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Abstract—Deep hashing has been intensively studied and
successfully applied in large-scale image retrieval systems due to
its efficiency and effectiveness. Recent studies have recognized
that the existence of adversarial examples poses a security
threat to deep hashing models, that is, adversarial vulnerability.
Notably, it is challenging to efficiently distill reliable semantic
representatives for deep hashing to guide adversarial learning,
and thereby it hinders the enhancement of adversarial robust-
ness of deep hashing-based retrieval models. Moreover, current
researches on adversarial training for deep hashing are hard to
be formalized into a unified minimax structure. In this paper,
we explore Semantic-Aware Adversarial Training (SAAT) for
improving the adversarial robustness of deep hashing models.
Specifically, we conceive a discriminative mainstay features
learning (DMFL) scheme to construct semantic representatives
for guiding adversarial learning in deep hashing. Particularly,
our DMFL with the strict theoretical guarantee is adaptively
optimized in a discriminative learning manner, where both
discriminative and semantic properties are jointly considered.
Moreover, adversarial examples are fabricated by maximizing
the Hamming distance between the hash codes of adversarial
samples and mainstay features, the efficacy of which is validated
in the adversarial attack trials. Further, we, for the first time,
formulate the formalized adversarial training of deep hashing
into a unified minimax optimization under the guidance of the
generated mainstay codes. Extensive experiments on benchmark
datasets show superb attack performance against the state-of-the-
art algorithms, meanwhile, the proposed adversarial training can
effectively eliminate adversarial perturbations for trustworthy
deep hashing-based retrieval.

Index Terms—Adversarial Attack, Adversarial Training, Trust-
worthy Deep Hashing, Similarity Retrieval

I. INTRODUCTION

W ITH the growing of large-scale multimedia data, ap-
proximate nearest neighbor (ANN) retrieval [1] has re-

ceived much attention due to its outstanding balance capability
of efficiency and effectiveness. Among various ANN methods,
hashing [2] offers the prominent advantages of mapping high-
dimensional data to compact binary codes with low costs in
storage and computational complexity. Compared to shallow
hashing methods, deep hashing [3]–[12] achieves superior
performance by learning a nonlinear hashing function based
on deep neural networks in an end-to-end manner.

Recent studies [13]–[17] have demonstrated that deep
hashing-based retrieval models are vulnerable to adversarial
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Fig. 1. The comparison between classification and semantic similarity-
preserving hashing on adversarial learning. In the output space of classifi-
cation, an adversarial attack with the guidance of labels only needs to make
the adversarial samples across the decision boundary. However, an adversarial
attack on deep hashing is more challenging because the adversarial samples
are expected to blend into the clusters in the embedding space, but there
is not an explicit signal to supervise the process. The same problem exists
for adversarial training. For classification, adversarial training just maximizes
probabilities of adversarial samples on true labels, which is infeasible on
hashing due to the lack of explicit supervision signals. Hence, deep hashing
needs reliable and discriminative semantic representatives (i.e., mainstay) to
represent the image semantics for adversarial attacks and defense.

examples. Generally, the adversarial examples [18] are crafted
by adding imperceptible perturbations to original samples, yet
can greatly confuse deep hashing models to retrieve incorrect
results. Undoubtedly, such malicious attacks [19], [20] pose
serious security risks to deep hashing-based retrieval systems.
For example, in a deep hashing-based face recognition system,
adversarial examples can mislead the system and retrieve a
non-matching person’s face, and thus successfully invade the
system. Consequently, it becomes imperative to investigate
adversarial attacks on deep hashing models and develop robust
defense strategies.

The current researches working with adversarial samples
mostly focus on classification tasks [21], with the exception
of a few works [13]–[17] studying the adversarial learning
on deep hashing-based retrieval. However, these two tasks are
quite different in terms of adversarial learning, as shown in
Fig. 1. The former learns to classify each sample to its target
class under the supervision of class labels. The latter is a
similarity-preserving task that maps high-dimensional data to
Hamming space and maintains the similarity between the data.
It is clear that we can generate adversarial examples that can
deceive and out-trick the classification system by minimally re-
composing classification boundaries derived from semantic la-
bels. However, for the semantic similarity-preserving hashing-
based retrieval task, there are no explicit representatives (e.g.,
label) to lead adversarial attacks or defenses, resulting in more
challenges compared to the classification one. Moreover, the
minimax optimization-based adversarial training, which has
shown success in classification, does not seamlessly transfer
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to deep hashing due to the absence of semantic representations.
Therefore, it is challenging to address the following two
problems:

1) How could we initialize the optimal and global semantic
representatives for adversarial learning in deep semantic-
preserving hashing networks?

2) How could we derive a unified minimax formulation for
deep hashing to conduct robust adversarial training?

For the first question, some adversarial attack works [13],
[14] heuristically select the hash code of a single sample
as each representative for generating its adversarial example,
while some others [14], [17] employ a set of hash codes from
multiple relevant samples. Nevertheless, these methods are not
reliable and fail to capture globally discriminative semantics,
yielding low-quality semantic representatives. Another line of
work [15], [22] adopts an auxiliary network to learn repre-
sentative hash codes of label encoding for targeted attacks.
Typically, such an auxiliary prototype network is a parameter-
sensitive scheme that lacks theoretical guarantees, so the whole
adversarial generation is poorly generalized over different
datasets and hashing networks. In a nutshell, these works are
less efficient to generate high-quality semantic representatives
for adversarial deep hashing.

For the second question, there is only one work [22] on
adversarial defense for deep hashing that simply reduces the
distance between adversarial examples and the benign samples
in Hamming space. However, this method is hard to enable
robust adversarial training because it is not a standard minimax
adversarial optimization problem shown in [23], composing
of an inner maximization problem and an outer minimization
problem. Notably, such a unified learning framework cannot
hold in regular deep hashing-based retrieval networks unless
preferable semantic representatives are provided.

To overcome the aforementioned issues, this paper con-
structs discriminative semantic representatives (dubbed main-
stay codes) for adversarial learning of deep hashing and further
proposes Semantic-Aware Adversarial Training (SAAT) with
a formalized minimax framework to strengthen the adversarial
robustness of deep hashing models. Intuitively, we rethink the
characteristics of semantic similarity-preserving hashing-based
retrieval tasks. Different from classification, the purpose of
retrieval is to return top-n relevant objects instead of one result.
Hence, the optimal semantic representative of given sample
x in the retrieval task should preserve both similarities with
all semantically relevant samples (positives) and dissimilarity
with all semantically irrelevant ones (negatives). From this
viewpoint, we argue that the semantic representative for adver-
sarial deep hashing is expected to have a minimum Hamming
distance from all positives yet a maximum distance from all
negatives.

Directly optimizing the above problem is intractable due
to the infeasibility of utilizing gradient descent in discrete
Hamming space and the costly computational expense incurred
by numerous positive and negative samples. Owing to the
binarization of hash codes, we allow an efficient approach
called Discriminative Mainstay Features Learning (DMFL),
which offers rigorous theoretical guarantees and enables the
direct acquisition of the optimal solution to this problem,

i.e., the proposed mainstay code. Then, we transform the
adversarial attack (e.g., non-targeted attack) on deep hashing
into maximizing the Hamming distance between the hash code
of the adversarial example and the mainstay code to efficiently
generate the optimal adversarial example. Furthermore, based
on the generated mainstay codes, we formulate the adversarial
training on deep hashing as a minimax optimization problem,
i.e., a unified and standard adversarial training formula. Un-
der the minimax paradigm, the inner maximization seeks an
adversarial example x′ of a given data x whose hash code
maximizes the Hamming distance from the mainstay code,
and the outer minimization attempts to find model parameters
so that the hash code of x′ is close to the mainstay code to
alleviate the effects caused by the adversarial perturbations.
The overall framework is illustrated in Fig. 2. In summary,
our main contributions can be summarized below:

• We propose a Semantic-Aware Adversarial Training
(SAAT) framework for optimizing reliable deep hashing
models. To our best knowledge, this is the first attempt
to formulate the formalized adversarial training of deep
hashing into a unified minimax paradigm guided by well-
designed globally optimal semantic representatives.

