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Summary 
 

Haemodynamic adaptations play a crucial role in uteroplacental perfusion during 

pregnancy. In particular, modifications of the utero-ovarian arterial network cause a significant 

increase in blood volume distributed to the placenta and foetus. Failure to make these 

cardiovascular modifications results in complicated pregnancies caused by different disorders 

such as hypertension, pre-eclampsia, intrauterine growth restriction (IUGR), and placental 

insufficiency. In pre-eclampsia, the modifications of the utero-ovarian arterial network are 

unsuccessful and cause less blood volume to be distributed to the placenta and foetus.  

 Pre-eclampsia is a hypertensive disorder that is still not fully understood, and clinicians 

still fail at identifying pre-eclamptic women during controls, especially at differentiating 

between hypertensive women and pre-eclamptic women. One reason for this is that clinicians 

rely heavily on blood pressure when diagnosing pre-eclampsia, and this biomarker has similar 

readings for both pre-eclampsia and hypertension. As part of the diagnosis of pre-eclampsia, 

proteinuria is used. In order to improve the diagnosis of pre-eclampsia, other biomarkers are 

being researched. 

 A dataset of 21 patients was used to find novel biomarkers that can classify pre-

eclampsia. The dataset is divided into two groups: uncomplicated pregnancies with 

hypertensive women and complicated pregnancies with pre-eclampsia. A computational model 

of the cardiovascular system is used to simulate blood and pressure solutions based on patient-

specific observations in order to develop a new biomarker. The model employs 1D modelling 

which incorporates a wave intensity analysis that models forward and backward waves to 

provide more precise predictions of wave propagation across the artery system, particularly in 

the utero-ovarian system. 

 The proposed biomarkers will include dimensionless terms formed by global maternal 

parameters such as systolic blood pressure, stroke volume, pulse wave velocity, etc., or local 

uterine parameters such as pressure and velocity in specific vessels of the uterine system. 

Afterwards, their ability as a classifier of pre-eclampsia will be investigated. Besides this, a 

case study of the prone position in pregnancy and its effects on cardiovascular changes will be 

carried out. To do this, the computational model will be used to study what happens when a 

pregnant woman is positioned in the prone position and how vital metrics like blood pressure 

and cardiac output are altered. 

 It was found that the biomarkers based on the radial and arcuate arteries have a better 

classification ability for pre-eclampsia, even higher than the Doppler-measured Resistance 

Index (RI) and Pulsatility Index (PI). The novelty of this work is the introduction of new 

biomarkers through the use of a computational model, as well as the demonstration of the 

dependability and use of 1D modelling in pregnancy. The model demonstrated how biomarkers 

that could not be measured clinically may be easily calculated using 1D modelling and provide 

critical information about the utero-ovarian circulation. 

 Future work should concentrate on changing the existing solver into a much faster and 

simpler solver, as well as validating the biomarkers in a larger dataset. 
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Symbols and Abbreviations 

Name Symbol/Abbreviation Units 

Cross-sectional area A 𝑐𝑚2  

Pulse wave velocity PWV 𝑐𝑚

𝑠
  

Resistance index RI - 

Pulsatility index PI - 

Systolic blood pressure SBP, 𝑃𝑠𝑦𝑠𝑡  mmHg 

Diastolic blood pressure DBP, 𝑃𝑑𝑖𝑎 mmHg 

Cardiac output CO L/min 

Heart rate HR Beats/min 

End-diastolic velocity D 𝑐𝑚

𝑠
  

Peak-systolic velocity S 𝑐𝑚

𝑠
  

Peripheral resistance 𝑅𝑝𝑒𝑟𝑖𝑝ℎ  𝑑𝑦𝑛𝑒𝑠∗ 𝑠

𝑐𝑚5   

Systemic vascular 

resistance 

SVR 𝑑𝑦𝑛𝑒𝑠∗ 𝑠

𝑐𝑚5   

Density ρ 𝑘𝑔

𝑚3  

Wave speed c 𝑐𝑚

𝑠
  

Stroke Volume SV L 

Compliance C, 𝐶𝑣 𝑚3

𝑃𝑎
  

Change in pulse pressure 𝛥𝑃𝑝𝑢𝑙𝑠𝑒  mmHg 

Uterine artery 𝑢𝑡   

Ascending uterine artery 𝑎𝑠𝑐   

Arcuate artery 𝑎𝑟𝑐   

Radial/spiral artery 𝑟𝑎𝑑   

Left side 𝐿   

Right side 𝑅   

UP Uncomplicated 

pregnancies 

 

CP Complicated pregnancies  
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1. Introduction  

The main focus of this thesis is the discovery of novel pre-eclampsia biomarkers. As a result, 

this subject will be the main focus of the chapters from Chapter 1 through Chapter 6. The case study 

that follows in Chapter 7 focuses on the impact of maternal posture on the cardiovascular system. The 

final chapter, Chapter 8, focuses on data cleaning and provides a brief exercise for cleaning a sizable 

dataset of measurements collected during clinical visits to evaluate pregnancy conditions. 

During pregnancy, the maternal cardiovascular system undergoes major changes to adapt to 

normal foetal growth, especially the uterine arterial network. The uterine arterial network consists of a 

symmetric network of vessels receiving blood from the internal iliac artery to the uterine and vaginal 

arteries, which go to the utero-ovarian communicating artery, the ovarian arteries, and spiral/radial 

arteries (Figure 1). 

The growth of the placenta, which delivers blood to the foetus, is critical. The antenatal care 

starts with the first face-to-face appointment at around 10 weeks, where the woman’s weight and height 

are taken to calculate body mass index and also a blood sample is taken to check blood count and group 

[1]. The next appointment can take place between 11 and 14 weeks, when an ultrasound screening is 

offered. Then, the pregnancy is monitored with an appointment between 18 and 20 weeks to check for 

foetal anomalies and placental location. The maternal circulation starts changing as early as 5 weeks 

into the pregnancy, with the most major changes being the increase in cardiac output [2, 3] and uterine 

artery blood flow rate [4], the decrease in total peripheral resistance and vessels remodelling to adapt 

to the increase in cardiac output and uterine blood flow rate [5, 6]. It is not recommended to use invasive 

procedures for diagnosis and measurement as they have a higher risk than non-invasive procedures and 

should be used only when appropriate [7] which makes it hard to monitor changes like heart and vessel 

remodelling. One method that is often used to determine uterine artery area and blood flow is Doppler 

ultrasound.  

Doppler ultrasound is often used for the assessment of Down syndrome in antenatal care, but 

studies investigated the use of Doppler ultrasound in hypertensive disorders and found that an end 

diastolic notch at 20 – 24 weeks could be related to maternal hypertension and intrauterine growth 

retardation (IUGR), especially if it’s present in both uterine arteries [8, 9], but it cannot be used for a 

clear diagnostic and only for assessing if the pregnancy is at a low or high risk of developing 

complications (further details on notching in Chapter 2.5. Diagnostic Techniques for Pre-eclampsia). 

The main measurements of Doppler ultrasound are used for calculating the diameter of the uterine artery 

and the blood flow volume. The downside of using Doppler ultrasound is that it is predisposed to human 

error, resulting in difficulty taking a reading as factors like the Doppler angle, positioning, and Doppler 

gain can influence the variability by as much as 20% [10]. One index that was developed using Doppler 

is the Resistance Index (RI) which can be calculated as the difference in the peak systolic velocity and 

end diastolic velocity divided by the peak systolic velocity [8]. An advantage of using RI for 

measurement is that it is independent of the angle of insonance [8]. Another index that is often used is 

the Pulsatility Index (PI) which is the difference in the peak systolic velocity and end diastolic velocity 

divided by the time averaged maximum velocity over the cardiac cycle, but it is slightly more 

complicated to calculate the mean velocity accurately compared to calculating the RI.  

The hypertensive disorders of pregnancy represent one of the major causes of maternal deaths 

with a percentage of 16.1 in developed countries [11]. Regardless of this, it is still a challenge to 

diagnose and prevent complications in early pregnancy. The current practise involves assessing the risk 

factors to determine the risk of developing hypertension and prescribing aspirin during the first trimester 

[1]. Further into the pregnancy (20 + 0 weeks), women showing signs of hypertension will be offered a 

test to measure proteinuria, and for women with blood pressure of 140/90 mmHg or higher, they will 

be referred to secondary care [1, 12, 13]. Hypertensive disorders can be divided into gestational 
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hypertension (non-proteinuric) (GH), pre-eclampsia (PE), hypertension with proteinuria, or other organ 

dysfunction [14].  

Pre-eclampsia is one of the most common hypertensive disorders and, because of that, one of 

the main causes of maternal and perinatal morbidity [15]. It is caused by failure of vascular remodelling 

of the uterine spiral arteries, which leads to insufficient blood flow to the foetus during gestation [16, 

17] (the spiral arteries and utero-ovarian system are visualised in Figure 1). 

A computational model of the cardiovascular circulation in the entire adult has been developed by 

Mynard et al. [18] and adapted by Carson et al. [19, 20] for pregnancy. The network consists of 513 1D 

vessels that can capture wave propagations and 61 0D vascular beds that include major organs such as 

the brain, liver, kidneys, placenta, and others [19–21]. The model provides information on the flow and 

pressure at each point in the system and also the areas of the vessels during the cardiac cycle [21] and 

can simulate cases of normal pregnancy or hypertension with results in the physiological ranges and the 

cardiovascular changes during the gestation period. Besides the vessels and vascular beds, a lumped 

model of the heart is present to simulate cardiac function. The use of wave intensity analysis (WIA) in 

this model is critical for simulating waveforms of pressure and flow that are representative of the actual 

waveforms found in a pregnant woman. WIA calculates the forward and backward waves, which are 

able to capture changes in the utero-ovarian system such as increased resistance. Without this level of 

complexity, it would be much harder to predict accurate pressure and flow waveforms for each patient. 

It is also important to mention that the radial and spiral arteries are modelled together and are referred 

to as only radial arteries. 

In order to completely appreciate which parameters affect the utero-ovarian system, a 

sensitivity analysis of the computational model will be done. This allows for a better understanding of 

pregnancy outcomes based on cardiovascular parameters, as well as assessing the most and least 

sensitive parameters using a univariate and multivariate approach. Eight cardiovascular markers will be 

evaluated. The sensitivity analysis will be composed of 250 Monte Carlo simulations for each parameter 

(to display the variation throughout the cardiac cycle of each parameter). Then, the Sobol indices will 

be calculated to measure the variance that each parameter is causing on the pressure and flow. 

Afterwards, new biomarkers that can classify pre-eclampsia will be proposed and analysed as 

the main objective of this work. This study proposes a set of 8 new biomarkers based on key 

cardiovascular parameters. To verify these new biomarkers, a classification problem that includes 

supervised and unsupervised machine learning was created. The classification is binary, where the data 

is split into uncomplicated pregnancies and complicated pregnancies. The newly proposed classifiers 

 

Figure 1. Cardiovascular system of the utero-ovarian system 
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will be compared to the clinical indices RI and PI. The aim is to find a biomarker that can provide better 

accuracy in classification compared to RI and PI. 

2. Literature Review  

2.1. Pregnancy and its complications 

During the gestation period, the maternal body undergoes significant physiological changes. 

The gestation phase lasts about 40 weeks and can be divided into three semesters. The physiological 

changes include changes in the cardiovascular, renal, nervous, hormonal, respiratory systems and many 

more. During the first trimester of pregnancy, the presence of nausea and morning sickness will produce 

discomfort and affect the quality of life of the pregnant woman. Even so, it has been correlated with the 

outcome of pregnancy showing a positive relation between nausea and vomiting and a decrease in 

miscarriage risk, perinatal death, low infant birth weight and preterm birth [22]. 

 

One of the major changes of the cardiovascular system is the invasion of the spiral arteries by 

trophoblasts which results in loss of musculoelastic structure of the spiral arteries and thus, a steep 

increase in uterine blood flow [23]. Besides the spiral arteries, the uterine arteries also increase 

significantly in diameter compared to the non-pregnant state and during pregnancy, there is a less 

significant increase in diameter [23]. It is considered that the vessels increase during pregnancy due to 

the increase in levels of oestrogen that has a vasodilator effect [23]. The increased levels of oestrogen, 

and also progesterone and prostaglandins affect the entire systemic circulation and result in vascular 

smooth muscle relaxation which means a decrease in peripheral vascular resistance [24]. This will affect 

the following parameters: heart rate, cardiac output and stroke volume (Figure 2). The cardiac output 

increases by 45 percent when compared to the non-pregnant state, and this increase is due to both heart 

rate alterations and stroke volume changes. Heart rate increases until 32 weeks of gestation and stroke 

volume increases until approximately 20 weeks of gestation [25]. Next, the blood pressure shows an 

increase during pregnancy with the systolic blood pressure having a minor linear increase (up to 5 

mmHg increase) during gestational weeks and the diastolic blood pressure showing a slight decrease in 

the first trimester and followed by an increase in the second and third trimesters [26]. It was also noted 

that there might be changes masked on the heart because of the rise of the diaphragm resulting in the 

displacement of the heart upwards and to the left [24]. Besides that, the uterus can also compress the 

 

Figure 2. Main changes in the cardiovascular system during pregnancy and uterine system comparison 

between pregnant and non-pregnant state. 
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abdominal aorta and inferior vena cava and result in aortocaval compression which can lead to 

hypotension [24]. 

The renal system is highly affected by the cardiovascular system with the major causes being 

the changes in the renal arteries which can result in increased renal blood flow due to increase in cardiac 

output and therefore, increase in glomerular filtration rate [24]. But, on the other hand, cardiovascular 

complications will also result in renal complications. Acute kidney injury (AKI) is one of the most 

common diseases which are hard to diagnose by clinicians and is often caused by pre-eclampsia [27]. 

AKI is often diagnosed based on increases in creatine and urine output levels but during gestation, these 

threshold levels are not reliable due to the gestational variations in serum creatine and urine [27]. 

Another option would be renal biopsy but is not recommended as is difficult to perform as gestation 

progresses and has a high risk of bleeding [27]. Other complications that could affect the renal system 

during pregnancy (although the chances of happening are around 1%) are thrombotic thrombocytopenic 

purpura (TTP; causes blood clots to form in the human body) and atypical haemolytic uraemic 

syndrome (aHUS; causes blood clots to form specifically in the small blood vessels in the kidneys). 

TTP and HUS are caused by a gestational fall in disintegrin and metallopeptidase with thrombospondin 

type 1 motif 13 (ADAMTS13) which overlap with the Haemolysis, elevated liver enzymes and low 

platelets (HELLP) syndrome (found also in the severe manifestations of pre-eclampsia) [27]. Despite 

this, most women with chronic kidney disease (CKD) have successful pregnancy outcomes [27]. 

The respiratory system is affected directly by the growing uterus during gestation that results 

in an uplift of the diaphragm by 4 cm above the original state [28]. This affects the respiratory rate by 

increasing it and will change from the coastal breathing to the diaphragm breathing in the gestational 

period. Another mechanical changes are that the transverse diameter expands by 2-5 cm and the 

subcostal angle increases by 35° which allows for the abdominal contents to move to accommodate the 

developing uterus [28]. The downside of these mechanical changes is that the total lung volume 

decreases by 5% but its accounted by the increase in respiratory rate [28, 29]. There are also biochemical 

changes that affect the respiratory system like an increase in progesterone which increases the minute 

ventilation and respiratory rate [28]. 

A very common symptom in pregnant women is dyspnea which is described as a breathing 

discomfort or “shortness of breath” [29–32] and is often present early in pregnancy, in the first and 

second trimesters. Clive et al. [29] have not found any correlation between the mechanical changes 

present in early pregnancy and dyspnea. The increase in weight during early pregnancy was mentioned 

to not be the reason for dyspnea as the gained weight in early pregnancy should not be as significant as 

in last trimester [32]. This complications are still hard to diagnose as there are no helpful investigations 

methods which can be used [32]. It is thought that the progesterone induced stimulation of the 

respiratory centre in the brain is a possible mechanism which causes dyspnea [32]. 

Other respiratory diseases that could also be present in pregnancy are asthma, pneumonia, acute 

respiratory distress syndrome (ARDS) and many more. It was found that pregnancy increases 

susceptibility to pneumonia [31] and two of the main ARDS causes during pregnancy are tocolytic-

induced pulmonary edema and pre-eclampsia [32]. It was also found that the correlation between pre-

eclampsia and pulmonary edema increases the mortality rate where 50% of maternal deaths caused by 

pre-eclampsia were affected by pulmonary edema [33]. It can be concluded that there is a strong 

relationship between the respiratory system and cardiovascular system during pregnancy and their 

respective complications. 

The nervous system often affects the pregnancy by developing symptoms like increased 

migraines, stress and depression. The hormonal changes made by the maternal system to adapt during 

pregnancy causes these symptoms, but they often go back to the original levels postpartum. Besides 

this, the nervous system can also develop new-onset seizures during pregnancy. Depending on the 

history of the patient, epilepsy, which is the disease where one or more seizures are present, can be 
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diagnosed and treated. Another reason for developing epilepsy during pregnancy is pre-eclampsia or 

eclampsia [34]. Epilepsy can result in complications like miscarriage, hypoxia, small for gestational 

age, low birthweights and even maternal and foetal death in rare cases [35]. It was also noticed that 

anticonvulsant drugs which are used as treatment against seizures can double the risk of foetal 

malformations [36]. Another cause of maternal death during pregnancy or postpartum is stroke. There 

is not enough evidence to sustain that strokes are affected by the pregnancy, but it was correlated that 

eclampsia or pre-eclampsia are the most common causes of strokes during the pregnancy [36].  

In the final stage of pregnancy, the delivery, it was found that the nervous system of the 

maternal body has an increased sensitivity to general and local anaesthetic agents [24] and in the case 

of local anaesthetic agents it can result in the engorgement of the epidural veins as the pressure in the 

respective veins reaches its peak during contractions [24]. 

2.2. Pre-eclampsia and hypertensive disorders 

Pre-eclampsia is a hypertensive disorder that complicates 2% – 8% of pregnancies [37]. It can 

also be considered a multisystem disorder as it affects the maternal circulation and thus, the mother, 

and the placenta which affects the foetus. This can make pre-eclampsia a life-threatening disorder for 

both the mother and the foetus. The mortality rate associated to pre-eclampsia and eclampsia is between 

10 – 15% in low and middle-income countries [37]. The majority of these deaths are caused by 

eclampsia and they are rare in high-income countries [37]. Regarding the morbidity, the women could 

suffer of renal failure, cardiac arrest, stroke, adult respiratory distress syndrome, liver failure and 

coagulopathy [37]. The case fatality is approximately 1% in high-income countries and triple in low-

income countries [37]. Pre-eclampsia accounts for 20% of antenatal admissions and 10% of caesareans 

births. Regarding the neonatal deaths and stillbirths, pre-eclampsia and eclampsia are associated with 

one quarter of them in developing countries [37].  

