and 

the minimum SOC (SOCEV-min
n) limits of the EV batteries are set to 90% and 10%, 

respectively [175]. In addition, this study considers two shiftable appliances, which are a 

washing machine and a dishwasher. Tables 6.1 and 6.2 show each house's shiftable 

appliances ratings (Prate-L
n) and EV parameters, respectively.  

 

 

Fig. 6.1. System configuration. 

 

Table 6.1. Shiftable appliances 

 House number Washing machine (kWh) [176] 

 

Dishwasher (kWh) [177] 

1 0.8 1.6 

2 1.1 1.5 

3 1.2 1.7 

4 0.9 1.1 

5 No 1.3 

6 No 1.2 

Central Controller

House 2

PG
nPG

3PG
2PG

1

House 3 House nHouse 1

HEMS HEMS HEMS HEMS

Bidirectional power flow  
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Table 6.2. EV parameters [178] 

House 

number 
EV type 

EV 

capacity 

(kWh) 

Average EV 

consumption 

(kWh/km) 

Maximum 

charge/discharge 

power of EV 

(kW) 

1 Nissan Leaf 40 0.18 6.6 

2 
Tesla Model 3 Long Range 

Dual Motor 
79 0.17 11 

3 Nissan Leaf e+ 62 0.18 6.6 

4 Tesla Model 3 60 0.16 11 

5 
Tesla Long Range Dual 

Motor 
82 0.16 11 

6 Nissan Leaf 40 0.18 6.6 

 

6.3 Proposed CEMS  

The CEMS proposed in Chapter 5 is developed further to include shiftable appliances 

and EVs. The new system is divided into three stages, as shown in Fig. 6.2:  

1. Data collection: The inputs to the HEMS and P2P EMS are:  

a) Household data: Initial SOC of the house BSS (SOCB
n) and EV battery 

(SOCEV
n), travel distance (TD

n), EV arrival time (EVA
n), EV departure time 

(EVD
n), desired SOC of the EV battery for the second journey (SOCEV-

desired
n), appliance start time (Tstart

n (i)), appliance maximum waiting time 

(Twait
n (i)), where n refers to the number of the house within the community, 

i refers to the appliance (i = 1 for the washing machine and i = 2 for the 

dishwasher). 

b) Two days-ahead generation and demand forecasts for each house assumed 

that is provided by forecasting company: day-1 PV generation (PPV-1
n), day 
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1 load demand (PL-1
n), day-2 PV generation (PPV-2

n), and day-2 load demand 

(PL-2
n). 

2. House Energy Management System: A HEMS is used in each house to minimise 

the energy exchanged with the grid and reducing energy costs by scheduling 

shiftable appliances, EVs and house BSSs. The optimum house BSS setting is 

obtained by considering the peak and mid-peak energy forecasts for day-2 (EDay-f 

n). After determining optimal system settings, energy costs and the relevant 

parameters for each house are uploaded into the Central Controller to perform 

P2P EMS optimisation.  

3. The Central Controller consists of two stages:  

a) P2P EMS where every possible pair of the given houses are generated. 

Here the number of houses is 6 resulting in 15 pairs. The optimum house 

BSS of houses A and B is obtained by considering the peak and mid-peak 

energy forecasts for day-2 (EDay-f 
n). 

b) The Selection level where each pair of houses is selected to establish: (1) 

minimum cost of the energy consumed by the pair, and (2) a profile of the 

daily energy exchange between the two houses and between the pair and the 

grid with sample time (∆T) of 10 min. The best pairs are chosen based on 

percentage cost reductions. After the optimal settings are obtained from the 

selected house pairs, the BSS, EV battery and shiftable appliances settings 

are sent to each house. 

6.4 House Energy Management System 

The HEMS in this study is an updated version of the MILP-EMS system described in 

Chapter 4. The main goal of the updated cost function (Chouse
n) in (6.1) is to minimise 

the net energy exchanged with the grid by considering the absolute costs of the energy 

imported from, and energy exported to, the grid. The cost function of Chouse
n comprises 

the costs of the energy purchased from the grid (Cbuy
n), energy sold to the grid (Csell

n), 

the degradation cost of the house BSS (CBSS
n) and the degradation cost of the EV battery 

(CEV
n). It should be noted that the EV battery degradation cost is only taken into account 

when EV battery is in V2H mode, i.e., when it is being discharged to supply a house. 
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Fig. 6.2. Proposed CEMS. 
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+ (6.4) 

