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Abstract
In small business credit risk assessment, the default and nondefault classes are highly imbalanced. To overcome this prob-
lem, this study proposes an extended ensemble approach rooted in the weighted synthetic minority oversampling technique
(WSMOTE), which is called WSMOTE-ensemble. The proposed ensemble classifier hybridizes WSMOTE and Bagging
with sampling composite mixtures to guarantee the robustness and variability of the generated synthetic instances and, thus,
minimize the small business class-skewed constraints linked to default and nondefault instances. The original small business
dataset used in this study was taken from 3111 records from a Chinese commercial bank. By implementing a thorough
experimental study of extensively skewed data-modeling scenarios, a multilevel experimental setting was established for a
rare event domain. Based on the proper evaluation measures, this study proposes that the random forest classifier used in the
WSMOTE-ensemble model provides a good trade-off between the performance on default class and that of nondefault class.
The ensemble solution improved the accuracy of the minority class by 15.16% in comparison with its competitors. This study
also shows that sampling methods outperform nonsampling algorithms. With these contributions, this study fills a noteworthy
knowledge gap and adds several unique insights regarding the prediction of small business credit risk.
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Introduction

Many researchers to date have aspired to elaborate classifiers
for large corporate firms or firms that were already listed.
However, in most economies, small enterprises are the prin-
cipal sources of financial development and stability, stoking
the engine of economic progress and growth. From a credit-
approval data-modeling standpoint, small enterprises have
some specific features that are unlike their larger counter-
parts [17,18]. Ciampi [17] stated that small enterprises are
economically riskier and have a lower asset correlation with
each other than do corporations. These findings underline
the fact that the credit risk modeling of small enterprises
should be done in a different way than that for listed com-
panies and large firms. Recently, a credit risk appraisal has
shown the economic importance of these enterprises, which
is the result of the size of their personal unsecured borrow-
ings and the rapidly growing probability of their default risk
[42]. The United States and European subprime mortgage
disasters are two clear examples of default scenarios. An
Organization of Economic Co-operation and Development
report states that the amount of default credit is increasing at
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a rate of approximately 2% in China [47]. How to evaluate
a lender’s credit risk efficiently and accurately has been a
decisive issue for all relevant practitioners, researchers, and
stakeholders. Consequently, formulating a consistent model
for credit risk has become a significant focus for small enter-
prises, so that they can ensure sustainable profits and lessen
corresponding losses [10,20]. This study focuses on the credit
risk assessment of small business loans in this environment,
in order to advance the performance of an assessment model
and improve its classification accuracy.

A feasible classification of risky and nonrisky small enter-
prises has been widely perceived as the primary focus of
credit risk assessment modeling because an improvement of
even a fraction of a percent could lead to significant future
savings and profits [58]. A large body of literature has eval-
uated techniques for increasing the accuracy of credit risk
assessment, combining statistical and artificial intelligence
models. A statistical approach was used in the works of
Pindado and Rodrigues [50] on logit analysis, and Duarte
et al. [21] on probit analysis. A large number of studies
have used artificial intelligence algorithms, such as the k-
nearest neighbors (k-NN) [23], neural networks [17], support
vector machines (SVMs) [3], and gradient decision tree
approach [13] (see also [28] for an exhaustive review of
artificial intelligence methods). However, the many exper-
imental studies available [2,6,9,26,64] had not been able to
assert the dominance of one algorithm over other competing
classifiers irrespective of data traits. For example, missing
values, problems with noise, outlier information with redun-
dant and irrelevant features, and skewed class allocations
had drastically affected the results of most classification
algorithms. In the real world, most of the credit samples
are creditworthy (majority/negative class) and the remain-
der are noncreditworthy or default cases (minority/positive
class); that is to say, there is a class imbalance distribu-
tion. In small business loan performance data modeling,
the price of misclassifying noncreditworthy applicants as
creditworthy is significantly higher than the price of misclas-
sifying creditworthy applicants as noncreditworthy [4,27].
Besides, class-skewed data distribution brings with it certain
conflicts for assembling a classification algorithm; in con-
trast, these challenges may appear in equilibrium scenarios.
Recently, modelers have optimized the forecasting perfor-
mance in skewed class domains. One commonly employed
sampling methodology is data-level solutions, which modify
the class allocation in a given example set. Oversampling,
undersampling, hybrid sampling, and ensemble learning are
themajor types of preprocessing approaches in credit-scoring
and bankruptcy-prediction domains [62].

In a pioneering study [41] on the imbalance learning of
credit risk modeling claims, it was shown that oversampling
techniques performedbetter than any formof class imbalance
learning, and, therefore, the current investigation is focused

on oversampling methods. The most well known oversam-
pling procedure, which is extensively employed in many
domains, is the synthetic minority oversampling technique
(SMOTE) [15]. Refinements of the SMOTE algorithm have
been attempted and reported on in many studies [26,51,55,
63] from the time the algorithm was launched. Using similar
background material as a basis, the current study has applied
a modification known as the weighted SMOTE (WSMOTE)
[52]. This oversampling approach treats generated data more
effectively because a specific weight is assigned to each
minority data sample based on its Euclidean distance to the
remaining minority data samples. This, in turn, leads to the
production of more compact synthetic data in WSMOTE
than in SMOTE. In addition, the current study proposes
a novel ensemble approach rooted in the WSMOTE algo-
rithm, theWSMOTE-ensemble for skewed loan performance
data modeling. The proposed ensemble classifier hybridizes
WSMOTE and Bagging with sampling composite mixtures
(SCMs) to minimize the class-skewed constraints linked to
positive and negative small business instances. It increases
the multiplicity of executed algorithms as different SCMs
are applied to form diverse training sets [1]. First, for a given
dataset, Bagging is applied to produce nondefault majority
instances. Second, the WSMOTE learner is trained to gener-
ate synthetic minority instances that are combined with the
original minority data. Later, the Bags from the Bagging and
the new synthetic datasets from WSMOTE are merged to
obtain balanced datasets. In the study by Sun et al. [61], the
C4.5 classifier, a decision tree algorithm, is trained to deter-
mine the Bag’s accuracy, and the best Bags are selected for
the intended experiments based on their maximum predictive
power. The proposed WSMOTE-ensemble method contrasts
with other existing methods, however, especially with the
approach of Sun et al. [61], on several grounds, because it is
more robust and prone to overfitting. In addition to the above
algorithms, the current study also addresses the modification
of the Chan and Stolfo [14] classifier. The original model is
a hybrid sampling strategy generating random samples from
the desired distribution for ensemble learning. In place of
random undersampling, this study employs the WSMOTE
learner to produce synthetic positive data. Accordingly, the
trained algorithm is called the modified Chan undersam-
pling (MChanUS) approach. In addition to oversampling and
undersampling techniques, this study presents two hybrid
data-level solutions combining (1) SMOTE with random
undersampling (RUSSMOTE) and (2) undersampling and
oversampling (USOS) to show the effect of different forms
of class imbalance learning.

From a methodological point of view, fusion strategy
(ensemble classifier approaches) is an active study area in
imbalanced learning and a rare event prediction domain.
It learns the new data patterns by integrating stand-alone
proposals from a set of elementary algorithms. A consider-
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able number of experimental studies on ensemble approaches
havebecomeavailable over the last decades.Notably, random
forest (RF) involves the collection of unpruned forecasting,
classification, or regression tree algorithms, learned on boot-
strap examples of in-sample instances applying randomly
chosen variables in the process of tree creation. Many empir-
ical studies and theoretical backgrounds exhibit the strengths
of RF learners [54]. However, there is a paucity of learn-
ing about small business loan performance data with RF, a
rare event domain; it is a relatively new approach that must
be confirmed. Inspired by the above information, the cur-
rent study follows up on multiple RF-based experimental
settings to assess the recitals of the different algorithms con-
sidered. In addition to the RF-based multilevel settings, this
study offers data-level strategies with a C4.5 decision tree,
k-NN, and SVM, which are the most widely used baseline
classifiers in this domain. From the credit-scoring realm, the
Bagging- and Boosting-based ensembles can generate bet-
ter algorithmic modifications for class imbalance learning
[11]. In line with these algorithmic backgrounds, the present
study also hybridizes Bagging, Boosting, random committee
(RC), rotation forest (RTF), and logit boost (LB) as multiple-
classifier systems.

An original database used in this study comes from the
3111 records of small enterprises from a Chinese commer-
cial bank. This paper reports on a thorough experimental
study using the skewed small business credit risk data to
demonstrate that the WSMOTE-ensemble-RF fusion model
significantly outperforms comparative methods. Hence, the
proposed method is established as a more scalable learning
method for skewed credit risk data.

The remaining parts of this study are organized as follows.
A literature review and issues of class imbalance problems
are presented in “Related literature” and “Class imbalance
problem”, respectively. “WSMOTE-based methods for class
imbalance problem” describes the proposed algorithms. The
experimental design is presented in “Experimental design”.
Empirical results are highlighted in “Empirical results” and
“Comparative analysis”. “Conclusion” concludes the study
and shows future roadmaps for the field.

