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Abstract
Background  Movement quality is typically assessed by drawing comparisons against predetermined movement standards. 
Movements are often discretely scored or labelled against pre-set criteria, though movement quality can also be evaluated 
using motion-related measurements (e.g., spatio-temporal parameters and kinematic variables). Wearable technology has 
the potential to measure and assess movement quality and offer valuable, practical feedback.
Objectives  A systematic approach was taken to examine the benefits associated with multi-sensor and multiple wearable-
device usage, compared with unimodal applications, when assessing movement quality. Consequently, this review considers 
the additional variables and features that could be obtained through multi-sensor devices for use in movement analyses. 
Processing methods and applications of the various configurations were also explored.
Methods  Articles were included within this review if they were written in English, specifically studied the use of wearable 
sensors to assess movement quality, and were published between January 2010 and December 2022. Of the 62,635 articles 
initially identified, 27 papers were included in this review. The quality of included studies was determined using a modified 
Downs and Black checklist, with 24/27 high quality.
Results  Fifteen of the 27 included studies used a classification approach, 11 used a measurement approach, and one used 
both methods. Accelerometers featured in all 27 studies, in isolation (n = 5), with a gyroscope (n = 9), or with both a gyro-
scope and a magnetometer (n = 13). Sampling frequencies across all studies ranged from 50 to 200 Hz. The most common 
classification methods were traditional feature-based classifiers (n = 5) and support vector machines (SVM; n = 5). Sensor 
fusion featured in six of the 16 classification studies and nine of the 12 measurement studies, with the Madgwick algorithm 
most prevalent (n = 7).
Conclusions  This systematic review highlights the differences between the applications and processing methods associated 
with the use of unimodal and multi-sensor wearable devices when assessing movement quality. Further, the use of multiple 
devices appears to increase the feasibility of effectively assessing holistic movements, while multi-sensor devices offer the 
ability to obtain more output metrics.

Key Points 

Wearable technology has been widely used in research to 
measure and classify matters relating to movement qual-
ity using an array of machine-learning and sensor-fusion 
methods.

Multiple multimodal sensor devices appear to be more 
effective than single multimodal sensor devices when 
assessing holistic movements.

Devices containing multiple sensors offer the ability to 
obtain more output metrics than those featuring just one 
sensor.

1  Introduction

Movement quality is a historically overlooked component 
of physical activity and exercise monitoring outside of elite 
sports [1]. Whilst wearable technology has become an inte-
gral part of modern lifestyles, wearable movement tracker 
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outputs are almost exclusively focused on movement quan-
tity [2]. However, wearable technology also has the poten-
tial to measure and assess movement quality by facilitat-
ing specific and contextualised feedback [3]. Indeed, this is 
advantageous in the reduction of injury risk, given that poor 
quality movement is widely recognised as a contributor to 
injury [4–9]. Additionally, better movement quality is rec-
ognised to enhance life-expectancy by increasing motivation 
and confidence to engage in physical activity [10], and skill 
proficiency is fundamental for optimal athletic performance 
[11–13]. Furthermore, the development of motor compe-
tence across a wide array of motor skills in young people 
is an essential foundation for overall health throughout the 
lifecourse [10, 14]. Nonetheless, there remains an unmet 
demand surrounding the assessment of, and feedback regard-
ing, movement quality, which could benefit greatly from the 
capabilities of wearable devices [14].

While the definition of movement quality is open to inter-
pretation and likely context-specific, Venek et al. [15] offer a 
perspicuous, generalised definition of movement quality as 
“the degree to which replications of the original movements 
can be performed in comparison to either an expert or pro-
fessional, or to a defined performance of an exercise” [15]. 
Further expanding on this definition, in clinical settings, 
movement quality may be assessed by comparing patho-
logically influenced movements against healthy controls, or 
normative data [16, 17]. Consequently, assessing movement 
quality necessitates a predetermined standard against which 
comparisons can be made, with discrete scoring or labelling 
systems often employed to distinguish between good and 
bad movements, different skill levels, or to highlight specific 
movement discrepancies [15]. Moreover, movement quality 
may also be evaluated using motion-based measurements, 
for example, spatio-temporal parameters and kinematic vari-
ables [1], if baseline information exists to draw comparisons 
against.

Bardid et al. [14] provide an overview of the wide range 
of options currently available in the context of assessing 
motor competence in children and adolescents, identifying 
a spectrum from which appropriate assessment tools can be 
selected depending on the application and criteria. However, 
it is postulated that there could be a large degree of appli-
cability of this spectrum for assessing movement quality, 
beyond the confines of motor development in children and 
adolescents. Traditionally, movement-quality assessments 
have frequently been subjectively conducted by experts, such 
as physiotherapists, teachers, and/or trained assessors [15, 
18–20]. However, modern technologies make it feasible to 
conduct objective assessments [1], and support individuals 
in the absence of a movement expert [21]. Camera-based 
technologies such as optical motion capture [22, 23] and 
depth cameras [22, 24, 25] are commonly used in the assess-
ment of movement quality due to an array of advantages 

[22, 24, 25], though such methods are also associated with 
significant limitations [20, 22, 24, 25]. Wearable technology, 
however, may provide an affordable, practical, and efficient 
alternative for assessing movement quality [14, 20, 21, 26, 
27], with the potential for automated feedback using numeri-
cal data or visualisations [28]. Currently, there are many 
commercially available wearable devices used to evaluate 
movement, including unimodal sensors, such as accelerome-
ters, gyroscopes, and magnetometers [29–31], or multimodal 
sensor devices, for example, an inertial measurement unit 
(IMU) [32–35]. In addition, multiple multimodal sensors can 
be utilised, where they are positioned at different anatomical 
locations to provide additional and integrated outputs [27, 
36]. Sensor combinations may enable a broader picture of 
movements, which would be valuable when assessing move-
ment quality [1, 32].

Congruent with many subjective assessments [37–39], 
data obtained by technology may be utilised to categorise 
movement characteristics, using either binary or multi-class 
classification methods [20]. A binary classification approach 
is typically utilised to distinguish between a competent or 
non-competent movement; that is, whether or not an indi-
vidual has demonstrated movement proficiency based on 
the criteria of a predetermined standard. A multi-class clas-
sification approach, however, adds a degree of specificity 
by highlighting specific characteristics [20]. The existing 
literature suggests that the performance of classification 
algorithms relative to others depends on many factors, such 
as the movement performed, sensor positioning, and the 
parameters considered [40–42]. Indeed, the accuracy of any 
output from a wearable device can be influenced by the hard-
ware utilised, with sampling frequency being a key factor 
that needs to be optimised to achieve maximum performance 
[40, 43, 44]. Nevertheless, it is recognised that the use of 
additional sensors and wearable devices would enable the 
capture of a broader dataset with more measurable outputs, 
which would theoretically enable a more in-depth, and possi-
bly accurate, classification by having a greater range of clas-
sifier inputs to select from [45]. Sensors are also commonly 
applied to directly measure specific motion characteristics, 
including kinematics such as acceleration, velocity, and dis-
placement [46]. However, it is also possible to capitalise on 
concepts such as sensor fusion to estimate orientations and 
angles when multiple types of sensors are available within 
a device [45, 47, 48].

