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Abstract

In this paper we study an infinite family of Massive Type IIA backgrounds that holographically describe 
the twisted compactification of N = (1, 0) six-dimensional SCFTs to four dimensions. The analysis of the 
branes involved motivates an heuristic proposal for a four dimensional linear quiver QFT, that deconstructs 
the theory in six dimensions. For the case in which the system reaches a strongly coupled fixed point, we 
calculate some observables that we compare with holographic results. Two quantities measuring the number 
of degrees of freedom for the flow across dimensions are studied.
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1. Introduction

Maldacena’s AdS/CFT conjecture [1] motivates the study of both gravity and field theory top-
ics. In particular, the study of supersymmetric and conformal field theories in diverse dimensions. 
In the past few years we witnessed the definition of new, characteristically non-Lagrangian CFTs, 
by the existence of a trustable background of Type II or M-theory, containing an AdS-factor.

In fact, this procedure has been applied to the possible space-time dimensions for which su-
per conformal field theories exist (d + 1 = 1, ...., 6). With eight Poincare supercharges, there 
exists a classification and an algorithmic way of associating a particular SCFTd+1 with a Type II 
background containing an AdSd+2 factor. At present there seems to be exceptions to this state-
ment for the cases of supergravity solutions containing AdS3 and AdS2 spaces. See [2–14], for 
references working details of the cases (d + 1) = 1, 2, 3, 4, 5, 6. A comprehensive summary of 
various aspects of SCFTs in diverse dimensions can be found in [15].

A reasonable extension is the study of RG-flows away from these SCFTsd+1. These flows 
can be between two conformal points or between a CFT and a gapped theory. Less conventional 
are the flows across dimensions, between a SCFTD+1 and a SCFTd+1 (there is also with the 
possibility of ending in gapped systems). There are numerous case-studies of this in the bibli-
ography, see for example [16], for early examples working with twisted compactifications from 
the holographic point of view. The topic progressed considerably after the paper [17]. This was 
followed by many works studying compactifications (twisted or with fluxes) from a purely QFT 
point of view. In the particular case of compactifications of 6d to 4d systems (preserving mini-
mal SUSY in both dimensions), we find the works [18]-[19]. For a very nice summary of these 
developments from a field theoretical perspective, see [20].

In this paper, we present an interesting example of flow across dimensions involving a twisted 
compactification. In particular, we start from an infinite family of six-dimensional N = (1, 0)

SCFTs and compactify it on a two manifold of constant curvature. The end-point of the flow is an 
infinite family of strongly coupled four dimensional N = 1 SCFTs (and possibly gapped QFTs, 
that we leave for future studies). The holographic study of the family of 4d SCFTs occupies an 
important part of this work, calculating observables that characterise it.
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In more detail, the contents of the paper are distributed as follows.
In Section 2, we construct a new infinite family of Massive Type IIA backgrounds that rep-

resent the flow between a family of six-dimensional N = (1, 0) SCFTs and four dimensional 
N = 1 SCFTs. These flows are new backgrounds, not present in the bibliography. The case 
of gapped four dimensional systems leads to singular backgrounds, hence we leave it to future 
study. The charges of the brane system are discussed, with emphasis on the effects of the twisted-
compactification.

In Section 3, we present calculations of the holographic central charge in these supergravity 
backgrounds (the free energy of the dual CFT). These are calculations at the AdS5 fixed point and 
along the flow. We also present a monotonic quantity interpolating between the conformal points 
at low and high energies. After this, based on the branes charges discussed in Section 2, we give 
a phenomenological proposal for a suitable quiver capturing the low energy dynamics. These 
4d quiver QFTs are proposed to reach a conformal point at low energies, their strongly coupled 
dynamics being described by the infinite family of Massive Type IIA backgrounds with an AdS5
factor (discussed in Section 2). We emphasise on the heuristic character of this proposal. Indeed, 
whilst the beta functions and R-symmetry anomalies of the proposed QFT are cancelled and 
the scaling of the free energy with the quiver parameters (rank of gauge groups and number of 
nodes) matches the holographic result, the precise coefficient of the free energy does not exactly 
match the one computed in the holographic dual. Hence the proposed quiver is only a first step 
towards the correct field theory dual to our infinite family of geometries. We discuss possible 
improvements in the conclusions and Appendices.

In Section 4, we summarise, present conclusions and propose some ideas for further research. 
Three very intensive appendices complement the presentation. The reader wishing to work on 
these topics should benefit from reading them in detail.

2. Supergravity backgrounds

We start this section by describing an infinite family of supergravity solutions, the analysis 
of which, is the main subject of the rest of this paper. This is a family of Massive Type IIA 
backgrounds, preserving four supersymmetries (N = 1 in four dimensional notation). The con-
struction of these backgrounds is described in great detail in Appendix A. From a quantum field 
theoretical perspective, these backgrounds are dual to twisted compactifications of six dimen-
sional N = (1, 0) SCFTs at the origin of their tensor branch. We discuss this in more detail in 
Section 3.

Let us present the family of backgrounds in Massive Type IIA. These are written in terms of 
coordinates, parameters and functions,

Coordinates: (t, x1, x2, x3, r, θ1, φ1, z, θ2, φ2). Parameters: (�0, k). (2.1)

Functions: α(z), f (r), h(r),X(r) = e
2
5 �(r),ω(r, z) =

(
α′(z)2 − 2α(z)α′′(z)X(r)5

α′(z)2 − 2α(z)α′′(z)

)
.

The equations constraining these functions are written below. In terms of these coordinates and 
functions, the string-frame spacetime metric reads

ds2
st = 2π

√
2

√
− α(z)

α′′(z)
X(r)−

1
2 e− 4�(r)

5

[
e2f (r)dx2

3,1 + dr2
3
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+e2h(r)

(
dθ2

1 + 1

k
sin2(

√
kθ1)dφ2

1

)]

+ X(r)5/2

[
π

√
2

√
−α′′(z)

α(z)
dz2 (2.2)

+
√

2π

ω(r, z)

√−α3(z)α′′(z)
2α(z)α′′(z) − α′2

(
dθ2

2 + sin2(θ2)

(
dφ2 − 1

k
cos(

√
kθ1)dφ1

)2
)]

.

The Neveu-Schwarz (B2, �) and Ramond (F0, F2, F4) background fields are,

B2 =
(

π

ω(r, z)

α(z)α′(z)
α′(z)2 − 2α(z)α′′(z)

sin(θ2)dθ2 − π cos(θ2)dz

)
∧
(

dφ2 − 1

k
cos(

√
kθ1)dφ1

)
,

e4�(r,z) = X5(r)

ω2(r, z)

(−α(z)

α′′(z)

)3(
e2�0

α′(z)2 − 2α(z)α′′(z)

)2

,

F0 = 2
1
4
e−�0

√
π

α′′′(z), (2.3)

F2 = 2
1
4
√

πe−�0α′′(z)
[
cos(θ2)Vol(	k) − Vol(S2

c )
]

+F0
π

ω(r, z)

α(z)α′(z)
α′(z)2 − 2α(z)α′′(z)

Vol(S2
c ),

F4 =
(

2
1
4 π

3
2 e−�0

ω(r, z)

)(
α(z)α′(z)α′′(z)

α′(z)2 − 2α(z)α′′(z)

)
cos(θ2) Vol(	k) ∧ Vol(S2)

+2
1
4 π

3
2 e−�0α′′(z) sin2(θ2) dz ∧ dφ2 ∧ Vol(	k).

We have defined the volume elements,

Vol(S2) = sin(θ2)dθ2 ∧ dφ2, Vol(S2
c ) = sin(θ2)dθ2 ∧

(
dφ2 − 1

k
cos(

√
kθ1)dφ1

)
,

Vol(	k) =
sin
(√

kθ1

)
√

k
dθ1 ∧ dφ1. (2.4)

The functions f (r), h(r), �(r) must satisfy first order (BPS) ordinary differential equations. 
Denoting the derivative respect to the coordinate r with a dot, they read,

ḟ = ±m

2
e−2�, ḣ = ±1

2

(
1

k
e−2h + me−2�

)
,

�̇ = ±
(

−1 + 1

4k
e−2h + me−2�

)
. (2.5)

We choose the positive sign from now on. The derivation of eqs. (2.5) and the origin of the 
parameter m are explained in Appendix A. The remaining BPS equation for α(z) is already 
written in eq. (2.3). In fact, the mass-parameter of massive Type IIA F0, that should be constant 
4
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by pieces for an interpretation in terms of localised D8 branes dictates that α′′′(z) must be piece-
wise constant. It is in the many possible choices for a piece-wise constant F0 that the family of 
backgrounds is originated. More on this in Section 2.1 below.

The configurations in eqs. (2.2)-(2.5), are new solutions to the equations of motion of Massive 
IIA. In string frame these read,

1

4
R + ∇2� − (∇�)2 − 1

8
H 2

3 = 0,

dFp + H3 ∧ ∗Fp−2 = 0, d(e−2� ∗ H3) − (F0 ∗ F2 + F2 ∧ ∗F4 + F4 ∧ F4) = 0,

RMN + 2∇M∇N� − 1

2
(H 2

3 )MN − 1

4
e2�

∑
p

(F 2
p)MN = 0. (2.6)

In eq. (2.6) p = 2, 4, 6, 8, 10, and

(F 2
p)MN = 1

(p − 1)!F
N1...Np−1

M FNN1...Np−1, (H 2
3 )MN = 1

2
H

N1N2
M HNN1N2 .

Regarding the volume form Vol(	k) in eq. (2.4), for the allowed values for the parameter k, 
namely k = (1, −1), 	k is describing a two-sphere or a hyperbolic plane. The case k = 0, corre-
sponding to a torus, is slightly more subtle and will be briefly addressed below.

This concludes the presentation of the backgrounds. To interpret these in terms of branes, we 
calculate the Page charges (quantised and gauge-variant) associated with this family of SUSY 
solutions.

2.1. Page fluxes and charges

The Page fluxes F̂p , defined as a polyform F̂ = e−B2 ∧F are quantised. This implies a certain 
form for some of the functions in the background, as we discuss below.