Start

Input from forecaster: PPV-1
n
, PL-1

n
, PPV-2

n
, and PL-2

n
, 

with a 10 minute interval

Carry out the HEMS optimisation for one day-

ahead (day-1) based on EDay-f
n 

, 
n

AEV, 
n

DT, 
n

EVSOC, 
n

BSOC :Input from household

)i(
n

waitTand , 
 

)i(
n

startT,  
n

desired-EVSOC,  
n

DEV

Perform the P2P EMS optimisation for one day-

ahead (day-1) based on EDay-f
n 
of the pair houses

 C
en

tr
al

 C
o

n
tr

o
ll

er
 

Selection level
 

Send the day-ahead scheduling parameters to each 

house   

H
E

M
S

D
at

a 
co

ll
ec

ti
o

n



 

97 

CCB
n
×∆T× |PB-disch

n (t)| 

η
Conv

n×η
d

n×2×NBcycle
n×Bcapacity

n (t)
 

CEV
n
=∑

CCEV
n
×∆T×|PEV-disch

n (t)|

η
EV

n×η
EVd

n×2×NEVcycle
n×EVcapacity

n (t)

T

t0

 

(6.5) 

where n is the house number, T is the day duration of 24 hours, t0 is the time of day 

starting at 12 AM, ΔT is the sampling time (hr), fbuy (t) is the purchasing tariff from the 

grid (£/kWh), fsell (t) is the selling tariff to the grid (£/kWh), PG
n (t) is the grid 

import/export power (kW), CCB
n represents the cost the cost of a new BSS for a house 

(£) (without considering the power converters), NBcycle
n is the number of house BSS life 

cycles, ƞconv
n
 is the converter efficiency of the house BSS (%), PB-disch

n (t) is the house 

BSS discharge power (kW), PB-charg
n (t) is the house BSS charge power (kW), ƞd

n is the 

discharging efficiency of the house BSS (%), ƞc
n is the charging efficiency of the house 

BSS (%), Bcapacity
n

 (t) is the current estimated house BSS capacity (kWh), CCEV
n
 is the 

cost of a new EV battery (£), NEVcycle
n is the number of EV battery life cycles, ƞEV

n is the 

EV converter efficiency (%), ƞEVd
n is the discharging efficiency of the EV battery (%), 

PEV-disch
n is the EV discharge power (kW), and EVcapacity

n
 (t) is the current estimated EV 

battery capacity (kWh). Note that the value of PG
n (t) is positive when the house n 

imports from the grid and negative when it exports. In addition, the values of PB-disch (t) 

and PB-charg (t) are positive and negative, respectively. the values of PEV-disch (t) and PEV-

charg (t) are positive and negative, respectively. 

 
The system power balance equation is presented as (6.6): 
 

PL-1
n (t)+PL-sh

n (i, t)-PPV-1
n (t)=PG

n (t)+PB
n (t)+PEV

n (t) (6.6) 

where PEV
n (t) is charge/discharge of EV battery power (kW), PB

n (t) is charge/discharge 

of house BSS power (kW), PL-sh
n (i, t) is the power required for shiftable appliance i at 

time t (kW). Note that the PEV
n (t) is equal to 0 when the EV is not available. 
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6.4.1 Demand-Side Management  

Scheduling the domestic load motivates consumers and prosumers to change their daily 

consumption patterns by considering relevant factors, such as the electricity price and the 

available local generation and storage. This study considers two categories of domestic 

loads:  

1. Fixed appliances, such as TV and refrigerators, which cannot be scheduled. 

2. Shiftable appliances, such as dishwashers, which can be time-shifted to the low-

price tariff (i.e., off-peak and mid-peak times) or when there is surplus energy to 

reduce energy costs. 

This study considers two shiftable appliances: a washing machine and a dishwasher. The 

shiftable appliances are scheduled using the following steps: 

• Appliance i transmits the ON signal state to the HEMS. 

• The HEMS then schedules a start time for appliance i. 

• The appliance i will wait for the ON signal from HEMS. 

• Once started, the appliance i stops when it completes its cycle.  

In this study, the time that the appliance i can wait is between 1 and 8 hours, depending 

on the household's preferences. When Twait
n (i) is equal to 0, it specifies that appliance i 

will begin operation immediately once it is switched ON. To ensure that an appliance i 

begins operation within the specified wait time, the constraint (6.7) is imposed [5].  

∆T× ∑ logic NOT(бL
n (i,t)

24

Tstart
n (i)

)≤ T wait
n (i) (6.7) 

where Twait
n (i) is the permitted maximum wait time of appliance i (hr) and Tstart

n (i) is 

the moment at which the HEMS gets an ON command from appliance i (hr). when i = 1 

refers to the washing machine and i = 2 refers to the dishwasher. бL
n (i, t) is a binary 

variable that indicates the operational status of appliance i. бL
n (i, t) is equal to 1 if 

appliance i  is ON, else is equal to 0. 

