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Abstract 

In biomechanics problems, the biological soft tissues are usually treated as 

anisotropic nearly-incompressible hyperelastic materials, but such complicated 

nonlinear material models often cause challenging problems of severe volumetric 

locking and instabilities in numerical simulations. In this paper, the recent unsymmetric 

8-node, 24-DOF hexahedral solid element US-ATFH8 with different test and trial 

functions is modified for the analysis of anisotropic nearly-incompressible hyperelastic 

soft tissues. We use analytical trial functions (ATFs) to construct the incremental 

displacement fields which give the incremental deformation gradient. Specifically, the 

linear analytical general solutions for anisotropic elasticity and the consistent tangent 
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modulus are first introduced into the trial functions, which significantly improve the 

element performance. The total deformation gradient is obtained by multiplying the 

incremental deformation gradient by the deformation gradient, after which the Cauchy 

stresses can be directly calculated from a total-form constitutive equation relating to the 

deformation gradient. Numerical tests, including commonly used benchmarks and 

cardiac examples, demonstrate attractive properties of the proposed formulation in 

modeling anisotropic nearly-incompressible hyperelastic materials. It is robust and 

insensitive to mesh distortion, provides high accuracy with fast convergence rate, and 

overcomes locking problems in modelling nearly-incompressible materials. 
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1. Introduction 

In biomechanics and related applications, soft tissues are commonly treated as 

anisotropic hyperelastic materials [1-4]. For example, HGO [5-7] and Fung-type [8-12] 

models are commonly used to model arterial wall tissue and cardiac tissue, respectively. 

These two models have already been implemented in some commercial finite element 

software platforms [13]. The research of finite element simulation of biological soft 

tissues has been growing for the past decades, but the study on how to improve the 

performance of computational modeling is much limited. Land et al. [14] provided a 

series of benchmark problems for the verification of related solvers. Some stabilized 

methods were developed to deal with the nearly-incompressible condition and locking 

problems. Campos et al. [15] proposed a preconditioned augmented Lagrangian 

formulate to handle the nearly-incompressible condition. A locking-free finite element 

formulation in terms of Kirchhoff stress, displacement, and pressure was introduced by 

Chavan [16] and has been adopted in the study of cardiac electromechanics [17, 18]. 

More recently, Patrick [19] proposed a mixed formulation for incompressible 

hyperelasticity, in which an augmented Lagrangian preconditioner was added to the 

solutions of the benchmark problems of cardiac mechanics. A common drawback of 

these stabilized methods is that the stabilization constant must be chosen tentatively 

[20-22]. Furthermore, modelling biological soft tissues often leads to large scale 

numerical systems with high computational cost. The high-order element with pressure 

DOFs [23-27] can effectively deal with incompressible condition, but it also 



significantly increases the amount of calculation and complexity. Smoothed finite 

element method [28] and immersed boundary-finite element method [29] are also 

applied to biomechanical problems , which show good accuracy and computational 

efficiency. Besides the above finite element formulations, the penalty methods [30-34] 

are also popular to enforce incompressibility in cardiac mechanics models. A pure 

displacement-based finite element formulation for nearly-incompressible cardiac 

mechanics was presented by Hadjicharalambous et al [35]. It shows that, without the 

additional variables, direct discretization of the penalized form can still produce similar 

convergence behavior to the mixed formulations. 

Compared to high-order elements, the low-order pure displacement-based 

nonlinear finite elements often suffer from such numerical issues as locking and ill-

conditioned stiffness matrix while the incompressible limit is approached. However, 

the low-order elements are attractive in large-scale problems due to simplicity and 

efficiency and as such a number of formulations have been proposed to enable the use 

of low-order elements near the incompressible limit. These include the B-bar 

methodology [36, 37], the F-bar technique [38-40], J-bar method [41], reduce 

integration scheme [42, 43], selective reduced integration scheme [44], the enhanced 

assumed strain elements [45, 46], the corotational incompatible modes approach [47], 

and multi-field formulations [48], among others. However, the presence of extremely 

large strains leads to distorted meshes, which typically requires adaptive mesh 

refinement to obtain acceptable solutions. As a result, using low-order finite elements 



in large-strain analysis of quasi-incompressible materials remains an outstanding 

challenge.  

Rajendran et al. [49, 50] first proposed the high-order unsymmetric finite element 

method to improve the performance of the pure displacement element for 2D and 3D 

problems with mesh distortion. He used two different sets of shape functions 

(conventional isoparametric shape functions and metric shape functions) to construct 

the test and trial functions, respectively. The higher-order monomial terms in the metric 

shape functions ensure good performance under mesh distortion. These elements were 

successfully extended to nonlinear analysis [51]. However, this method is not 

applicable to low-order elements, due to the inherent direction dependence and 

interpolation failure. In order to achieve high-performance in low-order elements, Cen 

et al. [52-56] incorporated the ATFs [57, 58] and the local natural coordinates [59, 60] 

into the unsymmetric finite element formulations. The test functions still come from the 

conventional isoparametric shape functions whilst the trial functions are constructed by 

the ATFs under local natural coordinates. The resulting plane 4-node, 8-DOF 

quadrilateral element US-ATFQ4 and 3D 8-node, 24-DOF hexahedral element US-

ATFH8 exhibit high precision in both regular and distorted meshes, and they do not 

suffer locking problems. More recently, the unsymmetric finite elements based on ATFs 

method were extended to isotropic hyperelastic finite deformation analysis in both 2D 

[61] and 3D [62] problems. Besides, the incompatible modes were also extended into 

unsymmetric finite element analysis to construct low-order elements [63-66], which 



also show good performance under mesh distortion. 