Previous reviews have provided insights into the poten-
tial use of wearable technology to widely assess move-
ment quality [15, 20, 21, 49]. Most recently, a scoping 
review was conducted that provided a timely update on the 
array of technology-based measurement methods available 
for assessing movement quality, though the review only 
sought to provide a broad overview of technology usage in 
sport over a 5-year period [15]. Moreover, there is a lack 
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of consideration in abovementioned reviews of the poten-
tial benefits of concurrent sensor usage, either within the 
same multimodal sensor unit, or using multiple devices, 
when compared to unimodal alternatives [15, 20, 21, 49]. 
The current systematic review, therefore, sought to high-
light any additional benefits that could be deduced when 
concurrently applying multi-sensor devices, and indeed 
multiple wearable devices, for the assessment of move-
ment quality, contextualised around sporting and clinical 
applications. Consequently, this review also investigated 
the additional variables, and indeed features, that could be 
obtained through multi-sensor devices compared to uni-
modal sensors for use in movement analyses. Finally, this 
systematic review aimed to distinguish between the pro-
cessing methods and applications of multi-sensor wearable 
devices in comparison to unimodal sensors when assessing 
movement quality.

2 � Methods

The protocol was developed to implement a systematic 
approach in accordance with guidelines provided by the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [50, 51]. A Population Intervention 
Comparison Outcome (PICO) approach to the development 
of the systematic review framework was also employed. 
Details of the protocol for this systematic review were reg-
istered on PROSPERO (ID: CRD42020222587).

2.1 � Search Strategy

An initial electronic literature search was completed 
between November and December 2020, with additional 
searches conducted to incorporate any additional relevant 

publications up to December 2022. The searches sought 
to identify published materials indexed in the following 
five databases: MEDLINE, ACM Digital Library, IEEE 
Xplore, SPORTDiscus, and Scopus. Initial keywords 
‘movement’, ‘quality’, ‘wearable’ and ‘human’ were iden-
tified as suitable group headings for an expanded search of 
other related search terms and synonyms, with a Boolean 
search strategy implemented thereafter (Table 1; Online 
Supplemental Resource (OSR) 1). The search strategy uti-
lised keywords in lieu of subject headings to broaden the 
search. Search terms were sought from within the title, 
abstract and listed keywords for each publication.

2.2 � Literature Screening and Selection

Articles retrieved from the electronic databases were ini-
tially stored using Mendeley referencing software (Mendeley 
Desktop, Version 1.19.8) before uploading to Rayyan [52] 
for screening. The PRISMA flowchart [50] was utilised to 
record the process of screening and selection. Duplicates 
arising from the use of multiple databases were identified 
within Rayyan and removed. Initially, titles and abstracts 
were screened for full-text review according to the inclu-
sion and exclusion criteria (Table 2). The screening pro-
cess was conducted by two authors (TAS and AWHR) and 
was blinded [52]; that is, each author screened the articles 
independently, with discrepancies revealed on conclusion of 
the screening phase. Inter-rater agreement was assessed at 
each stage of the screening process using kappa scores [53]. 
All articles were screened by the first author (TAS), while 
another researcher (AWHR) screened 10% [54, 55]. It is rea-
sonable when undertaking large reviews for two reviewers 
to initially screen a small percentage of studies and discuss 
variation in the interpretation of the inclusion criteria [55]. 
In doing so, this aids consistency when the remaining stud-
ies are screened by a single reviewer for inclusion within the 
full-text screening phase [55]. A kappa score of 0.955, an 

Table 1   Boolean search strategy

An asterisk (*) expanded the search to include all terms beginning with the letters preceding the asterisk. 
A dollar sign ($) expanded the search to include a single additional letter in the position of the dollar sign. 
The dollar sign was substituted with a question mark (?) when searching ACM Digital Library due to the 
criteria for this database

General Specific search terms

Movement (movement* OR motion OR "human mechanics" OR kinematics OR biomechanics OR loco-
mot* OR "motor skill*" OR gait OR ambulat*)

AND
Quality (quality OR proficien* OR competen* OR performance OR abilit*)

AND
Wearable (wearable* OR sensor* OR multi-sensor* OR multisensor* OR "inertial measurement unit*" 

OR IMU$ OR acceleromet* OR gyroscop* OR magnetomet* OR detector*)
AND

Human human* OR men OR women OR child* OR people OR adolescent$ OR teenagers OR athlete*
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almost perfect agreement [53], was observed during the title 
and abstract screening, after which the discrepancies among 
the dual-screened studies were resolved through discussion 
between the two reviewers. All full texts of the remaining 
articles were then screened against the inclusion and exclu-
sion criteria by the same two reviewers, again independently 
under blind conditions. A weak agreement was initially 
observed, generating a kappa score of 0.491. However, fol-
lowing discussions to clarify the inclusion criteria, any con-
flicts were discussed until a consensus was reached. Where 
the two reviewers could not agree (n = 2), the discrepancies 
were discussed with a third independent reviewer (KAM) 
until a consensus was reached, subsequently resulting in a 
kappa score of 1.

2.3 � Data Extraction

Following screening, data were extracted from the included 
full texts by the lead author (TAS) and tabulated within a 
customised data extraction form. The data extraction form 
was subsequently reviewed by another author (MAM); 
where discrepancies were identified, the data extraction form 
was revised until both authors reached a consensus.

2.4 � Quality Assessment

Two authors (TAS and AWHR) evaluated the quality of the 
included studies to determine the risk of bias. The primary 
author (TAS) assessed the quality of all studies, while the 
other author (AWHR) assessed the quality of 14 of the 27 

included studies, approximately 50%, in accord with Pai 
and McGrady [56, 57]. A modified version of the Downs 
and Black [58] checklist was selected as it can be used to 
assess the methodological quality of both randomised con-
trolled trials and non-randomised studies. Specifically, the 
modifications made to the Downs and Black checklist [58], 
which were based on other systematic reviews synthesising 
the use of wearable technology [21, 49], ensured specificity 
and, therefore, relevance to the included studies. The criteria 
were accompanied by a rating system developed to catego-
rise study quality as low (≤ 33.3%), moderate (33.4–66.7%), 
and high (≥ 66.8%; OSR 2). The limits of each scoring cate-
gory were adopted from other systematic reviews focused on 
the use of wearable technology to measure and assess move-
ment [21, 49]. Eighteen items were included in the checklist, 
with each item rated between zero and two (0 = not present, 
1 = limited detail and 2 = good detail). Inter-rater reliability 
was calculated using kappa scores, with 0.8 identified as 
the minimum acceptable inter-rater agreement [53]. Initially, 
the kappa score for risk of bias was 0.273, indicative of fair 
agreement [53]. Discrepancies centred around study design, 
eligibility criteria, and the reliability of equipment, primarily 
due to each author’s interpretation of the checklist questions. 
The two authors discussed each point until a consensus was 
reached, resulting in a kappa score of 1. Subsequently, the 
remaining studies were reassessed based on the agreed inter-
pretation of each quality assessment checklist item.