 

 For starting up the appliance i constraint (6.8) is introduced [5]. 



 

99 

бL
n (i,t+1)-бL

n (i,t) − бstartup
n (i,t )≤ 0  (6.8) 

where бstartup
n (i, t) is a binary variable that indicates that appliance i is in operating 

mode. бstartup
n (i, t) is equal to 1 when the appliance i status shifts from OFF to ON, 

otherwise is equal to 0. 

 

To ensure appliance i is continuously operating without any sudden interruptions (i.e., 

switched OFF), constraint (6.9) is applied [5]. 

∆T× ∑  бL
n (i,t)

Tend
n(i)

Tstart
n(i)

= Tcycle
n (i) (6.9) 

where Tcycle
n (i) is the required operation time for appliance i (hr) and Tend

n (i) is the time 

at which the operation of appliance i ends (hr). 

 

To make sure the appliance i starts only on request and switches OFF after completing 

its operational cycle, бL
n (i, t) is set to 0 before the HEMS receives a start signal and 

after completion of the operation [5]. The washing machine and the dishwasher take 1 

hour to complete their cycles. 

бL
n (i,t)=0    at  t <Tstart

n (i),     t >Tend
n (i)         (6.10) 

Equation (6.11) represents the power consumed by appliance i [5]. 

PL-sh
n (i,t)=Prate-L

n (i)×бL
n
 (i,t) (6.11) 

where Prate-L
n (i) is the appliance’s power rating (Wh). 

6.4.2 EV Battery Model 

At the start of every day, the EV begins its first journey of the day with fully charged 

battery according to (6.12):  
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SOCEV 
n (t=EVD 

n) = SOCEV-max 
n
 (6.12) 

where EVD
n is the EV departure time (hr). 

 

It is assumed that an EV does not receive any charge during its journey so when an EV 

returns to its house and is plugged in, a new SOCEV
n (t=EVA

n) is determined 

corresponding to the energy consumed during the journey using (6.13) [57]. Otherwise, 

precise information on the SOC is obtained once the EV is connected to the house’s 

charging/discharging control unit. The estimated energy consumed during the journey 

(Ereduce
n) is presented in (6.14).  

SOCEV 
n (t=EVA

n)= SOCEV 
n (t=EVD 

n)-Ereduce
n (t) (6.13) 

Ereduce
n (t)=

TD n×Econs
n

EVcapacity
n ×100 (6.14) 

The current capacity of the EV battery is estimated using (6.15).    

EVcapacity
n (t) =

1

SOCEV
n (tα) - SOCEV

n (tβ) 
∫ IEV

n (τ) dτ

𝑡β

𝑡α

 (6.15) 

where EVA
n is the time of arrival of the EV (hr), Econs

n is the energy consumption per km 

(kWh/km), TD
n is the travel distance (km), IEV

n (t) is the EV battery charge/discharge 

current (A), SOCEV
n (tα) is the SOC of the EV battery at time tα (%), and SOCEV

n (tβ) is the 

SOC of the EV battery at time tβ (%).  

 

For a second journey on the same day, the user would estimate the required minimum 

charge before commencing the journey (SOCEV-desired
n). The constraint represented by 

(6.16) makes sure that the EV battery has the necessary energy before departure. 

SOCEV
n (t=EVD 

n)≥ SOCEV-min 
n
+

TD n×Econs
n

EVcapacity
n (t)

×100 
(6.16) 
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Equations (6.17) and (6.18) are used to estimate the energy stored and SOC of the EV 

battery, respectively. 

EEV
n(t)= EEV

n(t-1) -
∆T×PEV-disch

n(t)

η
EVd

n
- ∆T×η

EVc
n×PEV-charg

n(t) (6.17) 

SOCEV
n(t)=

EEV
n (t)

EVcapacity
n (t)

×100 
(6.18) 

where EEV
n (t) is EV battery stored energy at time t, EEV

n (t-1) is EV battery energy at 

time t-1, ƞEVc
n represents the EV charging efficiency (%), PEV-disch

n is the EV 

discharging power (kW), and PEV-charg
n is the EV charging power (kW).  

 

The constraint presented in (6.19) ensures that the SOC of the EV battery does not 

exceed permitted limits. 

SOCEV-min
n
≤ SOCEV

n (t)≤ SOCEV-max
n
 

(6.19) 

The instantaneous EV battery power (PEV
n) is given by (6.20) and the EV battery 

maximum and minimum allowable charge/discharge power limits by (6.21): 

PEV
n (t)= PEV-disch

n (t)×η
EV

n+ 
PEV-charg

n (t)

η
EV

n
 

(6.20) 

-PEV-rating 
n≤ PEV

n (t)  ≤ PEV-rating
n 

(6.21) 

where PEV-rating
n represents the rated charging/discharging power of the EV battery (kW). 