• A discriminative mainstay features learning (DMFL)
scheme is well conceived to generate global semantic
representatives (named mainstay codes) of deep hashing,
which can efficiently guide adversarial learning of deep
hashing networks. As a consequence, the produced main-
stay codes can be simply adaptive to non-targeted and
targeted adversarial attacks against deep hashing models.

• In the presence of the derived mainstay features, we for-
malize a well-designed adversarial training strategy under
a minimax optimization for enhancing the adversarial
robustness of deep hashing-based retrieval.

• Extensive experiments validate the proposed attack
method’s superiority over state-of-the-art attacks on deep
hashing. Meanwhile, further experiments demonstrate
that our SAAT can substantially aid deep hashing net-
works in resisting multiple adversarial attacks.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. Section III describes
the proposed semantic-aware adversarial training method, in-
cluding the problem formulation, the generation of mainstay
code, and the attack/defense algorithm. In Section IV, we con-
duct experiments to validate the superiority of our method in
comparison to the state-of-the-art attack and defense models.
Finally, Section V concludes this paper.

II. RELATED WORK

A. Deep Hashing-based Retrieval
Hashing methods aim to learn a hash function to con-

vert semantically similar samples into similar hash codes in
Hamming space, which are widely used to accelerate ANN
retrieval [1]. Particularly, deep hashing [24] utilizes deep
neural networks as hash functions for feature extraction and
binary code generation in an end-to-end manner, attaining
superior retrieval performance.

Existing deep hashing can be broadly categorized into two
primary streams: unsupervised and supervised deep hashing.
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Fig. 2. The pipeline of the proposed Semantic-Aware Adversarial Training (SAAT) for deep hashing retrieval. The architecture is composed
of two mechanisms: the generation branch of representative codes (i.e., mainstay codes) and the minimax-based adversarial training branch.
In mainstay code generation, all training samples are projected to the Hamming space to form their corresponding hash codes. Then, we build
a mainstay code for each class by discriminative learning which pulls the mainstay code closer to the hash code of positives as well as pushes
it away from other negatives. In adversarial training, we extend adversarial training of deep hashing to a mini-max framework i.e., standard
adversarial training. As illustrated, the gray, red, and blue arrows indicate forward, backward and forward propagation, respectively. The
red arrow means constructing adversarial samples with the supervision of generated mainstay codes and the blue arrow represents inputting
adversarial samples for adversarial training. Best viewed in color.

Unsupervised deep hashing methods [25], [26] usually in-
volve learning hash functions by mining inherent structural
or distribution-relevance similarities in the samples without
using any semantic label. By contrast, supervised deep hashing
methods use semantic labels or relevant information as super-
visory signals to overcome the semantic gap dilemma [27],
which can yield more precise performance than unsupervised
ones. As the first deep hashing algorithm, CNNH [3] consists
of two independent stages, i.e., designing approximate hash
codes of training data and learning feature representation
through DNN. Recent hashing methods [4], [5], [7]–[12] fo-
cused on the design of end-to-end strategies and loss functions
to improve the efficacy of hashing learning. For example,
DPSH [4] integrated image representation and hash coding in
a unified framework and adopted a pairwise loss to preserve
the semantic similarity between data objects. HashNet [5]
proposed a continuous scale strategy to tackle the optimiza-
tion problem in discrete Hamming space, and alleviated the
data imbalance by a weighted pairwise loss. CSQ [7] and
DPN [9] are devoted to finding class-wise hash representa-
tives (centers) that can provide global similarity for hashing
learning. OrthoHash [10] proposed a novel single learning
objective that maximizes the cosine similarity between the

continuous codes and their corresponding binary orthogonal
codes. Besides, HSWD [11] presented a Sliced-Wasserstein-
based distributional distance to achieve low quantization error
and coding balance.

B. Adversarial Attack
As the vulnerability of deep learning models has been

noticed by Szegedy et al. [18], numerous studies have ex-
plored the model’s robustness and proposed a series of attack
methods. Depending on the target model information available
to the attackers, adversarial attacks can be divided into white-
box attacks [18], [23], [28]–[33] and black-box attacks [20],
[34]–[36]. For white-box attacks, the whole network archi-
tecture and parameters are exposed to attackers, so that they
can optimize the adversarial perturbations according to the
gradients of the loss w.r.t. inputs. For instance, FGSM [28]
is a classic white-box attack method, which crafts adversarial
samples by maximizing the loss along the gradient direction
with a large step. After that, FGSM was further extended
to multi-step variants, such as BIM [30] and PGD [23]. In
addition, a simple yet accurate method named Deepfool [29]
was developed to generate minimal perturbations sufficient to
change classification labels. Recently, some methods [32], [33]
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with stronger attack capabilities have been proposed, posing a
greater threat to the robustness of deep learning models. For
black-box attacks, attackers can only access the inputs and
outputs of target models, so it is difficult to acquire the gradient
directly. One popular solution is to exploit the transferability
of adversarial example to conduct the attack [34]–[36].

Apart from classification, researchers have also explored
adversarial attacks on deep hashing-based retrieval [13]–[17],
[22]. HAG [13] is the first attack method in this field, which
can confuse hashing models to retrieve results irrelevant to the
input sample, i.e., non-targeted attack. Subsequently, Lu et
al. [17] proposed SDHA to obtain more effective adversarial
queries against retrieval tasks by considering staying away
from all relevant samples of the query. For the targeted
attack (i.e., the retrieved images of the adversarial example
are semantically relevant to the target label specified by the
attacker), P2P and DHTA heuristically [14] select an anchor
code as the representative of the target label and then move
the adversarial query close to it. Recently, ProS-GAN [15] and
THA [22] design an auxiliary network to produce prototype
code as a guide for targeted attacks and defense. Unlike the
auxiliary network without theoretical guarantees, we propose
a discriminative learning measurement with a provable math-
ematical formula to obtain the representative mainstay codes.

C. Adversarial Training

To resist the adversarial examples, many defense methods
[23], [37]–[42] have been proposed. Among them, adversarial
training is currently the most effective way to strengthen the
robustness of neural networks, which augments the training
data with adversarial examples. Madry et al. [23] reformu-
lated standard adversarial training as a minimax optimization
problem. After that, Zhang et al. [39] proposed a defense
method named TRADES, which provides a trade-off between
adversarial robustness and benign accuracy on clean data.
Cui et al. [41] exploited the natural classifier boundary as
a guide to improve model robustness without losing much
natural accuracy. Jia et al. [42] introduced a learnable attack
strategy for adversarial training. In detail, they designed a
strategy network to automatically produce sample-dependent
attack strategies at different training stages.

In deep hashing, Wang et al. [22] proposed an adversar-
ial training algorithm based on the targeted attack (dubbed
ATRDH here) by reconstructing the semantic correlations
between adversarial samples and clean samples. It is clear that
ATRDH is not a standard adversarial training mechanism, and
it simply treats the similarity errors induced by the adversarial
samples as a regularization term. By contrast, our SAAT is a
standardized adversarial training that minimizes the distance
between the hash codes of adversarial examples and the
mainstay codes under a well-designed minimax framework.

III. SEMANTIC-AWARE ADVERSARIAL TRAINING

This section will present the proposed Semantic-Aware Ad-
versarial Training (SAAT) framework, which is a standardized
minimax optimization formulation for deep hashing aiming
to achieve robust deep hashing models. We first present the

definitions of adversarial attack and adversarial training on
deep hashing-based retrieval and then explicitly elaborate on
the overall idea and submodules, followed by a discussion.

TABLE I
SUMMARY OF MAIN NOTATION.