As mentioned in the Introduction, pre-eclampsia is caused by failure of remodelling of the spiral 

arteries, as seen in Figure 3. Specifically, the villous cytotrophoblasts invade the inner third of the 

myometrium and the spiral arteries lose their endothelium and most of their muscle fibres which in turn, 

results in low-resistance vessels that are less sensitive to vasoconstrictive substances during the normal 

pregnancy [17]. However, in pre-eclampsia, the invasion of cytotrophoblasts is defective, and the 

vessels remain highly resistive which makes them more sensitive to vasoconstrictive substances, 

resulting in placental ischemia and oxidative stress [17]. Placental ischemia causes fetal complications 

such as intrauterine growth retardation (IUGR) and intrauterine death [17]. On the other side, oxidative 

stress is causing vascular hyperpermeability, thrombophilia, and hypertension to account for the 

decrease in flow in the uterine arteries [17]. 

 

Figure 3. Comparison of vascular remodelling of spiral artery for normal pregnancy, non-

pregnant and pre-eclampsia 
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The hypertensive disorders are listed in the table below. Eclampsia is the most dangerous of all 

the hypertensive disorders followed by Haemolysis, elevated liver enzymes and low platelets syndrome 

(HELLP), chronic hypertension with superimposed pre-eclampsia, pre-eclampsia, gestational 

hypertension and finally, chronic hypertension. The most common disorders are chronic hypertension, 

gestational hypertension and pre-eclampsia. Categories of pre-eclampsia based on gestational age at 

diagnosis: early-onset and late-onset. Early on set is defined as developing before 34 weeks and it can 

also be called preterm preeclampsia and late-onset preeclampsia develops beyond 34 weeks [38]. 

Women with early-onset pre-eclampsia have a higher risk of stillbirths and recurrence compared to late-

onset pre-eclampsia [38]. 

Prior pre-eclampsia, chronic hypertension, pregestational diabetes mellitus, and an elevated 

maternal BMI are all clinical risk factors for pre-eclampsia [39]. In terms of their relative risk, the ones 

that present a higher risk are antiphospholipid antibody syndrome (disorder of the immune syndrome 

that causes an increased risk in blood clots), renal disease, prior pre-eclampsia, systemic lupus 

erythematosus, nulliparity, chronic hypertension, Diabetes mellitus, high altitude, multiple gestations 

and a strong family history of cardiovascular disease [17]. Other risk factors include smoking and 

nulliparity such as nulliparous women have a higher risk compared to multiparous women [38]. 

Once the risk factors have been established, clinicians usually consider the prediction and 

prevention of pre-eclampsia. One method used for a woman that has a high risk of developing pre-

eclampsia is using low dosage of aspirin before 20 weeks as a means to prevent preterm pre-eclampsia 

[39, 40].  

The management of pre-eclampsia is critical after diagnosis as there is no set treatment 

currently. Thus, there are some factors that need to be considered for the management of pre-eclampsia. 

The main factors are the severity of the disorder and gestational age at diagnosis [17]. In the case of 

severe pre-eclampsia discovered before 24 weeks, the possibility of terminating the pregnancy needs to 

be considered due to the high risk for the mother, as well as the foetus [17]. For the cases that are not 

life-threatening, the first step is managing the blood pressure. The blood pressure needs to be monitored 

consistently and lowered using antihypertensive drugs [39]. Other maternal monitoring should include 

repeated testing of proteinuria, blood tests and liver and renal assessments [39]. Fetal monitoring is 

crucial and after the diagnosis of pre-eclampsia, the well-being of the foetus needs to be assessed [39]. 

It is usually recommended for regular ultrasound scans for observing any growth restrictions [39]. 

Table 1. Hypertensive disorders and its definitions 

Name Definition 

Chronic hypertension Pre-existing hypertension; elevated blood pressure; 

diagnosed before 20 weeks of gestation [17]  

Gestational hypertension Hypertension that develops during pregnancy (after 

20 weeks) and disappears after 12 weeks postpartum 

[17] 

Pre-eclampsia Mostly hypertension and elevated proteinuria 

concentration 

Chronic hypertension with superimposed pre-

eclampsia 

Chronic hypertension and followed by new onset 

proteinuria, thrombocytopaenia or other feature of 

the pre-eclampsia syndrome 

Eclampsia Seizures in a pre-eclamptic woman that cannot be 

attributed to other cause 

Haemolysis, elevated liver enzymes and low 

platelets syndrome (HELLP) 

Severe form of pre-eclampsia; involves 

hepatocellular injury 
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2.3. Vascular stiffness changes during pregnancy 

It is important to understand the changes of vascular stiffness during pregnancy as these 

changes affect the pulsatile blood waveform which is delivered to the placenta. The arterial stiffening 

is caused by the loss of elastin fibres that reduces the elasticity of the artery [41] and is linked to diseases 

such as renal disease, stroke, and hypertension. It was also shown that age can affect the degradation of 

elastic fibres resulting in stiffer arteries for older people [42, 43] and that arterial stiffness can be a risk 

predictor for hypertensive patients [44]. 

 

The arterial wall determines the elasticity of the artery, and it can be viewed in Figure 4. The 

wall is formed of three main layers: the outer layer or adventitia, the middle layer or media and the inner 

layer or intima. The wall is formed of two main fibres, collagen and elastin, which provide stability and 

elasticity to the wall. The collagen will strengthen the wall as it is formed of an unorganised crosslinked 

matrix while the elastin fibres will provide elasticity to the wall as the elastic modulus of elastin is 

approximately 1 MPa [45] and the breaking strain (extensibility) of 150% compared to collagen which 

can have an elastic modulus of 300-500 MPa and breaking strain of 10-50% [45]. The elastin fibres 

have the role to allow the stroke volume to pass during systole while the collagen fibres should prevent 

overdistention and rupture [46]. The arterial wall changes throughout the vascular tree with central 

vessels having more elastin fibres that makes them more elastic while peripheral arteries such as 

muscular arteries have more collagen fibres which makes them stiffer [47]. These ratios of 

collagen/elastin are made to regulate the pulsatile flow as explained in Figure 1 and is called a stiffness 

gradient. For the case where the central arteries show an increased arterial stiffness, the pulsatility in 

the microcirculation increases which affects the tissue perfusion and can cause organ damage meaning 

an increased risk of cardiovascular disease [47]. The PWV (pulse wave velocity), compliance and 

Augmentation Index (AI, to not be confused with Artificial Intelligence) are often used to evaluate the 

arterial stiffness. 

The PWV is the rate at which forward pressure waves propagate. The most common are carotid-

femoral PWV (cf-PWV) which measures the PWV non-invasively as the time it takes the wave to 

propagate from the carotid to the femoral artery (distance / time measurement) [48] and brachial-ankle 

(baPWV) which measures the time it takes the wave to propagate from brachial artery to the ankle. The 

time point where the forward and backward waves meet, and the amplitude affect the level of central 

BP. The AI has been derived to measure the wave reflection and is calculated as follows [49]: 

 

Figure 4. Schematic of arterial wall and central to peripheral arterial stiffness gradient  
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𝐴𝐼 =  
∆𝑃

𝑃𝑃
× 100 (1) 

where ∆𝑃 is the difference in peak pressure and augmentation pressure. The augmentation pressure is 

the pressure at the first shoulder in the cardiac cycle. PP is the pulse pressure. 

Finally, the compliance is less used in studies but there are still multiple methods to measure it. 

One of them is calculating the compliance as the ratio of stroke index (volume of blood pumped by 

heart divided by body surface area) and pulse pressure [50]. Another method is measuring the diameter 

of the vessel using Doppler and together with pressure, finding the compliance as the change in area 

over change in pressure [51]. There are also devices such as CR-2000, Research Cardiovascular 

Profiling System, Eagan, MN [52] that can measures the distal and proximal compliance [53]. 

Many studies investigated the arterial stiffness of the aorta in relation to hypertension or PE. 

On one hand, studies focused on the effect of PE on the arterial stiffness post-partum and on the other 

hand, studies looked at arterial stiffness as a possible indicator for detection of PE. 

It is a well-known fact that PWV and AI, which are used to evaluate arterial stiffness, have 

increased values for pre-eclamptic pregnancies [48, 50, 54–56]. Phan et al. [57] found that the cf-PWV 

was increased in weeks 14-17 and the group who had increased values later developed PE. Turi et al. 

[58] showed that for hypertensive pregnancies, aortic PWV (PWVao) remained high throughout the 

pregnancy while for healthy pregnancies, PWVao decreased from the second trimester and only started 

increasing post-partum. Similarly, Myers et al. [59] found that PWV together with placental growth 

factor (PIGF) in early pregnancy show significant differences between the women who developed 

placental disease and healthy women.  

For the studies that looked at arterial stiffness post-partum, it is worth noting that the period 

when PE developed is important. Orabona et al. [60] investigated the area of the aorta and PWV in 

pregnancies with previous EO-PE (early onset PE, < 34 weeks) and LO-PE (late onset, > 34 weeks) and 

found that pregnancies affected by EO-PE showed increased PWV values and larger aortas with 

impaired elastic function compared to pregnancies with no history of PE. Also, history of LO-PE 

showed larger ascending aortas but no impairment of the elastic function. This suggests that women 

affected by EO-PE in a previous pregnancy will have a more complicated future pregnancy compared 

to LO-PE. It can also be stated that women affected by EO-PE will have arterial dysfunction post-

partum, showing as, for example, hypertension 1-2 years after birth and Melchiorre et al. [61] found 

that 40% of women result in hypertension due to EO-PE. One explanation of why PE affects the arterial 

function post-partum could be due to the oxidative stress from the placenta which can persist years after 

birth [62]. Another study [63] shows similar results as it found increased arterial stiffness in the cases 

affected of a hypertensive disorder such as gestational hypertension or PE in a previous pregnancy. 

Another study [64] states that the effects of LO-PE are small and transient 6 months post-partum which 

is in line with the findings of Orabona et al. Based on this, it is important to consider any complications 

in a previous pregnancy as they can affect current pregnancies.  

2.4. Placenta formation development 

The placenta is the interface between the maternal circulation and foetal circulation, it anchors 

the foetus to the uterine wall, it is used for nutrients, gas, and waste exchanges between the two and it 

also adapts to the developing foetus and directs any changes made by the maternal system to the foetus 

[65]. The placenta is formed of mainly two plates, the basal plate which is towards the maternal side, 

and the chorionic plate which faces the foetus and is also penetrated by the umbilical cord [65]. The 

space between the two plates is called intervillous space and is filled with the maternal blood that is 

supplied by the spiral arteries that penetrate the basal plate [65].  
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The placement of the placenta is important, and it can affect the pregnancy outcome. The typical 

locations of placement are anterior, posterior, lateral, fundal and low-lying. The anterior placenta is 

located in the front of the stomach while the placenta which is attached to the back of the uterus is called 

posterior. The low-lying location is when the placenta is placed on the internal os of the cervix (i.e. the 

opening of the cervix with the uterus) whilst the fundal placenta is at the opposite end (top of the uterus). 

One of the reasons why the location of the placenta affects the pregnancy outcome is that the blood 

circulation in the uterus is not uniformly distributed. A study has shown that posterior placenta is related 

to preterm labour [66] which is in accordance with Janewarland et al. [67]. Other findings are related 

to pregnancy induced hypotension (PIH) and placental abruption (i.e. the separation of the placenta 

from the uterus) for anterior and fundal placenta [66]. This subject still needs additional research as 

other studies found slightly different results [68, 69] and most studies focus on investigating placental 

previa as a pregnancy complication rather than the overall relationship between placental location and 

adverse pregnancy outcomes. The overall conclusion is that the location is definitively a factor affecting 

the pregnancy with the fundal placenta showing the adverse outcomes during pregnancy and delivery.  

As mentioned above, many studies focus on placental previa when investigating placental 

placement. Placental previa (PP) is defined as abnormal implantation of placental tissue overlying the 

internal cervical os [70] which was defined before as low-lying placenta and it affects a low number of 

pregnancy (0.5% of pregnancies [71]), but the pregnancies affected by it, can result in haemorrhage, 

prematurity, stillbirth, and neonatal death [72, 73]. However, it was found that the majority of PP cases 

could be resolved prior to delivery due to placental migration [70]. Placental previa is usually diagnosed 

in the second trimester and is usually related to risk factors like advanced maternal age, history of 

caesarean delivery or other complicated deliveries and abuse of substances or smoking [70, 74–76]. 

The placenta is also renowned for its endocrine function. During pregnancy, the placenta 

produces enough progesterone for maintaining the pregnancy and by the end of it, it can reach even ten 

times the normal amount of progesterone production [65]. It also produces oestrogen,  human chorionic 

gonadotropin (hCG), and human chorionic somatomammotropin (hCS, or human placental lactogen, 

hPL) [65].  

Pre-eclampsia is affecting placental formation by reducing the perfusion as the maternal vessels 

supplying the placenta fail to meet adequate perfusion due to their improper remodelling [77]. A similar 

complication that could affect the development of placenta is fetal growth restriction (FGR). FGR is 

defined as the failure of the foetus to grow properly [78] and is often diagnose by estimating fetal size 

during ultrasound measurement. The difference between FGR and preeclampsia in placental 

development is that FGR shows to have smaller placental diameter compared to normal, while in 

preeclampsia, the placenta is not supplied properly [78].  

2.5. Diagnostic techniques for pre-eclampsia 

The two standards of diagnosing pre-eclampsia are SBP > 140 mmHg or DBP > 90 mmHg on 

two occasions at least 4 hours apart and proteinuria level of > 0.3g of protein in a 24-hour urine 

collection [79, 80]. In the absence of proteinuria, the number of platelet needs to be < 100,000 / mL or 

serum creatine concentration > 1.1 mg/dL or elevated blood concentration of liver transaminases to 

twice of normal [79]. For patients with existing medical conditions or previous pregnancies with 

maternal diseases, the risk score for developing preeclampsia is high [81]. Examples of these diseases 

are diabetes, autoimmune disease, chronic renal disease and previous pregnancies affected by pre-

eclampsia [81]. 

From 1985, Doppler ultrasound has become a useful tool in the diagnosis of complicated 

pregnancies such as pre-eclampsia as it is a non-invasive and harmless diagnostic technique used in 

many clinical settings [82]. Currently, the practice offers a scanning after 28 weeks to monitor the baby 

and additional scans for pregnancies at risk [1]. The uterine artery velocity waveform is composed of 
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the sum of forward and backward (i.e. reflected) waves which could occur due to branching and in the 

case of complicated pregnancies, the waveform is changed [83]. When the reflected waves have a high 

amplitude, they will be delayed and cause the appearance of the dicrotic notch  [83]. The amplitude of 

the waveform is also changed in complicated pregnancies as it is caused by the changes in the uterine 

vasculature and is assumed to be related to the resistance of the vessels as high resistance will result in 

a high amplitude of the waveform [83]. There are three main measurements taken, the peak systolic 

velocity (S), the end diastolic velocity (D), and the time average maximum velocity (A) which can then 

be used to calculate the pulsatility index (PI) and resistance index (RI) [8]. 

𝑃𝐼 =  
𝑆 − 𝐷

𝐴
 (2) 

𝑅𝐼 =  
𝑆 − 𝐷

𝑆
 (3) 

The pulsatility index is said it is describing the velocity waveform better than the resistance 

index as it includes the area below the curve into the formula [84, 85] and is often mentioned in clinical 

studies. It was found that for pre-eclamptic women, PI is increased (1.36 vs 1.02) and the usage of 

bilateral notches did not improve the assessment of pre-eclampsia by Papageorgiou et al. [86]. In 

another study, it was found that the presence of notching predicted 3 out of 4 cases of severe pre-

eclampsia [84] which makes the notching a promising indicator of pre-eclampsia. 

The presence of notching in Doppler ultrasound was highly researched as a possible indicator 

of pre-eclampsia in high-risk pregnancies [87–90] [91]. In the majority of the studies, the group of high 

risk women showed an increase in the presence of notching compared to healthy women. The studies 

were performed in the second trimester and based on Schiffer et al. [92] the vascular resistance in the 

spiral arteries starts to drop due to the vascular remodelling of the spiral arteries which could influence 

the presence of notching [90]. Also, bilateral notching was researched by Zimmermann et al. [91] where 

the bilateral notching was present in 58% of women with proteinuric pregnancy-induced hypertension 

or intrauterine growth retardation and stated that a combination of several Doppler parameters such as 

notching and RI are better than a single parameter at predicting disease as they are correlated to each 

other and bilateral notching is superior to unilateral notching as it can reduce diagnosis error. 

In a more recent study, it was found that the relationship between the metrics and the waveform 

analysis is much more complex and they should be assessed together to get a proper understanding of 

the cardiovascular changes of the utero-placental circulation [83]. More and more computational 

models of the foetal and maternal circulations emerge and aim to improve the current assessment of 

complicated pregnancies as the advantage of using computational models is that they provide an 

overview of the changes present in the cardiovascular system which cannot be measured (e.g. smaller 

uterine arteries such as spiral arteries that cannot be properly measured using Doppler) [21, 83, 93, 94]. 

 Currently, the research on other biomarkers that can facilitate early diagnosis of pre-eclampsia 

is of interest. Other biomarkers besides hypertension and proteinuria are BMI, nulliparity, age etc. The 

advantage of these biomarkers is that they are non-invasive and cost affective but their effectiveness in 

identifying pre-eclampsia is reduced. There was also PWV investigated as a biomarker, but it was 

shown that there is not a statistically high enough difference between pre-eclampsia and healthy 

pregnancies.  

This resulted in the development of a new first-trimester screening test that showed an accuracy 

of 82% in the detection of pre-eclampsia. The test involves the uterine artery resistance from Doppler 

measurement, mean arterial blood pressure, and the level of placental growth factor (PlGF). The benefit 

of this test is that it can be performed early in the pregnancy but this would mean performing a Doppler 

measurement earlier than usual, which is not typical [81]. This will also result in additional costs which 

could affect the implementation of it. It is worth noting that the rate of early onset preeclampsia is 

significantly lower than late onset preeclampsia (0.75% vs 1.5% in Iacobelli et al. [95] and 0.38% vs 
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2.72% in Lisonkova et al. [96]) which means the development of biomarkers for early pregnancy is not 

the only answer to the diagnosis and management of pre-eclampsia. 

A new biomarker developed for the diagnosis of late onset pre-eclampsia is using soluble fms-

like tyrosine kinase I (sFlt-I) and PlGF as a test. The negative predictive value (women with negative 

results is very likely to not be affected by the disease) is 99.3% and it can assess whether a woman will 

develop pre-eclampsia in the following week (the increased negative predictive value helps with the 

exclusion of the disease) [81]. Again, this test includes additional costs and time which resulted in not 

being opted for in some practices.  

Thus, the need for a biomarker that can identify those who will develop pre-eclampsia with a 

high accuracy is still present and is still being researched. One limitation that hinders the progress for 

many of these studies is the cohort number as collecting large cohorts involves more resources being 

used, many studies use small cohorts. The disadvantage of using small cohorts is the increase variability 

of how the biomarker will perform. Hence, the introduction of computational models to run simulations 

of pregnancy could become a turning point in the development of new biomarkers that consider typical 

measurements taken. 

2.6. Computational cardiovascular model 

Cardiovascular models of pregnancy can be split in two categories: models of the foetal-

placental circulation (excluding the maternal circulation) and models of the maternal circulation with 

most models focusing on the foetal-placental circulation. The models focusing on the maternal 

circulation need to be complex and be able to simulate the wave propagation throughout the system as 

the wave propagation plays a key role in the development of pregnancy and its disorders. Wave 

propagation and wave reflection (wave propagation: as the heart beats, the wave generated propagates 

or advances throughout the system from the heart to the peripheral arteries and reaches the capillary 

beds; wave reflection: with each boundary in the path of the wave, be it an artery bifurcation, a part of 

the wave will continue to travel forward while the rest of the wave is reflected and will travel back, 

being called a backward wave) provide essential information regarding the stiffness of the vessels 

(refers back to Figure 4) and are required as waveform measurements through Doppler scanning aid 

clinical diagnosis and monitoring.  

