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1 Introduction

The scattering amplitudes of gluons within a pure SU(Nc) gauge theory are important from
a phenomenological viewpoint where there is considerable demand for new predictions
particularly at “Next-to-Next-to-Leading Order” (NNLO) [1]. Also, amplitudes are the
custodians of the symmetries of the theory and as such are important theoretical objects
encapsulating information on the symmetries and properties of the theory.

The amplitudes for gluon scattering are functions both of the kinematic variables of
the scattered particles but also depend upon their gauge charges or color. Given this, it is
often convenient and informative to expand the full amplitude in terms of color structures
Cλ multiplying partial amplitudes which contain the kinematic dependence

A(ℓ)
n =

∑
λ

A
(ℓ)
n:λCλ , (1.1)

where ℓ denotes the loop order of the n-point amplitude.
An important expansion is where the color factors are products of the trace of color

matrices. Gauge invariance implies that not all the partial amplitudes are independent but
that there may be relations amongst them possibly allowing less computational effort to
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determine the full color amplitude. In particular “decoupling identities” which are obtained
by extending the gauge group to U(Nc) and looking at the relations necessary for the U(1)
gauge boson to decouple. However, these do not exhaust the relations amongst partial
amplitude and, for example, there exist Kleiss-Kuijf relations [2] among the tree amplitudes
which coincide with the decoupling identities for low n but are beyond decoupling identities
in general. Also, at one loop the subleading in color partial amplitudes can be expressed in
terms of the leading [3]: this identity again coinciding with decoupling for low n. In ref. [4]
and [5, 6] it was shown that further identities among the two-loop amplitudes for four and
five point amplitudes were obtained by using iterative methods assuming a three-point
diagrammatic expansion.

In this paper we wish to explore the space of possible linear identities by examining
the known amplitudes among two-loop amplitudes. Specifically these are expressions of
the form ∑

λ

aλA
(2)
n:λ = 0 , (1.2)

where the aλ are pure numbers not dependent upon the kinematic variables or helicity of
the outgoing states.

Unfortunately there are very few two-loop amplitudes in pure Yang-Mills for whom
analytic forms are known which we can use to test and examine potential identities. Am-
plitudes are organised according to the helicity of the external gluon: we use the convention
that all states are outgoing. Only for the four point amplitude are all partial amplitudes
known for all helicity states [7, 8]. At five-point the leading in color amplitudes are known
in analytic form from a series of papers. Initially, due to its simplicity, the first calculation
was for the special helicity configuration where all the (outgoing) helicities are positive (or
all negative) which we describe as the “all-plus” amplitude [9, 10]. These two loop am-
plitudes are considerably simpler in functional form than a general amplitude because the
tree amplitude vanishes and consequently the one-loop amplitude is a pure rational func-
tion [11]. Subsequently the leading in color single minus amplitude [12] and the remaining
leading in color partial amplitudes [13] have been computed.

Beyond the four-point amplitude and the leading in color at five point, only amplitudes
with the all-plus helicity configuration are know. Specifically these are known for five [14,
15] and six gluons. [16]. Additionally a specific partial amplitude is known for n points. [17].

Using the all-plus five and six-point known amplitudes we can verify the expected
relations and determine if, and how many, further linear relations exist among the partial
amplitudes. Although relations identified for a particular helicity can only be conjectured
to extend to all helicities we can definitely say there are no further identities beyond those
satisfied by the all-plus amplitude.

2 Color decompositions

In this section we will examine the color decomposition in detail. We will start with a
review of tree and one loop decompositions before discussing the two-loop amplitudes.
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In a Yang-Mills gauge theory with the gluons lying in the adjoint representation a
n-gluon amplitude may be expanded in the gauge coupling constant,

An = gn−2∑
ℓ≥0

aℓA(ℓ)
n , (2.1)

where a = g2e−γEϵ/(4π)2−ϵ and A(ℓ)
n is the ℓ loop amplitude which will be expanded in

color structures as in eq. (1.2).
Our starting point is the color trace decomposition of a n-point gluon scattering am-

plitude at tree, ℓ = 0, level within a SU(Nc) or U(Nc) gauge theory. The full amplitude can
be decomposed into partial amplitudes in a process which separates color and kinematics

A(0)
n (1, 2, 3, · · · , n) =

∑
Sn/Zn

Tr[T a1T a2 · · ·T an ]A(0)
n (a1, a2, · · · , an), (2.2)

where the amplitude is expressed in terms of the color matrices T ai rather than the struc-
ture constants of the group. The partial amplitudes A

(0)
n (a1, a2, · · · , an) are cyclically

symmetric but not fully crossing symmetric. They are however fully gauge invariant since
for sufficiently large Nc the external gluons can have “color” choices which reduces the
sum to a single term. If, we can use the cyclic symmetry to choose a1 = 1, then the sum
over permutations is over the (n− 1)! permutations of (2, · · · , n). Additionally, the partial
amplitudes are reflection symmetric

A(0)
n (1, 2, 3, · · · , n) = (−1)nA(0)

n (n, · · · , 3, 2, 1) , (2.3)

so there are (n − 1)!/2 individual partial amplitudes. The above decomposition can be
derived from field theory [18–20] but it naturally arises in string theory and consequently
in field theory [21, 22].

Not all the partial amplitudes are independent but are related by gauge properties.
One route is to note that the expansion also applies to a U(Nc) gauge group but must vanish
if one (or more) of the external gluons carry a U(1) charge. Demanding this produces a
decoupling identity. For example setting leg 1 to be U(1) and extracting the coefficient of
Tr[T 2T 3 · · ·T n] implies that

A(0)
n (1, 2, 3, · · · , n) + A(0)

n (2, 1, 3, · · · , n) + · · ·A(0)
n (2, 3, · · · , 1, n) = 0. (2.4)

The expansion in terms of color traces is not unique and other expansions in terms
of color structures exist. In particular there is an expansion in terms of the structure
constants [23]

A(0)
n (1, 2, 3, · · · , n) =

∑
Sn−2

f1a2b1f b1a3b2 · · · f bn−1an−1nA(0)
n (1, a2, · · · , an−1, n), (2.5)

where we have selected legs 1 and n and the summation is over the (n − 2)! permutations
(a2, a3, · · · , an−1) of the remaining legs 2, · · · , n − 1.

The partial amplitudes in eq. (2.5) are the same as in eq. (2.2). To equate the two
expressions and to show this requires the following identity among the partial amplitudes,

A(0)
n (1, {α}, n, {β}) = (−1)|β|

∑
σ∈OP (α,βT )

A(0)
n (1, {σ}, n) (2.6)
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n # of A
(0)
n (1, σ) Rank of Decoupling System # of A

(0)
n (1, σ, n) extra relations

6 60 36 24 0
7 360 239 120 1
8 2520 1696 720 104

Table 1. This table enumerates the rank of the system of decoupling identities and demonstrates
this is not enough to determine eq. (2.6) for n > 6. The final column shows the number of extra
relations contained in the Kleiss-Kuijf relations beyond the decoupling identities.