The use of ATFs, namely the homogenous solutions for linear elasticity governing 

equations, is usually limited linear elastic situations [67], whilst through an incremental 

scheme they are greatly effective in elements US-ATFQ4 and US-ATFH8 for 

geometrical nonlinear analysis and isotropic hyperelastic problems. In elements US-

ATFQ4 and US-ATFH8, the isotropic analytical homogeneous solutions were adopted 

to construct the ATFs. However, for hyperelastic soft tissues, anisotropic analytical 

homogeneous solutions are needed. It is worth investigating whether the unsymmetric 

element US-ATFH8 still possesses high distortion resistance and high precision for 

anisotropic nearly incompressible hyperelastic analysis. 

In this paper, a new element strategy is proposed to model anisotropic nearly-

incompressible hyperelastic soft tissues subjected to finite deformation. It is noted that 

viscoelastic effects [68-71] are not considered in the present formulation. The article is 

organized as follows. First, Section 2 recaps the deformation and the anisotropic 

hyperelastic material model, after which the unsymmetric finite formulation is 

illustrated in detail in Section 3. Then, in Section 4, various test examples are presented 

to evaluate the performance of the new formulation. Finally, concluding remarks and 

future extensions of are presented in Section 5. 

 

2. Finite Deformation Hyperelasticity 

This section first briefly reviews the mathematical foundation of deformation. As 

the topic of this paper is about anisotropic hyperelastic material, the typical Fung-type 



strain-energy function in terms of the components of strain is explained, and the related 

stress response is also presented in preparation for the construction of finite element 

formulation. 

2.1 Finite deformation 

As shown in Figure 1, 0B  is the reference configuration of a continuous body 

which is assumed to be stress-free. The finite deformation of this body transforms a 

typical material point 0 0Bx   to the position ( )0t t tB= x x x   in the deformed 

configuration tB  . The deformation process can be described by the deformation 

gradient 
0/t t=  F x x , while the determinant 

t J  of t
F , i.e., the local volume ratio, 

is given by ( ) det[ ]tt tJ =F F . 

 

Figure 1. The finite deformation of a body [72] (The shape and position of a solid body 

before and after deformation.). 

 

In order to describe the different behaviors of shear and bulk, the deformation 

usually splits into the deviatoric part and the volumetric part [72]. Accordingly, a 

multiplicative decomposition of the deformation gradient tensor t
F  is performed: 

d v

t t t=F F F ,                           (1) 

where d 

t
F  and v

t
F  are, respectively, the deviatoric and volumetric components of 



t
F , and defined by 

 1 3

d

/(det[ ])t t t−=F F F , 1/3

v 2(det[ ])tt =F F I , (2) 

in which 2I  is the second-order identity tensor. Thus, the associated modified right 

Cauchy–Green tensor 
t
C  and the modified Green strain tensor 

t
E  can be written as 

 T

d d

t t t=C F F , 2

1
( )

2

tt = −E C I . (3) 

2.2 Anisotropic hyperelastic material model  

Biological soft tissues are almost always modeled as anisotropic hyperelastic 

materials because of their highly anisotropic and nonlinear elastic behaviors. Two 

different descriptions, strain-based and invariant-based, are often used to represent the 

strain energy potential of the anisotropic hyperelastic materials. In this paper, a strain-

based phenomenological constitutive model, the Fung-type strain-energy function [8], 

which exhibits great capability in describing many biological soft tissues, is considered.  

Most biological soft tissues are compressible due to their high-water content and 

low permeability. In a pure displacement-based element, the incompressibility 

condition is usually treated by using a penalty term [73] to prevent numerical 

instabilities of the iterative solution strategy, and it does not require any additional 

computational effort. 

 A generalized decoupled 3D Fung-type strain-energy function that is also used in 

Abaqus [13] is given by: 

  iso vol  = +  , (4) 

 ( )iso 1
2

Qc
e = − , (5) 



 
( )

2

vol

11
ln

2

t

t
J

J
D



 −
 = −
 
 

, (6) 

where    is the strain energy per unit of the reference volume; vol   the purely 

volumetric contribution which is also considered as a penalty function; iso  the purely 

isochoric contribution to the free energy; c   a material parameter; e   the natural 

logarithm; det[ ]t tJ = F   the volume ratio; and D   the penalty factor for 

incompressibility condition, typically set to be 1×10-6 or less to keep a good balance 

between the incompressibility condition and the convergence of the Newton–Raphson 

scheme [74]. In the above formulation, Q  is given by 

 : :t t t

ij ijkl l

t

kQ E b E= =E b E , (7) 

where ijklb   are the dimensionless symmetric fourth-order tensor of anisotropic 

material constants and 
t

ijE  are the components of the modified Green strain tensor.  