The cardiovascular model consists of the maternal circulation during pregnancy and has been 

developed by Carson et al. [19, 21]. It consists of a heart model, 1D arteries and veins, smaller arteries 

and lumped capillary beds. To capture the main changes during pregnancy, the utero-ovarian circulation 

was modelled in detail.  

Carson et al. [20, 21] explains how it uses a cardiovascular network with the majority of 

anatomical and functional data from Mynard et al. [18] and adapting this cardiovascular network to a 

pregnant woman by adding a vessel network of the utero-ovarian circulation to capture the pregnancy 

related changes. The network used for modelling the utero-ovarian circulation includes the relationship 

between the ovarian artery and the uterine artery how they are connected through the utero-ovarian 

communicating artery [20]. The majority of the vessels diameters are taken from literature. One 

difference between the computational model of the utero-ovarian network and the actual utero-ovarian 

network is that the model uses a symmetric network, so the right side is the same as the left side of the 

network which is not reflective of the actual utero-ovarian circulation. This assumption will cause small 

discrepancies between the measurements and the results of the simulations. 

Firstly, the 1D modelling was done assuming that the fluid (i.e. blood) is incompressible, 

constant density, Newtonian. The Navier-Stokes equations were solved after they were reduced to an 

one-dimensional system by assuming axial symmetry (all quantities including velocity will be 

independent of the angle), radial displacement (no circumferential or axial displacement), constant 
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pressure in each cross-section, neglecting radial and circumferential velocity by considering axial 

velocity considerably larger than the other two [19]. To solve the governing equations, a constitutive 

law is needed. The constitutive law provides a relation between the cross-sectional area and the 

transmural pressure (i.e. difference between pressure inside and external pressure). The model chosen 

for this is the viscoelastic model and it includes terms as stiffness, wave speed, area at the reference 

pressure and pressure at which the vessel collapses. From the constitutive law, the initial area and 

compliance can be calculated.  

The wave propagation can be modelled using Fourier analysis or wave intensity analysis 

(WIA). The reason why using Fourier analysis is not the most appropriate method is that it is performed 

in the frequency domain, which assumes that the cardiovascular system is a linear system and is in 

steady-state oscillation. The cardiovascular system adapts to changes in heart rate, flow, resistances 

(especially in the pregnancy state) and the fluid flow behaviour and vessel wall behaviour are not linear, 

especially in the case of veins which are highly compliant and have valve which impacts the flow 

behaviour to promote upstream flow to return to the heart. The benefit of using WIA is that is performed 

in the temporal domain and can separate the forward and backward waves from each other. The 

disadvantage of WIA is that it is more mathematically intensive compared to Fourier.  

To find the wave intensity, the forward and backward components pressure and velocity need 

to be defined: 

𝑑𝑃± =  
1

2
 (𝑑𝑃 ±  𝜌𝑐𝑑𝑈) (4) 

𝑑𝑈± =  
1

2
 (𝑑𝑈 ±  

𝑑𝑃

𝜌𝑐
) (5) 

where P is pressure, U is velocity, ρ is density and c is wave speed. The wave intensity can be calculated 

as the product of the dP and dU with respect to the time step dt [97]: 

𝑤𝑖± =  
𝑑𝑃

𝑑𝑡

𝑑𝑈

𝑑𝑡
=  

±1

4𝜌𝑐
 (

𝑑𝑃

𝑑𝑡
±  𝜌𝑐

𝑑𝑈

𝑑𝑡
)

2

 (6) 

The 1D modelling is used to model the bigger vessels where monitoring the flow is important 

while the vascular beds were modelled using 0D lumped parameter model as the global aspects of the 

cardiovascular system are of interest here. The 0D model can be summarised as three basic elements: 

the resistance element, the compliance element and the inductance element. The combinations of these 

elements are called Windkessel models, and the inductance element is not used often as it is difficult to 

estimate the inertance. Usually, a three element Windkessel model is used and is formed of a resistance 

in series with a resistance and compliance in parallel. The first resistance is also called characteristic 

impedance and can help with capturing the wave propagating aspects from a vessel. 

The heart model is formed of the valve model and the chambers and is also modelled as a 

lumped parameter model. The atria and ventricle are modelled similarly as a native elastance (modified 

compliant element) in series to a source resistance. The valve model uses three elements: a Bernoulli 

resistance, a viscous resistance and an inertial element which depend on the current orifice area and an 

effective length. The valve model uses two equations to model the opening and closing of the valve. 

The final part of the model which is important during pregnancy is the utero-ovarian system. 

The model assumes symmetry between left and right sides of the system and is using the same 

configuration for the arterial and venous loops of the utero-ovarian system.  

The cardiovascular modelling is similar to [98] with the majority of 1D arteries and veins dimensions 

being scaled based on the patient height as following: 

𝐿𝑣𝑒𝑠𝑠𝑒𝑙𝑠 =  𝛾𝐿𝑣𝑒𝑠𝑠𝑒𝑙𝑠,𝑏𝑎𝑠𝑒 (7) 
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where 𝛾 =  
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝐻𝑒𝑖𝑔ℎ𝑡

𝐵𝑎𝑠𝑒 𝐻𝑒𝑖𝑔ℎ𝑡
 and a base height of 185.4 cm. For the scaling of diameters, the model uses 

the Murray’s Law with an exponent of 2.76. 

The model consists of 513 1D vessels and 62 vascular beds. The vessels are arteries and veins, 

and they cover all circulations inside the body such as the pulmonary circulation, the cerebral 

circulation, the coronary circulation, the hepatic-portal circulation and especially the utero-ovarian 

circulation. The vascular beds include organs such as brain, stomach, spleen, liver, intestines, right and 

left kidneys, and also body parts such as left and right shoulder, arms, legs, chest, face and others. The 

vascular beds significant in pregnancy are the uterus, placenta, ovaries, and cervix. 

The initial conditions assume no flow at the start of the iterations and pressure of 5 mmHg in 

the venous systemic circulation, measured DBP of patient in the arterial systemic circulation, 10 mmHg 

in the venous pulmonary circulation, 11 mmHg in the arterial pulmonary and 8.5 mmHg in the hepatic 

portal veins. The initial pressure in the heart is different for each chamber and is calculated based on 

the initial blood volume in the chamber and elastance. The venous valves are open, and the vascular 

beds initial pressure is calculated by ignoring the compliance, resulting in a steady state problem. Next, 

the model is adapting to patient data. This is done by using an iterative parameter estimation loop that 

runs the model using the heart rate and mean arterial pressure when setting up the initial conditions, 

compares the model systolic pressure, diastolic pressure and cardiac output with measured data and 

adapts the peripheral resistances, arterial compliances and blood volume until convergence is met. After 

this, the model will be reduced to only the arterial system and transformed in an open-loop forward 

model (Figure 5). This second loop uses the solutions found in the first loop such as the flow in the 

aorta and uses it as the initial condition. The main aim of the second loop is the uterine system and 

adapting its vessels to fit the Doppler scan data. The open-loop forward model adapts the peripheral 

resistances and arterial compliances until the SBP and DBP converge to patient measured values. Next, 

it adapts the main areas of the arteries to converge to the measured PWV. In the last step, only the areas 

of the uterine, arcuate and radial arteries are adapted to converge to the systolic and end-diastolic 

velocities from the Doppler scans data. 
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3. Materials and Methods 

3.1. Patient characteristics 

The data has been collected from St. Mary’s Hospital, Manchester, UK with the approval of 

NHS Research Ethics Committees (RECs). The data consists of routine measurements such as SBP, 

DBP, CO, HR, PWV, height, weight and birth weight. During the check-up, the patients underwent a 

Doppler ultrasound scan of the uterine artery that provides information on peak systolic velocity, 

minimum diastolic velocity, S/D ratio, PI, RI and presence of notching. Full data is attached in the 

Appendix. The dataset is comprised of 12 uncomplicated patients (UP – uncomplicated pregnancies) 

and 9 pre-eclamptic or complicated by other conditions patients (7 pre-eclamptic + 2 chronic 

hypertension with fetal growth reduction and placental dysfunction, CP – complicated pregnancies). 

The table below shows the Mean ± SD of the parameters measured. The mean of the SBP for the UP 

group is raised, suggesting that the group has patients with high blood pressure. Because of that, it will 

be hard to differentiate the groups as it is known that blood pressure is one of the key parameters 

monitored by clinicians in pre-eclamptic patients. So, finding other biomarkers that can be used by 

clinicians besides blood pressure is beneficial. 

Table 2. Mean ± SD of parameters measured for UP and CP where L – left, R – right, 𝑉𝑠𝑦𝑠 – systolic velocity, 

𝑉𝑑𝑖𝑎 – diastolic velocity 

 

Parameters measured 

Mean ± SD 

UP CP 

Gestational age (weeks) 23.0 ± 0.7 24.8 ± 2.1 

Height (cm) 162 ± 5.5 163.9 ± 7.1 

Weight (kg) 79.0 ± 22.6 75.8 ± 8.5 

SBP (mmHg) 133.9 ± 13.0 140.9 ± 17.6 

DBP (mmHg) 89.6 ± 8.2 90.7 ± 12.2 

 

Figure 5. Diagram of the maternal arterial network model (left) with close-up on the utero-ovarian 

system (middle). The diagram also shows the measurements that are taken during check-up. In 

essence, the pressure upstream of the uterine artery (blue dots) are calculated using some global 

maternal measurements of heart and vasculature, which, together with the uterine doppler 

waveform (S – peak systolic velocity, D – end-diastolic velocity), allows the prediction of 

downstream pressures (yellow dots) 
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HR (beats/min) 91.6 ± 11.9 81.9 ± 11.3 

CO (L/min) 4.6 ± 1.4 6.0 ± 1.1 

PWV (cm/s) 7.2 ± 1.7 8.9 ± 1.5 

𝑉𝑠𝑦𝑠 (L/R) 64.7 ± 31.8 / 67.9 ± 30.1 56.9 ± 18.3 / 47.1 ± 11.7 

𝑉𝑑𝑖𝑎 (L/R) 29.6 ± 15.1 / 33.6 ± 18.0 14.4 ± 6.0 / 14.1 ± 9.8 

S/D (L/R) 2.2 ± 0.5 / 2.1 ± 0.3 4.3 ± 1.6 / 4.4 ± 2.8 

PI (L/R) 0.9 ± 0.3 / 0.8 ± 0.2 1.7 ± 0.6 / 1.7 ± 0.7 

RI (L/R) 0.5 ± 0.1 / 0.5 ± 0.1 0.7 ± 0.1 / 0.7 ± 0.1 

Gestational age – outcome (weeks) 37.6 ± 1.7 27.1 ± 2.4 

Birth Weight (g) 2774.3 ± 1035.3 540.5 ± 220.5 

Outcome (% live birth) 100 55.6 

The information regarding the notching can be found in the Appendix. The data does not 

include any information regarding patient history of any other conditions. The data regarding the SBP, 

DBP, HR, CO, Height, PWV, 𝑉𝑠𝑦𝑠, and 𝑉𝑑𝑖𝑎 was used to personalise the computational model as 

described in the section above. 

3.2. Sensitivity analysis 

Before proceeding with developing new biomarkers, a sensitivity analysis of the computational 

model is beneficial as it will provide more information on which parameters affect the pressure and 

flow in the main arteries (e.g. aorta) and in specific arteries such as the uterine artery. The uterine artery 

is of interest here as it is the main blood supply from the system to the placenta and understanding how 

different parameters such as resistances or compliances affect the blood flow in the uterine artery is 

essential for finding new parameters that can be used in developing new biomarkers. There are two type 

of sensitivity analysis, a local sensitivity analysis and a global sensitivity analysis (Table 3). A local 

sensitivity analysis uses the method of varying one parameter at a time and seeing how the output 

changes. A global sensitivity analysis is a more complex analysis as it can analyse the effect of varying 

multiple parameters at a time and calculate the effect of two or more parameters (for example, 1 

parameter will not affect the model output that much on its own but when paired with another parameter, 

their effect together is greater than when they are on their own). The global sensitivity analysis is 

favourable in complex models (such the cardiovascular model where there are many equations and 

many parameters). 

A local sensitivity analysis will be performed by varying 8 different parameters resulting in 250 

Monte Carlo simulations. The parameters will be varied by taking random values from a given range. 

Besides that, the first and second order Sobol indices will also be calculated. Sobol method is used to 

calculate the global indices for non-linear models [99]. Another method to calculate global sensitivity 

indices would be Fourier Amplitude Sensitivity Test (FAST), however it can provide less accurate 

indices and more bias indices at the cost of lower computational time [100]. Compared to FAST, Sobol 

method has a much higher computational time, but it compensates by being able to evaluate the full 

range of the input parameter variation and it does not make any assumptions between the input and 

output (no bias). Thus, Sobol method will be able to provide objective assessments of the interactions 

between parameters and of the variation of the parameters. It is desired to understand if the interactions 

between parameters in the cardiovascular system will affect the output in a different way than expected.  

Table 3. Comparison between Local and Global Sensitivity Analysis 

Local Sensitivity Analysis Global Sensitivity Analysis 

Variation of model input on model output 

 

Better for linear models or models where input 

parameters have little interaction between themselves 

 

Variation of the model inputs and their interactions 

on the model output 

It is more computationally expensive and time 

consuming 

Better for non-linear models such as 

chemical/biological models 
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A more in-depth explanation of Sobol’ method is presented below.  

Sobol et al. [99] defined u = f(x) as the model that is under investigation. f(x) is defined in 𝐼𝑛. 

𝐼𝑛 is a n-dimensional unit hypercube and x belongs to it. x is the input of function f and x = (𝑥1, … , 𝑥𝑛) 

(i.e. x is a point in the n-dimensional box). u is a scalar output of function f with input x. 

𝑓(𝑥) =  𝑓0 +  ∑ ∑ 𝑓𝑖1<⋯< 𝑖𝑠
(𝑥𝑖1

, … , 𝑥𝑖𝑠
)

𝑛

𝑖1<⋯< 𝑖𝑠

𝑛

𝑠=1

 
(8) 

where 1 ≤  𝑖1  < ⋯  < 𝑖𝑠 ≤ 𝑛 (and s: 1 ≤ 𝑠 ≤ 𝑛) . This is called an ANOVA (Analysis of Variances) 

Representation. It is assumed that f(x) is square integrable and results in: 

∫ 𝑓2(𝑥)𝑑𝑥 − 𝑓0
2 =  ∑ ∑ ∫ 𝑓𝑖1,…,𝑖𝑠

2

𝑛

𝑖1<⋯<𝑖𝑠

𝑛

𝑠=1

𝑑𝑥𝑖1
, … , 𝑑𝑥𝑖𝑠

 
(9) 

𝐷 = ∫ 𝑓2(𝑥)𝑑𝑥 −  𝑓0
2 and 𝐷𝑖1… 𝑖𝑠

= ∫ 𝑓𝑖1,…,𝑖𝑠

2  𝑑𝑥𝑖1
, … , 𝑑𝑥𝑖𝑠

 
(10) 

New terms, D and 𝐷𝑖1… 𝑖𝑠
, are constants and are called variances and: 

𝐷 =  ∑ ∑ 𝐷𝑖1… 𝑖𝑠

𝑛

𝑖1<⋯<𝑖𝑠

𝑛

𝑠=1

 (11) 

So, if x is a random number from 𝐼𝑛, then f(x) and 𝑓𝑖1<⋯< 𝑖𝑠
(𝑥𝑖1

, … , 𝑥𝑖𝑠
) would be random variables with 

variances 𝐷 and 𝐷𝑖1… 𝑖𝑠
, respectively [99]. 

The ratio of the two variances results in the global sensitivity indices, 𝑆𝑖1… 𝑖𝑠
: 

𝑆𝑖1… 𝑖𝑠
=  

𝐷𝑖1… 𝑖𝑠

𝐷
 (12) 

All terms S > 0 and their sum is equal to 1: 

∑ ∑ 𝑆𝑖1… 𝑖𝑠

𝑛

𝑖1<⋯< 𝑖𝑠

= 1

𝑛

𝑠=1

 
 

The first order indices only considers the variance of one input to the output. There are higher 

order indices such as second order, third order and so on until the total order indices. The second order 

measures the sensitivity between two inputs while the total sensitivity measures the sensitivity of one 

input with all other inputs. This means that the sum of total indices can be greater than 1 and increases 

with increasing correlation between inputs [101]. The downside of dealing with dependent inputs is that 

it gets harder to interpret and the indices can take negative values [102]. The sensitivity index can be 

described as the following example:  

Model:  f(a,b,c) = a + 2bc + ac - c 

For three inputs (or parameters), a, b and c, 𝑆𝑎
𝑡𝑜𝑡 (total-order index of input a) will be: 

𝑆𝑎
𝑡𝑜𝑡 =  𝑆𝑎 +  𝑆𝑎𝑏 + 𝑆𝑎𝑐 +  𝑆𝑎𝑏𝑐  

  

where 𝑆𝑎 is the first-order index of a (so 𝑆𝑎 will calculate how much a affects the output of f(a,b,c)), 

𝑆𝑎𝑏𝑐 is the second-order index of a in correlation to b, 𝑆𝑎𝑐 is the second-order index of a in correlation 

to c and 𝑆𝑎𝑏𝑐 is the third-order index of a in correlation to b and c. [103] 
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There are many sampling techniques used in the Monte Carlo method like pseudorandom 

sampling, importance sampling or Latin hypercube sampling [104]. The Latin hypercube sampling is 

often used in computationally demanding models while the importance sampling is effective when large 

sample sizes are required [104]. The computational model is not very computational demanding, and 

the analysis does not require a large sample size so pseudorandom sampling is an appropriate choice 

compared to the other two. This will be used in the 250 Monte Carlo simulations. 

The Sobol Analysis uses a Quasi-random sampling technique as it is converging faster than 

ordinary Monte Carlo and it uses a low-discrepancy sequence (a sequence that has its values better 

distributed compared to random distribution) for sampling compared to the ordinary Monte Carlo which 

uses pseudorandom sampling (it’s called ‘pseudorandom’ as a software generated random number is 

not a real random number due to its predictable and highly deterministic nature, see Figure 6).  

Sampling techniques used: 

1. 250 Monte Carlo simulations – pseudorandom sampling. 

2. Sobol Analysis – quasi-random sampling. 

The sensitivity analysis was performed only on the forward arterial model and without the 

parameter estimation. The parameter estimation was replaced with a convergence criteria of running 15 

iterations as it was observed that the solution becomes periodic after 15 iterations. The sensitivity 

analysis will be performed on different patients as some parameters will use patient specific 

measurements as baseline values. Multiple patients are selected to compare the variations between 

them. The software used for the analysis is MATLAB version 2021b. The toolbox for performing the 

analysis is Global Sensitivity Analysis Toolbox [105]. 