where α and β are some sets of the remaining indices i.e. {α} = {a2, · · · ap} and {β} =
{ap+1, · · · an−1}. The summation is over the order permutations of α and βT . That is
permutations of the union of the sets where the ordering of α and βT are preserved. The
summation contains (r + s)!/r!s! terms where r, s are the number of indices in the sets α

and β respectively. In appendix A, specific examples of order permutations are given.
These identities, known as Kleiss-Kuijf relations [2], overlap with the decoupling iden-

tities but contain for n ≥ 7 more information. For n ≤ 6 decoupling identities are sufficient
to prove eq. (2.6) but for n > 6 the rank of the system of decoupling identities in not large
enough to prove eq. (2.6) (although for n = 7 the rank is just insufficient). We can see
this from table 1 where we have evaluated the number of independent conditions (rank)
obtained by all possible decoupling equations. For n = 6 this rank of 36 is exactly that
needed to express the 60 A

(0)
6 (1, σ) in terms of the 24 A

(0)
6 (1, σ, n). However for n = 7 there

is (just) insufficient information with the disparity increasing with n. In practice, at n = 7
we cannot find decoupling relations which express

A
(0)
7 (1, a, b, c, 7, d, e) (2.7)

in terms of A
(0)
7 (1, σ, 7) although the combination

A
(0)
7 (1, a, b, c, 7, d, e) + A

(0)
7 (1, a, b, 7, c, d, e) (2.8)

may be.
Beyond n = 7, it is the A

(0)
n (1, S1, n, S2) where the length of both Si is at least two

and one has length greater than two which the decoupling identities fail to determine.
The partial amplitudes A

(0)
n (1, a2, · · · , an−1, n) form a minimal set in that there are no

further linear relations between them valid for all helicities as can be verified by examining
the known tree amplitudes.

We are interested in this article in relations between amplitudes with constant coef-
ficients. For tree amplitudes there are further relations if we allow the coefficients which
depend upon kinematic factors but which are independent of helicity. These rely upon the
Bern, Carrasco and Johansson relation (BCJ) for gauge theories [24]. These can reduce
the (n − 2)! basis to a (n − 3)! basis for tree amplitudes [25].
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At one-loop the decomposition in terms of color traces contains both single trace terms
and double trace terms [26]

A(1)
n (1, 2, 3 , · · · , n) =

∑
Sn/Zn

Nc Tr[T a1T a2 · · ·T an ]A(1)
n:1(a1, a2, · · · , an)

+
∑

r

∑
Pn:r

Tr[T a1 · · ·T ar−1 ] Tr[T ar · · ·T an ]A(1)
n:r(a1, a2, · · · , ar−1; ar, · · · , an) . (2.9)

The single trace term has a factor of Nc and is thus referred to as the leading-in-color (or
planar) contribution. The summation over r for a SU(Nc) theory is r = 3, · · · [n/2]. For a
U(Nc) theory the summation is over r = 2, · · · [n/2] with the r = 2 term A

(1)
n:2(a1; a2, · · · , an)

which has color structure Tr(T a1) Tr(T a2 · · ·T an). We refer to partial amplitudes such as
A

(1)
n:2 as a U(Nc) specific amplitude.

For the one-loop amplitude the double trace terms are not independent but can be
expressed in terms of the leading

A(1)
n:r(a1, a2, · · · , ar−1; ar, · · · , an) = (−1)r

∑
σ∈COP{α}{βT }

A
(1)
n:1(σ) (2.10)

where α = {a1, · · · ar−1} and β = {ar · · · an}. The summation is over the ordered per-
mutations as before but factoring out equivalent permutations due to cyclic symmetry
(see appendix A for examples). This relation allows the double trace terms to be derived
from the leading in color terms only. This reduces the number of functional forms to be
computed in a calculation considerably.

There are some analogues between the one-loop relation eq. (2.10) and the tree relation
eq. (2.6). This relation can be obtained from the decoupling equations for n ≤ 5 but
beyond n = 5 the decoupling equations are not sufficient: e.g. see [27]. Explicitly, at n = 6,
decoupling identities determine the combination

A
(1)
6:4(a1, a2, a3; a4, a5, a6) + A

(1)
6:4(a1, a3, a2; a4, a5, a6) (2.11)

but in themselves do not determine the individual terms.
The relation (2.10) can be shown in multiple ways. It is a natural relation when Yang-

Mills theory is viewed as the low energy limit of open string theory [3]. In open string theory,
the gauge content of a U(Nc) theory is carried by the Chan-Paton factors at the string ends
which carry the color charge of quarks and anti-quarks respectively. The amplitude is given
by an integration over all possible world sheets. External adjoint states are obtained by
inserting a vertex operator with corresponding color matrix to a boundary. The equivalent
for one-loop is a world sheet with two boundaries. The contribution to a term

Tr[T a1 · · ·T ar−1 ] Tr[T ar · · ·T an ] (2.12)

arise from where states a1 to ar−1 are attached to a single boundary and states ar to an

are attached to the other. In ref [3] this diagrammatic view was developed into a proof
of the relation (2.10). In ref [27] the relation was derived using unitarity methods [3, 28]
together with the Kleiss-Kuijf relations.
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Note that the leading in color terms do not satisfy the Kleis-Kuijf relation (2.6) in
themselves. The simplest decoupling identity being

A
(1)
n:2(1; 2, 3, · · · , n) + A

(1)
n:1(1, 2, 3, · · · , n) + A

(1)
n:1(2, 1, 3, · · · , n) + · · ·A(1)

n:1(2, · · · , 1, n) = 0.

(2.13)
This is similar to the tree decoupling but with the additional A

(2)
n:2 term. The decoupling

identities will then imply (at least for n ≤ 6)

A
(1)
n:1(1, {α}, n, {β}) = (−1)|β|

∑
σ∈OP (α,βT )

A
(1)
n:1(1, {σ}, n) +

∑
A

(1)
n:2 (2.14)

so unless the functions A
(1)
n:2 are zero eq. (2.6) is not satisfied by the A

(1)
n:1.

The explicit form for A
(1)
n:2 of the all-plus helicity amplitude is

A
(1)
n:2(1+; 2+, 3+, · · · , n+) = −i

1
⟨2 3⟩⟨3 4⟩ · · · ⟨n 2⟩

∑
2≤i<j≤n

[1 i]⟨i j⟩[j 1] (2.15)

which is explicitly non-vanishing in eq. (2.14). This expression is from reference [15]. Al-
though we can regard the U(Nc) specific amplitudes as un-physical they are gauge invariant
and as such appear as building blocks in other amplitudes -this particular partial amplitude
is also the one-loop amplitude between a single photon and n − 1 gluons (all of positive
helicity) due to a scalar or fermion loop for which an earlier explicit analytic form ex-
ists [11]. The leading in color all-plus amplitude is related to the N = 4 MHV amplitude
by a dimension shifting of the loop integrals [29, 30]. Note that the expression in eq. (2.15)
matches that obtained from eq. (2.10) but only after significant simplification. Analytic
expressions derived from the decoupling and other such identities are often inefficient.

