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Abstract

Background Movement quality is typically assessed by drawing comparisons against predetermined movement standards.
Movements are often discretely scored or labelled against pre-set criteria, though movement quality can also be evaluated
using motion-related measurements (e.g., spatio-temporal parameters and kinematic variables). Wearable technology has
the potential to measure and assess movement quality and offer valuable, practical feedback.

Objectives A systematic approach was taken to examine the benefits associated with multi-sensor and multiple wearable-
device usage, compared with unimodal applications, when assessing movement quality. Consequently, this review considers
the additional variables and features that could be obtained through multi-sensor devices for use in movement analyses.
Processing methods and applications of the various configurations were also explored.

Methods Articles were included within this review if they were written in English, specifically studied the use of wearable
sensors to assess movement quality, and were published between January 2010 and December 2022. Of the 62,635 articles
initially identified, 27 papers were included in this review. The quality of included studies was determined using a modified
Downs and Black checklist, with 24/27 high quality.

Results Fifteen of the 27 included studies used a classification approach, 11 used a measurement approach, and one used
both methods. Accelerometers featured in all 27 studies, in isolation (n=5), with a gyroscope (n=9), or with both a gyro-
scope and a magnetometer (n=13). Sampling frequencies across all studies ranged from 50 to 200 Hz. The most common
classification methods were traditional feature-based classifiers (n=35) and support vector machines (SVM; n=35). Sensor
fusion featured in six of the 16 classification studies and nine of the 12 measurement studies, with the Madgwick algorithm
most prevalent (n=7).

Conclusions This systematic review highlights the differences between the applications and processing methods associated
with the use of unimodal and multi-sensor wearable devices when assessing movement quality. Further, the use of multiple
devices appears to increase the feasibility of effectively assessing holistic movements, while multi-sensor devices offer the
ability to obtain more output metrics.

Movement quality is a historically overlooked component Wearable technology has been widely used in research to
of physical activity and exercise monitoring outside of elite measure and classify matters relating to movement qual-
sports [1]. Whilst wearable technology has become an inte- ity using an array of machine-learning and sensor-fusion
gral part of modern lifestyles, wearable movement tracker methods.
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outputs are almost exclusively focused on movement quan-
tity [2]. However, wearable technology also has the poten-
tial to measure and assess movement quality by facilitat-
ing specific and contextualised feedback [3]. Indeed, this is
advantageous in the reduction of injury risk, given that poor
quality movement is widely recognised as a contributor to
injury [4-9]. Additionally, better movement quality is rec-
ognised to enhance life-expectancy by increasing motivation
and confidence to engage in physical activity [10], and skill
proficiency is fundamental for optimal athletic performance
[11-13]. Furthermore, the development of motor compe-
tence across a wide array of motor skills in young people
is an essential foundation for overall health throughout the
lifecourse [10, 14]. Nonetheless, there remains an unmet
demand surrounding the assessment of, and feedback regard-
ing, movement quality, which could benefit greatly from the
capabilities of wearable devices [14].

While the definition of movement quality is open to inter-
pretation and likely context-specific, Venek et al. [15] offer a
perspicuous, generalised definition of movement quality as
“the degree to which replications of the original movements
can be performed in comparison to either an expert or pro-
fessional, or to a defined performance of an exercise” [15].
Further expanding on this definition, in clinical settings,
movement quality may be assessed by comparing patho-
logically influenced movements against healthy controls, or
normative data [16, 17]. Consequently, assessing movement
quality necessitates a predetermined standard against which
comparisons can be made, with discrete scoring or labelling
systems often employed to distinguish between good and
bad movements, different skill levels, or to highlight specific
movement discrepancies [15]. Moreover, movement quality
may also be evaluated using motion-based measurements,
for example, spatio-temporal parameters and kinematic vari-
ables [1], if baseline information exists to draw comparisons
against.

Bardid et al. [14] provide an overview of the wide range
of options currently available in the context of assessing
motor competence in children and adolescents, identifying
a spectrum from which appropriate assessment tools can be
selected depending on the application and criteria. However,
it is postulated that there could be a large degree of appli-
cability of this spectrum for assessing movement quality,
beyond the confines of motor development in children and
adolescents. Traditionally, movement-quality assessments
have frequently been subjectively conducted by experts, such
as physiotherapists, teachers, and/or trained assessors [15,
18-20]. However, modern technologies make it feasible to
conduct objective assessments [1], and support individuals
in the absence of a movement expert [21]. Camera-based
technologies such as optical motion capture [22, 23] and
depth cameras [22, 24, 25] are commonly used in the assess-
ment of movement quality due to an array of advantages

[22, 24, 25], though such methods are also associated with
significant limitations [20, 22, 24, 25]. Wearable technology,
however, may provide an affordable, practical, and efficient
alternative for assessing movement quality [14, 20, 21, 26,
27], with the potential for automated feedback using numeri-
cal data or visualisations [28]. Currently, there are many
commercially available wearable devices used to evaluate
movement, including unimodal sensors, such as accelerome-
ters, gyroscopes, and magnetometers [29-31], or multimodal
sensor devices, for example, an inertial measurement unit
(IMU) [32-35]. In addition, multiple multimodal sensors can
be utilised, where they are positioned at different anatomical
locations to provide additional and integrated outputs [27,
36]. Sensor combinations may enable a broader picture of
movements, which would be valuable when assessing move-
ment quality [1, 32].

Congruent with many subjective assessments [37-39],
data obtained by technology may be utilised to categorise
movement characteristics, using either binary or multi-class
classification methods [20]. A binary classification approach
is typically utilised to distinguish between a competent or
non-competent movement; that is, whether or not an indi-
vidual has demonstrated movement proficiency based on
the criteria of a predetermined standard. A multi-class clas-
sification approach, however, adds a degree of specificity
by highlighting specific characteristics [20]. The existing
literature suggests that the performance of classification
algorithms relative to others depends on many factors, such
as the movement performed, sensor positioning, and the
parameters considered [40—42]. Indeed, the accuracy of any
output from a wearable device can be influenced by the hard-
ware utilised, with sampling frequency being a key factor
that needs to be optimised to achieve maximum performance
[40, 43, 44]. Nevertheless, it is recognised that the use of
additional sensors and wearable devices would enable the
capture of a broader dataset with more measurable outputs,
which would theoretically enable a more in-depth, and possi-
bly accurate, classification by having a greater range of clas-
sifier inputs to select from [45]. Sensors are also commonly
applied to directly measure specific motion characteristics,
including kinematics such as acceleration, velocity, and dis-
placement [46]. However, it is also possible to capitalise on
concepts such as sensor fusion to estimate orientations and
angles when multiple types of sensors are available within
a device [45, 47, 48].

