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Highlights 

 Correlation analysis of strongly nonlinear frequency responses is proposed  

 Correlation functions with complex multivalued behavior are computed 

 Real and fake correlations within the multivalued responses are extracted 

 Correlation analysis is conducted for responses with different multivalued behavior 
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Abstract: Global correlation analysis is an important technique to quantify both the shape and 

amplitude differences between two response vectors. In linear dynamic systems, differences between 

two Frequency Response Functions (FRFs) are quantified as scalar number curves of the Global Shape 

Criterion (GSC) and the Global Amplitude Criterion (GAC), to represent FRF similarities at different 

frequencies. From linear to nonlinear, responses are usually obtained at different frequencies to form 

the Frequency Response Curve (FRC), replacing the FRF for dynamic analysis. Extending the concept 

of global correlation analysis from linear FRFs to nonlinear FRCs could quantify shape and amplitude 

similarities between nonlinear models. However, global correlation analysis for multivalued FRCs with 

a strong nonlinearity is hard to conduct, as strongly nonlinear correlation functions have complex 

multivalued phenomena with real/fake characteristics. In this paper, the Global Shape Curve Criterion 

(GSCC) and Global Amplitude Curve Criterion (GACC) are proposed for the correlation analysis of 

strongly nonlinear FRCs, which can quantify the similarity between two FRCs with different and 

complex multivalued phenomena. Through the arclength-based separation, multivalued FRCs are 

separated to single-valued response branches, in order to compute single-valued correlation functions 

that form the multivalued correlation function. The computed correlations contain the GSCC and 

GACC, which separately represent shape and amplitude differences between two FRCs at each 

frequency. The multivalued correlation function is represented as a Correlation-Map (C-MAP) to 

extract real correlation characteristics, for accurate correlation analysis. The multivalued correlation 

analysis is first verified on a 3 DOF model with a strong nonlinearity. Differences between the 

reference and initial multivalued FRCs are successfully quantified as scalar curves and the GACC may 

be more sensitive than the GSCC on models with a local nonlinearity. Then, the proposed method is 

further validated on an experimental 3 DOF model. Very complex 15-valued correlation functions 

between FRCs with different multivalued phenomena are established. Even so, the real correlations are 

still successfully extracted by the C-MAP. These show the validity and superiority of the proposed 

method. 

Keywords: Multivalued correlation function; Multivalued frequency response curve; Strong 

nonlinearity; Correlation-map; Arclength-based separation 
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s  GSC 

a  GAC 

X  FRC 

s  GSCC 

a  GACC 

A  Amplitude 

P  Phase 

S  Arclength 

  Frequency 

exF  Force 

M   Mass matrix 

C   Damping matrix 

K   Stiffness matrix 

u   Displacement response vector 

o

ik  
Nonlinear stiffness with the odd order 

(numerical case) 

ko

iN  
Position matrix with the odd order 

(numerical case) 

o

ip  Order of the odd polynomial stiffness 

i

oddk  
Nonlinear stiffness with the odd order 

(experimental case) 

i

evenk  
Nonlinear stiffness with the even order 

(experimental case) 

i

koddN  
Position matrix of the odd order nonlinear 

stiffness (experimental case) 

i

kevenN  
Position matrix of the even order nonlinear 

stiffness (experimental case) 

nlk   Vector of the whole nonlinear stiffness 

  Kronecker product 

sign   Signature function 
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1. Introduction  

Correlation functions [1] are an important tool to quantify the extent of the differences 

between two sets of data in structural dynamics. It is widely used in engineering applications such 

as model validation [2], damage detection [3], structure health monitoring (SHM) [4], etc.  

In linear dynamic systems, the Natural Frequency Difference (NFD) [1] is compared after a 

set of Correlated Mode Pairs (CMPs) are identified between the experimentally-derived model and 

the analytical or predicted model. Comparison of mode shapes is mostly carried out by the Modal 

Assurance Criterion (MAC)[5] and the Coordinate MAC (CoMAC)[6]. The correlation of 

response properties depends on the form of the response functions, for example, Frequency 

Response Functions (FRFs) or sometimes Operating Deflection Shapes (ODSs). Similar to the 

MAC approach, the Frequency Domain Assurance Criterion (FDAC) [7] was defined to compare 

the large number of frequencies with the number of modes in the concerned frequency range. 

Equivalent to the CoMAC, the Frequency Response Assurance Criterion (FRAC) [8] was also 

defined to provide the frequency amplitude-based information in the spatial domain. The most 

useful correlations are perhaps the Global Shape Criterion (GSC) and Global Amplitude Criterion 

(GAC)[9] because they can quantify the overall agreement of both shape and amplitude 

information between two models as a function of frequency. In order to compare the experimental 

ODS properties at the measured resonance frequencies with the analytical model mode shapes, the 

hybrid correlation, called the mode-response correlation (MFAC), was also defined [1].  

From linear to nonlinear, it is hard to obtain the characteristic equation [10] from the 

nonlinear system, to solve modal frequencies to obtain modal vectors. Hence, the concept of linear 

modes, or the Linear Normal Mode (LNM), cannot be to be applied to nonlinear systems. Instead, 

the concept of the Nonlinear Normal Mode (NNM) [11][12] was developed for nonlinear analysis. 

However, NNMs are energy dependent and they are usually represented as the Frequency-Energy 

Plot (FEP) [13], to extract the Back-Bone Curves (BBCs) for nonlinear analysis, which are very 

different from the LNMs. Currently, using the traditional modal correlation function, such as the 

MAC, for the correlation analysis of the FEPs or the BBCs is less reported. For the nonlinear 

response properties, FRFs[14] cannot be obtained through the superposition of modal properties 

and vary as the force level increases, but also loses its meaning which assumes linearity. Instead, 

responses at different frequencies are usually measured [15] or predicted [16] through sinusoidal 

excitations, to obtain the Frequency Response Curves (FRCs) for the nonlinear analysis. Hence, 

the objective of correlation analysis for nonlinear response properties changes from FRFs to FRCs. 

The FRC is force dependent, and its properties vary from weakly nonlinear to strongly nonlinear, 

as the excitation level increases. The weakly nonlinear FRC [17] for low force levels is similar to 

the FRF, and they are both single-valued functions with respect to the excitation frequency. Hence, 

response correlation techniques for weak nonlinearities can be developed from the FRF correlation 

functions.  