Related literature

Small business credit risk modeling

Small business loan modeling has three main categories. The
first is derived from information economics or capital market
theory [6,56], which has a strong theoretical background, but
it is not able to generate automatic credit risk predictions.

The second category is statistical classifiers. Edmister [22]
was the pioneermodelerwho experimentedwithmultivariate
discriminant analysis by applying 18 variables to 562 small

enterprises. Following this seminal work, many researchers
and practitioners moved forward to design numerous statis-
tical models. Relevant examples include Altman and Sabato
[7], Behr and Güttler [10], Mayr et al. [42], Duarte et al.
[21], Arcuri and Levratto [9], Inekwe [34], Ciampi and Gor-
dini [19], Sohn and Jeon [58], Hasumi and Hirata [31], Lin
et al. [38], and Keasey et al. [35]. Most of the cited studies
compare and contrast small business loan approval data by
applying customary statistical algorithms, but a few take a
different approach. Sohn and Jeon [58], for instance, stated
that small enterprises should concentrate on setting up their
predictive methodology to avoid high default rates. More-
over, credit ratings of small businesses do not necessarily
reflect overall credit risk due to the mismatch between credit
ratings and loss-given-default [57], and small businesses are
reportedly vulnerable to local economic conditions [43]. By
adopting innovative forecasting techniques, small enterprises
could maintain their economic progress even in periods of
credit crunch. Lin et al. [38] developed two logit regression
classifiers for 429 small businesses in the United Kingdom
in 2009. The researchers explored the classifiers’ predictive
accuracy, applying accounting-based approaches, and con-
cluded that small business loan performance modeling has
different consequences for the composition of trained algo-
rithms. These classifiers, however, suffered from the same
identical problems that plagued statistical learners (e.g., lin-
earity, normality, and independence among predictors) and
are ubiquitous in small business datasets. Applications of
traditional statistical classifiers underrate the default prob-
ability of the positive class because the logit link function
is symmetric and the minor instances are rare events [12].
In reality, regarding the skewed data modeling scenarios, the
probability of a rare event is biased towards the less important
negative class.

Lastly, a few small business studies concentrated on build-
ing ensemble classifiers for credit risk modeling to overcome
the flaw of a single algorithm and show that ensemble clas-
sifiers are better executors than their baseline equivalents
[5]. Recently, Zhu et al. [67] applied random subspace-based
MultiBoosting to small Chinese enterprises and claimed that
their proposed ensemble classifiers showed an enhanced pre-
dictive accuracy for a small-sized instance. The credit risk
data evaluation derived from an ensemble classifier can fully
utilize the dissimilar knowledge learned by different base-
line algorithms, and it typically has a better performance
than single-classifier approaches.

Skewed credit risk management datamodeling
approaches

A number of studies have addressed the skewed class
scenarios of credit risk modeling. Although a range of arti-
ficial intelligence classifiers were trained for predicting the
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small business credit risk, predicting skewed class instances
notably confronted the customary classifiers [33]. Louzada
et al. [39] investigated the performance of logistic regres-
sion (LR) and naïve logistic regression models over skewed
class Brazilian credit data, and asserted that the predictive
ability of trained algorithms was significantly lessened when
positive high-risk instances and negative low-risk instances
were extremely skewed. Antunes et al. [8] proposed Gaus-
sian processes for real-world skewed loan approval instances
and demonstrated that the proposed investigation could effi-
ciently improve the accuracy of the trained algorithm over
SVM and LR. Kim et al. [36] executed a geometric mean-
based Boosting algorithm to resolve skewed class problems
in bankruptcy prediction and verified that their proposed
algorithm had the advantages of a high predictive power and
a robust learning capability in balanced and skewed data dis-
tributions. For imbalanced credit data modeling, Sun et al.
[60] combined a hybrid feature selection with SVM andmul-
tiple discriminant analysis, and they claimed that the hybrid
feature selection technique was an essential tool for predict-
ing the credit customer status. More recently, He et al. [32]
proposed an extended Balance Cascade approach for six dif-
ferent real-world skewed credit databases and thought their
methodology to be more robust in credit scoring. Evolution-
ary undersampling was used to favor diversity in the selected
instances [48]. However, potentially valuable instances may
be discarded in the undersampling approaches.

The above studies focused on skewed learning in busi-
ness domains other than small enterprises. Only a few studies
have concerns parallel to the ones in this study, such as the
study by Gicic and Subasi [26], which applied SMOTE with
RTF to a real-world microcredit dataset and determined that
ensemble classifiers provided improved results. In a compa-
rable way, Sun et al. [61] experimented with a novel decision
tree ensemble algorithm for the skewed credit risk modeling
of enterprises and declared that their proposed methodol-
ogy could not only deal with the skewed class problem but
could also augment themultiplicity of stand-alone classifiers.
Therefore, the proposed methodology is intended for a rare
event domain for which more empirical research is needed.

Justification of this study

Based on the surveyed studies, the use of classifier ensembles
is the growing trend in credit risk prediction, and model-
ing skewed class small business datasets is an unfocused
domain. In a study that took a different approach than the
ones cited above,Haixiang et al. [28] reviewed the fundamen-
tal core learners applied to classifier ensembles and skewed
data problems. They asserted that RF, neural networks, SVM,
and decision trees are some widely used cardinal algorithms
in the literature. In line with these findings, Sun et al. [59]
condensed the obstacles of base classifiers when learning

from skewed data and stated that there are dozens of learn-
ers in the existing studies that have strong points and flaws.
For instance, SVM is likely to be complicated in learning
for large-scale datasets and sensitive to missing values, for
which, on the contrary, RF might be a feasible classifier. Fol-
lowing this stream of research, Rio et al. [54] claimed that the
RF classifier was an eminent decision tree ensemble admired
for its robustness and outstanding recitals. In addition, RF
classifiers enable efficient processing of high-dimensional
credit risk data without the need to perform feature selec-
tion while providing the user with feature importance [32].
Predictions of credit risk in RF are produced as an ensemble
estimate from a number of simple models (decision trees)
by using bootstrap samples (Bagging). Using different ran-
domly selected training data improves the stability of the
classifier and reduces its overfitting risk. Random selection of
classifier variables is another beneficial quality of RF, allow-
ing it to handle a large number of credit risk features. As
a result of this embedded feature selection procedure, the
number of features required for credit risk assessment can be
substantially reduced, thus improving the efficiency of the
RF classifier. These advantages have made RF a benchmark
method in both credit scoring [37] and corporate credit rating
[30]. Moreover, an ensemble-based RF learning methodol-
ogy is worthwhile when one is confronted with skewed data
instances [32]. Therefore, the application of RF, along with
other competing ensembles, should not bias the experimen-
tal outcomes regarding positive minority instances in small
business credit risk assessment. Inspired by the above find-
ings, the current study follows up on the multiple RF-based
experimental settings to assess the aspects of the different
algorithms considered.

Class imbalance problem

In recent periods, many solutions have been proposed to deal
with class imbalance problems, both for standard learning
classifiers and ensemble algorithms. They can be categorized
into three major groups:
The data-level solution is one in which the training instances
are adapted to generate a more or less rebalanced class allo-
cation that permits algorithms to perform in a way that is
comparable to the standard classification. This strategy typi-
cally entails two methodologies: oversampling and under-
sampling. Oversampling techniques reduce class inequity
by generating new minority class instances. Contrary to
oversampling techniques, undersamplingprocedures reshape
class inequity by decreasing the number of positive class
instances [29]. Besides oversampling and undersampling
techniques, this study presents the hybrid data-level solu-
tions RUSSMOTE, MChanUS, and USOS to show the effect
of different forms of imbalance learning.
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Algorithmic modification attempts to modify the learning of
forecasting classifiers concerning the negative class. Cost-
sensitive learning is the most popular example of this type.
A cost-sensitive classifier constructs an algorithm that usu-
ally provides a high cost for the negative class and a low
cost for the positive class. Therefore, cost-sensitive learn-
ing minimizes the total cost of misclassification by changing
the different types of cost ratios. The representative type of
weighted learning, for instance, C4.5, k-NN, or SVM, can be
applied to the class skewed problems.
Ensemble solution attempts to perk up the performance
of base algorithms by introducing numerous algorithms in
combination to attain new, improved performing classifiers,
which are more adjusted to skewed class issues. In this
study, for better classification and generalization, ensemble
learning creates hybridization with data-level approaches. In
particular, this study proposes a novel ensemble called the
WSMOTE-ensemble algorithm. Data-level hybrid strategies
based on RF, Bagging, and Boosting are reportedly able to
better deal with class imbalances in loan approval datasets
compared with data-level and ensemble solutions applied
separately [11].