2.3 Hyperelastic stress response 

 The strain-energy function   given by Equation (4) can be treated as a function 

of the modified Green strain tensor 
t
E . Then, the second Piola–Kirchhoff stress tensor 

t
S  can be written as [72]:  

                       
( )t

t

t


=



E
S

E
,                             (8) 

with 

  
1

t
t t

t

J
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
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E
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4

1

3

t
t tt

t
J

−−  
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E
I C C

E
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where t
E  is the Green strain tensor, 

t
C  the right Cauchy–Green tensor, and 4I  the 

fourth-order identity tensor. 



  The Cauchy stress tensor 
t
σ  is expressed as 

 
1 T .=t t ttt J −  σ F S F  (10) 

 

3. The unsymmetric element US-ATFH8 for finite deformation 

This section describes the construction of the element US-ATFH8. Sub-section 3.1 

explains how the analytical trial functions are used to interpolate the incremental 

displacement field. Sub-section 3.2 describes the consistent tangent modulus which is 

used to update the analytical trial functions in each incremental step. A specially 

designed algorithm is presented in sub-section 3.3 to update the deformation gradient 

in each incremental step. After deriving the internal force vector in sub-section 3.4, the 

finite element equilibrium equation is obtained and consistently linearized, which 

results in the final tangent stiffness matrix (sub-section 3.5). 

3.1 The analytical trial functions (ATFs) interpolation for incremental 

displacement field 

The ATFs derived from the governing equations for linear elasticity can effectively 

improve the approximation accuracy in each increment of finite deformation analysis 

[61, 62]. They are adopted to interpolate the incremental displacement fields  u  , 

which are used for computing the Cauchy stress. 

 



Figure 2. An 8-node hexahedral solid element. 

 

   An 8-node, 24-DOF hexahedral solid element is shown in Figure 2. Its incremental 

displacement fields  u  from time t  to t t+ are interpolated as follows [62]: 

     
x

y

z

u

u

u
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    
T

1 24... =α , (13) 

where ( ), ,h h ht t t
R S T   are the skew coordinates [60] (see Appendix A) at time 

/ 2ht t t= +   , ( ), ,h h ht t t

j j jU V W   the quadratic displacement solutions in terms of the 

skew coordinate at time ht , which depend on both the configuration and the material 

parameters (see Appendix B), and k (k=1~24) are 24 undetermined coefficients. 

Substitution of the nodal coordinates and incremental nodal displacements into 

Equation (11) yields: 
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T

1 1 1 8 8 8{ } ...e

x y z x y zu u u u u u  =       q ,        (16) 

where { }eq   is the nodal incremental displacement vector, and 
ht 

  
N   the shape 

function matrix formulated by composite coordinate interpolation. For an anisotropic 

hyperelastic material, 
ht 

  
N  is a function of consistent tangent modulus ht C  (Note: 



it is different from the spatial tangent moduli adopted in reference [39]) and the spatial 

coordinates ht x ,  

 ( )ˆ ˆ ,h h h ht t t t   =
   

N N x C . (17) 

 

3.2 Consistent tangent modulus for general anisotropic hyperelastic materials 

It should be noted that the ATFs cannot be used to interpolate the total displacement 

fields, and they are valid only in each increment of finite deformation. This means that 

a relationship between the strain increments and the Cauchy stress increments is needed. 

The strain increments are defined by the symmetric part of the displacement increment 

gradient. 

Different numerical approximations for the tangent modulus of anisotropic 

hyperelastic material have been suggested [75, 76]. In this paper, the consistent tangent 

modulus is defined as: 

 
1 ( )t t

t

t t

J

J


=



σ
C

ε
, (18) 

and it has the same form as the material Jacobian matrix used in the user subroutine 

UMAT for Abaqus [13]. For a small increment with nearly incompressible deformation, 

the relationships between the incremental strain and the incremental Cauchy stress 

vectors are assumed to be linear: 

    tt t =  σ C ε , (19) 

    
1

tt t
−

   =ε C σ . (20) 



For the total-form constitutive laws, the tensor components of the consistent tangent 

modulus 
t
C  are given by: 

 
( ) ( )

11
C

2

t t t t

ij ijt t t t

ijkl lm kmt t

km lm

J J
J F F

F F

 
−
  
 = +
  
 

. (21) 

Because of the major and minor symmetries of the consistent tangent modulus 
t
C , 

associated tangent moduli matrix notation t  C  can be readily obtained. Numerical 

tests in Section 4 will show that the use of ATFs with consistent tangent modulus can 

ensure the rapid convergence for the suggested formulation. 

3.3 The stress computation and update of the deformation gradient  

 For hyperelastic material, the Cauchy stress can be directly calculated from a total-

form constitutive equation relating to the deformation gradient: 

    ( )t t t t t t+ + +=σ σ F . (22) 

The incremental deformation gradient matrix from time t to t+Δt is defined as  

 
 
 

 
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    = = + 
   

x u
F I

x x
,  (23) 

where  2I  is the second-order identity matrix. 

The deformation gradient at time t t+  is calculated by multiplying the 

incremental deformation gradient by the deformation gradient at time t : 

 t t t t t+ +     =      F F F . (24) 



 

 

Figure 3. The update of deformation gradient during the finite deformation of a body. 

(The deformation gradient at time t t+  is obtained by multiplying the incremental 

deformation gradient by the deformation gradient at time t .) 