However, the strongly nonlinear FRC [18] for high force levels exhibits multivalued 

phenomenon induced by bifurcation behavior. Several responses exist at an excitation frequency, 

which is very different from the linear FRF. Some of the traditional FRF correlation functions, 

such as the FDAC [19][20], can still be applied to the multivalued FRCs. All the response points 

on two multivalued FRCs are used to establish the matched response pairs, to quantify the 

response closeness. The FDAC is a shape-based method, and two FRCs for some locally nonlinear 
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structures may rarely show shape differences and hence shape-based correlation techniques work 

badly. In contrast, global correlation techniques, such as the GSC and GAC, can distinguish both 

shape and amplitude differences as a function of frequency, which may be more appropriate for 

developing strongly nonlinear correlation techniques. However, global correlation analysis for 

multivalued FRCs results in very complex multivalued correlation curves that are hard to compute. 

Within a multivalued global correlation function, only real regions can represent the correct 

differences between the FRCs, whereas the remaining are fake and meaningless. These properties 

restrict the successful implementation of a global correlation analysis on strongly nonlinear 

systems. Hence, it is important to study techniques of the multivalued correlation computation and 

real correlation selection, for strongly nonlinear global correlation analysis. 

Once the above mentioned multivalued global correlation analysis is established, such a 

technique could be applied to the multivalued FRCs predicted from the theoretical model and 

measured from the real nonlinear structure. At each frequency, the differences between the 

predicted and measured multivalued responses can be quantified as several real correlation 

functions, where each real correlation function is a scalar number. The quantified real correlation 

functions at different frequencies could form two multivalued scalar number curves, separately 

representing the shape and amplitude differences between the FRCs. Then, as the real correlation 

functions represent the correct differences between the FRCs, the two multivalued correlation 

curves will be the unit, when the predicted and measured FRCs are fully correlated. The quantified 

real correlation function curves may be very helpful for the further nonlinear analysis, such as 

model updating of the strongly nonlinear structures using the multivalued responses. Accordingly, 

strongly nonlinear model updating perhaps could be implemented using the linear FRF correlation 

updating framework, which will be convenient to construct the accurate strongly nonlinear model 

for applications in aeras of strongly nonlinear structural model validation and damage detection, 

etc. 

In this paper, the Global Shape Curve Criterion (GSCC) and the Global Amplitude Curve 

Criterion (GACC) considering both the frequency responses and the level of the excitation force 

are proposed for the correlation analysis of two data sets with a strong nonlinearity in the 

frequency domain. Through the arclength coordinate, the multivalued FRCs are first separated into 

a set of single-valued branches and single-valued correlation functions are computed between the 

branches on two FRCs. Superposing the computed correlations in one figure results in the 

complete multivalued correlation function curves of the shape and amplitude. Then, a 

Correlation-Map (C-MAP) that represents the multivalued correlation function curves is built to 

judge the real and fake correlation characteristics, to extract the real region for an accurate 

analysis. This technique can quantify both the shape and amplitude differences between two FRCs 

with different and complex multivalued phenomena. The multivalued correlation analysis is 

conducted on a numerical 3 DOF nonlinear system for verification and further conducted on an 

experimental 3 DOF system for validation. 

The rest of the paper is arranged in five sections. In Section 2, the multivalued correlation 

function and the problems encountered are described generally. Section 3 outlines the main format 

of the global correlation analysis. In Section 4, the multivalued correlation analysis is applied to a 

numerical 3 DOF system with a strong nonlinearity and applied to an experimental 3 DOF system 

with a strong nonlinearity in Section 5. Conclusions are drawn in the last section. 
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2. Correlation functions of Frequency Response Curves  

In linear dynamic systems, the FRFs are force independent. Accordingly, the developed 

global correlation techniques, namely Global Shape Criterion (GSC) and Global Amplitude 

Criterion (GAC), are also force independent, and hence are only functions of frequency. Thus 
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where s  and a  are global correlation functions between the predicted and measured FRFs. 

The subscripts ‘s’ and ‘a’ separately denote ‘shape’ and ‘amplitude’. H  denotes the FRF vector 

and the superscript ‘H’ is the complex conjugate transpose. The above equations represent that, at 

the frequency  , the shape and amplitude differences between the predicted and measured FRF 

vectors are quantified as two scalars between 0 and 1, where the correlation function close to the 

identity denotes that two FRFs are close. After correlation functions are established at individual 

frequencies, two frequency correlation curves are obtained to globally represent the difference 

between two FRFs. A schematic diagram is given in Fig. 1. 

 

 

 (a) Correlation function (Large difference)   (b) Correlation function (Fully correlated) 

Fig. 1 Schematic diagram of the correlation function curves for linear FRFs 

 

Fig. 1(a) gives correlation functions between the predicted and measured FRFs with a 

relatively large difference, where the resonance frequencies for the two FRFs vary widely. 

Differences between two FRFs are quantified as two correlation curves. Each curve is formed by 

scalars between 0 and 1 that denote the shape or amplitude difference between the predicted and 

measured FRFs at all DOFs, instead of a single DOF. When the predicted and measured FRFs are 
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the same and fully correlated, the related correlation functions are schematically given in Fig. 1(b). 

It is clear that both the GSC and GAC curves are equal to unity at all frequencies. 

As the system turns from linear to nonlinear, the superposition principle no longer applies to 

the nonlinear system and FRFs [14] cannot be deduced through the modal properties. Nonlinear 

FRFs are no longer force independent and vary as the force level increases. Due to the existence of 

higher harmonic terms, it usually needs to strictly define the nonlinear FRFs through the Volterra 

series and the results are very complex. Hence, the FRF may gradually lose its meaning for the 

nonlinear system.  

The response itself is usually used to replace the FRF for nonlinear analysis in the frequency 

domain. Under sinusoidal excitations, the nonlinear computed and experimentally measured 

responses for different frequencies and forces, are used to form the Frequency Response Curves 

(FRCs) under constant force levels for nonlinear identification [15], nonlinear model updating 

[17], etc. A schematic diagram of the amplitude of the FRC is given in Fig. 2. For a low force level, 

the FRC shows a weak nonlinearity and is a single-valued function with respect to frequency, 

which is similar to the FRF. For a high force level, the FRC shows a strong nonlinearity and is still 

the function of frequency, but its resonance region shifts to the right compared to the weakly 

nonlinear FRC and contains a multivalued region determined by the bifurcation frequencies. 

 

 

Fig. 2 Schematic diagram of the amplitude of FRCs 

 

The FRC is still a function of frequency. Hence, global correlation analysis for FRCs can be 

deduced from the GSC and GAC technique. However, FRCs contain different frequency 

properties under different force levels. Accordingly, the correlation functions for FRCs should be 

force dependent. Under these concepts, the Global Shape Curve Criterion (GSCC) and Global 

Amplitude Curve Criterion (GACC) are derived for the global correlation analysis of FRCs as: 
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where s  and a  are the GSCC and the GACC. They separately denote the global shape 

differences and global amplitude differences for the FRCs. The formulations of s  and a  are 

the same as the formulations of s  and a . However, comparing with s  and a , the 

response vector used for correlation analysis changes from the FRF H  to the FRC X . 