WSMOTE-basedmethods for class imbalance
problem

SMOTE approach

SMOTE is probably the most famous algorithm for counter-
acting imbalanced dataset modeling [15]. It produces new
instances of the negative class by operating in the “feature
space” rather than the “data space”. SMOTE is an over-
sampling technique in which each negative class instance
createsM%of artificial instances comparable to themajority
class instances. This augmentation in the minority instances
enhances the decision accuracy of the trained algorithms.

Weighted SMOTE approach

TheWSMOTE algorithm [52] is an oversampling methodol-
ogy that allocates weights for generating new artificial data
and employs SMOTE for a specific positive data point. Each
minority instance produces an equal number of synthetic
instances, and the outcome is an amendment to the SMOTE
algorithm. The WSMOTE technique utilizes the Euclidean
distance of each positive instance with all the other minor-
ity instances to generate a weighted scalar. This weighted
scalar, together with all of the synthetic instances, creates
the SMOTE generation scalar; the algorithmic pseudocode
provides detailed procedures in Algorithm 1.

Theminority/positive training set is takenwithT instances
and m variables. The Euclidean distance (ED) of each of the

T minority instances is computed with regard to all positive
instances. The sumof each of these distances for each i-th and
j-th positive instance (i �= j) providesEDi . The distances for
all of the minority instances are computed and accumulated
in a matrix. Then, the ED matrix is normalized by applying
the highest value, EDmax , and the lowest value, EDmin, and
is named the normalized ED matrix (NED). After that, the
NED scalar is customized to a revised NEDmatrix (RNED).
The RNED matrix says that the smaller the ED of a positive
instance, the higher the amount of data samples it obtains to
produce the artificial sample from the total amount of arti-
ficial instances (N%). The RNED matrix is computed by
deducting NEDi for each minority instance from the sum of
all of the NEDs. In the last stage, the weightedmatrix is com-
puted by generating each minority data portion with regard
to the total sum of instances generated in the RNED matrix.
Finally, this weightedmatrix is utilized to obtain the SMOTE
generation matrix.

Algorithm 1Weighted SMOTE
Input: Dataset={(xi , yi ), xi=(xi,1, xi,2, . . . , xi, j , . . . , xi,m ), i=1,2,. . .
,T}, where T denotes the number of minority data, m denotes the
number of features, and yi denotes the class label; the amount of
weighted SMOTE N%; the number of nearest neighbors k.
Output: (N× T )/100 synthetic minority class samples { (xsi =(x

s
i,1,

xsi,2, . . . , x
s
i, j , . . . , x

s
i,m ), i=1,2,. . . ,(N× T )/100} .

Procedure:
{
Step 1: // Calculate the Euclidean distance of each of the T minority
data samples

EDi (xi , xl ) =
√∑m

j=1 (xi, j − xl, j )2, where l �= i.

// For all the minority data, the ED are calculated and stored in the
column matrix ED=[ED1, ED2, . . . , EDT ]
Step 2: // Normalize the ED matrix

NEDi = EDi−EDmin
EDmax−EDmin

Step 3: // Modify NED to a remodeled normalized matrix REND
[REND]T×1=sum(NED)-[NED]T×1

Step 4: // Calculate weight matrix W for each minority of T samples
[W ]T×1=[REND]T×1/sum(REND)

Step 5: // Calculate the SMOTE Generation Matrix G
[G]T×1=N% × T× [W ]T×1, G= [G1, G2, . . . , GT ].

Step 6: // Generate the synthetic samples.
For i =1 to T
Compute k nearest neighbors for i, and save the indices in the n × n
array.
While Gi �= 0
Choose a random number between 1 and k, call it kr . // This step

chooses one of the k nearest neighbors of i.
For j= 1 to m
xsnewindex,j=xi,j +rand(0,1)× (xkr,j -xi,j)

End For
newindex++
Gi= Gi − 1

End While
End For
Return synthetic samples { (xsi=(x

s
i,1, x

s
i,2, . . . , xsi,j, . . . , xsi,m ),

i=1,2,. . . ,( N× T )/100 } .
}
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MChanUS approach

The current study applies a modification of the Chan and
Stolfo [14] approach to classify the skewed small busi-
ness data. The original algorithm is a hybrid sampling
strategy combining randomoversampling and randomunder-
sampling. In place of random sampling, this study trains
the WSMOTE learner to produce synthetic positive data.
Accordingly, the trained algorithm called MChanUS and the
algorithmic pseudocode are given in Algorithm 2. First, the
negative samples are divided into nonoverlapping subsets.
Likewise, theWSMOTEalgorithm is applied to generate arti-
ficial positive instances and combines them with the original
minority instances, forming the new positive set of instances.
Finally, the newly created minority dataset hybridizes with
each of the subsets belonging to the negative class. This
means that the positive minority dataset reiterates across the
negative sets of instances and generates balanced datasets.
The flowchart of the MChanUS algorithm illustrating the
above procedures for the used small business dataset is found
in Fig. 1.

Algorithm 2 MChanUS
Input:Dataset={(xi , yi ), xi=(xi,1, xi,2, . . . , xi, j , . . . , xi,m ), i=1,2,. . .
,T}.
Output: Balanced dataset.
Procedure:
{
Step 1: // Identify data classes, i.e., positive sample and negative
sample
sample_size(SS, [Pos, Neg]count )
Step 2: // Use the WSMOTE algorithm to produce synthetic positive
instances and combine them with the original minority instances
gen_synthetic_positive_samples [SPos]count
for each [Pos, SPos]count
get_new_positive_sample [NPos]count

Step 3: // Create seven equal subsets of negative instances applying
the random undersampling principle
make_majority_instances_set [SNeg1, SNeg2,. . . .SNeg7]count

Step 4: // Combine new positive instances with negative instances in
the subsets

merge_two_newly_produced_data_sets [NPos+SNeg1,. . .
.. NPos+SNeg7]count
Return the balanced dataset.
}

WSMOTE-ensemble approach

A classifier ensemble can be trained on the in-sample
instances with dissimilar percentages of oversampling where
the segregated SCMs are applied in the positive class dataset.
It guarantees the multiplicity of baseline learners and evades
overtraining to a certain level because the number ofminority
in-sample instances for training each baseline classifier is dis-
similar. Let us assume that D learners (d = 1, 2, ..., D) are
employed, and the segregated SCMs for training the learn-

ers fit as SCMd = [100×(d/D)], where SCMd refers to the
oversampling rate for the d-th learner. For instance, SCMd

= 20%, 40%, 60%, 80%, and 100% for D = 5.
Therefore, the number of minority class instances after

SCMs is determined as SNMin = SMin + round (M×SCMd ),
where M refers to the difference between instance numbers
of minority (SMin) and majority (SMaj) instances in the ini-
tial skewed dataset. Besides, the function round (.) denotes
rounding a numerical figure downward or upward based on
its decimals. That is to say, when the minority sample is SMin

= 158 and the majority sample is SMaj = 367, then their dis-
parity is M = 209. If the oversampling composite mixtures
rate SCMd is 30%, the number of minority instances after
oversampling would be SNMin = 158 + round (209 × 30%)
= 221. Following these procedures, fusion learners can be
assembled utilizing the segregated SCM principles.

The structure of the WSMOTE-ensemble model is shown
in Fig. 2. It is a blended outcome of the SCMs, WSMOTE,
Bagging, and C4.5 decision tree algorithms. TheWSMOTE-
SCM and Bagging-SCM are trained on the minority and
majority classes, respectively, to generate balanced Bags.
According to the study by Sun et al. [61], the C4.5 classifier
is trained to obtain the Bag’s accuracy, and the best train-
ing Bags are selected for the intended experiments based
on the maximum predictive power. Thus, the WSMOTE-
ensemble classifier incorporates the benefits of WSMOTE
and SCM to deal with the skewed class issues by generat-
ing new positive instances using the WSMOTE procedure
with SCMs in each step. Unlike the oversampling mixtures
from the WSMOTE algorithm, the proposed algorithm con-
structs several in-sample sets belonging to different numbers
of minority instances. To be precise, different levels of new
weightedminority instances are created to deflate the extreme
credit risk of the respective class. This integration assists in
enlarging the multiplicity of baseline learners and also min-
imizes overtraining problems. The SCM technique used in
this study is an oversampling method that is applied to both
minority instances (usingWSMOTE) and majority instances
(using Bagging with random sampling) while using differen-
tiated sampling rates. Balanced Bags are thus obtained with
different numbers of instances. Overall, the advantages of
differentiated sampling rates in SCMs are as follows [61]:

– the diversity of base classifiers is increased by sampling
different numbers of training instances.

– the risk of overtraining is reduced by fully exploiting the
WSMOTE capacity to produce minority instances.

– when combined with Bagging, the stability of the small
business credit risk classificationmodel is improved com-
pared with single classifier-based models.

The WSMOTE-ensemble learner also puts together the
enhancements of Bagging and SCM for reducing the major-
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Fig. 1 Flowchart of MChanUS
algorithm

ity instances with SCMs. In each training step of the baseline
algorithm, the instances of the majority set from Bagging
are identical to those of the minority instance set generated
usingWSMOTE. Accordingly, this study compiles the class-
balanced Bags bymixing upWSMOTEwith Bagging. Then,
the baseline C4.5 classifier runs on the balanced Bags to
determine each Bag’s accuracy. The algorithmic pseudocode
of the WSMOTE-ensemble classifier is illustrated in Algo-
rithm 3.