 

 The deformation process from configuration 
tB  to 

t tB+  is regarded as linear, 

which means that  

 ( ) / 2 / 2ht t t t t+= + = + x x x x u . (25) 

 Substitution of Equations (14), (17) and (25) into Equation (23) yields 

  
 

 
 

 

1

1

2h h

t

t t

t

−

+
      
     = + − 
       

u u
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x x
. (26) 

The Cauchy stress  t t+
σ   in the current configuration 

t tB+
  is obtained by 

substituting Equations (24) and (26) into Equation (22). Hence, the Cauchy stress is 

successfully acquired through the incremental displacement fields interpolated by ATFs.  

3.4 Internal force vector 

For the spatial configuration, the element internal force vector is given by 

    t

T

in
ˆ ( ) d

t

t

L

te t t

B
V =   σ Ff B , (27) 

where  ˆ ( )t
σ F  is the Voigt form of the Cauchy stress tensor, and for a hyperelastic 

constitutive model, it is the function of the deformation gradient 
t
F ; t

L
  B  is the 



discrete spatial symmetric gradient operator matrix, and has the similar form to the 

linear strain-displacement matrix, in which the derivatives of the shape functions are 

derived with respect to the spatial coordinates of the finite element mesh, i.e., at the 

deformed configuration defined at time t : 
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with 

 
1

(1 )(1 )(1 ) (1,2,...,8)
8

I I I IN I     = + + + = . (29) 

where ( , , )I I I    are the nodal isoparametric coordinates. 

For the unsymmetric element US-ATFH8 [53], two different sets of interpolation 

functions are simultaneously used. The first set employs the shape functions of the 

conventional 8-node trilinear isoparametric element to formulate the matrix t

L
  B . 

The second set adopts the skew coordinate interpolation scheme with the ATFs and has 

been given by Equation (15). It is used to construct the incremental displacement fields 

 u  for calculating the incremental deformation gradient t t+  F . 

A 2×2×2 Gauss integration scheme is used to evaluate the internal force vector 

given by Equation (27) 
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   .           (30) 

It can be observed that the Jacobian determinant in matrix t

L
  B   and the 

Jacobian determinant produced by the Gaussian integral are cancelled exactly. 

Moreover, the relationship between the skew coordinates and the Cartesian coordinates 

is always linear. This means that no Jacobian determinant exists in the denominator of 

the integral, so that the resulting model will avoid issues caused by the ill-conditioned 

shape and be insensitive to mesh distortion. 

3.5 The finite element equilibrium equation and consistent linearization. 

The equilibrium conditions at time t t+ can be expressed as: 

     int ext

t t t t+ +− =f f 0 ,                     (31) 

where  int

t t+
f   and  ext

t t+
f   are the internal and external nodal force vectors, 

respectively. 

The most common scheme for the iterative solution of systems of a nonlinear 

algebraic equation is the Newton–Raphson algorithm. The residual vector is written as  

       int ext( ) : ( )t t t t t t t t t t+ + + + += − =R q f q f 0 ,           (32) 

where 
t t+

q  is the vector of nodal displacements corresponding to time t t+ . 

During a typical Newton-Raphson iteration k, the following linear system is solved 

for the increment of displacement  ( )kq : 

( )     ( ) ( ) ( ) ( )

ext int

t t k k t t t t k

T

+   = −
 

K q q qf f .           (33) 



The total internal force vector and the total tangent stiffness matrix are obtained by 

a standard finite element assembly procedure from the element internal force and the 

element tangent stiffness. 

The tangent stiffness matrix of any element can be obtained by direct 

differentiation: 

   ( )
 
ext int

t t e t e

t e

T t e

+ −
  = 



f f
K

q
,                        (34) 

where  t e
q  is the vector of nodal displacements corresponding to time t . 

In this paper, the derivation of the tangent stiffness matrix, Equation (34), is 

performed with the help of the automatic differentiation program Acegen developed by 

Korelc [77]. Since the two different sets of interpolation functions are used, the tangent 

stiffness is generally unsymmetric and, therefore, requires an unsymmetric solver in 

finite element computations. 

4. Numerical examples 

In this section, two single-element tests, four common benchmarks, and three 

cardiac examples are presented to illustrated the performance of the proposed 

formulation US-ATFH8. For all these numerical examples, the nearly-incompressible 

generalized decoupled three-dimensional Fung-type anisotropic constitutive law is 

adopted, and the associated material parameters are given in Appendix C.  

The results obtained by two Abaqus 8-node hexahedral solid elements are given 

for comparisons in examples 1~6 and example 9: (i) C3D8H (8-node linear element, 

hybrid with constant pressure); (ii) C3D8IH (8-node linear element, 9 incompatible 



modes, hybrid with linear pressure).  

The simulations with the formulation US-ATFH8 for hyperelastic finite 

deformation are implemented by the user element subroutine of Abaqus [13]. All terms 

of the element formulation are evaluated by using the 2×2×2 Gaussian integration 

scheme. The incremental-iterative Newton-Raphson scheme is selected to solve these 

nonlinear problems. The default convergence criteria set by Abaqus were kept 

unchanged for all simulations. Automatic incrementation control is specified, because 

Abaqus can automatically adjust the size of the increments to solve the nonlinear 

problem efficiently.  

4.1 Single element test 

In order to verify the correctness of the derived equations and the implementation, 

numerical tests with analytical solutions were performed on single element. 

