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A B S T R A C T   

It is important to be able to predict the creep life of materials used in power plants. This paper illustrates the 
inadequacies of existing parametric creep models in achieving this aim for 2.25Cr–1Mo steel. This breakdown 
occurs due to different creep mechanisms being present at different test conditions. This paper puts forward a 
locally weighted estimation technique (LOESS) to tackle this problem that importantly maintains the parametric 
model’s structure by using local (to the test condition) weighted regression procedures. It was observed that this 
technique not only produces more sensible values for key parameters such as the activation energy, but it also 
produces much more accurate predictions of lifetimes close to operating conditions when using only short-term 
data (less than 10,000 h) to quantify the creep model’s unknown parameters. The variation in the model’s creep 
parameters with stress were also consistent with previous studies on the changing creep mechanisms for this 
material.   

1. Introduction 

It is important to be able to predict the creep life of materials used in 
power plants and aeroengines. When this can be done with a high degree 
of confidence, the results can potentially be used to justify the continued 
use of aging power plants beyond their original design lives as a short- 
term solution to potential energy gaps. 2.25Cr–1Mo is a main stay 
steel used for structural components operating at high temperature 
within such aging power plants - where the usual service conditions for 
heater tubes is around 823 K and 35 MPa. Yet, it has proved very 
challenging to predict the service life of this material at such conditions 
using just the results from accelerated tests (tests done at higher stresses 
and temperatures). This is because the dominant creep mechanism for 
this material appears to change with stress. An early study on this ma
terial by Maruyama et al. [1] identified three separate stress regimes for 
the MAF batch of 2.25Cr–1Mo steel in Creep Data Sheet 3B &50 [2,3], 
published by the Japanese National Institute for Materials Science. 
(These data sheets have numerous batches of this steel each of which 
were subjected to a different heat treatment and had a different chemical 
composition. The composition of the MAF batch was in wt.%: Fe – 2.46 
Cr – 0.94Mo – 0.1C–0.23Si – 0.43Mn – 0.011P – 0.009S–0.008Ni – 
0.07Cu – 0.005Al). A more recent study by Wilshire and Whittaker [4] 

also identified three different stress regimes. Indeed, changing creep 
mechanisms are a major cause of creep models failing to accurately 
predict creep life at operating conditions based on accelerated test data. 

Both above-mentioned studies normalised the stress. The study by 
Maruyama et al. [1] normalised the stress by dividing it through by the 
Young’s modulus values quoted in their paper and then the minimum 
creep rate was made a power law function of this normalised stress. In 
contrast, Wilshire and Whittaker [4] normalised by dividing the stress 
through by the tensile strength for the material and the minimum creep 
rate was then made a power law function of the reciprocal of this log 
normalised stress. In both models’ failure time was temperature 
compensated using an Arrhenius relation. In each model there was no 
evidence found for an activation energy that varied with stress and 
temperature (but different activation energies were identified by these 
authors that is likely the result of the different normalisation of stress 
that was used in each case - with Qc = 421 kJmol-1 in the Maruyama et al 
[1]. and Qc = 230 kJmol-1 in the Wilshire and Whittaker [4] study). 

Despite this difference, the creep mechanism identified in each stress 
regime was very similar in each paper. The high stress regime corre
sponded to stresses above the materials yield stress where new dislo
cations multiply rapidly during the initial strain on loading, i.e. plastic 
deformation takes place by a dislocation glide mechanism. Thereafter, 
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dislocation creep begins where the main obstacle to their movement is 
the changed dislocation substructure upon high stress loading. In the 
medium stress regime, where the stress is below the yield stress, speci
mens deform elastically upon loading and the dislocation substructure 
remains almost as it was before testing begins. Dislocation creep must 
occur not so much by the generation of new dislocations but more by the 
movement of the dislocations pre-existing in the as received bainitic 
microstructure. Dislocation creep is therefore present from the start with 
the main obstacles to their movement being precipitates such as M2C- 
type carbides. The initial plastic deformation present in the high stress 
regime gives rise to bigger creep rates relative to the medium stress 
regime, so that any reduction in stress will then results in smaller in
creases in life relative to the medium stress regime. The lowest stress 
regime is characterised by very long test durations that degrades the 
initial bainitic microstructure - the original lath-like structure entirely 
disappears. This causes the creep rate to increase sharply, compared to 
that in the intermediate stress regime, so that any reduction in stress will 
then results in smaller increases in life relative to the medium stress 
regime. Fig. 1 shows the three stress regimes identified by Maruyama 
et al.‘s [1]. 

Some solutions to this problem of changing creep mechanisms are 
present in the literature. A recent approach taken by Ding et al. [5], is to 
specify a separate equation to explain creep rates due to grain boundary 
sliding, dislocation creep and dislocation glide. The overall creep rate is 
then simply the sum of the creep rates predicted by these mechanisms. 
Integration using true stress and true strain then yields an expression for 
predicting the observed creep curve at any point in time based on these 
evolving creep mechanisms. The approach is readily extended to 
encompass other mechanisms - for example including a role for high 
temperature oxidation. By modelling the whole creep curve, this 
approach can predict the role of both primary creep and microstructure 
evolution on time to failure. As an alternative to the specification of 
different equations for different creep mechanisms is to use the same 
creep model but apply it over a limited range of test conditions where 

the mechanism is constant, and then allow the parameters of this single 
model to change at more divergent test conditions. Changing parameter 
values within a single creep equation then account for changing creep 
mechanisms. Whilst this more empirical approach has the advantage of 
simplicity, it is not able to model the role of primary creep on time to 
failure - although the role of microstructure evolution is revealed by the 
changing patterns of the model’s parameters. 

The alternative approach taken by Bolton [6] is to accepted that 
many parametric creep models are correctly specified with respect to 
temperature but are incorrectly specified with respect to stress. Conse
quently, the stress – failure time relationship given by a particular model 
is replaced with cubic piece-wise splines. However, the use of such 
splines place limits on the extent to which extrapolations can be made 
with respect to stress and so a life prediction at the service stress may not 
always be possible. The alternative is to adopt the approach typically 
used when working with the Wilshire model [4]. Here the relationship 
between stress and failure time implied by the model is maintained, so 
enabling unlimited extrapolative ability. But it is accepted that this 
relationship holds over a more limited range of test conditions and will 
change as the creep mechanism changes with stress. Use of the Wilshire 
model has therefore involved fitting two or more linear lines (each line 
corresponding to a different creep mechanism) to the data, with the 
model parameters changing abruptly at specific stress values. This 
approach was only ever meant to be an approximation, as it implies an 
instantaneous change in creep mechanism at these specific stress values. 
However, the dominance of the creep mechanisms identified above 
change gradually with test conditions. 