Given the broad inclusion criteria and subsequent meth-
odological differences in the included studies, a narrative 
synthesis was conducted. The methodological approach is 
covered, with particular focus on the identification of sensor 
features, the application of sensors and the obtained data, 
and the techniques by which movement quality was assessed. 
Data processing and analysis methods, including sensor-
fusion algorithms, machine-learning techniques and biologi-
cal modelling, were of particular interest. The findings of 
the included studies were assessed, specifically focusing on 
the comparison between unimodal and independent uses of 
sensors and devices, and more systemic approaches, where 
the data obtained from multiple sensors and devices were 
concurrently utilised and integrated.

3 � Results

A total of 62,635 titles were obtained across the five data-
bases, with 58,231 titles remaining after the removal of 
duplicates. Following the screening of 80 full-texts, 27 arti-
cles were included in the final review (Fig. 1). For the qual-
ity assessment, 24 of the included studies were deemed to 
be of high quality (score > 66.8%), with three identified as 
moderate quality (score 33.4–66.7%; Table 3).

Table 2   Study inclusion and exclusion criteria

Inclusion criteria
Wearable sensors were used for the purpose of assessing movement 

quality in medical and sporting applications
The wearable sensors were used to assess fine or gross motor skills
Human participants irrespective of age
The wearable devices were attached to individuals directly, or to 

manually operated equipment (i.e. sports equipment)
Articles were published between January 2010 and December 2022
Peer-reviewed articles published in the English language
Experimental and analytical observational studies
Exclusion criteria
Descriptive and qualitative studies
Systematic reviews and literature reviews
Non-peer-reviewed literature
Other unsuitable resources such as conference presentations, expert 

opinion, and grey literature
Studies that feature particularly varied or irregular movements, or 

sequential combination movement patterns (i.e., multiple discrete 
movement patterns performed transitionally in series)

Studies where wearable outputs were not assessed
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3.1 � Device and Sensor Specifications 
and Applications

An array of devices was utilised in the included studies, 
with little commonality (Table 4). The sensor configura-
tions and their applications within each study are detailed 
in Tables 5 and 6, respectively. All included studies uti-
lised a wearable device that included an accelerometer, 
either in isolation (n = 5), in combination with a gyroscope 
(n = 9), or with both a gyroscope and a magnetometer 
(n = 13). Notably, however, eight of the 27 studies did not 
utilise the full sensory capabilities of the device within 
their study (Table 4) [62, 67–69, 76, 81, 83, 84]. There was 
a similar degree of variation in the sampling frequencies 
utilised (50–200 Hz; Table 4), which were reported in all 
but one study [59].  

The wearable devices were positioned across a broad 
range of anatomical locations (Tables 5 and 6), most com-
monly on the lower back (n = 15; [60–62, 64, 67, 68, 70, 
72, 73, 75, 77, 78, 80, 81, 83]) and distal leg segments, 
encompassing the shanks and ankles (n = 14; [59, 61, 66, 
68, 69, 72, 74, 76–78, 81, 83–85]). Other anatomical loca-
tions for the sensors were the wrists or forearms (n = 8; 
[61, 63, 67, 69, 71, 72, 79, 81]), thighs (n = 8; [59, 68, 72, 
77, 78, 80, 81, 83]), chest (n = 6; [63, 65, 67, 71, 81, 85]), 
feet (n = 5; [72, 74, 80, 81, 84]), mid back (n = 4; [60, 72, 
75, 81]), upper arms (n = 4; [63, 71, 72, 81]), pelvis (n = 1; 
[65]), hip (n = 1; [83]), hand (n = 1; [81]), and head (n = 1; 
[81]). Additionally, one study positioned a single wearable 
device on a piece of sports equipment, specifically a table 
tennis racket [82]. The number of wearable devices used 
ranged from one to 17, with 25 of the 27 studies featuring 
seven or fewer devices. Moreover, it was indicated by Liu 
et al. [72] that not all 12 devices were utilised throughout 
their entire study; only the upper body was considered in 
the measurement of joint angles.

Sensor fusion was a common feature across the included 
studies, with 14 of the 27 studies capitalising on such an 
approach. The Madgwick algorithm [48] was employed 
in seven studies [59, 63, 72, 75, 77–79], while a Kalman 
filter [86] was used in five studies [60, 66, 68, 80, 82], and 
complementary filters [87, 88] were used in two studies 
[71, 74]. When using wearables to measure kinematics, 
there were exceptions to the use of sensor fusion, with Del 
Din et al. [64] utilising a single accelerometer, Mitternacht 
et al. [76] using both accelerometers and gyroscopes, and 
Tulipani et al. [83] employing gyroscopes exclusively. 
In the studies by Del Din et al. [64] and Tulipani et al. 
[83], sensor fusion was not possible due to the omission 
of other sensors. Rather, Del Din et al. [64] applied the 
inverted pendulum model [89] to measure step length, 
while Tulipani et al. [83] integrated the angular velocity 
obtained from the gyroscope using a proprietary algorithm 

to calculate the angular displacement of body segments. 
Mitternacht et al. [76] also opted to utilise an integration 
method for the movements considered within this system-
atic review, integrating the angular velocity to determine 
angles, and double integrating acceleration to calculate 
linear position. The influence of integration drift [32] was 
reduced by dividing longer time series data into shorter 
segments [76]. Where sensor fusion was used to classify 
movement characteristics [66, 68, 72, 77, 78, 82], the ori-
entation data were utilised to expand the available range 
of features for implementation within the classification 
algorithms.

3.2 � Descriptive Aspects of Reviewed Studies

Of the 27 studies included in the systematic review, 16 fea-
tured methods that were used to classify movement quali-
ties or abnormalities (Table 5), and 12 used methods to 
measure motion-based characteristics (Table 6) to assess 
movement quality, typically through the measurement of 
joint angles or segment-rotation angles [59, 60, 63, 71, 72, 
74–76, 79–81, 83]. Notably, one study directly measured 
motion to assess movement quality while also employing 
classification methods, and was therefore included in both 
study groupings [72]. Four of the 27 studies used device-
based measures to assess the movement of healthy children 
using wearables [61, 67, 69, 73], all of which utilised clas-
sification methods for assessing motor competence when 
performing fundamental movement skills (FMS). Of the 
remaining studies, 19 featured healthy adult samples [60, 
62, 63, 65, 66, 68, 70, 74–85], three included both healthy 
participants and participants with a pathology for compar-
ative purposes [59, 64, 71], while one study did not report 
participant details [72]. Additionally, 11 of the 27 studies 
were conducted in a clinical setting for medical applica-
tions [59, 60, 64, 66, 68, 71, 74, 85], with the remainder 
focused on sports performance or sports-injury prevention; 
all included articles were feasibility studies. Sample sizes 
ranged from two to 77 participants, though 20 studies fea-
tured small sample sizes of 20 or fewer participants [59, 
60, 62, 63, 65, 66, 68–72, 74, 76, 79–85]. 