4.1.1 The selection of the penalty factor  

In this section, the selection of the value of D in penalty function is discussed by 

comparing the results for different values. As shown in Figure 4(a), a 1mm × 1mm × 

1mm isotropic cube is meshed as a single finite element. A simple tension was studied 

with the different values of D. For simple tension along the x-direction, the deformation 

gradient tensor for incompressiobility can be given as: 
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F  (35) 

Different values of D were tested, and the numerical results are shown in Figure 5. It 



can be observed that the incompressibility is enforced with the decrease of D. When D 

is less than 1×10-6, the nearly-incompressible condition is reached. When D equals to 

zero, the incompressibility is fully enforced. However, the extremely small value of D 

makes the system matrix ill-conditioned, which leads to numerical problems. Because 

the myocardium is not truly incompressible, the reasonable selection of the value of D 

can provide a good approximation for incompressibility.  

 

Figure 4. Deformation of a single element. (a) A 1mm × 1mm × 1mm cube is meshed 

as a single finite element. (b) Uniaxial tension of a nearly-incompressible anisotropic 

hyperelastic soft cube. (c) Simple shear of a nearly-incompressible anisotropic 

hyperelastic soft cube. 

 

Figure 5. The comparison of the results of simple tension with different penalty factor 



D with the ground truth of truly incompressible state. 

4.1.2 Uniaxial tension of an anisotropic nearly-incompressible hyperelastic soft 

cube  

As shown in Figure 4(a), a 1mm × 1mm × 1mm cube is meshed as a single finite 

element. The deformation process of uniaxial tension is depicted in Figure 4(b). The 

boundary conditions are: i) for x=0, the displacement u1=0; ii) for y=0, the displacement 

u2=0; iii) for z=0, the displacement u3=0; iv) for x=1mm (face ABCD), the displacement 

u1 = δ mm. The σ11- curves are plotted in Figure 6(a). The results obtained by elements 

US-ATFH8, C3D8H, and C3D8IH all agree well with the analytical solutions. 

 
Figure 6. One element test. (a) Comparison of analytical and numerical results of the 

soft cube under uniaxial tension. (b) Comparison of analytical and numerical results of 

the soft cube under simple shear. 

 

4.1.3 Simple shear of an anisotropic nearly-incompressible hyperelastic soft cube 

For the cube defined in the last example, the deformation process of simple shear 

is depicted in Figure 4(c). The boundary conditions are: i) for y=0, the displacements 

u1=u2=u3=0; ii) for y=1 (face BCC’B’), the displacements u2 =u3=0, u1 = δ mm. The 

σ12- curves are plotted in Figure 6(b). Again, the results obtained by element US-



ATFH8 agree very well with the analytical solutions, and are much better than those 

obtained by elements C3D8H and C3D8IH, whose errors increase slightly with the 

increase of shear deformation. 

4.2 Bending test for an orthotropic nearly-incompressible hyperelastic soft Cook's 

beam 

 An orthotropic nearly-incompressible hyperelastic soft Cook's beam is adopted to 

test the bending performance of the element US-ATFH8 for anisotropic hyperelasticity. 

The geometries of the structure are given in Figure 7(a), where the left end is clamped 

and a distributed load is acting on the right end. The regular meshes from coarse to fine 

are used to perform the calculations, while only one element is set in the thickness 

direction.  

 

Figure 7. Soft Cook’s beam. (a) Geometry and boundary conditions. (b) Mises stress 

on final deformed shapes with mesh 64 × 64 × 1 obtained by US-ATFH8. (c) Mises 

stress on final deformed shapes with mesh 64 × 64 × 1 obtained by C3D8IH. 

 

The reference solution is obtained by element C3D8IH with a fine mesh (64×1×1). 

Figure 7(b) and Figure 7(c) give the contour plots of Mises stress on the deformed 



configuration with the mesh 64×64×1 obtained by US-ATFH8 and C3D8IH. The 

convergence curves for point A obtained by US-ATFH8, C3D8H and C3D8IH are 

shown in Figure 8. It is observed that elements US-ATFH8, C3D8IH and C3D8H 

provide the same convergent solutions, but element US-ATFH8 exhibits the best 

convergence. 

 

Figure 8. Convergence curves of the vertical displacement at point A of soft Cook’s 

beam. The reference solution is obtained by element C3D8IH with a fine mesh 

(64×1×1). 

4.3 Distortion tolerance test for an orthotropic nearly-incompressible hyperelastic 

soft cantilever beam  

 As shown in Figure 9(a), an orthotropic cantilever beam is subjected to shear force 

on the right end while the left end is clamped. The detailed geometry and boundary 

conditions are given in Figure 9(a). The convergence curves of vertical displacement 

of point A obtained by elements US-ATFH8, C3D8H and C3D8IH are given in Figure 

10. The reference solution is obtained by element C3D8IH with a fine mesh 

(100×10×10). It can be observed that element US-ATFH8 possesses much better 



convergence than element C3D8H, and element C3D8IH presents similar results to 

element US-ATFH8 because the regular meshes are used. The element C3D8H 

performs badly in this bending dominated problem because it is just a hybrid element 

with a constant pressure DOF based on the conventional trilinear element. 