We now turn to the topic of this letter. A general two-loop amplitude for the scattering
of n gluons in a pure SU(Nc) or U(Nc) gauge theory may be expanded in a color trace
basis as

A(2)
n (1, 2, · · · , n) = N2

c

∑
Sn/Pn:1

Tr[T a1T a2 · · ·T an ]A(2)
n:1(a1, a2, · · · , an)

+Nc

[n/2]+1∑
r=2

∑
Sn/Pn:r

Tr[T a1T a2 · · ·T ar−1 ] Tr[T br · · ·T bn ]A(2)
n:r(a1, a2, · · · , ar−1; br, · · · , bn)

+
[n/3]∑
s=1

[(n−s)/2]∑
t=s

∑
Sn/Pn:s,t

Tr[T a1 · · ·T as ] Tr[T bs+1 · · ·T bs+t ] Tr[T cs+t+1 · · ·T cn ]

×A
(2)
n:s,t(a1, · · · , as; bs+1, · · · , bs+t; cs+t+1, · · · , cn)

+
∑

Sn/Pn:1

Tr[T a1T a2 · · ·T an ]A(2)
n:1B(a1, a2, · · · , an) . (2.16)

The partial amplitudes multiplying any trace of color matrices are cyclically symmetric in
the indices within the trace. The expression has single, double and triple trace terms. In
string theory these would arise from surfaces with three boundaries. The is also a single
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trace term A
(2)
n:1B which is sub-sub leading in powers of Nc. This arises in string theory

from a separate two-loop surface with a single boundary [17].
The summations simply count each color structure exactly once. Specifically, when

the sets are of different lengths (r − 1 ̸= n
2 , s ̸= t, t ̸= n−s

2 and 3s ̸= m, n) the sets Pn:λ are

Pn:1 = Zn(a1, · · · , an),
Pn:r = Zr−1(a1, · · · , ar−1) × Zn+1−r(ar, · · · , an), r > 1, r − 1 ̸= n + 1 − r

Pn:s,t = Zs(a1, · · · , as) × Zt(as+1, · · · , as+t) × Zn−s−t(as+t+1, · · · , an) . (2.17)

When the sets have equal lengths, to avoid double counting

P2m:m+1 = Zm(a1, · · · , am) × Zm(am+1, · · · , a2m) × Z2, (2.18)
Pn:s,s = Zs(a1, · · · , as) × Zs(as+1, · · · , a2s) × Zn−2s(a2s+1, · · · , an) × Z2,

P3m:m,m = Zm(a1, · · · , am) × Zm(am+1, · · · , a2m) × Zm(a2m+1, · · · , a3m) × S3,

P2m:2s,m−s = Z2s(a1, · · · , a2s) × Zm−s(a2s+1, · · · , as+m) × Zm−s(as+m+1, · · · , a2m) × Z2 .

The partial amplitudes are

A(2)
n:r r = 1 · · · [n/2] A(2)

n:r,s r, s = 1 · · · [n/3], r ≤ s (2.19)

of which the A
(2)
n:2 and A

(2)
n:1,s are the U(Nc) specific functions.

The two-loop expansion is an expansion in powers of Nc. Decoupling identities do
involve different powers of Nc since if we set

T 1 −→ T U(1) = 1√
Nc

I (2.20)

then
N2

c Tr
[
T 1T a2 · · ·T an

]
−→ N3/2

c Tr [T a2 · · ·T an ] (2.21)

and
N1

c Tr
[
T 1
]

Tr [T a2 · · ·T an ] −→ N3/2
c [T a2 · · ·T an ] (2.22)

and equating the coefficient of Tr [T a2 · · ·T an ] gives a decoupling identity amongst terms
of different order in Nc. However, decoupling identities do not relate the single trace
amplitudes A

(2)
n:1B to the other amplitudes. Instead they obey decoupling identities among

themselves identical to those satisfied by the tree amplitudes A
(0)
n . Consequently, for n ≤ 6

these are guaranteed to obey the same relation shown in eq. (2.6)
Decoupling identities can be used to express the U(Nc) specific amplitudes in terms of

the In terms of SU(Nc) partial amplitudes,. For example, from the above we have

A
(2)
n:2(1; 2, 3, · · · , n) + A

(2)
n:1(1, 2, 3, · · · , n) + A

(2)
n:1(2, 1, 3, · · · , n) + · · · + A

(2)
n:1(2, · · · , 1, n) = 0 .

(2.23)
This allows A

(2)
n:2 to be expressed in terms of the A

(2)
n:1. For the SU(Nc) amplitudes decoupling

identities are relatively limited only determining the triple trace partial amplitudes A
(2)
n:2,r.
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In total, after setting T 1 to be a U(1),

• the coefficient of Tr(T 2 · · ·T n) fixes A
(2)
n:2 as a sum of A

(2)
n:1 amplitudes

• the coefficient of Tr(T 2 · · ·T s−1) Tr(T s · · ·T n) fixes A
(2)
n:1,s is terms of A

(2)
n:s and A

(2)
n:s+1

• the coefficient of Tr(T 2) Tr(T 3 · · ·T s+2) Tr(T s+3 · · ·T n) enables the SU(Nc) functions
the A

(2)
n:2,s to be fixed as

A
(2)
n:2,s(1,2 ;3 · · ·s+3;s+4 · · ·n) =−

∑
A

(2)
n:1,s(2;1,3, · · ·s+3;s+4 · · ·n)

−
∑

A
(2)
n:1,s+1(2;3 · · ·s+3;1,s+4 · · ·n) (2.24)

=−
∑

σ∈COP ({3,···s+3},{1})
A

(2)
n:1,s(2;σ;s+4, · · ·n)−

∑
σ∈COP ({s+4,···n},{1})

A
(2)
n:1,s(2;3, · · ·s+3;σ)

where the summation denotes summing over the different locations leg one may ap-
pear. This expression is likely to be the simplest but the U(Nc) specific functions
can be substituted to leave an expression purely in terms of the SU(Nc) functions.

The first triple trace term which cannot be determined from decoupling identities will
be the nine-point partial amplitude A

(2)
9:3,3 for which decoupling identities only determine

the combination

A
(2)
9:3,3(1, 2, 3; 4, 5, 6; 7, 8, 9) + A

(2)
9:3,3(1, 3, 2; 4, 5, 6; 7, 8, 9) (2.25)

In the following sections we review the known identities for n = 5 and review and
explore possible new identities for n = 6.

3 Identities among five point partial amplitudes

In this section we will review the known identities amongst the five point partial amplitudes.
The five point partial amplitudes in the color-trace basis expansion are

A
(2)
5:1, A

(2)
5:2, A

(2)
5:3, A

(2)
5:1,1, A

(2)
5:1,2 and A

(2)
5:1B (3.1)

of which the three
A

(2)
5:1 (12), A

(2)
5:3 (15) and A

(2)
5:1B; (12) (3.2)

are the SU(Nc) functions. The numbers in brackets indicate the number of independent
amplitudes of each type. The A

(2)
5:1,2 vanish since A

(2)
5:1,2(a; b, c; d, e) = −A

(2)
5:1,2(a; c, b; e, d) =

−A
(2)
5:1,2(a; b, c; d, e).
We now review the known identities among these partial amplitude. Firstly, taking

the decoupling identities among the A
(2)
5:1B. For these the decoupling identity system has

rank 6 which allows a Kleiss-Kuijf relation leaving the six A
(2)
5:1B(1, a, b, c, 5) as independent

functions. For the remaining functions the decoupling identities only determine the form
of the specifically U(Nc) functions A

(2)
5:2 and A

(2)
5:1,1 in terms of A

(2)
5:3 and A

(2)
5:1 but place no

further constraints upon these functions.

– 8 –
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In ref [5] using iteration and color kinematic duality a further 6 relations were found.
Unlike decoupling identities these involved both the A

(2)
5:1B and other partial amplitudes

and indeed allowed for a solution for A
(2)
5:1B in terms of A

(2)
5:1 and A

(2)
5:3.