The locally weighted regression and smoothing scatterplots proced
ure (LOESS) developed by Cleveland [7] can be seen as fitting within the 
Wilshire approach, but overcomes the issue of abrupt changes in creep 
mechanism. The idea behind this semi parametric procedure is that the 
relationship between failure time and stress suggested by a model is 
valid, but only over a narrow range of test conditions where the creep 
mechanism is constant. The result is a smooth curve to represent the 

Fig. 1. Relationship between stress (σ), Young’s modulus (E) and ˙εm/
[
50,517

( 1
T −

1
823
)]

for the MAF batch of 2.25Cr–1Mo steel contained in NIMS creep data sheets 
3B & 50 [2,3]. 
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relationship between these variables - which is more consistent with the 
fact that the dominance of the above identified creep mechanisms 
change slowly, and not abruptly, with respect to test conditions. By still 
using the model equations relating stress to failure time, this approach 
also places no limits to the degree of extrapolation. 

This paper therefore has two main aims. The first is to demonstrate 
the inadequacy of some well-known parametric creep models in pre
dicting long term data from short term data. Given this finding, the 
paper then demonstrates the improved predictive capability that comes 
with the use of LOESS. To this end the paper is structured as follows. The 
next section summarises the data set on 2.25Cr–1Mo that is used in this 
paper The following section summarises the main parametric creep 
models to be found in the literature, discusses how the unknown pa
rameters are estimated and evaluates their predictive capabilities. The 
penultimate section then applies LOESS to the data to demonstrate its 
improved predictive capabilities. The paper finishes with a conclusion 
section suggesting some areas for future research. 

2. The data 

This paper makes use of information in Creep Data Sheet 3B & 50, 
published by the Japanese National Institute for Materials Science 
(NIMS) [2,3]. This has extensive data on twelve batches of 2.25Cr–1Mo 
(according to JIS STBA 23, Grade 22) steel where each batch has a 
different chemical composition that underwent one of four different 
heat treatments - details of which are given in Ref. [2]. This paper makes 
use of just one of these batches, the MAF batch, which was in tube form 
and had an outside diameter of 50.8 mm, a wall thickness of 8 mm and a 
length of 5000 mm with a chemical composition of (in wt.%): Fe – 2.46 
Cr – 0.94Mo – 0.1C–0.23Si – 0.43Mn – 0.011P – 0.009S–0.008Ni – 
0.07Cu – 0.005Al. Specimens for creep testing were taken longitudinally 
from this material. Each test specimen had a diameter of 6 mm with a 
gauge length of 30 mm. 

The creep tests were obtained over a wide range of conditions: 400 
MPa - 22 MPa and 723 K–923 K. For the MAF batch (and only this batch) 

both minimum creep rates and time to failure measurements were 
recorded, together with the times to attain various strains - 0.005, 0.01, 
0.02 and 0.05. Fig. 2 plots the creep failure times obtained for this MAF 
batch at the different stresses and temperatures used. The relationship 
between time to failure and test conditions is quite complicated for this 
batch - which has made it very difficult to model and predict such failure 
times using well known parametric creep models. 

3. Parametric creep models 

3.1. Structure and characteristics 

Table 1 summarises several well-known parametric models for pre
dicting creep life. All the models predict a particular characteristic of the 
creep curve such as its end point or the minimum slope along the creep 
curve. The Orr-Sherby-Dorn (OSD) [8] and Larson-Miller (LM) [9] 
models have as their basis the Arrhenius relation 

ε̇m =Aexp
(

−
Qc

RT

)

(1a)  

where ε̇m is the minimum creep rate measured from several creep curves 
obtained from tests carried out at different absolute temperatures T, but 
at the same constant stress (σ) or load. Qc is the activation energy for 
creep, R is the universal gas constant and A is an unknown constant. The 
end point of a creep curve is then predicted by combining this with the 
Monkman-Grant [10] relation (assuming the power exponent on the 
minimum creep rate equals unity) 

tF =
M
ε̇m

=A∗ exp
(

Qc

RT

)

(1b)  

where M is a further model parameter that is material dependent, A* =
M/A and tF is the time to failure. In the OSD model the parameter A* is 
made a function of stress, A∗ = fOSD(σ)

Fig. 2. Relationship between stress, temperature, and time to failure for the MAF batch of 2.25Cr–1Mo steel contained in NIMS creep data sheet 3B &50 [2,3].  
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tF = fOSD(σ)exp
(

Qc

RT

)

(1c) 

In the LM model, it is Qc that is made a function of stress Qc = fLM(σ)

tF =A∗ exp
(

fLM(σ)
RT

)

(1d) 

The Manson-Haferd (MH) [11] model is like the LM [9] model except 
that it replaces 1/T with T – Ta, where Ta is a particular value for T 

tF= A∗ exp
(

T − Ta

fMH(σ)

)

(1e) 

In all these models, the functional stress relationship is left unspec
ified so that the literature is full of different variations of these models, i. 
e., differing in the specification of the stress functions. Table 1 shows 
some specific variants of these three models. Eq. (2a) of Table 1 assumes 
fOSD(σ) = Bσn where B and n are further model constants. Eq. (3a) of 
Table 1 assumes fLM(σ) = a0+a1ln(σ) where a0 and a1 are further model 
constants. Eq. (4a) of Table 1 assumes 1/fMH(σ) = a2+a3ln(σ) where a2 
and a3 are further model constants. But other variants of these models 
assume linear or polynomial functions in stress or log stress. 

The foundations of the Evans model [12] is to be found in Eq. (1c) 
with fOSD(σ) = B∗

( [σo
σ − 1

])− n∗, where σo is a reference stress. In the 

Evans model, the reference stress is σmax - the maximum strength a 
material can withstand whilst stretching before breaking. If a tensile test 
is conducted at a high enough strain rate so that the resulting measured 
tensile strength (σTS) is invariant to the strain rate, then σmax can be 
replaced by σTS. This is the assumption made in the Wilshire model - Eq. 
(5a) in Table 1 (where a different stress transformation is also used). 
Otherwise σmax is another model parameter leading to the Evans model 
and Eq. 6(a) in Table 1. 