Furthermore, s  and a  are not only functions of frequency, but are also functions of the force 

amplitude. A schematic diagram of the GSCC and GACC is given in Fig. 3.  

 

 

(a) Weakly and strongly nonlinear FRCs    (b) Multivalued correlation functions of the FRCs 

Fig. 3 Schematic diagram of nonlinear responses and correlation functions 

 

Fig. 3 gives GSCCs and GACCs between the reference (measured) and initial (predicted) 

FRCs for two models with the different nonlinear parameters. To highlight the differences in the 

responses, only FRCs at a single DOF are given, instead of the whole set of DOFs. For the low 

excitation level, where the nonlinearity is weakly excited, the two FRCs are very close and 

single-valued. Hence, the related correlation functions are single-valued and close to 1. For the 

high excitation level, where the system nonlinearity is strongly excited, the FRCs become 

multivalued and the differences between the FRCs increase significantly. Meanwhile, the 

correlation analysis induces multiple values and the calculated correlation function curves are 

multivalued. 

However, the multivalued phenomenon of the correlation function for the high force level is 

very complex. The related GACC curve is extracted for exploring its multivalued behavior and the 

result is given in Fig. 4. 
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Fig. 4 Multivalued GACC curve between the reference and initial multivalued FRCs 

 

Fig. 4 gives the multivalued GACC between the multivalued reference and initial FRCs. At 

the frequency  , both the reference and initial FRCs contain three response points. On the 

related GACC curve, nine values exist at  . This indicates that the number of the correlation 

functions at each frequency is the product of the numbers of the predicted and measured responses. 

Thus 

 predict measure

correlation response responseN N N    (5) 

and, in the multivalued regions of the responses, the number of correlation functions is typically 

much higher than the number of responses. Accordingly, the multivalued phenomenon of the 

correlation function curve is more complex than the response phenomenon, which indicates that 

the computation of the multivalued correlation function may be difficult. 

The property, 
correlation responseN N , also reveals that the multivalued correlation function may 

contain the real and fake parts. The real and fake correlation functions can be easily seen when 

correlation functions are established between two multivalued FRCs that are fully correlated. The 

related schematic diagram is given in Fig. 5.  
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Fig. 5 Schematic diagram of the correlation function (FRC fully correlated) 

 

Fig. 5 gives the GACC curve between two identical FRCs. The reference and initial FRCs are 

treated as upper stable branches, middle unstable branches and lower stable branches, labelled as 1, 

2 and 3. As the two FRCs are fully correlated, the generated GACC curve should be equal to unity. 

However, only GACCs between the reference and initial FRC branches with the same labels are 

equal to 1 and denote the real amplitude differences. The remainder of the GACC curves are 

between FRC branches with different labels and are lower than 1. They are likely to be fake and 

meaningless, and should be excluded for an accurate correlation analysis.  

To sum up, the global correlation analysis for multivalued FRCs has two main issues to be 

solved: 

 How to compute the multivalued GSCC and GACC curves that contain much more complex 

multivalued behavior compared with the FRCs. 

 How to divide the real and fake correlation characteristics within the multivalued correlation 

function curve and select the real region for an accurate correlation analysis. 

3. Multivalued correlation analysis using Arclength-based 

separation and Correlation-Map 

The multivalued correlation analysis using Arclength-based separation and the 

Correlation-Map (C-MAP) is proposed, for the computation of correlation functions between 

multivalued FRCs and the selection of the real parts for an accurate correlation analysis. The 

technique is divided mainly into three steps. Step 1 is the separation of the multivalued FRCs into 

single-valued response branches using our previously proposed Arclength-based separation 
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technique [21]. The multivalued FRC is parameterized by the separate parameter arclength 

obtained during continuation, resulting in single-valued arclength response curves. The response 

separation is then conducted on the arclength coordinate and the separation results are transformed 

back to the frequency coordinate to form the single-valued FRC branches. Step 2 is the 

computation of the multivalued correlation function curve. The single-valued correlation function 

curves are constructed between two arbitrary FRC branches of the prediction and measurement, 

which may be superposed to form a complete curve of the multivalued correlation function. Step 3 

is the selection of the real part from the multivalued correlation function for an accurate 

correlation analysis. The single-valued correlation functions are used to form a Correlation-Map 

(C-MAP) to select the real correlation functions. The above steps may be summarized in the flow 

chart shown in Fig. 6. 

 

 

Fig. 6 Schematic diagram of the multivalued correlation analysis 

 

3.1 Arclength-based response separation of the multivalued responses 

The response separation of the multivalued FRC into a set of single-valued branches is an 

important step for the computation of the multivalued correlation function, as the correlation 

function curves assume single-valued responses. Our previously proposed arclength-based 

response separation is used to divide the multivalued FRC. Arclength is the independent parameter 

in the continuation process for parameterizing the frequency responses. Accordingly, multivalued 

FRCs could be represented as single-valued functions with respect to arclength. The single-valued 

arclength responses could be easily separated into a set of branches through their feature points. 

Extracting the FRCs from these separated branches, the results are single-valued responses with 

respect to the excitation frequency. 
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First, a schematic diagram of the 3 DOF FRC with the multivalued phenomenon obtained 

from the response prediction or measurement is shown in Fig. 7. The FRC is a complex response 

curve with the real and imaginary parts. Using the polar coordinate, its amplitude and phase can be 

extracted: 

 ie   PX A   (6) 

where A  is the amplitude vector and P  is the phase vector. For each DOF, the amplitude of the 

multivalued FRC contains the response peak and the response bifurcations as its feature points, 

and these feature points can be used to divide the multivalued curve to single-valued branches. 

However, the extraction of the feature points and the response separation are hard to conduct 

directly on the multivalued curve due to the processing difficulty.  

 

 

Fig. 7 Multivalued 3 DOF FRC on two coordinates and FRC feature points 

 

During the prediction of multivalued responses using the continuation scheme, arclength s  

is a positive value to control the distance between adjacent points on the FRCs. The arclength 

vector s  gives the accumulation of arclength parameters s  related to the computed responses: 

  (7) 

where   is the excitation frequency. The element of the arclength vector is the accumulation of 

positive values. Therefore, the elements of the arclength vector monotonically increase as the 

computation continues. The arclength can then be used to parameterize the FRC: 
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The schematic diagram of the Arclength-Amplitude curve is given in Fig. 8(a). It is clear that 

the 3 DOF curve is no longer multivalued, but a single-valued function with respect to arclength, 

where arclength 
peaks  related to the maximum peak response may be directly extracted. The 

Arclength-Frequency curve is given in Fig. 8(b) and similarly, the response curve is single-valued. 

