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ARTICLE INFO ABSTRACT

Keywords: Climate has traditionally played an important role in the development of countries, owing to its inherent
Variable lag transfer entropy relationship with agricultural output and pricing. This study explores one such association between the most
E?‘P‘rlcal mode decomposition well-known climate anomaly, the El Nifilo34 Southern Oscillation, and international commodity prices of
El Nifio34

agriculture and food indexes. This study addresses the potentially causal effect of El Nifio34 on international
agricultural and food stock prices. To do so, we develop a novel approach: the empirical mode decomposition
variable-lag transfer entropy (EMD-VL transfer entropy) by combining the variable-lag transfer entropy
framework and the empirical mode decomposition. The evidence reveals the following major results. First,
climate shocks affect global agricultural stock prices in the short-term. Second, significant transfer entropy
from El Nifio34 to food index appeared at mid- and long-term business cycles. Third, unidirectional causal
effect from climate shocks to agricultural and food stock prices is more intense in the short business cycle
attesting to the impact of climate shocks on the food market, which is especially visible in the short-term
horizon. Finally, our proposed method exceeds the traditional variable-lag transfer entropy by detecting such
causal interplay at various business cycles, which is useful for investors and policymakers.

Food index
Agricultural index

1. Introduction In general, in the long term, environmental degradation is expected
to lead to a decline in the output of the agricultural sector. Such
Each year, the global temperature continues to rise. Since 1971, the supply contraction may put pressure on the prices of food. On this

average rate Of increase was 0.18 °C-0.19 °C per decade while the matter, Sally et al. (1992) suggested that the price of agricultural
2?1;_220191’;“()‘1 (ljed t((;anl;ncrease Olfoj‘zz €-0.39 Ca;oveltlhezmeelm commodities should rise whenever climate change effects are very
of the 2000-2009 decade (Dunn et al., 2020). Compared to the 2001 adverse. By relying on the El Nifio34 index which is used to capture

2010 period, the 2011-2020 period was the warmest decade on record hanees in th cface temperature. different studi firmed
for the globe where the average rate of increase was 0.82 °C (NCEI, lcl a gfei . € sea S}‘: ac.e € fpe alu € . erent stu e.s.co eda
2021). Unfortunately, changes in climate have a negative impact on armful impact on the prices of world primary commodities (Brunner,

the quality and availability of soil moisture and water required for 2002), fishmeal-soya bean .meal (David, 2014), wheat DaVi_d (2017),
agricultural production (Arora, 2019; Backlund et al., 2020). According maize and soybean (Massimo, 2017). In this frame, David (2018)

to the 2019 report of the European Environment Agency, more extreme argues that such impact is mainly explained through the channel of
weather and climate events are expected to increase the risk of crop production because the weather anomalies directly affect the regional
losses across Europe, and due to the effects of climate change on agri- suppliers of agricultural commodities. Additionally, climate change-
culture, the average decrease in the gross domestic product is expected induced land productivity changes can also lead to a rise in the price
to amount to 1% by 2050 (Jacobs et al., 2019). Moreover, as a result of of rice, wheat, and cereal grains (Bandaraa and Cai, 2014). To inhibit

the high temperatures and high levels of carbon emissions, Jonas et al.
(2021) there is a predicted 24% decrease in maize productivity by the
end of the century.

the consequences of global warming one food prices, some adaptation
costs may be required to enhance the productivity of the agriculture
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sector that can embrace the form of (public) investments in rural roads,
research, and irrigation infrastructure (Nelson et al., 2009).

As consumer surplus can be affected by the volatility in food prices,
addressing how climate change impacts the agricultural producers in
terms of stocks and performance represents a major question in the en-
vironmental literature. This article contributes to the strand of climate
change literature along several key directions. First, this study investi-
gates the nexus between the effects of global warming, agricultural and
food commodities prices in relation to El Nifio34 cycles. Second, this re-
search addresses the potentially causal relationship between El Nifo34,
agricultural, and food commodities prices through a novel approach
dealing with the variable-lag transfer entropy. In fact, a new method,
termed EMD-VL transfer entropy is proposed to exhibit the nonlinear
behavior between variables. According to Barnett et al. (2009), transfer
entropy method and the Granger causality test are entirely equivalent
under the Gaussian time series. In addition, through comparative study
between the transfer entropy method and ten causality methods, (Ed-
inburgh et al., 2021), recommended the use of the transfer entropy
method and nonlinear Granger causality test. However, all causality
methods are based on hypothesis testing procedure, where a statistic
test is computed, and the existence of causality is determined based
on the value of this statistic. Therefore, these methods do not measure
the strength of causality with a numerical value. Transfer entropy, can
measure the strength of the causality (see, Schreiber, 2000; Milan et al.,
2001) and can also detect nonlinear causality relationships.