Notation Description
F (·) hashing model
fθ(·) DNN with parameter θ
O training set, O = {(xi,yi)}Ni=1

x,y input image and its corresponding label
x′ the adversarial example of x
b the hash code of x
S similarity matrix

x
(p)

ī
, x(n)

j̄
the i-th positive and j-th negative of x

b
(p)

ī
, b(n)

j̄
the hash codes of x(p)

ī
and x

(n)

j̄

wī, wj̄ the weighting coefficients for x(p)

ī
and x

(n)

j̄

bm the mainstay code of x
bt the mainstay code of target label yt

DH Hamming distance measure function
N the number of training samples
C the number of classes
K the length of hash code

Np, Nn the numbers of positives and negatives of x
Ladv objective function for adversarial attack
Lat objective function for adversarial training

A. Preliminaries

Deep Hashing-based Retrieval. We consider learning a hash-
ing model F from a training set O = {(xi,yi)}Ni=1 that
contains N samples labeled with C classes, where xi indicates
i-th image, and yi = [yi1, yi2, ..., yiC ] ∈ {0, 1}C denotes a
label vector of xi. yij = 1 means that xi belongs to the j-th
class. It is worth noting that xi is allowed to belong to more
than one class, i.e., multi-label data. The objective of F is to
get a set of K-bit binary codes B = {bi}Ni=1 ∈ {−1, 1}N×K

for the training set, which desires to preserve semantic simi-
larities among samples in Hamming space for efficient ANN
search. Generally, we utilize similarity matrix S to express
semantic similarities between each pair of samples. For any
two instances xi and xj , Sij > 0 describes they share at least
one class, otherwise Sij = 0.

The generation process of hash code bi of xi can be
expressed as follows:

bi = F (xi) = sign(fθ(xi)), s.t. bi ∈ {−1, 1}K , (1)
where K represents the hash code length, and f(·) with
parameter θ is a DNN to approximate hash function F (·). The
final binary code bi is obtained by applying the sign(·) on the
output of fθ(xi). Typically, f(·) is implemented by a convo-
lutional neural network (CNN) and adopts tanh(·) function to
approximate the sign(·) function during the training process
to relieve the vanishing gradient problem.
Definition 1: Adversarial Attack on Deep Hashing-based
Retrieval. In deep hashing-based retrieval, given a benign
query x with label y, the goal of non-targeted attack is to
craft an adversarial example x′, which could confuse the deep
hashing model F to retrieve irrelevant samples to query x. In
contrast, a targeted attack aims to mislead the deep hashing
model into returning samples related to a given target label
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yt. Moreover, the adversarial perturbation x′ − x should be
as small as possible to be imperceptible to the human eye.
Definition 2: Adversarial Training on Deep Hashing-based
Retrieval. Similar to classification, adversarial training on
deep hashing utilizes both the benign samples {(xi,yi)}Ni=1

and corresponding adversarial versions {(x′
i,yi)}Ni=1 to re-

optimize the parameter θ of deep hashing model, and thereby
the model could retrieve semantically relevant contents to the
original label yi, whether the input is a clean sample xi or an
adversarial sample x′

i.
Summary of Notation. For the sake of clarity, we summarize
the formal notation and key concepts in Table I.

B. An Overall Illustration
During the procedure of adversarial learning, the genera-

tion of adversarial examples plays a key role. Unlike image
classification with labels as supervision to generate practical
adversarial examples, deep hashing suffers from a lack of
discriminative representatives to guide adversarial attack and
defense. To address this issue, we conceive a semantic-aware
code (i.e., mainstay code) for each class as an optimal repre-
sentative of adversarial learning. With the mainstay code, we
present an efficient adversarial attack method and formulate a
well-designed adversarial training based on a minimax scheme
for deep hashing. The overall framework of our proposed
SAAT contains two components: the generation of mainstay
code and the minimax-based adversarial training, as shown in
Fig. 2. Particularly, we construct a mainstay code for each
class by a discriminative mainstay features learning pattern
that ensures the mainstay code is as close as possible to the
positives and stays away from the negatives. After yielding
the mainstay codes, we serve a minimax-based adversarial
training. Under formalized adversarial training, the inner max-
imization aims to generate adversarial examples led by the
mainstay codes, while the outer minimization attempts to
learn robust models by minimizing the expected loss over the
adversarial perturbations.

C. Generation of Mainstay Code
We desire to build a semantic-aware representative (dubbed

mainstay code) for any class in Hamming space to accomplish
adequate adversarial attacks and learn robust deep hashing
models. Considering the specialties of deep hashing, we sug-
gest that the mainstay code is required to satisfy the following
properties. 1) First, the mainstay code is a binary code in
Hamming Space with length K to retain the computation
efficiency of hashing, where K is the hash code length of
given deep hashing models. 2) Second, the mainstay code
can be generated adaptively for different datasets and multiple
deep hashing methods. 3) More importantly, the mainstay code
is expected to be globally semantically discriminable, i.e., as
close as possible to all positives of the given class and as
far as possible from all negatives of the class in Hamming
space, as illustrated in Fig. 2. Notably, for any sample xi

with class yi, its corresponding positives are those share at
least one class with itself, i.e., {(xj ,yj) ∈ O : Sij > 0}, and
its corresponding negatives are {(xj ,yj) ∈ O : Sij = 0}.

Subsequently, we will present the well-conceived discrimi-
native mainstay features learning (DMFL) scheme to solve the
mainstay code. For conciseness, we will discard the subscript
i and just use x labeled with y to denote the input sample.
In particular, we treat ī and j̄ as the indices of positives and
negatives of x, respectively. That is, x(p)

ī
is the i-th positive

sample of x, and x
(n)

j̄
is the j-th negative sample of x.

According to the third property, the mainstay code bm of a
given sample (x,y) can be formulated as follows:

min
bm

Np∑
ī

wīDH(bm, b
(p)

ī
)−

Nn∑
j̄

wj̄DH(bm, b
(n)

j̄
), (2)

where DH is the Hamming distance measure. b(p)
ī

and b
(n)

j̄

are hash codes of x(p)

ī
and x

(n)

j̄
, respectively. Np and Nn are

the numbers of positive and negative samples, respectively. wī

and wj̄ are the weighting coefficients for different samples.
However, generating and optimizing the mainstay code are

challenging to achieve the optimal solution, due to the discrete
nature of the mainstay code and high computational cost.
Fortunately, based on the binary characteristic of the hash
codes, we can precisely figure out the mainstay code by the
following theorem.

Theorem 1. Suppose b ∈ {−1,+1}K is a binary code in
Hamming space, and ψ(b) is an objective function as follows:

ψ(b) =

Np∑
ī

wīDH(b, b
(p)

ī
)−

Nn∑
j̄

wj̄DH(b, b
(n)

j̄
). (3)

If bm is the optimal solution to minψ(b), then bm can be
directly written as

bm = arg min
b∈{−1,+1}K

Np∑
ī

wīDH(b, b
(p)

ī
)−

Nn∑
j̄

wj̄DH(b, b
(n)

j̄
)

= sign

 Np∑
ī

wīb
(p)

ī
−

Nn∑
j̄

wj̄b
(n)

j̄

 .