 Then, several different distorted 20×2×2 meshes are employed to test the 

performance of the elements. The distorted mode of mesh is shown in Figure 9(b), in 

which δ denotes the distorted parameter. The vertical displacements of point A under 

different distorted meshes are given in Table 1. It can be seen that the performances of 

elements C3D8H and C3D8IH decrease quickly with the increase of the distorted 

parameter, while element US-ATFH8 can keep good precisions, which shows good 

mesh distortion tolerance. 

 
Figure 9. (a) Geometry and boundary conditions for soft cantilever beam. (b) Distorted 

mode of 20×2×2 meshes (δ denotes the distorted parameter). 



 

Figure 10. Convergence curves of the vertical displacement at point A of soft cantilever 

beam. The reference solution is obtained by element C3D8IH with a fine mesh 

(100×10×10). 

 

Table 1. Vertical displacement results of point A using distorted meshes. 

δ Element type VA error 

0.06 

C3D8H 4.31317 −33.4313% 

C3D8IH 5.90419 −8.8758% 

US-ATFH8 6.44517 −0.5264% 

0.07 

C3D8H 4.21731 −34.9108% 

C3D8IH 5.73178 −11.5368% 

US-ATFH8 6.44817 −0.4801% 

0.08 

C3D8H 4.11167 −36.5413% 

C3D8IH 5.54374 −14.4390% 

US-ATFH8 6.44970 −0.4565% 

0.09 

C3D8H 3.99804 −38.2950% 

C3D8IH 5.34455 −17.5132% 

US-ATFH8 6.45266 −0.4108% 

0.1 

C3D8H 3.87828 −40.1433% 

C3D8IH 5.13861 −20.6917% 

US-ATFH8 6.45450 −0.3824% 

reference C3D8IH (100×10×10 regular mesh) 6.47928  

 

4.4 Distortion tolerance test for a transversely-isotropic and nearly-incompressible 

hyperelastic soft curved beam 



A transversely-isotropic curved beam subjected to a concentrated force is 

considered in this section. The details of geometry and boundary conditions are given 

in Figure 11(a). Two ends of the curved beam are clamped and the concentrated force 

is loaded on the top. A regular 30×1×1 mesh and a distorted 30×1×1 mesh are adopted 

for calculation (Figure 11(b) and Figure 11(c)). The reference solution is obtained by 

element C3D8IH with a fine mesh (300×10×10). 

The load-displacement curves of point A are plotted in Figure 12 (It is worth noting 

that the results obtained by C3D8H is softer than the other two elements while it is 

always opposite in the isotropic problems. This is mainly due to the characters of the 

chosen anisotropic material), and the final deformed configuration obtained by element 

US-ATFH8 is given in Figure 13. It can be seen that no matter whether regular or 

distorted meshes are used, the present element US-ATFH8 can keep good precisions 

and is quite insensitive to mesh distortion, while the other two hybrid elements with 

additional degrees of freedom cannot achieve.  

 

Figure 11. (a) Geometry and boundary conditions for soft curved beam. (b) Regular 

meshes for soft curved beam. (c) Distorted meshes for soft curved beam. 



 

Figure 12. Load-deflection curves of point A of soft curved beam with regular mesh 

and distorted mesh. The reference solution is obtained by element C3D8IH with a fine 

mesh (300×10×10). 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 13. Final deformed shape with regular and distorted meshes for curved beam. 

(a) US-ATFH8 with regular mesh. (b) US-ATFH8 with distorted mesh. (c) C3D8IH 

with regular mesh. (d) C3D8IH with distorted mesh. (e) C3D8H with regular mesh. (f) 

C3D8H with distorted mesh. 



4.5 Torsion of a transversely-isotropic hyperelastic soft beam with a square cross-

section  

 As shown in Figure 14(a), a transversely isotropic beam with a square cross-

section is subjected to twisting load at its right free end and the left end is clamped. The 

detailed geometry and boundary conditions are given in Figure 14(a). The purpose of 

this example is to study the mesh distortion tolerance of the present element. A 

maximum rotation of 2π is applied at the twisting face through multiple rotation 

increments. The deformed configurations of the twisting beam are given in Figure 

14(b)(c)(d). The element US-ATFH8 completed the calculation successfully, while 

C3D8H and C3D8IH aborted before the rotation reaches π. The element US-ATFH8 

shows good mesh distortion tolerance again in this twisting problem. 

 

Figure 14. Torsion of a soft beam. (a) Geometry and boundary conditions for soft beam. 

(b) Element US-ATFH8 completed the calculation successfully. (c) Element C3D8H 

aborted at time step 0.4811. (d) Element C3D8IH aborted at time step 0.4983. 

 

4.6 Benchmark test for a transversely-isotropic and nearly-incompressible 

hyperelastic soft beam 

 Land et al [14] introduced this benchmark of a cardiac beam, whose geometry and 



boundary conditions are given in Figure 15(a). This example tests the performance of 

a rectangular soft beam under pressure-type forces whose directions change with the 

deformed surface orientation. A transversely-isotropic constitutive law is adopted and 

the fiber direction is constant along the x-axis.  

The maximum z-displacement was compared with several finite element solvers 

listed below in Figure 15(b) and the detailed description are available in reference [5] 

and the relative references therein. 