A
(2)
5:1B(1, 2, 3, 4, 5) = −A

(2)
5:1(1, 2, 4, 3, 5) + 2A

(2)
5:1(1, 2, 5, 3, 4) + A

(2)
5:1(1, 2, 5, 4, 3)

−A
(2)
5:1(1, 3, 2, 4, 5) + 2A

(2)
5:1(1, 3, 4, 2, 5) − 5A

(2)
5:1(1, 3, 5, 2, 4)

−2A
(2)
5:1(1, 3, 5, 4, 2) + 2A

(2)
5:1(1, 4, 2, 3, 5) + A

(2)
5:1(1, 4, 3, 2, 5)

+2A
(2)
5:1(1, 4, 5, 2, 3) + A

(2)
5:1(1, 4, 5, 3, 2)

−1
2

∑
Z5(1,2,3,4,5)

(
A

(2)
5:3(1, 2; 3, 4, 5) − A

(2)
5:3(1, 3; 2, 4, 5)

)
. (3.3)

which reduces the number of functional forms necessary to calculate from three to two.
This expression is rather strange in several respects. Firstly, it contains factors

which are a rather unnatural and secondly the only leading in color term A
(2)
5:1 missing

is A
(2)
5:1(1, 2, 3, 4, 5). I.e. the only term missing is that with the same ordering of legs as the

A
(2)
5:1B. Part of the structure is driven by symmetry. Assuming that A

(2)
5:1B can be expressed

in terms of A
(2)
5:1 and A

(2)
5:3 and demanding the reflection and cyclic symmetries of A

(2)
5:1B

would imply

A
(2)
5:1B(1, 2, 3, 4, 5) = a1(A(2)

5:1(1, 2, 3, 4, 5)) + a2(A(2)
5:1(1, 3, 5, 2, 4))

+a3
(
A

(2)
5:1(1, 2, 4, 3, 5) − A

(2)
5:1(1, 2, 5, 4, 3) + A

(2)
5:1(1, 3, 2, 4, 5)

− A
(2)
5:1(1, 4, 3, 2, 5) − A

(2)
5:1(1, 4, 5, 3, 2)

)
+a4

(
A

(2)
5:1(1, 2, 5, 3, 4) + A

(2)
5:1(1, 3, 4, 2, 5) − A

(2)
5:1(1, 3, 5, 4, 2)

+ A
(2)
5:1(1, 4, 2, 3, 5) + A

(2)
5:1(1, 4, 5, 2, 3)

)
(3.4)

+a5
∑

Z5(1,2,3,4,5)
A

(2)
5:3(1, 2; 3, 4, 5) + a6

∑
Z5(1,2,3,4,5)

A
(2)
5:3(1, 3; 2, 4, 5)

which matches the correct term with a1 = 0, a5 = −5 etc.
The expression has been written in terms of the SU(Nc) amplitudes A

(2)
5:1 and A

(2)
5:3. It

can be rewritten in terms of the U(Nc) specific amplitudes in several alternate forms:

A
(2)
5:1B(1, 2, 3, 4, 5) =

∑
Z5(1,2,3,4,5)

(
A

(2)
5:2(1; 3, 5, 2, 4) − 1

2A
(2)
5:3(1, 2; 3, 4, 5) + 1

2A
(2)
5:3(1, 3; 2, 4, 5)

)
or

A
(2)
5:1B(1, 2, 3, 4, 5) = 1

2
∑

Z5(1,2,3,4,5)

(
A

(2)
5:1,1(1, 2; 3, 4, 5) − A

(2)
5:1,1(1, 3; 2, 4, 5)

)
(3.5)

which has more natural factors.
Part of the purpose of this article will be an exhaustive search for possible relation

like (3.3) for n > 5.
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4 Identities among six point partial amplitudes

In the expansion of the two loop amplitude (2.16) at six-point there are the following partial
amplitudes

A
(2)
6:1, A

(2)
6:2, A

(2)
6,3, A

(2)
6:4, A

(2)
6:1,1, A

(2)
6:1,2, A

(2)
6:2,2 and A

(2)
6:1B (4.1)

Of these the SU(Nc) amplitudes are

A
(2)
6:1 (60), A

(2)
6:3 (45), A

(2)
6:4 (20), A

(2)
6:2,2 (15) and A

(2)
6:1B (60) (4.2)

with the number of independent amplitudes after applying cyclic and reflection symmetry
given in brackets. Decoupling identities imply that the A

(2)
6:2,2 can be expressed in terms

of the others via (2.25) leaving four partial amplitudes which need to be computed for an
SU(Nc) amplitude.

We will be exploring possible linear identities between these partial amplitudes. These
will fit into three groups

1. Those obtained by decoupling identities. This system of identities has rank 207. Once
the U(Nc) specific partial amplitudes have been solved for the system of decoupling
identities has rank sixty-six (66). There split into two distinct groups. Thirty-
six (36) exclusively involve A

(2)
6:1B whilst the other thirty (30) involve purely the

remaining SU(Nc) amplitudes. The thirty six identities can be used to reduce the
A

(2)
6:1B amplitudes to the independent 24 A

(2)
6:1B(1, a, b, c, d, 6).

2. Those obtained by iterative methods as Edison and Naculich not in 1. (14). These
are different from the decoupling identities in that they involve both the A

(2)
6:1B and

the others. However numerically there are not enough to solve for the 24 A
(2)
6:1B .

3. Identities which are satisfied by the partial amplitudes of the two-loop all-plus am-
plitude. It is the third type we will be looking for. In particular, we will investigate
whether the number of necessary partial amplitudes may be reduced from four.

Identities of types 1. and 2. are guaranteed to be satisfied for all helicities. Identities of
type 3 are not so guaranteed however they set an envelope on possible all-helicity identities

First we examine the information given by the decoupling identities after solving for
the U(Nc) specific functions. For six points, among the SU(Nc) the remaining decoupling
identities form a system of rank 30. This determines the partial amplitude A

(2)
6:2,2 via

A
(2)
6:2,2(a, b; r, s; m, n) = Asym

6:3 (r, s; a, b, m, n) + Asym
6:3 (m, n; a, b, r, s)

+Asym
6:4 (a, m, n; b, r, s) + Asym

6:4 (b, m, n; a, r, s) (4.3)

where we define the combinations

Asym
6:4 (a, b, c; r, s, t) ≡ A

(2)
6:4(a, b, c; r, s, t) + A

(2)
6:4(a, b, c; r, t, s) (4.4)

and

Asym
6:3 (a, b; r, s, t, u) ≡ A

(2)
6:3(a, b; r, s, t, u) + A

(2)
6:3(a, b; r, t, s, u) + A

(2)
6:3(a, b; r, s, u, t) (4.5)
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The decoupling identities can be used to solve for the combination Asym
6:4 with

Asym
6:4 (a, b, c; r, s, t) = −1

2 (Asym
6:3 (a, b; c, r, s, t) + Asym

6:3 (a, c; b, r, s, t) + Asym
6:3 (b, c; a, r, s, t))

+1
2
∑

σ

A
(2)
6:1(σ) (4.6)

where the summation is over the entire 60 A
(2)
6:1. This amounts to 10 independent con-

straints. Note this expression is not symmetric between the first and second triple of
indices so we obtain the identities among the A

(2)
6:3

Asym
6:3 (a, b; c, r, s, t) + Asym

6:3 (b, c; a, r, s, t) + Asym
6:3 (c, a, ; b, r, s, t)

= Asym
6:3 (r, s; t, a, b, c) + Asym

6:3 (s, t; r, a, b, c) + Asym
6:3 (t, r; sa, b, c) (4.7)

This set of (10) identities has rank 5 so eq. (4.6) and eq. (4.7) are the final consistency
constraints among the partial amplitudes determined by the decoupling identities and as
such are satisfied for all helicity configurations.