Previous reviews have provided insights into the poten-
tial use of wearable technology to widely assess move-
ment quality [15, 20, 21, 49]. Most recently, a scoping
review was conducted that provided a timely update on the
array of technology-based measurement methods available
for assessing movement quality, though the review only
sought to provide a broad overview of technology usage in
sport over a 5-year period [15]. Moreover, there is a lack
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of consideration in abovementioned reviews of the poten-
tial benefits of concurrent sensor usage, either within the
same multimodal sensor unit, or using multiple devices,
when compared to unimodal alternatives [15, 20, 21, 49].
The current systematic review, therefore, sought to high-
light any additional benefits that could be deduced when
concurrently applying multi-sensor devices, and indeed
multiple wearable devices, for the assessment of move-
ment quality, contextualised around sporting and clinical
applications. Consequently, this review also investigated
the additional variables, and indeed features, that could be
obtained through multi-sensor devices compared to uni-
modal sensors for use in movement analyses. Finally, this
systematic review aimed to distinguish between the pro-
cessing methods and applications of multi-sensor wearable
devices in comparison to unimodal sensors when assessing
movement quality.

2 Methods

The protocol was developed to implement a systematic
approach in accordance with guidelines provided by the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [50, 51]. A Population Intervention
Comparison Outcome (PICO) approach to the development
of the systematic review framework was also employed.
Details of the protocol for this systematic review were reg-
istered on PROSPERO (ID: CRD42020222587).

2.1 Search Strategy
An initial electronic literature search was completed

between November and December 2020, with additional
searches conducted to incorporate any additional relevant

publications up to December 2022. The searches sought
to identify published materials indexed in the following
five databases: MEDLINE, ACM Digital Library, IEEE
Xplore, SPORTDiscus, and Scopus. Initial keywords
‘movement’, ‘quality’, ‘wearable’ and ‘human’ were iden-
tified as suitable group headings for an expanded search of
other related search terms and synonyms, with a Boolean
search strategy implemented thereafter (Table 1; Online
Supplemental Resource (OSR) 1). The search strategy uti-
lised keywords in lieu of subject headings to broaden the
search. Search terms were sought from within the title,
abstract and listed keywords for each publication.

2.2 Literature Screening and Selection

Articles retrieved from the electronic databases were ini-
tially stored using Mendeley referencing software (Mendeley
Desktop, Version 1.19.8) before uploading to Rayyan [52]
for screening. The PRISMA flowchart [50] was utilised to
record the process of screening and selection. Duplicates
arising from the use of multiple databases were identified
within Rayyan and removed. Initially, titles and abstracts
were screened for full-text review according to the inclu-
sion and exclusion criteria (Table 2). The screening pro-
cess was conducted by two authors (TAS and AWHR) and
was blinded [52]; that is, each author screened the articles
independently, with discrepancies revealed on conclusion of
the screening phase. Inter-rater agreement was assessed at
each stage of the screening process using kappa scores [53].
All articles were screened by the first author (TAS), while
another researcher (AWHR) screened 10% [54, 55]. It is rea-
sonable when undertaking large reviews for two reviewers
to initially screen a small percentage of studies and discuss
variation in the interpretation of the inclusion criteria [55].
In doing so, this aids consistency when the remaining stud-
ies are screened by a single reviewer for inclusion within the
full-text screening phase [55]. A kappa score of 0.955, an

Table 1 Boolean search strategy

(movement* OR motion OR "human mechanics" OR kinematics OR biomechanics OR loco-

mot* OR "motor skill*" OR gait OR ambulat*)

(quality OR proficien* OR competen* OR performance OR abilit*)

(wearable* OR sensor* OR multi-sensor* OR multisensor* OR "inertial measurement unit*"

OR IMUS OR acceleromet* OR gyroscop* OR magnetomet* OR detector*)

General Specific search terms
Movement
AND
Quality
AND
Wearable
AND
Human

human* OR men OR women OR child* OR people OR adolescent$ OR teenagers OR athlete*

An asterisk (*) expanded the search to include all terms beginning with the letters preceding the asterisk.
A dollar sign ($) expanded the search to include a single additional letter in the position of the dollar sign.
The dollar sign was substituted with a question mark (?) when searching ACM Digital Library due to the

criteria for this database
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Table 2 Study inclusion and exclusion criteria

Inclusion criteria

Wearable sensors were used for the purpose of assessing movement
quality in medical and sporting applications

The wearable sensors were used to assess fine or gross motor skills
Human participants irrespective of age

The wearable devices were attached to individuals directly, or to
manually operated equipment (i.e. sports equipment)

Articles were published between January 2010 and December 2022
Peer-reviewed articles published in the English language
Experimental and analytical observational studies

Exclusion criteria

Descriptive and qualitative studies

Systematic reviews and literature reviews

Non-peer-reviewed literature

Other unsuitable resources such as conference presentations, expert
opinion, and grey literature

Studies that feature particularly varied or irregular movements, or
sequential combination movement patterns (i.e., multiple discrete
movement patterns performed transitionally in series)

Studies where wearable outputs were not assessed

almost perfect agreement [53], was observed during the title
and abstract screening, after which the discrepancies among
the dual-screened studies were resolved through discussion
between the two reviewers. All full texts of the remaining
articles were then screened against the inclusion and exclu-
sion criteria by the same two reviewers, again independently
under blind conditions. A weak agreement was initially
observed, generating a kappa score of 0.491. However, fol-
lowing discussions to clarify the inclusion criteria, any con-
flicts were discussed until a consensus was reached. Where
the two reviewers could not agree (n=2), the discrepancies
were discussed with a third independent reviewer (KAM)
until a consensus was reached, subsequently resulting in a
kappa score of 1.

2.3 Data Extraction

Following screening, data were extracted from the included
full texts by the lead author (TAS) and tabulated within a
customised data extraction form. The data extraction form
was subsequently reviewed by another author (MAM);
where discrepancies were identified, the data extraction form
was revised until both authors reached a consensus.