TheWSMOTE-ensemble classifier exploits the SCMs and
generates class-balanced Bags, for which C4.5 is a baseline
model. Hence, it provides us with some unique benefits for
skewed data modeling compared with existing approaches.
First, theWSMOTE-ensemble espouses segregated SCMs in
both minority and majority sets of instances. To enlarge the
set of minority instances, the WSMOTE algorithm is also
trained in the data regions where no replication instances
exist. Having ensured the multiplicity of baseline learners,
afterward, the Bagging strategy is applied to reduce the set
ofmajority instances. This results in the fusion ofWSMOTE,
SCM, Bagging, and C4.5 learner competence to address
the skewed class problem. Besides the above enhancements,
the WSMOTE-ensemble generates multiple class-balanced
Bags from which only the best are selected based on their
accuracy. This innovative class-balancingmechanism bumps
up the divergence and perks up the recitals of fusion mecha-
nisms. We believe that the proposed WSMOTE-ensemble
algorithm augments a skewed data classification perfor-
mance. To sum up, the proposed WSMOTE-ensemble con-
trasts with the existing ensemble approaches in several areas:

– The proposed WSMOTE-ensemble is an extended,
enhanced edition of the approach of Sun et al. [61].
Specifically, SMOTE was replaced with its enhanced
weighted-basedmodification,making the credit risk clas-
sifier more robust to class imbalance.

– Our explanation generalizes to a rare event domain,
where instances have dissimilar traits in terms of dimen-
sion, skewness level, and size.

– It solves the overtraining dilemma of typical oversam-
pling because it ensures the variety in the WSMOTE
algorithm to generate weighted synthetic loan default
instances.

– The proposed WSMOTE-ensemble classifier assembles
an optimal fusionmethodology for skewed data learning,
which ensures both the accuracy and stability of predic-
tion. This methodology combines the sampling method
with several ensemble strategies, rather than relying on
simple bootstrap aggregation of decision trees like [61].

– Compared with SMOTE, WSMOTE, random undersam-
pling (RUS), MChanUS, USOS, and RUSSMOTE, the
WSMOTE-ensemble classifier successfully evades the
uncertainty of the Sun et al. [61] approach when deal-
ing with the small number of minority instances.
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Fig. 2 Flowchart of WSMOTE-ensemble algorithm

Experimental design

Dataset and instance composition

The original commercial bank database used in this study
was generated from 3111 records of firms that received small
business loans in China from 1992 to 2012; of these, 3040
were creditworthy (majority class) and the remaining 71
were noncreditworthy loan customers (minority class). The
current study provides the supplementary data file, which
includes detailed outcomes of the trained algorithms (see
Supplementary Tables S1 to S3). Details about the data

source, including the bank’s name, its origin, and its function-
ality, were excluded to maintain privacy. The experimental
dataset was managed by the National Natural Science Foun-
dation of China (NSFC), which is headed by the second
contributor to this study.Due to the conditions imposedby the
bank and the NSFC, it might be difficult to make the dataset
public, but an interested reader may contact the project coor-
dinator about the experimental dataset and other relevant
issues. According to the Standards for Classification of Small
andMedium-sized Enterprises [44], this study includes small
business loan samples across multiple industries, namely,
the retail, wholesale, information services, and transportation
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Algorithm 3 WSMOTE-ensemble
Input: Training dataset TRDS={ (xtri , yi ), i=1,2,. . . ,ntr } and testing
dataset TEDS={ (xtei , yi ), i=1,2,. . . ,nte} , ntr and nte denote the
number of training and testing instances, respectively.
Output: The trained WSMOTE-ensemble model.
Procedure:
{
Step 1: // Produce the sampling composite mixtures
SCM= [SCMd ] (d= 1,2,. . . ,D), whereD denotes the number of initial
classifiers;
Step 2: // Decide on the instance set of each category in SCM rates
SCMd ;
M =SMaj -SMin
SCMd =[100 × (d/D)], d=1,2,. . . ,D
SdMin = SMin + round (M × SCMd ) SMin+ SdMin= SNMin ,
where M refers to the difference between the instance sets of two

classes, SMaj and SMin are the sets ofmajority andminority instances,
respectively, SdMin are the weighted synthetic minority instances, and
SNMin is the new minority training dataset.
Step 3:

For d=1 to D
i.WSMOTE-SCM is applied to generate SdMin and merge it with

the initial minority examples (SMin) to produce the minority training
dataset SNMin.

ii. Bagging-SCM is used to generate new majority instances
(SMajd ). It follows random sampling with replacement. Then, SNMaj
is the reduced set of negative instances.

iii. Class-balanced Bags = SNMin+ SNMaj
End For

Step 4: // Train baseline C4.5 decision classifier and determine the
Bag’s accuracy;
Step 5: // Pick the seven best Bags based on maximum accuracy;
Step 6: // Selected Bags are trained over the current experimental
settings;

gen_imbal_data_classifier[Train{WSMOTE-
ensemble}{EnsembleProposal}{ DatalevelSolution}

{AlgorithmicModification}]
Step 7: // Get the prediction results of training instances;

imbal_data_training(TRDScount , MultilevelExperimentcount ,
PerformanceMeasurescount )
Step 8: // Generate the classification outputs from the testing
instances;

imbal_data_testing(TEDScount , MultilevelExperimentcount ,
PerformanceMeasurescount )
Step 9: // Compare the outcomes to generate a global solution.
}

sectors, as well as other sectors. For this study, the data were
preprocessed and the duplicate examples were removed; fol-
lowing the purifications, the sample sizes were 1950 in the
majority class and 55 in the minority class used as original
instances (instance composition 1 (IC 1)) in the experiment.
The highest imbalance ratio (IR) was 35.45. Each small busi-
ness credit customer in the dataset had 48 financial variables,
27 nonfinancial variables, and 6 macroeconomic variables,
for a total of 81 variables. The financial variables included
the debt-to-asset ratio, net cash flow ratio, quick asset ratio,
liquidity ratio, net cash flow-to-asset ratio, current asset ratio,
and cash ratio. The nonfinancial variables included the audit
status, patent, types of bank accounts, sales scope, and edu-

cational background of owner. Themacroeconomic variables
included the business cycle index, gross domestic product,
and consumer price index. Table 1 illustrates the descriptive
statistics of applied variables. Among the financial variables,
the total of the outstanding loans to the total assets and the
total of the outstanding loans to the net assets had maximum
mean values of 0.99 and 0.94, respectively. Conversely, the
cash flow from operating activities and the net cash flow to
sales revenue had the smallest standard deviations of 0.032
and 0.0435, respectively. The results of the Student’s paired
t-test indicated that the values of all variables were statisti-
cally different for the default and nondefault class at the 1%
level. A lack of variables for economic trends has tradition-
ally been a primary constraint of small business data analysis.
Moreover, the macroeconomic variables are critical factors
that directly influence the payment behavior of any creditor
[34]. The Chinese small business loan performance database,
therefore, is an ideal dataset for credit risk modeling.

We focused on seven different skewed data-balancing
strategies to verify the feasibility and effectiveness of the
proposed WSMOTE-ensemble for the imbalanced small
business loan dataset. Following the SMOTE and RUS
strategies, this study generated seven different instance sets
to make the dataset balanced, for example, SMOTE-1 to
SMOTE-7 (instance compositions IC2 to IC8) and RUS-1 to
RUS-7 (IC16 to IC22), which decreased the IR from 35.45
to 1.11 and 35.45 to 1.00, respectively. Note that the com-
bination of IC2 to IC8 was applied to train the WSMOTE
algorithm. Based on the hybrid strategies USOS and RUSS-
MOTE, an additional four sets of ICs were formed, namely,
USOS-1 to OSUS-4 (IC30 to IC33) and RUSSMOTE-1
to RUSSMOTE-4 (IC34 to IC37), with IR ratios of 15.95
to 1.00 in each cluster, respectively. The current study
also applied the MChanUS model by producing seven bal-
anced sets of instances (IC23 to IC29). Lastly, the present
study picked up the seven best WSMOTE-ensemble fusion-
sampling instances (IC9 to IC15) based on the highest
accuracies from the C4.5 classifier. It includes the number
of selected Bags (B#37, B#29,...,B#35) and their respective
samples. The seven best-performing Bags were selected to
maintain uniformity with the earlier algorithms. All of these
Bagswere balanced. A description of sampling compositions
is presented in Table 2.