6.4.3 House BSS Model 

The BSS model presented in Chapter 4- Subsection 4.3.1 is used here for the house n 

BSS. 

6.4.4 System Constraints for HEMS 

In addition to the system constraints presented in Chapter 4- Subsection 4.3.2, the 

following constraints are defined by introducing two additional binary variables for the 
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EV battery, ФEV-disch
n and ФEV-charg

n, which are used to prevent the EV battery from 

being both charged and discharged simultaneously. See constraint (6.22). 

ФEV-disch
n (t)+ФEV-charg

n (t)≤1 (6.22) 

ФEV-charg
n (t)= {

1    , PEV
n (t)<0 

0    , PEV
n (t)>0 

 (6.23) 

ФEV-disch
n (t)= {

1    , PEV
n (t)>0 

0    , PEV
n (t)<0 

 (6.24) 

where ФEV-disch
n (t) is equal to 1 when the EV battery is discharging, otherwise, is equal 

to 0. The ФEV-charg
n

 (t) is equal to 1 when the EV battery is charging, otherwise, is equal 

to 0. 

 

Constraints (6.25) and (6.26) are introduced to prevent the house BSS and EV battery 

from charging each other. 

ФEV-disch
n (t)+ФB-charg

n (t)≤1 (6.25) 

ФEV-charg
n (t)+ФB-disch

 n(t)≤1 (6.26) 

Constraints (6.27) and (6.28) are introduced to ensure the EV battery is charged and 

discharged within allowable limits.  

PEV-disch
n (t)≤ ФEV-disch

n (t)×PEV-rating
n (6.27) 

|PEV-charg
n (t)|≤ ФEV-charg

n (t)×PEV-rating
n (6.28) 
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Constraint (6.29) is introduced to guarantee that the EV battery is not exporting power 

to the grid when the house is exporting excess PV power. 

ФEV-disch
n (t)+ Фexport

n (t)≤1 (6.29) 

 

Fig. 6.3. Flowchart of the HEMS. 
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• Next, if appliances are ON, constraints in (6.7)-(6.11) must be met. 

• The system checks if the EV is connected, and if so, constraints (6.12)-(6.21) 

must be met. 

• Then the system calculates (4.8)-(4.12). 

• During the off-peak hours, the system will verify if the house BSS has sufficient 

energy for the next peak hour by satisfying constraint (4.14), otherwise, constraint 

(4.13) must be satisfied.  

• Finally, after satisfying system constraints (4.15)-(4.26) and (6.22)-(6.29) the 

output parameters are uploaded into the Central Controller. 

6.5 Central Controller 

The Central Controller consists of two stages which are P2P EMS and Selection level. 

The Central Controller in this study is an updated version of the Central Controller 

described in Chapter 5- Section 5.5.  

6.5.1 P2P Problem Formulation  

The updated cost function (Csum-P2P) for paired houses A and B is presented in (6.30):  

Minimise Csum-P2P = ∑ |C
buy

n
|+|C

sell

n
|+CBSS

n + CEV
n − |CP2P

n
|

 

n=A, B

 (6.30) 

 

Cbuy
n
=∑∆T×f

buy
 (t)×PG

n (t), 

T

 𝑡0

 PG
n (t)>0 

(6.31) 

C sell
n
=∑∆T×f

sell
 (t)×PG

n (t),

T

𝑡0

    PG
n (t)<0 (6.32) 

CBSS
n
=∑

CCB
n
×η

Conv
n×η

c
n×∆T×|PB-charg

n (t)| 

2×NBcycle
n×Bcapacity

n (t)

T

t0

+ 

CCB
n
×∆T× |PB-disch

n (t)| 

η
Conv

n×η
d

n×2×NBcycle
n×Bcapacity

n (t)
 

(6.33) 
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CEV
n
=∑

CCEV
n
×∆T×|PEV-disch

n (t)|

η
EV

n×η
EVd

n×2×NEVcycle
n×EVcapacity

n (t)

T

t0

 

(6.34) 

𝐶𝑃2𝑃
𝑛=

{
 
 

 
 

∆T×∑ f
P2P- exp

 (t)×PP2P
A↔B (t)

T

𝑡0

, PP2P
A↔B (t)>0

∆T×∑  f
P2P-imp

 (t)×PP2P
A↔B (t)