3.3 � Classification and Validation Methods Used 
to Assess Movement Quality

Ten of the 16 classification studies incorporated a binary-
classification approach based on the data obtained from the 
wearable sensors [61, 62, 65, 68–70, 72, 77, 78, 85], while 
only nine studies applied a multi-class classification [62, 
66–68, 73, 77, 78, 84]. Four studies employed and com-
pared both binary- and multi-class methods [62, 68, 77, 
78]. In addition, Tabrizi et al. [82] employed multivariate 
regression models, which, by definition, use continuous 
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and numeric outputs rather than featuring distinct classes. 
Given the comparable characteristics between classification 
and regression models, they have been categorised together 
for this review. Specifically, Tabrizi et al. [82] used con-
ventional machine-learning methods, namely support vector 
regression (SVR), and two deep-learning methods, convolu-
tional neural networks (CNN) and long short-term memory 
(LSTM), which were used to generate movement quality 
scores using set criteria [82]. For the true classification 

studies, where accuracies were presented as percentages, 
binary skill-classification accuracy ranged from 69 to 100% 
(Table 5) [61, 62, 68–70, 72, 77, 78, 85]. Ghasemzadeh and 
Jafari [65] also applied a binary-classification approach, 
though the results were defined in terms of the percentage 
error of the wearable system relative to analysed video foot-
age (3.4%). Furthermore, while Ghobadi and Esfahani [66] 
utilised a multi-class approach to distinguish different loco-
motor activities, there appears to be an intra-classification 
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binary approach used to distinguish healthy and erroneous 
gait patterns, with 99% accuracy reported for the detection 
of abnormalities. Where a multi-class approach was other-
wise used, accuracies ranged from 53 to 99% [62, 68, 73, 
77, 78, 84]. Grimpampi et al. [67], and Spilz and Muntz [81] 
also used multi-class classification approaches, though the 
findings were reported based on the significance of differ-
ences between signal features in the former, and in terms of 
F1-scores [93] in the latter.

A range of classification methods were applied within the 
included studies (see Table 5). Most common were feature-
based classification methods, an overarching term used to 
encompass traditional feature-learning methods, utilised in 
five of the 16 studies [61, 62, 67, 70, 73], and SVM, also 
used in five studies [66, 68, 72, 84, 85]. SVR, derived from 
traditional SVM modelling, was also applied in Qiu et al. 
[82]. Other classifiers used throughout the included studies 
were k-nearest neighbour (KNN) [68], naïve Bayes (NB) 

Table 4   Wearable device systems

a Sensor was present but not utilised as part of the study
b 50 Hz initially, then device upgraded during the study to accommodate 100 Hz, which was resampled to 50 Hz

Study Device name Components Sampling frequency

Accel-
erom-
eter

Gyroscope Magnetometer Other

Ahmadi et al. (2015) [59] Novel system developed X X –
Beange et al. (2019) [60] MetaMotionR X X X 100 Hz
Bisi et al. (2017) [61] Opal X X X 128 Hz
Caporaso and Grazioso (2020) [62] G-Sensor 2 X Xa 200 Hz
Cortesi et al. (2019) [63] Opal X X X 128 Hz
Del Din et al. (2016) [64] AX3 X 50/100 Hzb

Ghasemzadeh and Jafari (2011) [65] TelosB X X 50 Hz
Ghobadi and Esfahani (2017) [66] x-IMU X X X 50 Hz
Grimpampi et al. (2016) [67] Opal X X Xa 128 Hz
Kianifar et al.(2017) [68] 3-Space (specific model not stated) X X Xa 90 ± 10 Hz, resam-

pled to 200 Hz
Lander et al. (2020) [69] MVN Awinda wireless motion capture 

suit
X Xa Xa Xa 50 Hz

Lee et al. (2013) [70] Derivative of an inertial measurement 
system developed by [90]

X 100 Hz

Lin et al. (2021) [71] Novel system developed X X X 75 Hz
Liu et al. (2020) [72] Novel inertial measurement system 

developed by Dalian University of 
Technology

X X X 148 Hz

Masci et al. (2013) [73] FreeSense X X 100 Hz
Meng et al. (2019) [74] Trigno (specific model not stated) X X 51.2 Hz
Michaud et al. (2021) [75] STT-IWS X X X 100 Hz
Mitternacht et al. (2022) [76] InvenSense ICM-20948 X X Xa 200 Hz
O’Reilly et al. (2017a) [77] Shimmer3 IMU X X X 51.2 Hz
O’Reilly et al. (2017b) [78] Shimmer3 IMU X X X 51.2 Hz
Shepherd et al. (2017) [79] SABELSense X X X 100 Hz
Shuai et al. (2022) [80] Perception Neuron X X X 100 Hz
Spilz & Munz (2022) [81] Shimmer3 IMU X X X Xa 120 Hz
Tabrizi et al. (2021) [82] BNO055 X X X 70 Hz
Tulipani et al. (2018) [83] Opal X X Xa 128 Hz
Xu et al. (2015) [84] InvenSense MotionFit X Xa Xa 200 Hz
Zhang et al. (2014) [85] TEMPO 3.1 [91] X X 100 Hz
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Multi-Sensor Measurement of Movement Quality

[68], k-means clustering [65, 69], logistic regression [72], 
decision tree [72], XGBoost [72], random forests [77, 78], 
CNN [81, 82], and LSTM [81, 82]. Three studies employed 
multiple classifiers to determine the highest-performing 
methods for their respective applications [68, 72, 82]. 
Across the range of classifiers, the studies employed differ-
ent approaches to feature selection (Table 5), although, with 
the exception of Spilz and Munz [81], the studies typically 
utilised raw sensor time-series data (n = 15). However, it was 
also common to derive kinematic data from the raw data 
(n = 3) [67, 73, 85] and capitalise on sensor fusion (n = 6) 
[66, 68, 72, 77, 78, 82] to expand the available features, 
while also extracting features from the raw data in the fre-
quency domain (n = 6) [66, 68, 72, 77, 78, 82]. An assort-
ment of validation methods was applied to the classifiers 
throughout all included studies; six studies used a real-world 
validation approach based on video footage [61, 62, 65, 67, 
69, 70]. However, statistical methods were typically pre-
ferred, with seven studies using a k-fold cross-validation 
(KF-CV) [66, 68, 72, 81, 82, 84, 85], four a leave-one-sub-
ject-out cross-validation (LOSOCV) [68, 77, 78, 81], and 
two a leave-one-out cross-validation (LOOCV) [73, 77].