The parameters chosen for the sensitivity analysis are: 

- Pressure used at the start of the model (𝑃𝑜) takes part in calculating other variables such as 

initial area and compliance of the vessels which gives information on the state of stiffness of 

the vessels at the beginning 

- Systemic vascular resistance (SVR) or the peripheral resistance affects the resistance 

distribution in the arterial system 

- Total compliance at the start (C) includes the 1D and 0D compliances 

- Initial compliance estimation (Ca0) or the 1D compliance; it calculates the compliance of the 

arterial vessels 

- Initial flow in the aorta (𝑄𝑎𝑜𝑟𝑡𝑎,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) affects the flow waveform and cardiac output in the 

system 

 

Figure 6. left - Pseudorandom, right – Quasi-random. Figure taken from [103] 
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- Initial area in the uterine vessels (𝐴𝑢𝑡) varies the area at the beginning of the model in the left 

and right side of the uterine vessels 

- Initial area in the arcuate vessels (𝐴𝑎𝑟𝑐) varies the area at the beginning of the model in the left 

and right side of the arcuate vessels 

- Initial area in the spiral/radial vessels (𝐴𝑠𝑝𝑖) varies the area at the beginning of the model in the 

left and right side of the spiral vessels 

𝑃𝑜 will take the DBP of the patient measurement as the baseline value around which the 

parameter will vary. Similarly, 𝑄𝑎𝑜𝑟𝑡𝑎,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 will take the flow solution from running the closed loop 

model (that includes the heart and venous side) and use it as the initial flow in the aorta for the forward 

arterial model on which the sensitivity analysis is performed. The initial flow in the aorta will also 

depend on the patient. The baseline value for SVR is calculated based on the following equation: 

𝑆𝑉𝑅 =
(𝑀𝑆𝐴𝑃 − 𝑀𝑆𝑉𝑃)

𝐶𝑂
 (13) 

where MSAP is the mean systolic arterial pressure, MSVP is the mean systemic venous pressure, and 

CO is the cardiac output. MSAP is 1/3 SBP + 2/3 DBP while MSVP is 1/3 SVBP + 2/3 DVBP. SBP 

and DBP are based on patient measurements and SVBP and DVBP are commonly 5 mmHg and thus, 

they have been set to 5 mmHg. Following this, the initial compliance estimation (Ca0) can be calculated 

using the constitutive law (Eq. 14, [19]) and C is the addition of Ca0 (1D vessels) and vascular beds 

(0D) compliance. The initial areas of the vessels are the same, regardless of the patient and were 

estimated based on literature. 

𝑃𝑡𝑚 =
2𝜌𝑐0

2

𝑏
((

𝐴

𝐴0

)

𝑏
2

− 1 ) + 𝑃0, 𝑏 =
2𝜌𝑐0

2

𝑃0 − 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒

 (14) 

where A = area, 𝑃𝑡𝑚 = transmural pressure,  𝐴0 = initial area , 𝜌 = density, 𝑃0 = initial pressure,  𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 

= collapse pressure, 𝑐0 =  reference wave speed. 

The Sobol analysis focuses only on one point in time and calculates the index based on the 

variation at that time point. The Sobol indices were calculated for the maximum flow and pressure 

during the cardiac cycle in the aorta and uterine artery. So, it results in 4 indices for each parameter.  

These parameters and the same ranges were used for calculating the sensitivity indices and 

running the Monte Carlo simulations. The range for all parameters was ± 30 % variation around the 

baseline values. These ranges will differ based on the patient selected when performing the analysis and 

it was chosen to be varied by 30% to include the measurement values of the patients whilst keeping a 

physiological range. A smaller variation would not include some of the extremes of the patient 

measurements.  

As mentioned before, the Monte Carlo method was also applied separately as the Sobol 

Analysis computational algorithm could not save the simulation results, and only save the sensitivity 

indices. So, a further analysis was performed on 250 simulations results for each varying parameter, 

similar to Carson et al. [21]. The Monte Carlo simulations can identify new insights on the variation of 

the parameters along the cardiac cycle.  

3.3. Defining Potential Biomarkers 

New dimensionless terms will be proposed in this section as biomarkers that will classify the 

two groups. There will be two sets of biomarkers, one that focuses on the general maternal circulation 

and the other that focuses on the localised uterine circulation. The first set will use the Buckingham Pi 

method to define the dimensionless terms. This method will investigate the ability of general maternal 

cardiovascular parameters to classify pre-eclamptic patients from non-pre-eclamptic patients as it was 
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shown in the previous sections that there are differences SBP or PWV between them. The Buckingham 

Pi method will be able to formulate terms in unique ways. 

The second set will use the formulation of RI ((maximum – minimum) / maximum) on pressure 

and velocity for different vessels found in the uterine system. This approach will provide more 

dimensionless terms that will assess vessels that cannot be reach clinically.  

Buckingham Pi is a method used in dimensional analysis. It is popular in the Fluid Mechanics 

area and one of its famous application is the Reynolds number. The benefit of performing dimensional 

analysis is that the number of variables is reduced, it helps in understanding the physics of the model 

and is useful in data analysis. 

The variables chosen for this method are:  

 
Table 4. Summary of variables used in Buckingham Pi analysis; MLT = Mass, Length and Time 

Symbol Name SI Unit MLT 

𝑅𝑢𝑡 
resistance in the 

uterine vessel 

𝑃𝑎 𝑠

𝑚3
 𝑀 𝐿−4 𝑇−1 

𝑆𝑉 stroke volume 𝑚3 𝐿3 

𝐶𝑂 cardiac output 
𝑚3

𝑠
 𝐿3 𝑇−1 

𝑅𝑝𝑒𝑟𝑖𝑝ℎ 
peripheral vascular 

resistance 

𝑃𝑎 𝑠

𝑚3
 𝑀 𝐿−4 𝑇−1 

𝐶𝑣 
compliance (systemic 

compliance 

𝑚3

𝑃𝑎
 𝑀−1 𝐿4 𝑇2 

𝑃𝑊𝑉 pulse wave velocity 
𝑚

𝑠
 𝐿 𝑇−1 

𝑃𝑠𝑦𝑠𝑡 systolic blood pressure 𝑃𝑎 𝑀 𝐿−1 𝑇−2 

𝛥𝑃𝑝𝑢𝑙𝑠𝑒 
change in pulse 

pressure 
𝑃𝑎 𝑀 𝐿−1 𝑇−2 

𝐴 

area (of maternal 

circulation; ascending 

aorta 
𝑚2 𝐿2 

 

As previously discussed, the PWV, 𝐶𝑣, A and 𝛥𝑃𝑝𝑢𝑙𝑠𝑒 are parameters related to arterial stiffness 

which can be linked to hypertension and thus could be shown to be useful in the assessment of pre-

eclampsia. 𝑅𝑝𝑒𝑟𝑖𝑝ℎ and 𝑅𝑢𝑡 will be affected by the lack of adaptation of spiral and radial vessels to 

pregnancy due to pre-eclampsia which can be of use. 𝑃𝑠𝑦𝑠𝑡 was shown to be higher in patients with 

hypertension and thus it could be used as an addition to pulse pressure. CO and SV are similar as CO is 

just SV multiplied by HR. These variables will then be assessed to check the level of importance of each 

variable on the outcome of the patient, healthy/pre-eclamptic. The classification was performed using 

MATLAB version 2021b. 

There are 9 variables and 3 primary dimensions (M, L, T) that result in 9 - 3 = 6 dimensionless 

groups or pi terms. The repeating variables are: 𝐴, 𝑅𝑝𝑒𝑟𝑖𝑝ℎ , 𝑃𝑠𝑦𝑠𝑡.  

The following equations represent the dimensionless groups: 

𝜋1 =  
𝑅𝑢𝑡

𝑅𝑝𝑒𝑟𝑖𝑝ℎ
 (15) 

𝜋2 =  
𝑆𝑉2

𝐴3
 (16) 

𝜋3 =  
𝐶𝑂 𝑅𝑝𝑒𝑟𝑖𝑝ℎ

𝑃𝑠𝑦𝑠𝑡
 (17) 

𝜋4 =  
𝐶𝑣  𝑃𝑠𝑦𝑠𝑡

𝐴
3
2

 
(18) 
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𝜋5 =  
𝑅𝑝𝑒𝑟𝑖𝑝ℎ  𝐴 𝑃𝑊𝑉

𝑃𝑠𝑦𝑠𝑡
 (19) 

𝜋6 =  
𝛥𝑃𝑝𝑢𝑙𝑠𝑒

𝑃𝑠𝑦𝑠𝑡
 (20) 

Besides these 6 dimensionless groups or pi terms, two more dimensionless indices were 

calculated inspired by the definitions of PI and RI. The benefit of using the computational model is that 

arteries downstream of the uterine artery can be used to calculate indices beyond areas that are clinically 

accessible. As such, the ascending uterine, arcuate and radial arteries were selected as the vessels in 

which to calculate 2 indices: pressure pulsatility index (PPI) and resistance index in specific arteries (, 

𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦). The usage of pressure as a measure for pulsatility has been proposed in Adamson et al. [106] 

where 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛 represents the pulsatile component and 𝑃𝑚𝑒𝑎𝑛 is the mean component. This 

formulation is similar to the PI where  the difference between maximum and minimum velocity divided 

by the mean over a cardiac cycle is used. Another derivation of a parameter using the pressure for 

assessing the pulsatility is Pulmonary artery pulsatility index (PAPi) [107]. PAPi has been defined as 

the pulmonary artery pulse pressure divided by the right atrial pressure [107]. This predictor will 

provide new insight into the pressure changes in the utero-ovarian circulation. 

𝑃𝑃𝐼 =  
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑒𝑎𝑛

 (21) 

where 𝑃𝑚𝑖𝑛 is the minimum pressure in the selected artery while 𝑃𝑚𝑎𝑥 is the maximum pressure in the 

selected artery during the cardiac cycle. For the case of velocity, 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 has been defined as the 

resistance index and has the same formulation to RI, just that 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 is measured in the selected 

artery (e.g. arcuate, radial etc.). 

𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 =  
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥

 (22) 

These two new predictors will investigate both the right and left side of the circulation, and thus, a 

total of 16 terms (𝑅𝐼𝑢𝑡, 𝑅𝐼𝑎𝑠𝑐 , 𝑅𝐼𝑎𝑟𝑐 and 𝑅𝐼𝑟𝑎𝑑 for left and right; 𝑃𝑃𝐼𝑢𝑡, 𝑃𝑃𝐼𝑎𝑠𝑐 , 𝑃𝑃𝐼𝑎𝑟𝑐 and  𝑃𝑃𝐼𝑟𝑎𝑑 for 

left and right). 

The new predictors will provide a better image of the effects of pre-eclampsia in the maternal 

circulation, both locally and globally. Finally, the PI and RI will be included in the classification 

analysis where the results will be compared to the newly defined predictors. 

Note: RI or RI-L/RI-R = clinically measured RI 

𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦, 𝑅𝐼𝑢𝑡, 𝑅𝐼𝑎𝑠𝑐, 𝑅𝐼𝑎𝑟𝑐, 𝑅𝐼𝑟𝑎𝑑 = RI calculated using the computational model 

 

3.4. Classification Analysis 

The data presented in Chapter 3.1. Patient characteristics is formed of two groups, one group that does 

not include pre-eclamptic patients but includes patients with raised SBP and another group that includes 

patients with pre-eclampsia (an emphasis is put on the group with the healthy patients but with increased 

SBP as it will be harder to classify the patients as pre-eclamptic or not due to the raised SBP). Because 

of this, the problem becomes a classification problem where the biomarker are used to classify the 

patients as pre-eclamptic or not. 

The classification will include the following methods: 

▪ Ranking features  

▪ Using supervised Machine Learning classifiers from the MATLAB built-in Classification App 

▪ Using unsupervised Machine Learning classifiers such as k-means (MATLAB built-in 

function) 

▪ Assessing the accuracy, sensitivity, specificity and confidence intervals for all classifiers 
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The classification will use the leave-one-out cross-validation method as it is optimal for small 

datasets, then the number of folds is 19. The data is split in training data and testing data as 90% will 

be used for training and 10% for testing. As the dataset contains only 21 patients, a higher percentage 

of the dataset was allocated to training. The testing set includes 2 patients from each group and their 

values for each classifier was close to the mean of the group. However, only 2 patients will affect the 

testing and the assessment of the predictive ability of the model. To account for this, 28 models will be 

used during the supervised classification and the mean of these models will be shown. These models 

will be discussed later in this Section. 

Ranking the features uses feature importance. Feature importance assigns scores to each feature 

and indicates the importance of the feature when predicting the model output. The feature importance 

will be performed using 4 methods: FSCMRMR, FSCCHI2, FSRFTEST, and RELIEFF. All methods 

are built-in functions in MATLAB. The values of the features were normalised. All methods rank the 

predictors using the response variable (uncomplicated/complicated). The higher the score, the more 

important the predictor is. FSCMRMR and FSCCHI2 are typically used in classification problems while 

FSRFTEST and RELIEFF are also used in regression problems. The main difference between the 

methods are the algorithms used (Table 5). Implementing the methods was straightforward so it was 

decided that using all methods and comparing the results would be ideal as it would also serve as 

validation of the result (if one parameter shows to rank first regardless of the method used it suggests 

that the parameter is important). 

Table 5. Comparison between the feature importance methods  
FSCMRMR FSCCHI2 FSRFTEST RELIEFF 

Minimum Redundancy 

Maximum Relevance 

algorithm 

Classification problem 

 

Categorical and 

continuous features 

Ranks features 

sequentially 

 

 

Uses p-values of Chi-

square tests 

 

Classification problem 

 

Categorical and 

continuous features 

Examines whether 

each predictor is 

independent of the 

response 

 

Uses p-values of F-tests 

 

 

Regression/Classification 

problem 

Categorical and continuous 

features 

Examines the importance of 

each predictor individually 

Only captures linear 

relationships between 

features 

ReliefF algorithm 

 

 

Regression/Classification 

problem 

Categorical or 

continuous features 

Works best for distance-

based supervised models 

 

Supervised machine learning algorithms are widely used in data analysis, and they use training 

data to learn a mapping function that can then be used to test the model. The algorithms chosen are 

Linear Discriminant (LD), Decision Trees, Support Vector Machine (SVM), Naive Bayes, k-nearest 

Neighbour (KNN) and Neural Networks (a table of all 28 variants is presented in the Appendix). LD 

and SVM use a similar algorithm that splits the data into groups. Decision trees operates by splitting 

the dataset into smaller subsets and based on this the decision tree is formed. 

The decision tree has decision nodes, branches and leaf nodes. KNN assigns a data point to a 

class based on the k-nearest neighbours. As the method uses the distance for classification, normalising 

the data will increase the accuracy of the classification. Neural Networks are often used for pattern 

recognition. They can have multiple layers and use a forward model where the input is fed through a 

function and passed to the next layer. The variants of these methods have different levels of complexity 

such as Fine, Medium, Coarse and so on. Figure 7 shows the simplified working principles of these 

methods. 
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To assess the model’s classification results, the next metrics were used: Accuracy (A), 

Sensitivity (SE), Specificity (SP), and 95% Confidence Interval (CI). As 28 methods were assessed, the 

mean of all methods is calculated and displayed in the final results. The choice of using 28 methods 

was made as selecting only a few would not give a clear image of how well a predictor performs.  

𝐴 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (23) 

𝑆𝑒 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (24) 

𝑆𝑝 =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (25) 

where True positive = the predicted value is positive, and the actual value is positive while False positive 

= the predicted value is positive, but the actual value is false; True negative = the predicted value is 

negative and the actual value is negative and lastly, False negative = the predicted value is negative, 

and the actual value is positive. 

𝐶𝐼 = 𝑧 ∙ √
𝐴 (1 − 𝐴)

𝑛
 (26) 

where z is the number of standard deviations from the Gaussian distribution and for 95% CI, z = 1.96; 

n is the size of the sample, and in this case, it is 19 for the supervised ML and 21 for the unsupervised 

ML classification. 

Unsupervised ML is using k-means as the sole technique for classification. K-means clustering 

is one the most popular and simple techniques used in unsupervised ML. It groups the data points in k 

clusters and tries to identify any underlying patterns. The cluster is formed based on the distance from 

the centroid. The centroid is found by using iterative calculations: first, the centroids are allocated 

randomly and from iterative calculations, the centroids locations get optimised until a stable location is 

found. In this work, k was set to 2, the distance metric used is ‘cityblock’ (each element is the component 

wise median of the points in that cluster), the maximum number of iterations was set to 1000, and the 

 

Figure 7. Working principles of A) Decision Trees, B) Neural Networks, C) Linear Discriminant, 

D) Linear SVM, E) KNN, F) Naïve Bayes 
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number of times to repeat clustering using new initial centroid position was set to 20. Other variations 

of these settings were tried but the difference between clustering was insignificant. The A, CI, SE, and 

SP were calculated for k-means. 

4. Results and Discussion 

4.1. Personalised solutions of the cardiovascular model 

The personalised model was used for finding the flow and pressure solutions for all 21 patients. 

Four of these patients included Doppler scans that did not specify the maximum and minimum velocity 

like for all other patients. This resulted in manually extracting peak systolic and end diastolic velocities 

that are used in the open loop and the difference in the Doppler scans can be observed in Figure 8. This 

process could involve errors that could affect the final results. The Doppler scans were taken for the left 

side and right side of the uterine artery and because of that, the cardiovascular model has two sets of 

solutions, one which converged to the left uterine artery ultrasound and the other one which converged 

to the right uterine artery ultrasound.  

 

When running the computational model in MATLAB, there were two patient datasets for which 

the code did not converge and therefore it was manually stopped. This suggests that for some specific 

input parameters groups, model convergence might be compromised. These observations need to be 

kept in mind and can be used to improve the robustness of the approach in the future.  

 

Figure 8. Comparison of a Doppler scan (Left) where the data of peak systolic and end diastolic 

velocity, PI and RI is displayed in the top right corner and another Doppler scan (Right) where 

the information on velocity, PI and RI is missing 
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The results of the 21 patients were compared to the key measured parameters such as SBP, 

DBP, CO, PWV, end-diastolic velocity or minimum velocity (𝑉𝑚𝑖𝑛) in the uterine artery, peak systolic 

velocity or maximum velocity (𝑉𝑚𝑎𝑥) in the uterine artery, and RI. The error was calculated as 

((Measured value – Simulated value)/Measured value)*100 and the mean value is displayed in Table 

6.  

Table 6.  Mean error for key parameters 

 SBP DBP CO PWV RI 𝑉𝑚𝑖𝑛  𝑉𝑚𝑎𝑥  

Error (%) 0.510 0.691 1.287 1.598 9.86 22.86 8.96 

As observed in Figure 9 and Table 6, the simulated results diverge from the measured values 

for 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥  which then affects the RI calculation. Thus, a discrepancy between the measured 

    

    

 
Figure 9. Comparison between measured values of key parameters and simulated values using the 

computational model. R – simulated results. The patient number is displayed on the horizontal 

axis. 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 are from the Right uterine artery and RI was calculated using these two. 
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and simulated results in the uterine system has formed which will impact the following analysis. 

However, a smaller difference resulted in the convergence of some patients to local minima.  

The results include ‘left-side convergence to Doppler velocity’ results and ‘right-side 

convergence to Doppler velocity’ results (Figure 9 shows the velocity difference when the simulated 

results uses the right side velocities to convergence while Figure 10 uses the left side velocities to 

converge). The global parameters such as SBP, DBP, PWV etc. were similar while the localised uterine 

parameters showed differences. Due to this, the PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 were calculated using both the left 

and right side of the results (PPI-L uses ‘left-side convergence to Doppler velocity’ results while PPI-

R uses ‘right-side convergence to Doppler velocity’ results). 