To the best of our knowledge, no research has attempted to use the
EMD-VL transfer entropy in this nexus. Empirical mode decomposition
(EMD) is a popular time—frequency signal decomposition technique for
evaluating nonstationary and nonlinear data (Yaguo et al., 2013). Such
methodology achieved greater results when dealing with nonstationary
signals (Tian et al., 2018). In our study, for each attribute, EMD is
used for decomposition with different time scales. EMD is more suited
for decomposing nonlinear and nonstationary time series than other
decomposition methods, such as wavelet and the Fourier decomposition
method (Chang et al., 2021). In addition, we apply the VL transfer
entropy approach proposed by Amornbunchornvej et al. (2021) that
can infer a causal relation of Granger or transfer entropy where a
cause impacts an effect with arbitrary delays that can change dynami-
cally, and also to report the similarity of time series patterns between
the cause and the delayed effect, for arbitrary delays. Moreover, our
research is also connected to the body of literature that examines
the consequences of natural disasters (Berkman et al., 2011; Tsai and
Wachter, 2015; Huang et al., 2018; Keles et al., 2018; Chang and
Jennifer, 2022; Chen et al., 2022). In related studies, climate change
may be used as a gauge of risk. Disaster risk has a negative impact
on stock returns dating back to 1919 (Berkman et al., 2011). Indeed,
the relevance of this risk has become more evident since the recent
Ukrainian crisis. Food prices reach their greatest level ever as a result
of the Ukraine conflict. Our findings provide practical implications for
investors that should be cautious when evaluating climate risk. They
should also have well-diversified portfolios with a hedging strategy
in place, particularly for food and agricultural markets that might be
harmed if the climate risk intensifies.

This paper is organized as follows; Section 2 is dedicated to the
literature review. In Section 3, we introduce the methodology adopted
in this article. In Section 4, we describe the sample data and provide
descriptive statistics for the selected sample. The results are provided
in Section 5. In Section 6 we discus our findings and we bring forth our
conclusion in Section 7.

2. Literature review

In many regions of the globe, El Nifo34 is a major cause of
inter-annual variability in weather and climate change (Bebonchu
and Naafey, 2021). An enormous amount of work has been carried
out on the effect of El Nifio34 on economic and financial market.
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According to Brunner (2002), El Nifio34 indices are useful indica-
tors for analyzing the causal inferences of medium-frequency climatic
anomalies on global economic activity. Berry and Okulicz-Kozaryn
(2008) investigated the linkage between the El Nifno34 fluctuations,
the rates of inflation and economic growth over the period 1894-
1999. The authors found that extreme El Nifio34 occurrences may
have a short-term influence on the pricing of certain commodities
produced in specific locations during specific time periods. Berry and
Okulicz-Kozaryn (2008) employed a dynamic multi-country framework
to examined the effects of El Nifio34 shocks on growth, inflation,
energy, and non-fuel commodity prices. Their findings revealed that
the reactions of various countries to the El Nifio34 shocks are very
heterogeneous. While El Nifio34 causes a temporary drop in economic
activity in Australia, Chile, Indonesia, India, Japan, New Zealand, and
South Africa, it has a growth-enhancing influence in other nations
(including the United States and the European area). Generoso et al.
(2020) examined the effect of weather patterns in affecting the trans-
mission of global climatic cycles to economic development. The authors
found negative effects of El Nifio34 events on economic growth.

Several studies have explored the effects of El Nifio34 on agri-
cultural and food prices (Barrett, 1998; Podesta et al., 2002; Chen
et al.,, 2002; Sivakumar et al., 2005). According to Bebonchu and
Naafey (2021), the influence of El Nifio34 on agricultural production
and pricing differs between the El Nifo34 and La Nifia stages of
the El Nifio34 cycle. Adams et al. (1999) used a stochastic economic
model to estimate the economic consequences of El Nifio34 events on
US agriculture. The authors found that both phases cause economic
harm to US agriculture, with El Nifilo34 causing a $1.5 to $1.7 billion
loss and La Nifia causing a $2.2 to $6.5 billion loss. David (2012)
employed a smooth transition autoregression framework to investigate
nonlinear dynamics of El Nifio34 and coffee prices. Their results found
that during El Nifio34 episodes, coffee prices are affected in the near
term. David (2014) analyzed the regime-dependent dynamics of the
fish meal-soya bean meal price ratio and investigates it in conjunction
with the El Nifio34 shocks. The author demonstrated that El Nifio34
has an economically significant influence on price ratio dynamics, and
that these effects are statistically significant for up to a year follow-
ing the El Nifio34 shocks. Tack and Ubilava (2013) estimated the El
Nifio34’s effect on U.S. county-level corn yield distributions. Their find-
ings showed that the influence of global climate on agriculture cannot
be summarized by temperature and precipitation alone. For the mean,
variation, and downside risk of corn yields, they show that acreage-
weighted aggregate effects disguise substantial geographic variability
at the county level. El Nifio34 has a —24 to 33% impact on mean yields,
whereas La Nifia has a —25 to 36% impact, with the geographic center
of losses moving from the Eastern to Western corn belt. According to
lizumi et al. (2014), El Nifio34 boosts world average soybean output
by 2.1-5.4% while decreasing corn, rice, and wheat yields by —4.3%
to 0.8%. On the other hand, they revealed lower yields of between 0%
and —4.5% for all four crops during La Nifa years. David (2018) used
a time-varying smooth transition autoregressive modeling approach
to account for dynamic interactions between sea surface temperature
anomalies and pricing that may be complicated. The authors found
more amplified price responses during El Nifio34 events, and at the
onset of the El Nifo34 cycle and a significant relationship between
sea surface temperature anomalies and a subset of agricultural com-
modity prices. As pointed out by Bebonchu et al. (2020), agricultural
yields are projected to be reduced as a consequence of an El Nino34
shock, which would reduce present and future cash flows to food and
agricultural industries, resulting in a reduction in their stock values
and/or profits. More recently, (Bebonchu and Naafey, 2021) used state-
dependent local projection methods to investigate whether El Nifio34
has asymmetric effects on the pricing of food and agricultural stocks in
the United States. The authors documented that food and agricultural
stock prices react asymmetrically to El Nino34 shocks. Also, the authors
found that El Nifio shocks frequently lower or have no impact on food
and agricultural stock prices in the United States, but La Nina shocks
generally raise prices.
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3. Methodology
3.1. Variable-lag transfer entropy