Some of the differences between Eqs. (2a-5a) are illustrated in Fig. 3. 
Fig. 3a is a schematic iso-stress representation of the OSD model. The log 
of tF varies in a linear fashion with 1/T at a particular value for stress, 
and changing stress leads to a parallel shift in the iso-stress lines. Fig. 3b 
is a schematic iso-stress representation of the LM model. Log tF again 
varies in a linear fashion with 1/T at a particular value for stress, and 
changing stress leads to a change in the slope of the iso-stress lines. 
Irrespective of the stress, the log failure time is predicted to equal ln(A*) 
when 1/T = 0. Fig. 3c is a schematic iso-stress representation of the MH 
model. Ln tF now varies in a linear fashion with T at a particular value for 
stress, and changing stress leads to a change in the slope of the iso-stress 
lines. Irrespective of the stress, the log failure time is predicted to equal 
ln(A*) when T = Ta. Fig. 3d is a schematic iso-stress representation of the 
Evans model. Ln(tF) now varies in a linear fashion with 1/T at a 
particular value for the normalised stress σ/σmax and changing this 
normalised stress leads to a parallel shift in the iso -stress lines. 

The Soviet model is more closely related to Eyring’s [13] rate theory 

tF =DTa4 exp
(

Qc

RT
+ f(T,σ)

)

(1f) 

Eq. (7a) of Table 1 is obtained by letting f(T,σ) =
(
a5 + a6

1
T

)
ln(σ)

The Minimum Commitment method (MCM) [14] model shown as Eq. 
(8a) in Table 1 is perhaps the simplest variant that has been applied in 
the literature with other versions including, for example, the square of 
stress. It cannot be directly related to the Arrhenius or Eyring equations. 

The parametric models can either be expressed using a single equa
tion (equation numbers ending in “a” in Table 1) or equivalently as two 
separate equations (equation numbers ending in “b” and “”c in Table 1). 
These dual equations simply convert a specimens failure time obtained 
at any stress σ and at temperatures different To, into when the specimen 
would have failed if tested at the same stress but at temperature To 
(where T0 is an arbitrarily chosen base line temperature). Bolton [6], 
and latter Cano et al. [15], have termed To the datum temperature. All 
but two of the models are converted to a baseline temperature by just 
temperature compensating the time to failure. But the Evans [12] and 
Soviet [16] models also require the stress to be temperature compen
sated. For these models, there therefore exists an effective stress, σ0. For 
example, in the Evans model the effect of stress on failure time is 
dependent on how close that stress is to the maximum strength. Due to 
the strain rate dependency of tensile or maximum strength at high 
temperatures, instantaneous failure may not always occur at the σTS 
values quoted in various data bases (and used frequently in the Wilshire 
model). Instead, instantaneous failure will occur at σmax which needs to 
be estimated from the failure time data. But because these strengths (σTS, 
σmax) are in turn dependent on temperature, this effective stress varies 
with temperature. Thus, the application of a stress equal to 300 MPa at 
823 K, is not equivalent to the application of 300 MPa at 923 K. It is the 
normalised stresses σ/σmax that are equivalent over different tempera
tures. That is, σ/σmax = σο/σmax,o where σmax,o is the maximum strength 
of a specimen experiencing a temperature equal to the baseline 
temperature. 

3.2. Parameter estimation 

Before any predictions can be made, the unknown parameters of any 
parametric creep model must be estimated. Two approaches can be 
taken. Notice that the single equation representations of the creep 

Table 1 
Parametric creep models.  

Model name (Authors) Model specification Equation 
No. 

Orr-Sherby-Dorn [8] (OSD) 
ln
(
tF) = ln

(
B)+ nln

(
σ)+ Qc

R

(
1
T

)
(2a) 

In
(

tF,o
)
= In

(
tF
)
+

Qc
R

(
1

T0
−

1
T

)
(2b) 

ln(σo) = ln(σ) (2c) 
Larson-Miller [9] (LM) 

ln
(

tF) = ln(A∗)+
ao

R
1
T
+

a1

R
ln(σ)

T 
(3a) 

ln
(

tF,o
)
=

T
To

ln(tF
)

− ln(A∗)
[ T
To

− 1
] (3b) 

ln(σo) = ln(σ) (3c) 
Manson-Haferd [11] (MH) ln(tF) = [ln(A∗) − a2Ta]+a2T+

a3Tln(σ)− a3Ta ln(σ)
(4a) 

ln
(

tF,o
)
=
{[To − Ta]

[T − Ta]

}

ln(tF) +

ln(A∗)
[
1 −

{[To − Ta]

[T − Ta]

}]

(4b) 

ln(σo) = ln(σ) (4c) 
Wilshire [4] (W) ln

(
tF) = ln(B∗)+ n∗ ln

[
ln
( σTS

σ

)]
+

Qc
R

1
T 

(5a) 

ln
(

tF,o
)
= ln

(
tF
)
+

Qc
R

[
1
To

−
1
T

]
(5b) 

ln(σο) = ln(σ)+ ln(σTS,o/σTS) (5c) 
Evans [12] (E) ln

(
tF) = ln(B∗) − n∗ ln

( σmax

σ − 1
)
+

Qc
R

1
T 

(6a) 

ln(tF,o) = ln
(

tF
)
+

Qc
R

[
1
To

−
1
T

]
(6b) 

ln(σο) = ln(σ) + ln(σmax,o/σmax) (6c) 
Soviet model [16] (SM) ln

(
tF) = ln(D)+ a4 ln(T) + a5 ln(σ)+

Qc
1

RT
+ a6

ln(σ)
T 

(7a) 

ln
(

tF,o
)
= ln

(
tF
)
− (a4 + a5)ln

( T
To

)

+

Qc

( 1
RTo

−
1

RT

)

(7b) 

ln(σο) = ln(σ) − ln(Τ/Το) (7c) 
Minimum Commitment 

Method [14] (MCM) 
ln
(
tF) = b0 + b1T+ db2

1
T
+ b3σ +

b4 ln(σ)

(8a) 

ln
(

tF,o
)
= ln

(
tF
)
+

b1(To − T) + b2

( 1
To

−
1
T

)

(8b) 

ln(σo) = ln(σ) (8c)  
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models (equation numbers ending in “a” in Table 1) are all linear in the 
unknown parameters and so these can be estimated using multiple linear 
least squares. If the dual equation representations are used (equation 
numbers ending in “b,c” in Table 1) a two-step non-linear least squares 
procedure must be used. The first step is the same for all models shown 
in Table 1. It involves a multiple linear regression of the equations 
ending in “a” in Table 1 to get starting values for some of the unknown 
model parameters in these equations. The second step refines these 
starting values using a non-linear search procedure (for this paper this 
will be done using Excel’s Solver [17] subroutine). The specifics of this 
second step differs from model to model. 