2.4 Quality Assessment

Two authors (TAS and AWHR) evaluated the quality of the
included studies to determine the risk of bias. The primary
author (TAS) assessed the quality of all studies, while the
other author (AWHR) assessed the quality of 14 of the 27

included studies, approximately 50%, in accord with Pai
and McGrady [56, 57]. A modified version of the Downs
and Black [58] checklist was selected as it can be used to
assess the methodological quality of both randomised con-
trolled trials and non-randomised studies. Specifically, the
modifications made to the Downs and Black checklist [58],
which were based on other systematic reviews synthesising
the use of wearable technology [21, 49], ensured specificity
and, therefore, relevance to the included studies. The criteria
were accompanied by a rating system developed to catego-
rise study quality as low (<33.3%), moderate (33.4-66.7%),
and high (>66.8%; OSR 2). The limits of each scoring cate-
gory were adopted from other systematic reviews focused on
the use of wearable technology to measure and assess move-
ment [21, 49]. Eighteen items were included in the checklist,
with each item rated between zero and two (0 =not present,
1 =limited detail and 2 =good detail). Inter-rater reliability
was calculated using kappa scores, with 0.8 identified as
the minimum acceptable inter-rater agreement [53]. Initially,
the kappa score for risk of bias was 0.273, indicative of fair
agreement [53]. Discrepancies centred around study design,
eligibility criteria, and the reliability of equipment, primarily
due to each author’s interpretation of the checklist questions.
The two authors discussed each point until a consensus was
reached, resulting in a kappa score of 1. Subsequently, the
remaining studies were reassessed based on the agreed inter-
pretation of each quality assessment checklist item.

Given the broad inclusion criteria and subsequent meth-
odological differences in the included studies, a narrative
synthesis was conducted. The methodological approach is
covered, with particular focus on the identification of sensor
features, the application of sensors and the obtained data,
and the techniques by which movement quality was assessed.
Data processing and analysis methods, including sensor-
fusion algorithms, machine-learning techniques and biologi-
cal modelling, were of particular interest. The findings of
the included studies were assessed, specifically focusing on
the comparison between unimodal and independent uses of
sensors and devices, and more systemic approaches, where
the data obtained from multiple sensors and devices were
concurrently utilised and integrated.

3 Results

A total of 62,635 titles were obtained across the five data-
bases, with 58,231 titles remaining after the removal of
duplicates. Following the screening of 80 full-texts, 27 arti-
cles were included in the final review (Fig. 1). For the qual-
ity assessment, 24 of the included studies were deemed to
be of high quality (score > 66.8%), with three identified as
moderate quality (score 33.4-66.7%; Table 3).
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3.1 Device and Sensor Specifications
and Applications

An array of devices was utilised in the included studies,
with little commonality (Table 4). The sensor configura-
tions and their applications within each study are detailed
in Tables 5 and 6, respectively. All included studies uti-
lised a wearable device that included an accelerometer,
either in isolation (n=35), in combination with a gyroscope
(n=9), or with both a gyroscope and a magnetometer
(n=13). Notably, however, eight of the 27 studies did not
utilise the full sensory capabilities of the device within
their study (Table 4) [62, 67-69, 76, 81, 83, 84]. There was
a similar degree of variation in the sampling frequencies
utilised (50-200 Hz; Table 4), which were reported in all
but one study [59].

The wearable devices were positioned across a broad
range of anatomical locations (Tables 5 and 6), most com-
monly on the lower back (n=15; [60-62, 64, 67, 68, 70,
72,73, 75,77, 78, 80, 81, 83]) and distal leg segments,
encompassing the shanks and ankles (n=14; [59, 61, 66,
68, 69, 72, 74, 76-78, 81, 83—85]). Other anatomical loca-
tions for the sensors were the wrists or forearms (n=38;
[61,63,67,69,71,72,79, 81]), thighs (n=28; [59, 68, 72,
77,78, 80, 81, 83]), chest (n=6; [63, 65, 67,71, 81, 85]),
feet (n=15; [72, 74, 80, 81, 84]), mid back (n=4; [60, 72,
75, 81]), upper arms (n=4; [63, 71, 72, 81]), pelvis (n=1;
[65]), hip (n=1; [83]), hand (n=1; [81]), and head (n=1;
[81]). Additionally, one study positioned a single wearable
device on a piece of sports equipment, specifically a table
tennis racket [82]. The number of wearable devices used
ranged from one to 17, with 25 of the 27 studies featuring
seven or fewer devices. Moreover, it was indicated by Liu
et al. [72] that not all 12 devices were utilised throughout
their entire study; only the upper body was considered in
the measurement of joint angles.

Sensor fusion was a common feature across the included
studies, with 14 of the 27 studies capitalising on such an
approach. The Madgwick algorithm [48] was employed
in seven studies [59, 63, 72, 75, 77-79], while a Kalman
filter [86] was used in five studies [60, 66, 68, 80, 82], and
complementary filters [87, 88] were used in two studies
[71, 74]. When using wearables to measure kinematics,
there were exceptions to the use of sensor fusion, with Del
Din et al. [64] utilising a single accelerometer, Mitternacht
et al. [76] using both accelerometers and gyroscopes, and
Tulipani et al. [83] employing gyroscopes exclusively.
In the studies by Del Din et al. [64] and Tulipani et al.
[83], sensor fusion was not possible due to the omission
of other sensors. Rather, Del Din et al. [64] applied the
inverted pendulum model [89] to measure step length,
while Tulipani et al. [83] integrated the angular velocity
obtained from the gyroscope using a proprietary algorithm

to calculate the angular displacement of body segments.
Mitternacht et al. [76] also opted to utilise an integration
method for the movements considered within this system-
atic review, integrating the angular velocity to determine
angles, and double integrating acceleration to calculate
linear position. The influence of integration drift [32] was
reduced by dividing longer time series data into shorter
segments [76]. Where sensor fusion was used to classify
movement characteristics [66, 68, 72, 77, 78, 82], the ori-
entation data were utilised to expand the available range
of features for implementation within the classification
algorithms.

3.2 Descriptive Aspects of Reviewed Studies

Of the 27 studies included in the systematic review, 16 fea-
tured methods that were used to classify movement quali-
ties or abnormalities (Table 5), and 12 used methods to
measure motion-based characteristics (Table 6) to assess
movement quality, typically through the measurement of
joint angles or segment-rotation angles [59, 60, 63,71, 72,
74-76, 79-81, 83]. Notably, one study directly measured
motion to assess movement quality while also employing
classification methods, and was therefore included in both
study groupings [72]. Four of the 27 studies used device-
based measures to assess the movement of healthy children
using wearables [61, 67, 69, 73], all of which utilised clas-
sification methods for assessing motor competence when
performing fundamental movement skills (FMS). Of the
remaining studies, 19 featured healthy adult samples [60,
62, 63, 65, 66, 68, 70, 74-85], three included both healthy
participants and participants with a pathology for compar-
ative purposes [59, 64, 71], while one study did not report
participant details [72]. Additionally, 11 of the 27 studies
were conducted in a clinical setting for medical applica-
tions [59, 60, 64, 66, 68, 71, 74, 85], with the remainder
focused on sports performance or sports-injury prevention;
all included articles were feasibility studies. Sample sizes
ranged from two to 77 participants, though 20 studies fea-
tured small sample sizes of 20 or fewer participants [59,
60, 62, 63, 65, 66, 68-72, 74, 76, 79-85].