(1) Cardioid: a hybrid 20-node hexahedral element with linear pressure DOFs (a 

10-node hybrid tetrahedral element with linear pressure DOFs for example in section 

4.7); 

  (2) CardioMechanics: a 10-node tetrahedral element; 

  (3) CARP: a 4-node hybrid tetrahedral element with constant pressure DOF;  

(4) Elecmech: a hybrid 32-node hexahedral element with linear pressure DOFs;    

(5) GlasgowHeart-IBFE: an immersed boundary method with 8-node hexahedral 

element;  

(6) Hopkins-MESCAL: an 8-node hybrid hexahedral element with constant 

pressure DOF;   

(7) LifeV: a 10-node tetrahedral element;     

(8) MOOSE-EWE: a 20-node hybrid hexahedral element with linear pressure 

DOFs (a 10-node hybrid tetrahedral element with linear pressure DOFs for example in 

section 4.7); 



  (9) OpenCMISS: a 32-node hybrid hexahedral element with linear pressure DOFs;  

(10) Simula-FEniCS: a 10-node hybrid tetrahedral element with linear pressure 

DOFs;  

(11) PUC-FEAP: an 8-node hybrid hexahedral element with constant pressure DOF.  

Element US-ATFH8 is a low-order element without any internal DOF and 

additional pressure DOF, but the element has a fast convergence speed and its final 

result is similar to those obtained by other hybrid elements and high-order elements.  

 
Figure 15. Soft beam benchmark. (a) Geometry and boundary conditions for soft beam. 

(b) The comparison of maximal deflection results at point A of the soft beam benchmark 

[14]. 

 

4.7 Passive inflation of an isotropic left ventricle model 

 The second benchmark was also introduced by Land et al [14], and it is an idealized 

ventricle characterized by an intersected set of ellipsoids, as shown in Figure 16(a). 

The plane z=5mm is clamped in all directions and an inner pressure valued 10kPa is 

loaded on the endocardium.  

The location of endocardial and epicardial apex points with respect to the number 

of degrees of freedom are given in Figure 16(b), which are compared with the finite 



element solvers described in section 4.7. The initial undeformed configurations and 

displacement contour on the final deformed configurations are shown in Figure 17. 

Compared to other specially designed elements, element US-ATFH8 presents fast 

convergence speed and similar convergence results, which proves its good performance 

again. 

 

Figure 16. Idealized ventricle model. (a) Geometry conditions of idealized ventricle 

model. (b) The comparison of deformed locations of endocardial and epicardial apex 

points for US-ATFH8 and other elements [14]. 

 

Figure 17. Initial undeformed configurations and displacement contour on the final 

deformed configurations of 1/4 ventricle obtained by US-ATFH8. (a) 1683 degrees of 

freedom. (b) 10062 degrees of freedom. (c) 69687 degrees of freedom. 

 

4.8 Passive inflation of a fiber-reinforced left ventricle model 



 The final example considers the passive inflation of a fiber-reinforced left ventricle. 

The geometries and constrains are the same as the model in section 4.7. The orientations 

of fibers (Figure 18(a)) vary transmurally from the endocardial surface ( 45 ) to the 

epicedial surface ( 45−  ) , and are generated using the LDRB method suggested by 

Bayer et al [78]. 

 First, a 5kPa inner pressure is applied on the endocardial surface. The location of 

endocardial and epicardial apex points with respect to the load is given in Figure 19(a). 

The results obtained by elements C3D8H and C3D8IH in Abaqus are also given for 

comparisons. It can be observed that element US-ATFH8 completed the calculation 

successfully, while C3D8H and C3D8IH aborted before the load reaching 5kPa. 

 Secondly, a 100kPa inner pressure is applied on the endocardial surface. The 

location of endocardial and epicardial apex points with respect to the load are given in 

Figure 19(b), and the initial mesh and displacement contour on the final deformed 

configuration are given in Figure 18(b). Furthermore, the initial shape and the final 

deformed shape of the element at the tip of the epicardial are given in Figure 18(c)(d). 

It can be observed that this element also undergoes a heavily torsional deformation, and 

element US-ATFH8 keeps good mesh distortion tolerance all the time. 



 

Figure 18. (a) Orientations of fibers in left ventricle model. (b) Initial mesh and 

displacement contour on final deformed configuration. (c) Initial shape of the element 

in the tip of epicardium. (d) Final deformed shape of the element in the tip of epicardium. 

 

 

Figure 19. (a) The comparison of deformed location of endocardial and epicardial apex 

points (under up to 5kPa inner pressure) obtained by US-ATFH8 and other elements. 

(b) The deformed location of endocardial and epicardial apex points obtained by 

element US-ATFH8 under up to 100kPa inner pressure. 

 

5. Concluding remarks  

 This paper extends the unsymmetric 8-node hexahedral element US-ATFH8 [53, 

62] based on the ATFs to the analysis of nearly-incompressible hyperelastic soft tissues. 

This formulation is low-order and only possess conventional displacement DOFs, 

meaning that the amount of computation can be significantly reduced in large-scale 



calculations. The new formulation is insensitive to mesh distortion and avoids volume 

locking in nearly-incompressible problems. For nonlinear large deformation problems, 

low-order element with conventional displacement DOFs are usually preferred because 

of its simplicity and efficiency. This unsymmetric finite element method based on the 

ATFs provides an effective low-order method for dealing with complicated nearly-

incompressible problems in cardiac mechanics and solid mechanics. 