(4)
Proof. As the mainstay code bm is the optimal solution of
the minimizing objective, the above theorem is equivalent to
prove the following inequality:

ψ(b) ≥ ψ(bm), ∀ b ∈ {−1,+1}K . (5)

According to DH(b1, b2) = 1
2 (K − b⊤1 b2) and b =

{b1, b2, ..., bK}, then we have

ψ(b) =

Np∑
ī

wī

1

2
(K − b⊤b

(p)

ī
)−

Nn∑
j̄

wj̄

1

2
(K − b⊤b

(n)

j̄
)

=− 1

2

Np∑
ī

wīb
⊤b

(p)

ī
+

1

2

Nn∑
j̄

wj̄b
⊤b

(n)

j̄
+ ξ

=− 1

2

Np∑
ī

wī

K∑
k=1

bkb
(p)

īk
+

1

2

Nn∑
j̄

wj̄

K∑
k=1

bkb
(p)

j̄k
+ ξ

=− 1

2

K∑
k=1

bk(

Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
) + ξ,

(6)
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where ξ is a constant. Due to the nature of absolute value, we
have

ψ(b) = −1

2

K∑
k=1

bk(

Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
) + ξ

≥− 1

2

K∑
k=1

∣∣∣∣∣∣bk(
Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
)

∣∣∣∣∣∣+ ξ

=− 1

2

K∑
k=1

∣∣∣∣∣∣(
Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
)

∣∣∣∣∣∣+ ξ

=− 1

2

K∑
k=1

sign(

Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
)(

Np∑
ī

wīb
(p)

īk

−
Nn∑
j̄

wj̄b
(n)

j̄k
) + ξ

(7)

Similar to Eq. (6), we represent ψ(bm) as

ψ(bm) = −1

2

K∑
k=1

bmk(

Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
) + ξ. (8)

Hence, we have

ψ(b) ≥− 1

2

K∑
k=1

sign(

Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
)(

Np∑
ī

wīb
(p)

īk

−
Nn∑
j̄

wj̄b
(n)

j̄k
) + ξ

=− 1

2

K∑
k=1

bmk(

Np∑
ī

wīb
(p)

īk
−

Nn∑
j̄

wj̄b
(n)

j̄k
) + ξ (9)

=ψ(bm).

That is, ψ(b) ≥ ψ(bm) and the theorem is proved. There-
fore, the mainstay code bm of a given sample (x,y) in
problem (2) can be solved by

bm = sign

 Np∑
ī

wīb
(p)

ī
−

Nn∑
j̄

wj̄b
(n)

j̄

 . (10)

In particular, we have to claim that our discriminative mainstay
code is a globally optimal semantic representative. Compared
to sample-level [13], [14] and category-level [14], [17] ap-
proaches, our mainstay code is optimized in global semantic
space by preserving similarity with all positives and irrel-
evancy with all negatives. Here, “globally” means that our
method considers all positive and negative samples related to
the query in the global semantic space, not that our mainstay
code can be the optimal semantic representative in all cases.

In addition, we define the wī and wj̄ as follows:

wī =
1

Np
· sī, wj̄ =

1

Nn
· (1− sj̄), (11)

where sī/j̄ =
⟨y,yī/j̄⟩

∥y∥∥yī/j̄∥ denotes the similarity between the

given instance (x,y) and the i-th positive (j-th negative),
which means the more classes they share, the more similar
they are. ī/j̄ indicates ī ‘or’ j̄. 1

Np/n
can balance the number

difference between positive and negative samples.

D. Semantic-Aware Adversarial Attack
To verify the effectiveness of our mainstay code and reveal

the robustness of deep hashing models, we provide a semantic-
aware adversarial attack strategy based on proposed mainstay
code. We first illustrate the implementation of our approach
using non-targeted attack, and then we apply the idea to
targeted attack.
Non-targeted Attack. For non-targeted attack, we prefer
maximizing the hash code distance between the adversarial
example and its semantically relevant samples, and simul-
taneously minimizing the distance from irrelevant samples,
rather than the only benign sample. Since the mainstay code is
found, the objective of adversarial attack can be translated into
maximizing the Hamming distance between the hash code of
adversarial example and the mainstay code. Thus, for a given
clean image x, its corresponding adversarial example x′ is
developed by following objective under the Lp constraint:

x′ = argmax
x′

DH(F (x′), bm), s.t. ∥x− x′∥p ≤ ϵ, (12)

where ∥ · ∥p (p = 1, 2,∞) is Lp norm that keeps the pixel
difference between the adversarial example and the benign
sample no more than ϵ for the imperceptible property of
adversarial perturbations.

Due to DH(b1, b2) = 1
2 (K − b⊤1 b2), the Eq. (12) is

equivalent to:

x′ = argmax
x′
− 1

K
b⊤m tanh(αfθ(x

′)),

s.t. ∥x− x′∥p ≤ ϵ,
(13)

where tanh(·) is the tanh activation function, and α ∈ [0, 1]
is the hyper-parameter that controls tanh(αfθ(x

′) to approxi-
mate F (x′). Following [13], we initialize α with a small value
to obtain a larger gradient of the objective function in Eq. (13)
concerning x′, then gradually enlarge it to approximate sign(·)
until it equals 1.
Targeted Attack. The only difference between non-targeted
attacks and targeted attacks is the objective function. For a
given benign sample x and a target label yt, we first acquire
the mainstay code bt of yt by Eq. (10), and then the objective
of targeted attack can be defined as:

x′ = argmin
x′

DH(F (x
′), bt)

= argmax
x′

1

K
b⊤t tanh(αfθ(x

′)),

s.t. ∥x− x′∥p ≤ ϵ.

(14)

As the distance between the hash code of adversarial example
x′ and the mainstay code of the target label decreases, the
adversarial example gradually approaches the target label in
semantic terms while guaranteeing visual imperceptibility.
Thus, we could retrieve semantically relevant contents to the
target label by feeding x′ into a deep hashing-based retrieval
system.
Generation of Adversarial Examples. Given a clean image,
this paper adopts PGD attack [23], one of the most popular
attack methods (other attack strategies are also feasible), to
optimize x′ with T (T = 100 by default) iterations, i.e.,

x′
T = Sϵ(x′

T−1 + η · sign(∇x′
T−1
Ladv)), x′

0 = x, (15)
where η is the step size, Sϵ projects x′ into the ϵ-ball [23] of x,
and Ladv is the objective function for adversarial attack. In the



7

case of non-targeted attack, Ladv = − 1
K b⊤m tanh(αfθ(x

′)),
while Ladv = 1

K b⊤t tanh(αfθ(x
′)) for targeted attack.

Unlike HAG, SDHA and DHTA which require more than
1000 iterations to optimize adversarial examples, our method
is more efficient. It merely takes 100 iterations because of the
well-designed globally optimal semantic representatives. No-
tably, we should highlight that since the generation process of
adversarial examples is model-agnostic, our learning algorithm
could be simply embedded into any deep pairwise similarity-
preserving hashing network, such as DPSH [4], HashNet [5],
CSQ [7], etc.

E. Semantic-Aware Adversarial Training
The ultimate pursuit of adversarial learning is to enhance the

robustness of deep neural networks. After the powerful adver-
sarial attack materializes, we further aspire that the produced
adversarial examples can be used as augmentation data to
optimize the deep hashing model for defense, i.e., adversarial
training. According to [23], the standard adversarial training
on classification can be written as a minimax formulation, i.e.,

min
θ

E(x,y)∼D[max
x′
J (gθ(x′), y, θ)], (16)

where D represents an underlying data distribution, g is a
classifier with parameter θ, and J denotes a classification loss
(e.g., cross-entropy loss). The inner maximization problem in
(16) can be regarded as an adversarial attack that finds an
adversarial example, and the outer optimizes the parameter of
network to resist the influence caused by adversarial pertur-
bations. Generally, such a framework is unavailable in deep
hashing due to the absence of explicit semantic representative
(e.g., label). Nevertheless, the proposed mainstay code reme-
dies this deficiency, thereby enabling us to develop semantic-
aware adversarial training (SAAT) for deep hashing, i.e.,

min
θ

E(x,y)∼D[max
x′
Lat(x,x

′, bm, θ)]. (17)
The developed SAAT has two significant differences com-

pared to the regular adversarial training in classification. First,
the most essential difference is that we leverage the representa-
tive mainstay code bm to guide the adversarial training instead
of label vector y. In addition, the objective function in internal
optimization is different. The optimization objective Lat of
SAAT is more complex, which contains three loss items. In
the first item, we exploit the semantic-aware adversarial attack
(non-targeted attack) described in Section III-D as the attack
strategy to seek the optimal adversarial example. Thus, the
first loss item of Lat is formulated as follows:

Ladv(x
′, bm; θ) = − 1

K
b⊤m tanh(fθ(x

′)). (18)

To make the back-propagation algorithm feasible during train-
ing, we substitute the sign function with the tanh function
to obtain approximate continuous hash codes, which causes
quantization errors. Thus, we introduce a quantization loss to
minimize the discrepancy between the approximate hash codes
and the binary codes of adversarial examples, i.e.,
Lqua(x

′; θ) = ∥ tanh(fθ(x′))− sign(fθ(x
′))∥22, (19)

where ∥ · ∥2 is the L2 norm. It is worth noting that an
excellent adversarial training strategy should not only improve
the robustness of models against adversarial examples but

also maintain the performance on benign samples. Hence, we
also employ the objective function Lori(x, θ) of the original
hashing method (e.g., DPH, DPSH or HashNet). In summary,
the whole objective function of SAAT is described as:

Lat = λLadv + µLqua + Lori, (20)
where λ and µ are the trade-off hyper-parameters of the first
two terms.