To consistently evaluate the performance of the proposed
methods, a five-fold cross-validation was applied. The tra-
ditional ten-fold cross-validation was not used due to the
lack of minority class instances in the experimental dataset.
Experiments were conducted on a personal computer with
a 3.10-GHz Intel Core i5-2400 CPU and 4 GB RAM, on
the Windows 7 operating system in the following program
environments: MATLAB R2017b, the open-source data-
mining toolkits of WEKA 3.8.0 (Waikato Environment for
Knowledge Analysis), KEEL (Knowledge Extraction based
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Table 1 Descriptive statistics of used variables (mean ± std)

Panel A: Financial variables Accounts payable turnover velocity 0.8142 ± 0.3596

Debt to asset ratio 0.4642 ± 0.2490 Cash cycle 0.4240 ± 0.1916

Ratio of net CF 0.4884 ± 0.1037 Revenue growth rate 0.2138 ± 0.1820

Quick asset ratio 0.1949 ± 0.2237 Profit growth rate 0.4937 ± 0.0604

Liquidity ratio 0.1376 ± 0.1462 Total assets growth rate 0.2861 ± 0.1391

Net CF to main business income 0.1800 ± 0.1330 Rate of capital accumulation 0.4993 ± 0.0492

EBIT to current liability ratio 0.4823 ± 0.0791 Retained earnings growth rate 0.4881 ± 0.1175

(Long-term
liabilities)-to-
(long-term
liabilities plus
owners equity)

0.9000 ± 0.2760 Panel B: Non-financial attributes

Net CF-to-asset ratio 0.4900 ± 0.1370 Entire period of actual operations 0.7900 ± 0.3500

Current asset ratio 0.1642 ± 0.1705 Audit status (audit or not) 0.0400 ± 0.1930

Net operating CF to net profit 0.4878 ± 0.1382 Hierarchy of new product 0.1100 ± 0.2520

Net asset to total loan 0.2100 ± 0.2590 Patent condition 0.0800 ± 0.2090

Net asset to owners’ equity 0.8987 ± 0.1875 Enterprise establishment date 0.4183 ± 0.4224

Cash ratio 0.1493 ± 0.2547 Types of bank account 0.5400 ± 0.3100

Total liability to fixed assets 0.0600 ± 0.1820 Sales scope 0.4600 ± 0.2910

Outstanding loans to net assets 0.9400 ± 0.1900 Level of brand products 0.1800 ± 0.2740

Outstanding loans to total assets 0.9900 ± 0.1130 Enterprise loan ratio 0.3900 ± 0.3900

Net CF to noncurrent liability 0.0600 ± 0.1440 Educational background 0.8000 ± 0.3010

Net CF to assets ratio 0.4822 ± 0.1077 Default records 0.7400 ± 0.3800

EBITDA to liabilities 0.0441 ± 0.1009 Credit history 0.5900 ± 0.4930

Return on equity 0.1178 ± 0.1466 Marital status 0.9290 ± 0.1532

Net CF to sales revenue 0.0059 ± 0.0435 Residence status 0.6400 ± 0.4780

Net profit to sales revenue 0.0593 ± 0.0794 Residence duration 0.7900 ± 0.3860

Return on total assets 0.0997 ± 0.1219 Gender 0.9140 ± 0.1646

Operating profit margin 0.2895 ± 0.2378 Age 0.8800 ± 0.1990

Net profit to operating costs 0.0629 ± 0.1120 Automobile and real estate 0.1800 ± 0.2270

Gross profit rate 0.2600 ± 0.2680 Monthly family income 0.1100 ± 0.2220

Total profit to operating costs 0.4725 ± 0.1386 Job duration 0.4000 ± 0.3740

EBITDA 0.1673 ± 0.2376 Registered capital 0.8400 ± 0.3630

EBITDA to total revenue 0.0673 ± 0.0853 Enterprise credit in 3 years 0.8100 ± 0.3660

Net profit 0.1620 ± 0.2307 Tax records 0.8300 ± 0.3660

Net operating CF 0.5012 ± 0.0893 Legal dispute number 0.8760 ± 0.2923

Operating CF 0.0028 ± 0.0320 Business status (lawful/not) 0.4300 ± 0.2200

Receivable turnover velocity 0.0317 ± 0.1012 Number of breach of contract 0.8200 ± 0.3840

Inventory turnover velocity 0.0195 ± 0.0892 Panel C: Macroeconomic attributes

Total assets turnover velocity 0.2799 ± 0.2955 The business cycle index 0.6817 ± 0.1191

Velocity of liquid assets 0.0232 ± 0.0478 Urban residents per capita savings 0.4981 ± 0.1618

Velocity of fixed assets 0.0491 ± 0.1606 GDP growth rate 0.3797 ± 0.0824

Velocity of equity 0.0980 ± 0.1648 Consumer price index 0.9848 ± 0.0438

Working capital ratio 0.2618 ± 0.1798 Citizens’ per capita income 0.4681 ± 0.1309

Return on investment 0.0100 ± 0.0930 Engel coefficient 0.7294 ± 0.0699

CF cash flow, EBIT earnings before interest and taxes, EBITDA earnings before interest, taxes, depreciation and amortization
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Table 2 Description of datasets with different sampling strategies used in experiment

Instance composition (IC) # Features in all instance compositions: 81

# Instances in majority
(negative) class (NC)

# Instances in minority
(positive) class (PC)

Imbalance
ratio (NC/PC)

1. Original instances 1950 55 35.45

2. SMOTE-1 (WSMOTE-1) 1950 110 (100%*55) 17.73

3. SMOTE-2 (WSMOTE-2) 1950 220 (100%*110) 8.86

4. SMOTE-3 (WSMOTE-3) 1950 440 (100%*220) 4.43

5. SMOTE-4 (WSMOTE-4) 1950 880 (100%*440) 2.22

6. SMOTE-5 (WSMOTE-5) 1950 1320 (50%*880) 1.48

7. SMOTE-6 (WSMOTE-6) 1950 1760 (100%*880) 1.11

8. SMOTE-7 (WSMOTE-7) 1950 1950 (50%*1320-30) 1.00

9. WSMOTE-ensemble-1 (B#37) 1808 Pos#55; WSmotePos#1753 1.00

10. WSMOTE-ensemble-2 (B#29) 1429 Pos#55; WSmotePos#1374 1.00

11. WSMOTE-ensemble-3 (B#40) 1950 Pos#55; WSmotePos#1895 1.00

12. WSMOTE-ensemble-4 (B#34) 1666 Pos#55; WSmotePos#1611 1.00

13. WSMOTE-ensemble-5 (B#27) 1334 Pos#55; WSmotePos#1279 1.00

14. WSMOTE-ensemble-6 (B#39) 1903 Pos#55; WSmotePos#1848 1.00

15. WSMOTE-ensemble-7 (B#35) 1713 Pos#55; WSmotePos#1658 1.00

16. RUS-1 1755 (1950*10%) 55 31.91

17. RUS-2 1455 (300) 55 26.45

18. RUS-3 1155 (300) 55 21

19. RUS-4 855 (300) 55 15.55

20. RUS-5 555 (300) 55 10.09

21. RUS-6 255 (300) 55 4.64

22. RUS-7 55 (200) 55 1.00

23. MChanUS-1 278 Pos#55; WSmotePos#223 1.00

24. MChanUS-2 278 Pos#55; WSmotePos#223 1.00

25. MChanUS-3 278 Pos#55; WSmotePos#223 1.00

26. MChanUS-4 278 Pos#55; WSmotePos#223 1.00

27. MChanUS-5 278 Pos#55; WSmotePos#223 1.00

28. MChanUS-6 278 Pos#55; WSmotePos#223 1.00

29. MChanUS-7 278 Pos#55; WSmotePos#223 1.00

30. USOS-1 1755 (1950*10%) 110 (100%*55) 15.95

31. USOS-2 1455 (300) 220 (100%*110) 6.61

32. USOS-3 1155 (300) 440 (100%*220) 2.63

33. USOS-4 880 (275) 880 (100%*440) 1.00

34. RUSSMOTE-1 1755 110 15.95

35. RUSSMOTE-2 1455 220 6.61

36. RUSSMOTE-3 1155 440 2.63

37. RUSSMOTE-4 880 880 1.00

on Evolutionary Learning) GPLv3 tool, and SPSS Modeler
(SPSS 17.0).

Performance evaluation

This study employed the four most widely used evaluation
criteria for imbalanced datasets. The metrics were based on
a 2 × 2 confusion matrix, as presented in Table 3, where

tp, tn, f p, and f n are the true-positive, true-negative, false-
positive, and false-negative results, respectively.

Many empirical researchers with theoretical evidence
claim that a highly skewed class distribution can make the
overall accuracy metric almost worthless. In addition, it
ignores the class efficiency from different sample clusters.
Therefore, apart from the accuracy criterion, many other
performance appraisals have been used to discover unseen
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Table 3 The confusion matrix
for credit risk assessment
problem

Predicted observations

Predicted positive Predicted negative

Actual observations Actual positive tp f p

Actual negative f n tn

characteristics of skewed data problems. The most common
are majority-class accuracy (true-positive rate, TPrate) and
minority-class accuracy (true-negative rate, TNrate), which
are typically employed to investigate the class imbalanced
learning performance for each class separately. Note that
TPrate, Eq. (1) evaluates the proportion of nondefault loans
predicted to be nondefault loans,whereasTNrate, Eq. (2) eval-
uates the proportion of default loans predicted to be default
loans.