For example, in the OSD model, applying multiple least squares to 
Eq. (2a) will yield an estimate for B, n and Qc. The latter of these is taken 
as a starting value for Qc which is then used in Eq. (2b) to convert all 
failure times into the baseline failure times tF,o (with To = 823 K). ln(tF,o) 
is then regressed on ln(σ0), (= ln(σ) for this model), to estimate the 
parameters γ0 and γ1 in 

ln(tF,o
)
= γo + γ1 ln(σo) (9a) 

and from Eq. (2a) the value for γo will equal 
[
ln(B)+Qc

R

(
1

T0

)]
and the 

value for γ1 will equal n 

ln(tF,o

)

=

{

ln(B)+
Qc

R

(
1
T0

)}

+ nln(σo) (9b) 

Then in the second step, Solver can be used to find that Qc value that 
minimises the residual sum of squares associated with the regression Eq. 
(9a). The term in squiggly brackets in Eq. (9b) makes it clear what 
happens in this non-linear search procedure. Namely as Qc is changed in 
the search, γ0 in Eq. (9a) changes to reduce the residual sum of squares. 
This search continues until Qc and γ0 values are found that minimise the 
residual sum of squares. Once this final Qc value is identified, the 
regression Eq. (9b) will yield the optimal values for the other unknown 
model parameters – n and B (using the optimised value for Qc and To in 
the identification of the value for B from γ0). 

Table 2 is a summary of how this two-step procedure differs between 
all the creep models. The second column shows the parameters that 

require a starting value to find values for tF,o and σ0. Excel’s Solver then 
changes the values for these parameters to minimise the sum of squared 
residuals associated with the regression equations shown in column 3 of 
Table 2. For most models this residual sum of squares is that associated 
with a linear regression of ln(tF,o) on ln(σ0), and so will have an intercept 
and slope term. In the MCM model, ln(tF,o) is regressed on ln(σ0), σ0 and 

σ2
0. In the W model, ln(tF,o) is regressed on ln

[
ln
(

σTS,o
σo

)]
. The terms in 

squiggly bracket in the last column of Table 2, are treated as single 

Fig. 3. Schematic representation of iso-stress lines for (a) the OSD model, (b) the LM model, (c) the MH model and (d) the Evans model. Stress σ1 > stress σ0.  

Table 2 
Summary of the two-step estimation procedure using the dual equation repre
sentation of a parametric creep model.  

Model Starting parametersa Regression equationb 

OSD Qc used in Eq. (2b) 
ln
(

tF,o
)
=
{

ln(B) +
Qc
R

(
1

T0

)}

+ nln(σo)

LM A*, Ta used in Eq. (3b) 
ln(tF,o) =

{
ln(A∗) +

ao

R
1
To

}

+
{ a1

RTo

}

ln(σo)

MH A*, a2, a3 used in Eq. 
(4b) 

Ln(tF,o) = {ln(A∗)+a2(T − Ta)}+ {a3(T − Ta)

}ln(σo)

W Qc used in Eqs. (5b,c) 
ln
(

tF,o
)
=
{

ln(B∗) +
Qc
R

1
To

}

+ n∗ ln
[
ln
(σTS,o

σo

)]

E Qc used in Eqs. (6b,c) 
ln
(

tF,o
)
=
{

ln(B∗) +
Qc
R

1
To

}

− n∗ ln
(σmax,o

σo
− 1
)

SM Qc,a4,a5 used in Eqs. 
(7b,c) ln

(
tF,o
)
=
{

ln(D) + a4 ln(To)+Qc
1

RTo

}

+
{

a5 +

a6

To

}

ln(σo)

MCM b1, b2 used in Eq. (8b) 
ln
(

tF,o
)
=
{

b0 + b1To + b2
1
To

}

+ b3σo +

b4 ln(σo)

a In step 1 starting values for the parameters shown in column 2 are used in 
Table 1 equations ending in b to obtain values for tF,o and σo. 

b In step 2 multiple least squares are used to estimate the parameters of the 
regression equations shown in column 3. Excel’s Solver is then used to find 
improved values for the starting parameters, i.e., values that minimise the re
sidual sum of squares of the shown regression equations. In minimising this 
residual sum of squares, the terms in squiggly bracket are treated as a single 
constant to be estimated using multiple least squares. 
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constants to be estimated using multiple least squares and simply show 
how the regression equation changes to minimise the residual sum of 
squares when Excel’s Solver searches for better starting values of the 
parameters shown in column 2. So, in the SM model, the intercept and 
slope of the regression line change as Solver searchers for better value 
for the parameters Qc and a4 to a. 

3.3. Parametric predictions 

Fig. 4 show the results of estimating the baseline temperature rep
resentation of a selection of creep models shown in Tables 1 and 2. In all 
graphs, tF,o is plotted against σo, except for the Evans model where tF,o is 
plotted against ln(σmax,o/σo - 1). In the estimation process only data 
points associated with failure times less than 10,000 h are used and these 
times are shown as solid circles. The open circles are then the longer 
times to failure. This is done to visualise how well each model does in 
predicting temperature compensated failure times not “seen” by the 
parametric models. Fig. 4a shows the OSD model, where the shown 
prediction line (calculated from only the short-term data) has an R2 

value of 95.83%. The value for Qc is estimated at around 279 kJmol-1, 
and the parameter n is estimated at − 5.06. 

The Z parameter was defined by Holdsworth et al. [18,19] as 

Z= e2.58se (10a)  

where se is the standard deviation of the difference between the log 
failure and log predicted temperature compensated times. Ideally, for 
single-cast assessments these authors suggest Z should be less than or 
equal to 2, whereas Z ≥ 4 is unacceptable. The reasoning for this is that if 
a creep model is assumed to predict the median time to failure at a given 

test condition, and that failure times at a given test condition follow a 
normal distribution, and if se is also independent of test conditions, then 
99% of all failure times will be within the range (where P is the models 
predicted failure time) 

P
Z

→ ZP (10b)  

no matter what the test condition is. Thus, a Z value of 2 means the 
predictive accuracy of the creep model is such that there is only a 0.5% 
chance that failure times will be more than 2 times the model’s pre
diction and there is only a 0.5% chance of failure times being lower than 
half the model’s prediction. This is the minimum acceptable level of 
predictive accuracy according to Holdsworth under these assumptions. 
A variation of this Z-parameter is given in Fig. 4a 

Zp=0.9 = ese1.64 (10c)  

with the number 1.64 ensuring that Z p = 0.9 defines a set of 90% con
fidence intervals for the short-term actual failure times. If a well per
forming model has 99% of actual failure times to within the range given 
by Eq. (10a,b) with Z at least equal to 2, then this is equivalent to 90% of 
actual failure times being within the range P/1.55 to1.55xP or smaller 
(where 1.55 = exp(ln(2)*1.64)/2.58)). Similarly, an unacceptable 
model has Zp = 0.9 more than 2.4. 