T

𝑡0

, PP2P
A↔B (t)<0

 (6.35) 

where n refers to the house number of A and B, Cbuy
n is the cost of energy purchased 

from the grid (£), Csell
n is the price of the energy sold to the grid (£), CBSS

n is the house 

BSS degradation cost (£), CEV
n is the degradation cost of the EV battery (£), CP2P

n is the 

cost of energy exchanged per day between paired houses A and B (£), t0 is the time of 

day starting at 12 AM, ΔT is the sampling time (hr), fbuy (t) is the tariff for purchasing 

from the grid (£/kWh), fsell (t) is the tariff for selling to the grid (£/kWh), PG
n(t) is power 

exchanged between the house and the grid (kW), fP2P-exp (t) is the tariff for energy 

exported from one house in the pair to the other (£/kWh), fP2P-imp (t) is the tariff for 

energy imported by one house in the pair from the other (£/kWh), PP2P
A↔B (t) is the 

power exchanged between the paired houses (kW), CCB
n is the cost of a new house BSS 

(£), NBcycle
n is the number of life cycles of a house BSS, ƞconv

n
 is converter efficiency of 

the house BSS (%), PB-disch
n (t)  is the house BSS discharge power (kW), PB-charg

n (t)  is 

the house BSS charge power (kW), ƞd
n is the discharging efficiency of the house BSS 

(%), ƞc
n is the charging efficiency of the house BSS (%), CCEV

n
 is the cost of a new EV 

battery (£), NEVcycle
n is the number of life cycles of the EV battery, ƞEV

n is the EV 

converter efficiency (%), ƞEVd
n is the discharging efficiency of the EV battery (%), 

Bcapacity
n (t) is the current estimated house BSS capacity (kWh), EVcapacity

n (t) is the 

current estimated EV battery capacity (kWh), and PEV-disch
n (t) is the EV discharge 

power (kW). The value of PG
n (t) is positive when the house n imports from the grid and 

negative when it exports. The values of PB-disch
n (t) and PEV-disch

n (t) are positive. In 

addition, the values of PB-charg
n (t) and PEV-charg

n (t) are negative. The value of PP2P
A↔B(t) 

is positive when the house is exporting energy and is negative when it is importing 

energy from its neighbour. 
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The system power balance equations for houses A and B separately and when they are 

paired are: 

For house A: 

PL-1
A (t) + PL-sh

𝐴 (i,t) -PPV-1
𝐴 (t)  = PG

𝐴 (t)+PB
𝐴 (t)+PEV

𝐴 (t)-PP2P
A↔B (t) (6.36) 

For house B: 

PL-1
B (t) + PL-sh

𝐵 (i,t) -PPV-1
𝐵 (t)=PG

𝐵(t)+PB
𝐵(t)+PEV

𝐵 (t)-PP2P 
B↔A (t)       (6.37) 

For houses A and B when paired: 

∑ PG
n (t)+PB

n (t)+PEV
n (t)

 

n=A, B

 = ∑ PL-1
n (t)+PL-sh

n (i,t)-PPV-1
n (t)     

 

n=A, B

  (6.38) 

where PEV
n (t) is charge/discharge of EV battery power, PB

n (t) is charge/discharge of 

house BSS power, PL-sh
n (i, t) is the power required for shiftable appliance i, at time t 

(kW). Note that the PEV
n (t) is equal to 0 when the EV is not available. 

6.5.1.1 Demand-side Management  

The equations presented in Chapter 6- Subsection 6.4.1 are used for the appliances in 

houses A and B. 

6.5.1.2 EV Battery Model  

EV model presented in Chapter 6- Subsection 6.4.2 is used for EV batteries for houses 

A and B.  

6.5.1.3 House BSS Model 

The BSS model presented in Chapter 4- Section 4.3.1 is used here for BSSs in houses A 

and B. 



 

107 

6.5.1.4 System Constraints for P2P-EMS 

In addition to the system constraints presented in Chapter 5- Subsection 5.5.1.2, the 

following constraints are introduced: 

 

Constraint in (6.39) is used to prevent the EV battery from both charging and 

discharging at the same time. 

ФEV-disch
n (t)+ФEV-charg

n (t)≤1 (6.39) 

where ФEV-disch
n (t) is equal to 1 when the EV battery is discharging, otherwise is equal 

to 0. ФEV-charg
n
 (t) is equal to 1 when the EV battery is charging, otherwise is equal to 0. 

 

By using constraints in (6.40) and (6.41) the house BSS and EV battery are prevented 

from charging from each other. 

ФEV-disch
n (t)+ФB-charg

n (t)≤1 (6.40) 

ФEV-charg
n (t)+ФB-disch

 n(t)≤1 (6.41) 

Constraints in (6.42) and (6.43) are used to ensure the EV battery is charged and 

discharged within allowable limits.  