3.3 Classification and Validation Methods Used
to Assess Movement Quality

Ten of the 16 classification studies incorporated a binary-
classification approach based on the data obtained from the
wearable sensors [61, 62, 65, 68-70, 72, 77, 78, 85], while
only nine studies applied a multi-class classification [62,
66-68, 73, 77, 78, 84]. Four studies employed and com-
pared both binary- and multi-class methods [62, 68, 77,
78]. In addition, Tabrizi et al. [82] employed multivariate
regression models, which, by definition, use continuous
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Fig.1 PRISMA flowchart [50]

and numeric outputs rather than featuring distinct classes.
Given the comparable characteristics between classification
and regression models, they have been categorised together
for this review. Specifically, Tabrizi et al. [82] used con-
ventional machine-learning methods, namely support vector
regression (SVR), and two deep-learning methods, convolu-
tional neural networks (CNN) and long short-term memory
(LSTM), which were used to generate movement quality
scores using set criteria [82]. For the true classification
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studies, where accuracies were presented as percentages,
binary skill-classification accuracy ranged from 69 to 100%
(Table 5) [61, 62, 68-70, 72, 77, 78, 85]. Ghasemzadeh and
Jafari [65] also applied a binary-classification approach,
though the results were defined in terms of the percentage
error of the wearable system relative to analysed video foot-
age (3.4%). Furthermore, while Ghobadi and Esfahani [66]
utilised a multi-class approach to distinguish different loco-
motor activities, there appears to be an intra-classification
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Table 4 Wearable device systems

Study Device name Components Sampling frequency
Accel- Gyroscope Magnetometer Other
erom-
eter
Ahmadi et al. (2015) [59] Novel system developed X X -
Beange et al. (2019) [60] MetaMotionR X X X 100 Hz
Bisi et al. (2017) [61] Opal X X X 128 Hz
Caporaso and Grazioso (2020) [62] G-Sensor 2 X X 200 Hz
Cortesi et al. (2019) [63] Opal X X X 128 Hz
Del Din et al. (2016) [64] AX3 X 50/100 Hz®
Ghasemzadeh and Jafari (2011) [65] TelosB X X 50 Hz
Ghobadi and Esfahani (2017) [66] x-IMU X X X 50 Hz
Grimpampi et al. (2016) [67] Opal X X X2 128 Hz
Kianifar et al.(2017) [68] 3-Space (specific model not stated) X X X 90+ 10 Hz, resam-
pled to 200 Hz
Lander et al. (2020) [69] MVN Awinda wireless motion capture X X2 X2 X2 50 Hz
suit
Lee et al. (2013) [70] Derivative of an inertial measurement X 100 Hz
system developed by [90]
Lin et al. (2021) [71] Novel system developed X X X 75 Hz
Liu et al. (2020) [72] Novel inertial measurement system X X X 148 Hz
developed by Dalian University of
Technology
Masci et al. (2013) [73] FreeSense X X 100 Hz
Meng et al. (2019) [74] Trigno (specific model not stated) X X 51.2 Hz
Michaud et al. (2021) [75] STT-IWS X X X 100 Hz
Mitternacht et al. (2022) [76] InvenSense ICM-20948 X X X 200 Hz
O’Reilly et al. (2017a) [77] Shimmer3 IMU X X X 51.2 Hz
O’Reilly et al. (2017b) [78] Shimmer3 IMU X X X 51.2 Hz
Shepherd et al. (2017) [79] SABELSense X X X 100 Hz
Shuai et al. (2022) [80] Perception Neuron X X X 100 Hz
Spilz & Munz (2022) [81] Shimmer3 IMU X X X X 120 Hz
Tabrizi et al. (2021) [82] BNOO055 X X X 70 Hz
Tulipani et al. (2018) [83] Opal X X X? 128 Hz
Xu et al. (2015) [84] InvenSense MotionFit X X X2 200 Hz
Zhang et al. (2014) [85] TEMPO 3.1 [91] X X 100 Hz

#Sensor was present but not utilised as part of the study

50 Hz initially, then device upgraded during the study to accommodate 100 Hz, which was resampled to 50 Hz

binary approach used to distinguish healthy and erroneous
gait patterns, with 99% accuracy reported for the detection
of abnormalities. Where a multi-class approach was other-
wise used, accuracies ranged from 53 to 99% [62, 68, 73,
77,78, 84]. Grimpampi et al. [67], and Spilz and Muntz [81]
also used multi-class classification approaches, though the
findings were reported based on the significance of differ-
ences between signal features in the former, and in terms of
F1-scores [93] in the latter.

A range of classification methods were applied within the
included studies (see Table 5). Most common were feature-
based classification methods, an overarching term used to
encompass traditional feature-learning methods, utilised in
five of the 16 studies [61, 62, 67, 70, 73], and SVM, also
used in five studies [66, 68, 72, 84, 85]. SVR, derived from
traditional SVM modelling, was also applied in Qiu et al.
[82]. Other classifiers used throughout the included studies
were k-nearest neighbour (KNN) [68], naive Bayes (NB)
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[68], k-means clustering [65, 69], logistic regression [72],
decision tree [72], XGBoost [72], random forests [77, 78],
CNN [81, 82], and LSTM [81, 82]. Three studies employed
multiple classifiers to determine the highest-performing
methods for their respective applications [68, 72, 82].
Across the range of classifiers, the studies employed differ-
ent approaches to feature selection (Table 5), although, with
the exception of Spilz and Munz [81], the studies typically
utilised raw sensor time-series data (n=15). However, it was
also common to derive kinematic data from the raw data
(n=3) [67, 73, 85] and capitalise on sensor fusion (n=06)
[66, 68, 72, 77, 78, 82] to expand the available features,
while also extracting features from the raw data in the fre-
quency domain (n=6) [66, 68, 72, 77, 78, 82]. An assort-
ment of validation methods was applied to the classifiers
throughout all included studies; six studies used a real-world
validation approach based on video footage [61, 62, 65, 67,
69, 70]. However, statistical methods were typically pre-
ferred, with seven studies using a k-fold cross-validation
(KF-CV) [66, 68, 72, 81, 82, 84, 85], four a leave-one-sub-
ject-out cross-validation (LOSOCYV) [68, 77, 78, 81], and
two a leave-one-out cross-validation (LOOCV) [73, 77].