Conspicuously, we adopt alternating scheme to optimize
the hashing network. Firstly, we maximize Lat with fixed
network parameter θ to generate adversarial examples. Then
we optimize the hashing network over θ to enhance its
robustness against adversarial examples as well as maintain
its performance on clean samples by minimizing Lat. The
two steps are iteratively optimized until the hashing network
converges to local optima. The overall optimization process of
SAAT is outlined in Algorithm 1.

Algorithm 1 Optimization of Semantic-Aware Adversarial
Training in Problem (17)
Input: Image dataset O = {(xi,yi)}Ni=1, pre-trained hashing

model F (·) = sign(fθ(·)), training epochs E, batch size
n, learning rate ζ, step size α, perturbation budget ϵ, attack
iterations T , weighting factors λ and µ.

1: for iter = 1...E do
2: for image batch {(xi, yi)}ni=1 do
3: For each xi, calculate its mainstay code bmi with Eq.

(10);
4: Optimize its corresponding adversarial samples x′

i by
PGD attack with T iterations:

x′
i ← Sϵ(x′

i + η · sign(∇x′
i
Ladv(x

′
i, bmi))) ∀ i;

5: Update θ with the gradient descent:
θ ← θ − ζ∇θ

1
n

∑n
i=1 Lat(xi,x

′
i, bmi, θ);

6: end for
7: end for

Output: Network parameter θ.

F. Discussion on the Difference from the Related Works

Regarding seeking optimal representatives, our work has
some similarities with ProS-GAN [15] and THA [22]. How-
ever, there are some fundamental differences between our
approach and theirs. 1) First, the optimization goal is different.
ProS-GAN and THA are designed for targeted adversarial at-
tacks, while our proposed mainstay codes are adaptive to both
non-targeted and targeted attacks. Importantly, we provide the
first fundamental minimax-form adversarial training for deep
hashing with the guidance of mainstay codes. 2) Moreover,
ProS-GAN and THA adopt a neural network to learn the
prototype code of the target label, which is a parameter-
sensitive scheme and results in a lack of theoretical guarantees
for the quality of generated representatives. In contrast, we
present a discriminative mainstay features learning (DMFL)
with a provable mathematical formula to obtain the mainstay
codes with global discriminative superiority.

Moreover, the generation of mainstay codes is similar to
contrastive learning [43], [44] but with three differences. 1)
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TABLE II
RESULTS OF DIFFERENT ATTACK METHODS ON THREE DATASETS. WE EVALUATE THE ATTACK PERFORMANCE WITH MAP(%) CRITERIA

FOR NON-TARGETED ATTACKS (4-TH TO 6-TH ROWS). FOR TARGETED ATTACKS, WE USE THE T-MAP(%) VALUES TO SHOW THE
RESULTS (7-TH TO 11TH ROWS). THE ‘ORIGINAL’ IN TABLE IS TO QUERY WITH BENIGN SAMPLES, WHERE THE MAP VALUES DENOTE

THE RETRIEVAL PERFORMANCE OF HASHING MODEL WITHOUT ATTACK.

Method Metric FLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

Original MAP 81.33 82.28 82.47 81.85 76.70 77.47 77.74 78.11 56.26 57.41 56.70 56.64
HAG MAP 22.53 21.68 21.96 22.56 13.62 13.32 13.67 13.55 12.57 13.97 13.90 13.88
SDHA MAP 21.82 19.37 19.39 19.20 13.85 12.98 14.49 14.56 11.61 12.38 12.63 13.08
SAAT (Ours) MAP 14.92 14.53 14.59 14.82 11.93 11.89 11.85 12.02 9.96 11.21 10.96 10.87
P2P t-MAP 81.45 81.83 82.49 82.98 66.94 69.19 69.20 69.12 51.96 52.74 52.62 51.73
DHTA t-MAP 82.98 83.51 83.67 83.94 69.10 70.92 71.03 70.93 52.57 53.38 53.23 52.34
ProS-GAN t-MAP 73.06 66.44 62.34 87.15 72.33 74.29 73.96 72.30 33.02 33.30 31.63 31.28
THA t-MAP 86.80 87.84 86.94 86.73 69.78 72.98 73.90 70.29 53.18 52.88 47.80 37.63
SAAT (Ours) t-MAP 88.62 88.90 89.07 89.00 70.68 73.99 74.00 74.33 55.75 58.00 56.97 56.58
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Fig. 3. Precision-Recall curves on FLICKR-25K and MS-COCO under 32 bits code length.

First, the purpose is different. Typically, contrastive learn-
ing desires to optimize a network with good generalization
capabilities via a self-supervised approach. Differently, we
aim to generate a representative semantic feature for each
input sample to supervise the adversarial learning of deep
hashing. 2) Secondly, it is different for the optimization
process. Contrastive learning involves repeatedly measuring
the similarity between input and multiple positive and negative
samples to adjust the network parameters through numerous
iterations. In contrast, we can instantly calculate the mainstay
code of the input sample by exploiting the proposed DMFL,
dramatically reducing the computational overhead. 3) Further-
more, contrastive learning occurs in the continuous feature
space, while mainstay code is produced in the discrete binary
space. Hence, solving the mainstay code by gradient descent
is intractable, yet our proposed DMFL cleverly and efficiently
addresses this problem.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets.: We conduct extensive experiments to evaluate
our methods on three well-known datasets: FLICKR-25K
[45], NUS-WIDE [46] and MS-COCO [47]. FLICKR-25K
consists of 25,000 Flickr images annotated with 38 labels. We
pick 1000 instances from the whole dataset as queries, while
the remaining are regarded as the database. Moreover, we
randomly select 5,000 images from the database for training
hashing models and producing mainstay codes. NUS-WIDE
has 269,648 samples with 81 concepts. Following [15], we
select a subset containing 21 most frequent concepts with

193,734 images as database and 2,100 images for testing.
Besides, we select 10,500 images from the database for train-
ing. MS-COCO involves 123,287 samples after combining the
training and validation sets, where each sample is labeled with
80 classes. Following [5], we randomly select 5,000 images
as queries and the rest as the database. For the training set,
10,000 images are randomly picked from the database.

2) Baselines.: Following [13], we select DPH [13] as target
hashing model to be attacked, which is a generic deep hashing
retrieval model. Particularly, we can change it to any other
deep hashing models. AlexNet [48] and VGGs [49] are chosen
as the backbone networks to implement DPH. Specifically,
we replace their last classifier layer with a hashing layer,
which involves a fully connected layer with K hidden units
and a tanh activation. We also evaluate the generalizability of
our method on other hashing methods, including DPSH [4],
HashNet [5] and CSQ [7]. For estimating the effectiveness
of our methods, we implement previous attack and defense
methods in hashing retrieval, covering two non-targeted attacks
(i.e., HAG [13] and SDHA [17]), three targeted attack methods
(i.e., P2P [14], DHTA [14], ProS-GAN [15] and THA [22]),
and the only one defense algorithm ATRDH [22]. For targeted
attacks, we randomly choose a label for attack, which does
not share the same class with the original label. To make fair
comparisons, the detailed implementations of these methods
are consistent with the original papers with released codes.