3.4 � Methods and Reference Standards 
for the Measurement of Kinematic 
Characteristics to Assess Movement Quality

Sensor-fusion algorithms enable the calculation of sensor 
orientation, providing details of angular rotation about each 
of the three axes when considering movement in three-
dimensional space. When wearable devices are positioned 
either side of a joint, or joints, the orientations relative to 
one another can enable joint angles to be estimated. A sen-
sor-fusion approach was taken in 9 of the 12 measurement 
studies, including Cortesi et al. [63], where the kinematic 
chain model was used in conjunction with sensor fusion to 
generate both rotational and translational information [95]. 
Shepherd et al. [79] used sensor fusion in a simpler con-
cept by calculating forearm angles using the orientation of 
a single device relative to the ground, comparable with Lin 
et al. [71], who utilised certain components of a shoulder 
range of motion (ROM) assessment. Similarly, Tulipani et al. 
[83], using gyroscope data exclusively, determined angular 
displacement for body segments rather than joint angles, a 
method also adopted by Mitternacht et al. [76], who meas-
ured tibial tilt angles for assessing knee valgus. However, 
Mitternacht et al. [76] also identified the linear medial shift 
of the knee joint by double-integrating the mediolateral 
acceleration obtained from the accelerometer. Del Din et al. 
[64] was the only study to exclusively measure translational 
movement without rotation or orientation, also using an inte-
gration-based method to obtain displacement and thereby 
calculate the length of a step.

To validate measurements of motion using novel instru-
mentation or methods, a predetermined reference standard 
is typically utilised for comparison, as is the case for all 12 
of the measurement-based studies included in this review 
(see Table 6). Del Din et al. [64], for example, used an 
instrumented walkway to validate the measurement accel-
erometer, providing a strong intra-class correlation coef-
ficient (ICC) for both healthy participants (ICC = 0.913) 
and for those with Parkinson’s disease (ICC = 0.869). 
However, optical motion capture, generally considered to 
be the gold-standard for measuring movement [22], was 
utilised by 10 of the 12 measurement studies to validate 
the wearable sensor measurements (Table 6) [60, 63, 71, 
72, 74–76, 79, 80, 83]. Six studies evaluated the accura-
cies of the angles calculated using the wearable sensor 
data in terms of root-mean-square error (RMSE) when 
compared to the optical motion capture systems [71, 74, 
75, 76, 80, 83]. Considering three different walking speeds 
(0.5, 1.0 and 1.5 m‧s−1), Meng et al. [74] reported that 
the RMSE was always less than 3.5°. This is congruent 
with Tulipani et al. [83], where the overall average RMSE 
across a series of movements was 3.7°, and Lin et al. [71], 
who observed a maximum mean RMSE of 3.6° across the 
series of tests conducted. Moreover, Michaud et al. [75] 
found similar results when monitoring lumbar flexion and 
pelvic tilt, with RMSE ranging from 1.9° to 3.0° for the 
barbell deadlift and the American kettlebell swing. Mit-
ternacht et al. [76] also reported comparable results, where 
the RMSE ranged from 1.4° to 2.2°. However, whilst the 
measurements were captured to determine knee instabil-
ity during movements featuring knee flexion, namely the 
one-leg squat and drop jump, knee instability was not evi-
dent, resulting in minimal movement of the IMU. Con-
sequently, the observed measurement errors were small 
[76]. Shuai et al. [80] reported a greater degree of error, 
with RMSE ranging from 2.1° to 13.1° across all meas-
ured joints and configurations. Cortesi et al. [63] evaluated 
the translational motion of a wrist-worn device against 
an optical motion capture system and reported a RMSE 
of 7.70 cm. Both Shepherd et al. [79] and Liu et al. [72] 
stated the mean error as percentages, indicating that the 
sensors overestimated the forearm angle by an average of 
4.03% and calculating a maximum mean error of 3.72%, 
respectively. Beange et al. [60] reported on the reliabil-
ity of wearable sensors when compared against an optical 
motion capture system for measuring spinal motion. Spe-
cifically, the authors reported on spinal flexion–extension 
angles (0.807 ≤ ICCFE ≤ 0.919), and the sum of squares of 
flexion–extension, lateral bend, and axial twist angles to 
measure local dynamic stability (0.738 ≤ ICCSS ≤ 0.868) 
[60]. Ahmadi et  al. [59] utilised normative data and 
applied a phase-shift registration algorithm [96] to refine 
the joint angle measurements before conducting an 
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intra-study comparison against an unregistered approach. 
The phase shift, a pre-analysis curve transformation tech-
nique that uses a timescale shift based on the position of 
signal features [96], was used to align flexion–extension 
curves for foot contact cycles during jogging. Both the 
registered and unregistered curves were stated by Ahmadi 
et al. [59] to be representative of the mean joint angles 
obtained across the sample, where it was observed that the 
unregistered curve significantly underestimated the joint 
angle maxima (p = 0.002) and minima (p < 0.001) relative 
to the phase-shift registration algorithm. While significant, 
with the authors noting that even small differences could 
be indicative of injury, or increased risk of injury, they 
also acknowledged observed similarities between the joint 
angle curves generated throughout the duration of each 
movement.

4 � Discussion

This systematic review sought to highlight any additional 
benefits that could be gained using multi-sensor devices, 
or multiple wearable devices, in place of unimodal sensors 
or a single device, respectively, when assessing movement 
quality. Accordingly, this review also investigated the addi-
tional variables, and indeed features, that could be obtained 
through multi-sensor devices for use in movement analyses. 
Further, the systematic review aimed to differentiate between 
the processing methods and applications of multi-sensor 
wearable devices in comparison to unimodal sensors when 
assessing movement quality. Evidence from the current 
review suggests that most movement quality assessments 
utilising wearable technology centre around expert-led or 
expert-based assessments [61, 62, 67–70, 73, 76–81, 83], 
often capitalising on pre-validated movement screening 
methods [61, 67, 69, 73, 76, 81]. Alternatively, movements 
are commonly assessed using proficient performers as the 
baseline [59, 60, 64, 66, 71, 72, 75, 84, 85]. Nevertheless, 
there are additional methodological considerations for the 
assessment of movement quality, and the authors of future 
reviews are recommended to further consider the specifics 
surrounding movement-quality assessment methods and the 
integration of technology. The reviewed studies revealed two 
overarching themes in the use of wearable technology to 
assess movement quality, with technology either used to 
classify movements or to directly measure motion for com-
parison against a baseline. To distinguish between the two 
methods, the results of these studies were reported inde-
pendently, though Liu et al. [72] featured in both measure-
ment and classification categories. It is pertinent to note 
that accuracies reported for each included study may not be 

comparable if applied to other movements with alternative 
sensor placements.