3.4 Methods and Reference Standards
for the Measurement of Kinematic
Characteristics to Assess Movement Quality

Sensor-fusion algorithms enable the calculation of sensor
orientation, providing details of angular rotation about each
of the three axes when considering movement in three-
dimensional space. When wearable devices are positioned
either side of a joint, or joints, the orientations relative to
one another can enable joint angles to be estimated. A sen-
sor-fusion approach was taken in 9 of the 12 measurement
studies, including Cortesi et al. [63], where the kinematic
chain model was used in conjunction with sensor fusion to
generate both rotational and translational information [95].
Shepherd et al. [79] used sensor fusion in a simpler con-
cept by calculating forearm angles using the orientation of
a single device relative to the ground, comparable with Lin
et al. [71], who utilised certain components of a shoulder
range of motion (ROM) assessment. Similarly, Tulipani et al.
[83], using gyroscope data exclusively, determined angular
displacement for body segments rather than joint angles, a
method also adopted by Mitternacht et al. [76], who meas-
ured tibial tilt angles for assessing knee valgus. However,
Mitternacht et al. [76] also identified the linear medial shift
of the knee joint by double-integrating the mediolateral
acceleration obtained from the accelerometer. Del Din et al.
[64] was the only study to exclusively measure translational
movement without rotation or orientation, also using an inte-
gration-based method to obtain displacement and thereby
calculate the length of a step.

To validate measurements of motion using novel instru-
mentation or methods, a predetermined reference standard
is typically utilised for comparison, as is the case for all 12
of the measurement-based studies included in this review
(see Table 6). Del Din et al. [64], for example, used an
instrumented walkway to validate the measurement accel-
erometer, providing a strong intra-class correlation coef-
ficient (ICC) for both healthy participants (ICC =0.913)
and for those with Parkinson’s disease (ICC =0.869).
However, optical motion capture, generally considered to
be the gold-standard for measuring movement [22], was
utilised by 10 of the 12 measurement studies to validate
the wearable sensor measurements (Table 6) [60, 63, 71,
72, 74-76, 79, 80, 83]. Six studies evaluated the accura-
cies of the angles calculated using the wearable sensor
data in terms of root-mean-square error (RMSE) when
compared to the optical motion capture systems [71, 74,
75, 76, 80, 83]. Considering three different walking speeds
(0.5, 1.0 and 1.5 m-s_l), Meng et al. [74] reported that
the RMSE was always less than 3.5°. This is congruent
with Tulipani et al. [83], where the overall average RMSE
across a series of movements was 3.7°, and Lin et al. [71],
who observed a maximum mean RMSE of 3.6° across the
series of tests conducted. Moreover, Michaud et al. [75]
found similar results when monitoring lumbar flexion and
pelvic tilt, with RMSE ranging from 1.9° to 3.0° for the
barbell deadlift and the American kettlebell swing. Mit-
ternacht et al. [76] also reported comparable results, where
the RMSE ranged from 1.4° to 2.2°. However, whilst the
measurements were captured to determine knee instabil-
ity during movements featuring knee flexion, namely the
one-leg squat and drop jump, knee instability was not evi-
dent, resulting in minimal movement of the IMU. Con-
sequently, the observed measurement errors were small
[76]. Shuai et al. [80] reported a greater degree of error,
with RMSE ranging from 2.1° to 13.1° across all meas-
ured joints and configurations. Cortesi et al. [63] evaluated
the translational motion of a wrist-worn device against
an optical motion capture system and reported a RMSE
of 7.70 cm. Both Shepherd et al. [79] and Liu et al. [72]
stated the mean error as percentages, indicating that the
sensors overestimated the forearm angle by an average of
4.03% and calculating a maximum mean error of 3.72%,
respectively. Beange et al. [60] reported on the reliabil-
ity of wearable sensors when compared against an optical
motion capture system for measuring spinal motion. Spe-
cifically, the authors reported on spinal flexion—extension
angles (0.807 <ICCg; £0.919), and the sum of squares of
flexion—extension, lateral bend, and axial twist angles to
measure local dynamic stability (0.738 <ICCgq <0.868)
[60]. Ahmadi et al. [59] utilised normative data and
applied a phase-shift registration algorithm [96] to refine
the joint angle measurements before conducting an
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intra-study comparison against an unregistered approach.
The phase shift, a pre-analysis curve transformation tech-
nique that uses a timescale shift based on the position of
signal features [96], was used to align flexion—extension
curves for foot contact cycles during jogging. Both the
registered and unregistered curves were stated by Ahmadi
et al. [59] to be representative of the mean joint angles
obtained across the sample, where it was observed that the
unregistered curve significantly underestimated the joint
angle maxima (p=0.002) and minima (p <0.001) relative
to the phase-shift registration algorithm. While significant,
with the authors noting that even small differences could
be indicative of injury, or increased risk of injury, they
also acknowledged observed similarities between the joint
angle curves generated throughout the duration of each
movement.

4 Discussion

This systematic review sought to highlight any additional
benefits that could be gained using multi-sensor devices,
or multiple wearable devices, in place of unimodal sensors
or a single device, respectively, when assessing movement
quality. Accordingly, this review also investigated the addi-
tional variables, and indeed features, that could be obtained
through multi-sensor devices for use in movement analyses.
Further, the systematic review aimed to differentiate between
the processing methods and applications of multi-sensor
wearable devices in comparison to unimodal sensors when
assessing movement quality. Evidence from the current
review suggests that most movement quality assessments
utilising wearable technology centre around expert-led or
expert-based assessments [61, 62, 67-70, 73, 76-81, 83],
often capitalising on pre-validated movement screening
methods [61, 67, 69, 73, 76, 81]. Alternatively, movements
are commonly assessed using proficient performers as the
baseline [59, 60, 64, 66, 71, 72, 75, 84, 85]. Nevertheless,
there are additional methodological considerations for the
assessment of movement quality, and the authors of future
reviews are recommended to further consider the specifics
surrounding movement-quality assessment methods and the
integration of technology. The reviewed studies revealed two
overarching themes in the use of wearable technology to
assess movement quality, with technology either used to
classify movements or to directly measure motion for com-
parison against a baseline. To distinguish between the two
methods, the results of these studies were reported inde-
pendently, though Liu et al. [72] featured in both measure-
ment and classification categories. It is pertinent to note
that accuracies reported for each included study may not be

comparable if applied to other movements with alternative
sensor placements.