For the OSD model in Fig. 4a, Zp = 0.9 equals 3.6 (where se is the 
standard deviation in the difference between the log failure and log 
predicted temperature compensated times for tF ≤ 10,000 h). Thus, the 
track lines show the 5th and 95th percentiles, of a normal distribution 
(so that under this distributional assumption p = 0.9(100) % of all short 
term tF,o values should be within the range defined by these lines). So 

Fig. 4. Relationship between temperature compensated stress and time to failure suggested by (a) the OSD model, (b) the LM model, (c) the Soviet model and (d) the 
Evans model. 
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even the fit to the data used in the estimation of the model’s parameters 
are poor as Zp = 0.9 exceeds the maximum acceptable value of 2.4. 
However, there is also a tendency for the longer-term tF,o values to rise 
above the short-term values at intermediate stresses, with the opposite 
occurring at the lowest stresses. 

This implies an inability to accurately predict failure times from 
short-term tests, and this is confirmed in Fig. 5a which plots the pre
dicted failure times against the actual failure times for the longer-term 
data set only. Ideally, the track lines corresponding to Zp=0.9 = 5.15 in 
Fig. 5a should either be on or within the dashed lines corresponding to Z 
= 1.55. In this extrapolation, the OSD model fails this requirement. The 
best fit line in Fig. 5a is essentially flattened relative to the 45◦ line by 
just those failure times obtained at the lowest two stresses at 873 K 
(giving an exponent on x(= tF) of 0.40, which is well below the ideal 
value of 1. But even if these two points are ignored, the remaining data 
points are well above the 45◦ line, giving a constant of 133,694 above 
the ideal value of 1. Consequently, the OSD model is biased – i.e., 
consistently under predicts these remaining data points. 

Fig. 4b contains the LM model, where the shown prediction line has 
an R2 value of 97.70%, and when compared to the OSD model, has a 
smaller Zp value of 2.84. The value for ln(A*) is estimated at around 
− 30.07. As is the case with the OSD model, there is a tendency for the 
long-term data to bulge above the short-term data at intermediate 
stresses, and bulge below the short-term data at very low stresses. In 
Fig. 5b, the LM model only performs slightly better than the OSD model 
with Zp=0.9 = 4.99 and with the trend line being marginally closer to the 
45◦ line compared to the OSD model. This best fit line is again flattened 
relative to the 45◦ line by just two failure times (giving an exponent on x 
(= tF) of 0.44, which is well below the ideal value of 1. But even if these 
two points are ignored, the remaining data points are well above the 45◦

line, giving a constant of 63,547 above the ideal value of 1. 
Fig. 4c contains the SM model, where the shown prediction line has 

an R2 value of 97.62%, and Zp value of 3.17 is in between the values for 
the previous two models. As is the case with the previous two models, 
there is a tendency for the long-term data to bulge above the short-term 
data at intermediate stresses, and bulge below the short-term data at 
very low stresses. With a Zp=0.9 = 5.63 in Fig. 5c, the SM model performs 
worse in extrapolation than either of the previous two models. This best 
fit line is again flattened relative to the 45◦ line by just two failure times 
(giving an exponent on x(= tF) of 0.39, which is well below the ideal 
value of 1. But even if these two points are ignored, the remaining data 
points are well above the 45◦ line, giving a constant of 155,206 above 
the ideal value of 1. 

Fig. 4d contains the E model, where the shown prediction line has an 
R2 value of 98.1%, and Zp value of 1.93 which is far superior to any of 
the other three models. As is the case with the previous three models, 
there is still a tendency for the long-term data to bulge below the short- 
term data at intermediate stresses. With a Zp=0.9 = 3.56 in Fig. 5d, the E 
model performs better in extrapolation than the either of the previous 
three models. However, the best fit line, has a flatter slope than the 45◦

line with an exponent on x(= tF) of 0.55 and a constant of 8060 and is 
still above the ideal value of 1. There is now a more even spread of data 
points either side of the 45◦ line. 

The results shown above suggest that, whilst some models performed 
better in extrapolation than others, none were satisfactory in that the Zp 
values for all models exceeded 1.55. All models tended to, on average, 
underestimate failure times of 10,000 h or more when calibrated using 
only failure times of less than 10,000 h. In particular, Fig. 4 show that 
irrespective of the model used to temperature compensate failure times 
and stresses, the relationship between ln(tF,o) and ln(σo) is not as 

Fig. 5. Actual failure times plotted against the failure times predicted by (a) the OSD model, (b) the LM model, (c) the Soviet model and (d) the Evans model.  
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described by any model. For example, the OSD, LM and SM models 
suggest a linear relationship between these two variables, yet the data in 
Fig. 4 tend to suggest a more complex non-linear relationship. This is 
also revealed in Fig. 6 that plots the actual failure times against stress, 
together with the predictions from these four models. As can be seen all 
models seriously underpredict the actual failure times at all tempera
tures except at 873 K. Whilst not presented here, the MH, MCM and 
Wilshire models also suffer from this serious limitation. 

4. Semi-parametric (LOESS) models 

Lying behind the LOESS semi-parametric technique is the idea that 
the relationship between ln(tF,o) and ln(σo) suggested by a particular 
parametric creep model is valid, but only over a narrow range of test 
conditions where the creep mechanism is constant. The result is a 
smooth curve to represent the relationship between ln(tF,o) and ln(σo) 
which is more consistent with the fact that the dominance of a creep 
mechanism changes slowly, and not abruptly, with respect to test con
ditions. By still using the model equations relating stress to temperature, 
this approach places no limits to the degree of extrapolation. 

4.1. Parameter estimation and LOESS predictions of temperature 
compensated failure times 

The technical details behind the LOESS approach are given in the 
appendix to this paper. But as a summary, the parametric creep model 
equations are first used to temperature adjust failure times (to create 
variable y) and stress (to create x) in the same way as that shown in 
Table 1. As such, the approach used in this paper still accepts that a 

model describes properly how such adjustments can be made. For one 
value of x, called the target value for xo, a weighted regression of ln(y) 
on ln(x) is then carried out using the qQ nearest data points to xo (where 
Q is the number of data points used for estimation (all tF values below 
10,000 h) and q is a fraction of Q). The weights attached to the qQ, y-x 
pairings, diminish from one (when x = xo) to zero (when x is the furthest 
from x0). This is repeated for all values of x in the sample. Thus, LOESS 
consists of a series of local weighted regressions with each xo being 
associated with a unique set of values for the model parameters that are 
then used to predict the failure time at xo (and if required for values close 
to it). The parameters of the model thus change with stress to reflect the 
changing creep mechanisms. Excel’s Solver [17] is used to search for the 
values of the parameters needed to temperature compensat failure times 
that minimises the sum sqaured residuals calculated from the Q 
weighted regressions. 