TPrate = tp/(tp + f n), (1)

TNrate = tn/(tn + f p), (2)

Gm = (TPrate × TNrate)
1/2, (3)

AUC = 1

2

(
1 + tp

tp + f n
− f p

f p + tn

)
. (4)

Similarly, the G-mean metric (Gm), Eq. (3), can be per-
ceived as an indicator of the balanced performance of the
classifier between the two classes. Finally, the area under
the receiver operating characteristic curve (AUC) statistic,
Eq. (4), is also an important measure of the discriminatory
power of skewed learning tasks. An ideal skewed learning
task should have an AUC of 1.0, whereas an AUC of 0.5
denotes a random classifier [45].

Statistical tests

Two categories of statistical comparisons were used for mul-
tiple and pairwise evaluations, respectively, based on the
reference of García et al. [25]. The Wilcoxon signed-rank
test andMcNemar testwere appliedwhen only two classifiers
were compared, and the Friedman test and Iman-Davenport
expansion were utilized for multiple assessments based on
the mean ranks of the classifiers of several ICs. Classi-
fiers were arranged from the best to worst for each IC to
obtain the mean ranks. Subsequently, the ranks were aver-
aged for all ICs. Given M ICs, D classifiers and average
ranks Rd , d = 1,...,D, the Iman-Davenport test worked out an
F-distribution statistic with D-1 and (D-1)× (M-1) degrees
of freedom to authenticate the null hypothesis as follows:

F = (M − 1)x2F
M(D − 1) − x2F

, (5)

χ2
F = 12M

D(D − 1)

[∑
R2
d − D(D + 1)2

4

]
. (6)

A post-hoc test was employed to figure out where the
differences existed if the null hypothesis that all algorithms
have an equal recital was rejected. In this experiment, we
used the Holm post-hoc test, because it can suitably man-
age the family-wise error rate and, therefore, is more precise
than the Bonferroni-Dunn extension test [25]. As a control
mechanism, the Holm test initially picks the classifier with
the lowest average rank and then utilizes a step-down process
to evaluate the control mechanism with the other classifiers.
The Holm test uses the Z -statistic as follows:

Z = (Rd1 − Rd2) ×
{(

D2 + D
)

/6M
}0.50

, (7)

where Rd1 and Rd2 are the mean ranks of classifiers d1
and d2. The Holm test organizes p-values as p1 ≤ p2 ≤
p3 · · · ≤ pD−1, after employing the Z -statistic to point out
the matching probability from the normal distribution table.
The respective hypothesis is rejected if p1 is below α/(D-
1), and the experiments are permitted to evaluate p2 with
α/(D-2), and so on. All remaining hypotheses are optimized
once a respective null hypothesis is not rejected. The current
study follows the significance level α = 0.05 in all statistical
comparisons.

Empirical results

Algorithm selection and parameter settings

This study hybridizes class skewed learning with the base
classifiers C4.5, k-NN, and SVM and the ensemble classi-
fiersBagging,Boosting, LB,RC,RTF, andRF.Cost-sensitive
learning was also applied. The appropriate data level was
used, and the hybrid sampling strategies were SMOTE,
WSMOTE, WSMOTE-ensemble, RUS, MChanUS, USOS,
and RUSSMOTE. Therefore, this investigation employed 69
different criteria for optimizing class-imbalanced small busi-
ness loan data, as shown inTable 4. Table 4 also highlights the
parameter settings and original studies of the respective algo-
rithms, in which technical details are given to readers. The
current section presents the combined experimental results.
Due to space constraints, the detailed results of the four
evaluation measures over multiple ICs are shown in Sup-
plementary Tables S1 and S2. The best performance for each
category is in bold; algorithms are ranked based on the AUC
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Table 4 Algorithms and parameters used in experiments

Type Algorithms and parameters

Baseline C4.5 [53] ; pruned, confidence = 0.25, instances per leaf = 2

k-NN [23]; k = 1, Euclidean distance

SVM [3]; Radial basis function kernel, heuristic search, regularization term = 1.0

Data level solutions [15,52] (k = 5; # Bags = 40)

C4.5: SMOTE-C4.5, WSMOTE-C4.5, WSMOTE-ensemble-C4.5,RUS-C4.5, MChanUS-C4.5,USOS-C4.5,
RUSSMOTE-C4.5

k-NN: SMOTE-k-NN, WSMOTE-k-NN, WSMOTE-ensemble-k-NN, RUS-k-NN, MChanUS-k-NN,
USOS-k-NN, RUSSMOTE-k-NN

SVM: SMOTE-SVM, WSMOTE-SVM, WSMOTE-ensemble-SVM, RUS-SVM, MChanUS-SVM,
USOS-SVM, RUSSMOTE-SVM

Cost-sensitive learning [65] Weighted C4.5; Cnondefault = 11, Cdefault = 56

Weighted k-NN; Cnondefault = 11, Cdefault = 56

Weighted SVM; Cnondefault = 11, Cdefault = 56

Ensemble solutions [36,61,67] (# Bags = 40, # iterations = 40, batch size = 100)

Bagging SMOTE-Bagging, WSMOTE-Bagging, WSMOTE-ensemble-Bagging, USOS-Bagging, RUS-Bagging,
MChanUS-Bagging, RUSSMOTE-Bagging

Boosting SMOTE-Boosting, WSMOTE-Boosting, WSMOTE-ensemble-Boosting, USOS-Boosting, RUS-Boosting,
MChanUS-Boosting, RUSSMOTE-Boosting

LB SMOTE-LB, WSMOTE-LB, WSMOTE-ensemble-LB, USOS-LB, RUS-LB, MChanUS-LB,
RUSSMOTE-LB; shrinkage = 1.0, pool size = 1.0

RC SMOTE-RC, WSMOTE-RC, WSMOTE-ensemble-RC, USOS-RC, RUS-RC, MChanUS-RC,
RUSSMOTE-RC

RTF SMOTE-RTF, WSMOTE-RTF, WSMOTE-ensemble-RTF, USOS-RTF, RUS-RTF, MChanUS-RTF,
RUSSMOTE-RTF

RF SMOTE-RF, WSMOTE-RF, WSMOTE-ensemble-RF, USOS-RF, RUS-RF, MChanUS-RF, RUSSMOTE-RF;
# trees = 40

measure; and the statistical significance is measured by the
nonparametric Wilcoxon and McNemar tests.

Study on data-level experiments

Table 5 shows the data-level evaluation results over the
baseline algorithms. The values of the performance mea-
sures were calculated as averages over five-folds. Compared
with the nonsampling strategy (original instances), all data-
sampling methodologies had a positive impact on the clas-
sification performance of the baseline methods. Notably, the
proposed WSMOTE-ensemble and WSMOTE algorithms
outperformed all the base classifiers in terms of minority
class accuracy (TPrate), AUC, and Gm , except for the SVM
for AUC; SMOTE was better in this case. Table 5 also
reveals that the fusion MChanUS method performed better
for the majority class (TNrate) for all base classifiers. For the
class imbalance learning, the results showed thatWSMOTE-
ensemble was more feasible for generating the reweighting
of instances in favor of the minority class. The nonsam-
pling techniques provided worse results in all evaluations.
However, the degree of improvement over the nonsampling
technique for the best data-level solution depended on the

used base classifiers, for example, k-NN improved 114.91%,
48.10%, and 37.95% for TPrate, AUC, and Gm , respectively,
and C4.5 generated an improvement of 100.49%, 41.41%,
and 33.14%, respectively. SVM showed the least improve-
ment for allmeasures, namely, 42.47%, 17.97%, and 16.61%,
respectively. In contrast to the WSMOTE-ensemble, it is
worth noting that the approach of Sun et al. [61] generated
81.66% Gm and 84.00% minority class accuracy (TPrate)
when applied to the C4.5 classifier. Based on the paral-
lel learning environment, our blending approach generated
a 97.54% TPrate and a 97.70% Gm , exhibiting perfection
of 19.64% and 16.12%, respectively. Overall, the k-NN
approach using the WSMOTE-ensemble data-level tech-
nique seemed to be the best solution for small business class
imbalanced learning on all grounds.

Based on the AUC performance ranking and Wilcoxon
signed-rank test performed for all pairs of data sampling
methods over 5 folds, the improvements from the best
algorithms (WSMOTE-ensemble for C4.5 and k-NN; and
SMOTE for SVM) were statistically significant. RUS per-
formed particularly poorly compared with other data sam-
pling methods.