All studies included in the review utilised an acceler-
ometer, a gyroscope, or a magnetometer, or a combination
thereof. Accelerometers were the most common of the three
sensors, likely due to the versatility and historical applica-
tion of these sensors when measuring movement [97].
Most often, the sensors were tri-axial and could therefore
capture data in three dimensions, which is desirable given
that typical human movements are not linearly constrained.
Nonetheless, Ghasemzadeh and Jafari [65] used a tri-axial
accelerometer coupled with a bi-axial gyroscope, although
the two-dimensional angular velocity data obtained from the
gyroscope were most likely sufficient for the intended appli-
cation, as the focus was solely on rotation in the transverse
plane.

Across all studies, the sampling frequency did not vary
substantially when using a classification or measurement
method. The comparable sampling frequencies are possi-
bly related to the type of movements assessed, all of which
were gross motor skills. Additionally, the range of sampling
frequencies follows existing trends in other areas of the lit-
erature for similar applications [21]. Higher sampling fre-
quencies may increase the clarity of motion measurements,
particularly in explosive or finer movement patterns [40],
although no included study considered fine motor skills
and only five of the included studies could be considered to
have used explosive movements: a baseball bat swing [65],
overarm throw [67], table tennis forehand strikes [82], drop
jump [76], and countermovement jump [80]. These stud-
ies featured sampling frequencies of 50 Hz, 128 Hz, 70 Hz,
200 Hz, and 100 Hz, respectively, which are relatively low
in contrast to the frequencies recommended by Worsey et al.
[40], and mostly at the lower end of the range of sampling
frequencies observed in this review. Two of these studies
[65, 67] successfully utilised a true classification method,
suggesting that, for each classification method applied, the
sampling frequencies were adequate. Tabrizi et al. [82] used
a regression method, which was also successfully imple-
mented using a sampling frequency below the average across
this review. While Mitternacht et al. [76] and Shuai et al.
[80] both aimed to measure motion during explosive move-
ments, each study has limitations. Specifically, none of the
participants in the study by Mitternacht et al. [76] exhibited
noticeable knee instability during the drop jump, suggesting
that observed tibial movement was minimal. Shuai et al. [80]
used a height-restricted countermovement jump to prevent
marker occlusion as well as timing controls to reduce the
influence of movement speeds on measurements. Conse-
quently, it was not possible based on the evidence provided
by the studies included in this review to deduce whether an
increased sampling frequency would have an inherent benefit
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for measuring motion in studies assessing explosive move-
ments, though speculatively, high sampling frequencies may
be required to obtain accurate instantaneous measurements
for high-speed movements due to the risk of aliasing error
[98]. Indeed, it is not uncommon for average measurements
to be utilised when measuring fast movements using weara-
bles [99] due to the inability of low-sampling-frequency
devices to capture sufficient data during rapid changes in
the signal [98]. Yet, what we can determine from this review
is that it is feasible to assess movement quality, including
rapid human movements, using comparatively lower sam-
pling frequencies when employing classification methods,
for which high signal resolution may not be required. Of
note, sensors with enhanced design features typically have
higher unit costs [100], meaning most cost-effective, com-
mercially available sensors likely avoid particularly high
sampling frequencies.

The included studies featuring a classification approach
highlighted the variety of factors that can influence the accu-
racy of classifiers. O’Reilly et al. [77, 78], for example, drew
intra-study comparisons, where it was observed that, overall,
a decrease in the quantity of sensors used tended to reduce
classification accuracy. However, it was reported in both
studies that the accuracy was not always markedly dimin-
ished by reducing the number of sensors utilised, depending
on sensor location. Specifically, it was shown that single sen-
sors worn on the shanks during bodyweight squats [78], or
on the lower back or thighs for deadlifts [77] could provide
comparable classification accuracies to a configuration with
as many as five sensors. However, classification accuracy
typically reduced considerably when using fewer sensors in
sub-optimal positions for the respective movements, such
as the shanks for the deadlift [77] and the lower back for
bodyweight squats [78]. This is further evidenced when
comparing the results of the two O’Reilly et al. [77, 78]
studies, with the multi-class classifier employed for assess-
ing squat technique [78] being noticeably more accurate
than the equivalent classifier for the deadlift [77], despite
the same sensor placements being used. It is speculated that
this is due to the more proximal positions of the sensors
to the main area of the observed deviations (i.e., the lower
limbs) during the squat, whereas the deviations identified
for the deadlift largely overlooked lower limb movements
and positions. However, it may be feasible to obtain good
classification accuracies with multi-class classifiers using
fewer sensors. As indicated by Masci et al. [73], as few as
one sensor may indeed be adequate when assessing global
movements provided that broader criteria are employed,
rather than aiming to highlight a specific movement dis-
crepancy. However, further research is required to further
explore this hypothesis. Nonetheless, it is essential to recog-
nise that when using fewer than the maximal available sen-
sors, the best-performing device positions were dependent

on the movements assessed by O’Reilly et al. [77, 78]. This
is a limitation for real-world applications, as to use the opti-
mal sensor position for each movement would require an
adjustment to the anatomical positioning of a sensor, or sen-
sors, to maximise accuracy when conducting a sequential
assessment with multiple movements, a potentially time-
consuming step. However, it may be plausible to consider
a practical compromise by using a single-sensor placement
that ensures adequate accuracy when assessing multiple
movements, without rigidly adhering to the optimal posi-
tion for each specific movement. This approach can help
alleviate the requirement for time-consuming adjustments
to individual sensor positions, making it more feasible and
efficient for real-world applications. O’Reilly et al. [77, 78]
also conducted intra-study comparisons between binary
classifiers, where movements were categorised as either
proficient or not proficient, and a multi-class classifier fea-
turing five classes, where the specific deviations from the
accepted movement standard were highlighted. Congruent
with Kianifar et al. [68], the multi-class classifiers were less
accurate than the binary classifiers due to the need to dis-
tinguish specific movement errors from the data [77, 78].
However, multi-class classifiers have the potential to be
more informative, given that specific movement discrepan-
cies can be detected [77, 78]. Future research to improve the
accuracy of multi-class classifiers is therefore warranted.
Notably, O’Reilly et al. [77, 78] and Kianifar et al. [68] con-
sidered movements that were lower-limb dominant, with the
sensor configurations reflecting this. A key consideration
of this review is that the accuracies reported in each study
may not be comparable if applied to other movements with
alternative sensor placements. Moreover, classifiers based
on natural movement deviations appear to underperform in
comparison to those where movement errors were induced
[77]. This highlights a key challenge that may arise when
performing movement quality assessments using wearable
devices in real-world applications.