It will always be possible to get better fits to the short-term data by 
simply reducing q, but such over fitting is likely to result in a loss of 
generality that will lead to poor extrapolative performance. To prevent 
such over fitting, the “mis one out cross validation” procedure described 
in the appendix is used in this paper. In short, the data point associated 
with each x0 is omitted from each local regression and the prediction 
error calculated. These errors are then squared and averaged to give a 
cross validation (CV) value. The parameter(s) used for temperature 
compensating stress and time (together with the other model parame
ters) are then chosen to minimise CV using Excel’s Solver. To compare 
the predictive capability of this LOESS procedure to those obtained in 
the previous section, this procedure is carried out on failure times up to 
10,000 h and the resulting model parameters used to predict these and 
the longer failure times. 

Fig. 6. Predictions of tF at various stresses and temperatures together with the actual failure times (predictions based on data with tF < 10,000 h) using (a) the OSD 
model, (b) the LM model, (c) the Soviet model and (d) the Evans model. 
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The results of using this LOESS technique to model the temperature 
compensated failure times for the same four models as in section 3.3 are 
shown in Fig. 7. Compared to the parametric predictions shown in Fig. 4, 
the data are more tightly compacted around now non-linear, smooth, 
and quite complex shaped prediction curves - as reflected in a much 
smaller Zp values. The 90% confidence bands for the temperature 
compensated failure times are therefore much smaller. For the OSD 
model, CV was minimised at 0.0743 using the 8 nearest data points to 
each x0 and using only those stresses inducing a failure time of 10,000 h 
or less. The activation energy used for temperature compensating the 
failure times was estimated at 349 kJmol-1, which is very close to the 
activation energy for lattice self-diffusion in α-iron of around 350 kJ 
mol− 1 [20]. As such, LOESS seems to produce a more sensible Qc value 
(compared to the parametric approach of section 3.3 where Qc = 279 
kJmol-1). Norton’s slope parameter n at each stress value is shown in 

Fig. 8a, the intercept parameter ln(B) + Qc
R

(
1

T0

)
at each stress value is 

shown in Fig. 9a. 
For the LM model, CV was minimised at 0.0701 using the 8 nearest 

data points to each x0 using only those stresses inducing a failure time of 
10,000 h or less. The parameter (ln(A*)) used for temperature 
compensating the failure times was estimated at − 34.977 – which is 
similar in value to that obtained using the parametric approach. The 
slope parameter a1/RTo obtained at each stress value is shown in Fig. 8b, 
the intercept parameter ln(A∗) + ao

R
1
To 

at each stress value is shown in 
Fig. 9b. 

For the SM model, CV was minimised at 0.0999 using the 7 nearest 
data points to each x0 using only those stresses inducing a failure time of 
10,000 h or less. The parameters (a4 + a5 and Qc) used for temperature 

compensating the failure times were estimated at 25.34 and 607kJmol-1 

respectively – which are quite different in value to those obtained using 
the parametric approach. The slope parameter a5 + a6

To 
obtained at each 

stress value is shown in Fig. 8c, the intercept parameter ln(D) +
a4 ln(To)+Qc

1
RTo 

at each stress value is shown in Fig. 9c 
For the Evans model, CV was minimised at 0.0121 using the 10 

nearest data points to each x0 using only those stresses inducing a failure 
time of 10,000 h or less. The activation energy used for temperature 
compensating the failure times was estimated at 268 kJmol-1 which is 
similar in value to that used by Wilshire and Whittaker [4]. The slope 
parameter n* obtained at each stress value is shown in Fig. 8d, the 
intercept parameter ln(B∗) +

Qc
R

1
To 

at each stress value is shown in 
Fig. 9d. The estimated values for σmax shown in Fig. 7d are also inter
esting. At 923 K, σmax is much larger than the reported tensile strengths. 
Evans [12] explained this pattern in terms of the strain rate dependency 
of the tensile strength at high temperatures. Namely that at temperature 
of 923 K or more, the strain rate used by NIMS was inappropriate for 
determining the deadload stress leading to instantaneous failure. 

4.2. Deformation mechanisms and LOESS parameter variation in the 
Evans model 

Fig. 8d & 9d tend to suggest different stress and control of dislocation 
motion regimes that are broadly consistent with the findings of Mar
uyama et al. [1] and Wilshire and Whittaker [4]. As discussed in the 
introduction section when at the lowest stresses, the resulting long na
ture of the tests results in the creep process degrading the initial bainitic 
microstructures, such that the original lath-like structure entirely 

Fig. 7. LOESS predictions for temperature compensated failure times tF,0 obtained using (a) the OSD model, (b) the LM model, (c) the Soviet model and (d) the 
Evans model. 
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disappears. This gives fast creep rates. This reflects itself in the low 
values for n* in Fig. 8d (n* of around 2) at stresses of 60 MPa or less, i.e., 
any reduction in stress will only results in small increases in life due to 
the creep rates being very high in this stress regime. Then at more in
termediate stresses of between 60 and 110 MPa (but still below the yield 
stress), creep occurs mainly by the movement of the dislocations 
pre-existing in the as received bainitic microstructure and the 
non-degraded microstructure allows precipitates to effectively slow 
down the rate of creep compared to the low stress regime. This reflects 
itself in the higher values for n* in Fig. 8d - n* transitions to a value of 
around 6 as the stress increase from 60 MPa towards 110 MPa). Any 
reduction in stress will now result in larger increases in life (hence the 
higher value for n*) due to the creep rates being slower in this stress 
regime compared to the low stress regime. Finally, at the very highest 
stresses above 110 MPa dislocations multiply rapidly during the initial 
strain upon high loading, giving higher creep rates than in the inter
mediate stress regime. This reflects itself in falling values for n* in 
Fig. 8d (n* tends to return to around 2 with increasing stress) at stresses 
above 110 MPa, i.e., any reduction in stress will now only results in 
small increases in life due to the creep rates being once again very high 
in this high stress regime. 

Fig. 9d shows of the intercept (i.e., the value for 
{

ln(B∗) +
Qc
R

1
To

}
) of 

the Evans model at different test conditions. Like n* it has three distinct 
regimes, taking on a value of around 17.5 at the lowest stress and a value 
of around 14 above 110 MPa. The intermediate stress range sees the 
transition in this intercept value. 