All studies included in the review utilised an acceler-
ometer, a gyroscope, or a magnetometer, or a combination 
thereof. Accelerometers were the most common of the three 
sensors, likely due to the versatility and historical applica-
tion of these sensors when measuring movement [97]. 
Most often, the sensors were tri-axial and could therefore 
capture data in three dimensions, which is desirable given 
that typical human movements are not linearly constrained. 
Nonetheless, Ghasemzadeh and Jafari [65] used a tri-axial 
accelerometer coupled with a bi-axial gyroscope, although 
the two-dimensional angular velocity data obtained from the 
gyroscope were most likely sufficient for the intended appli-
cation, as the focus was solely on rotation in the transverse 
plane.

Across all studies, the sampling frequency did not vary 
substantially when using a classification or measurement 
method. The comparable sampling frequencies are possi-
bly related to the type of movements assessed, all of which 
were gross motor skills. Additionally, the range of sampling 
frequencies follows existing trends in other areas of the lit-
erature for similar applications [21]. Higher sampling fre-
quencies may increase the clarity of motion measurements, 
particularly in explosive or finer movement patterns [40], 
although no included study considered fine motor skills 
and only five of the included studies could be considered to 
have used explosive movements: a baseball bat swing [65], 
overarm throw [67], table tennis forehand strikes [82], drop 
jump [76], and countermovement jump [80]. These stud-
ies featured sampling frequencies of 50 Hz, 128 Hz, 70 Hz, 
200 Hz, and 100 Hz, respectively, which are relatively low 
in contrast to the frequencies recommended by Worsey et al. 
[40], and mostly at the lower end of the range of sampling 
frequencies observed in this review. Two of these studies 
[65, 67] successfully utilised a true classification method, 
suggesting that, for each classification method applied, the 
sampling frequencies were adequate. Tabrizi et al. [82] used 
a regression method, which was also successfully imple-
mented using a sampling frequency below the average across 
this review. While Mitternacht et al. [76] and Shuai et al. 
[80] both aimed to measure motion during explosive move-
ments, each study has limitations. Specifically, none of the 
participants in the study by Mitternacht et al. [76] exhibited 
noticeable knee instability during the drop jump, suggesting 
that observed tibial movement was minimal. Shuai et al. [80] 
used a height-restricted countermovement jump to prevent 
marker occlusion as well as timing controls to reduce the 
influence of movement speeds on measurements. Conse-
quently, it was not possible based on the evidence provided 
by the studies included in this review to deduce whether an 
increased sampling frequency would have an inherent benefit 
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for measuring motion in studies assessing explosive move-
ments, though speculatively, high sampling frequencies may 
be required to obtain accurate instantaneous measurements 
for high-speed movements due to the risk of aliasing error 
[98]. Indeed, it is not uncommon for average measurements 
to be utilised when measuring fast movements using weara-
bles [99] due to the inability of low-sampling-frequency 
devices to capture sufficient data during rapid changes in 
the signal [98]. Yet, what we can determine from this review 
is that it is feasible to assess movement quality, including 
rapid human movements, using comparatively lower sam-
pling frequencies when employing classification methods, 
for which high signal resolution may not be required. Of 
note, sensors with enhanced design features typically have 
higher unit costs [100], meaning most cost-effective, com-
mercially available sensors likely avoid particularly high 
sampling frequencies.

The included studies featuring a classification approach 
highlighted the variety of factors that can influence the accu-
racy of classifiers. O’Reilly et al. [77, 78], for example, drew 
intra-study comparisons, where it was observed that, overall, 
a decrease in the quantity of sensors used tended to reduce 
classification accuracy. However, it was reported in both 
studies that the accuracy was not always markedly dimin-
ished by reducing the number of sensors utilised, depending 
on sensor location. Specifically, it was shown that single sen-
sors worn on the shanks during bodyweight squats [78], or 
on the lower back or thighs for deadlifts [77] could provide 
comparable classification accuracies to a configuration with 
as many as five sensors. However, classification accuracy 
typically reduced considerably when using fewer sensors in 
sub-optimal positions for the respective movements, such 
as the shanks for the deadlift [77] and the lower back for 
bodyweight squats [78]. This is further evidenced when 
comparing the results of the two O’Reilly et al. [77, 78] 
studies, with the multi-class classifier employed for assess-
ing squat technique [78] being noticeably more accurate 
than the equivalent classifier for the deadlift [77], despite 
the same sensor placements being used. It is speculated that 
this is due to the more proximal positions of the sensors 
to the main area of the observed deviations (i.e., the lower 
limbs) during the squat, whereas the deviations identified 
for the deadlift largely overlooked lower limb movements 
and positions. However, it may be feasible to obtain good 
classification accuracies with multi-class classifiers using 
fewer sensors. As indicated by Masci et al. [73], as few as 
one sensor may indeed be adequate when assessing global 
movements provided that broader criteria are employed, 
rather than aiming to highlight a specific movement dis-
crepancy. However, further research is required to further 
explore this hypothesis. Nonetheless, it is essential to recog-
nise that when using fewer than the maximal available sen-
sors, the best-performing device positions were dependent 

on the movements assessed by O’Reilly et al. [77, 78]. This 
is a limitation for real-world applications, as to use the opti-
mal sensor position for each movement would require an 
adjustment to the anatomical positioning of a sensor, or sen-
sors, to maximise accuracy when conducting a sequential 
assessment with multiple movements, a potentially time-
consuming step. However, it may be plausible to consider 
a practical compromise by using a single-sensor placement 
that ensures adequate accuracy when assessing multiple 
movements, without rigidly adhering to the optimal posi-
tion for each specific movement. This approach can help 
alleviate the requirement for time-consuming adjustments 
to individual sensor positions, making it more feasible and 
efficient for real-world applications. O’Reilly et al. [77, 78] 
also conducted intra-study comparisons between binary 
classifiers, where movements were categorised as either 
proficient or not proficient, and a multi-class classifier fea-
turing five classes, where the specific deviations from the 
accepted movement standard were highlighted. Congruent 
with Kianifar et al. [68], the multi-class classifiers were less 
accurate than the binary classifiers due to the need to dis-
tinguish specific movement errors from the data [77, 78]. 
However, multi-class classifiers have the potential to be 
more informative, given that specific movement discrepan-
cies can be detected [77, 78]. Future research to improve the 
accuracy of multi-class classifiers is therefore warranted. 
Notably, O’Reilly et al. [77, 78] and Kianifar et al. [68] con-
sidered movements that were lower-limb dominant, with the 
sensor configurations reflecting this. A key consideration 
of this review is that the accuracies reported in each study 
may not be comparable if applied to other movements with 
alternative sensor placements. Moreover, classifiers based 
on natural movement deviations appear to underperform in 
comparison to those where movement errors were induced 
[77]. This highlights a key challenge that may arise when 
performing movement quality assessments using wearable 
devices in real-world applications.