3) Implementation Details.: We utilize stochastic gradient
descent (SGD) [50] with a learning rate 0.01 and momentum
0.9 as optimizers to pre-train the target hashing models. All
images are resized to 224 × 224 and normalized in [0, 1]
before feeding in hashing models. For the proposed attack
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Fig. 4. Precision@1000 curves on FLICKR-25K and MS-COCO under 32 bits code length.
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Fig. 5. Retrieval examples on NUS-WIDE with the benign query and its adversarial version. We provide examples of non-targeted attacks
and targeted attacks in (a) and (b), respectively. For each example, the two boxes represent the top-5 retrieved images of the natural and
adversarial queries, respectively.

algorithm, we apply PGD [14] to optimize adversarial samples.
The step size η and the number of iterations T are set to
1/255 and 100, respectively. The perturbation budget ϵ is
fixed to 8/255. Similar to [13], we set the hyper-parameter α
with 0.1 during the first 50 iterations, then update it every 10
iterations according to [0.2, 0.3, 0.5, 0.7, 1.0] during the final
50 iterations. For our defense method SAAT, we conduct 20
epochs for adversarial training. During the training process, we
empirically set η and T in PGD with 2 and 7, respectively,
to generate adversarial samples in each epoch. The weighting
factors λ and µ of Eq. (20) are set as 1 and 10−4, respectively.

4) Protocols.: Following [13], we adopt MAP (mean av-
erage precision) to evaluate the performance of non-targeted
attacks and calculate MAP values on the top 5000 results from
the database. Specifically, for targeted attacks, we employ t-
MAP (targeted mean average precision) [14] to appraise their
results. As t-MAP takes the target labels as the test labels,
the higher the t-MAP, the stronger the targeted attack. In
addition, we also provide Precision-Recall (PR) curves and
precision@topN curves for comprehensive analysis.

B. Adversarial Attack Results

As shown in Table II, we present the detailed MAP scores
of non-targeted attacks on three benchmarks. A lower MAP
means a stronger performance of non-targeted attacks. The
Original in Table II is a query using original samples without
any additive noise, where the corresponding MAP reflects the
retrieval performance of the attack-free hashing model. From
the results, we can observe that our method outperforms all
non-targeted attacks and significantly drops the MAP values
on three benchmarks with the hash bits varying from 16 to

64. Compared with SDHA [17], the best non-targeted attack
method, the MAP scores of our method decline an average
of 2.98% for all cases. Especially, on the FLICKR-25K, our
method outperforms SDHA by over 4.38% for any bits. The
superior behavior of our method owes to the high-quality
mainstay code, which represents the globally optimal semantic
of a given sample by preserving the similarity with positives
and irrelevancy with negatives simultaneously. In contrast,
HAG and SDHA just use the information from benign samples
and positive samples, respectively. It is worth noting that our
attack merely runs 100 iterations during optimization, but other
methods use up to 1,500 iterations, or even 2,000 iterations,
which further reveals the efficiency of our method.

Results in terms of t-MAP for targeted attacks are also given
in Table II. It can be observed that our method achieves the
best performance on targeted attacks in most cases. When
comparing with the state-of-the-art targeted attack, THA [22],
our attack accomplishes average boosts of 1.82%, 1.52% and
8.95% for different bits on FLICKR-25K, NUS-WIDE, and
MS-COCO, respectively. Specifically, although ProS-GAN
yields better results for 16bits and 32bits on NUS-WIDE, it
does not work well on other datasets, especially MS-COCO.
This is because the generative framework of ProS-GAN
is parameter-sensitive and lacks generalization on different
datasets. Moreover, the prototype network they designed is
hard to fit multi-label cases (e.g., MS-COCO with 80 classes).
Differently, our mainstay codes are obtained by discriminative
mainstay feature learning, which can be well adapted to
various datasets.

For a more comprehensive comparison, the retrieval per-
formance on benchmarks in terms of PR curves and preci-
sion@topN curves are shown in Fig. 3 and Fig. 4, respectively.
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TABLE III
MAP (%) OF NON-TARGETED ATTACK METHODS AFTER ADVERSARIAL TRAINING BY ATRDH AND OUR SAAT.

Defense Attack FLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

ATRDH

Original 71.35 72.16 72.29 72.08 64.58 64.57 67.20 67.90 49.41 50.89 50.38 51.57
HAG 41.92 42.36 43.80 44.08 41.59 41.93 42.31 42.29 27.19 26.78 26.20 26.75
SDHA 39.09 37.77 38.39 38.60 41.61 40.36 40.78 40.59 28.09 27.17 27.55 27.75
Ours 32.68 32.40 33.39 33.32 38.53 38.16 38.95 38.99 23.93 23.24 23.14 22.82

SAAT(Ours)

Original 74.19 73.49 73.41 70.07 61.05 60.51 61.06 60.57 46.91 49.41 50.14 52.01
HAG 38.05 43.76 48.22 60.89 53.07 52.72 52.56 52.90 33.83 34.01 35.77 36.69
SDHA 35.26 40.52 45.78 59.62 53.22 52.15 52.57 52.83 35.99 35.07 37.23 36.91
Ours 30.55 34.77 39.35 53.76 50.35 50.33 50.20 50.16 30.98 30.87 32.63 33.43

TABLE IV
T-MAP (%) OF TARGETED ATTACK METHODS AFTER ADVERSARIAL TRAINING BY ATRDH AND OUR SAAT. THE ‘ORIGINAL’ IN TABLE

INDICATES THE MAP VALUE OF HASHING MODEL WITHOUT ATTACK.

Defense Attack FLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

ATRDH

Original 71.81 72.40 72.99 72.26 65.60 66.96 67.04 68.15 49.71 50.67 51.25 50.54
P2P 72.54 71.76 72.05 71.81 46.01 48.80 49.27 49.52 35.69 37.06 37.67 37.75
DHTA 73.45 72.97 72.90 73.56 47.53 50.39 50.76 51.37 36.13 37.54 38.14 37.88
ProS-GAN 49.76 49.46 48.64 49.71 29.82 28.92 28.67 29.25 23.34 23.73 23.22 23.29
THA 77.37 77.97 78.07 78.32 51.29 54.85 56.00 55.46 41.13 43.31 43.35 40.92
Ours 78.67 79.00 79.52 79.40 51.09 55.31 56.28 55.85 42.18 44.11 44.92 44.89

SAAT(Ours)

Original 73.45 72.89 72.86 71.77 61.37 61.92 61.99 61.02 49.34 50.68 52.18 53.27
P2P 73.17 71.11 69.39 65.83 40.74 37.68 37.32 38.41 33.08 33.12 33.94 34.06
DHTA 74.58 72.33 70.74 66.89 41.35 38.19 37.89 38.69 33.28 33.33 34.15 34.14
ProS-GAN 48.24 48.43 49.20 50.35 37.99 33.81 32.93 30.71 26.61 25.29 26.09 25.09
THA 76.47 74.38 72.27 66.33 41.28 38.71 37.83 38.02 34.27 34.37 35.57 34.39
Ours 79.65 76.51 75.07 69.97 42.02 39.40 38.72 39.67 36.72 36.28 36.97 37.76

We only provide the results on FLICKR-25K and MS-COCO
of different methods with 32 bits length. For non-targeted
attacks, we can see that the curves of our method are always
below all other curves while the opposite is the case in targeted
attacks, which demonstrates that our method is able to attack
hashing models more effectively. Furthermore, we also provide
two examples of the retrieval results on NUS-WIDE with a
benign image and its adversarial version generated by our
method in Fig. 5 for intuitive understanding.