 

 

  

 
Figure 10 . Comparison between measured values of key parameters and simulated values using 

the computational model. 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 are from Left uterine artery and RI was calculated using these two. 
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4.2. Sensitivity analysis  

The Monte Carlo simulations results and Sobol’ indices results will be presented together in 

this section. In the first part of the results section, the Monte Carlo simulations results will be presented.

 

Figure 11 shows the effect of one of the parameters, SVR, on the pressure and velocity in the 

aorta, left ascending left uterine artery, left uterine artery, left arcuate artery and left radial artery. 

Following this, Figure 11 shows the variance in each of these vessels of pressure and velocity. It can be 

seen that the variance changes during the cardiac cycle and the pressure variance in the uterine artery is 

highest during peak systole while the variance in the aorta during diastole is higher. For the velocity on 

             

                                                                           

 

Figure 11. Monte Carlo simulation results for parameter SVR (patient 1); first three show the mean and 

standard deviation for pressure, last three  show the mean and standard deviation for velocity 
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the other hand, the variance in the uterine artery is much greater compared to all other vessels. 

Comparatively, Figure 11C shows a wider range for the standard deviation in the radial artery which 

could be misleading as the velocity in the radial artery is considerably lower than the velocity in the 

uterine artery. Overall, it can be said that varying the parameter SVR will affect the pressure and velocity 

in the uterine artery the most. Looking at the third graph in Figure 12, it can be seen that the highest 

variance is in the aorta over the whole cardiac cycle. This is expected as the parameter is the initial flow 

in the aorta, but surprisingly, the second highest variance is in the uterine artery meaning that the flow 

in the aorta will drastically affect the pressure in the uterine artery, even if the pressure in the vessels 

ahead of the uterine artery will not be affected as much. Similarly to SVR, the velocity variance is 

greatest in the uterine artery for the parameter 𝑄𝑎𝑜,𝑖𝑛 as the velocity amplitude is higher in this vessel 

compared to the aorta. Even so, the standard deviation range and variance in the aorta are higher when 

varying the 𝑄𝑎𝑜,𝑖𝑛 compared to SVR. 

In comparison to Figure 11, Figure 31-37 (Appendix) does not show high variance in pressure 

for left uterine artery when varying the 𝐴𝑢𝑡 and 𝐴𝑟𝑎𝑑  as when varying SVR.  

 

The ascending uterine artery and arcuate artery show higher variability in pressure for varying 

the three initial areas. Moving to the variance of velocity in Figure 12B, the highest velocity is in the 

uterine artery as mentioned before and because of that, the highest variance of velocity between the 

vessels is in the uterine artery. 

  

 

Figure 12.  Variance of parameter SVR on pressure and velocity (A and B) and parameter 𝑄𝑎𝑜,𝑖𝑛 on 

pressure (C) 

 

A B 
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As the notch in Doppler ultrasound plays a role in the diagnosis of pre-eclampsia, it is of interest 

to assess how it is affected by different parameters and this can be seen in Figure 13. The variance in 

the dicrotic notch area for varying the initial area of the spiral arteries is lower than for varying the 

initial flow in the aorta and it results in a more accentuated notch determined by the mean line compared 

to the notch in the mean line of the 𝑄𝑎𝑜,𝑖𝑛. This suggests that the initial flow in the aorta is more 

important compared to the initial area in the spiral arteries on the formation of notching. 

Based on Cannavó’ definition, the Sobol indices values can be classified as insignificant if the 

value is less than 0.5 [105]. But Zhan et al. [108] classified parameters with sensitivity indices over 0.1 

as highly sensitive and less than 0.01 as insensitive. Thus, the best approach is to analyse the sensitivity 

indices values based on this model and not compare it to other models. 

Table 7 shows the results for first-order coefficients with their respective errors. Coefficients 

with negative values or values less than 0.05 will be considered as zero which causes an insignificant 

effect to the model output. As the values increase, they have increasing significance and thus, the model 

output is more sensitive to that parameter. It will be considered that values between 0.05 and 0.3 have 

a low effect, 0.3 – 0.6 medium effect and 0.6 – 1 high effect (classification of how important the 

variables are). 

Having two vessels considered as the model output can provide a better view on how the 

parameters affect the main vessels such as the aorta or the peripheric vessels such as the uterine artery. 

From Table 7, it can be seen that the initial flow in the aorta highly affects the final solution of flow in 

aorta compared to the flow in the uterine artery. Another parameter that has high values for the first 

order coefficients is SVR. When looking back at the Monte Carlo results, it was discussed that variations 

in SVR cause a high variability in pressure in the uterine system compared to the velocity. This is 

confirmed by the first-order coefficient as the value for  𝑄𝑢𝑡𝑒𝑟𝑖𝑛𝑒,𝑚𝑎𝑥 is 0.061 which is much smaller 

comparatively to 0.308 of 𝑃𝑢𝑡𝑒𝑟𝑖𝑛𝑒,𝑚𝑎𝑥. 

 

Table 7. First-order sensitivity coefficient values and error of sensitivity values for the 8 parameters. The model 

output is formed of the maximum flow and pressure in aorta and uterine artery during the cardiac cycle. The 

baseline values used are based on patient 1. The highlighted values show larger values compared to others 

 Output variable 

 𝑸𝒂𝒐𝒓𝒕𝒂,𝒎𝒂𝒙 𝑸𝒖𝒕𝒆𝒓𝒊𝒏𝒆,𝒎𝒂𝒙 𝑷𝒂𝒐𝒓𝒕𝒂,𝒎𝒂𝒙 𝑷𝒖𝒕𝒆𝒓𝒊𝒏𝒆,𝒎𝒂𝒙 

 Value Error Value Error Value Error Value Error 

S1 (𝑷𝟎) 0.010 0.0005 0.014 0.0005 0.009 0.0004 -0.012 -0.0005 

S2 (SVR) 0.189 0.009 0.061 0.003 0.472 0.021 0.308 0.015 

S3 (C) 0.012 0.0006 0.010 0.0004 0.012 0.0005 -0.009 -0.0004 

 

Figure 13.  Monte Carlo simulations results for patient 14 (pre-eclamptic) when varying  𝐴𝑟𝑎𝑑 (Left) and 

𝑄𝑎𝑜,𝑖𝑛 (Right); highlighted area (orange): notch (around 0.5 s) 
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S4 (Ca0) 0.0007 0.00003 0.0008 0.003 0.005 0.0002 -0.015 -0.0006 

S5 (𝑸𝒂𝒐,𝒊𝒏) 0.610 0.033 0.082 0.004 0.378 0.018 0.199 0.011 

S6 (𝑨𝒖𝒕) -0.001 -0.00006 0.076 0.004 -0.00002 -0.00001 0.019 0.0008 

S7 (𝑨𝒂𝒓𝒄) -0.004 -0.0002 0.02 0.0009 -0.0008 -0.00001 -0.002 -0.00007 

S8 (𝑨𝒓𝒂𝒅) 0.005 0.0002 0.014 0.0007 0.006 0.0002 0.114 0.005 

 

Table 8. First-order sensitivity coefficient values and error of sensitivity values for the 8 parameters. The model 

output is formed of the maximum flow and pressure in aorta and uterine artery during the cardiac cycle. The 

baseline values used are based on patient 2. The highlighted values show larger values compared to others 

 Output variable 

 𝑸𝒂𝒐𝒓𝒕𝒂,𝒎𝒂𝒙 𝑸𝒖𝒕𝒆𝒓𝒊𝒏𝒆,𝒎𝒂𝒙 𝑷𝒂𝒐𝒓𝒕𝒂,𝒎𝒂𝒙 𝑷𝒖𝒕𝒆𝒓𝒊𝒏𝒆,𝒎𝒂𝒙 

 Value Error Value Error Value Error Value Error 

S1 (𝑷𝟎) 0.032 0.003 0.014 0.003 0.003 0.0001 0.004 0.0001 

S2 (SVR) 0.014 0.001 0.012 0.002 0.133 0.006 0.126 0.006 

S3 (C) -0.002 -0.0002 0.0002 0.00004 0.002 0.0001 0.002 0.0001 

S4 (Ca0) -0.0008 -0.00007 0.0009 0.0002 0.003 0.0001 0.003 0.0001 

S5 (𝑸𝒂𝒐,𝒊𝒏) 0.868 0.045 0.056 0.011 0.814 0.034 0.4 0.02 

S6 (𝑨𝒖𝒕) -0.001 -0.00001 0.62 0.047 0.004 0.0002 0.074 0.003 

S7 (𝑨𝒂𝒓𝒄) -0.0001 -0.00001 0.017 0.003 0.002 0.0001 0.006 0.0002 

S8 (𝑨𝒓𝒂𝒅) 0.005 0.0004 0.014 0.003 0.035 0.001 0.315 0.014 

 

Table 9. First-order sensitivity coefficient values and error of sensitivity values for the 8 parameters. The model 

output is formed of the maximum flow and pressure in aorta and uterine artery during the cardiac cycle. The 

baseline values used are based on patient 4. The highlighted values show larger values compared to others 

 Output variable 

 𝑸𝒂𝒐𝒓𝒕𝒂,𝒎𝒂𝒙 𝑸𝒖𝒕𝒆𝒓𝒊𝒏𝒆,𝒎𝒂𝒙 𝑷𝒂𝒐𝒓𝒕𝒂,𝒎𝒂𝒙 𝑷𝒖𝒕𝒆𝒓𝒊𝒏𝒆,𝒎𝒂𝒙 

 Value Error Value Error Value Error Value Error 

S1 (𝑷𝟎) -0.002 -0.0001 0.017 0.002 -0.005 -0.0002 -0.008 -0.0003 

S2 (SVR) -0.002 -0.0001 0.014 0.002 0.1 0.004 0.098 0.004 

S3 (C) -0.002 -0.0001 0.01 0.001 -0.005 -0.0002 -0.009 -0.0004 

S4 (Ca0) -0.002 -0.0001 0.01 0.001 -0.004 -0.0002 -0.009 -0.0004 

S5 (𝑸𝒂𝒐,𝒊𝒏) 0.9 0.03 0.071 0.011 0.862 0.035 0.377 0.019 

S6 (𝑨𝒖𝒕) -0.002 -0.0001 0.54 0.04 -0.003 -0.0001 0.07 0.003 

S7 (𝑨𝒂𝒓𝒄) -0.002 -0.0001 0.018 0.002 -0.005 -0.0002 -0.00007 -0.0003 

S8 (𝑨𝒓𝒂𝒅) -0.002 -0.0001 0.014 0.002 0.008 0.0003 0.307 0.013 

Tables 7 and 8 show the differences between the first-order coefficients of patient 1 and 2. It 

can be seen that the majority of the parameters show similar values for the indices, but one noticeable 

difference is SVR. For patient 1, it was found that SVR has a medium effect on the pressure and a lower 

impact on the maximum flow in the aorta while for patient 2, SVR has smaller values for the indices 

that relate to the flow output. When comparing with the last patient tested, patient 4 (Table 9), the SVR 

had an even smaller effect on the aortic flow output, and it mostly affected the uterine pressure output 

which is similar to patient 2. As such, it can be concluded that the parameter with the most effect on the 

pressure and flow outputs is the initial flow in the aorta which indicates that the main maternal 

circulation does indeed affect the peripheral circulation of the uterine system. Another parameter that 

heavily affects the uterine system is the initial area of the radial arteries. In all three patients (Table 7, 

8 and 9), 𝐴𝑟𝑎𝑑 had a high effect on the pressure in the uterine artery. This confirms through 

computational modelling that the changes in the radial/spiral arteries will affect the uterine artery. 
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Next, first-order coefficients are compared to the second-order coefficients in Figure 14 where 

the red bar is the effect of the first-order index, and the blue bars are the effects of the given parameter 

to each of the other parameters. From Figure 13, it can be seen that the second order effect of 𝑃0 together 

with SVR or 𝑄𝑎𝑜,𝑖𝑛 has the highest impact compared to all other parameters. This is caused by the main 

effect of SVR and  𝑄𝑎𝑜,𝑖𝑛 which already had a higher effect than 𝑃0.The addition of 𝑃0 does not greatly 

increase the second order effect and is similar to the main effect of SVR or 𝑄𝑎𝑜,𝑖𝑛. On the other hand, 

the second-order effect of 𝑄𝑎𝑜,𝑖𝑛 and SVR (Fig. 13, S52) increases from their individual first-order 

coefficient values of 0.378 and 0.472 to a second order coefficient of 0.948. Similarly for Figure 15A 

where the second-order coefficient is over 0.9 too which can be concluded that the relationship between 

SVR and 𝑄𝑎𝑜,𝑖𝑛 is highly important as it greatly affects the flow and pressure in the aorta. 

This research leads to the relatively intuitive conclusion that the initial flow in the aorta has a 

significant impact on the flow and pressure in the aorta. However, its significance reduces downstream, 

as shown in Figure 15, where the coefficients for when the output is the uterine artery (B and C) are 

lower. This is not to say that the initial flow in the aorta has no effect on the flow and pressure in the 

uterine artery because their first order coefficients are greater than 0.05 and the value of the second 

order coefficient S52 (initial flow in aorta and SVR) increases dramatically. 

The sensitivity analysis helped to identify the level of impact that various parameters have on 

the vascular system. The results are consistent with the literature, as SVR and 𝑄𝑎𝑜,𝑖𝑛 have the greatest 

 

Figure 14.  First-order coefficient (red; S1) and second-order coefficients (blue) of parameter 𝑃0 with all 

other parameters; A) output: flow in aorta, B) output: flow in uterine artery, C) output: pressure in aorta, 

D) output: pressure in uterine artery; S12 – sensitivity coefficient of 1st parameter, 𝑃0, and 2nd parameter, 

SVR. S13 – sensitivity coefficient of 1st parameter, 𝑃0, and 3rd  parameter, C, S14 - sensitivity coefficient of 

1st parameter, 𝑃0, and 4th  parameter, Ca0, S15 – sensitivity coefficient of 1st parameter, 𝑃0, and 5th  

parameter, 𝑄𝑎𝑜,𝑖𝑛, S16 – sensitivity coefficient of 1st parameter, 𝑃0, and 6th  parameter, 𝐴𝑢𝑡, S17 – sensitivity 

coefficient of 1st parameter, 𝑃0, and 7th  parameter, 𝐴𝑎𝑟𝑐, S18 – sensitivity coefficient of 1st parameter, 𝑃0, 

and 8th  parameter, 𝐴𝑟𝑎𝑑 
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effect on velocity and pressure in the uterine system, while 𝐴𝑟𝑎𝑑 has a considerable effect on uterine 

artery pressure, which is related to spiral artery resistance and hence crucial during pregnancy. The 

initial pressure and compliances had little effect on the output and can be considered unimportant in 

terms of their impact on the model's output. The initial flow in the aorta is affected by characteristics 

such as SV, Area, and aortic stiffness. 

 

4.3. Classification Analysis 

Assessment of importance of variables used in the Buckingham Pi method 

Figure 16 shows the level of importance of the variables and of the dimensionless groups for 

the classification of the two groups (i.e. how good the variable is at classifying which patient is in CP 

or UP group; CP – complicated pregnancy group and UP – uncomplicated pregnancy group). For all 

the methods used in Figure 16 the most influential three variables were Area, PWV and SV. For 

FSCCHI2 and FSRFTEST the top three variables show the same score of importance while FSCMRMR 

shows the Area to be at the highest level and PWV and SV much lower compared to Area. 

Comparatively, RELIEFF shows that SV has the highest score, followed by Area and then PWV. From 

this, it can be considered that Area, PWV and SV will affect the outcome (UP/CP) the most which can 

be interpreted as in arterial stiffness of aorta due to PWV and Area. 

 

Figure 15.  First-order coefficient (red) and second-order coefficients (blue) of parameter 𝑄𝑎𝑜,𝑖𝑛 with all 

other parameters; A) output: flow in aorta, B) output: flow in uterine artery, C) output: pressure in aorta, D) 

output: pressure in uterine artery; S5 – first order index of 𝑄𝑎𝑜,𝑖𝑛 ; S51 – sensitivity coefficient of 5th  

parameter, 𝑄𝑎𝑜,𝑖𝑛, and 1st  parameter, 𝑃0, S52 – sensitivity coefficient of 5th parameter, 𝑄𝑎𝑜,𝑖𝑛, and 2nd  

parameter, SVR, S53 – sensitivity coefficient of 5th  parameter, 𝑄𝑎𝑜,𝑖𝑛, and 3rd  parameter, C, S54 - sensitivity 

coefficient of 5th parameter, 𝑄𝑎𝑜,𝑖𝑛, and 4th  parameter, Ca0, S56 – sensitivity coefficient of 5th parameter, 

𝑄𝑎𝑜,𝑖𝑛, and 6th  parameter, 𝐴𝑢𝑡, S57 – sensitivity coefficient of 5th parameter, 𝑄𝑎𝑜,𝑖𝑛, and 7th  parameter, 𝐴𝑎𝑟𝑐, 

S58 – sensitivity coefficient of 5th parameter, 𝑄𝑎𝑜,𝑖𝑛 , and 8th  parameter, 𝐴𝑟𝑎𝑑  
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As discussed before in the Literature Review section, it was found that arterial stiffness of aorta 

is increased in pre-eclamptic patients and that it could be used as a predictor when accompanied by 

placental growth factor to classify placental diseases [50, 54, 55, 59]. These studies are in line with our 

findings below. Based on this, the pi terms that include these variables should show a higher importance 

score. 

 

The normalised values of these parameters have been attached in the Appendix. The mean, 

standard deviation and p-value of the t-test have been displayed in Table 10. 

Table 10. Normalised parameters, mean ± Std where Std = standard deviation, p-value = t-test p-value 

using two-tailed distribution and two-sample equal variance type 

 UP  

Mean ± Std 

CP  

Mean ± Std 

 

p-value 

Area 0.32 ± 0.11 0.58 ± 0.18 0.0009 

PWV 0.58 ± 0.12 0.70 ± 0.12 0.0322 

𝑅𝑢𝑡 0.42 ± 0.24 0.50 ± 021 0.4409 

𝑅𝑝𝑒𝑟𝑖𝑝ℎ  0.61 ± 0.20 0.49 ± 0.13 0.1660 

𝑃𝑠𝑦𝑠𝑡  0.72 ± 0.07 0.76 ± 0.10 0.3662 

𝛥𝑃𝑝𝑢𝑙𝑠𝑒 0.61 ± 0.09 0.68 ± 0.18 0.2535 

Compliance 0.66 ± 0.19 0.44 ± 0.13 0.0115 

CO 0.63 ± 0.19 0.83 ± 0.15 0.0229 

SV 0.56 ± 0.15 0.83 ± 0.13 0.0008 

 

Figure 16. Ranking the variables used for the Buckingham Pi method to understand their level of 

importance on the outcome (UP/CP) for all 4 methods of feature importance 
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In Figure 17, the Area, PWV and SV have been plotted for the two groups using boxplots. From 

this figure, it can be seen that PWV shows the lowest difference between the medians of the two groups. 