Transfer entropy was developed by Schreiber (2000) and indepen-
dently under the name conditional mutual information by Katerina
et al. (2007). Transfer entropy can be conceived as a parameter which
can be used for describing the interaction between time series X and
Y and to detect the directionality of the flow of information between
them. Furthermore, transfer entropy is a measure to evaluate dynamic,
nonlinear, and non-symmetric relationships between time series (Xue-
geng and Pengjian, 2017). On the other hand, transfer entropy is
the nonlinear extension of Granger causality (Schreiber, 2000; Barnett
et al., 2009).

Let X and Y two time series and k,# are two lag constants, the
transfer entropy from X to Y is defined thus:

H(v 4. x1). &)

k
Tx.y = H(Y7|Y,(_1))
where H(.|.) is a conditional entropy and Y,(_k]) = (Y., Y )
Amongst the most known types of entropy is Shannon entropy (Shan-
non, 1948) where the function H is defined as:

HOO == ) f(X)loga(f (X)), @)
t

where f is the probability density function. Based on Egs. (1) and (2),

the Shannon transfer entropy from X to Y (Behrendt et al., 2019) is

given by:

FOGIY® X

Ty.y = Zf T’Y(k) X(f))l gz((l—’(k))) 3)
Sy ®)

Typically, we infer whether X causes Y by computing the transfer

entropy ratio T(X,Y) = Ty_y/Ty_x, if T(X,Y) > 1 then we state that

X causes Y.

However, Amornbunchornvej et al. (2020) proves that the Granger
causality test is limited by the fixed-lag assumption, then, to overcome
this problem, the authors propose a variable-lag Granger causality
test (Amornbunchornvej et al., 2020). In addition, since transfer en-
tropy is a nonlinear extension of Granger causality test, Amornbun-
chornvej et al. (2021) show that transfer entropy is also limited by
the fixed-lag assumption. In fact, Eq. (1) shows a comparison between
Y, and Yt(_kl) and Xt(f)l and no variable lags are allowed. Therefore, the
variable-lag transfer entropy or VL transfer entropy function is defined
as below:

VL (k) (k) §(@&)
Ty Ly (P = H(Y,)Y,T)) - H(Y Y. X)), O
where Xl(fi = (Xio1-4,_,» X124, p+++-» Xi—¢—4,_,)> P is the alignment
sequence between X and Y (see definition 5.1 in Amornbunchornvej
et al.,, 2021) and 4, € P where 4, > 0. Based on Egs. (2) and (4), the

variable-lag Shannon transfer entropy is given by:

o FOIYEL XD
TVL F(¥, v %, XD 1og, ( ——=L_=1 ©)
=y Z e ( F Y )

and the variable-lag transfer entropy ratio T" (X, ) =T} %, /TVE | If
TYL(X,Y) > 1 then we state that X transfer entropy causes Y.
An appropriate alignment P can be given by:
P* = argmax (sim()?, Y)), 6)
P

where X, = X,_ 4, and A, € P. P* represents a sequence of time delay
that matches the most similar pattern of time series X with the pattern
in time series Y where the pattern of X comes before the pattern of Y.
“Sim” can be any function that measures the similarity between two
time series, for example, using distance function dist: R? x [0, 1], the
similarity between X and X’ can be given by:

Sim(X, X') = 7 3 1 - dist(X,, X)) %)
1
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The procedure for the variable-lag transfer entropy causality test is
as follows: given two time series X and Y, first, using the Dynamic
Time Warping (DTW) method (Amornbunchornvej et al., 2020, 2021),
the time series XP™ is reconstructed based on X which is most
similar to Y. DTW calculates the distance between two time series by
aligning sufficiently similar patterns between them, while allowing for
local stretching. Thus, it is particularly well suited for calculating the
variable lag alignment. Second, the variable-lag transfer entropy given
by Eq. (5) is computed using X°™ and Y. Finally, the variable-lag
transfer entropy ratio is computed. On the other hand, the approach
proposed in Dimpfl and Peter (2013) to perform Markov block boot-
strap on transfer entropy is used to obtain the p-value of variable-lag
transfer entropy ratio. The dependency within the time series while
performing bootstrapping using the approach proposed in Dimpfl and
Peter (2013) is retained.