Whilst these changing parameter values are not able to reveal the 
role of primary creep on time to failure, the changes in parameter values 
in Fig. 8d & 9d attributed above to microstructure evolution do, ac
cording to Wilshire and Whittaker [4], suggest the need to focus on 

tertiary creep and damage accumulation. These authors suggest that the 
presence of a minimum rather than a secondary creep rate suggests that 
to explain failure times, attention should be focussed on the deformation 
processes governing strain accumulation and the damage phenomena 
causing the tertiary acceleration and eventual fracture. They argue that 
dominant dislocation processes controlling creep are the same as the 
bainitic microstructures degrades but the phenomena causing the onset 
of tertiary creep and eventual fracture differ with test conditions. Their 
analysis of this NIMS data lead them to conclude that tertiary creep 
begins by necking at 773 K and by microstructural instability at the 
higher temperatures, leading to trans-granular fracture. When σ < 150 
MPa a transition in failure mode to creep cavitation begins but even 
then, cavity development is limited by grain boundary migration in the 
degraded microstructure at low stresses at 873 K and above. 

4.3. Semi-parametric (LOESS) extrapolated failure times 

Fig. 10 illustrates how the LOESS technique, when used within the 
Evans model, extrapolates to predict the failure time measured at 873 K 
and 22 MPa using only data points with failure times of 10,0000 h or 
less. For this model the activation energy was estimated at 268 kJmol-1 

(see in Fig. 7d) and so using the terminology of the appendix section, yi 
= ln(tF,o) = ln(tF) – (268,000/8.314)[(1/T – 1/823)]. The actual value 
for y at 873 K and 22 MPa is therefore yo = 19.8278 - (268,000/8.314)[ 
(1/873–1/823)] = 22.073. For this model, σmax at 873 K is estimated at 
282 MPa (see in Fig. 7d) and so and xi = ln

( 282
σ − 1

)
. At 873 K and 22 

MPa, x0 = ln
( 282

σ − 1
)
= 2.4709. The solid triangle in Fig. 10 shows this 

yo, xo pairing. The solid circles are the 10 values (as CV was found to be 
minimised for this bandwidth value) for x that are closest to xo, i.e., that 
have the 10 smallest |xi − 2.4709| values and have tF less than 10,000 h. 

Fig. 8. Variation in the “slope” parameter with stress for (a) the OSD model, (b) the LM model, (c) the Soviet model and (d) the Evans model.  
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Fig. 9. Variation in the “intercept” parameter with stress for (a) the OSD model, (b) the LM model, (c) the Soviet model and (d) the Evans model.  

Fig. 10. Illustrating the LOESS technique in the Evans model for predicting the time to failure at 22 MPa and 873 K.  
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Thus, only the short-term data is used in predicting the failure time at 
873 K and 22 MPa. The solid line is then the best fit line through these 10 
data points and the dashed line is the weighted best fit line – where the 
weights are given by the square root of Eq. (A2). As the weights asso
ciated with the two tests caried out at 823 K and 108 MPa were zero by 
this equation, the weighted line used just the nearest 8 data points. The 
predicted value for tF,o, shown as the open triangle in Fig. 10, is obtained 
by extrapolating this weighted best fit line: 2.0672(2.4709)+17.3042 =
22.4122. 

It is clear from this illustration that extrapolation to any stress below 
22 MPa is possible, and that extrapolation with respect to temperature is 
just based on the Arrhenius equation, i.e., ln(tF) = 22.4122+(268,000/ 
8.314)[(1/873–1/823)] = 20.1699. Further, the failure time at 22 MPa 
for any other temperature is found by simply replacing 873 in the last 
calculation shown with the required temperature. Repeating these cal
culations for the solid circles shown in Fig. 7d yields the smooth pre
diction curve shown in this figure. Repeating it for the data points shown 
as open circles in Fig. 7d, i.e., where failure time exceeds 10,000 h) 
yields the predictions shown in Fig. 11d which are plotted against the 
actual failure times. 

Applying this procedure to all the failure times more than 10,000 h 
yields the results shown in Fig. 11. All four models have very similar Zp 

= 0.9 values ranging from 1.58 for the OSD model to 1.98 for the LM 
model. But all have 90% confidence limits slightly outside the ideal 
requirement of 1.55. The nature of these extrapolations is slightly 
different in each case however, as revealed by the fitted trend lines 
shown in Fig. 11. In the OSD model this trend line is always above the 
45◦ line and so this model has a tendency on average to always under 
predict the time to failure. In the other 3 models however the trend lines 

approaches or crosses below the 45◦ lines with increasing failure times. 
As such there is a tendency to under predict on the average at the smaller 
failure times, but this bias diminishes (or reverses) as the failure time 
increases. That is, these models will give better predictions at stresses 
closer to the operating stress at a given temperature. But for all models, 
the LOESS failure time predictions are much better than the parametric 
predictions as revealed through a comparison of Fig. 11 with Fig. 5. The 
trend lines are now much closer to the ideal 45◦ lines. 

Fig. 12 reveals these differences in the more familiar stress v time 
space. The SM and E models predict best at the lowest two temperatures. 
All four models appear to produce similar and very good predictions at 
773 K. At 823 K, all models tend to under predict, but this is worse in the 
SM and E models. At 873 K the E model produces the most accurate 
predictions, whilst the othe models tend to over predict. Also, the 
isothermal predictions are now smooth curves more reflective of grad
ually evolving creep mechanisms and are not like the awkward looking 
isothermal predictions typically associated with, for example, the Wil
shire model – where there are abrupt and discontinuous break points 
and various stresses. Using the Evans model, and in comparison, to 
Fig. 6, the large under predictions at the lowest stresses at each tem
perature are now largely removed – except at the very lowest stresses at 
823 K. 

5. Conclusions 

This paper has demonstrated the inadequacy of some commonly used 
parametric creep models when it comes to both representing 
2.25Cr–1Mo failure times and when it comes to predicting failure times 
close to operating conditions when using only accelerated test data. For 

Fig. 11. Showing the actual v LOESS predicted tF values beyond 10,000 h for (a) the OSD model, (b) the LM model, (c) the Soviet model and (d) the Evans model 
(these models are estimated using tF values less than 10,000 h). 
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2.25Cr–1Mo steel this is explained by changing creep mechanisms with 
respect to stress, so that such parametric models are only plausible over 
a narrow or local range of test conditions where the creep mechanism is 
constant. The paper then introduces a semi-parametric estimation pro
cedure (LOESS) that can be used to deal with changing creep mecha
nisms whilst maintaining the structure of the parametric model. 