123



3572 Complex & Intelligent Systems (2023) 9:3559–3579

Table 5 Experimental performance of data sampling with baseline algorithms

Instance composition C4.5 Sun et al. [61]

TPrate TNrate Gm AUC p(WSR) Gm TPrate

Original instances 0.4865 0.9812 0.6909 0.7338(8) – 0.6863 0.5476

SMOTE 0.8993 0.9819 0.9376 0.9406(4) 0.1160 0.7255 0.6374

WSMOTE 0.9718 0.9251 0.9475 0.9485(3) 0.3100 –

WSMOTE-ensemble 0.9754 0.9787 0.9770 0.9770(1) – 0.8166 0.8400

RUS 0.5516 0.9373 0.7145 0.7445(7) 0.0180** –

MChanUS 0.9185 1.0000 0.9584 0.9593(2) 0.0180** –

USOS 0.8806 0.9948 0.9353 0.9377(5) 0.0280** 0.7253 0.6420

RUSSMOTE 0.7878 0.7817 0.7644 0.7847(6) 0.0180** –

k-NN SVM

TPrate TNrate Gm AUC p(WSR) TPrate TNrate Gm AUC p(WSR)

Original instances 0.4546 0.9749 0.6657 0.7147(8) – 0.6923 0.9769 0.8224 0.8346(6) –

SMOTE 0.8452 0.9948 0.9158 0.9200(5) 0.0280** 0.8642 0.9851 0.9218 0.9846(1) –

WSMOTE 0.9847 0.9678 0.9758 0.9762(2) 0.1760 0.9402 0.9787 0.9592 0.9594(3) 0.0280**

WSMOTE-ensemble 0.9770 0.9948 0.9859 0.9859(1) – 0.9351 0.9774 0.9595 0.9598(2) 0.1760

RUS 0.5923 0.9117 0.7296 0.7520(7) 0.0180** 0.6330 0.9364 0.7662 0.7847(8) 0.0180**

MChanUS 0.9398 0.9989 0.9689 0.9694(3) 0.0180** 0.9001 0.9852 0.9420 0.9430(4) 0.4990

USOS 0.9183 0.9993 0.9574 0.9588(4) 0.0280** 0.8300 0.9824 0.9025 0.9062(5) 0.3100

RUSSMOTE 0.7780 0.8184 0.7807 0.7982(6) 0.0180** 0.7859 0.8272 0.6796 0.8065(7) 0.1760

Note: WSR is Wilcoxon signed-rank test, **statistically significant at p < 0.05

Table 6 Experimental performance of weighted classifiers

Instances composition C4.5 k-NN

TPrate TNrate AUC Gm TPrate TNrate AUC Gm

None 0.9815 0.3273 0.7179 0.5668 0.9908 0.3455 0.6681 0.5850

Weighted 0.9841 0.3455 0.7828 0.5831 0.9862 0.4182 0.7022 0.6422

McNemar test p(TPrate) = 1.000; p(Gm ) = 0.937 p(TPrate) = 1.000; p(Gm ) = 0.862

SVM

None 0.9821 0.3091 0.8324 0.5509

Weighted 0.9867 0.4545 0.8982 0.6697

McNemar test p(TPrate) = 1.000; p(Gm ) = 0.987

Study on cost-sensitive learning

Table 6 shows the cost-sensitive learning outcomes aver-
aged over non-weighted and weighted baseline classifiers.
All weighted algorithms generated progressive results com-
pared with baseline classifiers (None), but their degree of
improvement varied. In terms of the AUC, Gm , and TPrate,
the weighted SVM (WSVM) outperformed the other two
classifiers, providing results of 0.8982, 0.6697, and 0.9867,
respectively. For the TNrate, WSVM was also the best
amongst its equivalents. The best cost-sensitive learning
(WSVM)produced improvements of 7.90%, 21.56%, 0.47%,
and 47.04% over the baseline SVM in terms of theAUC,Gm ,

TPrate, and TNrate measures, respectively. The result of the
McNemar test (comparing the confusion matrices obtained
using the non-weighted vs. weighted baseline classifiers)
suggested that cost-sensitive learning showed no significant
differences in terms of the TPrate and Gm for the best classi-
fiers.

Study on the ensemble experiments

The final group of approaches for dealing with imbalanced
data was based on ensemble methods. The researchers chose
six classifiers that had performed the best in earlier studies
[24,40,46]. To be specific, if M = [Bagging, Boosting, LB,
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RC, RTF, RF] and F = [SMOTE, WSMOTE, WSMOTE-
ensemble, RUS, MChanUS, USOS, RUSSMOTE], then the
experimental settings followed up M × F . In all ensemble
cases,C4.5was employed as the baseline algorithm, adopting
the earlier ensemble methodologies, with the settings kept
identical to those utilized in the baseline algorithms. The
current study fixed the numbers of iterations in Boosting-
based hybrids, Bags in Bagging-based hybrids, and trees in
RF-based hybrids to be 40.Moreover, in LB-, RC-, and RTF-
based ensembles, the batch size was 100, and the number of
iterations for the latter two approaches was 40. These set-
tings were consistent with those in earlier studies [49,66]. To
authenticate whether these ensembles were advantageous in
dealing with the skewed dataset, the fundamental algorithms
of the corresponding ensembles were also utilized to provide
comparisons.

The results for the four performance criteria are shown in
Table 7. The results indicated that all of the ensemble strate-
gies outperformed their baselines. In particular, among seven
different approaches, WSMOTE-ensemble-RF, an integra-
tion of RF with WSMOTE-ensemble, performed the best
in terms of the AUC (0.9910), Gm (0.9910), and TPrate
(0.9916), thus being more effective than SMOTE-Bagging
and SMOTE-Boosting. Moreover, the effectiveness of the
WSMOTE-ensemble was confirmed by the good perfor-
mance of WSMOTE-ensemble-RTF, which ranked second
for the AUC and the Gm .

Again, the Wilcoxon signed-rank test was conducted to
compare the AUC performance (over five-folds) of the best
data sampling method (WSMOTE-ensemble ranked first in
all cases) with its data sampling competitors. The results
show that RUS, MChanUS, USOS, and RUSSMOTE were
significantly outperformed by WSMOTE-ensemble for all
ensemble learning methods.

A significant finding from the results for ensemble strate-
gies is that theWSMOTE-ensemble-RF fusion technique is a
preferable choice based on the performance evaluations, and
theWSMOTE-ensemble-Bagging technique is an alternative
option. Both had ensured enhanced performance compared
with their counterparts for skewed class data in small busi-
ness credit risk.

Comparative analysis

Comparison ofWSMOTE,WSMOTE-ensemble, and
MChanUS

We compared the experimental results of SMOTE,
WSMOTE, SMOTE-ensemble, and USOS in this separate
section because WSMOTE and WSMOTE-ensemble were
the outcomes of the enhanced SMOTE- and Bagging-based
algorithms for imbalanced classification tasks. The funda-

mental procedure of the WSMOTE algorithm is to assign
weights for generating new artificial data using SMOTE for
a specific minority positive data point. Each of the positive
instances produces an equal number of artificial instances,
and the resulting outcome is an amendment to the SMOTE
algorithm. Finally, the hybridized data for imbalanced learn-
ing were trained using default machine learning algorithms.

Table 8 presents the ground mean values for four evalua-
tionmeasures for 129 (43×3) data samplings and258 (43×6)
ensemble learning samplings on 43 ICs (7 for SMOTE,
WSMOTE, WSMOTE-ensemble, RUS, and MChanUS, and
4 for USOS and RUSSMOTE); this achieved a total of 387
experiments. As Table 8 shows, the WSMOTE-ensemble
algorithm provided superior results over its counterparts in
allmeasures except TNrate. The stability of the results is illus-
trated in Figs. 3 and 4. The results show that the proposed
WSMOTE-ensemble algorithm was effective in generating
synthetic instances for the minority default class, which was
achieved at the cost of a slightly deteriorated performance
for the TNrate by 0.2039%. Therefore, this study recom-
mends that the WSMOTE-ensemble has distinct advantages
over WSMOTE or SMOTE for balancing the skewed data
classes. This is shown by its achievement of improved
results across all criteria over WSMOTE and SMOTE by
7.3661% for TPrate, 3.5181% for AUC, and 3.7393% for
Gm . What is more, all improvements in all criteria were
statistically significant at 1% for the Wilcoxon signed-rank
test conducted over the 387 experiments for the four perfor-
mance criteria, which strongly supports the above findings.
WSMOTE-ensemble significantly outperformed all the com-
pared sampling methods in terms of TPrate, AUC, and Gm ,
andWSMOTEperformed best for themajority class (TNrate).
However, WSMOTE-ensemble was not significantly outper-
formed for this classification measure.