3.2. Empirical mode decomposition method

Empirical Mode Decomposition (EMD) is an adaptive method pro-
posed by Wu and Huang (2009) for dealing with nonlinear and nonsta-
tionary time series. EMD method allows the decomposition of a time
series into finite intrinsic mode functions (IMFs), which stand for dif-
ferent time-scale oscillating components ranging from high frequency
to low frequency without overlapping. IMFs components fully embody
the details of the original signal. On the other hand, each IMF satisfy
the following conditions:

(i) The number of extreme points and zero-crossings must be equal
or differ by one at most.

(ii) At any point, the mean value of the envelope determined by the
local maxima and minima is zero.

For determining IMFs and residual part (R,) of a time series {X,} r € T,
the following steps are used:

1. We locate local extreme, minima, and maxima.

2. By connecting local extreme with a cubic spline line, we generate
the upper envelope X, YPPE and lower envelope X ,10"".

3. The envelope mean M, = (X} PP + X1°%)/2 is computed.

. We obtain the detailed component D, = X, — M,.

5. If D, satisfies conditions (i) and (ii), we replace X, with R, =
X, — D,, if not we replace X, with D,.

6. Steps 1-5 are repeated for X, until R, satisfies Z,T=1(D i~
DJ»Jrl,,/D/-_’,)2 < SC, then D;, is the result of the jth iteration,
where SC € [0.2,0.3].

N

At the end of this process, X, is decomposed into the sum of IMF
components and a residual part as follows:

K
X, =) D, +R, ®)
j=1

3.3. EMD-VL transfer entropy

Let x and y two time series, IMFs, obtained by EMD method, of each
time series are grouped together, using fine to coarse method, in two
terms; the short-term scale H and the medium-term scale L. The long-
term scale of each time series is the residual part R obtained directly
by the EMD method. Then, for the time series x these different parts
are respectively H*, L* and R*, while for the time series y they are H”,
LY and R.

We define, the empirical mode decomposition variable-lag transfer
entropy (EMD-VL transfer entropy) as the variable-lag transfer entropy
given by Eq. (5) between short-term scales, medium-term scales and
long-term scales respectively as below:

y RG] SO TER
Tk g = 2 () ) logy (—— =L 1) ©
t

H*—HY =10 -1 f(HylHy(k)
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Table 1
Studied time series.
Time series Ticker Description
NOAA optimum interpolation sea El Nifio34 Is the average sea surface temperature anomaly in
surface temperature index the region bounded by 5°N to 5°S, from 170°W to
120°W.
S&P Food & Beverage Select SPSIFBN Means the companies constituting the S&P Food &
Industry Index Beverage Select Industry Index as of the beginning
of the Performance Period.
MSCI Agri & FC Index M2WOOAGF Is a free float-adjusted market cap index designed
to track the performance of companies which are
producers of agricultural products, fertilizers &
agricultural chemicals, packaged foods and food
distributors.
Nasdaq US Smart Food & NQSSFB Is designed to provide exposure to US companies
Beverage Index within the Food & Beverage sector.
Bloomberg World Agriculture BWAGRI Is a capitalization-weighted index of the leading
Index agriculture stocks in the World.
—~( deviation (sd) compared to other time series. On the other hand,
@) p
f(LV|Ly(k> L= ) . . . . .
VL — Z F( L® ﬁ(f ) ) log ( i N ) (10 we remark that all agricultural studied time series are characterized
p - > —1’ — 2 . . .
L-Lr £ A A f(L,y|Lyfk)1) by high values of mean and sd. In order to test the stationarity of
d time series and check the robustness of the stationarity results, two
an . s . .
* statistical tests are used which are the Augmented Dickey—Fuller (ADF)
yry® px i ; il
L R R® fi),((f) . SRRV LR ) 1 unit root test (Dickey and Fuller, 1979) and the Phillips-Perron (PP)
RX—>RY — z f( RS L t—l) 0] e a— an test (Phillips and Perron, 1988). The PP test is resistant to general forms
1