The Page fluxes are gauge-variant. They do change under a gauge transformation of B2. We 
use this in our favour, performing a particular transformation that makes explicit the quantised 
charges present and the role of the function α(z). To write the Page fluxes in a concise fashion, 
it proves useful to define a one form 
1 and its exterior derivative,


1 = − cos(θ2)

(
dφ2 − 1

k
cos(

√
kθ1)dφ1

)
, d
1 = Vol(S2

c ) − cos(θ2)Vol(	k). (2.7)

It is also convenient to change the B2-field by a large gauge transformation (this has no effect on 
H3 = dB2). Below, we explain the purpose of such transformation,

B2,new = B2,old − πd
[
(z − �)
1

]
, � is a constant, (2.8)

B2,new =
(

π

ω(r, z)

α(z)α′(z)
α′(z)2 − 2α(z)α′′(z)

Vol(S2
c ) − π(z − �)d
1

)
,

H3 = π

[
− 1

ω2

α(z)α′(z)
α′(z)2 − 2α(z)α′′(z)

∂ω

∂X
X′(r)dr + d

dz

(
1

ω

α(z)α′(z)
α′(z)2 − 2α(z)α′′(z)

)
dz

]
∧Vol(S2

c )

− π

(
1

ω

α(z)α′(z)
α′(z)2 − 2α(z)α′′(z)

)
sin(θ2)dθ2 ∧ Vol(	k) − π dz ∧ Vol(S2

c )

+ π cos(θ2)dz ∧ Vol(	k).
5
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With this new-B2 we compute the Page flux F̂2 and obtain,

F̂2 = F2 − B2F0 = −2
1
4
√

πe−ψ0(α′′ − (z − �)α′′′)d
1. (2.9)

Similarly we calculate the F̂4 Page flux,

F̂4 = F4 − B2 ∧ F2 + 1

2
B2 ∧ B2F0, (2.10)

F̂4 = 2
1
4 π

3
2 e−�0α′′(z) sin2 θ2 dz ∧ dφ2 ∧ Vol(	k)

+21/4π3/2e−�0(z − �)
(
2α′′(z) − α′′′(z)(z − �)

)
cos θ2 Vol(S2

c ) ∧ Vol(	k).

Finally, for F0 we have the same as in eq. (2.3), F̂0 = 2
1
4 e−�0√

π
α′′′(z). We now calculate the 

charges associated with these Page fluxes, and impose their quantisation.

2.1.1. Page charges
To calculate the charges, we need to compute the integrals (as in the rest of the paper we set 

gs = α′ = 1),

QNS5 = 1

4π2

∫
M3

H3, QDp = 1

(2π)7−p

∫
M8−p

F̂8−p, p = 4,6,8. (2.11)

These integrals need to be defined over suitable cycles, some of which contain the sub-manifold 
	k . Then, it is useful to first calculate the volume of the two-manifold 	k defined in eq. (2.4). 
As we stated above, in the cases k = (1, 0, −1) the space described is a two-sphere, a torus or 
a hyperbolic plane. Its volume is calculated using Gauss-Bonnet’s theorem and the fact that 	k

has curvature R = 2k. For a genus g Riemann surface, we have∫
	k

d2x
√

gR = 8π(1 − g) −→
∫
	k

d2x
√

g = 4π

k
(1 − g).

For the sphere, k = 1 and g = 0, while for the hyperbolic plane, k = −1 with g > 1. The case of 
the torus needs some care, as we have k = 0, g = 1 (and the volume is 4π ). We will not discuss 
the case of T 2 in what follows (except for the purpose of making an intuitive argument below). 
This allows us to write (for S2, H2)∫

	k

d2x
√

g = 4π |g − 1|. (2.12)

After these preliminaries, we calculate the Page charges. Inspecting the H3-field in eq. (2.8) we 
find two possible three-cycles on which the integral can be performed. These three-cycles are

M1 = (θ1, φ1, z)
∣∣
θ2=0, and M2 = (θ2, φ2, z)

∣∣
r→+∞. (2.13)

We find that there are two sets of NS-five branes. Their total numbers being,

N
(1)
NS5 = 1

4π2

∫
M1

H3 = 1

4π
Vol(	k)P = |g − 1|P,

N
(2)
NS5 = 1

4π2

∫
H3 = P. (2.14)
M2

6
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To calculate N(2)
NS5 a boundary condition α(z = 0) = α(z = P) = 0 has been imposed, more on 

this below. We have also taken the orientation of the manifolds such that all the charges are 
positive. Importantly, we have set the range of the z-coordinate to be z ∈ [0, P ], with P an 
integer.

For the charges of D6-branes, we have a pair of two-cycles on which to integrate the Page flux 
of eq. (2.9),

M3 = (θ1, φ1)
∣∣
θ2=0, and M4 = (θ2, φ2).

Performing the integrals, we find,

N
(1)
D6 = 1

2π

∫
M3

F̂2 = 2
5
4
√

πe−�0 |g − 1|(α′′ − (z − �)α′′′),

N
(2)
D6 = 1

2π

∫
M4

F̂2 = 2
5
4
√

πe−�0(α′′ − (z − �)α′′′). (2.15)

For the D8 branes we use eq. (2.3) and find,

ND8 = 2π

∫
dzF ′

0 = 2
5
4
√

πe−�0

∫
dzα(4). (2.16)

Finally, for the D4 branes, the four-cycle is M5 = (θ2, φ2, θ1, φ1), at constant values of r, z. 
Calculating

QD4 = 1

8π3

∫
M5

F̂4 = 0.

In other words, there is no charge of D4 branes in the system.1

Inspecting the charges in eqs. (2.14), (2.15) and (2.16), suggests to set e�0 = 2
5
4
√

π . Imposing 
quantisation, it is clear from eqs. (2.15) that the function α′′(z) must be a linear function with 
integer coefficients Nl . In fact, we can divide the range of the z-coordinate in intervals of unit 
size. In each interval, α′′(z) should be a linear function. The charge of D8 branes in eq. (2.16)
suggests that α′′(z) should be piecewise linear and continuous (with integer coefficients), the 
third derivative piecewise constant (integer and generically discontinuous), whilst the fourth-
derivative a sum of delta functions with integer coefficients. In other words, if we choose for 
α′′(z),

α′′(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1z ,0 ≤ z < 1

N1 + (N2 − N1)(z − 1) ,1 ≤ z < 2
...

Nl + (Nl+1 − Nl)(z − l) , l ≤ z < l + 1
...

NP−1(P − z) , (P − 1) ≤ z < P.

(2.17)

1 One might wonder about computing QD4 integrating F̂4 over the manifold M6 = [z, θ1, φ1, φ2]θ2= π
2

. This is not a 
well defined four-cycle, as it has a boundary.
7
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This implies,

α′′′(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 ,0 ≤ z < 1

N2 − N1 ,1 ≤ z < 2
...

Nl+1 − Nl , l ≤ z < l + 1
...

−NP−1 , (P − 1) ≤ z < P,

(2.18)

and

α(4)(z) =
P−1∑
l=1

(2Nl − Nl+1 − Nl−1) δ(z − l). (2.19)

At this point we choose a convenient coefficient � in the large gauge transformation of B2–see 
eq. (2.8). In fact, choosing � = l for z ∈ [l, l + 1] we have in each interval

(α′′ − (z − l)α′′′) = Nl.

In summary, we have two kinds of NS-five branes, their total number is given in eqs. (2.14). In 
the interval z ∈ [l, l +1] we have two types of D6 brane charges and one kind of D8 charge given 
by (in each interval),

N
(1)
D6[l, l + 1] = |g − 1|Nl, N

(2)
D6[l, l + 1] = Nl,

ND8[l, l + 1] = 2Nl − Nl+1 − Nl−1. (2.20)

Though it does not feature in the calculation of Page charges, the function α(z) is obtained 
after two integrations of eq. (2.17). The integration constants must be chosen such that α(z)

is a piecewise continuous cubic function with continuous derivative α′(z). To avoid singular 
behaviours (not associated with the presence of localised D8 branes), it must satisfy α(0) =
α(P ) = 0.

This is a good point to discuss the physical effect of the large gauge transformation on the B2-
field–see eq. (2.8). Being a gauge transformation, it does not affect the Physics of our system, 
but it makes the counting of charges more transparent. Had we not performed it and calculated 
Page charges with the B2,old , we would have obtained a combination between charges of D6 
branes induced on the D8 branes and those of ‘actual’ D6 branes. The large gauge transformation 
separates these, making the counting clearer.

To better understand these systems, it is a good (and intuitive) guide to go back to the case of 
the torus. In this case, we are compactifying a six dimensional N = (1, 0) SCFT on T 2 without 
any flux that breaks SUSY. In other words, we would end with an N = 2 four dimensional 
SCFT. For more on this perspective see, for example [21]. What follows in the next paragraph is 
an intuitive argument.

The compactification on T 2 (which sets k = 0) should be handled with some care. For exam-
ple, the ‘twisting’ in the one-form 
1 is absent, leading to 
1 = − cos θ2dφ2. Also, in the BPS 
eqs. (2.5), the terms e−2h

k
are absent. This gives 2�(r) = 0 with X(r) = 1 (for the parameter 

m = 1) and 2f (r) = 2h(r) = r . This leads to a background metric — see eq. (2.2) — of the 
form AdS7 × S2 × Rz. For this case the genus is g = 1 and the charges in eqs. (2.14) and (2.20)
8
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indicate the presence of only one type of NS-five branes and D6 branes, together with D8 branes. 
The reader will recognise that this is the compactification on T 2 of the backgrounds in [13]-[14].

Intuitively, this is what our background in eqs. (2.2)-(2.5) is describing for large values of 
the r-coordinate. Of course, since we compactify on a curved two manifold (either S2 or H2), 
the twisting needs to be performed even at high energies (large values of the r-coordinate). The 
system preserves four supercharges all along the flow. The twisted compactification of the six 
dimensional system of NS-D6-D8 induces new sets of NS and D6 branes. We identify these new 
branes as those whose charge comes with the (g − 1)-factor in front–see eqs. (2.14) and (2.15).