When applied to 2.25Cr–1Mo steel it was found that the model pa
rameters varied in line with changing creep mechanisms already iden
tified in the literature for this material, and that the estimated activation 
energy was closer to that for self-diffusion in this material. Also, all the 
models estimated via this LOESS procedure seemed to better represent 
the experimental failure times compared to parametric estimation, and 
the longer-term predictions from short term data were also much 
improved. Areas for future work include applying this technique to other 
steels and high temperature materials and extending the approach to 
allow the parameters that temperature compensate failure times and 
stresses to also vary with test conditions. For example, it is known that 
for many metals operating at high temperatures there are at least two 
activation processes, (lattice diffusion and boundary diffusion). And so, 
it would be of interest to modify the LOESS technique discussed in this 

paper to allow for different activation energies at different test condi
tions and to determine if such a generalisation results in superior life
time predictions. 

Data 

All data used in this publication are in the public domain: References 
[2,3]. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.This research was not funded by research 
council grants or private sponsors and as such there are no financial 
relationships to declare. 

Data availability 

The data is in the public domain  

Appendix 

One way to preserve the structure of a parametric creep model whilst improving their predictive power is to accept that these models are realistic 
descriptors of creep over only a narrow range of test conditions, i.e., over conditions where the creep mechanism remains unchanged, and then apply a 
locally weighted estimation technique (LOESS) over this reduced range. Local is defined as only those test conditions closest to a test condition of 
interest – the so-called target test. To illustrate further, let variable y = ln(tF,o) and variable x = ln(σο). As such the values for y and x are determined by 
the creep model selected and their quantification will require estimating unknown parameters. Then, and closely following the method outlined by 

Fig. 12. LOESS predictions of tF at various stresses and temperatures together with the actual failure times (predictions based on data with tF < 10,000 h) using (a) 
the OSD model, (b) the LM model, (c) the Soviet model and (d) the Evans model. 
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Cleveland [7], a Kernel is used to identify the weights w(xi, xo) to be used in the local regression 

w(xi, xo)=Kh(xi, x0)=Kh

(
|xi − xo|

h

)

(A1)  

where h is the bandwidth, xi is the ith value for x (of which there are Q) and xo is a target value for x – one of the Q values for x. Clearly, Kh and w are 
implicitly dependent on both xi and xo and so each xo has its own Kernel values (so for example, Kh(xi, x0) reads the value for Kh when x = xi and when 
using xo as the target value for x). 

The bandwidth can be specified in many ways, but for LOESS, the value for h changes as a function of xo, so that the number of points inside (xo − h, 
xo + h) remains constant. One advantage of this approach is that h is then interpretable as the fraction (q) of the sample of data (Q) used in constructing 
the local fit around any point xo. This fraction remains the same for all selected xo values. In this approach, a value for x is selected and assigned to the 
variable xo. The absolute distances |xi − xo| are then calculated. If only half of the xi values are going to be used in the local regression, then h becomes 
equal to the median value for |xi − xo|. If only a quarter of the xi values are used, then h becomes equal to the lower quartile value for |xi − xo|. In 
general h is equal to a percentile of |xi − xo|, where the percentile is equal to the proportion of the sample of data used in the local regression. This is 
repeated by changing xo to another value of xi, until all values for xi have been made xo. This will lead to the creation of Q Kh functions, each containing 
Qq separate values. 

Kh must be a continuous function and there are many commonly used Kernels in the literature, but the one proposed by Cleveland, is the tri-cubic 
Kernel 

w(xi, xo)=Kh(xi, x0)=

⎧
⎪⎨

⎪⎩

(

1 −

(
|xi − xo|

h

)3
)3

when
⃒
⃒
⃒
xi − xo

h

⃒
⃒
⃒ < 1

0 otherwsie

(A2) 

So, for a selected target value xo, the following weighted regression is carried out using the least squares method 

yi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(xi, xo)

√
= a(xo)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(xi, xo)

√
+ b(xo )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(xi, xo)

√
(A3) 

to obtain values for a and b associated with the target value xo (b(xo) reads the estimated value for b using xo as the target). The predicted value for 
y associated with each xo is then given by 

ŷ(xo)= a(xo) + b(xo)xo (A4a) 

Notice this can also be used to predict a value for y at other values for x around xo by replacing xo with xi 

ŷ(xi)= a(xo) + b(xo)xi for all xi within the band width (A4b) 

These calculations are repeated for every value for xi (by each time making xo equal to each xi). So, not only is the sample size reduced, but 
weighting of the data points also takes place within this reduced more local sample. This modification of the Kernel, termed automatic Kernel 
carpentry, eliminates the bias present in the Nadaraya-Watson Kernel [21]. In combination, this should ensure only data points that have the same 
data generating mechanism (i.e., creep mechanism) are used to estimate the parameters a and b. Plotting the variation in a and b associated with each 
xo will then reveal any change in creep mechanism – i.e., that leads to a change in the values for a and b. 

The only remaining unknown is the bandwidth itself, i.e. what should be the value for h? Generally, this is chosen using “leave one data point out 
cross validation”. In this approach Equation (A3) is replaced with 

yi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(xi, xo)

√
= a(xo)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(xi, xo)

√
+ b(xo)xi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(xi, xo)

√
+ d(xo)Di (A5) 

where Di is a dummy variable that equals 1 when xi = xo and zero otherwise. The parameter d can then be interpreted as the error made in 
predicting that value for y obtained at test condition xo when this y and xo data pairing are not used in the estimation of a and b in equation (A3). Such 
a value for d can be computed for all xo = xi, squared and then summed to obtain the sum of squared cross validation errors (CV) 

CV=
∑Q

i=1
d(xo)

2
i (A6) 

The bandwidth h is then taken to be that value which minimise CV. An alternative to this is to use generalised cross validation (GSV). In this 
approach, for each xo, the following loadings are calculated 

Li(xo) = 1 –
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[y(xo) − ŷ(xo)
]/

d(xo)
2
i

√

(A7) 

If v is the average of these loadings, then 

GSV=
1
Q
∑Q

i=1

[
(yi − ŷi)

1 − v

]2

(A8) 

and h can be chosen so at to minimise GSV. The advantage of this approach is that GSV is approximately proportional to the Akaike Information 
Criteria or AIC [22], which balances the degree of fit with the number of degrees of freedom. In this approximation, v acts as the effective degrees of 
freedom. Clearly, these two approaches will give more similar values for h the less spread there is in the values for Li(xo). Excel’s Solver [17] is used to 
search for the value for the parameters that temperature compensate failure times (ti fing values for yi) that minimises the sum sqaured residuals 
calculated from the Q applications of linear least squares to equation (A5). 
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