We can now examine possible identities in the amplitudes beyond these. We expect at
least 14 from the results of ref. [6]. Our methodology is to consider relations,∑

cλ,iR
(2)
6:λ(σi) = 0 (4.8)

where the R
(2)
6:λ are the rational parts of the six-point all-plus amplitude. The summation is

after the decoupling identities are applied so is limited to the independent R
(2)
6:1, R

(2)
6:3, R

(2)
6:4,

and R
(2)
6:1B after symmetries are applied. This summation is then over 149 independent

partial amplitudes. This expression is then evaluated at kinematic points randomly chosen
but so that the partial amplitudes are rational numbers Aλ,i. This corresponds to having
momenta and helicity expressed as rational valued spinors which in general corresponds to
complex momenta [19]. Each rational point, a, then gives a constraint∑

cλ,iA
a
λ,i = 0 (4.9)

and to evaluate that as sufficient kinematic points with rational momenta that the system
can be solved analytically for rational constants cλ,i. In practice we form the vectors
V a = (Aa

λ,i) and consider the rank of the system {V a}. Kinematic points are generated
until the rank of this system reaches a maximum value. The equations of eq. (4.9) are then
solved to obtain the space of relations. Mathematica is sufficient for solving this system.

We again comment that this method will identify any possible identities but these
are only potential identities which may or may not extend to all amplitudes. We use the
rational terms calculated in ref. [15] which are include in appendix C. The rational terms
are only part of the amplitude. After identifying possible relations we check whether these
also apply to the polylogarithmic parts- these are also available in ref. [15].

In total, we find a further 20 identities among the rational terms of partial amplitudes.
I.e. 6 beyond that of [6]. An obvious initial comment is that these will not be enough to
solve for the 24 A

(2)
6:1B. In fact, they split into 14 identities involving A

(2)
6:1B plus six which
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only involve the others. Before looking at the new relations we briefly comment upon the
14 involving A

(2)
6:1B.

In particular, if we consider the 24 A
(2)
6:1B then the rank of the identities involving these

is only 14 as recognised in identified in ref [6] and confirmed by our studies of the rational
parts of the all-plus so it is not possible to solve for these. Instead the possible identities
involve the combinations

Asym1
6:1B ≡

∑
sym(b,c,d)

A
(2)
6:1B(1, a, b, c, d, 6)

Asym2
6:1B ≡

∑
sym(a,b,c)

A
(2)
6:1B(1, a, b, c, d, 6)

Asym3
6:1B ≡ A

(2)
6:1B(1, a, b, c, d, 6) + A

(2)
6:1B(1, a, c, b, d, 6)

+A
(2)
6:1B(1, d, b, c, a, 6) + A

(2)
6:1B(1, d, c, b, a, 6)

Asym4
6:1B ≡ A

(2)
6:1B(1, a, b, c, d, 6) + A

(2)
6:1B(1, a, b, d, c, 6) + A

(2)
6:1B(1, c, a, b, d, 6)

+A
(2)
6:1B(1, d, a, b, c, 6) + A

(2)
6:1B(1, c, d, a, b, 6) + A

(2)
6:1B(1, d, c, a, b, 6) (4.10)

and act as consistecy contraints. For these we can solve for these combinations in terms of
the other SU(Nc) functions

Asymi
6:1B =

∑
r,=1,3,4

∑
i

cr,iA
(2)
6:r(σi) (4.11)

but these don’t allow a solution for an individual A
(2)
6:1B. The expressions of the r.h.s.

are subject to manipulation using eqs. (4.6) and (4.7). A specific version are given in
appendix B.

After implementing these relations there remain only six relations amongst the rational
terms of the all-plus amplitude. This amplitude, of course, consists of more than rational
terms. If we also demand that the relations apply to the polylogarithmic parts also these
six relations are reduced to a single relation which can be expressed

Asym
6:3 (a, b; r, s, t, u) = Asym

6:4 (a, b, r; s, t, u) + Asym
6:4 (a, b, s; r, t, u)

+Asym
6:4 (a, b, t; r, s, u) + Asym

6:4 (a, b, u; r, s, t) . (4.12)

Although this looks like multiple relations by choosing different values for (a, b, c, d, e, f)
in fact it only adds one: the difference between two choices of this relation lies within the
space spanned by the decoupling identities.

We can use (4.12) to obtain a new expression for A
(2)
6:2,2 which we can express as,

A
(2)
6:2,2(a, b; e, f ; r, s) = 1

2
∑

σ∈COP ({e,f},{r,s})
A

(2)
6:3(a, b; σ) (4.13)

+1
2

∑
σ∈COP ({a,b},{r,s})

A
(2)
6:3(e, f ; σ) + 1

2
∑

σ∈COP ({a,b},{e,f})
A

(2)
6:3(r, s; σ) .

This form of A
(2)
6:2,2 is different from that of eq. (4.3) and is not a consequence of decoupling.

It relies upon the relation (4.12) -or is equivalent to it. This relation has not been identified
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using the group theoretic arguments of refs. [4–6] so, if universal, would require an extension
to those methods or additional input beyond group theoretic.

Equations (4.13) and (4.12) are only proven to apply to the all-plus amplitude but can
be conjectured to apply more generally: this will be explored in the next section.

In summary, we have confirmed the expected results for identities between the ampli-
tudes and have identified that there is a maximum of a single potential relation beyond
these. Although only a single relation this hints at more general relations at higher points.
This is reminiscent of the Kleiss-Kuijf relations at tree level. We explore a possible exten-
sion of this to higher points in the next section.

5 Triple trace term

Up to eight points, the triple trace terms of the two loop amplitude are determined from
the decoupling identities as discussed in eq. (2.25). However, there is a further speculative
relationship for the triple trace which we propose for all n,

A(2)
n:r,s(α; β; γ) = (−1)|γ|

2
∑

σ∈COP (α,γT )
A

(2)
n:s+1(β; σ) + (−1)|β|

2
∑

σ∈COP (γ,βT )
A

(2)
n:r+1(α; σ)

+(−1)|α|
2

∑
σ∈COP (β,αT )

A
(2)
n:n−r−s+1(γ; σ) (5.1)

provided |α|, |β|, |γ| > 1, which expresses the triple trace in terms of double trace terms.
This relationship lies outside the relationships of the decoupling identities. It is spec-

ulative but is satisfied for

α = {α1, α2}, β = {β1, β2}, (5.2)

for the all-plus six point amplitude, as seen in the previous section., where γ = {γ1, γ2}.
The seven-point all plus amplitude has also been calculated [31]. We have checked

that the rational and polylogarithmic parts of this specific helicity amplitude where γ =
{γ1, γ2, γ3} also satisfies this relation. For n = 7, after solving for the U(Nc) specific partial
amplitudes and A

(2)
7:2:2 the decoupling identities impose consistency conditions among the

SU(Nc) partial functions (excluding A
(2)
n:7B) with rank 105. Relation (5.1) lies outside these

identities. Unlike n = 6 it is not a single additional relation but adds 35 to the rank of
identities.