Let us be more precise about the compactifications on S2 and H2.

2.2. The cases of H2 and S2 compactifications

In both cases (k = 1 or k = −1), we can solve two of the equations in (2.5), finding

e−2� = 2kḣ − e−2h

km
, f = m

2

∫
e−2�dr, (2.21)

whilst e2h(r) = G(r) must satisfy a nonlinear second order differential equation,

G̈ + (Ġ)2

G − 5Ġ
2kG − 2Ġ + 3

2G + 2

k
= 0. (2.22)

The numerical resolution of this system is studied in Appendix B. Let us gain some understanding 
by discussing asymptotic solutions. For large values of the coordinate r we find an asymptotic 
solution,

e2h(r) ∼ er , e2f (r) ∼ e2f0+r , e2� ∼ km

k − e−r
∼ m. (2.23)

In the case of the compactification on the hyperbolic plane (k = −1), we find an exact, fixed-point 
solution. This is the same solution found in [22], after conventions are matched.

e2f (r) = e
2
3 r , e2h(r) = 3

4
, e2�(r) = 3m

4
. (2.24)

As is usual, the r-coordinate plays the role of energy-coordinate. The solution in eq. (2.23)
asymptotes to ÂdS7 × S2

c × Rz when replaced in eqs. (2.2)-(2.3), describing a six dimensional 
SCFT formulated on R1,3 × H2. The ÂdS7 is written as a foliation over this six-space. On the 
other end, when the fixed point solution of eq. (2.24) is replaced in the family of backgrounds of 
Massive Type IIA of eqs. (2.2)-(2.3), the space time takes the form AdS5 ×M5. These describe 
the dual to a family of four dimensional N = 1 SCFTs. The numerical solution connecting 
the large-r asymptotics in eq. (2.23) with the fixed-point exact solution (2.24) is described in 
Appendix B. We present the plot for the functions f (r), h(r), g(r) in Fig. 1.

The numerical study of the case of the two-sphere (k = 1) leads to badly singular behaviour 
as we decrease the r-coordinate. We believe that a background more elaborated than that in 
eqs. (2.2)-(2.3) could resolve this singular behaviour, but leave this for a future investigation. In 
what follows we focus our attention on the backgrounds describing the twisted compactification 
on H2 (preserving 4 SUSYs) of a six dimensional N = (1, 0) 6d SCFT.

We close this section emphasising that we have presented a new infinite family of backgrounds 
in eqs. (2.2)-(2.5). Each solution in this family is labelled by each possible α(z). At the IR fix 
point, this is a Massive IIA background with an AdS5 factor preserving four supercharges.
9
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Fig. 1. The plot for the case of the H2 compactification (k = −1) of the functions f (r), h(r), �(r). The UV asymptotics 
at r → +∞ and the IR at r → −∞. We clearly see the attainment of both IR and UV fixed points.

3. Study of the dual field theory

We start this section with the holographic calculation of the free energy of the field theory. 
In particular we start with the free energy of the 4d SCFT that results in the low energy limit 
of our compactification. After that, we study the same quantity along the flow described by our 
full solution. We then define a monotonic quantity that captures the flow between the low energy 
four dimensional SCFT and the high energy six dimensional conformal point (as suggested by 
the family of supergravity backgrounds).

After these holographic calculations we use the charges calculated in Section 2 to give an 
heuristic proposal for a 4d quiver that at low energies becomes conformal and captures some 
aspects of the fixed point AdS5 backgrounds. This proposal is provisional and certainly incom-
plete. In fact, whilst various observables and scaling behaviours do match between supergravity 
and QFT calculations, the precise coefficient of the free energy does not, suggesting that some 
extra fields should supplement our QFT proposal.

3.1. Free energy and holographic central charge

One meaningful observable of SCFTs is the free energy. For the case of SCFTs in diverse 
dimensions this was calculated holographically. See for example the papers [4], [6], [7], [9], 
[11], [12], [13]. These calculations were checked against field theoretical computations (typically 
a global anomaly coefficient or a localisation calculation in matrix models). These checks of 
the AdS/CFT correspondence are valid in the regime of parameters for which the supergravity 
background is a reliable representation of the QFT dynamics. This is typically for long linear 
quivers P → ∞ and for large rank of the gauge nodes Ni → ∞.

The calculations done with the supergravity backgrounds are either computing a regularised 
on-shell action for a putative reduced supergravity or alternatively the calculation of the Newton 
constant associated with a reduced theory of gravity in lower dimensions.

In particular, it was shown in [25], [26] that for any generic holographic background dual to a 
QFT in d + 1 spacetime dimensions, with metric and dilaton given by,

ds2 = a(r, yi)
(
dx2

d,1 + b(r)dr
)

+ gij dyidyj , �(r, yi), (3.1)
10
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we can define quantities Vint , Ĥ according to

Vint =
∫

dyi
√

e−4�a(r, yi)d det[gint ], Ĥ = V 2
int . (3.2)

From these we define the holographic central charge (or free energy),

chol = dd b(r)
d
2 H

2d+1
2

G
(10)
N (H ′)d

, (3.3)

where G(10)
N = 8π6 is in our conventions, the ten-dimensional Newton constant.

For the case of our backgrounds in eq. (2.2), we compare with eq. (3.1) and read,

a(r, z) = 2βπ
√

2

√
− α(z)

α′′(z)
X(r)−

1
2 e− 4�(r)

5 +2f (r), b(r) = e−2f (r), d = 3. (3.4)

The metric of the internal space has determinant,

det(gint) = 16
√

2π5

ω2 e4h(r)+�(r)

√−α(z)7α′′(z)
(α′(z)2 − 2α(z)α′′(z))2

sin2(
√

kθ1)

k
sin2(θ2). (3.5)

This leads, after using eqs. (3.2)-(3.3), to

H = N̂ 2e6f (r)+4h(r)−4�(r), N̂ = 16
√

2π4e−2�0

∫ [−α(z)α′′(z)
]
dz Vol(	k)Vol(S2).

chol = 27N̂
8G(10)N

e2h(r)−2�(r)

(3ḟ + 2ḣ − 2�̇)3
. (3.6)

After using the BPS equations in (2.5), the holographic central charge reads

c = 27N̂
G

(10)
N

e2h(r)−2�(r)(
4 + 1

k
e−2h(r) + me−2�(r)

)3 . (3.7)

Since this computes the central charge of the four dimensional SCFTs — we have set d = 3 in 
eq. (3.4) — we evaluate this quantity for k = −1, the hyperbolic plane twisted compactification 
of the 6d SCFTs (setting m = 1), and find

chol = 27N̂
64G

(10)
N

. (3.8)

Let us analyse the results in eqs. (3.7)-(3.8).

First, notice that the factor N̂ in eq. (3.6), has a part proportional to 
(

− Vol(S2) 
∫

dzα′′α
)

. 
We recognise this as information coming from the UV, six dimensional SCFT. Indeed, this factor 
appears when calculating the free energy of a six dimensional (1, 0) SCFT, see equation (2.14) 
in the paper [14] or equation (4.10) in the first paper referred in [13]. This is coming from the 
UV-part of the flow. Note that N̂ in eq. (3.6), also contains a factor of Vol	k = 4π |(g − 1)|. 
This suggests that the number of fields gets multiplied by (g − 1). Both these factors inform the 
phenomenological proposal for the QFT in Section 3.3.

Let us evaluate the holographic central charge in eq. (3.8) for two examples. Whilst these 
examples are not generic, they capture many aspects of the dynamics of the QFTs. We also 
discuss these examples (purely from a QFT perspective) in Appendix C.
11



P. Merrikin, C. Nunez and R. Stuardo Nuclear Physics B 996 (2023) 116356
3.1.1. Example 1
We study the case corresponding to a function α(z) given by,

α(z) =

⎧⎪⎨⎪⎩
N
6 (1 − P 2)z + N

6 z3 ,0 ≤ z ≤ (P − 1)

− 1
6 (2P 2 − 3P + 1)(P − z) + N

6 (P − 1)(P − z)3 , (P − 1) ≤ z ≤ P.

(3.9)

This function is associated with a 6d SCFT consisting of a liner quiver with gauge groups of 
rank Nj = jN , ending with a flavour group SU(PN). The function α(z) vanishes at z = 0 and 
z = P , is continuous at z = (P −1) and the derivative α′(z), is continuous at the same point. The 
second derivative is

α′′(z) =

⎧⎪⎨⎪⎩
Nz ,0 ≤ z ≤ (P − 1)

N(P − 1)(P − z) , (P − 1) ≤ z ≤ P.

(3.10)

We now use the expressions in eqs. (3.6)-(3.8), the fact that e2�0 = 4
√

2π , GN = 8π6 and 
find,

N̂ = 64

45
π5N2P 5(g − 1), chol,ex1 = 3

40π
N2P 5(g − 1)

(
1 + O(

1

P 2 )

)
. (3.11)

We find a scaling with the length of the quiver and the number of nodes, that is reminiscent of 
what occurs for this kind of quiver for the case of six dimensional SCFTs. Let us see a second 
example.

3.1.2. Example 2
Consider the function α(z),

α(z) =

⎧⎪⎪⎨⎪⎪⎩
N
2 (1 − P)z + N

6 z3 ,0 ≤ z ≤ 1
N
6 − PN

2 z + N
2 z2 ,1 ≤ z ≤ (P − 1)

−N
2 (P − 1)(P − z) + N

6 (P − z)3 , (P − 1) ≤ z ≤ P.

(3.12)

From the perspective of the 6d SCFT, this function describes a linear quiver with (P − 1) gauge 
nodes of rank Nj = N and flavour nodes FJ = N(δJ,1 + δJ,P−1). The one in eq. (3.12) is a 
function that vanishes at z = 0 and z = P , is continuous at z = 1 and at z = (P − 1) and the 
derivative α′(z) is continuous at the same two points. The second derivative is

α′′(z) =

⎧⎪⎨⎪⎩
Nz ,0 ≤ z ≤ 1

N ,1 ≤ z ≤ (P − 1)

N(P − z) , (P − 1) ≤ z ≤ P.