While O’Reilly et al. [77, 78] and Kianifar et al. [68] con-
sidered the relationship between a reduction in the quantity
of sensors and the accuracy of classifiers, each placement
location featured a device consisting of more than one type
of sensor. This is because each study utilised sensor fusion
to provide additional metrics, such as limb orientations and
joint angles, which were fed into the respective classification
algorithms [68, 77, 78], as was the case with Ghobadi and
Esfahani [66], Liu et al. [72], and Tabrizi et al. [82]. Unfor-
tunately, based on the reviewed literature, it is not possible to
make comparisons between the use of multi-sensor devices
and unimodal sensors in equivalent anatomical positions,
nor to consider the use of multiple types of unimodal sensors
applied outside of a single device when assessing movement
quality. Indeed, the methodological heterogeneity among the
included studies prevents conclusions being drawn regarding
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the potential benefits of using multi-sensor devices over uni-
modal alternatives. It is speculated that unimodal sensors
would not perform as well as multi-sensor devices for iden-
tifying movement discrepancies using classifiers, not least
because it would only be possible to obtain the orientation
data, and subsequently utilise the orientation signal features
if sensor combinations exist within one device. In such
instances where additional signal features were obtained,
classifiers were often very accurate [66, 72, 82], and possi-
bly more so than those with fewer features. However, lower
accuracies were also detected using the same signal features
under less optimal configurations [68, 77, 78].

Accelerometers were used in isolation in four of the clas-
sification studies [62, 69, 70, 84]. Of interest, accelerometers
were the only type of sensor used in isolation and most com-
monly in studies that required classifiers with less complex-
ity. Specifically, Lee et al. [70] and Caporaso and Grazioso
[62] used algorithmically simple classifiers based on tempo-
ral features of the acceleration signal to detect loss of ground
contact during race walking, while Lander et al. [69] and Xu
et al. [84] also considered the features of acceleration signals
but assessed their correlation with pre-existing signals that
corresponded with key assessment criteria. The absence of
additional sensors appears to restrict what may be achieved,
and while this is not always a barrier when implementing
simple classifiers, other studies using additional sensory data
have demonstrated greater detail, specificity, and applicabil-
ity to a wider selection of movements. Indeed, sensor fusion,
utilised in six of the classification studies [48, 66, 68, 72, 77,
78, 82] to obtain orientation information as an additional
input to the classifier, was reported to be associated with
good accuracies.

It is presently unclear as to how influential the specific
assessment criteria and movements are on the accuracy of
classifiers, meaning it is difficult to definitively state whether
additional sensor types within a device can improve clas-
sifier accuracy. It was theorised that multi-sensor devices
would increase classifier accuracy due to the increase in
measurable outputs, though this would only be possible to
demonstrate through direct comparisons. However, it is per-
tinent to note that key a priori decisions, such as the quantity
and configuration of sensors, may influence the apparent
classifier accuracy and its interaction with protocol-related
factors, for example, movements assessed and sensor place-
ment. This is suggested by the comparable binary classifier
accuracies presented by Caporaso and Grazioso [62] and
Lee et al. [70], who both used a single accelerometer on the
lower back, and Kianifar et al. [68], in whose study a single
multi-sensor device was worn on the shank. The classifier
accuracies in all three studies were determined by compar-
ing against video footage assessed and labelled by an expert
[62, 68, 70]. Both Kianifar et al. [68] and Caporaso and
Grazioso [62] also employed three-level classifiers, which

also indicated comparable accuracies. Notably, Kianifar
et al. [68] applied classification methods to a unilateral
squat, whereas Caporaso and Grazioso [62] and Lee et al.
[70] used classifiers to highlight race-walking infringements.
It is feasible that the increased instability that arises with
unilateral movements, such as the unilateral squat used by
Kianifar et al. [68], could have an influence on the assess-
ment accuracy, offsetting the possible benefits of additional
sensors. To reinforce the capability of single-sensor units,
Xu et al. [84] presented near perfect classification accuracy
when measuring a cycling pedal motion, despite using a sin-
gle accelerometer. As the motion assessed was constrained
to a fixed path, less variation in the movement was possible,
thereby potentially simplifying the detection of key signal
features.

Traditional feature-based classifiers were a common
choice [61, 62, 65, 67, 70, 73], although no indication was
given as to why this approach was selected over other classi-
fiers. It is possible that the simplicity of the assessment may
be one factor [62, 70] while the benefits of using temporal
parameters may be preferred when considering movement
sequencing [65]. It does appear, however, that highlighting
specific movement discrepancies is lacking in these stud-
ies due to a reliance on broad assessment criteria [61, 67,
73]. A further limitation of traditional feature-based classi-
fiers is a reliance on real-world validation through manual
assessment, a source of subjectivity and human error [61, 62,
65, 67, 70]. Taken together, it is speculated that supervised
machine-learning algorithms are preferable where possible,
as they often use the same common signal features for the
analysis but can negate much of the human error by remov-
ing subjectivity through the addition of algorithm training
[66, 68, 72,77, 78, 81, 82, 84, 85].

While an array of supervised learning methods was con-
sidered, SVM was the most widely used. This is unsurpris-
ing given that SVM consistently outperforms other classifi-
ers in the reviewed literature, as demonstrated by intra-study
comparisons with other methods [68, 72]. Notably, in the
only study that utilised multivariate regression [82], SVR, a
regression model based on SVM, was shown to have compa-
rable results for quantifying movement quality when evalu-
ated against deep-learning alternatives, namely LSTM and
CNN [82]. Indeed, while LSTM marginally outperformed
both SVR and CNN models, albeit all models were fit for
purpose, SVR may be more optimal than LSTM when using
smaller datasets [82]; traditional machine learning algo-
rithms often generate comparable outcomes to deep learn-
ing methods under such circumstances [101]. Accordingly,
Kianifar et al. [68] specifically highlighted the utility for
smaller datasets and high-dimensional data that is charac-
teristic of most of the included classification studies. It is
important to recognise, however, that while SVM appears
to be preferable in the assessment of movement quality, no
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machine learning algorithm is uniformly superior under all
conditions [102, 103]. Indeed, the wider body of literature
illustrates both the benefits and limitations that exist for the
numerous machine learning options [102—-104]. Hence, it
is essential that researchers consider the array of available
options when determining the most suitable approach for
their intended application.