The expression is robust against collinear limits. For sets of length two, there is no
distinction between the set and its transpose due to cyclic symmetry so our six and seven
point amplitudes do not determine this. However, we have chosen the ordering so that the
amplitude satisfies reflection symmetry for all n. Similarly, the overall factors may have a
more general form when the sets have arbitrary length.
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This relation has corrections if any of the traces has length one. If two have length
one, α = {α1}, β = {β1} the following variant holds

A
(2)
n:1,1(α; β; γ) = (−1)|α|

2
∑

σ∈COP (γ,αT )
A

(2)
n:2(β; σ) + (−1)|β|

2
∑

σ∈COP (γ,βT )
A

(2)
n:2(α; σ)

+(−1)|α|
∑

σ∈COP (β,αT )
A

(2)
n:3(σ; γ) , (5.3)

whilst if only one has length one, α = {α1}, β = {β1, · · · , βs−1} γ = {γ1, · · · , γt−1}

A
(2)
n:1,s−1(α; β; γ) = −

∑
σ∈COP (γ,αT )

A(2)
n:s(β; σ) −

∑
σ∈COP (β,αT )

A
(2)
n:s+1(σ; γ) . (5.4)

(If s = t, σ and γ as interchanged in the final term.) Unlike eq. (5.1), eqs. (5.3) and (5.4)
can be derived from decoupling identities.

It is very tempting to conjecture that equation (5.1) holds for all-n and all helicities
but we have limited data at this point. The relation in eq. (6.2) could even suggest a
relationship between the four and three trace terms of three loop Yang-mills - however
without any possible checks at this point. In ref [5] a similar relationship was shown for
the five point amplitude for the single trace most subleading term.

The relation (5.1) has been checked to order ϵ. Since relations (5.3) and (5.4) are
derived from decoupling identities we these apply to all helicities and all order in ϵ. Since
relation (5.1) was not identified in the group theoretic analysis of refs. [6] its origin may or
may not be group theoretic.

6 A
(2)
n:1B

There exists a conjectured form of A
(2)
n:1B for the all-plus amplitude. [17]

A
(2)
n:1B(1+, 2+, · · ·n+) (6.1)

with closed expressions for the rational part of this amplitude. These are included in ap-
pendix D. We use this amplitude to check for relations. This partial amplitude has been ver-
ified for six and seven points amplitudes and has the correct symmetries, factorisations and
collinear limits. For eight and nine point the expression has been verified numerically [32].

We have verified, up to n = 12 that these specific helicity amplitudes satisfy Kleiss-
Kuijf type relations,

A
(2)
n:1B(1, {α}, n, {β}) = (−1)|β|

∑
σ∈OP (α,βT )

A
(2)
n:1B(1, {σ}, n) . (6.2)

Secondly, we have checked there are no further relations solely amongst these partial
amplitudes. Specifically there are no constants cσ satisfying∑

σ

cσA
(2)
n:1B(1, σ(2, · · ·n − 1), n) = 0 . (6.3)

So these are no relations for the all plus this rules out any possible helicity independent
relations.

Again, it is tempting to conjecture that equation (6.2) holds for all helicities.
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7 Conclusions

This article has explored possible relationships among the partial amplitudes of two-loop
gluon scattering. This has essentially been an “experimental” style search using the known
analytic forms of partial amplitudes. This approach is exhaustive: no potential relations
will be missed. This search is limited by the very small number of amplitudes which are
known in closed analytic form. Nonetheless we can draw some conclusions and make some
conjectures. In particular, on the negative side, we can confirm that the relations such as
eq. (3.3) does not extend beyond the five point case. However on the positive side we have
relationships of eq. (5.1) and eqn (6.2) which we present as plausible conjectures.

We thank Adam Dalgleish, Warren Perkins and Joe Strong for helpful comments and
access to the unpublished seven point amplitude. This work was supported by the UKRI
Science and Technology Facilities Council (STFC) Consolidated Grant No. ST/T000813/1.

A Permutation sums

In the expressions of this article we have summations which are over sets formed by the
merger of two sets. In particular we have the sum over ordered products OP (α, β) and the
summation over the cyclic ordered permutations COP (α, β) where, due to cyclic symmetry,
cyclically equivalent permutations are factored out In this appendix we illustrate these by
some examples. For sets αr and βs of length r and s respectively these sets contain the
following number of elements

|OP (αr, βs)| = (r + s)!
(r)!(s)! (A.1)

|COP (αr, βs)| = (r + s − 1)!
(r − 1)!(s − 1)! . (A.2)

As examples, for α = {1}, β = {2, 3, 4, 5},

OP (α, β) =
{
{1, 2, 3, 4, 5}, {2, 1, 3, 4, 5}, {2, 3, 1, 4, 5}, {2, 3, 4, 1, 5}, {2, 3, 4, 5, 1}

}
COP (α, β) =

{
{1, 2, 3, 4, 5}, {2, 1, 3, 4, 5}, {2, 3, 1, 4, 5}, {2, 3, 4, 1, 5}

}
(A.3)

where {2, 3, 4, 5, 1}, is omitted from COP (α, β) since it is cyclically equivalent to
{1, 2, 3, 4, 5},.

For α = {1, 2}, β = {3, 4, 5},

OP (α, β) =
{
{1, 2, 3, 4, 5}, {1, 3, 2, 4, 5}, {1, 3, 4, 2, 5}, {1, 3, 4, 5, 2},

{3, 1, 2, 4, 5}, {3, 1, 4, 2, 5}, {3, 1, 4, 5, 2}, {3, 4, 1, 2, 5},

{3, 4, 1, 5, 2}, {3, 4, 5, 1, 2}
}

(A.4)

– 15 –



J
H
E
P
1
0
(
2
0
2
3
)
0
5
8

and

COP (α, β) =
{
{1, 2, 3, 4, 5}, {1, 2, 4, 5, 3}, {1, 2, 5, 3, 4}, {1, 3, 2, 4, 5},

{1, 4, 2, 5, 3}, {1, 5, 2, 3, 4}, {1, 3, 4, 2, 5}, {1, 4, 5, 2, 3},

{1, 5, 3, 2, 4}, {1, 3, 4, 5, 2}, {1, 4, 5, 3, 2}, {1, 5, 3, 4, 2}
}

. (A.5)

We can use this notation to re-express some of the formulae in this article. For example
eq. (2.4) ∑

σ∈COP ({1},{2,3,···n}
A(0)

n (σ) = 0 (A.6)

and eq. (2.13) is

A
(1)
n:2(1; 2, 3, · · ·n) +

∑
σ∈COP ({1},{2,3,···n}

A
(1)
n:1(σ) = 0 . (A.7)

B Explicit form for constraints involving A
(2)
6:1B

We provide here an explicit realisation of the constraints upon the six-point amplitudes
involving A

(2)
6:1B as in eq. (4.11),

Asym1
6:1B ≡

∑
sym(b,c,d)

A
(2)
6:1B(1,2, b,c,d,6) =

∑
P (b,c,d)

(
Asym

6:4 (1, b,c;2,d,6)

+A
(2)
6:3(1, b;2, c,6,d)/2−A

(2)
6:3(b,c;1,2,6,d)/2−A

(2)
6:3(1, b;1,6,2,d)/2

−A
(2)
6:1(1, b,2, c,d,6)−A

(2)
6:1(1,2, b,c,6,d)+3A

(2)
6:1(1,2,6, b,c,d)

+3A
(2)
6:1(1, b2,6, c,d)+3A

(2)
6:1(1, b,c, ,d,2,6)+3A

(2)
6:1(1, b,c,2,6,d)