(3.13)

Using eqs. (3.6)-(3.8), we calculate,

chol,ex2 = 9

32π
N2P 3(g − 1)

(
1 + O(

1

P 2 )

)
. (3.14)

This 4d SCFT has a scaling characteristic of a six dimensional linear quiver of the same type 
described above.

This result, together with the one in the first example and their respective comparison with 
the field theoretical calculation in eqs. (C.9)-(C.11), inform our phenomenological proposal of 
Section 3.3. Let us now discuss the r-dependence of the holographic central charge in eq. (3.6).
12
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Fig. 2. Central Charge calculated for the numerical solutions of Fig. 1. Here we see that the central charge is divergent in 
the UV.

3.1.3. Energy dependence of the holographic central charge
Let us now interpret the r-dependence of our free energy/holographic central charge in 

eq. (3.7). Inspecting this quantity, we find at the IR fixed point the result in eq. (3.8). We as-
sociate with this the free energy of a family of four dimensional SCFTs preserving four Poincare 
supercharges. The family of SCFTs in 4d is labelled by the different functions α(z) that we 
choose as input, as in the examples above. On the other end, at high energies, we find using 
eq. (2.23), that the quantity in eq. (3.7) diverges. The plot of Fig. 2 with the numerical solution 
found in Appendix B shows this.

The divergence of this monotonically increasing (towards the UV) free energy is under-
standable. Massive fields that originated in the wrapping of both D6’s and NS-five branes on 
the surface 	k = H2 generically have a mass inversely proportional to the size of 	k and are 
frozen at low energies (of course, there are also massless fields present in the 4d SCFT). When 
flowing towards the UV these massive fields become active. The number of these Kaluza-Klein 
modes grows with energy and leads to the divergence of chol . Somewhat, the quantity defined in 
eqs. (3.4)-(3.8) for a four dimensional QFT (we have set d = 3) is not able to recognise that the 
system is approximately approaching a six dimensional SCFT.

Similar arguments were expressed by the authors of [27]. In that paper the authors define 
a quantity cmonotonic using the Entanglement Entropy. The quantity cmonotonic in [27] and our 
eq. (3.7), are related by a proportionality factor when studied in our family of backgrounds.

This calls for a quantity that is actually able to detect both fixed points (this was also one of 
the objectives in [27]). A quantity called cf low in [26], [28] can play this role. This quantity is 
monotonic, but decreases towards the UV fixed point. We study this below.

3.2. Flow central charge

Let us now define a quantity that is capable of detecting both the UV and IR fixed points of 
our flow across dimensions. With this in mind, we write a generic holographic metric dual to a 
QFT defined on anisotropic spacetime–see [26], [28] for details,

ds2 = −a0dt2
0 +

d−p∑
aidx2

i + ad−p+1ds2
p +

d−p∏
(ai a

p

d−p+1)
1
d b̃ dr2 + habdyadyb, (3.15)
i=1 i=1

13
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Fig. 3. Flow central charge calculated for the numerical solutions. We clearly see the attainment of both IR and UV fixed 
points.

where t and xi are coordinates of the macroscopic space, p is the dimension of the compactifica-
tion manifold and ds2

p its line element. The metric and the coordinates of the internal manifold 
are denoted by hab and ya respectively. The dilaton is �(r, ya). We define the quantities,

GijdXidXj =
d−p∑
i=1

aidx2
i + ad−p+1ds2

p + habdyadyb, (3.16)

H̃ =
(∫ 8−d∏

a=1

dXa
√

e−4�det(Gij )

)2

, cf low = dd b̃
d
2 Ĥ

2d+1
2

G
(10)
N (Ĥ ′)d

.

Specialising these quantities in our metric of eq. (2.2), we have

d = 5, p = 2, a0 = a1 = a2 = a3 = 2π
√

2

√
− α(z)

α′′(z)
X(r)−

1
2 e− 4�(r)

5 +2f (r),

a4 = a0 e2h(r)−2f (r), b̃ = e− 6
5 f (r)− 4

5 h(r),

H̃ = N̂ 2e6f (r)+4h(r)−4�(r), N̂ = 16
√

2π4e−2�0

∫
(−α(z)α′′(z))dz Vol(	k)Vol(S2).

Using eq. (3.16) we compute,

cf low = 27N̂
32G

(10)
N

e−2�(r)

(3ḟ + 2ḣ − 2�̇)5
, use BPS in eq. (2.5) to find,

cf low = 27N̂
G

(10)
N

e−2�(r)(
4 + 1

k
e−2h(r) + me−2�(r)

)5 . (3.17)

Evaluating in the IR fixed point of eq. (2.24) and in the asymptotic UV-expansion of eq. (2.23), 
leads to

cf low,IR = 9N̂
256G

(10)
N

, cf low,UV = 27N̂
55 G

(10)
N

. (3.18)

We can evaluate this quantity numerically on the flow solutions discussed in Appendix B. The 
plot in Fig. 3 shows this. This plot is very similar to the analogous quantity calculated from the 
14
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Fig. 4. We show a rough approximation to the UV field theory. This would be just the torus reduction of a family of 
N = (1, 0) six dimensional SCFTs. As we explain below, this picture is deformed by other brane stacks appearing.

Entanglement Entropy in reference [27]. The discussion about the factors in N̂ is similar to that 
in the previous subsection. The qualitative lessons for the QFT along the flow are similar. In 
summary, we have defined a quantity for an anisotropic QFT realising a flow across dimensions. 
It should be nice to tackle this same problem from a purely field theoretical perspective.

3.3. A phenomenological proposal for the QFT

We wish to put forwards a proposal for the brane system and the field theory dual to the 
background in eqs. (2.2)-(2.3). Our proposal is motivated by the scaling of the holographic central 
charge, calculated in eqs. (3.8), (3.11), (3.14). We find that our proposal is at best provisional. In 
fact, whilst the scaling with free energy of the quiver parameters matches with the holographic 
computations, the precise coefficients do not match. We suggest possible modifications of our 
proposal to be studied in the future.

We will be particularly interested on the fixed point solution of eq. (2.24), that gives a family 
of backgrounds with an AdS5 factor preserving four Poincare supercharges.

As we advanced in the previous section, for large values of the r-coordinate, the system is 
dual to a QFT that is to a good approximation six-dimensional. In fact, using the solution of 
eq. (2.23) in the background of eqs. (2.2)-(2.3), we find that the space asymptotes to AdS7 ×
S2 ×Rz. The six dimensional SCFT is defined on a spacetime of the form R1,3 ×H2. This forces 
the twisting of the SCFT (to partially preserve SUSY). The different fibrations in the Massive 
IIA background (encoded by the one form 
1) are the effects of the twist in the holographic 
perspective. Following the formalism developed in the references [13]-[14], we can roughly think 
that the field theory is encoded in a long linear quiver and Hanany-Witten set up of D6-D8-NS5 
branes depicted in Fig. 4.

The numbers N1, N2, ...., NP and F1, ...., FP must satisfy the relation Fi = 2Ni − Ni−1 −
Ni+1 in order for the six dimensional field theory to be free of gauge anomalies. This condition 
is ensured by the function α′′(z) chosen in eq. (2.17). Indeed, note that from the fourth-derivative 
α(4)(z) we derive the relation between flavours and colours required, see eq. (2.19). The func-
tion α(z), continuous and cubic by pieces is chosen such that the z-coordinate begins and ends 
smoothly. This is imposed by the conditions α(0) = α(P ) = 0. There is one UV conformal point 
for each choice of α(z). Of course, this is just a very rough picture.

Indeed, these UV conformal points are deformed (either by VEVs or by relevant operators). 
The dimension of these operators can be read from the near-AdS7 expansion of the metric. These 
deformations (analogously, the presence of the fibrations) topologically twist the 6d CFT and 
trigger a RG flow, that ends in a CFT4. As we discussed around eqs. (2.14), (2.20), a new set 
15
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Fig. 5. We draw the new set of branes–denoted with a tilde–which are induced by the twisting. These new branes give 
place to new gauge groups and new matter fields represented by strings extending between different stacks of branes.

of NS and D6-branes appears due to the twisted compactification. These new branes lead to the 
presence of new gauge groups, not present in the original linear quiver without twisting.

Following this line of arguments, our system is represented by the Hanany-Witten set up of 
Fig. 5.

As expressed in eq. (2.14), a new set of NS-five branes appears due to the twisting. These new 
(g−1) ×P NS5 branes share the R1,3 directions with the other branes and extend along the coor-
dinates (θ2, φ2). They are orthogonal to the original NS branes that extend along (R1,3, θ1, φ1). 
This leads to the generation of new gauge groups. In fact, the D6 branes originally extended 
along (R1,3, θ1, φ1, z) can now extend between the two stacks of NS-five branes. This generates 
a new stack of D6 branes extended along (R1,3, θ2, φ2, z). We associate with these the new gauge 
groups. As calculated in eq. (2.20), there are (g − 1) × Nl of them, for each interval. There are 
also D8 sources, playing the role of flavour groups. The system must cancel all gauge anomalies. 
We emphasise the (g − 1) × P × P -replication of the original quiver. This reflects in the free 
energy calculated in Section 3.1. It should be interesting to carefully quantise the open strings 
between these different stacks of branes, to have a more concrete handle on the low energy QFT.

A natural question that arises is the following: can we find a Lagrangian description for the 
4d QFT? If so, we could propose a (low energy) duality between a 4d Lagrangian QFT and a 
6d SCFT on a geometry of the form R1,3 × 	κ . This is perhaps too much to ask. We should be 
content with a 4d quiver (even when strongly coupled) that captures aspects of the compactified 
6d theory. In fact, the above analysis leads us to propose a quiver, that consist on P 2(g − 1)

copies of the six-dimensional ‘mother’ theory. Of course, the system is now four dimensional 
and preserves N = 1 SUSY. In the usual notation (lines with arrows indicating chiral multiplets, 
circles denoting vector multiplets, boxes indicating flavour symmetries), we propose the quiver 
in Fig. 6.