Frequency extremes on the curve are related to bifurcations and the related arclength parameters 

are directly extracted as 
bifs .  
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where 
bifs  contains m+n elements related to m+n bifurcation points. The arclength parameters 

related to the first m bifurcation points are below 
peaks  and the rest of the n arclength parameters 

are above 
peaks . 

 

 

 (a) Arclength-Amplitude curve            (b) Arclength-Frequency curve 

Fig. 8 Schematic diagram of the Arclength-Amplitude and Arclength-Frequency curves 

 

According to the extracted arclength parameters related to the feature points, the response 

separation is conducted for the arclength parameters, frequencies, FRCs: 
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  (10) 

The above separation means that, from the initial arclength parameter 1s  and the end arclength 

parameter ends , the arclength parameters together with the related frequencies and FRC vectors 

are continually labelled as L1 and R1. As the labelling crosses 
bifs , the labelled number increases 

by 1, and branches L1 and R1 are divided from the whole data. The labelling ends at 
peaks . The 
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whole data are separated to m+1 left branches and n+1 right branches. Eliminating arclength, the 

separated branches of the multivalued FRC may be extracted: 

  (11) 

The whole separated branches of a 3 DOF FRC are schematically plotted in Fig. 9. The 

multivalued FRC is divided to branches L1, R3, R2 and R1. In each branch, the excitation 

frequency monotonically increases. This monotonous change denotes that each curve is 

single-valued 

 

 

Fig. 9 Separated single-valued response branches on the multivalued 3 DOF FRC 

3.2 Computation of the multivalued correlation function curve 

After the response separation, the single-valued correlation functions are computed from the 

separated branches of the predicted and measured FRCs. The computed correlation functions 

contain the GSCC and the GACC. The GSCC denotes the global shape differences between two  

FRCs. The GACC denotes the global amplitude differences. By plotting the single-valued 

correlation functions in one figure, they will superpose to form a complete multivalued correlation 

function curve. 

For arbitrary two branches of the predicted and measured FRC, measureX  and 
predictX , the  

correlation functions may be computed if they contain the same frequency: 

  ,measure predictG X X   (12) 

where G denotes the correlation computation shown in Eqs. (3) and (4). A related schematic 

diagram is given in Fig. 10. 
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Fig. 10 Schematic diagram of the computation of the single-valued correlation function 

 

Fig. 10 gives the computation of the correlation function curve between the measured 

response branch L1 and the predicted response branch R1. In the overlapped frequencies of the 

two branches, both the predicted and measured responses exist and are single-valued, which are 

directly used for the computation of the correlation functions. The results are the single-valued 

GSCC and GACC curves, which denote the shape and amplitude differences. 

The computed correlation functions are a set of single-valued GSCC and GACC curves, which 

are shown as: 

 
,1 ,2 ,

,1 ,2 ,

s s s N

a a a N

γ γ γ

γ γ γ
  (13) 

The single-valued GACC curves are superposed and schematically plotted in one figure, where 

the result is given in Fig. 11. In the correlation plot, curves with different colors denote different 

single-valued GACCs between the FRC branches. It is clear that the superposition of single-valued 

GACCs is a multivalued correlation function curve. Through the predicted and measured 

bifurcation frequencies, the whole figure is separated to five parts. In each part, the number of 

correlations at each frequency is equal to the product of the number of measured responses and the 

number of predicted responses, which follows Eq. (5). Hence, all of the correlation characteristics 

are obtained during the correlation computation and the formed correlation curve is complete. 
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Fig. 11 Schematic diagram of the multivalued correlation function 

3.3 Multivalued correlation function analysis by Correlation-Map 

After the multivalued correlation function is computed, the fake parts within the computation 

result should be excluded. A Correlation-Map (C-MAP) is established from the multivalued 

correlation function to extract the real region. The element of the map is the single-valued 

correlation function between the separated FRC branches of the measurement and prediction. 

Using specific rules, real correlation functions may be selected from the elements in the figure and 

used for accurate correlation analysis. 

First, it is hard to directly extract the real parts from the multivalued correlation function, as 

the related multivalued phenomenon is too complex to be processed. Selecting the real parts from 

single-valued correlation functions that form the multivalued correlation function may be a better 

choice. Accordingly, the multivalued correlation function is represented as a C-MAP. The X 

coordinate of the map is the separated response branches of the prediction and the Y coordinate is 

the measured branches. The element of the map under the column i and row j denotes the 

single-valued correlation function between the FRC branch i of the prediction and the FRC branch 

j of the measurement. Taking the GACC as an example, a schematic diagram of the map is drawn 

based on the separated branches with the following labels and the result is given in Fig. 12: 

 
 

 

: 1 3 2 1

: 1 3 2 1

Measure L R R R

Predict L R R R
  (14) 
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Fig. 12 Schematic diagram of the C-MAP  

 

The map gives 13 single-valued correlation functions between 4 predicted branches and 4 

measured branches. From the figure, an initial judgment of the real and fake parts of correlation 

functions can be made. Based on the response peak, the response separation in Section 3.1 divides 

the predicted and measured FRCs into left and right branches. According to the left and right 

branches, the C-MAP could be further separated to four parts. The elements in Part 2 are 

correlation functions between the left response branches of the prediction and the right response 

branches of the measurement. The elements in Part 4 are correlation functions between the right 

branches of the prediction and the left branches of the measurement. These two parts give 

correlation functions between branches on opposite sides of the response peak. Then, as the 

predicted FRC gradually converges to the measured FRCs in three iterations, the variation of the 

Part 4 correlation functions is given in Fig. 13. However, responses on opposite sides of the 

response peak do not generally coincide with each other. Accordingly, the related correlation 

function curve is below unity, when two FRCs are fully correlated. Therefore, they are thought to 

be fake and marked as the dotted lines in light blue.  
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Fig. 13 Schematic diagram of correlation functions on Part 4 of the C-MAP in three iterations 

 

The elements in Part 1 are correlation functions between left branches of the prediction and 

left branches of the measurement. The elements in Part 3 are correlation functions between right 

branches of the prediction and right branches of the measurement. Parts 1 and 3 give correlation 

functions between the branches on the same sides of the response peak. It is judged that real 

correlation functions are in these two parts. However, the separated branch with an odd number 

denotes a stable response and the separated branch with an even number denotes an unstable 

response. The correlation functions between the response branches with odd and even numbers 

denote correlation functions between the stable and unstable responses. When the predicted FRC 

converges to the measured FRC from iterations 1 to 3, the variation of such correlation functions 

is shown in Fig. 14. Stable responses do not converge to unstable responses and the related 

correlation functions do not converge to unity. Hence, these elements are also fake and marked as 

black dotted lines.  