While O’Reilly et al. [77, 78] and Kianifar et al. [68] con-
sidered the relationship between a reduction in the quantity 
of sensors and the accuracy of classifiers, each placement 
location featured a device consisting of more than one type 
of sensor. This is because each study utilised sensor fusion 
to provide additional metrics, such as limb orientations and 
joint angles, which were fed into the respective classification 
algorithms [68, 77, 78], as was the case with Ghobadi and 
Esfahani [66], Liu et al. [72], and Tabrizi et al. [82]. Unfor-
tunately, based on the reviewed literature, it is not possible to 
make comparisons between the use of multi-sensor devices 
and unimodal sensors in equivalent anatomical positions, 
nor to consider the use of multiple types of unimodal sensors 
applied outside of a single device when assessing movement 
quality. Indeed, the methodological heterogeneity among the 
included studies prevents conclusions being drawn regarding 
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the potential benefits of using multi-sensor devices over uni-
modal alternatives. It is speculated that unimodal sensors 
would not perform as well as multi-sensor devices for iden-
tifying movement discrepancies using classifiers, not least 
because it would only be possible to obtain the orientation 
data, and subsequently utilise the orientation signal features 
if sensor combinations exist within one device. In such 
instances where additional signal features were obtained, 
classifiers were often very accurate [66, 72, 82], and possi-
bly more so than those with fewer features. However, lower 
accuracies were also detected using the same signal features 
under less optimal configurations [68, 77, 78].

Accelerometers were used in isolation in four of the clas-
sification studies [62, 69, 70, 84]. Of interest, accelerometers 
were the only type of sensor used in isolation and most com-
monly in studies that required classifiers with less complex-
ity. Specifically, Lee et al. [70] and Caporaso and Grazioso 
[62] used algorithmically simple classifiers based on tempo-
ral features of the acceleration signal to detect loss of ground 
contact during race walking, while Lander et al. [69] and Xu 
et al. [84] also considered the features of acceleration signals 
but assessed their correlation with pre-existing signals that 
corresponded with key assessment criteria. The absence of 
additional sensors appears to restrict what may be achieved, 
and while this is not always a barrier when implementing 
simple classifiers, other studies using additional sensory data 
have demonstrated greater detail, specificity, and applicabil-
ity to a wider selection of movements. Indeed, sensor fusion, 
utilised in six of the classification studies [48, 66, 68, 72, 77, 
78, 82] to obtain orientation information as an additional 
input to the classifier, was reported to be associated with 
good accuracies.

It is presently unclear as to how influential the specific 
assessment criteria and movements are on the accuracy of 
classifiers, meaning it is difficult to definitively state whether 
additional sensor types within a device can improve clas-
sifier accuracy. It was theorised that multi-sensor devices 
would increase classifier accuracy due to the increase in 
measurable outputs, though this would only be possible to 
demonstrate through direct comparisons. However, it is per-
tinent to note that key a priori decisions, such as the quantity 
and configuration of sensors, may influence the apparent 
classifier accuracy and its interaction with protocol-related 
factors, for example, movements assessed and sensor place-
ment. This is suggested by the comparable binary classifier 
accuracies presented by Caporaso and Grazioso [62] and 
Lee et al. [70], who both used a single accelerometer on the 
lower back, and Kianifar et al. [68], in whose study a single 
multi-sensor device was worn on the shank. The classifier 
accuracies in all three studies were determined by compar-
ing against video footage assessed and labelled by an expert 
[62, 68, 70]. Both Kianifar et al. [68] and Caporaso and 
Grazioso [62] also employed three-level classifiers, which 

also indicated comparable accuracies. Notably, Kianifar 
et al. [68] applied classification methods to a unilateral 
squat, whereas Caporaso and Grazioso [62] and Lee et al. 
[70] used classifiers to highlight race-walking infringements. 
It is feasible that the increased instability that arises with 
unilateral movements, such as the unilateral squat used by 
Kianifar et al. [68], could have an influence on the assess-
ment accuracy, offsetting the possible benefits of additional 
sensors. To reinforce the capability of single-sensor units, 
Xu et al. [84] presented near perfect classification accuracy 
when measuring a cycling pedal motion, despite using a sin-
gle accelerometer. As the motion assessed was constrained 
to a fixed path, less variation in the movement was possible, 
thereby potentially simplifying the detection of key signal 
features.

Traditional feature-based classifiers were a common 
choice [61, 62, 65, 67, 70, 73], although no indication was 
given as to why this approach was selected over other classi-
fiers. It is possible that the simplicity of the assessment may 
be one factor [62, 70] while the benefits of using temporal 
parameters may be preferred when considering movement 
sequencing [65]. It does appear, however, that highlighting 
specific movement discrepancies is lacking in these stud-
ies due to a reliance on broad assessment criteria [61, 67, 
73]. A further limitation of traditional feature-based classi-
fiers is a reliance on real-world validation through manual 
assessment, a source of subjectivity and human error [61, 62, 
65, 67, 70]. Taken together, it is speculated that supervised 
machine-learning algorithms are preferable where possible, 
as they often use the same common signal features for the 
analysis but can negate much of the human error by remov-
ing subjectivity through the addition of algorithm training 
[66, 68, 72, 77, 78, 81, 82, 84, 85].

While an array of supervised learning methods was con-
sidered, SVM was the most widely used. This is unsurpris-
ing given that SVM consistently outperforms other classifi-
ers in the reviewed literature, as demonstrated by intra-study 
comparisons with other methods [68, 72]. Notably, in the 
only study that utilised multivariate regression [82], SVR, a 
regression model based on SVM, was shown to have compa-
rable results for quantifying movement quality when evalu-
ated against deep-learning alternatives, namely LSTM and 
CNN [82]. Indeed, while LSTM marginally outperformed 
both SVR and CNN models, albeit all models were fit for 
purpose, SVR may be more optimal than LSTM when using 
smaller datasets [82]; traditional machine learning algo-
rithms often generate comparable outcomes to deep learn-
ing methods under such circumstances [101]. Accordingly, 
Kianifar et al. [68] specifically highlighted the utility for 
smaller datasets and high-dimensional data that is charac-
teristic of most of the included classification studies. It is 
important to recognise, however, that while SVM appears 
to be preferable in the assessment of movement quality, no 
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machine learning algorithm is uniformly superior under all 
conditions [102, 103]. Indeed, the wider body of literature 
illustrates both the benefits and limitations that exist for the 
numerous machine learning options [102–104]. Hence, it 
is essential that researchers consider the array of available 
options when determining the most suitable approach for 
their intended application.