In Appendix C, we assign values to the anomalous dimensions and R-charges of each of 
these four dimensional fields. Using those values we calculate beta functions and R-symmetry 
anomalies for each gauge group (finding vanishing values). Also a suitable superpotential is 
proposed, this indicates an interaction between different rows of the quiver in Fig. 6. With the 
R-charges assignation above, we also calculate aCFT and cCFT , the a, c-central charges of the 
quiver in Fig. 6. We compare some of these results with the analogous holographic ones in 
Section 3.1. Whilst the scaling with the quiver parameters (number and rank of gauge nodes) is 
matched, the precise numerical coefficient does not coincide.
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Fig. 6. The proposed quiver field theory. The adjoint fields �i get a mass. The bifundamentals fields are denoted by 
(Q, Q̄), the fundamentals by (q, ̄q) and the vector multiplets represented by the circles. All the fields are in four dimen-
sional N = 1 notation.

Let us close this section with three important comments.

• It may be the case that other fields that do not contribute to the beta functions and the R-
symmetry anomaly, but still contribute to the a, c central charges, are present in our quiver 
of Fig. 6. To decide if they should be there, we should compute the integral of the anomaly 
polynomial I8 on the compactification manifold 	−. We get a hint at those fields, by com-
paring the material of Section 3.1 with that in Appendix C.

• The scaling with the number of nodes P of the a-central charge (the free energy) is two 
powers higher than usual (see Appendix C for a field theoretical derivation of this result, and 
Section 3.1 for a holographic viewpoint on this). In fact, it actually scales as a six dimensional 
CFT. The quiver we write is deconstructing two dimensions, in the sense of [23]. What is 
interesting about this case is that this is occurring due to the twisting, whilst in [23] it is an 
effect of going to a particular point in the moduli space, expanding, etc.

• Finally, as explained in Appendix C, a mass term for �i in eq. (C.3) appears. This generates 
a new set of (P − 1) −U(1)’s. These are all anomalous, except for one. The R-symmetry we 
have taken is the one after this mixing has taken place. Importantly, this makes the beautiful 
result of Bobev and Crichigno [24], not applicable here. In fact, the authors of [24] assume 
the absence of mixings. In this sense, the coefficient in their eq. (3.6) for the a central charge, 
is not enforced on us.2

2 Special thanks to Nikolay Bobev for a discussion on this.
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Let us close this work by presenting some conclusions.

4. Conclusions

Let us start with a brief overview of the contents of this paper.
In Section 2, we construct an infinite family of Massive Type IIA backgrounds. These de-

scribe holographically the flow between a family of six-dimensional N = (1, 0) SCFTs and four 
dimensional N = 1 SCFTs. The charges of the brane system are discussed. New sets of branes 
appear induced by the twisted-compactification and are carefully discussed.

In Section 3, we present and calculate two quantities that measure the number of degrees of 
freedom along the flow. One of these quantities coincides with the holographic central charge 
for the 4d SCFTs, and diverges in the UV. The second quantity detects both fixed points, it is 
monotonous, its value being bigger in the IR than in the UV. We also present a phenomenological 
proposal for a family of dual four dimensional SCFTs of the linear quiver type. The form and 
the parameters characterising the quiver are inherited from the six dimensional description. The 
4d QFTs are proposed to reach a conformal point at low energies compared to the inverse size 
of the compactification manifold. These 4d SCFTs are holographically described by an infinite 
family of Massive Type IIA backgrounds with an AdS5 factor. We use the quiver field theory 
description to calculate field theory observables–see Appendix C for details. Interestingly our 
field theoretical calculation of the a and c central charges in comparison with the holographic 
one, suggests that other fields should intervene in the dynamics, aside from those in the proposed 
quiver.

Detailed appendices complement the presentation. We trust that the reader wishing to work 
on these topics should enjoy and profit from them.

This paper suggests various interesting topics to work on, as follows up of the material pre-
sented here. We make a small list below.

• It should be interesting to further study the two-sphere compactifications. These do not lead 
to conformal 4d fixed points. It is important to de-singularise those solutions.

• It is important to study the string quantisation in the Hanany-Witten set up that arises as a 
result of the twisted compactification. The massless modes would give firm clues about the 
four dimensional quiver field theory, for which we proposed a particular type of quiver.

• The presence of extra fields contributing to the central charges (as emphasised in Ap-
pendix C) is one of the most urgent topics suggested by this work. May be a treatment 
along the lines of [19] proves effective. In fact, involving the anomaly polynomials I8 and I6
for the SCFT6 and SCFT4 may show the need to add flip fields.

• More generally, bringing together the field theoretical techniques of [18]-[19] with the holo-
graphic results expressed in this paper or in [28], seems like a problem to study.

• It should be interesting to attempt this kind of compactifications with systems in different 
dimensions. The systematic study of examples might indicate dimension-dependent charac-
teristics.

• It should be interesting to exploit the recently discovered plethora of embeddings of 5d 
supergravity into Massive IIA [29]. Finding interesting compactifications of our family of 
backgrounds, black holes, and other solutions may illuminate various aspects of the N = 1, 
four dimensional family of SCFTs.

We hope to return to these problems soon.
18



P. Merrikin, C. Nunez and R. Stuardo Nuclear Physics B 996 (2023) 116356
CRediT authorship contribution statement

All authors of this manuscript are responsible for hundred per cent of all the contents and 
process involved in this paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The contents and presentation of this work much benefited from extensive discussion with 
various colleagues. We would like to make a special mention to Nikolay Bobev, Stefano Cre-
monesi and Alessandro Tomasiello. We would also like to thank very useful conversations with 
Mohammad Akhond, Andrea Legramandi, Yolanda Lozano, Daniel Thompson.

For the purpose of open access, the authors have applied a Creative Commons Attribution 
(CC BY) licence to any Author Accepted Manuscript version arising.

We are supported by STFC grant ST/T000813/1. The work of R.S. is supported by STFC 
grant ST/W507878/1.

Appendix A

In this appendix we outline in detail the construction of the infinite family of solutions of 
Massive Type IIA used in this paper. We begin by considering 7D SU(2) Topologically Massive 
gauged Supergravity. We propose an ansatz and derive the BPS equations from the SUSY vari-
ations. Finally, we outline the uplift of the 7D background to 10D Massive Type IIA, following 
the procedure used in [30].

Starting in Appendix A.1.1 we change slightly the notation respect to the main body of the 
paper. We denote with a prime ()′ the derivative with respect to the r-coordinate.

A.1. 7D SU(2) Topologically Massive gauged Supergravity

The Lagrangian, in string frame, of the bosonic fields of the 7D SU(2) Topologically Massive 
Supergravity is given by,

L = √−ge−2�

[
R − 1

8
F i

μνF
μν i + 4∂μ�∂μ� −

(
m2

2
e−4� − 4me−2� − 4

)]
− 1

2
e2� ∗ G4 ∧ G4 + 1

4
F i ∧ F i ∧ B3 − m

2
G4 ∧ B3,

(A.1)

where G4 = dB3, F = dA + iA ∧ A, and A is a su(2) valued gauge 1-form, i.e. A = AiT i . The 
SUSY variations of the fermionic fields of the theory are
19
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δλ =
[
�μ∂μ� − i

4
�μνFμν + 1

48
e2��μνλρGμνλρ − me−2� + 1

]
ε, (A.2)

δ�μ =
[
Dμ + iAμ − i

2
�νFμν + 1

96
e2�� νλρσ

μ Gνλρσ − m

4
e−2��μ

]
ε, (A.3)

where the covariant derivative is given by

Dμε =
(

∂μ + 1

4
ω ab

μ �ab

)
ε. (A.4)

Here μ, ν are spacetime indices while a, b are tangent space ones.
We want to derive the BPS equations using a method similar to the one showed in [31], 

where the author studied the same Supergravity theory but for vanishing topological mass (m =
0). For this, we need to redefine our 1-form gauge field as follows: first we express the su(2)

generators, T i , in terms of the Pauli matrices, σ i , as T i = σ i

2 . Then we derive the expression for 
the components of the field strength along the algebra generators. Using A ∧ A = 1

2 [A, A], we 
have

F = dA + i

2
[A,A] = dAi σ

i

2
+ i

8

[
σ j , σ k

]i
Aj ∧ Ak. (A.5)

Using the algebra of the Pauli matrices, 
[
σ i, σ j

]= 2i εijkσ k , and expanding F = F i σ i

2 , we 
get

F i = dAi − 1

2
εijkAj ∧ Ak. (A.6)

In order to get both the same field strength and SUSY variations as in [31] in the limit m = 0, 
we redefine Ai → −Ai , which leads to

F i = −
(

dAi + 1

2
εijkAj ∧ Ak

)
= −F ′ i . (A.7)

Note that this change doesn’t affect the Lagrangian since it is quadratic in F, while the SUSY 
variations now change, since they are linear in A and F . Using these redefinitions and expanding 
in the algebra generators, one finds

δλ =
[
�μ∂μ� + i

8
�μνF i

μνσ
i + 1

48
e2��μνλρGμνλρ − me−2� + 1

]
ε, (A.8)

δ�μ =
[
Dμ − i

2
Ai

μσ i + i

4
�νF i

μνσ
i + 1

96
e2�� νλρσ

μ Gνλρσ − m

4
e−2��μ

]
ε, (A.9)

note that we dropped the ′ of F ′.