 

 

Fig. 14 Schematic diagram of correlation functions between stable and unstable responses  
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The remaining thick lines of Parts 1 and 3 may contain real correlation functions, which are 

therefore possibly real. For Part 3, the extraction of real correlations from the possible real 

correlation functions is schematically shown in Fig. 15. The selection of the real correlation 

functions is conducted for each column of the map. All possible real correlation functions for a 

column are plotted together in one figure and the selection is performed at each frequency of the 

figure. At frequency  , multiple possibly real correlation functions may exist. The real 

correlation function is selected from the maximum of the functions, if the maximum is larger than 

a given threshold. Thus 

 
   1 max

max max

max

:

T

l

real if T

   

  

 

 

γ γ
 (15) 

 

           (a) C-MAP (Part 3)               (b) Real correlation selection (Column R1) 

Fig. 15 Schematic diagram of the extraction of real correlation functions from Part 3 

 

The same selection is also performed on Part 1 for the extraction of the real correlation 

characteristics. Finally, the selected real GACCs are given in Fig. 16(a). On the FRC plot, the 

predicted and measured responses that form the real correlation functions are used to establish 

matched pairs: 

 ,

real

predict

real

predict

real real

s a

real

measure

real

measure

matched 







X

X

X

X

 (16) 

The response matching between the predicted and measured FRCs can then be established 

according to the real multivalued correlation functions at the whole frequencies. Considering the 

similarity, the matched response pairs show a relatively good mapping relationship between the 

predicted and measured FRCs. On the correlation plot, the selected real correlations contain high 

values and only occupy a small discontinuous region of the whole multivalued correlation curve. 

Then, when the predicted FRC gradually converges to the measured FRC, the variation of the 

selected real correlations is given in Fig. 16(b). It is clear that the real GACCs gradually converge 

to 1, when the predicted and measured FRCs are identical, whereas the fake GACCs converge to 

curves below unity. Hence, the selected real GACCs are correct. 
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(a) Selected real correlation functions and the related responses 

 

 (b) Real correlation functions of FRCs at three iterations 

Fig. 16 Schematic diagram of the matched responses and real correlation functions 
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4 Case study (Ⅰ): correlation analysis of a numerical 3 DOF 

system with a complex strong nonlinearity 

4.1 Simulation of the numerical 3 DOF system with a strong 

nonlinearity 

A 3 DOF system with a strong nonlinearity is simulated to verify the proposed multivalued 

correlation technique. The equations of motion are 
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 (17) 

The model has three linear modal frequencies at 830.82Hz, 2176.69Hz and 3851.75Hz. Three 

polynomial connections are located between DOF 1 and the base, and their values define a 

complex hardening-softening-hardening property. The system response is predicted using 

Multi-Harmonic Balance Method (MHBM)-based swept frequency continuation, with the 

parameters given in Table. 1. The response prediction covers all 3 modes and shows both weak 

and strong nonlinear responses. The response prediction is simulated and the fundamental 

harmonic FRCs obtained from the prediction are given in Fig. 17. 

 

Table. 1 Parameters of the MHBM-continuation process 

Force [N] Frequency [Hz] 
Max 

arclength 

Initial 

arclength 

Extended 

harmonics 

[0.1~150] [500,4500] 0.02 0.02 3 
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(a) Amplitudes of the 3 DOF multivalued FRC     (b) Phases of the 3 DOF multivalued FRC 

Fig. 17 Simulated 3 DOF FRCs of the numerical system 

 

Fig. 17(a) and (b) give the amplitudes and phases of the 3 DOF FRCs predicted from the 

system with the assumed strong nonlinearity. The amplitudes for all 3 DOFs are given on a log 

scale to better show the effect of the variation of the force. The FRC at mode 1 shows complex 

multivalued phenomenon when the excitation level is low. As the force increases, the shapes of 

FRCs gradually change and the nonlinear degree of the system increases. Both responses at modes 

1 and 2 show strongly nonlinear behavior and are multivalued. The amplitudes of the FRC at 

150N are extracted to highlight their multivalued behavior and the result is given in Fig. 18. 

 

 

(a) Amplitude (all 3 modes) 
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 (b) Amplitude (Mode 1)                     (c) Amplitude (Mode 2) 

Fig. 18 Amplitudes of the 3 DOF FRC at 150N 

 

Fig. 18(a) gives the amplitudes of the 3 DOF FRC for all 3 modes. Impacted by the complex 

nonlinearity, the responses show complex multivalued phenomena in modes 1 and 2. The mode 3 

responses do not show any multivalued phenomenon due to high damping. The responses for 

modes 1 and 2 are zoomed and given in Fig. 18(b) and (c). In mode 1, the response generates a 

major hardening bifurcation and two small softening bifurcations. In mode 2, the response 

generates a softening bifurcation and a hardening bifurcation. These phenomena reflect the 

complex softening-hardening property of the system nonlinearity. 

4.2 Computation the multivalued correlation function for the 

numerical 3 DOF system 

The multivalued FRCs at 150N contain clear and complex multivalued phenomenon in both 

modes 1 and 2. Hence the multivalued responses at 150N are selected as the reference (measured) 

data for correlation analysis. An initial model is set according to Eq. (17) for the response 

prediction. The reference and initial models contain the same linear parameters but the nonlinear 

parameters differ, and these differences are given in Table. 2. 

 

Table. 2 Parameter differences between the initial and reference models 

Nonlinear stiffness 
3

1 N mok      5

2 N mok     7

3 N mok     

Reference 147.2 10   228.1 10    302.5 10  

Initial 137.2 10  218.1 10   292.5 10  

 

The nonlinear parameters of the initial model are set as 1/10 of the reference nonlinear coefficients, 

which will reduce the nonlinear strength of the system and change the multivalued behavior of the 

response. The initial and reference responses are both simulated for comparison. Since the 

proposed correlation technique is a single nonlinear mode method, the responses from modes 1 to 

3 are predicted separately in the frequency bands [500~2000]Hz, [2000~3100]Hz and 

[3100~4500]Hz. The reference and initial FRCs are overlaid in Fig. 19. 
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Fig. 19 Overlay between the reference and initial FRCs for all 3 modes 

 

Fig. 19 gives the overlay between the reference and initial FRCs at DOF 1. In mode 1, the 

softening bifurcation in the reference FRC is not observed in the initial FRC, due to the reduction 

of the nonlinear coefficients. In mode 2, the initial FRC also does not contain the softening 

bifurcation, and the reference and initial FRCs show relatively large differences. In mode 3, the 

variation of the nonlinearity leads to response differences, but does not change the multivalued 

behavior, since both the reference and initial responses are single-valued. This example will thus 

demonstrate that the proposed multivalued correlation technique can handle complex multivalued 

responses with the hardening-softening bifurcations and process FRCs with different multivalued 

phenomena, but will also quantify differences between single-valued FRCs. 