(k)
FRIR®)

where I-FIVX([> =Hr HX HX
=1 T oo oAy At
The EMD-VL transfer entropy ratios are TVIH*H') =
Tk o/ Toeoges TVEQS L) = TVE | /TVE | and TVERY,RY)
- o/ Tant g Tespectively. If the ratio is greater than 1 then we state

that the scale part of x transfer entropy causes the scale part of y.
Herein, we decompose all studied time series using the EMD
method. The EMD method decomposes any time series in different
IMFs and a long-term scale (residual part R). Second, from IMFs, we
reconstruct the high frequency part (H) and the low frequency part (L)
using fine to coarse method. The high frequency part or the short-term
scale (H) reflect how the time series is touched by irregular events of
short duration. The low frequency part or the medium-term scale (L)
reflects how time series is touched by major shocks. Whereas, the long-
term scale (R) is the fundamental trend. The principle of the fine to
coarse method is as follows: from the first IMF, we add the next IMF and
we test if this sum is statistically different from zero using Student t-test.
From the IMF where there is a statistically significant difference from
zero, we then consider that this sum of IMFs is the height frequency part
(H) and the sum of the rest of IMFs represent the low frequency part (L).
The flow of information between different scales are computed using
Egs. (9), (10) and (11). On the other hand, the causality relationships
are tested via different ratio statistical tests TVL(H*, H”), TV L(L*, L)
and TVL(R*,R?) where the corresponding p-value is obtained by the
bootstraping method proposed in Dimpfl and Peter (2013).

4. Data

The analyzed time series are the El Nifo34 index (El Nifio34),
the S&P food and beverage select industry index (SPSIFBN), the MSCI
agricultural & FC index (M2WOOAGF), the Nasdaq US Smart Food &
Beverage Index (NQSSFB), and the Bloomberg world agricultural index
(BWAGRI). All time series were collected in the period from March 04,
2015 until November 27, 2021 and downloaded from the Bloomberg
Terminal. A detailed definition of our variables is provided in Table 1.
We select the observations from the same days in the studied period,
then we have a time series of 1659 observations. All studied time
series are shown in Fig. 1 (black continued curves) and some of their
descriptive statistics are given in Table 2.

From Table 2, we see that El Nifio34 time series have a negative
minimum value and the lowest values of maximum, mean, and standard

of heteroscedasticity in standard error terms which is an advantage over
the ADF test. The Akaike Information Criterion (AIC) was used to select
the lag length in the ADF test, while the Newey-West Bartlett kernel
was used to select the bandwidth for the PP test. The results of ADF and
PP tests demonstrate that none of the studied time series are stationary.
Further, Jarque Bera (JB) (Jarque and Bera, 1980) and Shapiro-Wilk
(SW) (Shapiro and Wilk, 1965) normality tests show that all time series
are not normally distributed.

The studied time series are not distributed according to the normal
distribution test, then we use the Spearman correlation coefficient to
test correlation between them. The results of the Spearman correlation
coefficient are given in Table 3 which indicates a negative correlation
between the El Nino34 index and other time series (p-values are less
than 0.05), but no correlation between the El Nifio34 index and the
BWAGRI index (p-value is greater than 0.05). On the other hand, the
transfer entropy is used to measure the information transmission flow
from El Nifio34 to other time series. The results of transfer entropy are
given in Table 3, where the smallest pairwise information transmissions
are from El Nifio34 to NQSSFB (0.0015), from El Nifio34 to SPSIFBN
(0.0022) and from El Nifo34 and M2WOOAGF (0.0039). While the
largest pairwise information transmission is from El Nifio34 to BWAGRI
(0.0054).

5. Results
5.1. VL transfer entropy results

The results of the causality test using transfer entropy with fixed
lag (Amornbunchornvej et al., 2021) and by the variable-lag transfer
entropy are given in Table 4 and Table 5 respectively. For the compu-
tation of the transfer entropy, we use a maximum lag equal to 20% of
length of the time series. In addition, to compute the p-value of the
transfer entropy ratio test, we use the number of bootstrap samples
equal to 300. According to Tables 4 and 5, all values of the transfer
entropy ratio are less than 1 with corresponding p-value greater than
0.05. This finding indicates that there is no causality relationship from
the El Nifio34 index to each agricultural time series. Conversely, in the
case of transfer entropy with fixed lag, for pairs (El Niio34, NQSSFB)
the value of transfer entropy ratio is less than 1, but the corresponding
p-value is greater than 0.05, which proves that there is no causality
relationship from the El Nifio34 index to the NQSSFB index.
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Fig. 1. Original series and multiscale feature extraction.

5.2. EMD-VL transfer entropy results time series, i.e there are causality relationships, but masked in differ-
ent scales. In this regard, we decompose each time series using the

The previous causality results that we found made us think that EMD method where a selection criteria (SC) is equal to 0.2, then we
there may be causal relationships between different scales of studied reconstruct the high frequency part H and the low frequency part L
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Table 2
Descriptive statistics of studied time series.
Time series Min Max Mean Sd Stationarity tests Normality tests
ADF test PP test JB test SW test
El Nifio34 —1.554 3.287 0.479 1.009 —2.236(8
SPSIFBN 4609.792 9719.409 6316.137 1202.21 —-1.952(8)
M2WOOAGF 3388.64 6033.5 4390.255 601.766
NQSSFB 707.85 1278.89 970.945 95.843
BWAGRI 309.47 587.99 466.574 53.028 —2.206(8)***

Note: The lag length and bandwidth for ADF and PP test is given between parenthesis.