A.1.1. Background ansatz
For the background metric we consider the following fibred version of R3,1 × 	k ×R

ds2 = e2f (r)dx2
3,1 + e2h(r)

(
dθ2 + 1

k
sin2(

√
kθ)dφ2

)
+ dr2, (A.10)

where k is proportional to the curvature of 	k . Taking k = −1, 0, 1, gives 	k = H 2, R2 or 
S2, respectively. Because we are interested in studying twisted compactifications we will only 
consider the cases k = ±1.
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The rest of the background fields are B3 = 0, � = �(r) and

A1 = −k a(r)dθ, A2 = 1√
k
a(r) sin(

√
kθ)dφ, A3 = −1

k
cos(

√
kθ)dφ, (A.11)

which leads to the field strengths3

F 1 = −k a′(r) dr ∧ dθ, F 2 = 1√
k
a′(r) sin(

√
kθ) dr ∧ dφ,

F 3 =
(

1 − k a2(r)
) sin(

√
kθ)√
k

dθ ∧ dφ. (A.12)

In what follows we will need the vielbeins

em̂ = ef (r)dxm, eθ̂ = eh(r)dθ, eφ̂ = 1√
k
eh(r) sin(θ)dφ, êr = dr, (A.13)

and the spin connection

ωm̂̂r = f ′(r) ef (r)dxm, ωθ̂φ̂ = − cos(
√

kθ)dφ, ωθ̂ r̂ = h′(r) eh(r)dθ,

ωφ̂r̂ = 1√
k
h′(r) eh(r) sin(

√
kθ)dφ. (A.14)

In the vielbein basis, we have

A1 = −k a(r) e−h(r)eθ̂ , A2 = a(r) e−h(r)eφ̂, A3 = 1√
k
e−h(r)cotg(

√
kθ)eφ̂, (A.15)

F 1 = k a′(r)e−h(r)eθ̂ ∧ êr , F 2 = −a′(r)e−h(r)eφ̂ ∧ êr ,

F 3 =
(

1 − k a2(r)
)
e−2h(r)eθ̂ ∧ eφ̂, (A.16)

ωm̂̂r = f ′(r)em̂, ωθ̂φ̂ = −√
k e−h(r)cotg(

√
kθ)eφ̂, ωθ̂ r̂ = h′(r)eθ̂ , ωφ̂r̂ = h′(r)eφ̂ .

(A.17)

A.2. From SUSY variations to BPS equations

Substituting the above ansatz into the expressions for the SUSY variations, one derives BPS 
equations as outlined below. We begin with the Dilatino variation and move onto the Gravitino 
variations.

A.2.1. Dilatino variation
Substituting the ansatz into the Dilatino variation leads to

δλ =
[
�r̂�

′(r) + i

4

(
k a′(r)e−h(r)�θ̂ r̂σ

1 − a′(r)e−h(r)�φ̂r̂σ
2

+
(

1 − k a2(r)
)
e−2h(r)�θ̂φ̂σ 3

)
− me−2�(r) + 1

]
ε. (A.18)

3 In the appendixes, we have denoted the derivative with respect to r with a prime. In the main body of the paper we 
have reserved the primes for derivatives with respect to z, whilst denoting the r-derivatives with a dot.
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We now impose the projection

�θ̂φ̂ε = 1

k
σ 1σ 2ε. (A.19)

Recalling that the Pauli matrices satisfy σ 1σ 2σ 3 = i, we have

δλ =
[
�r̂�

′(r) + i

4
a′(r)e−h(r)

(
k �θ̂r̂σ

1 − �φ̂r̂σ
2
)

− 1

4k

(
1 − k a2(r)

)
e−2h(r) − me−2�(r) + 1

]
ε, (A.20)

then, by multiplying by �r̂ , we get

�r̂δλ =
[
�′(r) − i

4
a′(r)e−h(r)

(
k �θ̂σ

1 − �φ̂σ 2
)

+
(

1 − me−2�(r) − 1

4k

(
1 − k a2(r)

)
e−2h(r)

)
�r̂

]
ε. (A.21)

Using the projection (A.19) and the fact that k = ±1 one can show that(
k �θ̂σ

1 − �φ̂σ 2
)

ε = 2k�θ̂σ
1ε. (A.22)

Replacing this in the variation, yields

�r̂δλ =
[
�′(r) − i

2
k a′(r)e−h(r)�θ̂σ

1

+
(

1 − me−2�(r) − 1

4k

(
1 − k a2(r)

)
e−2h(r)

)
�r̂

]
ε. (A.23)

A.2.2. Gravitino variation
We now switch our focus to the Gravitino variations, focusing on the m̂, θ̂ , φ̂ and r̂ com-

ponents in turn. From the m = 0, 1, 2, 3 components of the variation of the gravitino in tangent 
space indices, we have

δψm̂ =
(

1

2
f ′(r)�m̂r̂ − m

4
e−2�(r)�m̂

)
ε, (A.24)

and multiplying by 2�r̂m̂, gives

2�r̂m̂δψm̂ =
(
f ′(r) − m

2
e−2�(r)�r̂

)
ε. (A.25)

From the ̂θ component, we have

δψθ̂ =
[

1

2
h′(r)�θ̂ r̂ + i

2
k a(r) e−h(r)σ 1

+ i

4

(
k a′(r)e−h(r)�r̂σ

1 +
(

1 − k a2(r)
)
e−2h(r)�φ̂σ 3

)
− m

4
e−2�(r)�θ̂

]
ε. (A.26)
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Multiplying by 2�r̂θ̂ , we get

2�r̂θ̂ δψθ̂ =
[
h′(r) + i k a(r) e−h(r)�r̂θ̂ σ

1 + i

4

(
−k a′(r)e−h(r)�θ̂σ

1

+
(

1 − k a2(r)
)
e−2h(r)�r̂�θ̂φ̂σ 3

)
− m

4
e−2�(r)�r̂

]
ε. (A.27)

Using the projection (A.19) leads to

2�r̂θ̂ δψθ̂ =
[
h′(r) + i k a(r) e−h(r)�r̂θ̂ σ

1 − i

2
k a′(r)e−h(r)�θ̂σ

1

− 1

2k

(
1 − k a2(r)

)
e−2h(r)�r̂ − m

2
e−2�(r)�r̂

]
ε. (A.28)

From the φ̂ component we have

δψφ̂ =
[

1

2

(
h′(r)�φ̂r̂ − √

ke−h(r)cotg(
√

kθ)�θ̂φ̂

)
− i

2

(
a(r) e−h(r)σ 2 + 1√

k
e−h(r)cotg(

√
kθ)σ 3

)
+ i

4

(
−a′(r)e−h(r)�r̂σ

2 −
(

1 − k a2(r)
)
e−2h(r)�θ̂σ

3
)

− m

4
e−2�(r)�φ̂

]
ε. (A.29)

Using (A.19), the second and the fourth term cancel. This is the effect of the topological twist. 
We are left with

δψφ̂ =
[

1

2
h′(r)�φ̂r̂ − i

2
a(r) e−h(r)σ 2

+ i

4

(
−a′(r)e−h(r)�r̂σ

2 −
(

1 − k a2(r)
)
e−2h(r)�θ̂σ

3
)

− m

4
e−2�(r)�φ̂

]
ε, (A.30)

then multiplying by 2�r̂φ̂ , gives

2�r̂φ̂δψφ̂ =
[
h′(r) − i a(r) e−h(r)�r̂φ̂σ 2

+ i

2

(
a′(r)e−h(r)�φ̂σ 2 +

(
1 − k a2(r)

)
e−2h(r)�r̂�θ̂φ̂σ 3

)
− m

2
e−2�(r)�r̂

]
ε.

(A.31)

Using the projection again, leads to

2�r̂φ̂δψφ̂ =
[
h′(r) − i a(r) e−h(r)�r̂φ̂σ 2

+ i

2
a′(r)e−h(r)�φ̂σ 2 − 1

2k

(
1 − k a2(r)

)
e−2h(r) − m

2
e−2�(r)�r̂

]
ε, (A.32)

and due to (A.22), we have k�θ̂σ
1ε = −�φ̂σ 2ε, giving

2�r̂φ̂δψφ̂ =
[
h′(r) + i k a(r) e−h(r)�r̂θ̂ σ

1

− i

2
k a′(r)e−h(r)�θ̂σ

1 − 1

2

(
1 − k a2(r)

)
e−2h(r) − m

2
e−2�(r)�r̂

]
ε, (A.33)
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so we see that �r̂θ̂ δψθ̂ = �r̂φ̂δψφ̂ .

Finally, from the ̂r component of the gravitino variation, we have

δψr̂ =
[
∂r + i

4

(
−k a′(r)e−h(r)�θ̂σ

1 + a′(r)e−h(r)�φ̂σ 2
)

− m

4
e−2�(r)�r̂

]
ε, (A.34)

which can be rewritten as

δψr̂ =
[
∂r + i

4
a′(r)e−h(r)

(
−k �θ̂σ

1 + �φ̂σ 2
)

− m

4
e−2�(r)�r̂

]
ε, (A.35)

and using the projection, we find

δψr̂ =
[
∂r − i

2
k a′(r)e−h(r)�θ̂σ

1 − m

4
e−2�(r)�r̂

]
ε. (A.36)

After imposing δλ = 0 and δψμ = 0, the results (A.23), (A.25) and (A.28) lead to the follow-
ing BPS equations

�′(r)ε − i

2
k a′(r)e−h(r)�θ̂σ

1ε +
(

1 − me−2�(r) − 1

4k

(
1 − k a2(r)

)
e−2h(r)

)
�r̂ε = 0,

(A.37)

f ′(r)ε − m

2
e−2�(r)�r̂ε = 0, (A.38)

h′(r)ε + i k a(r) e−h(r)�r̂θ̂ σ
1ε − i

2
k a′(r)e−h(r)�θ̂σ

1ε

− 1

2k

(
1 − k a2(r)

)
e−2h(r)�r̂ ε − m

2
e−2�(r)�r̂ε = 0, (A.39)

∂rε = i

2
k a′(r)e−h(r)�θ̂σ

1ε + m

4
e−2�(r)�r̂ε. (A.40)

A.2.3. Rearranging the SUSY variations
Following the procedure given in [31], we now rearrange the SUSY variations to obtain the 

BPS equations. For this, we use the properties of the � matrices to simplify the equations ob-
tained in the previous subsection.