The FRCs for all 3 modes are divided into a set of single-valued branches following the 

Arclength-based separation method given in Section 3.1, and the separation result for the DOF 1 is 

given in Fig. 20. The multivalued FRCs of the initial and reference models are separated into 

single-valued branches with the following labels: 

 

1 2 3

1 2 3 4 5 1 2 3 1

1 2 3 1 2 3 1

1 1 1

1 2 3 1 2 3 1

Mode

L L L L L L L L L
Reference

R R R R R R R

L L L
Initial

R R R R R R R

     
     
     

     
     
     

  (18) 

 

 

(a) Separation results for the reference DOF 1 FRC  
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 (b) Separation results for the initial DOF1 FRC 

Fig. 20 Response separation results for the initial and reference FRCs 

 

The multivalued correlation computation is conducted for the separated branches mode by 

mode, and the result is given in Fig. 21. In all 3 modes, the shape and amplitude differences 

between the two 3 DOF FRCs are quantified as scalar curves. For modes 1 and 2, both the GSCC 

and GACC curves contain complex multivalued phenomena. For mode 3, the correlation curve is 

single-valued. Hence, both multivalued and single-valued correlation function curves are obtained 

by the proposed correlation computation technique. For all 3 modes, the correlation functions 

show that the amplitude differences can better reflect the discrepancies between responses than the 

shape differences, which may indicate that the GACC is more sensitive than the GSCC for a 

locally nonlinear structure. 

 

 

Fig. 21 GSCC and GACC between the 3 DOF FRCs at mode 1 
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4.3 Multivalued correlation analysis for the numerical 3 DOF system 

using the C-MAP 

After the multivalued correlation function is computed, the real parts should be extracted for 

accurate correlation analysis. As the GACC shows more sensitivity than the GSCC, the extraction 

of the real correlation characteristics is conducted based on the GACC. The C-MAP is first 

extracted from the multivalued GACC and the result is given in Fig. 22. 

 

 

Fig. 22 GACC-based C-MAP between the initial and reference 3 DOF FRCs for all modes 

 

Fig. 22 gives the C-MAPs between the initial and reference FRCs at all 3 modes. As the 

multivalued phenomena of the FRCs are different at different modes, C-MAPs of the 3 modes are 

different and the complexity of the C-MAP reduces as the mode number increases. In each of 

modes 1 and 2, the number of branches of the reference and initial FRCs are different, which 

reflects differences between the reference and initial multivalued phenomena. In the C-MAP of 

each mode, the possibly real correlation functions are all marked as thick solid lines and the fake 

ones are marked as the dotted lines. Real correlation characteristics are then selected from the 

thick lines of each column. Based on engineering experiences in the traditional linear model 

updating, the threshold of the selection is set to 0.85 and the result is given in Fig. 23. 
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Fig. 23 Selected real correlation characteristics of the numerical 3 DOF system 

 

Fig. 23 gives the selected real correlation characteristics. The C-MAP results in matched 

response pairs in the FRC plots. Considering the similarity, the matching between the two FRC 

curves is good. Then, the GSCCs and GACCs between the matched FRC pairs are extracted as the 

real correlation characteristics, shown in the correlation plot. Similar to Fig. 15, the real 

correlations are a small part of the whole GSCC and GACC curves. These real correlation 

characteristics are signed as the output of the proposed multivalued correlation analysis technique 

and will be used for further correlation-based nonlinear analysis.  

Finally, as the nonlinear FRC contains force dependence, the multivalued real correlation 

functions should also contain the force dependence. When the reference and initial FRCs are fully 

correlated, the real multivalued GSCCs and GACCs should be the units. Hence, the multivalued 

global correlation analysis should be further verified. The initial nonlinear model gradually 

converges to the reference nonlinear model from Iterations 1 to 5: 

 
1 5

10% 100%ini ref ini ref

Iteration Iteration

   k k k k
 (19) 

At the first iteration, the nonlinear stiffness parameters of the initial model are set as 10% of the 

reference nonlinear parameters, where the initial FRC varies widely from the reference one. At 

Iteration 5, the initial nonlinear stiffness parameters are the same as the reference nonlinear 

parameters. The initial FRC is the same as the reference one. The proposed multivalued 

correlation analysis is conducted again for the FRCs at Iterations 1 and 5, under three force levels 

80N, 150N, 220N. The results are given in Fig. 24. 
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(a) Multivalued global correlation analysis results at Iteration 1  

 

(b) Multivalued global correlation analysis results at Iteration 5 

Fig. 24 Multivalued global correlation functions for FRCs at Iterations 1&5 

 

Fig. 24(a) gives the multivalued correlation analysis results at Iteration 1. On the response 

plot, the initial and reference FRCs change as the force level increases, where the multivalued 

behavior in these three modes get more complex. Meanwhile, both the real and fake regions of the 

multivalued correlation function curves get more complex as well with the force increasing. Hence, 

the variation trends of the multivalued correlation function curves are the same with the FRCs, 

which verifies its force dependence. Fig. 24(b) gives the multivalued correlation analysis results at 

Iteration 5. Clearly, on the response plot, the initial and reference FRCs fully coincide with each 

other, which denote they are fully correlated. Then, for the three force levels, the real regions of 

the multivalued GSCCs and GACCs all contain the value of 1 and the fake regions are below 1, 

which shows the real correlation characteristics are successfully selected from the fake ones. The 
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above results verify the effectiveness of the proposed technique. 

5. Case study (Ⅱ): correlation analysis of an experimental 3 DOF 

structure with a strong nonlinearity 

5.1 Test rig and measurement results for the 3 DOF system 

An experimental 3 DOF system, shown in Fig. 25, is used to further validate the multivalued 

correlation technique. Three steel plates act as discrete masses and are joined through four 

spring-steel plates. Spring plates can be simplified as the linear stiffness and damping connections 

of the system. There is an arc contact between the base and the spring plates, which is able to 

provide geometric nonlinear stiffness to the system. Initially, the nonlinear force is smooth and, after 

the full contact between the spring-plates and the base, the smooth force changes to a non-smooth 

force. The excitation of the system is provided by a shaker. The applied forces are measured by an 

impedance head and the responses are measured by accelerometers. 