Denote the statistical significance at 1%.

Table 3
Correlation and transfer entropy.
Pair of time series Spearman correlation coefficient Transfer entropy
p-value
(El Nifio34,SPSIFBN) <1073 0.0022
(El Nifio34,M2WOOAGF) <1073 0.0039
(El Nifio34,NQSSFB) <1073 0.0015
(El Nifio34,BWAGRI) 0.542 0.0054

Denote the statistical significance at 1%.

Table 4
Transfer entropy causality test.

Transfer entropy test

Transfer entropy ratio p-value
El Nifio34 — SPSIFBN 0.171 1
El Nifio34 — M2WOOAGF 0.193 1
El Nifio34 — NQSSFB 1.335 0.64
El Nifio34 — BWAGRI 0.537 1

Table 5
Variable-Lag transfer entropy causality test.

Transfer entropy test

Transfer entropy ratio p-value
El Nifio34 — SPSIFBN 0.256 1
El Nifio34 — M2WOOAGF 0.494 1
El Nifio34 — NQSSFB 0.748 0.84
El Nifio34 —» BWAGRI 0.542 1
Table 6
Variance contributions for different time scales.
Time series Variance as percentage Variance as percentage of sum Main scales
of original time series of IMFs and residual
H L R H L R
El Nifo34 14.4 38.1 44.9 14.5 38.3 45.08 Short-term; medium-term; long-term
SPSIFBN 4.337 2.356 91.824 4.415 2.399 93.484 Short-term; long-term
M2WOOAGF 8.686 4.291 95.234 5.173 4.167 92.616 Short-term; long-term
NQSSFB 9.647 62.348 24.427 10.553 68.213 26.725 Short-term; medium-term; long-term
BWAGRI 10.094 12.064 72.321 10.623 12.695 76.106 Short-term; medium-term; long-term

(the trend part R is a residual part given by EMD method) using the
fine to coarse method, and we apply the variable-lag transfer entropy
method to different time scales.

In Table 6, for each time series, we show the different contribution
of the various time scales to the original time series and to all their
sums and we identify the main time scales. The results of the variable-
lag transfer entropy in short-term scales, medium-term scales, and
long-term scales are given in Table 7, Table 8, and Table 9 respectively.

According to Table 7, there is a causality relationship from the
high frequency part of the El Nifio34 index to the high frequency part
of the M2WOOAGF index and the BWAGRI index where the transfer
entropy ratio are 3.986 and 2.195 respectively with corresponding p-
values less than 0.05. In addition, the largest pairwise information
transmissions are from the high frequency part of the El Nifio34 index
to the high frequency part of the M2WOOAGF index (0.014) and from
the high frequency part of the El Nifio34 index to the high frequency

part of the BWAGRI index (0.008). The smallest pairwise information
transmissions are from the high frequency part of El Nifio34 index to
the high frequency part of the SPSIFBN index (0.004) and from high
frequency part of the El Nifio34 index to the high frequency part of
NQSSFB index (0.0075).

According to Table 8, the largest pairwise information transmission
is from the low-frequency part of the El Nifo34 index to the low-
frequency part of the NQSSFB index (0.0038). The pairwise information
transmissions from the low-frequency part of the El Nifio34 index to the
low-frequency part of the SPSIFBN index and from the low-frequency
part of the El Nifio34 index to the low-frequency part of the BWAGRI
index is 0.0007. The smallest pairwise information transmission is from
the low-frequency part of the El Nifo34 index to the low-frequency
part of the M2WOOAGF index (0.0003). On the other hand, there is
a causality relationship from the low-frequency part of the El Nifio34
index to the low-frequency part of the NQSSFB index where the transfer
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Table 7
Causality in the short term scale.
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Transfer entropy

VL transfer entropy test

Transfer entropy ratio p-value
El Nifio34 — SPSIFBN 0.004 2.183 0.680
El Nifio34 — M2WOOAGF 0.014 3.986%"* <1073
El Nifio34 — NQSSFB 0.0075 1 0.666
El Nifio34 — BWAGRI 0.008 2.195** 0.020
***Denote the statistical significance at 1%.
**Denote the statistical significance at 5%.
Table 8
Causality in the medium-term scale.
Transfer entropy VL transfer entropy test
Transfer entropy ratio p-value
El Nifio34 — SPSIFBN 0.0007 0.204 0.65
El Nifio34 — M2WOOAGF 0.0003 0.741 0.900
El Nifio34 — NQSSFB 0.0038 31.849%** <1073
El Nifio34 — BWAGRI 0.0007 2.336 0.420
***Denote the statistical significance at 1%.
Table 9
Causality in the long-term scale.
Transfer entropy VL transfer entropy test
Transfer entropy ratio p-value
El Nifio34 — SPSIFBN 0.0053 <1073
El Nifio34 — M2WOOAGF 0.0037 0.030
El Nifio34 — NQSSFB 0.0002 1 1.235
El Nifio34 — BWAGRI 0.0002 27.512%%* <1073

***Denote the statistical significance at 1%.
**Denote the statistical significance at 5%.

entropy ratio is equal to 31.849 with a corresponding p-value less than
10-3.