Global comparisons

In this last section of the experimental analysis, an over-
all assessment was carried out to determine which method
had performed best based on three evaluation criteria. We
performed cross-family comparisons for the instance com-
position methods previously selected as the representatives
for each case. The methods were chosen based on the AUC,
Gm , and TPrate because these measures are critical for class-
imbalanced scenarios. In all approaches, evaluations gained
from the AUC and Gm were consistent with that for the
TPrate; hence, an inclusive assessment was conducted for
theAUC criterion. Using predominantly data-level solutions,
this study selected the best sampling methods for each base-
line classifier, except SVM, for which two approaches were
selected. The first one was best for AUC, and the second one
for Gm . Because the three cost-sensitive learning methods
can stand out among the original algorithms, they stood out
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Table 8 Global results of WSMOTE, WSMOTE-ensemble, MChanUS, USOS, and their baseline samplings

Instance composition Improvement for TPrate (%) Improvement for TNrate (%) Improvement for AUC (%) Improvement for Gm (%)

WSMOTE-ensemble – 0.51 – –

WSMOTE 4.11*** – 1.78*** 1.89***

SMOTE 7.37*** 0.31 3.52*** 3.74***

MChanUS 3.89*** 1.03 2.21*** 2.21***

USOS 9.19*** 0.2040 4.18** 4.52**

RUSSMOTE 23.02 * 18.84*** 22.14*** 26.43***

RUS 57.97*** 5.81*** 26.27*** 30.16***

Note: ***statistically significant at p < 0.01, **at p < 0.05, *at p < 0.10 using the Wilcoxon signed-rank test

Fig. 3 Boxplot chart of global
performance of different
sampling strategies in minority
class accuracy

from the weighted cluster. Among the blending experiments,
this study retained one delegate technique of each from
the Bagging-based, Boosting-based, LB-based, RC-based,
RTF-based, andRF-based ensemble solutions.Altogether, 14
representative approaches were chosen for the global com-
parison, which provided a concise analysis. Table 9 reveals
the outcome of the global assessment, in which AUC ranks
were established for the various instance composition mix-
tures.

Table 9 demonstrates that the ensemble solutions and
data-level strategies mostly dominated the results. More
specifically, the RF algorithm integrated with WSMOTE-
ensemble secured the top position (P#1). The blending
solutionswithRC learner ranked second and third (P#2, P#3);
in these, WSMOTE and WSMOTE-ensemble were used as
the representative algorithms. Parallel to the best algorithms,

hybrid sampling, that is to say, WSMOTE-ensemble-RTF,
took the fourth position (P#4). Consequently, these results
indicate that blending sampling seems to be more robust
than its peers. Furthermore, the blending solutions seemed
to be more effective than data-level treatment because the
former methods secured positions P#1, P#2, P#3, and P#4
but the data-level treatment secured positions P#5, P#7, P#8,
and P#10 in the Friedman ranks. Many related studies have
proven that hybrid treatment consistently attains better rank-
ings than corresponding sampling editions [49,66]. However,
the k-NN-based data-level technique was first (P#5) relative
to C4.5 (P#7) and SVM (P#8 and P#10). The Bagging-based
ensemble was preferable to the Boosting-based ensemble as
indicated by their positions at P#6 and P#11, respectively. In
contrast, cost-sensitive learners attained the lowest positions.
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Fig. 4 Boxplot chart of AUC
from the global performance of
different sampling strategies

Table 9 Friedman global
ranking of the top-performing
classifiers for the instance
composition mixtures in terms
of AUC

Instance composition Aver. rank (#Position) Holm’s p-value

WSMOTE-ensemble-RF 1.9286 (#1) –

WSMOTERC 2.1429 (#2) 0.0500**

WSMOTE-ensemble-RC 3.0714 (#3) 0.0250**

WSMOTE-ensemble-RTF 3.1429 (#4) 0.0167**

WSMOTE-ensemble-k-NN 4.8571 (#5) 0.0125**

WSMOTE-ensemble-Bagging 5.8571 (#6) 0.0789*

WSMOTE-ensemble-C4.5 7.0000 (#7) 0.0083***

WSMOTE-ensemble-SVM 8.4286 (#8) 0.0037***

WSMOTE-ensemble-LB 9.4286 (#9) 0.0008***

SMOTE SVM 9.8571 (#10) 0.0056***

WSMOTE-ensemble-Boosting 10.4286 (#11) 0.0050***

Weighted SVM 12.7143 (#12) 0.0045***

Weighted C4.5 13.0000 (#13) 0.0042***

Weighted k-NN 13.1429 (#14) 0.0038***

Iman-Davenport p-value 0.0000***

Note: ***statistically significant at p < 0.01, **at p < 0.05, *at p < 0.10

Table 9 also shows the results of the Iman-Davenport test
(derived from Friedman’s test) and Holm post-hoc analy-
sis. The Iman-Davenport test was performed for multiple
instance composition assessments based on the mean AUC
ranks. The result of this test indicates significant differ-
ences between the compared instance composition methods.
To further examine the differences in AUC performance,
the Holm post-hoc test was carried out. Table 9 suggests
that the outstanding recital of hybrid learning (WSMOTE-

ensemble-RF, P#1) was statistically significant because the
Iman-Davenport test p-value was <.01, for which the null
hypothesis was rejected. Furthermore, the Holm test showed
that the performance of the top-ranked sampling strategywas
statistically significant. Therefore, the significant findingwas
that the novelWSMOTE-ensemble sampling strategywas the
best solution for credit risk prediction in class-imbalanced
small business data.
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Conclusion

The assessment of small business loans is important in credit
risk modeling due to the irregular availability of information
and the variability of time constraints. Small enterprises are
subject tominimal legal requirements for data disclosure, and
it is difficult for commercial banks to get detailed information
about them. For this reason, commercial banks may try to
base their decisions on the historical credit records of small
enterprises filed with the credit bureau data manager.

From the many experimental studies available, we deter-
mined that it is not possible to assert the dominance of an
algorithm over other competing classifiers irrespective of
data traits. Moreover, in the real world, most of the small
enterprises are creditworthy, and only a minority are non-
creditworthy or default businesses; in other words, there is
an imbalanced class distribution. Recently, modelers have
tried to optimize the forecasting performance in skewed
class scenarios. One commonly employed methodology is
the oversampling of minority data points that are recognized
as data-level solutions, whichmodify the class allocation in a
given dataset. Therefore, the current investigationwasmostly
focused on oversampling methods. By assigning weights
to new artificial data, the representative data points pro-
duced more new instances compared with their outlying
counterparts, and thus, a more stable solution was obtained.
The current study also proposed a novel ensemble approach
rooted in the WSMOTE algorithm, or WSMOTE-ensemble
for skewed data modeling. The proposed ensemble classifier
hybridizes WSMOTE and Bagging with SCMs to minimize
the class skewed constraints linked to default and nondefault
instances.

The main empirical findings of this study can be summa-
rized as follows:

– Experimental investigations point out that theWSMOTE-
ensemble-RF blending procedure significantly outper-
formed the compared methods on all grounds. The
WSMOTE-ensemble outstripped any other algorithmic
combinations being trained. Moreover, the recitals of
WSMOTE with RC also outperformed the existing
SMOTE, MChanUS, and USOS sampling strategies. As
a result, it is imperative to apply theWSMOTE-ensemble
andWSMOTE class balancing modules in predicting the
small business credit risk.

– Sampling methods outperformed nonsampling algo-
rithms. From three base learners, k-NN with WSMOTE-
ensemble was the best blending approach to a sampling
strategy. Simultaneously, SVM did not seem to benefit
from resampling, but it also outperformed the nonsam-
pling strategy.

– The WSMOTE-ensemble-RF fusion approach is the
preferable choice for highly imbalanced credit risk mod-

eling. Consistent with this finding,WSMOTE-ensemble-
Bagging is the second-best choice, especially in the
modes of lower dimensionality and highly informative
independent variables.

– Weighted algorithms can also be a feasible alternative for
predicting the credit risk of small enterprises in imbal-
anced scenarios, with WSVM as the best choice.

With these contributions, therefore, this study fills a note-
worthy knowledge gap and adds several unique insights to the
literature. It has established multilevel experimental settings
in a rare event domain, and produced an improved ensemble
solution with TPrate = 99.16%, this is with 15.16% perfec-
tion in default instance classification relative to the existing
decision tree ensemble solution of Sun et al. [61]. The signifi-
cant improvement in performance could generate substantial
savings for the financial industry and may have a huge
significance in a range of financial and nonfinancial deci-
sions. It appears extremely sensible to minimize the skewed
class problemusing the optimized ensemble algorithmbefore
designing the prediction classifier. It also provides a possible
clarification for the practice-oriented need of interpretabil-
ity of trained algorithms without losing the accuracy of risk
appraisal, which would streamline its adoption as a man-
agerial tool by industrial organizations and users. This study
will aid small business loan lenders in protecting themselves
from potential borrowers with a high credit risk. The exe-
cuted database can be considered a small-scale example set,
although 43 sample sets have been generated by applying
the multi-level data-preprocessing criteria. The current study
used multi-level experimental settings applying RF, data-
level samplings, and algorithmic modifications. In future
research, the application of different learning techniques such
as evolutionary algorithms, extreme gradient boosting, and
deep neural networks may provide more diverse experimen-
tal settings. Keeping in mind its limitations, therefore, future
work should focus on developing the proposed assessment
methodology for small business credit risk over multiple
databases in more complex experimental scenarios.
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