Let us start by rewriting the dilatino variation (A.23) as

�r̂ε = βε + β̃i�θ̂ σ
1ε, (A.41)

with

β = −�′(r)
1 − me−2�(r) − 1

4k
(1 − k a2(r))e−2h(r)

, (A.42)

β̃ =
1
2k a′(r)e−h(r)

1 − me−2�(r) − 1
4k

(1 − k a2(r))e−2h(r)
. (A.43)

By applying �r̂ to (A.41), we get

ε = β �r̂ε − iβ̃ �θ̂σ
1�hrε. (A.44)

Using (A.41), gives

ε = β
(
β ε + β̃ i�θ̂ σ

1ε
)

− iβ̃ �θ̂σ
1
(
β ε + β̃ i�θ̂ σ

1ε
)

, (A.45)
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and by simplifying, we obtain

ε = (β2 + β̃2)ε, (A.46)

from which we see that

β2 + β̃2 = 1. (A.47)

Multiplying (A.38) by �r̂ we get

f ′(r)�r̂ε = m

2
e−2�(r)ε. (A.48)

Combining this with (A.38) leads to(
f ′ 2(r) − m2

4
e−4�(r)

)
ε = 0, (A.49)

which means that

f ′(r) = ±m

2
e−2�(r). (A.50)

Now we go back to (A.48) and substitute in (A.41) as follows

f ′(r)
(
β + β̃ i�θ̂ σ

1
)

ε − m

2
e−2�(r) = 0. (A.51)

Collecting terms with and without i�θ̂σ
1, we get(

f ′(r)β − m

2
e−2�(r)

)
ε + f ′(r) β̃ i�θ̂σ

1 = 0, (A.52)

from where we get two equations

f ′(r)β = m

2
e−2�(r), (A.53)

f ′(r)β̃ = 0. (A.54)

From (A.50) and (A.53) we get β = ±1, and from (A.54) we get β̃ = 0, which in (A.43) gives

a′(r) = 0, (A.55)

and hence, (A.41) becomes

�r̂ε = βε. (A.56)

Now we turn to (A.39). By replacing (A.56) and a′(r) = 0, we get

h′(r)ε − iβ k a(r) e−h(r)�θ̂σ
1ε − β

1

2k

(
1 − k a2(r)

)
e−2h(r)ε − β

m

2
e−2�(r)ε = 0. (A.57)

Again, by collecting terms with and without i�θ̂σ
1, we get(

h′(r) − β
1

2k

(
1 − k a2(r)

)
e−2h(r) − β

m

2
e−2�(r)

)
ε − iβ k a(r) e−h(r)�θ̂σ

1ε = 0.

(A.58)
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From which we get

h′(r) − β
1

2k

(
1 − k a2(r)

)
e−2h(r) − β

m

2
e−2�(r) = 0, (A.59)

a(r) e−h(r) = 0. (A.60)

From the second result, we necessarily get a(r) = 0. After implementing this condition into 
(A.42) and (A.59), we finally derive the following BPS equations for f (r) (which we got from 
(A.50)), h(r) and �(r)

f ′(r) = ±m

2
e−2�(r), (A.61)

h′(r) = ±1

2

(
1

k
e−2h(r) + me−2�(r)

)
, (A.62)

�′(r) = ±
(

−1 + 1

4k
e−2h(r) + me−2�(r)

)
. (A.63)

The minus sign can be absorbed by r → −r .

A.3. Uplift to 10D Massive Type IIA

A.3.1. Einstein frame and normalizations
The procedure which we will follow to uplift our 7D topologically massive solution is given 

in [30], however, the action we used for the 7D N = 2 SU(2) Gauged SUGRA is written in 
string frame, while in [30] is written in Einstein frame, hence we move our action to Einstein 
frame and then we compare normalizations and relevant constants. To move to Einstein frame 
we use the transformation

g(E)
μν = e−α�(r)g(S)

μν , (A.64)

in the action (A.1). Then, by comparing with [30] we see that α = 4
5 , m = 1, g = √

2, h = 1
2 and 

that our Dilaton �(r) is related to the one in [30], which we call ϕ(r), by

ϕ(r) = 2
√

10

5
�(r). (A.65)

Also, from the kinetic term for the gauge field, we see that in [30] the gauge field is normalised 
in a way in which the coupling constant appears in the definition of F rather than as a coefficient 
of the kinetic term F 2, while in (A.1) we consider the opposite. To match conventions we re-scale 
our gauge field and field strength as

A → − 1

g
A, F → − 1

g
F. (A.66)

With this, our 7D ansatz now reads

ds2 = e− 4
5 �(r)

(
e2f (r)ds2

3,1 + e2h(r)

(
dθ2 + 1

k
sin2(

√
kθ)dφ2

)
+ dr2

)
, (A.67)

together with the gauge field

A1 = 0, A2 = 0, A3 = 1 1
cos(

√
kθ)dφ, (A.68)
g k
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which leads to

F1 = 0, F2 = 0, F3 = − 1

g
Vol(	2

k). (A.69)

A.3.2. Uplift of 7D topologically Massive to Massive IIA
The massive Type IIA ansatz is given by

ds2 = 1

�
X(r)−

1
2 e2A(ρ)ds2

7 + X(r)
5
2 ds2

M3
, (A.70)

with � = 4, ds2
7 a solution of the 7D N = 2 Gauged Supergravity presented in the previous 

section, and

ds2
M3

= dρ2 + 1 − x(ρ)2

16ω
e2A(ρ)Ds2

S2 , (A.71)

where X(r) is given by the 7D dilaton

X(r) = e
2
5 �(r), (A.72)

and

ω = X(r)5(1 − x(ρ)2) + x(ρ)2. (A.73)

The covariantized metric Ds2
S2 on the sphere is constructed as follows. First we consider the 

normal unitary vector to the sphere

yi = (cos(φ2) sin(θ2), sin(φ2) sin(θ2), cos(θ2)) , (A.74)

then, the covariant line element is given by

Ds2
S2 = DyiDyi, Dyi = dyi + gεijkykAk, (A.75)

where Ai is the component along the ith Pauli matrix of the 7D gauge field. This spacetime is 
supported by the 10D Dilaton �

e2� = X(r)
5
2

ω
e2ψ(ρ), (A.76)

and the background forms

B2 =
[

1

16
e2A(ρ) x(ρ)

√
1 − x(ρ)2

ω
Vol2 −1

2
eA(ρ)dρ ∧

(
a − 1

g
yiAi

)]
, (A.77)

F2 = −q
(

Vol2 +g yiF i
)

+ 1

16ω
F0e

2A(ρ)x(ρ)

√
1 − x(ρ)2 Vol2, (A.78)

F4 = �

4

[
−g

q

16ω
e2A(ρ)x(ρ)

√
1 − x(ρ)2yiF i ∧ Vol2 −g

q

4
eA(ρ)dρ ∧ εijkF iyjDyk

]
+ G4 terms, (A.79)

where Vol2 is the volume element of the covariantised sphere, a = 1
2 cos(θ2)dφ2 and F0 is the 

Ramond mass (which is constant). Note that we have not written explicitly the terms proportional 
to the 7D 4-form, since we will not use them.
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This configuration is a solution to the equations of motion

1

4
R + ∇2� − (∇�)2 − 1

8
H 2

3 = 0, (A.80)

dFp + H3 ∧ ∗Fp−2 = 0, (A.81)

d(e−2� ∗ H3) − (F0 ∗ F2 + F2 ∧ ∗F4 + F4 ∧ F4) = 0, (A.82)

RMN + 2∇M∇N� − 1

2
(H 2

3 )MN − 1

4
e2�

∑
p

(F 2
p)MN, (A.83)

with p = 2, 4, 6, 8, 10, and

(F 2
p)MN = 1

(p − 1)!F
N1...Np−1

M FMN1...Np−1, (A.84)

and similarly for (H 2
3 )MN , provided ψ(ρ), x(ρ) and A(ρ) satisfy

d

dρ
ψ(ρ) = 1

4

e−A(ρ)√
1 − x(ρ)2

(
12x(ρ) +

(
2x(ρ)2 − 5

)
F0 eA(ρ)+ψ(ρ)

)
, (A.85)

d

dρ
x(ρ) = −1

2
e−A(ρ)

√
1 − x(ρ)2

(
4 + x(ρ)F0 eA(ρ)+ψ(ρ)

)
, (A.86)

d

dρ
A(ρ) = 1

4

e−A(ρ)√
1 − x(ρ)2

(
4x(ρ) − F0 eA(ρ)+ψ(ρ)

)
. (A.87)

A.3.3. Explicit uplift of the interpolating background
We now write explicitly the field configuration for the uplift of (A.67)-(A.69). The spacetime 

metric reads (here we rename (θ, φ) → (θ1, φ1) with respect to the 7D solution)

ds2 = 1

�
X(r)−

1
2 e2A(ρ)e− 4�(r)

5

[
e2f (r)dx2

3,1 + dr2 + e2h(r)

(
dθ2

1 + 1

k
sin2(

√
kθ1)dφ2

1

)]
+ X(r)5/2

[
dρ2 + 1 − x(ρ)2

16ω
e2A(ρ)

(
dθ2

2 + sin2(θ2)

(
dφ2 − 1

k
cos(

√
kθ1)dφ1

)2
)]

,

(A.88)

with � = 4, while the background forms read

B2 =
(

1

16ω
e2A(ρ)x(ρ)

√
1 − x(ρ)2 sin(θ2)dθ2 − 1

4
eA(ρ) cos(θ2)dρ

)
∧
(

dφ2 − 1

k
cos(

√
kθ1)dφ1

)
,

F2 = 1

4
eA(ρ)−ψ(ρ)

√
1 − x(ρ)2

[
cos(θ2)Vol(	k) − Vol(S2

c )
]

+ 1

16ω
F0e

2A(ρ)x(ρ)

√
1 − x(ρ)2 Vol(S2

c ), (A.89)

F4 = e3A(ρ)−ψ(ρ)

64ω
cos(θ2) x(ρ)

(
1 − x(ρ)2

)
Vol(	k) ∧ Vol(S2)

+ e2A(ρ)−ψ(ρ)

16
sin2(θ2)

√
1 − x2(ρ) dρ ∧ dφ2 ∧ Vol(	k),
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where

Vol(S2) = sin(θ2)dθ2 ∧ dφ2, (A.90)

is the volume of the 2-sphere of the internal manifold, while

Vol(S2
c ) = sin(θ2)dθ2 ∧

(
dφ2 − 1

k
cos(kθ1)dφ1

)
, (A.91)

is the volume of the covariantised 2-sphere. Note that

Vol(	k) ∧ Vol(S2
c ) = Vol(	k) ∧ Vol(S2). (A.92)