 

 

 (a) Test rig                      (b) Nonlinear system 

Fig. 25 The experimental 3 DOF structure 

 

A modal test with a low force level is conducted to obtain the linear FRFs from the test rig, 

and the result is given in Fig. 26(a). The symbol ‘dB’ means   2

1020log m/s /N . The measured 

responses show modal frequencies of 4.5Hz, 21.88Hz and 36.63Hz. A nominal model was 

constructed with nominal parameters and updated by the modal test result under the low force 

level to form the Underlying Linear Model (ULM) of the nonlinear structure. The resulting model 

is: 
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 (20) 

The linear FRFs were predicted from the ULM and overlaid with the measured FRFs, shown in 

Fig. 26(b). The measured and predicted curves match well, which verifies the effectiveness of the 

ULM. 

 

 

(a) FRFs measured under low force level 

 

 (b) FRFs of the measured and predicted models 

Fig. 26 Measured and predicted linear FRFs from the 3 DOF system 

 

The shaker voltage is used as the independent parameter to implement the continuation test at 

fixed frequencies, to measure the multivalued responses with both stable and unstable regions. 

The measurement parameters are given in Table. 3 and only responses near mode 1 are measured. 

The measured amplitudes and phases are given in Fig. 27(a) and (b). For all 3 DOFs, the measured 

responses contain clear multivalued responses after 4.5Hz. 

 

Table. 3 Parameters of shaker voltage-based fixed frequency continuation 

Frequency [Hz] Voltage [V] Sampling Frequency [Hz] Sampling Period [s] 

4.45:0.01:5.6 0.02:0.02:2 1000 4 
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(a) Amplitudes of the fixed frequency test result     (b) Phases of the fixed frequency test result 

Fig. 27 Measured multivalued Force-Amplitude curves at fixed frequencies  

 

The measurement results at fixed frequencies are then reconstructed as FRCs for the 

following force levels: 

  0.05 0.3 2 N   (21) 

The reconstruction results are given in Fig. 28. At 0.05N, the FRC is multivalued and shows a 

hardening nonlinear behavior. The measured multivalued phenomenon is complete and with both 

stable and unstable parts. At 0.3N, the reconstructed FRC contains a non-smooth change around 

0.008m, which means that the signature of the geometric nonlinearity changes from smooth to 

non-smooth. At 2N, the non-smooth hardening bifurcation can still be observed on the curve, but 

the reconstructed curves are missing a major part of the resonance region. The reason is that 

responses near resonance contain large amplitudes that require large voltage levels and the 

resulting responses are too large and dangerous to measure. 
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(a) Amplitude of the reconstructed FRCs      (b) Phases of the reconstructed FRCs 

Fig. 28 Recontructed FRCs at different force levels 

 

5.2 Computation of the multivalued correlation function for the real 3 

DOF system 

The reconstructed FRC at 0.3N is selected as the reference data for the correlation analysis, 

as it contains clear non-smooth nonlinear behavior and a multivalued phenomenon that is 

relatively complete. In our previous research, this curve was used for model updating of a strongly 

nonlinear model with a 5
th

 order polynomial stiffness. The updated model at iteration 10 is 

selected as the initial model for the correlation analysis, and the model is: 
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 (22) 

The model is predicted using the continuation parameters given in Table. 4. The predicted FRC is 

overlaid on the measured FRC, where the result at DOF 1 is given in Fig. 29.  
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Table. 4 Parameters of the MHBM-continuation process of the predicted model 

Force [N] Frequency [Hz] Max arclength Initial arclength Extended harmonics 

0.3 [4,8] 0.01 0.01 3 

 

 

 (a) Amplitude                   (b) Zoom of the black rectangle region in (a) 

Fig. 29 Overlay of the measured and predicted FRCs at DOF 1 

 

Fig. 29(a) gives the overlay of the measured and predicted FRCs at DOF 1. To monitor the 

non-smooth nonlinear behavior of the measurement, the predicted FRC is nearly vertical to the X 

axle around the black rectangle region and contains complex multivalued behavior. Near the black 

rectangle, the predicted FRC is zoomed in Fig. 29(b). It is clear that the predicted FRC contains 

two hardening bifurcations and one softening bifurcation, which shows that the predicted model 

has a hardening-softening-hardening nonlinearity. The measured FRC only contains the hardening 

bifurcation, and so the predicted and measured FRCs contain different multivalued behavior.  

The predicted and the measured curves are separated using the arclength coordinate for the 

computation of the multivalued correlation function, where the separated branches at DOF 1 are 

given in Fig. 30. The predicted FRC is separated into seven single-valued branches and the 

measured FRC is separated to three branches, and their labels are: 

 
: 1 2 3 4 3 2 1

: 1 2 1

Predict L L L R R R R

Meausre L R R
  (23) 

Single-valued correlation functions are then established between the separated branches of the 

predicted and measured FRCs, and superposed to form the multivalued correlation function. The 

results are given in Fig. 31 and Fig. 33. 
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 (a) Amplitude (Predict)                   (b) Amplitude (Measure) 

Fig. 30 Arclength-based response separation results of the measurement and prediction 

 

Fig. 31 Multivalued GSCC between the predicted and measured 3 DOF FRCs 

 

The multivalued GSCC of the real 3 DOF system is given in Fig. 31. The shape differences 

between the predicted and measured FRCs are quantified by the correlation function curve. 

However, the curve is always equal to 1 and does not show any multivalued phenomenon because 

of the special location of the nonlinearity. Following Eq. (22), the nonlinear force term is moved 

from the left side of the equation to the right side: 
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As both the excitation and the nonlinear force are located at DOF 1, the combination of the 

nonlinear force and the excitation only depends on DOF 1. Neglecting higher harmonic terms of 

the nonlinear forces, the combination of the forces could be simplified as an harmonic force with 

the fundamental excitation frequency  . The response shape of such an equation is decided by 

the linear terms on the left side, which is not impacted by the nonlinearity and the multivalued 

phenomenon. This property can be easily seen by normalizing the 3 DOF FRCs to give 
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  (25) 

The response curves and the related response shapes obtained from this normalization are given in 

Fig. 32. Before the normalization, the predicted and measured FRCs show clear multivalued 

behavior. The curves of the multivalued FRCs and the linear FRF vary widely. However, after the 

normalization, the multivalued phenomenon nearly disappears. At different frequencies, the shapes 

of the linear FRFs, the measured FRCs and the predicted FRCs are nearly the same. Therefore, 

shapes of the FRCs are not changed by the local nonlinearity and shape-based correlation 

techniques such as the GSCC fail. 