PEV-disch
n(t)≤ ФEV-disch

n(t)×PEV-rating
n (6.42) 

|PEV-charg
n(t)|≤ ФEV-charg

n(t)×PEV-rating
n (6.43) 

To ensure that the EV battery does not export energy to the grid, constraint (6.44) is 

used. 
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ФEV-disch
n (t)+ Фexport

n (t)≤1 (6.44) 

The operational costs Chouse-cost
individual(n) and Chouse-cost

P2P(n) for houses A and B when they 

are operating individually and when they are operating as a pair are updated for the 

presence of EVs and shiftable appliances as shown in (6.45) and (6.46), respectively: 

Chouse-cost
individual(n) =Cbuy

n+Csell
n+CBSS

n+CEV
n (6.45) 

Chouse-cost
P2P(n)

=Cbuy
n
+Csell

n
+CBSS

n
+CEV

n − CP2P
n
 (6.46) 

Fig. 6.4 illustrates the flowchart of the P2P EMS, which follows the procedure below: 

• Input the parameters to the P2P EMS to minimise the cost function (6.30), which 

is subjected to constraints (6.31)-(6.38). 

• Next, if appliances are on, constraints (6.7)-(6.11) must be met. 

• The system checks if the EV is connected, and if so, constraints (6.12)-(6.21) 

must be met. 

• Then calculate (4.8)-(4.12). 

• During the off-peak hours, the system will verify if the house BSS has sufficient 

energy for the next peak hour by satisfying constraint (4.14), otherwise, constraint 

(4.13) must be satisfied.  

• Finally, system constraints in (5.11)-(5.26) and (6.39)-(6.46) must be met and the 

output parameters are uploaded into the Central Controller. 

6.5.2 Selection Level  

The Selection level, described in Chapter 5- Subsection 5.5.2, is used here to choose the 

best pairs of houses.  
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Fig. 6.4. Flowchart of the proposed P2P-EMS. 

6.6 Case Studies  

This study uses the forecast data and tariff prices in Chapter 5- Section 5.3. The 

proposed algorithm has been tested using the community data described in Section 6.2. 

The probability distribution functions of EV arrival and departure times are obtained 

from the National Household Travel Survey [179]. The algorithm in Fig. 6.2 is carried 

out in MATLAB software for each day of the four months from June to September 2014 

with a sample time (ΔT) of 10 mins.  

Minimise {(6.30)}, subjected to (6.31)-(6.38)
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6.6.1 System Behaviour  

This subsection discusses how the V2H mode and shiftable appliances affected houses 

nos. 1, 2 and 3 for 17th and 18th June 2014. Three houses are chosen from the six houses 

because they are sufficient to demonstrate the method and concepts involved.  

 

Figs. 6.5 (a-1), (a-2), and (a-3) show generation and load demand for houses nos. 1, 2, 

and 3, respectively, for the two days 17th and 18th June 2014. The red solid and black 

solid lines represent PPV
n and PL

n, respectively, where n is the house number. Figs. 6.5 

(b-1), (b-2), and (b-3) show the SOC of the house BSS, the SOC of the EV battery, EV 

departure time and EV arrival time for houses nos. 1, 2, and 3, respectively. The red 

solid and blue solid lines are SOCEV
n and SOCB

n, respectively. The first and second 

vertical black dashed lines show EVD
n

 and EVA
n, respectively. Figs. 6.5 (c-1), (c-2), and 

(c-3) present the power exchanged with the grid and neighbours. The red solid and blue 

dashed lines represent PP2P
n and PG

n, respectively. Figs. 6.5 (d-1), (d-2), and (d-3) 

present the schedules of the shiftable appliance in houses nos. 1, 2, and 3, respectively. 

The red solid and blue solid lines represent the users’ requested operation for the 

dishwasher PD-Sh
n and the washing machine PW-Sh

n, respectively. The red dashed and 

blue dashed represent the scheduled operation of the dishwasher PD
n and the washing 

machine PW
n, respectively, as operated by the CEMS. 

 

From Figs. 6.5 (a-1) and (a-2), it can be seen that the energy consumed by houses nos. 1 

and 2 is greater than the power generated from the PV for most of the time during day-1 

and day-2. However, Fig. 6.5 (a-3) shows that for house no. 3 the PV power generated is 

greater than the demand for most of the time during both days. 

 

Figs. 6.5 (b-1) and (b-3) show that for houses nos. 1 and 3 the EVs made only one 

journey per day for the two days considered, while for house no. 2 the EV made two 

journeys on day-1 and one journey on day-2 as shown in Fig. 6.5 (b-2). In addition, the 

EV batteries for all houses are fully charged during off-peak time to reduce energy 

purchases from the grid at high tariffs. It is noticeable from Figs. 6.5 (b-1) and (b-3) that 

the BSS of houses nos. 1 and 3 are not fully charged on either day, but the BSS of house 

no. 2 is fully charged from its neighbour during the second day, as shown in highlighted 
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box in Fig. 6.5 (c-2). This is because the forecasted energy for day-3 (EDay-f) indicates 

that the generation is lower than demand. More detailed data for day-3 is presented in 

Figs. 6.8 and 6.9. 