C. Adversarial Defense Results
To improve the adversarial robustness of deep hashing

networks, we perform the proposed formalized adversarial
training algorithm on pre-trained deep hashing models. Af-
ter the adversarial training, we re-attack these models and
the results in terms of MAP are reported in Table III. By
comparing Table III with Table II, we observe that the MAP
values of different attack methods are much higher than no
adversarial training, though the original MAP values decrease
slightly. For example, under the non-targeted attack SDHA,
SAAT brings an average increase of approximately 25.35%,
38.72% and 23.87% on FLICKR-25K, NUS-WIDE and MS-
COCO, respectively. For our proposed semantic-aware attack,
SAAT improves by an average of about 24.94%, 38.33%,
and 21.22%. To further verify the effectiveness of our well-
designed SAAT, we compare SAAT with ATRDH [22] under
the same experiment settings and the results of ATRDH are
also illustrated in Table III. As we can see, the original MAP
values of SAAT and ATRDH are close, but our SAAT achieves
a significant performance boost in terms of the MAP under

various attacks. For example, with respect to our proposed
attack algorithm, SAAT exceeds ATRDH by an average of
6.66%, 11.60%, 8.69% for FLICKR-25K, NUS-WIDE, and
MS-COCO, respectively. The above phenomena show that
SAAT can learn more robust hashing codes than ATRDH, be-
cause SAAT is a standard minimax-based adversarial training.

A similar situation can be observed in the targeted attack
shown in Table IV. In the case of THA, SAAT achieves an
average improvement of over 14.71%, 32.77% and 13.22% for
different bits on FLICKR-25K, NUS-WIDE and MS-COCO,
respectively, in comparison to the models without adver-
sarial training. Additionally, compared with ATRDH, SAAT
outscores ATRDH by an average of 5.57%, 15.44%, 7.52%
on FLICKR-25K, NUS-WIDE, and MS-COCO, respectively.
These cases all confirm that the proposed adversarial training
strategy can effectively improve the robustness of deep hashing
models against both targeted and non-targeted attacks. It is
worth remarking that the attack performance of ProS-GAN on
the hashing models retrained by SAAT dramatically decreases,
which indicates that our defense method can basically resist
the attack of ProS-GAN. This behavior is more pronounced on
ATRDH, which may be attributed to the fact that adversarial
training is more effective for generative-based attack methods.

Besides, it can be seen from the Table III and IV that our
attack achieves the-sate-of-the-art attack performance on all
defense models, which further validates the superiority of our
attack algorithm.
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TABLE V
THEORETICAL VALUES OF DIFFERENT ATTACK METHODS. FOR EACH METHOD, WE UTILIZE THE REPRESENTATIVE CODES OF THEM TO

CALCULATE THEORETICAL MAP(T-MAP).

Method Metric FLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

Original MAP 81.33 82.28 82.47 81.85 76.70 77.47 77.74 78.11 56.26 57.41 56.70 56.64
HAG MAP 22.67 21.54 21.73 22.19 13.51 13.32 13.65 13.54 13.14 14.35 14.15 13.83
SDHA MAP 18.89 18.55 18.65 18.80 14.13 13.82 13.99 14.17 9.99 11.60 11.19 11.37
SAAT(Ours) MAP 14.90 14.51 14.57 14.72 11.69 11.77 11.77 11.75 9.76 11.09 10.76 10.68
P2P t-MAP 81.35 81.87 82.60 83.10 66.87 69.14 69.11 69.11 52.23 52.89 52.90 52.37
DHTA t-MAP 82.93 83.56 83.72 84.13 69.13 70.85 70.82 70.75 52.82 53.57 53.54 52.93
ProS-GAN t-MAP 86.47 86.88 87.05 59.45 70.70 73.44 73.48 72.93 50.85 36.19 40.60 35.85
THA t-MAP 86.67 87.86 87.36 86.81 70.18 73.20 73.73 67.25 51.66 49.74 50.61 44.72
SAAT(Ours) t-MAP 88.63 88.91 89.11 89.04 70.92 73.97 74.10 74.35 59.16 60.14 59.63 58.90

TABLE VI
MAP (%) OF NON-TARGETED ATTACK WITH DIFFERENT ITERATIONS ON

NUS-WIDE.
Iterations 16bits 32bits 48bits 64bits

0 76.70 77.47 77.74 78.11
1 62.82 63.90 63.71 63.77
10 13.18 13.47 13.45 13.44
50 12.04 12.06 12.13 11.96

100 11.96 11.97 12.12 11.93
500 11.80 11.90 12.10 11.96

1000 11.76 11.88 12.09 11.88
Theory 11.69 11.77 11.77 11.75

D. Analysis and Discussions
1) Attack Results in Theory: Besides actual attack perfor-

mance, we also record the MAP(t-MAP) values in theory
of various attack methods to compare the theoretical upper
bounds that they can reach, which is shown in Table V.
Intuitively, we calculate the theoretical MAP by directly
retrieving the contents in Hamming space with representative
codes of each method instead of the hash codes corresponding
to the adversarial samples. Such as the mainstay code of our
method, the anchor code of DHTA, and the prototype code of
ProS-GAN. Obviously, our attack outperforms all comparison
methods on both targeted and non-targeted attacks, which
further verifies the superiority of our well-designed mainstay
code. Making a comparison between Table II and Table V,
we notice that our attack algorithm converges well, as the
actual attack performance is considerably approached to the
theoretical results.

2) Effect of T in PGD: Table VI presents MAP results of
adversarial examples under non-targeted attack with different
optimizing iterations (i.e., T ). Adversarial examples at itera-
tion 0 correspond to the benign examples without adversarial
noise. As expected, MAP drops quickly with the number of
iterations. It is worth noting that MAP reduces over 82% of the
original MAP at 10 iterations in all cases, which indicates our
attack method is much more efficient. Continued optimization
of adversarial examples can further reduce the MAP values
until the 100th iteration. In addition, the MAP values of the
500 and 1000 iterations are almost invariant and close to the
theoretical values. These results imply that we have a good
balance between the effectiveness and efficiency of adversarial
attacks with T = 100.

3) Perceptibility: Beyond attack performance, perceptibil-
ity is another essential aspect in evaluating the quality of
adversarial examples. Hence, we report the perceptibility of
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Fig. 6. MAP (%) on NUS-WIDE for our adversarial training with
different λ and µ.

TABLE VII
PERCEPTIBILITY OF ADVERSARIAL PERTURBATIONS UNDER

NON-TARGETED ATTACKS. L∞ AND L2 ARE MARTIX NORMS OF
ADVERSARIAL PERTURBATIONS, AND MSE IS MEAN SQUARED ERROR

BETWEEN BENIGN SAMPLES AND ITS ADVERSARIAL VERSIONS. ALL THE
RESULSTS ARE AVERAGED OVER THE ENTIRE TEST SET.

Metric FLICKR-25K NUS-WIDE MS-COCO
HAG SDHA Ours HAG SDHA Ours HAG SDHA Ours

L∞ 6.26 6.03 5.27 6.35 6.13 5.61 6.23 6.66 5.39
L2 1.24 1.17 1.04 1.25 1.19 1.08 1.21 1.23 1.01

MSE(×10−4) 7.18 6.73 5.20 7.29 6.89 5.68 7.08 8.26 5.44
MAP(%) 21.94 17.66 14.97 13.20 12.94 11.96 13.57 12.39 11.12

adversarial noise with respect to three metrics, including L∞,
L2 and MSE. The results for all datasets are shown in Table
VII. Since the adversarial perturbation is normally desired
to be imperceptible, the higher the perceptibility, the worse
the visual quality of the adversarial example. As we can see,
all the results of our method are very small and outperform
those of the other two non-targeted attacks by large margins.
This demonstrates that our approach achieves excellent attack
performance while ensuring the imperceptibility of the learned
perturbations. Some visual examples of adversarial images
generated by our method in Fig. 7 also verify this point.