 

 

(a) Response curves before the normalization   (b) Response shapes after the normalization 

Fig. 32 Shapes of nonlinear FRCs and linear FRFs 

 

 

Fig. 33 Multivalued GACC between the measured and predicted 3 DOF FRCs 
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Fig. 33 gives the multivalued GACC between the multivalued 3 DOF FRCs. Differences 

between the responses are quantified globally as a scalar curve between 0 and 1, which shows that 

the global amplitude difference is very sensitive for multivalued FRCs. The multivalued behavior 

of the predicted FRC frequently varies as the frequency increases, and even has a 5-valued region. 

As the number of the correlation functions is the product of the numbers of the responses, the 

5-valued predicted FRC could induce a 15-valued correlation function with the 3-valued measured 

FRC. Such a multivalued correlation function is very complex and the number of correlations is 

10 larger than the number of responses, which may indicate that many fake correlation functions 

are within the correlation curve and real correlation selection is required.  

5.3 Multivalued correlation analysis for a real 3 DOF system using 

the C-MAP  

As the GSCC is totally insensitive for the experimental 3 DOF system, the real correlation 

selection is conducted based on the GACC. The C-MAP is first established from the multivalued 

GACC and the result is given in Fig. 34. 

 

 

Fig. 34 GACC-based C-MAP of the real 3 DOF structure with a strong nonlinearity 

 

Fig. 34 gives the GACC-based C-MAP between the multivalued 3 DOF FRCs of the 

measurement and the prediction. The map shows the 21 single-valued correlation functions 

induced by 7 separated branches of the prediction and 3 separated branches of the measurement. 

Within the 21 correlation function curves, 6 are possibly real and the remaining 15 curves are fake. 

Excluding the correlation function curves with the dotted lines, real correlation functions are 

further selected from the thick lines for each column, where the judgment threshold is set as 0.85. 

The selection result is given in Fig. 35. 
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Fig. 35 Matched frequency responses and the related multivalued correlation function 

 

Fig. 35 gives the selected real GACCs between the matched FRC pairs. On the FRC plot, the 

major region of the predicted FRC with the hardening-softening-hardening bifurcation is matched 

with the measured FRC with only the hardening bifurcation. Between the matched pairs, real 

GACCs are established and given in the lower figure. They occupy the high-valued region of the 

complex 15-valued correlation curve, which are the final output of the multivalued global 

correlation analysis for the real 3 DOF structure. 

Then, the capability of the proposed multivalued global correlation analysis on multiple 

forces and the correctness of the real correlation selection are validated on the real 3 DOF system. 

Accordingly, the global correlation analysis is further conducted for the FRCs predicted from the 

updated models of the real updating Iterations 10 and 18: 

 
,10

,18

: 0.1N 0.3N 2N

: 0.1N 0.3N 2N

iteration

nl

iteration

nl

k

k
  (26) 

Where the updating parameter ,10iteration

nlk is the nonlinear stiffness vector for the response 

prediction at Iteration 10 and ,18iteration

nlk  at Iteration 18 in the updating process. ,10iteration

nlk  has been 

given in Eq. (22). ,18iteration

nlk  is given below: 

 

1 7 3 2 11 5

1 4 2 2 10 4

5.7892 10 N/m 6.7934 10 N/m

4.9165 10 N/m 1.0895 10 N/m

odd odd

even even

k k

k k

         

           

 (27) 

Multivalued global correlation analysis is then conducted again for the FRCs at both iterations, 

under three forces, 0.1N, 0.3N and 2N. The results are shown in Fig. 36.  
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(a) Multivalued global correlation analysis results at Iteration 10 

 

(b) Multivalued global correlation analysis results at Iteration 18 

Fig. 36 Global correlation analysis for real FRCs at different force levels 

 

Fig. 36(a) gives the multivalued correlation analysis results of Iteration 10. On the response 

plot, the predicted FRCs show different multivalued behaviors at three different force levels. 

Meanwhile, due to the existence of the non-smooth behavior, the response shapes of the measured 

FRCs at three force levels also show relatively large differences. Even so, under three forces, the 

matched response pairs corresponding to the selected real GACCs show a good mapping quality 

between the FRCs, from the view of similarity. On the correlation plot, as the force level increases, 

the multivalued GACC curves vary widely, which fits the variation trend of the FRC on the 

response plot. Then, Fig. 36(b) gives the multivalued correlation analysis results of Iteration 18. 

Clearly, on the response plot, the predicted FRCs nearly coincide with the measured FRCs at the 

whole 3 forces, which denote the FRCs are nearly fully correlated. At the same time, the 

multivalued real GACC curves nearly contain the units and the corresponded matched response 

pairs also shows a good match between the predicted and measured FRCs. These above results 
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validate the proposed multivalued global correlation analysis technique on the real system. 

  

6. Conclusion  

In this paper, the global correlation analysis for strongly nonlinear FRCs with the multivalued 

phenomenon are proposed, namely the multivalued GSCC and GACC, which are functions of 

both the frequency and force. Multivalued FRC vectors are first separated into single-valued 

response branches using the arclength coordinate. The single-valued GSCCs and GACCs are 

computed as correlation functions between the separated branches of the prediction and 

measurement, which may be superposed to form the multivalued correlation function. The 

multivalued correlation function is then represented as the C-MAP and real correlation 

characteristics are extracted from the map using specific rules. This novel technique has three 

main advantages: (1) Very complex multivalued correlation functions may be computed. (2) Real 

correlation characteristics are used for an accurate correlation analysis. (3) Correlation functions 

are able to quantify the global differences between complex multivalued FRCs with different 

multivalued behaviors.  

The proposed correlation analysis was conducted on a numerical 3 DOF system with a strong 

nonlinearity for verification. The results show that correlation analysis may be conducted for all 3 

modes and the real correlation characteristics were successfully extracted. Furthermore, the 

GACC is more sensitive than the GSCC on the multivalued FRC. Then, an experimental 3 DOF 

system was used to further validate the proposed method. Correlation analysis was conducted 

between the measured FRC with a hardening multivalued phenomenon and the predicted FRC 

with a hardening-softening-hardening multivalued phenomenon. The two curves generated a 

15-valued correlation function, and real correlations were successfully extracted from this 

complex correlation function using the C-MAP. Global correlation analysis was then successfully 

conducted at different force levels and real correlations were selected. These show the validity and 

the superiority of the proposed correlation technique.  

The proposed correlation analysis shows great potential to improve the nonlinear analysis 

approaches, especially for strongly nonlinear systems. Further investigation of applications of the 

multivalued correlation-based nonlinear analysis, such as model updating and validation, will be 

investigated and reported in the future. 
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