)
, (B.1)

Asym3
6:1B ≡A

(2)
6:1B(1,a,b,c,d,6)+A

(2)
6:1B(1,a,c,b,d,6)

+A
(2)
6:1B(1,d,b,c,a,6)+A

(2)
6:1B(1,d,c,b,a,6)

=−A
(2)
6:3(1,6;a,b,d,c)−A

(2)
6:3(b,c;1,a,6,d)−Asym

6:4 (1,a,d;b,c,6)−Asym
6:4 (1, b,c;a,d,6)

−Asym
6:4 (1,a,6;b,c,d)−Asym

6:4 (1, b,6;a,c,d)−Asym
6:4 (1, c,6;a,b,d)−Asym

6:4 (1,d,6;a,b,c)

+
∑
b↔c

(
A

(2)
6:3(1, b;a,c,6,d)+A

(2)
6:3(1, b;a,d,c,6)+A

(2)
6:3(b,6;1,a,d,c)+A

(2)
6:3(b,6;1, c,a,d)

)

+
∑

a↔d,b↔c

(
Asym

6:4 (1,a,b;c,d,6)+A
(2)
6:1(1,a,b,c,d,6)+A

(2)
6:1(1,a,b,6,d,c)+A

(2)
6:1(1,a,6, b,d,c)

−3A
(2)
6:1(1,a,d,b,c,6)−3A

(2)
6:1(1,a,d,b,6, c)−3A

(2)
6:1(1,a,d,6, b,c)

−3A
(2)
6:1(1, b,a,d,c,6)−3A

(2)
6:1(1, b,c,a,d,6)−3A

(2)
6:1(1, b,a,d,6, c)

)
, (B.2)
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and

Asym4
6:1B ≡A

(2)
6:1B(1,2,3,4,5,6)+A

(2)
6:1B(1,2,3,5,4,6)+A

(2)
6:1B(1,4,2,3,5,6)

+A
(2)
6:1B(1,5,2,3,4,6)+A

(2)
6:1B(1,4,5,2,3,6)+A

(2)
6:1B(1,5,4,2,3,6)

=−A
(2)
6:3(1,2;3,4,6,5)−A

(2)
6:3(1,6;2,4,3,5)−A

(2)
6:3(2,3;1,4,6,5)

−A
(2)
6:3(3,6;1,4,2,5)−A

(2)
6:3(4,5;1,2,6,3)−A

(2)
6:3(4,5;1,3,2,6)

+
∑
a↔b

(
2A

(2)
6:4(1,3,a;2, b,6)+2A

(2)
6:4(1,3,a;2,6, b)+A

(2)
6:4(1,2,a;3,6, b)+A

(2)
6:4(1,a,6;2,3, b)

−A
(2)
6:4(1,2,3;a,b,6)−A

(2)
6:4(1,2,6;3,a,b)−A

(2)
6:4(1,3,6;2,a,b)−A

(2)
6:4(1,a,b;2,3,6)

+A
(2)
6:1(1,a,2, b,3,6)+A

(2)
6:1(1,a,2,3,6, b)+A

(2)
6:1(1,2,3,a,6, b)+A

(2)
6:1(1,2,a,3, b,6)

−A
(2)
6:1(1,a,2,3, b,6)−A

(2)
6:1(1,a,b,2,3,6)−A

(2)
6:1(1,2,3,a,b,6)

−A
(2)
6:1(1,2,3,6,a,b)+−A

(2)
6:1(1,2,a,3,6, b)+−A

(2)
6:1(1,2,a,b,3,6)

+6A
(2)
6:1(1,3,a,2,6, b)+6A

(2)
6:1(1,3,a,6,2, b)

+2A
(2)
6:1(1,2,a,b,6,3)+2A

(2)
6:1(1,2,a,6,3, b)+2A

(2)
6:1(1,2,a,6, b,3)+2A

(2)
6:1(1,2,6,3,a,b)

+2A
(2)
6:1(1,2,6,a,3, b)+2A

(2)
6:1(1,3,2,a,b,6)+2A

(2)
6:1(1,3,2,a,6, b)+2A

(2)
6:1(1,3,2, b,a,6)

+2A
(2)
6:1(1,3,a,2, b,6)+2A

(2)
6:1(1,3,6,a,2, b)+2A

(2)
6:1(1,a,2,6,3, b)+2A

(2)
6:1(1,a,3,2, b,6)

+2A
(2)
6:1(1,a,3,2,6, b)+2A

(2)
6:1(1,a,3, b,2,6)+2A

(2)
6:1(1,a,b,3,2,6))

−2A
(2)
6:1(1,2,6,a,b,3)−2A

(2)
6:1(1,3,2,a,b,6)

−2A
(2)
6:1(1,3,2,6,a,b)−2A

(2)
6:1(1,3,a,b,2,6)−2A

(2)
6:1(1,3,6,2,a,b)

)
. (B.3)

There are 14 independent identities. No single identity of the above completes this but
for example the identities (B.2) and (B.3) combined do.

C Rational terms of two loop all plus six-point amplitude

The IR singular structure of a color partial amplitude is determined by general theo-
rems [33]. Consequently we can split the amplitude into singular terms U

(2)
n:λ and finite

terms and further split the finite terms into the polylogarithmic parts P
(2)
n:λ and the ratio-

nal parts R
(2)
n:λ

A
(2)
n:λ = U

(2)
n:λ + P

(2)
n:λ + R

(2)
n:λ . + O(ϵ) . (C.1)

As the all-plus tree amplitude vanishes, U
(2)
n:λ simplifies considerably and is at worst 1/ϵ2 [15,

34]. The partial amplitudes of the six-point all-plus amplitude have all been computed. The
leading in color term was calculated first in [35] and subsequently confirmed by Badger et
al. [36]. It was later presented in an alternative form [37]. The remaining partial amplitudes
were computed in [16]. We use the rational part of these amplitudes to test relationships.
These are presented here for completeness.
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R(2)
6:1.

R
(2)
6:1(a, b, c, d, e, f) = i

9
∑
P6:1

G1
6:1 + G2

6:1 + G3
6:1 + G4

6:1 + G5
6:1

⟨a b⟩⟨b c⟩⟨c d⟩⟨d e⟩⟨e f⟩⟨f a⟩
(C.2)

where

G1
6:1(a, b, c, d, e, f) = scdsdf ⟨f |a Pabc|e⟩

⟨f e⟩ tabc
+ sacscd⟨a|f Pdef |b⟩

⟨a b⟩ tdef
,

G2
6:1(a, b, c, d, e, f) = [a b][e f ]

⟨a b⟩⟨e f⟩
⟨a e⟩2⟨b f⟩2 + 1

2
[f a][c d]
⟨f a⟩⟨c d⟩

⟨a c⟩2⟨d f⟩2,

G3
6:1(a, b, c, d, e, f) = sdf ⟨f a⟩⟨c d⟩[a c][d f ]

tabc
,

G4
6:1(a, b, c, d, e, f) = ⟨a|be|f⟩tabc

⟨a f⟩

G5
6:1(a, b, c, d, e, f) = sfasbc + sacsbe + 5

2saf scd − 8[a|bcf |a⟩ − 8[a|cde|a⟩

− 1
2[a|cdf |a⟩ − 11

2 [b|cef |b⟩ (C.3)

R(2)
6:3.