The results of the variable-lag transfer entropy on long-term scales
given in Table 9 show that there is a causality relationship from the
trend of the El Nifio34 index to the trend of the SPSIFBN index, from
the trend of the El Nifio34 index to the trend of the M2WOOAGF index,
and from the trend of the El Nifio34 index to the trend of the BWAGRI
index where values of transfer entropy ratio are greater than 1 and the
p-values are less than 0.05. In addition, the largest pairwise information
transmission is from the trend of the El Nifio34 index to the trend of
the SPSIFBN index (0.0053) and from the trend of the El Nifio34 index
to the trend of the M2WOOAGF index (0.0037). The smallest pairwise
information transmission is from the trend of the El Nifio34 index to
the trend of the NQSSFB index and from the trend of the El Nifio34
index to the trend of the BWAGRI index (0.0002).

6. Discussion of the major results and implications
6.1. Discussion

Our aim in this empirical work is to investigate the causal effect
of the El Niflo34 temperature index on agricultural and food indexes
in the U.S. at both time and frequency domains. El Nifio34 is con-
sidered as an appropriate indicator to revisit the causality inferences
of climate anomalies on world economic interest (Brunner, 2002). In
recent years, and owing to different crises: health pandemic, economic
disaster, financial crisis, wars, and so forth, agricultural and food
price changes have become a realm of concern by investors, hedgers,
market operators, and regulators. Notably, one of the most important
indicators that has affected food and agricultural price changes is
climate change (Brunner, 2002; Massimo, 2017). In accordance with
this research, we aimed to investigate the causality interplays between
the climate change index: the temperature of the El Nifio34 index

and agricultural indexes. By combining the Variable-lag Transfer En-
tropy and EMD methods, and using daily data on El Nifio34, S&P
500 food and beverage, MSCI agricultural & FC, packaged foods &
food distributors, and world agricultural indexes, we found a time
and frequency causal relationship structure between El Nifio34 and
others indexes. The VL transfer entropy showed that on the short-term
horizon, El Nifio34 significantly affected both MSCI agricultural & FC
and Bloomberg world agricultural market indexes. Furthermore, at the
mid-term horizon, causality is running from El Nifio34 to packaged
food & food distributors index, indicating that for moderate business
cycles the majority of food and agricultural indexes do not receive
risk information from climate change. On the other hand, at the long-
term horizon El Nifio34 had significantly and highly contributed to
food & beverage select industry (19.225) and packaged food & food
distributors (27.512) indexes. Compared to the short-term horizon, the
unidirectional causal effect from El Nifio34 to the Bloomberg world
index is more intense as given by transfer entropy ratio 27.512. These
above mentioned findings are not surprising as climate change had
strongly affected and still affects food and agricultural prices at all
frequency business cycles. Therefore, the causal flows running from
climate change to food and agriculture at all frequency bands indicated
that regulators should consider useful technical and political measures
to mitigate higher risk transmission from climate change to food and
agricultural markets.

6.2. Implications for theory

This study aims to respond to the question whether climate change
anomalies significantly influence food and agricultural markets in the
U.S. at both time and frequency domains. However, it makes several
contributions to the climate change-food-agricultural nexus literature.
First, this study extended the literature by using an innovative frame-
work: the variable-lag transfer entropy that allows capturing non-
linear causal dependence between markets as well as the direction and
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strength of information transfer from one market to another (Schreiber,
2000; Katerina et al., 2007). Second, we developed a novel tech-
nique: the EMD-VL transfer entropy by combining the variable-lag
transfer entropy and the EMD method in order to investigate the non-
linear dependence between markets in the sense of Granger causality
over time-frequency space. Furthermore, from theoretical and empir-
ical prospects, to the best of our knowledge, no academic researcher
has introduced this novelty. Third, as for the economic attitude, our
study extended a state-of-the-art way for assessing the strength and
direction of causal effects running from climate change to food and
agricultural markets throughout various investment horizons. Fourth,
information transfer from climate change to food and agricultural
prices has received little attention, this study thus extended the lit-
erature by examining climate-food and climate-agricultural nexus at
various time horizons.