Comparatively, Area and SV have a bigger difference between the medians of the groups, but SV has a 

larger range which results in a bigger spread of the population. When assessing Table 10 p-values, Area 

and SV have the lowest p-values of 0.0009 and 0.0008 which confirms the parameters ranking score in 

Figure 16 Strangely, PWV p-value is much higher than Area and SV with CO and Compliance having 

smaller values than PWV. It is understandable that CO has a low p-value as SV and CO are directly 

related while Compliance further confirms the association of arterial stiffness and pre-eclampsia. 

Assessment of PPI and  𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 for the utero-ovarian selected vessels 

Before assessing the importance score of all predictors, the PPI and , 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 need to be 

calculated. PPI and , 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 have been assessed for key vessels in the uterine system: uterine artery, 

ascending uterine artery, arcuate artery, and radial artery (radial arteries and spiral arteries have been 

modelled together as a lumped model), for both left and right sides of the circulation. The results can 

be seen in Figure 18.  

The values calculated in the uterine artery are significantly worse predictors than the vessels 

downstream of the uterine artery, particularly the arcuate and radial arteries. These two groups have a 

lower interquartile range for the radial PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦, resulting in a better differentiation of the two 

groups. It was also noticed that the CP group shows higher values for 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  which is in line with 

the findings on RI. In our dataset, the mean for RI is higher for the CP group and it is an accepted fact 

that pre-eclampsia can cause an increase in the RI [109, 110]. Similarly, a difference between PPI and 

𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 can be seen as the values of PPI are smaller compared to 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦.  

Figure 18 shows some outliers, the most persistent of which is patient 9. Patient 9 is a healthy 

patient in the UP group and in Figure 18, it is represented by the red dot, together with patient 10.  

 

Figure 17. Comparison of highest ranked parameters, Area, PWV, SV for UP and CP (values are 

normalised); the horizontal line represents the median while the x marker represents the mean 
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It can be observed from this that, in most situations, patient 9 falls well inside the range for the 

CP group, increasing the likelihood of misclassifying this specific patient. One explanation for these 

findings is because the customised model's input parameters for optimisation, such as SBP, DBP, PWV, 

and CO, are not within normal limits for a disease-free pregnancy. In Appendix, the measurements for 

patient 9 can be seen and as an example of abnormal value is blood pressure as patient 9 had a blood 

pressure of 145/96 mmHg. This emphasizes the need of a biomarker that is not heavily based on blood 

pressure to classify pre-eclampsia. Besides the blood pressure, patient’s 9 PWV was clearly above the 

mean of the UP group with a value of 12.3 m/s. The HR was also higher than normal and when 

calculating the BMI of the patient, the result showed a raised BMI of 44.1. These values might suggest 

an underlying disease, but the patient’s history is not included in the dataset, so there is no information 

if this could have been caused by the raised BMI or an unknown disease. 

Table 11 contains additional analysis of the predictors in Figure 19, including the mean and 

standard deviation for the two groups. The mean of 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  for the uterine and arcuate are in similar 

ranges while the mean of  𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  for the ascending and radial are lower. The UP group shows lower 

mean values for both PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  for all vessels than the CP group. The greatest difference 

between the two groups has been noticed to be for 𝑉𝐼𝑎𝑠𝑐 and 𝑅𝐼𝑎𝑟𝑐, however, 𝑅𝐼𝑎𝑟𝑐   has a lower standard 

deviation than 𝑅𝐼𝑎𝑠𝑐, making it a better predictor. 

Table 11. Mean and standard deviation of the predictors from Figure 18 for the two groups 

 UP  

Mean ± Std 

CP  

Mean ± Std 

𝑃𝑃𝐼𝑢𝑡  (𝐿)  0.46  ±  0.06 0.50  ±  0.12 

𝑅𝐼𝑢𝑡  (𝐿) 0.59  ±  0.05 0.73  ±  0.07 

𝑃𝑃𝐼𝑢𝑡  (𝑅) 0.46  ±  0.06 0.51  ±  0.11 

𝑅𝐼𝑢𝑡  (𝑅) 0.59  ±  0.04 0.69  ±  0.08 

𝑃𝑃𝐼𝑎𝑠𝑐  (𝐿) 0.15  ±  0.07 0.28  ±  0.10 

𝑅𝐼𝑎𝑠𝑐  (𝐿) 0.34  ±  0.09 0.61  ±  0.11 

𝑃𝑃𝐼𝑎𝑠𝑐  (𝑅) 0.16  ±  0.08 0.28  ±  0.07 

 

Figure 18. All values for PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  where artery:  ut – uterine artery, asc – ascending 

uterine artery, arc – arcuate artery, rad – radial artery and L – Left, R – Right; the UP outliers 

are patient 9 and 10 while the CP outliers are patients 13, 18 and 20 
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𝑅𝐼𝑎𝑠𝑐  (𝑅) 0.32  ±  0.06 0.55  ±  0.13 

𝑃𝑃𝐼𝑎𝑟𝑐  (𝐿) 0.19  ±  0.09 0.37  ±  0.08 

𝑅𝐼𝑎𝑟𝑐  (𝐿) 0.51  ±  0.08 0.74  ±  0.13 

𝑃𝑃𝐼𝑎𝑟𝑐  (𝑅) 0.19  ±  0.09 0.36  ±  0.09 

𝑅𝐼𝑎𝑟𝑐  (𝑅) 0.51  ±  0.05 0.74  ±  0.09 

𝑃𝑃𝐼𝑟𝑎𝑑  (𝐿) 0.14  ±  0.06 0.29  ±  0.07 

𝑅𝐼𝑟𝑎𝑑  (𝐿) 0.36  ±  0.05 0.44  ±  0.05 

𝑃𝑃𝐼𝑟𝑎𝑑  (𝑅) 0.15  ±  0.06 0.26  ±  0.10 

𝑅𝐼𝑟𝑎𝑑  (𝑅) 0.36  ±  0.05 0.45  ±  0.04 

When looking at literature, Schiffer et al. [92] presented a systematic review of the blood flow 

in the spiral artery. It was shown here that the RI in the spiral arteries which has the same formulation 

as 𝑅𝐼𝑟𝑎𝑑 for uncomplicated pregnancies in the second trimester has a mean value of 0.39 which is 

slightly higher than 0.36 found in this study. Unfortunately, this study has not found any data on second 

trimester measurements comparing normal pregnancies and pre-eclamptic pregnancies. It can be 

observed that there is an increase in the 𝑅𝐼𝑟𝑎𝑑 mean for the CP group, but it cannot be validated or 

compared using literature. Similarly, the arcuate and ascending uterine arteries are overlooked in 

literature so the results cannot be compared against literature. On the other hand, there is vast 

information regarding the uterine artery RI which can be used to assess the simulated 𝑅𝐼𝑢𝑡  results. 

Madina et al. [109] found a mean of 0.50 ± 0.08 for normotensive women in second-trimester which is 

lower than 0.59 ± 0.05 found for 𝑅𝐼𝑢𝑡 (𝐿). As mentioned at the beginning of this section, the tolerance 

set for the optimisation could have affected the simulation’s results and result in this discrepancy 

between the actual measurements and simulated measurements. However, the measured value of RI for 

our dataset shows a mean of 0.53 which is closer to 0.50 and suggests that the simulated results have 

higher values for the uterine artery RI (𝑃𝑃𝐼𝑢𝑡 ) than the actual measurements. Hence, the simulated 

results are still in a similar range (0.59 vs. 0.53) and can be considered reliable. For the CP group, 

Melchiorre et al. [111] found that RI had a mean of 0.72 ± 0.11 for term pre-eclampsia and 0.79 ± 12 

for pre-term pre-eclampsia. 𝑅𝐼𝑢𝑡 (𝐿) has a mean of 0.73 ± 0.07 and 𝑅𝐼𝑢𝑡 (𝑅) has a mean of 0.69 ± 0.08 

which are closer to the mean of term pre-eclampsia found by Melchiorre et al. although the CP group 

fits in the category of preterm pre-eclampsia. Even so, the two standard deviation for Melchiorre et al. 

results is moderately high and the range overlaps with the 𝑅𝐼𝑢𝑡 ranges. 

PPI reveals a substantial difference between groups for the arcuate artery, which is followed by 

the radial artery. The examination of the arcuate artery, in conjunction with 𝑅𝐼𝑎𝑠𝑐 demonstrates a 

statistical difference between problematic and uncomplicated pregnancies. 𝑅𝐼𝑎𝑠𝑐 (𝐿) on the other hand, 

exhibited a similar difference between the two groups, but when tested as a prospective classifier, it 

performed poorly. 

Feature selection and ranking 

The selected features include the π terms, the clinical PI and RI, and the PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  for 

the arcuate and radial arteries. The uterine and ascending PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦 were not included as the 

ranges of the two groups overlapped to a greater extent compared to the radial and arcuate arteries. 

The importance scores for the selected features can be seen in Figure 19. The majority of the 

methods used (results presented in Figure 19) show PPI and 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  as the most important features 

for the classification. FSCMRMR shows 𝑃𝑃𝐼𝑢𝑡 as the most important feature which is similar to most 

of the other methods. 𝜋4 was also found as one of the more important features by FSCCHI2 and 

FSRFTEST but the gap between PPI, 𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  and 𝜋4 is big. 𝜋4 is one of the dimensionless terms that 

include Area in its formulation. Another π term also showed high score in FSCMRMR and RELIEFF 

result, and that term is 𝜋1. Lastly, it can be seen that in all methods except FSCMRMR, PPI and 

𝑅𝐼𝑎𝑟𝑡𝑒𝑟𝑦  have significantly higher scores that the clinical parameters currently used, RI and PI.  
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Performance of the selected features for classifying pre-eclampsia 

To provide a full understanding of the classification abilities of the selected features, Supervised ML 

and unsupervised ML was performed using 28 different models that have been detailed in the Appendix. 

The results of the analysis are displayed in Table 12 where the mean of all 28 ML models has been 

shown to minimise bias. 

Table 12. Classification analysis of selected predictors; the results of the Supervised ML display the 

mean value of the 28 models trained; A – accuracy (%), CI – 95% confidence interval (%), SE – 

sensitivity (%), SP – specificity (%). The highlighted values in green show values that are above 85% 

and in yellow are values between 80% and 85% 

 Supervised ML Unsupervised ML 

 Training  Testing  

Features A  CI SE  SP  A  A  CI SE SP 

𝜋1  62.4 21.8 65.5 55.3 82.1 76.2 18.2 88.9 66.7 

𝜋2  70.3 20.5 77.2 64.6 16.1 76.2 18.2 100 64.3 

𝜋3  56.9 22.3 61.5 50.0 42.8 57.1 21.2 71.4 50 

𝜋4  82.9 16.9 92.1 75.2 51.8 76.2 18.2 100 64.3 

𝜋5  70.9 20.4 78.1 65.3 25 66.7 21.2 85.7 57.1 

𝜋6  59.2 22.1 63.6 39.5 64.3 47.6 21.4 60 45.4 

𝑃𝑃𝐼𝑎𝑟𝑐  

(L/R) 

87.2/ 

80.1 

15.0/ 

18.0 

85.8/ 

80.1 

83.5/ 

80.7 

83.9/ 

96.4 

80.9/ 

85.7 

16.8/ 

15 

78.6/ 

84.6 

85.7/ 

87.5 

 

 

Figure 19. Assessing the predictors rank based on the outcome (normotensive/pre-eclamptic) of 

the selected features.  
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𝑅𝐼𝑎𝑟𝑐  

(L/R) 

78.9/ 

87.8 

18.3/ 

14.7 

80.7/ 

88.3 

77.5/ 

85.7 

96.4/ 

98.2 

85.7/ 

95.2 

15/ 

9.1 

90.9/ 

92.3 

80/ 

100 

𝑃𝑃𝐼𝑟𝑎𝑑  

(L/R) 

83.1/ 

78.2 

16.8/ 

18.6 

85.0/ 

77.4 

82.0/ 

81.5 

98.2/ 

98.2 

85.7/ 

80.9 

15/ 

16.8 

84.6/ 

78.6 

87.5/ 

85.7 

𝑅𝐼𝑟𝑎𝑑  

(L/R) 

77.8/ 

81.7 

18.7/ 

17.4 

79.6/ 

82.5 

76.4/ 

81.3 

87.5/ 

98.2 

76.2/ 

90.5 

18.2/ 

12.5 

73.3/ 

91.7 

83.3/ 

88.9 

𝑃𝐼 (L/R) 74.6/ 

76.7 

19.6/ 

18.9 

75.7/ 

76.1 

68.9/ 

82.3 

89.3/ 

62.5 

85.7/ 

85.7 

15/ 

15 

84.6/ 

80 

87.5/ 

100 

𝑅𝐼 (L/R) 78.0/ 

80.4 

18.6/ 

17.8 

77.7/ 

81.0 

78.9/ 

81.2 

91.1/ 

91.1 

80.9/ 

80.9 

16.8/ 

16.8 

83.3/ 

90 

77.8/ 

72.7 

When looking at the results in Table 12, it can be seen that only one pi term showed good results 

and that is 𝜋4. Next, the local biomarker 𝑃𝑃𝐼𝑎𝑟𝑐, 𝑅𝐼𝑎𝑟𝑐, 𝑃𝑃𝐼𝑟𝑎𝑑, and 𝑅𝐼𝑟𝑎𝑑 showed even better results 

than the more global biomarker 𝜋4. When comparing the PPI and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms to the clinical PI 

and RI, it’s also shown that the accuracy of the classification modelling is higher for PPI terms and  

𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑. When looking at the sensitivity of the models, the PPI and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms show a 

higher sensitivity in general compared to clinical PI and RI. This suggests that in general, the PPI and 

𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms will be better at showing a positive result among the women which actually have 

pre-eclampsia. This result is important when considering the nature of the dataset (CP – complicated 

pregnancies; UP – uncomplicated pregnancies or pregnancies that are not complicated by pre-

eclampsia, but the majority still suffer of hypertension). Similar to sensitivity, the specificity of the PPI 

and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms is higher on average compared to clinical PI and RI. The values of specificity 

and sensitivity are similar to each other for the PPI and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms which means that these 

biomarkers are performing highly when identifying both actually complicated pregnancies as 

complicated and uncomplicated pregnancies as uncomplicated. 

It is also worth discussing the difference between the left side and right side for the PPI, PI and 

RI terms. There is not enough convincing evidence to say which side performs better when classifying 

the 2 groups. For the clinical terms, the RI (R) showed slightly better results compared to RI (L), but 

for PI, the results were very similar. As PPI and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms are converged from the Doppler 

measurements (the uterine velocity which is the main parameter used to calculate PI and RI), it is less 

likely they would show a significant difference. It was noticed that for 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms, the results 

from the right side performed better compared to left side (which is similar to clinical RI). However, 

PPI showed that the results of the left side performed better than the left side. As the research related to 

the differences between left and right side is limited, it would be hard to come to a conclusion related 

to the relevance of the side from which the biomarkers are calculated.  

Coming back to 𝜋4, the biomarker showed an accuracy of 82.9% during training and only 

51.8% during testing. This was caused by the low specificity of the classifier which resulted in many 

cases of false positive predictions (uncomplicated pregnancy being classified as complicated) which 

can also be seen in Figure 19 where the spread of the UP group for 𝜋4  is considerably higher than CP 

and the minimum limit of UP almost overlaps with the minimum of CP. It means that 𝜋4  has a 

predictive ability close to PI and RI. The formulation of 𝜋4  which includes aortic Area, SBP and 

systemic compliance could indicate that there is a difference in aortic area for pre-eclamptic women as 

found by Spaanderman et al. [112]. Spaanderman et al. [122] found that hypertensive women with a 

history of pre-eclampsia had a lower compliance and increased area of large arteries. On the other hand, 

the terms containing PWV or SV did not show a higher accuracy of classification compared to 𝜋4. This 

means that PWV is not an adequate biomarker for classifying complicated pregnancies with pre-

eclampsia from uncomplicated hypertensive pregnancies this early in pregnancy (< 28 weeks). In a 

study performed on healthy, pre-eclamptic and hypertensive pregnancies for gestational age of  > 33 
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weeks, it was found a high increase in PWV from healthy to hypertensive and when compared to pre-

eclamptic there was a 1 m/s higher PWV in pre-eclamptic patients [50]. 

With the purpose of investigating the blood circulation in uterus and placenta, studies focused 

on the analysis of the uterine arteries and its association with the risk of pre-eclampsia, IUGR, 

gestational hypertension and other placental diseases. There is a general consensus that the RI and PI 

are related to the vascular resistance in the uterine circulation and pre-eclamptic patients will show an 

increase in RI and no decrease in PI which usually occurs in normal pregnancy due to the vascular 

remodelling from high resistance vessels to lower resistance vessels [83, 88, 113–116]. Moreover, 

studies also looked at notching and it was revealed that bilateral notching had higher maternal and foetal 

morbidity compared to unilateral [83, 90, 113, 117]. 

The investigation of smaller arteries such as the radial and spiral arteries is still limited as the 

current technology is not at an adequate level for clinical use. Makikallio et al. [118] analysed the spiral 

arteries using Doppler parameters and found that uterine and spiral artery RI and umbilical PI cannot 

identify changes in maternal remodelling early in pregnancy. Similarly, Hung et al. [119] found a 

detection sensitivity of PIH and IUGR of around 50% in low-risk population for a gestational age of 20 

– 25 weeks and concluded that the measurement of utero-placental blood velocity waveforms is not 

sensitive enough. A more detailed study focused on the spiral artery flow measurements using Colour 

Doppler was performed by Deurloo et al. [120] and found that there was no significant difference 

between pregnancies complicated by pre-eclampsia and IUGR compared to uncomplicated pregnancies 

for gestational age of 18 – 24 weeks. 

 

3-dimensional power Doppler (3DPD) is a different method used in [121] which calculates new 

indices called vascularisation index, flow index and vascularisation flow index. Hafner et al. [122] 

found a good detection sensitivity of pre-eclampsia using this method, however, it is questionable when 

it comes to validity and reproducibility [121]. 

As such, using the computational model to generate the flow and pressure in the spiral/radial 

arteries is a more advantageous method. The use of 1D modelling integrated with the Wave Intensity 

analysis (WIA) to capture the wave propagation is an important factor related to pre-eclampsia and the 

physiological changes that it generates. 

 

Figure 20. Best classifiers comparison to standard clinical biomarkers such as PI, RI, and 

DBP/SBP. 
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 In Figure 19, the normalised values of SBP for the two groups can be seen. SBP is the most 

reliable biomarker that is used in the diagnosis of pre-eclampsia by clinicians. However, in cases where 

the pregnant women develop hypertension, it becomes harder to differentiate between pregnancy 

induced hypertension and pre-eclampsia. This problem can be seen in Figure 20, as the uncomplicated 

group contains hypertensive women that did not develop pre-eclampsia while the complicated group 

developed pre-eclampsia. For SBP, the two groups' ranges overlap, making a diagnosis based simply 

on the pressure measurement difficult. When comparing SBP's boxplots to those of the other classifiers, 

it is clear that PI and RI can distinguish between the two groups better than SBP (the values in Figure 

19 for PI and RI are normalised; the figure showing the boxplots using the original values can be seen 

in Appendix). 