4) Analysis on Hyper-parameters: The hyper-parameters
λ and µ control the quality of the adversarial training. To
explore the effects of different weighting factors on defense
performance, we make comparison experiments with 32-bits
hashing model, as illustrated in Fig. 6. For λ, as shown in Fig.
6(a), when λ increases, the defense performance increases until
λ = 1, but the MAP values of original samples drop, which
indicates there is a trade-off between robustness and precision.
For µ, we can observe from Fig. 6(b) that it has a small but
non-negligible impact on the outcomes, and the best behavior
is achieved at µ = 0.001.

5) Universality on different hashing models: We argue that
our proposed attack and defense algorithms are generic to the
most popular hashing models with different backbones. To
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TABLE VIII
MAP (%) OF NON-TARGETED ATTACKS FOR DIFFERENT HASHING MODELS ON NUS-WIDE. FOR EACH DEEP HASHING ALGORITHM,

WE IMPLEMENT IT WITH FOUR BACKBONE NETWORKS, INCLUDING ALEXNET [48] AND VGG FAMILY [49].

Defense Attack DPSH HashNet CSQ
AlexNet VGG11 VGG16 VGG19 AlexNet VGG11 VGG16 VGG19 AlexNet VGG11 VGG16 VGG19

No
Defense

Original 80.97 82.00 81.96 81.78 79.65 81.91 81.13 80.56 79.26 80.71 81.53 0.8160
HAG 14.49 13.28 14.52 13.73 12.99 11.13 10.31 11.29 16.58 14.93 19.89 14.76
SDHA 13.72 11.06 14.30 14.00 9.59 10.43 10.59 10.03 12.99 8.85 8.53 7.95
Ours 11.32 9.70 10.50 11.27 8.10 6.18 6.36 7.15 7.18 5.92 6.22 7.18

ATRDH

Original 72.41 70.52 69.65 69.02 72.79 68.31 68.43 65.16 61.75 57.62 59.21 65.31
HAG 33.62 45.13 47.44 47.26 30.83 46.63 51.20 51.60 38.70 35.60 34.80 24.85
SDHA 34.12 39.86 44.59 46.32 25.87 42.13 47.48 47.37 38.80 34.85 36.87 19.33
Ours 31.22 33.85 35.87 38.69 23.56 41.43 46.23 45.48 36.33 30.38 27.76 29.36

SAAT
(Ours)

Original 74.83 76.70 75.99 75.74 76.38 68.75 69.56 70.46 72.94 66.79 67.65 74.96
HAG 44.22 45.45 54.10 43.65 40.33 57.02 55.54 55.17 44.44 45.36 49.85 42.19
SDHA 47.53 47.63 55.49 45.55 41.84 56.06 54.92 54.49 47.63 49.59 52.59 39.56
Ours 43.05 44.39 53.18 43.07 39.00 53.37 54.21 51.57 43.64 41.02 42.27 34.28
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Fig. 7. Visualization of generated adversarial examples. Given benign images (the first row), we produce corresponding adversarial examples using our attack
method, as shown in the second row. For better presentation, we show the normalized adversarial perturbation for each sample in the last row.

verify this point, we compare with non-targeted attacks (HAG
and SDHA) on other hashing methods, including DPSH [4],
HashNet [5] and CSQ [7]. The results are summarized in Table
VIII. First, for the attack, our method is still effective and
better than HAG and SDHA in all cases, as shown in ‘No
Defense’ part. Moreover, even with different hashing methods
or backbone networks, our defense method can still effectively
mitigate the impact of adversarial attacks. Furthermore, when
testing with original samples (‘Original’ in Table VIII), or
under the attacks of HAG and SDHA, the results of SAAT
are higher than ATRDH, which shows that hashing models
trained by our SAAT are more robust than ATRDH. Hence,
the above phenomena confirm the universality of the proposed
attack and defense methods.

V. CONCLUSION

In this paper, we proposed a generic Semantic-Aware Adver-
sarial Training (SAAT) algorithm for deep hashing-based re-
trieval, which is the first work to formulate adversarial training
of deep hashing as a unified minimax problem. Specifically, we
provided a discriminative mainstay features learning strategy
to obtain high-quality mainstay codes as the optimal semantic
representatives of samples for adversarial learning in deep
hashing. Moreover, we took the mainstay code as ‘label’ to
guide the adversarial attack, where the Hamming distance
between the mainstay code and the hash code of adversarial
example was minimized. Furthermore, benefiting from the

high-quality mainstay features, we developed a well-conceived
adversarial training scheme based on a formalized minimax
optimization paradigm. Extensive experiments demonstrated
that our method could attain state-of-the-art results in both
adversarial attack and defense on deep hashing-based retrieval.

REFERENCES

[1] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” in 2006 47th Annual IEEE
Symposium on Foundations of Computer Science, 2006, pp. 459–468.

[2] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning to
hash,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, pp. 769–790, 2018.

[3] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for
image retrieval via image representation learning,” in AAAI Conference
on Artificial Intelligence, 2014, pp. 2156–2162.

[4] W. Li, S. Wang, and W. Kang, “Feature learning based deep supervised
hashing with pairwise labels,” in International Joint Conference on
Artificial Intelligence, 2016, pp. 1711–1717.

[5] Z. Cao, M. Long, J. Wang, and P. S. Yu, “Hashnet: Deep learning to
hash by continuation,” in IEEE International Conference on Computer
Vision, 2017, pp. 5608–5617.

[6] V. Talreja, M. C. Valenti, and N. M. Nasrabadi, “Deep hashing for secure
multimodal biometrics,” IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 1306–1321, 2020.

[7] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, and J. Feng,
“Central similarity quantization for efficient image and video retrieval,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2020,
pp. 3083–3092.

[8] Y. Wang, X. Ou, J. Liang, and Z. Sun, “Deep semantic reconstruction
hashing for similarity retrieval,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 31, no. 1, pp. 387–400, 2020.



13

[9] L. Fan, K. W. Ng, C. Ju, T. Zhang, and C. S. Chan, “Deep polarized
network for supervised learning of accurate binary hashing codes,”
in Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, 2020, pp. 825–831.

[10] J. T. Hoe, K. W. Ng, T. Zhang, C. S. Chan, Y.-Z. Song, and T. Xiang,
“One loss for all: Deep hashing with a single cosine similarity based
learning objective,” Advances in Neural Information Processing Systems,
vol. 34, pp. 24 286–24 298, 2021.

[11] K. D. Doan, P. Yang, and P. Li, “One loss for quantization: Deep hashing
with discrete wasserstein distributional matching,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 9447–9457.

[12] D. Wu, Q. Dai, B. Li, and W. Wang, “Deep uncoupled discrete hashing
via similarity matrix decomposition,” ACM Transactions on Multimedia
Computing, Communications and Applications, vol. 19, no. 1, pp. 1–22,
2023.

[13] E. Yang, T. Liu, C. Deng, and D. Tao, “Adversarial examples for
hamming space search,” IEEE Transactions on Cybernetics, vol. 50,
pp. 1473–1484, 2020.

[14] J. Bai, B. Chen, Y. Li, D. Wu, W. Guo, S.-t. Xia, and E.-h. Yang, “Tar-
geted attack for deep hashing based retrieval,” in European Conference
on Computer Vision, 2020, pp. 618–634.

[15] X. Wang, Z. Zhang, B. Wu, F. Shen, and G. Lu, “Prototype-supervised
adversarial network for targeted attack of deep hashing,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2021, pp.
16 357–16 366.

[16] Z. Zhang, X. Wang, G. Lu, F. Shen, and L. Zhu, “Targeted attack
of deep hashing via prototype-supervised adversarial networks,” IEEE
Transactions on Multimedia, pp. 1–13, 2021.

[17] J. Lu, M. Chen, Y. Sun, W. Wang, Y. Wang, and X. Yang, “A
smart adversarial attack on deep hashing based image retrieval,” in
International Conference on Multimedia Retrieval, 2021, pp. 227–235.

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014, pp. 1–10.

[19] L. Amsaleg, J. Bailey, A. Barbe, S. M. Erfani, T. Furon, M. E. Houle,
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