6.3. Implications for practice

Can our proposed technique (EMD-VL transfer entropy) really work,
and is it useful for investors, economic agents, and policymakers?
i.e., can investors, portfolio managers, hedgers, and policy designers
gain from the EMD-VL transfer entropy method?. We have stated
that causal interplay from climate change to food and agricultural
indexes varies over time and frequency. However, timely recognition
and expectation of adverse scenarios in the financial system should be
a summit priority for different kinds of investors as well as policymak-
ers (Romn et al., 2018). For investors’ perspective, our findings have
afforded interesting implications for short-, medium-, and long-term
economic agents. It is important for investors to encompass commit-
ments in their term sheets to handle states of high and low frequency
shocks when designing optimal investment and portfolio diversifica-
tion strategies from food and agricultural markets. According to our
EMD-VL transfer entropy method, short-term investors and portfolio
managers should pay further attention to the causal flows of El Niflo34
on MSCI agricultural & FC and Bloomberg world agricultural market
indexes based on its high impact on these agricultural markets, while
long-term investors and hedgers should be cautious for changes in El
Nifio34 and its significant effect on the food & beverage select industry,
MSCI agricultural & FC, and Bloomberg world agricultural markets.
Hitherto, no study has been reached in the literature regarding the
causal relationship and transfer pathways between El Nifio34, and
food and agricultural market indexes using our innovative method
EMD-VL transfer entropy, and taking into account that the El Nifio34
temperature index is a well-known and forecastable event, our findings
are also relevant for policymakers. However, regulators can use the
current research to consider convenient actions due to significant effect
of climate anomalies on food and agricultural markets.

7. Conclusion

This paper examined the historical effects of El Niflo34 on U.S. food
and agricultural stock prices. In particular, using daily data over the
period from March 04, 2015 until November 27, 2021 and EMD-VL
transfer entropy, we explore if the magnitude, sign, significance, and
persistence of the reactions of U.S. food and agricultural stock prices to
El Nifio34 are substantially different from each other. The major results
are summed up as follows. First, combined with the EMD method, the
VL transfer entropy shows information transfer flow running from El
Nifio34 to agricultural and food market indexes at all scales. However,
at short-term scales, El Nifio34 significantly and highly transfer entropy
causes agricultural indexes (MSCI Agri & FC Index and Bloomberg
World Agriculture Index). The information transfer entropy is lesser
from El Nifio34 to both S&P food & beverage (0.004), and Nasdaq US
smart food & beverage (0.0075). Second, El Nifio34 yields high transfer
entropy flow to Nasdaq US smart food & beverage and weak transfer
entropy information to MSCI agri & FC index. Third, at long-term scales,
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the greatest transfer entropy information flow from El Nifio34 appears
with S&P food & beverage and MSCI agri & FC indexes, while the
lowest one assumes to be with Nasdaq US smart food & beverage and
Bloomberg agricultural indexes.

Our findings have a wide range of policy implications, and our
model can be applied in various ways. First, the model may be used as
an input for the creation of public policies to alleviate the consequences
of weather changes. For example, given the recent advances in climate
modeling (Davinson et al., 2020), our model enables to assess the causal
relationship between the times series variables as well as to understand
the predictability propagation mechanism of weather shocks. Second,
in terms of macroeconomic policy, the government should implement
programs that encourage farmers to invest in irrigation systems as well
as in the development of more efficient food value chains. Third, on
the monetary policy side, Davinson et al. (2020) stated that in the
event of rising consumer inflation, the identification of weather shocks
helps central banks to avoid overreacting by tightening the monetary
stance, even in the event of possible second-round consequences, thus
our model may serve as a tool to assist anchor inflation expectations
by describing the effect of El Niflo34 on agriculture and food prices.
Fourth, given the recent rise in surface temperatures, the increased
frequency of severe climatic extremes, melting glaciers and arctic sea
ice, raising sea levels, and declining snowpacks globally, strong Nifio34
occurrences will significantly impact local and regional locations by
severe wave. Therefore, our study may be utilized to forecast possible
production levels, allowing agricultural managers at the local and
regional levels to better prepare for the upcoming season. In fact, the
relationship between Nifio34 and food and agriculture stock prices may
be considered as an important channel through which climatic shocks
might influence the well-being of citizens, specifically in countries with
a lower income. As a result, the findings of this research contribute
to the body of knowledge about the worldwide economic impact of
climatic anomalies, which will aid in the debate of this topic. This work
contributes to a better knowledge of the economic impact of the El the
Nifio34, which may be a significant tool in minimizing the unfavorable
consequences of climatic anomalies, especially in developing countries.

El Niflo34 anomalies will become more common as a result of
climate change, and agricultural production will be affected as well.
Climate change, food security, and commodity financing are all impor-
tant topics that will become more important in the near future, making
it imperative that experts from several disciplines work together to
examine the issue thoroughly. To this goal, future research, will first
make use of a variety of methodological techniques, including quantile
connectedness proposed by Ando et al. (2022), or examination of
different markets, or El Nifio34 indexes. Additional research could
continue to explore the variable-lag transfer entropy causality method
by comparing it with asymmetric causality tests proposed by Hatemi-J
(2012, 2014) and Lee et al. (2021). The empirical mode decomposition
can be combined with these causality tests to examine the causality
between different scales. Moreover, it would be interesting as part of
future research to extend our analysis to the asymmetric effects of
the El Nifio34 cycle on agricultural and food stock prices, based on
the asymmetric causality test, which allows for consideration of the
positive and negative shocks.
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