When employing supervised and unsupervised machine-
learning methods, statistical validation methods were gener-
ally used in lieu of manual assessments, with KF-CV and
LOSOCYV being the two primary options. Kianifar et al.
[68] utilised and compared both validation methods, with
KF-CV providing more accurate results. However, other
studies employed LOSOCV with near-perfect accuracy
[78], the suitability of which was specifically recommended
by O’Reilly et al. [77] for universal classifiers. In contrast,
O’Reilly et al. [77] employed LOOCYV, as utilised in Masci
et. al. [73], to validate a personalised classifier, where the
classifier incorporated user-specific details. While this did
improve accuracy considerably, the limitation of personal
classifiers is the need to adapt to each user, introducing
greater time demands and a less user-friendly experience.
The most applicable validation method may therefore be
dependent on a range of factors, such as the application,
sensor positions, and data type. A notable example of this
is in the study by Spilz and Munz [81], who implemented a
CNN-LSTM layered neural network with two different vali-
dation methods, LOSOCYV and KF-CV, at different stages of
the network architecture.

Whilst unimodal sensor data has been used to assess
movement quality [64], sensor-fusion algorithms are par-
ticularly prevalent in measurement-based studies. This is
likely due to the issues associated with obtaining kinematic
data from processing unimodal data, such as integration drift
and gimbal lock. Indeed, the application of sensor fusion
helps overcome such issues, whereby each sensor compen-
sates the limitations of other sensors [32]. However, sensor
fusion is not a complete solution for assessing movement
quality when implemented with IMU data as it does not
enable the derivation of linear kinematic variables, such
as linear displacement and velocity. The measurement of
linear motion, therefore, remains reliant on the manipula-
tion of accelerometer data exclusively, which are typically
erroneous [1, 32] unless combined with measurements from
another measurement system, such as radio-based systems
and cameras [32]. Nonetheless, several angular kinematic
parameters can be gleaned from the sensor fusion of IMU
data alone to highlight specific movement discrepancies [59,
60, 72, 74, 79]. Interestingly, Del Din et al. [64] performed
a double integration of accelerometer data to obtain step
length, a metric based on linear displacement, reporting that
pre-processing using a high-pass Butterworth filter largely
addressed the issue of integration drift, though it is pertinent

to note that other errors likely persisted [46]. Interestingly,
the ICC was excellent between measurement methods,
although Del Din et al. [64] acknowledged the limitations
of using an instrumented walkway for comparison. There-
fore, the findings are likely to be less reliable than studies
implementing an optical motion capture system, which is
the case for the study by Ahmadi et al. [59] too, where the
instrumentation is validated against itself, albeit using opti-
mised configurations. Mitternacht et al. [76] also performed
a double integration on the acceleration data captured by
the accelerometers to calculate linear position, reducing the
influence of integration drift by dividing longer time series
data into shorter 0.1 s segments. However, the medial shift
estimate was too small to be considered reliable and was
reported to a degree of precision that is likely unattainable
based on the findings of other research [105, 106]. Unsur-
prisingly, therefore, the mean medial shift calculated using
the IMU was found to be 47% lower than that obtained by
the optical motion capture system, a relatively large amount
of error. Similarly, Mitternacht et al. [76] and Tulipani et al.
[83] integrated gyroscope data to calculate the angular dis-
placement of limb segments. While the results were mostly
accurate and reliable in comparison to the gold-standard
optical motion capture, it must be reiterated that the degree
of tibial tilt observed during the movements in the study by
Mitternacht et al. was almost negligible, while Tulipani et al.
[83] applied an undisclosed algorithm to, at least in part,
overcome the gyroscope deterministic bias offset, rather
than simply integrating. Without disclosure of all process-
ing methods, it is not possible to identify what other methods
may have influenced the results, thereby limiting interstudy
comparisons. It is also important to note that only planar
motion was considered, restricting movement to two, rather
than three, dimensions, which could be influential on the
accuracies reported.

Within the reviewed measurement studies, and indeed
all studies included in the review, the Madgwick algorithm
[48] was the most frequently used method of sensor fusion.
Relative to Kalman and complementary filters, the Madg-
wick algorithm is still novel. While the reporting of accura-
cies with each method and the selection of movements is
largely heterogeneous, there were no obvious advantages
of the Madgwick algorithm identified for achieving accu-
rate measurements in comparison with Kalman and com-
plementary filters. However, both Ahmadi et al. [59] and
Shepherd et al. [79] justified their selection of the Madgwick
algorithm based on the low-computational demands of the
algorithm. Shepherd et al. [79] also identified the suitability
of the algorithm when aiming to utilise lower sampling rates
and reduce power consumption [59, 79], ideal qualities for
incorporation in commercially available wearable devices.
While Beange et al. [60] and Shuai et al. [80] did not provide
any reasons behind the use of the Kalman filter, Meng et al.
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[74] highlighted the capability of the complementary filter
approach to sensor fusion to overcome drift. However, both
the Madgwick algorithm and Kalman filters can also be used
to overcome drift, so it is difficult to attribute the selection
of a complementary filter on this basis alone. Other possible
reasons for the selection of a complementary filter could
be the absence of a magnetometer, or simply the ease of
implementation [107]. It is also plausible that an undisclosed
design feature was utilised as part of the complementary
filter to optimise performance for their specific application,
given that the authors allude to the use of complementary
filters in similar studies also assessing gait [74].

An observed trend is the use of sensor fusion to estimate
joint angles, achieved by placing devices on both proximal
and distal, or inferior and superior, segments and determin-
ing the orientation of each device relative to another [59, 60,
71,72,74,75, 80]. This method allows for the estimation of
ROM, a particularly useful metric in both sports and clinical
settings. Moreover, orientation data can also be applied rela-
tive to fixed coordinate systems. This approach was utilised
by Shepherd et al. [79] to assess the forearm angle rela-
tive to the ground during a netball shot, and Cortesi et al.
[63] to estimate wrist orientation throughout a swimming
stroke as part of a more complete motion measurement. Both
Shepherd et al. [79] and Cortesi et al. [63] utilise a single
device for the measurement of specific components of an
activity, which, whilst it may be adequate depending on the
application, more complete movement assessments will typi-
cally require additional sensors. Indeed, even two sensors,
the minimum requirement for estimating joint angles using
sensor fusion, has been shown to be insufficient for sys-
temic measurements [60]. Therefore, when using wearable
devices, each unit is only appropriate for localised measure-
ments, such as single-limb segments or single joints, thereby
necessitating additional sensors to consider broader criteria.

5 Conclusion

In conclusion, this systematic review has highlighted some
of the key differences between the applications and pro-
cessing methods associated with the use of unimodal and
multi-sensor wearable devices to assess movement quality.
Further, the use of multiple devices increases the feasibility
of effectively assessing holistic movements, while multi-sen-
sor devices offer the ability to obtain more output metrics.
Actions should be taken to further improve measurement
accuracy and multi-class classification accuracy, and to
translate the systems into affordable, accessible, real-world
solutions.
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