One of the key technologies is the use of two different sets of interpolation 

functions in the test function and trial function, which leads to good precision and mesh 

distortion tolerance. Another key innovation is that the linear analytical general 

solutions for anisotropic elasticity is first introduced into the trial functions, which are 

proved to be good approximations in each increment and greatly improve the element 

performance. The stresses are computed by an algorithm for updating the deformation 

gradient interpolated by the anisotropic ATFs described in local skew coordinates [60]. 

Additionally, the consistent tangent modulus for general anisotropic hyperelastic 

material is first adopted to update the ATFs in each increment which ensures the rapid 

convergence for the suggested formulation.  

A range of numerical tests are presented to illustrate the performance of the 

proposed formulation US-ATFH8 in modelling nearly-incompressible anisotropic 

hyperelastic materials with finite deformation. Especially, element US-ATFH8 can 

perform well when extreme mesh distortion occurs, while other formulations work 

poorly or even fail.  



The proposed element model provides a universal framework of the unsymmetric 

finite element method based on the ATFs for finite deformation problems. The update 

of the ATFs using consistent tangent modulus is suitable for both isotropic and 

anisotropic materials. The anisotropic hyperelastic formulation described in this paper 

naturally captures the isotropic hyperelastic and the pure geometric nonlinear cases. For 

other anisotropic hyperelastic materials, such as polymer foams, hydrogels and meta-

materials, as long as the ATFs can be updated properly from the constitutive relation 

described by the strain energy potential, the present formulations will also exhibit good 

applicability. Related results will be reported in the near future.  
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Appendix A. The three-dimensional skew coordinate system 

For a 3D hexahedron 8-node element shown in Figure 2, the relationship between 

Cartesian coordinates and isoparametric coordinates is as follows： 
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is the interpolation function of trilinear isoparametric element, and
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 (A.3) 

xI，yI，zI，ξI，ηI，ζI  are the Cartesian coordinates and isoparametric coordinates 

respectively. 

The linear relation between 3D skew coordinates and Cartesian coordinates is 

determined by the Jacobian matrix  0J  defined at the origin of isoparametric 

coordinate： 
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In addition, to facilitate the derivation of three-dimensional analytical solutions, the 

following parameters are defined： 
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Appendix B. Anisotropic analytical homogeneous solutions for quadratic 

displacements in skew coordinates 

（1）The 13th–15th sets (j = 13–15) of analytical general solutions for quadratic 

displacements 
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（2）The 16th–18th sets (j = 16–18) of analytical general solutions for quadratic 

displacements 
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（3）The 19th–21st sets (j = 19–21) of analytical general solutions for quadratic 

displacements 
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Appendix C. Material parameters 

The selection of the penalty factor 

b1111=1, b1122=0, b2222=1, b1133=0, b2233=0, b3333=1, b1112=0, b2212=0, b3312=0, b1212=0.5, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=0.5, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=0.5,c =10000 

Uniaxial tension and Simple shear 

b1111=8, b1122=0, b2222=2, b1133=0, b2233=0, b3333=2, b1112=0, b2212=0, b3312=0, b1212=2, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=2, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=1,c =2000 

Orthotropic hyperelastic soft Cook's beam  

b1111=1, b1122=0.5, b2222=1, b1133=0.5, b2233=0.5, b3333=1, b1112=0, b2212=0, b3312=0, 

b1212=0.5, b1113=0, b2213=0, b3313=0, b1213=0, b1313=0.5, b1123=0, b2223=0, b3323=0, b1223=0, 

b1323=0, b2323=0.5,c =10000 

Orthotropic hyperelastic soft cantilever beam 

b1111=0.9925, b1122=0.0749, b2222=0.418, b1133=0.0295, b2233=0.0193, b3333=0.0089, 

b1112=0, b2212=0, b3312=0, b1212=5, b1113=0, b2213=0, b3313=0, b1213=0, b1313=5, b1123=0, 



b2223=0, b3323=0, b1223=0, b1323=0, b2323=5,c =26950 

Transversely isotropic soft curved beam 

b1111=8, b1122=0, b2222=2, b1133=0, b2233=0, b3333=2, b1112=0, b2212=0, b3312=0, b1212=2, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=2, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=1,c =2000 

Transversely isotropic soft beam with a square cross-section 

b1111=8, b1122=0, b2222=2, b1133=0, b2233=0, b3333=2, b1112=0, b2212=0, b3312=0, b1212=2, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=2, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=1,c =2000 

Benchmark test for transversely isotropic beam  

b1111=8, b1122=0, b2222=2, b1133=0, b2233=0, b3333=2, b1112=0, b2212=0, b3312=0, b1212=2, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=2, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=1,c =2000 

Passive inflation of an isotropic left ventricle model 

b1111=1, b1122=0, b2222=1, b1133=0, b2233=0, b3333=1, b1112=0, b2212=0, b3312=0, b1212=0.5, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=0.5, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=0.5,c =10000 

Passive inflation of a fiber-reinforced left ventricle model 

b1111=8, b1122=0, b2222=2, b1133=0, b2233=0, b3333=2, b1112=0, b2212=0, b3312=0, b1212=2, 

b1113=0, b2213=0, b3313=0, b1213=0, b1313=2, b1123=0, b2223=0, b3323=0, b1223=0, b1323=0, 

b2323=1,c =2000 