 This study comprised pregnancies that had already developed or were developing pre-

eclampsia at the time of the CP assessments. The SBP of the two groups overlaps significantly, making 

pre-eclampsia diagnosis more difficult. Nonetheless, the proposed classifiers yielded encouraging 

results, and in the event of uncomplicated pregnancies in healthy normotensive women, it will yield 

much better outcomes. However, the capacity to predict which pregnancies may develop pre-eclampsia 

in the future is unknown and will need to be examined more in future research. 

Lastly, it should be discussed the issue of finding positive markers by chance when calculating 

this range of biomarkers (PPI and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms) in the context of the given dataset. After analysing 

the results it was found that 𝑃𝑃𝐼𝑎𝑟𝑐 (L) and 𝑅𝐼𝑎𝑟𝑐 (R) had the highest accuracy when classifying the 2 

groups. These findings only apply for the current dataset and should not be considered as general 

biomarkers that will classify pre-eclamptic women best. The method of calculating these biomarkers 

should be used the calculate both the radial and arcuate PPI and RI and then assess the results together 

with other parameters such as blood pressure, proteinuria, possible notching etc. However, this will 

raise the following question: how are the new biomarkers better than the clinical PI and RI when a range 

of new biomarkers needs to be calculated and they still need to be used together with the standard 

predictors such as blood pressure and proteinuria? One option to solving the problem is to prove that 

among the range of new biomarkers (PPI and 𝑅𝐼𝑎𝑟𝑐/𝑅𝐼𝑟𝑎𝑑 terms) there is always one that always 

performs better than all others, however, this cannot be investigated in this work as it requires an 

extended dataset to validate it. By doing this, the issue of finding random positive markers will also 

disappear and a better confidence and understanding of the new biomarkers will be given.  

In summary, the conclusion of this work can be that a new set of biomarkers was found, and it 

was proven they can perform better than the current biomarkers. Also, the method of using 

computational modelling is a reliable approach in understanding the cardiovascular changes in the 

smaller arteries of the uterine system which is currently not easily accessible through clinical means. 

5. Conclusion 

The main objective of this work of finding a new biomarker that can classify pre-eclampsia has 

been fulfilled. As shown in 4. Results and Discussion, 𝑃𝑃𝐼𝑎𝑟𝑐 (L) and 𝑅𝐼𝑎𝑟𝑐 (R) showed better results 

at classifying complicated pregnancies compared to PI, RI or SBP. This suggests that the use of 

computational modelling of the cardiovascular system can provide additional information that is 

essential in diagnosis of pre-eclampsia. The accuracy of the proposed biomarkers was higher than the 

PI and RI for the supervised and unsupervised classification. It is also worth mentioning that the 

uncomplicated pregnancies group had a high mean blood pressure suggesting that some patients were 

suffering from hypertension at the time of measurements. This points at how the proposed biomarkers 

can differentiate between hypertension and pre-eclampsia well. When compared to DBP and SBP, it 

was shown that it would be considerably harder to provide a diagnosis of pre-eclampsia solely on blood 

pressure.  
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The results of the maternal parameters assessed are also worth mentioning as they confirm some 

of the literature findings. Area of aorta, PWV and SV were found to be important parameters in the 

classification of the two groups and the difference in values (Figure 17) seen between the two groups 

is worth mentioning. The group with complicated pregnancies meaning the pre-eclamptic women 

showed increased values in the area of the aorta, PWV and SV. 

6. Future direction 

The next step is to further investigate the effect of the proposed biomarkers on a bigger dataset. 

To do this, the computational model needs to be adjusted. Currently, the model has disadvantages that 

would not allow it to be used in a clinical setting such as increased computational time to run a case and 

high complexity. An option would be to use a neural network which is faster and easier to use. This is 

currently pursued as part of a PhD project. However, implementation of a model of this complexity into 

a neural network will come with its difficulties.  

Looking at the bigger picture, the model was able to find new biomarkers that would be much 

more difficult to measure clinically, and it would be a good opportunity to use the model to its full 

potential. This could mean proposing more biomarkers and analysing the simulations of the pregnant 

women in more depth. This will provide a better understanding of the cardiovascular changes and the 

effects of the pregnancy on the maternal parameter. One good example would be how Area of aorta, 

PWV and SV showed to be important parameters in classification of the two groups (Figure 15), 

however, the proposed biomarkers that included these parameters did not show good results during the 

classification analysis. As such, more work related to the maternal parameters would be a good direction 

as promising results were shown here but also in literature (discussed in 2. Literature review). 

7. Case Study: Effect of maternal positioning on maternal and 

foetal state 

7.1. Introduction 

During pregnancy, it is often recommended for conditions such as oedema that the pregnant 

women should rest in bed [123]. In the case of bed rest or even sleep, the position of the pregnant 

woman can affect the maternal physiological state. It was reported by Heazell et al. [124] that supine 

going-to-sleep position is associated with late stillbirth. Regarding the maternal haemodynamic state, it 

was seen that in the supine position, the blood pressure was not significantly different for different time 

periods while in the lateral position, the blood pressure decreased even by 15 mmHg [125, 126]. 

Regarding the cardiac output, it was noticed that it decreased up to 17% in the tilted position of 12.5 

degrees on right lateral and 13% in the supine position [127]. Heart  rate increased around 10 bpm and 

Bamber et al. [127] found that SBP increased by 2 mmHg in supine position.  

 The decrease in cardiac output is caused by compression of inferior vena cava (IVC) which 

impedes venous return, causing a decrease in cardiac output [128]. This compression is part of 

aortocaval compression (ACC) that is caused by the uterus and it also compresses the abdominal aorta 

[128]. ACC is usually asymptomatic as the arterial pressure remains fairly the same due to the increased 

in systemic vascular resistance (SVR) which is caused by a sympathetic response. Because of this, it is 

important to investigate the effect of the compression of the IVC in relation to the utero-placental flow. 

This will provide us with a better understanding of the effects of maternal positioning on the foetus. 

One study reported no changes in PI and RI for lateral and supine positions [126]. 
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7.2. Methods 

The effect of reducing the area of the veins that could be affected by the compression caused 

by the pillow when the women are positioned in prone position. The case study focuses on the maternal 

positioning and in this case, on the prone positioning of the women and usage of a pillow. It was seen 

in N. Introduction that the positioning of the women will cause vessel constriction for the venous system 

and also the arterial system (i.e. vena cava and abdominal aorta).  Figure 21 shows the main veins found 

in the area of the uterus and belly. 

 

The vessels that will be compressed are: IVC I, IVC II, IVC III, RCIV I, RCIV II, LCIV I, 

LCIV II, and Abdominal aorta. The vessels will be compressed individually and in groups. When a 

vessel is compressed, the area of the vessel reduces. Thus, to perform the simulations, the area will be 

reduced by 70, 80 and 90% to model the compression of the vessel.  

The model will contain the closed loop circulation (heart model, venous system and arterial 

system). The model will not contain any optimisation, but the initial conditions will be based on 

patient’s measurements and solutions from the personalised model (the open loop that converges to 

Doppler velocities). These initial conditions contain initial areas of arteries based on the area solution 

from the patient’s personalised model, initial resistance and compliance from the personalised model 

results, initial flow based on flow solution from personalised model, patient’s heart rate measurement, 

and patient’s SBP and DBP used for initial pressure.  

 The simulations of reducing the area will be performed for all 21 patients. The analysis will 

compare the simulated results to clinical measurements of positioning a group of pregnant women on 

prone and lateral positions for 20 – 30 minutes. The flow and pressure in the uterine artery will be 

investigated to determine if compressing the veins and abdominal aorta will affect the blood flow going 

to the placenta. Lastly, the comparison between uncomplicated and complicated pregnancies will be 

investigated in the context of compressing the veins. 

7.3. Results 

Reduction of the Vena Cava and Iliac Veins 

 

Figure 21. Venous circulation in the abdominal region (Left) and arterial circulation in the 

abdominal region (Right); IVC – inferior vena cava, RHV – right hepatic vein, LCHV – left common 

hepatic vein, LRV – left renal vein, RRV – right renal vein, ROV – right ovarian vein, RCIV – right, 

LCIV – left common iliac vein, Abd-Ao – abdominal aorta common iliac vein 
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The main changes have been observed when reducing the area of the IVC III by 90% (Figure 

22). The clinical data used to compare the simulated results has been provided by St. Mary’s Hospital, 

Manchester, UK. 

 

The changes in the cardiovascular system caused by the compression of the Vena Cava can be 

high, e.g. from 6.3 to 5.2 for CO when reducing IVC III by 90%. The SBP doesn’t change by more than 

10 mmHg and DBP changes by less than 1 mmHg. PWV is similar to DBP as it doesn’t change greatly, 

it stays it the range of 7 m/s, and for the uterine artery, the flow doesn’t decrease by more than 4 
𝑐𝑚3

𝑠
 

for the worst case (IVC III reduced by 90%) and 5 mmHg drop in pressure. The total resistance also 

increased the most for the case of IVC III reduced by 90%. 

Based on this, it was shown that the IVC III section affects the output of flow and pressure the 

most and the reduction of area by 90% is the most significant (Figure 22). One reason why IVC-III 

affects the pressure and flow output more than the other veins or segments of the vena cava is that the 

incoming flow going in the IVC-III is higher than the one in IVC-II and IVC-I (IVC-IV is not included 

as compression this segment results in the model not being able to deal with big area reductions). Flow 

in vena cava segments when there is no compression: flow in IVC-I is 6.6 
𝑐𝑚3

𝑠
, in IVC-II is 9.1 

𝑐𝑚3

𝑠
, in 

IVC-III is 16.6 
𝑐𝑚3

𝑠
 and lastly, in IVC- IV is 21.9 

𝑐𝑚3

𝑠
. 

 

Figure 22. Reduction of different vessel areas and their effect on different parameters; x-axis 

shows which vein was reduced, the title indicates which parameter is assessed; on y-axis is plotted 

SBP (mmHg), DBP (mmHg), and CO (L/min) respectively. VC-I – Vena cava I, VC-II – Vena 

Cava II, VC-III – Vena Cava III, R-ILIAC-I – Right Common Iliac I, R-ILIAC-II – Right Common 

Iliac II, L-ILIAC-I – Left Common Iliac I, L-ILIAC-II – Left Common Iliac II 
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The flow and pressure waveforms in the uterine artery are shown in Figure 23. When the IVC 

III is reduced by 90%, the flow in the uterine artery reduced by 2.5 
𝑐𝑚3

𝑠
 meaning that less blood gets to 

the fetus when the mother lies in a position that compresses the vena cava. 

Table 13. Comparing the not reduced case to 90% area reduction of IVC III to clinical results. 

 Not reduced 

Mean ± Std 

90% area 

reduction  

Mean ± Std 

Difference (90% 

area reduction – 

not reduced) 

Clinical difference 

SBP (mmHg) 126.73 ± 6.55 119.92 ± 6.79 -6.81 6 

DBP (mmHg) 89.34 ± 8.52 88.98 ± 8.48 ~ 0 7 

PWV (m/s) 7.69 ± 0.1 7.64 ± 0.12 ~ 0 - 

CO (L/min) 6.44 ± 0.42 5.30 ± 0.30 -1.14 -1.5 

SVR (dyne∙s/𝑐𝑚5) 
1398.9 ± 157.5 1634.7 ± 178.4 

 

235.8 

 

243 

Peak uterine artery 

Pressure (mmHg) 104.18 ± 6.04 100.53 ± 6.27 

 

-3.65 

 

- 

Peak uterine artery 

Flow (𝑐𝑚3/s) 14.01 ± 0.47 11.77 ± 0.33 
 

-2.24 

- 

Table 13 shows how the blood pressure increases clinically while in the simulations, SBP 

decreases while DBP stays the same. The difference in CO is similar between clinical and simulations 

together with SVR. This suggests that in the prone position, the abdominal aorta could get compressed 

together with the vena cava. Another possibility related to the increase of the blood pressure could be 

that the resistance in the vascular beds increases to account for the compression as a physiological 

response. 

Healthy vs. Pre-eclamptic comparison 

In the results presented above, the dataset included both groups. Here, the two groups will be 

compared to see if there are any differences. 

Table 14. Healthy (n = 12 patients) vs. pre-eclamptic (n = 9 patients). The area of the IVC III has been 

reduced. 

 Hypertensive Pre-eclamptic 

 Not reduced 

Mean ± Std 

90% area 

reduction  

Mean ± Std 

Not reduced 

Mean ± Std 

90% area reduction  

Mean ± Std 

SBP (mmHg) 126.73 ± 6.55 119.92 ± 6.79 129.63 ± 10.79 122.38 ± 10.94 

DBP (mmHg) 89.34 ± 8.52 88.98 ± 8.48 90.39 ± 12.95 89.73 ± 12.74 

 

Figure 23. Pressure and Flow changes in uterine artery when IVC-III is reduced for patient 1 
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PWV (m/s) 7.69 ± 0.1 7.64 ± 0.12 7.66 ± 0.07 7.62 ± 0.08 

CO (L/min) 6.44 ± 0.42 5.30 ± 0.30 6.12 ± 0.47 5.07 ± 0.33 

Peak uterine artery 

Pressure (mmHg) 104.18 ± 6.04 100.53 ± 6.27 107.15 ± 10.36 102.94 ± 10.5 

Peak uterine artery Flow 

(𝑐𝑚3/s) 14.01 ± 0.47 11.77 ± 0.33 14.13 ± 0.97 11.85 ± 0.69 

The results are similar between the two groups. The pre-eclamptic groups has slightly increased 

pressure values (SBP and Peak uterine Pressure) compared to the healthy group. 

This analysis does not consider the duration of compression (e.g. 5 minutes in prone position) 

meaning that it does not account for physiological responses caused by the compression of the vein. 

Reduction of the Vena Cava and Abdominal Aorta 

Checking how reducing the area of one section of the abdominal aorta together with IVC III by 

90% compares to only reducing the IVC III by 90% and the case when no vessel was reduced. The 

summary can be seen in Table 15. Abdominal aorta I (vessel number 40) was also reduced but did not 

show an increase in BP as great as reducing Abdominal aorta II (vessel number 46). 

Table 15. 0% – shows the results where no vessel is reduced; Only IVC III reduced 90% - shows the 

results when only IVC III was reduced. Abd-Ao II 90% - shows the results when abdominal aorta II and 

IVC III were reduced by 90% 

 

 

 

Parameters 

0% 

 

 

Mean ± Std 

Only IVC III 

reduced (90%) 

 

Mean ± Std 

Abd-Ao II-90% 

 

 

Mean ± Std 

Difference 

(Abd-Ao 90% 

- 0%) 

Clinical 

difference 

SBP (mmHg) 128.0 ± 8.5 121.0 ± 8.6 134.0 ± 8.6 6 6 

DBP (mmHg) 89.8 ± 10.3 89.3 ± 10.2 89.8 ± 10.2 0 7 

PWV (m/s) 7.7 ± 0.1 7.6 ± 0.1 6.1 ± 0.1 -1.6 - 

CO (L/min) 6.3 ± 0.5 5.2 ± 0.3 5.5 ± 0.3 -0.8 -1.5 

SVR (dynes*s/cm^5) 1398.9 ± 157.5 1634.7 ± 178.4 1626.4 ± 178.8 228 243 

P ut (mmHg) 105.5 ± 8.1 101.6 ± 8.2 62.5 ± 8.1 -43 - 

Q ut (𝑐𝑚3/s) 14.1 ± 0.7 11.8 ± 0.5 5.8 ± 0.5 -8.3 - 

It can be seen that the SBP increased and had a similar difference to the clinical results. 

However, the cardiac output increased compared to the case when only the IVC III was reduced and 

made the difference between the 0% and Abd-Ao II reduction to be only 0.8 L/min which is 

considerably lower than the clinical one. 

Table 16 looks at reducing all segments of the abdominal aorta by 70, 80, and 90% together 

with the reduction of 90 % of Left and Right iliacs, IVC I and IVC II. Here the cardiac output barely 

decreased suggesting that the cause in the decrease of the cardiac output is IVC III segment.  

Table 16. Abdominal aorta I,II,III,IV,V together with 90% reduction of Left and Right Iliacs, VC-I and 

II 

Parameters 0% 

 

 

Mean ± Std 

70% 

 

 

Mean ± Std 

80% 

 

 

Mean ± Std 

90% 

 

 

Mean ± Std 

Differenc

e 

(90%-

0%) 

Clinical 

differenc

e 

SBP (mmHg) 128.0 ± 8.5 131.9 ± 8.4 133.7 ± 8.3 135.6 ± 8.3 7.6 6 

DBP (mmHg) 89.8 ± 10.3 89.8 ± 10.3 89.8 ± 10.3  89.9 ± 10.3 ~0 7 

PWV (m/s) 7.7 ± 0.1 7.4 ± 0.1  6.9 ± 0.1 5.7 ± 0.1 -2 - 

CO (L/min) 6.3 ± 0.5 6.1 ± 0.4 6.1 ± 0.4 6.2 ± 0.5 -0.1 -1.5 
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SVR 

(dynes*s/cm^5) 

1398.9 ± 

157.5 

1460.0 ± 

161.7 

1471.3 

± 162.4 

1476.4 ± 

161.5 

78 243 

P ut (mmHg) 105.5 ± 8.1 93.0 ± 7.8 79.6 ± 7.3 50.6 ± 5.7 -49 - 

Q ut (𝑐𝑚3/s) 14.1 ± 0.7 10.9 ± 0.6 8.4 ± 0.5 4.1 ± 0.3 -10 - 

It is worth mentioning that the flow in the uterine artery decreases considerably and the pressure 

in the uterine artery is close to half of what it is in the not reduced case (0%). This confirms that the 

flow going to the placenta will decrease when the abdominal aorta and inferior vena cava are 

compressed. 

Table 17. The results of normal cardiac cycles where no vessel has been compressed (Not reduced); 

the results of compressing IVC I, II, III and the abdominal aorta II, III, IV and V by 90% (Area reduction 

of 90%) together with the resistance in vascular beds increased by 4 times the initial one and 

compliance in uteroplacental beds increased by 1.0005 times the initial one (Reduced). The number of 

patients is 10 

Parameters Not reduced 

 

 

Mean ± Std 

Reduced 

 

 

Mean ± Std 

Difference 

(Reduced – 

Not reduced)  

Clinical 

difference 

SBP (mmHg) 127.7 ± 6.5 136.0 ± 11.9 8.3 6 

DBP (mmHg) 90.3 ± 8.5 94.6 ± 13.9 4.3 7 

PWV (m/s) 7.7 ± 0.1 5.1 ± 4.1 -2.6 - 

CO (L/min) 6.4 ± 0.4 5.5 ± 0.4 -0.9 -1.5 

SVR (dyne∙s/𝑐𝑚5) 1380.5 ± 6.0 1698.2 ± 15.5   318 243 

P ut (mmHg) 105.2 ± 9.0 66.4 ± 11.3 -38.8 - 

Q ut (𝑐𝑚3/s) 14.0 ± 0 3.5 ± 0.1 -10.5 - 

In Table 17, the results of compressing IVC I, II, and III and abdominal aorta II, III, IV and V 

by 90% together with an increase in resistance in vascular beds of 4 times the original one and 

compliance in the utero-placental beds by 1.0005 times the original one. This showed the most similar 

results to the clinical ones. It can be seen that the additional changes of increasing the resistance and 

compliance resulted in an increase in SBP and DBP and decrease in CO. The change in SVR is also 

similar to the clinical one (318 dyne∙s/𝑐𝑚5 vs. 243 dyne∙s/𝑐𝑚5). This suggests that the positioning of the 

pregnant woman in prone position would result in a significant compression of the inferior vena cava 

and abdominal aorta which causes a major drop in stroke volume and because of this, the sympathetic 

nervous system kicks in and increases the peripheral resistance which causes an increase in blood 

pressure. However, this explanation is based on a small dataset and rough changes to resistance and 

reduction in area of the veins/arteries in the abdominal region. It was seen in other work that the changes 

in pressure, cardiac output and resistance can differ depending on the duration of sitting in given 

position, the type of position inspected, the number of participants and so on [125–127]. 