 

Figs. 6.5 (c-1), (c-2), and (c-3) show that during days 1 and 2, house no.1 exchanged 

power with houses nos. 2 and 3, respectively, and house no. 3 exchanged no power with 

its neighbour on day-1.  

 

Figs. 6.5 (d-1), (d-2), and (d-3), show that the ON times of the shiftable appliances are 

moved to times where there is a surplus of PV power or times where the house can 

import power from a neighbour to reduce energy costs and peak load.  

 

Figs. 6.6 and 6.7 present power exchange between houses nos. 1 and 3 during peak time 

on day-2. The red dashed, black solid, and blue solid lines represent PP2P
n, PL

n-PPV
n, and 

PEV
n, respectively. Where n refers to houses 1 and 3. As it can be seen, around 3:50 PM, 

the EV belonging to house no.1 discharged power to supply house no. 3 (see the black 

arrows in Figs. 6.6 and 6.7). In addition, around 4:45 PM, the EV belonging to house 

no.1 supplied power to houses nos. 1 (its own house) and 3. At 5:30 PM, the EV 

belonging to house no. 3 was plugged in and began to provide energy to house no. 1. 

 

Fig. 6.8 presents the PV and load power for house no. 2 on day-3 (19th June 2014). The 

red solid and black solid lines represent PPV
2 and PL

2, respectively. As seen in Fig. 6.8 

the demand greatly exceeded generation. Thus, during day-2 the house BSS will be 

charged by a neighbour to meet the demands for day-3, see Figs. 6.5 (b-2), (c-2) and 

Fig. 6.9. 

 

Fig. 6.9 presents the SOCs for EV battery and house BSS for house no. 2 on day-3. The 

blue solid and red solid lines are SOCB
2 and SOCEV

2, respectively. The first and second 

vertical black dashed lines represent EVD
2

 and EVA
2, respectively. Fig. 6.9 shows that 

the house BSS is used to supply demands during day-3 to reduce the amount of energy 

purchased from the grid at high tariffs. 
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Fig. 6.5. System performance for houses nos. 1, 2 and 3 for 17th and 18th June 2014. 

Figs. (a-1), (a-2), and (a-3) present PV and load of houses nos. 1, 2 and 3, respectively. 

The red solid and black solid lines represent PPV
n and PL

n, respectively, where n is the 
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house number. Figs. (b-1), (b-2), and (b-3) present the SOC of the EV battery and house  

BSS, EV departure time, and EV arrival time of houses nos. 1, 2, and 3, respectively. 

The red solid and blue solid lines are SOCEV
n and SOCB

n, respectively. The first and 

second vertical black dashed lines show EVD
n and EVA

n, respectively. Figs. (c-1), (c-2), 

and (c-3) present the power exchanged by each house with the grid and neighbours. The 

red solid and blue dashed lines represent PP2P
n and PG

n, respectively. Figs (d-1), (d-2), 

and (d-3) present the schedules of the shiftable appliance in houses nos. 1, 2, and 3, 

respectively. The red solid and blue solid lines represent the users’ requested operation 

for the dishwasher PD-Sh
n and the washing machine PW-Sh

n, respectively. The red dashed 

and blue dashed represent the scheduled operation of the dishwasher PD
n and the 

washing machine PW
n, respectively, as operated by the CEMS. 

 

 

 
Fig. 6.6. Power exchanged by house no. 1 during peak time on day-2. The red dashed, 

black solid, and blue solid lines represent PP2P
1, PL

1-PPV
1, and PEV

1, respectively. 
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Fig. 6.7. Power exchanged by house no. 3 during peak times on day-2. The red dashed, 

black solid, and blue solid lines represent PP2P
3, PL

3-PPV
3, and PEV

3, respectively. 

 

Fig. 6.8. PV and load for house no. 2 for day-3 (19th June 2014). The red solid and black 

solid lines represent PPV
2 and PL

2, respectively. 
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Fig. 6.9. The SOC of the EV battery and house BSS for house no. 2 during day-3 (19th 

June 2014). The blue solid and red solid lines are SOCB
2 and SOCEV

2, respectively. The 

first and second vertical dashed lines show EVD
2 and EVA

2, respectively. 