R
(2)
6:3(a, b; c, d, e, f) =

∑
P6:3

[
i

3
(
H1

6:3(a, b, c, d, e, f) − H1
6:3(a, b, c, d, f, e)

)

+ i

3

(
G2

6:3(a, b, c, d, e, f) + G3
6:3(a, b, c, d, e, f) + G4

6:3(a, b, c, d, e, f)
)

⟨a b⟩⟨b c⟩⟨c a⟩⟨d e⟩⟨e f⟩⟨f d⟩

+ i

12
G5

6:3(a, b, c, d, e, f)
⟨a b⟩⟨b c⟩⟨c d⟩⟨d e⟩⟨e f⟩⟨f a⟩

]
(C.4)

where

H1
6:3(a,b,c,d,e,f) = G1

6:3(a,b,c,d,e,f)
⟨ab⟩⟨bc⟩⟨cd⟩2⟨de⟩⟨ef⟩⟨f a⟩

+ [cd]
⟨cd⟩2

⟨cf⟩⟨db⟩[b|f |d⟩
⟨ab⟩⟨af⟩⟨bf⟩⟨de⟩⟨ef⟩

G1
6:3(a,b,c,d,e,f) = sce⟨c|bf |d⟩−scf ⟨c|be|d⟩

G2
6:3(a,b,c,d,e,f) = [d|Pdef b|a]⟨d|fPdef |a⟩+sde[f |cbd|f⟩+[b|df |e]⟨b|cPabc|e⟩

tdef

G3
6:3(a,b,c,d,e,f) =−sdf ⟨d|fb|c⟩[c|Pabc|e⟩

⟨de⟩tdef
− sde⟨f |db|c⟩[c|d|e⟩

⟨ef⟩tdef

G4
6:3(a,b,c,d,e,f) =−sbdsde− [a|bde|a⟩+[b|cde|b⟩− [a|bdf |a⟩

+[b|cdf |b⟩+[b|cef |b⟩− [b|def |b⟩
G5

6:3(a,b,c,d,e,f) =−4s2
ac +2sabsad−2sacsad +2sabsae−2sacsae +2s2

bd−2s2
be +2s2

bf

−8sacscd +4sbcscd +12sbdscd +6s2
cd−8sacsce +12sbcsce +16sbdsce

+4sbesce +8scdsce +2s2
ce +2s2

cf −8sacsde−4sadsde−4sbcsde +4scdsde
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+4scesde−8[a|bce|a⟩−39[a|bcf |a⟩−18[a|bdf |a⟩+2[a|bef |a⟩
−10[a|cdf |a⟩−2[a|cef |a⟩−4[a|def |a⟩+8[b|cde|b⟩−4[b|cdf |b⟩
−4[b|cef |b⟩−4[b|def |b⟩−4[c|def |c⟩ (C.5)

R(2)
6:4.

R
(2)
6:4(a, b, c, d, e, f) = i

36
∑
P6:4

[(
G1

6:4(a, b, c, d, e, f) + G2
6:4(a, b, c, d, e, f)

)
⟨a b⟩⟨b c⟩⟨c a⟩⟨d e⟩⟨e f⟩⟨f d⟩

+ 12

(
G3

6:4(a, b, c, d, e, f) + G4
6:4(a, b, c, d, e, f)

)
⟨a b⟩⟨c d⟩⟨d e⟩⟨e f⟩⟨f c⟩

]
, (C.6)

where

G1
6:4(a, b, c, d, e, f) = 4 ⟨e|Pabca|b⟩[e|dPabc|b]

tabc
,

G2
6:4(a, b, c, d, e, f) = s2

ad + 106 sabsad + 102 [a|bcd|a⟩ − 4 [a|bde|a⟩ − 4 [a|dbe|a⟩,

G3
6:4(a, b, c, d, e, f) = − [a b]

⟨a b⟩

(
⟨a|cd|b⟩ + ⟨a|ef |b⟩

)
,

G4
6:4(a, b, c, d, e, f) = [a|cd|b] + [a|ef |b]. (C.7)

R(2)
6:2,2.

R
(2)
6:2,2(a, b; c, d; e, f) =

∑
P6:2,2

i
G1

6:2,2(a, b, c, d, e, f) + G2
6:2,2(a, b, c, d, e, f)

⟨a b⟩⟨b c⟩⟨c a⟩⟨d e⟩⟨e f⟩⟨f d⟩
, (C.8)

where

G1
6:2,2(a, b, c, d, e, f) = ⟨b|Pabcf |d⟩[b|cPabc|d]

tabc
,

G2
6:2,2(a, b, c, d, e, f) = sad[e|Pbc|e⟩ − sac[e|Pfa|e⟩ − saf sae − saescd. (C.9)

D All n form of R
(2)
n:1B(1+, 2+, · · · n+)

There exists a conjectured form of A
(2)
n:1B for the all-plus amplitude. [17]. We use this

amplitude to check the relation of eq. (6.2). The amplitude has been verified for six and
seven points amplitudes and has the correct symmetries, factorisations and collinear limits.
For eight and nine point the expression has been verified numerically [32]. The amplitude
is split into its constituents as in eq. (C.1). The rational term is split into two parts

R
(2)
n:1B(1+, 2+, · · · , n+) = R

(2)
n:1B1

(1+, 2+, · · · , n+) + R
(2)
n:1B2

(1+, 2+, · · · , n+) (D.1)

– 19 –



J
H
E
P
1
0
(
2
0
2
3
)
0
5
8

where

R
(2)
n:1B1

(1+, 2+, · · · , n+) = −2i CPT(1, 2, · · · , n − 1, n) ×
∑

1≤i<j<k<l≤n

ϵ(i, j, k, l) (D.2)

R
(2)
n:1B2

(1+, 2+, · · · , n+) = 4i
n−4∑
r=1

n∑
s=r+4

×
s−2∑

i=r+1

s−1∑
j=i+1

ϵ({1, · · · , r}, j, i, {s, · · · , n})(−1)i−j+1 ×
∑

α∈Sr,s,i,j

CPT({αSr,s,i,j}) . (D.3)

We have defined

ϵ({a1, a2, · · · , am}, b, c, {d1, d2, · · · , dp}) ≡
m∑

i=1

p∑
j=1

ϵ(ai, b, c, dj) , (D.4)

CP T (a1, a2, a3, · · · , an) ≡ 1
⟨a1 a2⟩⟨a2 a3⟩ · · · ⟨an a1⟩

≡ 1
Cy(a1, a2, a3, · · · , an) . (D.5)

To define Sr,s,i,j we divide the list of indices,

{1, 2, 3, · · · , n} = {1, · · · , r; r + 1, · · · , i − 1; i; i + 1, · · · , j − 1; j; j + 1, · · · , s − 1; s, · · · , n}
≡ {1, · · · r, } ⊕ S1 ⊕ {i} ⊕ S2 ⊕ {j} ⊕ S3 ⊕ {s, · · · , n} (D.6)

with

S1 = {r + 1, · · · , i − 1}, S2 = {i + 1, · · · , j − 1}, S3 = {j + 1, · · · , s − 1} . (D.7)

The sets Si may be null. Then

Sr,s,i,j = Mer(S1, S̄2, S3) (D.8)

where S̄2 is the reverse of S2 and Mer(S1, S̄2, S3) is the set of all mergers of the three sets
which respect the ordering within the Si and

αSr,s,i,j = {1, · · · , r} ⊕ {j} ⊕ α ⊕ {i} ⊕ {s, · · · , n} . (D.9)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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