A.3.4. Page fluxes
In order to get a quantised number of charges, we need to consider the Page fluxes, given by

F̂p = Fp ∧ e−B2, (A.93)

for the RR fields. Explicitly we have

F̂2 = F2 − B2F0 = 1

4
eA(ρ)−ψ(ρ)

√
1 − x(ρ)2

[
cos(θ2)Vol(	k) − Vol(S2

c )
]

+ F0
eA(ρ)

4
cos(θ2)dρ ∧

(
dφ2 − 1

k
cos(

√
kθ1)dφ1

)
, (A.94)

F̂4 = F4 − F2 ∧ B2 + 1

2
B2 ∧ B2F0

= 1

16
e2A(ρ)−ψ(ρ)

√
1 − x(ρ)2dρ ∧ dφ2 ∧ Vol(	k). (A.95)

A.3.5. Rewriting in terms of α(z)

Finally, it can be shown (as in [32]) that the 10D BPS equations can be solved in terms of just 
one function, α(z), provided (A, x, ψ) are of the following form

A(ρ) = 1

2
ln

(
8π

√
2

√
− α(z)

α′′(z)

)
, (A.96)

ψ(ρ) = 1

4
ln

⎛⎜⎝e4ψ0

(
− α(z)

α′′(z)

)3

(
α′(z)2 − 2α(z)α′′(z)

)2

⎞⎟⎠ , (A.97)

x(ρ) =
√

1 + 2α(z)α′′(z)
α′(z)2 − 2α(z)α′′(z)

, (A.98)

where the coordinate z is related to ρ via the following change of coordinates

dρ =
√

π
√

2

(
−α′′(z)

α(z)

) 1
4

dz. (A.99)

This is a solution of the 10D BPS equations provided α(z) satisfies

α′′′(z) = 2− 1
4
√

πeψ0F0. (A.100)

In terms of this new variable, the metric and background fields are the ones in (2.2)-(2.3).
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Appendix B. Numerical solution of the BPS system

Here we give a detailed derivation of the numerical solutions that describe the flow from AdS7
to AdS5 × H 2. The starting point is to consider a linear perturbation around the IR fixed point 
and use that as initial conditions for the numerical solution.

B.1. Infrared fixed point

We are looking for solutions to the BPS equations for f (r), h(r) and �(r), which we quote 
here for convenience,

f ′ = m

2
e−2�, (B.1)

h′ = 1

2

(
1

k
e−2h + me−2�

)
, (B.2)

�′ =
(

−1 + 1

4k
e−2h + me−2�

)
, (B.3)

that have constant h(r) and �(r). This will correspond to the IR fixed point, and we note that it 
exists only for k = −1. The solutions

f (r) = 2

3
r, h(r) = 1

2
ln

(
3

4

)
, �(r) = 1

2
ln

(
3m

4

)
, (B.4)

are exact solutions to the BPS equations, and the spacetime obtained from this corresponds to 
AdS5 × H 2.

B.2. Linear perturbations

Here we consider linear deviations from the IR fixed point

f (r) = 2

3
r + ε a(r), (B.5)

h(r) = 1

2
ln

(
3

4

)
+ ε b(r), (B.6)

�(r) = 1

2
ln

(
3m

4

)
+ ε c(r). (B.7)

Replacing in the BPS equations and keeping only first order terms in ε, we obtain linear 
equations for the linear perturbations

a′ = −4

3
c, (B.8)

b′ = 4

3
(b − c), (B.9)

c′ = 1

3
(2b − 8c). (B.10)
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This system has as solution

a(r) = C1

3
(
√

7 + 2)e− 2
3 (

√
7+1)r − C2

3
(
√

7 − 2)e
2
3 (

√
7−1)r , (B.11)

b(r) = C1e
− 2

3 (
√

7+1)r + C2e
2
3 (

√
7−1)r , (B.12)

c(r) = C1

2
(
√

7 + 3)e− 2
3 (

√
7+1)r − C2

2
(
√

7 − 3)e
2
3 (

√
7−1)r . (B.13)

We are interested in solutions to vanish for r → −∞, which is the location of the fixed point, 
hence we set C1 = 0 and also without loss of generality we can set C2 = 1.

Finally, to obtain the numerical solutions we use the perturbations around the fixed point 
(B.5)-(B.7) as initial conditions at r = −8. Fig. 1 shows these numerical solutions.

Appendix C. Analysis of the 4d QFT

Referring to the four dimensional N = 1 quiver in Fig. 6, we assign R-charges and anoma-
lous dimensions for each of the fields. For the adjoint scalars �i , the vector multiplets Wi , the 
bifundamentals between gauge nodes (Q, Q̃) and the fundamentals (q, q̄) we propose

The R-charges: R[�i] = 1, R[Wi] = 1, R[Q] = R[Q̃] = R[q] = R[q̃] = 1

2
. (C.1)

The anomalous dimensions: γ�i
= 1, γQ = γ

Q̃
= γq = γq̃ = −1

2
. (C.2)

Notice that the dimension of any combination of fields O satisfies

dimO = 3

2
RO.

As should occur at conformal points. In particular the following superpotential terms are present,

W ∼ μi�i�i + qi q̄j qj q̄i + all other combinations. (C.3)

The R-charge of each of these possible terms is R[W] = 2 and their dimension dim[W] = 3. 
The mass term for all the adjoint scalars decouples them from the IR dynamics. They do not 
participate in the quantities computed below. The quartic term, on the other hand, generates 
interactions between all the different P 2(g − 1) horizontal lines of the quiver, by closing loops 
using the flavour groups. As one can start seeing, the behaviour of these quivers is somewhat 
reminiscent of those in [33]. Let us calculate the beta functions and the R-symmetry anomaly for 
each gauge group of the quiver in Fig. 6.

C.0.1. Beta functions
For any particular node we use the NSVZ beta function β ∼ 3Nc − Nf i(1 − γi), we find

βi ∼ 3Ni − (Ni+1 + Ni−1 + Fi)(1 − (−1

2
)) = 3

2

[
2Ni − Fi − Ni+1 − Ni−1

]
= 0. (C.4)

As we start with a balanced quiver in the UV (the six dimensional quiver must cancel gauge 
anomalies), the beta function in four dimensions vanishes for each gauge group. It is nice to see 
how the six dimensional anomaly transmuted into the four dimensional beta function condition 
for conformality.
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C.0.2. R-symmetry anomaly
We calculate using the expression �
 = T (Ri)R(fi). We use that T (adji) = 2Ni and 

T (f und) = 1. We find

�
i = 2Ni × 1 + (Fi +Ni+1 +Ni−1)× 2 × (−1

2
) = 2Ni −Fi −Ni+1 −Ni−1 = 0. (C.5)

The comments written below eq. (C.4) also apply here. Both these calculations add to the pro-
posal that the quiver in Fig. 6 describes the dynamics of our AdS5 fixed point.

Other interesting quantities are the central charges a and c.

C.1. Central charges

They are defined as,

a = 3

32π

[
3TrR3 − TrR

]
, c = 1

32π

[
9TrR3 − 5TrR

]
. (C.6)

Calculating explicitly for the quiver in Fig. 6, we find

TrR = P 2(g − 1)
[P−1∑

j=1

(N2
j − 1) × 1 + NjFj × (−1

2
) × 2 +

P−2∑
j=1

NjNj+1 × (−1

2
) × 2

]

= P 2(g − 1)
[P−1∑

j=1

(N2
j − 1 − NjFj ) −

P−2∑
j=1

NjNj+1

]
.

TrR3 = P 2(g − 1)
[P−1∑

j=1

(N2
j − 1) × 13 + NjFj × (−1

2
)3 × 2

+
P−2∑
j=1

NjNj+1 × (−1

2
)3 × 2

]

= P 2(g − 1)
[P−1∑

j=1

(N2
j − 1 − 1

4
NjFj ) − 1

4

P−2∑
j=1

NjNj+1

]
.

Using eqs. (C.6) we have,

a = 3

16π
P 2(g − 1)

[P−1∑
j=1

(N2
j − 1) + 1

8
NjFj + 1

8

P−2∑
j=1

NjNj+1

]
, (C.7)

c = 1

8π
P 2(g − 1)

[P−1∑
j=1

(N2
j − 1) + 11

16
NjFj + 11

16

P−2∑
j=1

NjNj+1

]
. (C.8)

To gain some intuition, we discuss explicitly two illustrative examples.

C.1.1. Example 1
In this case we take

Nj = jN, Fj = NPδj,P−1.
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We find, for large values of N and P (the holographic limit!)

a = 9

128π
P 5N2(g − 1)

(
1 + O(

1

P
)

)
, c ∼ a. (C.9)

The comparison between eqs. (C.9) and (3.11) suggests that in the QFT side there must be other 
fields that whilst not contributing to the beta function and R-anomaly, it makes a contribution to 
the a and c central charges. The contribution of these fields, that we denote as X should modify 
the result in eq. (C.9) (at leading order in P ) according to,

a = 9

128π
N2P 5(g − 1)(1 + δX ), 15δX = 1. (C.10)

C.1.2. Example 2
In this case we take

Nj = N, Fj = N(δj,1 + δj,P−1).

We find, in the holographic limit,

a = 27

128π
P 3N2(g − 1)

(
1 + O(

1

P
)

)
, c ∼ a. (C.11)

The comparison between eqs. (C.11) and (3.14) suggests that in the QFT side there must be other 
fields (not contributing to the beta function and R-anomaly), but adding a contribution to the a
and c central charges. The contribution of these fields, that we denote as X should be of the form 
(at leading order in P )

a = 27

128π
N2P 3(g − 1)(1 + δX ), 3δX = 1. (C.12)

This suggests that in our definition of the QFT quiver, new fields should enter adding these small 
contributions to the a central charge. Indeed, the presence of ‘flip fields’ that couple to irrelevant 
operators of the baryonic type is common in field theories of the class Sk . These fields are gauge 
singlets and decouple at low energies. They do not contribute to the beta functions or R-symmetry 
anomaly, but do change the result of a, c. It would be nice to see that their contribution can be 
δX given in eqs. (C.10)-(C.12).
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