When employing supervised and unsupervised machine-
learning methods, statistical validation methods were gener-
ally used in lieu of manual assessments, with KF-CV and 
LOSOCV being the two primary options. Kianifar et al. 
[68] utilised and compared both validation methods, with 
KF-CV providing more accurate results. However, other 
studies employed LOSOCV with near-perfect accuracy 
[78], the suitability of which was specifically recommended 
by O’Reilly et al. [77] for universal classifiers. In contrast, 
O’Reilly et al. [77] employed LOOCV, as utilised in Masci 
et. al. [73], to validate a personalised classifier, where the 
classifier incorporated user-specific details. While this did 
improve accuracy considerably, the limitation of personal 
classifiers is the need to adapt to each user, introducing 
greater time demands and a less user-friendly experience. 
The most applicable validation method may therefore be 
dependent on a range of factors, such as the application, 
sensor positions, and data type. A notable example of this 
is in the study by Spilz and Munz [81], who implemented a 
CNN-LSTM layered neural network with two different vali-
dation methods, LOSOCV and KF-CV, at different stages of 
the network architecture.

Whilst unimodal sensor data has been used to assess 
movement quality [64], sensor-fusion algorithms are par-
ticularly prevalent in measurement-based studies. This is 
likely due to the issues associated with obtaining kinematic 
data from processing unimodal data, such as integration drift 
and gimbal lock. Indeed, the application of sensor fusion 
helps overcome such issues, whereby each sensor compen-
sates the limitations of other sensors [32]. However, sensor 
fusion is not a complete solution for assessing movement 
quality when implemented with IMU data as it does not 
enable the derivation of linear kinematic variables, such 
as linear displacement and velocity. The measurement of 
linear motion, therefore, remains reliant on the manipula-
tion of accelerometer data exclusively, which are typically 
erroneous [1, 32] unless combined with measurements from 
another measurement system, such as radio-based systems 
and cameras [32]. Nonetheless, several angular kinematic 
parameters can be gleaned from the sensor fusion of IMU 
data alone to highlight specific movement discrepancies [59, 
60, 72, 74, 79]. Interestingly, Del Din et al. [64] performed 
a double integration of accelerometer data to obtain step 
length, a metric based on linear displacement, reporting that 
pre-processing using a high-pass Butterworth filter largely 
addressed the issue of integration drift, though it is pertinent 

to note that other errors likely persisted [46]. Interestingly, 
the ICC was excellent between measurement methods, 
although Del Din et al. [64] acknowledged the limitations 
of using an instrumented walkway for comparison. There-
fore, the findings are likely to be less reliable than studies 
implementing an optical motion capture system, which is 
the case for the study by Ahmadi et al. [59] too, where the 
instrumentation is validated against itself, albeit using opti-
mised configurations. Mitternacht et al. [76] also performed 
a double integration on the acceleration data captured by 
the accelerometers to calculate linear position, reducing the 
influence of integration drift by dividing longer time series 
data into shorter 0.1 s segments. However, the medial shift 
estimate was too small to be considered reliable and was 
reported to a degree of precision that is likely unattainable 
based on the findings of other research [105, 106]. Unsur-
prisingly, therefore, the mean medial shift calculated using 
the IMU was found to be 47% lower than that obtained by 
the optical motion capture system, a relatively large amount 
of error. Similarly, Mitternacht et al. [76] and Tulipani et al. 
[83] integrated gyroscope data to calculate the angular dis-
placement of limb segments. While the results were mostly 
accurate and reliable in comparison to the gold-standard 
optical motion capture, it must be reiterated that the degree 
of tibial tilt observed during the movements in the study by 
Mitternacht et al. was almost negligible, while Tulipani et al. 
[83] applied an undisclosed algorithm to, at least in part, 
overcome the gyroscope deterministic bias offset, rather 
than simply integrating. Without disclosure of all process-
ing methods, it is not possible to identify what other methods 
may have influenced the results, thereby limiting interstudy 
comparisons. It is also important to note that only planar 
motion was considered, restricting movement to two, rather 
than three, dimensions, which could be influential on the 
accuracies reported.

Within the reviewed measurement studies, and indeed 
all studies included in the review, the Madgwick algorithm 
[48] was the most frequently used method of sensor fusion. 
Relative to Kalman and complementary filters, the Madg-
wick algorithm is still novel. While the reporting of accura-
cies with each method and the selection of movements is 
largely heterogeneous, there were no obvious advantages 
of the Madgwick algorithm identified for achieving accu-
rate measurements in comparison with Kalman and com-
plementary filters. However, both Ahmadi et al. [59] and 
Shepherd et al. [79] justified their selection of the Madgwick 
algorithm based on the low-computational demands of the 
algorithm. Shepherd et al. [79] also identified the suitability 
of the algorithm when aiming to utilise lower sampling rates 
and reduce power consumption [59, 79], ideal qualities for 
incorporation in commercially available wearable devices. 
While Beange et al. [60] and Shuai et al. [80] did not provide 
any reasons behind the use of the Kalman filter, Meng et al. 
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[74] highlighted the capability of the complementary filter 
approach to sensor fusion to overcome drift. However, both 
the Madgwick algorithm and Kalman filters can also be used 
to overcome drift, so it is difficult to attribute the selection 
of a complementary filter on this basis alone. Other possible 
reasons for the selection of a complementary filter could 
be the absence of a magnetometer, or simply the ease of 
implementation [107]. It is also plausible that an undisclosed 
design feature was utilised as part of the complementary 
filter to optimise performance for their specific application, 
given that the authors allude to the use of complementary 
filters in similar studies also assessing gait [74].

An observed trend is the use of sensor fusion to estimate 
joint angles, achieved by placing devices on both proximal 
and distal, or inferior and superior, segments and determin-
ing the orientation of each device relative to another [59, 60, 
71, 72, 74, 75, 80]. This method allows for the estimation of 
ROM, a particularly useful metric in both sports and clinical 
settings. Moreover, orientation data can also be applied rela-
tive to fixed coordinate systems. This approach was utilised 
by Shepherd et al. [79] to assess the forearm angle rela-
tive to the ground during a netball shot, and Cortesi et al. 
[63] to estimate wrist orientation throughout a swimming 
stroke as part of a more complete motion measurement. Both 
Shepherd et al. [79] and Cortesi et al. [63] utilise a single 
device for the measurement of specific components of an 
activity, which, whilst it may be adequate depending on the 
application, more complete movement assessments will typi-
cally require additional sensors. Indeed, even two sensors, 
the minimum requirement for estimating joint angles using 
sensor fusion, has been shown to be insufficient for sys-
temic measurements [60]. Therefore, when using wearable 
devices, each unit is only appropriate for localised measure-
ments, such as single-limb segments or single joints, thereby 
necessitating additional sensors to consider broader criteria.

5 � Conclusion

In conclusion, this systematic review has highlighted some 
of the key differences between the applications and pro-
cessing methods associated with the use of unimodal and 
multi-sensor wearable devices to assess movement quality. 
Further, the use of multiple devices increases the feasibility 
of effectively assessing holistic movements, while multi-sen-
sor devices offer the ability to obtain more output metrics. 
Actions should be taken to further improve measurement 
accuracy and multi-class classification accuracy, and to 
translate the systems into affordable, accessible, real-world 
solutions.
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