 

6.6.2 Comparing Energy Exchange and Energy Costs 

Table 6.3 presents operating costs for each of the six houses with and without V2H 

mode operational for the four months from June to September 2014. By introducing the 

V2H mode the overall operating costs for individual houses in the community are 

reduced by up to 23%, while the total operating cost (energy cost + BSS degradation 

cost) for the community (all six houses) is reduced by 15%. 

 

Table 6.4 presents the absolute net energy exchange with the grid, with and without 

V2H mode operational for the four months from June to September 2014. Table 6.4 

shows that introducing the V2H mode reduced the overall absolute net energy exchange 

between the community (i.e., 6 houses) and the grid by 3%. However, while not all 

houses experienced a reduction, the aim of this system is to reduce the overall energy 

exchange. 
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Table 6.3. Energy costs for the community with and without V2H mode for four months 

from June to September 2014  

House 

number 

Operating cost without 

V2H mode (£)  

Operating cost with 

V2H mode (£) 

Percentage  

(%) 

1 139 123 12 

2 210 175 17 

3 112 86 23 

4 119 110 8 

5 132 114 14 

 6 107 87 19 

Total  819 695 15 

 

Table 6.4. Absolute net energy exchange between the houses and grid with and without 

V2H mode for the four months from June to September 2014   

House number Absolute net energy exchanged for 

P2P EMS without V2H (kWh) 

Absolute net energy exchanged 

for P2P EMS with V2H (kWh) 

1 1661 1674 

2 2329 2517 

3 1474 1273 

4 1849 2222 

5 1933 1829 

6 1946 1384 

Total  11192 10898 

 

6.7 Conclusion  

The proposed system in this chapter was an extended version of the CEMS presented in 

Chapter 5. This study verified the importance of the contribution of the EVs to reducing 

the burden on the grid. Introducing the V2H mode in the CEMS reduced the total 
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operating cost of the community by 15% in comparison to being without the V2H 

mode. The absolute net energy exchange between the community and the grid was 

reduced by 3%. The proposed system also considered shifting usage times of 

appliances, such as washing machines and dishwasher to off-peak and/ or when PV 

energy is surplus which reduced the grid's burden and energy costs. 
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7 CONCLUSIONS AND FUTURE WORK  

The penetration of Distributed Energy Resources (DERs) at consumption and 

distribution levels is increasing dramatically, necessitating robust electrical network 

systems. Unlike traditional fuel sources, DERs are intermittent, which challenges 

network operators to balance generation and demand [180]. To address these challenges, 

several countries are promoting the utilisation of the self-consumption approach for 

Renewable Energy Sources (RESs) within Energy Management Systems (EMS) to 

reduce the burden on the national grid [6, 7].  

 

In this work, real-time Fuzzy Logic-based EMS (FL-EMS) and day-ahead Mixed 

Integer Linear Programming-based EMS (MILP-EMS) are proposed to maximise PV 

self-consumption by reducing the net energy exchange between Active Office Building 

(AOB) and the grid. The results demonstrate that both methods effectively reduce the 

net energy exchange with the grid compared to other approaches. 

 

Then, the problem is expanded to incorporate a community energy management 

controller capable of collectively controlling the Battery Storage Systems (BSSs), 

Electric Vehicles (EVs), and shiftable appliances within a community of houses. The 

Community Energy Management System (CEMS) aims to reduce the net energy 

exchange with the grid by optimising the community's overall energy consumption and 

generation rather than each house operating individually. The proposed CEMS 

demonstrates further reductions in the net energy exchange with the grid compared to 

individual house operations. In addition, utilising EVs and shiftable appliances within 

the CEMS can offer significant benefits. This includes enhanced efficiency, cost-

effectiveness, and overall performance. Moreover, incorporating EV batteries as 

additional energy storage can reduce the need for new infrastructure, additional 

charging stations, and centralised storage facilities [3].  

 

Some research gaps remain to be addressed, including: 

1. An economic analysis that includes the cost of system components and 

profitability need to be carried out, analysing the effect of different sizes of the 
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Battery Storage System (BSS) and the Photovoltaic (PV) generation in a CEMS. 

In addition, different tariffs and policies in both residential EMS and CEMS 

need to be explored. 

2. Investigating the application of a CEMS in a more complex management 

strategy comprising peer to system to peer trading architecture, such as method 

proposed in [181]. 

3. Considering different loads such as semi-controlled appliances (e.g., heaters) at 

household and community levels to achieve further benefits.  

4. Study different P2P energy trading methods, such as auction or game theory 

trading, to reduce energy exchange with the grid instead of reducing energy 

costs.   

5. Explore more advanced EMS using Artificial Intelligence (AI) schemes.  

6. Implement MILP-EMS and CEMS in real-time to validate the profitability of 

such systems. 
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