7.4. Conclusion 

In summary, it was possible to reproduce similar results of the effect of prone position on 

pregnant women to the clinically observed ones. This could mean that the sympathetic system plays a 

role. Another useful observation is that the obstruction of the vena cava and abdominal aorta needs to 

be significant to observe any major changes. Similarly, it was observed that for such major obstruction, 

the blood flow in the uterine system significantly decreased. Lastly, the difference between hypertensive 

and pre-eclamptic women when obstructing the venous and arterial vessels was insignificant. 

The investigation presented in this work was only at the start and it is not finished. As such, 

future work is needed to understand the overall changes that cause an increase in the pressure and a 

decrease in cardiac output (as seen in the clinical tests performed on pregnant women by positioning 
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them in a prone position on a pillow). As mentioned before, the resistance will play an important role 

in these simulations and because of that, a further investigation on the effect of changing the resistance 

together with the area reduction would be useful. 

8. Data cleaning 

8.1. Introduction 

This chapter focuses on one of the steps that need to be taken to implement a possible neural 

network as mentioned in the Future Direction section. That step is data cleaning. As it is well known, 

a model, be a mathematical model or a neural network, needs to be validated. Especially for a neural 

network, data plays a main role in its optimisation as it is used to train the algorithm and validate it. 

There are different options to train neural networks. One would be to use synthetic data rather than 

actual data from patients (which is often used as it is easier to acquire). However, actual data still needs 

to be used at some point (only using synthetic data could cause issues such as training the network to 

output solutions that are not physiologically possible). This chapter serves as an introduction to how to 

clean large datasets. 

In clinical settings, the platform used for recording data is not always standardised (there could 

be devices that have a standard format and are the same across multiple facilities. However, this is rarely 

the case). This is mentioned because not having a standard platform can cause variability. This means 

that even small differences in data inputs can result in data that would be hard to use for computational 

applications. Currently, the majority of data is manually inputted in the system. Again, this is mentioned 

because it plays a big role in data cleaning. The majority of errors are made during the manual recording 

of the data (e.g. writing the clinical measurements in an excel sheet and making mistakes such as writing 

word wrong, using capital letters for some word but not for others, putting a ‘.’ In the wrong place and 

so on). 

Data cleaning is a process that removes duplicated data, incorrectly formatted data, corrupted 

or incorrect data and can also fill incomplete data. Different methods used in data cleaning will be 

presented here and used to clean a large clinical dataset. 

8.2. Foetal measurements 

Besides the ultrasound scan performed for the assessment of the uterine artery velocity 

waveform, an ultrasound scan is also performed for the assessment of the foetus, and it is called 

sonography. 

Foetal measurements are taken by clinicians in second and third trimester to assess the 

development of the foetus, foetal weight and gestational age. Generally, gestational age (dating) is 

calculated from the first day of the last menstrual period (LMP), but this method can be unreliable as 

this information is not always known [129]. An alternative method to calculate gestational age is to 

measure crown-rump length (CRL) and head circumference (HC). For assessing foetal size, foetal size 

charts are used where the calculated foetal size is compared to reference data in charts [130]. Finally, 

foetal weight estimation (or estimated foetal weight, EFW) is generally calculated using Shepard and 

Hadlock formulas [131]. 

The main measurements taken are head circumference (HC), biparietal diameter (BPD), 

abdominal circumference (AC), and Femur length (FL). There are multiple clinical practices for taking 

the measurements of the head such as measuring BPD using outer to outer (BPDoo) or outer to inner 

(BPDoi) calliper placement and HC using the ellipse facility on the ultrasound machine or calculating 

it using the occipitofrontal diameter (OFD) [132]. AC is measured using the transverse section of the 
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ultrasound image; FL is measured by locating the femur and needs to be close to the horizontal plane 

[133].  

Table 18. Assessment of typical ranges for BPD, AC, HC, and FL [134, 135] 

 Gestational age range (weeks) Measurements range  

BPD (cm) 13 – 42 2.5 – 10 

HC (cm) 13 – 42 8 – 36 

AC (cm) 13 – 41 10 – 37 

FL (cm) 13 – 41 1 – 8 

EFW (g) 20 – 36  343 - 2624 

Shepard and Hadlock formulas typically used for calculating EFW are shown below [136]: 

𝑆ℎ𝑒𝑝𝑎𝑟𝑑: 𝐿𝑔(𝑤𝑒𝑖𝑔ℎ𝑡) =  −1.7492 + 0.166 ∗ 𝑩𝑷𝑫 + 0.046 ∗ 𝑨𝑪 − 
2.6460(𝑨𝑪 ∗ 𝑩𝑷𝑫)

1000
 (27) 

𝐻𝑎𝑑𝑙𝑜𝑐𝑘 1: 𝐿𝑔(𝑤𝑒𝑖𝑔ℎ𝑡) =  1.304 + 0.05281 ∗ 𝑨𝑪 + 0.1938 ∗ 𝑭𝑳 −  0.004 ∗ 𝑨𝑪 ∗ 𝑭𝑳 (28) 

𝐻𝑎𝑑𝑙𝑜𝑐𝑘 2: 𝐿𝑔(𝑤𝑒𝑖𝑔ℎ𝑡) =  1.335 + 0.0034 ∗ 𝑨𝑪 ∗ 𝑭𝑳 + 0.0316 ∗ 𝑩𝑷𝑫 +  0.0457 ∗ 𝑨𝑪 +
0.1623 ∗ 𝑭𝑳       

(29) 

𝐻𝑎𝑑𝑙𝑜𝑐𝑘 3: 𝐿𝑔(𝑤𝑒𝑖𝑔ℎ𝑡) =  1.326 − 0.00326 ∗ 𝑨𝑪 ∗ 𝑭𝑳 + 0.0107 ∗ 𝑯𝑪 + 0.0438 ∗ 𝑨𝑪 + 0.158 ∗
𝑭𝑳            

(30) 

𝐻𝑎𝑑𝑙𝑜𝑐𝑘 4: 𝐿𝑔(𝑤𝑒𝑖𝑔ℎ𝑡) =  1.3596 − 0.00386 ∗ 𝑨𝑪 ∗ 𝑭𝑳 + 0.0064 ∗ 𝑯𝑪 +  0.00061 ∗ 𝑩𝑷𝑫 ∗
𝑨𝑪 + 0.0424 ∗ 𝑨𝑪 + 0.174 ∗ 𝑭𝑳                                                                                                                                                      

(31) 

Obstetricians need to assess the foetal size in relation to gestational age to determine whether 

the foetus is small for gestational age (SGA), large for gestational age (LGA) or appropriate for 

gestational age (AGA)[137]. SGA foetuses have EFW and AC below 10th percentile while LGA 

foetuses have EFW and AC above 90th percentile.  

Similar to SGA, foetal growth restriction (FGR) foetuses have EFW below the 10th percentile, 

however, not all FGR foetuses are SGA foetuses. A FGR foetus can be defined as a foetus that did not 

achieve its potential growth and it can result in adverse perinatal outcome such as pre-term birth or even 

stillbirth [137, 138]. When paired with pre-eclampsia, this could result in a baby at risk of developing 

cardiovascular diseases and neurodevelopmental conditions [138]. Thus, it is important to keep track of 

fetal size throughout the pregnancy and to screen for possible FGR. 

8.3. Methods 

Compared to before, this section focuses on large datasets as data cleaning is useful for datasets 

that are difficult to manually clean. The dataset used in this section is acquired from St. Mary’s Hospital, 

Manchester, UK with the approval of NHS Research Ethics Committees (RECs) as the previous one.  

The dataset on which data cleaning was performed includes 9711 rows (rows signify the visits) and 30 

columns (meaning 30 parameters that were recorded). The main columns contains clinical 

measurements such as HC, AC, BPD, FL, EFW, Umbilical PI, Umbilical RI, Umbilical EDF, Uterine 

artery PI, RI, and Notch, Impression (assessment of any diseases present during consultation, history 

etc.), Outcome (developed pre-eclampsia, other diseases or healthy), Department and Examination date. 

Compared to the previous dataset which only contained 21 patients, this dataset has thousands of 

patients. Also, this dataset focuses on foetal measurements rather than maternal cardiovascular 

measurements. 

The cleaning was performed using Python on the JupyterLab platform (JupyterLab was chosen 

as it is an accessible platform that can be used without extensive knowledge). The main libraries used 

are SciPy, NumPy, matplotlib, pandas, and sklearn (Table 19).  

Table 19. Python libraries that are often used in data cleaning 

Library Details 
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SciPy Contains complex algorithms (ODE, Fourier solvers) and can be used in statistics, 

optimisation, integration and others [139] 

NumPy Main module for scientific computing and can be used for sorting, indexing, linear 

algebra and others [140] 

Matplotlib Fundamental package for creating figures in Python 

Pandas Main package used for data analysis and data cleaning as it can easily manipulated 

data (delete/insert columns, group data, handles missing data well etc.) [141] 

Sklearn Package that focuses on machine learning algorithms to use in Python 

The main steps taken for cleaning the data are: 

▪ Removing unwanted columns (or columns that are not needed such as Exam Date or 

Department) 

▪ Removing duplicated rows (all values in each column same as another row’s values) 

▪ Generating a Profile report of the dataset and check any abnormal values 

▪ Replacing abnormal values to values that are physiological correct e.g. replacing PI value of 70 

to 0.7. This step refers back to the Introduction (Section Data Cleaning – R. Introduction) as 

one of the functions of data cleaning is to spot inconsistent data. This should not be confused 

with outliers. Outliers can still be physiological correct (for example: having a blood pressure 

of 160 mmHg while the mean of the dataset is 120 mmHg means 160 mmHg is an outlier. If 

the value would be 1600 mmHg then this is considered an inconsistency as it is not 

physiological possible) 

▪ Filling missing values in the “string” columns (e.g. in the notch column, fill missing values 

with “missing notch”) 

▪ Changing strings values to integers: identify typos such as “preeclampsia”, “pre-eclampsia” 

,”Pre-eclampsia with diabetes” and replace it with “Pre-eclampsia” which will then be changed 

to an integer. This step was performed by first identifying all string that contain a specific word 

or phrase, and then replacing it with the wanted string/integer 

o For the Outcome column, 5 categories have been selected: Pre-eclampsia (patients that 

developed pre-eclampsia), Maternal disease (other disease than pre-eclampsia), Normal 

foetal growth (healthy), Abnormal foetal growth (foetal abnormality), and unknown 

outcome 

▪ Imputation of missing data: this step will be performed on the columns containing numeric data 

such as FL, HC, AC, BPD, PI and RI 

o 4 methods have been selected for performing the data imputation: calculating the mean of 

the category (first method), k-means (second method), kNNI (kNN Imputation) (third 

method), and XGBoost (fourth method) 

o Separate filling of EFW column using Hadlock and Shepard formulas based on the foetal 

measurements. To select a formula, the error for each formula (equations 27-31) will be 

calculated and the formula with the lowest error will  be used for imputation. 

Calculating error as: 

𝑒𝑟𝑟𝑜𝑟 =  
𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 × 100  (32) 

where the actual value is the original data value and calculated value is the value calculated by the 

formulas.  

The first data imputation method, calculating the mean of the category, is one of the most 

common methods used in data imputation. The categories are the ones mentioned in column labelled 

Outcome (as the name suggests, it gives information about the outcome of the pregnancy). The mean 

will be calculated using the data that is linked to the specific category.  

The second data imputation method is k-means. The first step is to normalise the data. This can 

be performed using the MinMaxScaler function in Python (it scales from 0 for minimum to 1 for 
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maximum). Next, the ideal number of clusters needs to be identified. To do this, the elbow method is 

used (the elbow method is used in k-means clustering to find the optimal number of clusters; it plots 

the average data dispersion on the y axis and k or the number of clusters on the x axis. The plotted line 

will look like an elbow, hence the name. The optimal number of clusters is where the elbow is). The 

imputation uses the clusters’ centroids values for filling the missing values. Lastly, reverse scaling is 

performed to revert from the normalised values. 

The third data imputation method is kNNI. Similar to k-means, the data is normalised. The 

imputation uses the k nearest neighbour algorithm which involves selecting a distance measure (e.g. 

Euclidean) and the number of neighbours, k. Here, the missing values will be replaced by the mean 

value of 5 nearest neighbours measured by Euclidean distance (it can be said the neighbours form a 

cluster, however in this method, the number of neighbours can be changed based on the dataset 

compared to k-means which looks at the entire dataset and the clusters formed inside it while kNNI can 

chose to ignore data points if the number of neighbours chosen is smaller than the actual number of 

datapoints in that cluster). Then, the data is scaled back. 

The fourth and final data imputation method used is XGBoost. This method is designed for 

large datasets due to its high speed. Besides that, it uses predictive mean matching to improve the 

variance of the imputations. It is using a tree algorithm and it is fairly easy to implement. It was chosen 

as the algorithm is more complex than the first method and it is also different compared to KNNI and 

k-means. This methods should cover a range of algorithms and provide a general idea on which type of 

method would be more suitable for a dataset as the one in this chapter. 

8.4. Results 

Removal of duplicate rows 

Not all columns are required for the next step after data cleaning. So, the columns left are Exam 

date, Indication, BPD, HC, AC, Femur, EFW, Umbilical PI, Umbilical RI, Umbilical EDF (End-

diastolic flow), Uterine PI (Right and Left), Uterine RI (Right and Left), Uterine Notch (Right and 

Left), and Impression. To remove duplicate rows, the data in all columns need to be identical to another 

row’s data. One example can be seen in the table below. 

Table 20. Example of duplicated rows. Note: Not all columns have been displayed 

Exam 

date 

Indication BPD 

(mm) 

HC 

(mm) 

AC 

(mm) 

Femur 

(mm) 

EFW 

(g) 

Umbilical 

PI () 

Umbilical 

RI () 

26/12/

2019 

Preeclampsia with FGR 
     

1.46 
 

26/12/

2019 

Preeclampsia with FGR 
     

1.46 
 

27/12/

2019 

Maternal disease in 

current pregnancy 

85.5 309.6 306.5 65.8 2,419 1.07 0.67 

27/12/

2019 

Maternal disease in 

current pregnancy 

85.5 309.6 306.5 65.8 2,419 1.07 0.67 

As it can be seen in the table above, first and second rows are identical and third and fourth 

rows are identical too. After removing the identical rows, the number of total rows reduced from 9711 

rows to 2382 rows. 

Assessment of typos in the dataset 

There are two types of data in this dataset: text and numeric. The text data will include typos, 

writing with a capital letter, lower case letter, using ‘-‘ or others and will be dealt with during the 

grouping step. The numeric data needs to be in the correct ranges for each parameter, if not, it can be 

considered a typo. The physiological ranges for the foetal measurements are found in Section 



56 | P a g e  
 

Background – Foetal measurements. For the PI and RI ranges, it is safe to say that values below 0 and 

over 5 are abnormal. Lastly, it is important to consider that many women assessed in this dataset have 

maternal diseases and some impressions of these pregnancies are unfavourable (small for gestational 

age or large for gestational age) which results in abnormal measurements.  

As the dataset is large, a report was generated using pandas-profiling v3.2.0. It was found that 

the maximum of Umbilical RI and Uterine RI was over 60 suggesting that there are typos in these 

columns. The typical range for RI is [0, 1] but there could be outliers (the definition of RI is maximum 

velocity minus minimum velocity divided by maximum velocity so based on this, the range should be 

from 0 to 1. However, minimum velocity could be negative, meaning the flow is going in the opposite 

direction) [142]. 

To remove these typos, the values that are over 3 (the value of 3 was chosen to account for any 

outliers in the range for RI) in these columns have been divided by 100 as it is presumed that the 

clinician probably wanted to type, for example, 0.6 rather than 60. The summary of the Umbilical RI 

can be seen in the Figure 24.  

 

It can be seen that the mean of the data in this column is 0.73, so values of 73 are far from the 

mean. The histogram is not displaying the distribution properly due to the typo. 

 

Figure 25 shows the data distribution after removing the typos. It can be seen in the histogram 

that the distribution is a normal distribution with a maximum of 1.33 and minimum of 0.34 

Grouping of data in different categories 

As mentioned above, the categorical data shows many different inputs and variations of them. 

A summary of the inputs seen in the Impression and Indication columns can be seen in Figure 26. 

 

Figure 24. Summary of data in the Umbilical A RI () column (Umbilical A RI () = Umbilical RI). 

This report was done on the original dataset. On the right side, a histogram is displayed. 

 

Figure 25. Summary of data in the Umbilical A RI () column (Umbilical A RI () = Umbilical RI) 

after removing the duplicated rows and the typos. 
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In the Figure above (Figure 26 Right), ‘Normal fetal growth’ can be seen twice. This is caused 

by an additional phrase added and because of that, it becomes separated from the category with the 

frequency of 41.4%. At the bottom of the figure, it is shown that there are 670 other values that account 

for 26.8% of the data inputs. In the Indication column (Left), it can be seen that even a lower case letter 

separates the same disease into two different categories (e.g. Budd vs. budd). To group the data values 

in different categories, common words/phrases such as ‘Pre-eclampsia’, ‘maternal disease’, ‘Normal’, 

‘Abnormal’ etc. have been selected and based on this, different categories implemented i.e. if a phrase 

in the Impression column contained the word ‘Normal’ or ‘normal’ then it will change to ‘Normal fetal 

growth’. Following this, the categories that summarise the values in the Impression column are Normal 

fetal growth, Abnormal fetal growth, Maternal disease, Pre-eclampsia and Unknown where Unknown 

was given to missing values in this column. All other columns that contained categorical data and had 

missing values had those values filled as ‘unknown’. 

After grouping the categorical data in different categories, the categories were converted from 

strings to integers to remove all strings from the dataset. 

 

 

Figure 26. Summary of data in the Impression (Right) and Indication (Left) columns of original 

dataset.  

 

Figure 27. Summary of data in the Impression and Indication categories; 50 – Normal fetal growth, 

51 – Abnormal fetal growth, 52 – Maternal disease other than pre-eclampsia, 53 – Pre-eclampsia, 

10 – Maternal disease before pregnancy (e.g. diabetes), 11 – Previous pregnancy with maternal 

disease, 12 – Fetal abnormality, 13 – Fetal evaluation, 14 – Previous stillbirth or miscarriage, 15 

– Pre-eclampsia, 16 – Previous pregnancy with pre-eclampsia, 17 - Unknown 

0 500 1000 1500 2000

Indication

17 16 15 14 13 12 11 10

0 500 1000 1500 2000 2500

Impression

53 52 51 50
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Based on Figure 27, the category with most values in the Indication column is Maternal disease 

and in the Impression column is Normal fetal growth. This suggests that many pregnancies where the 

mother has a maternal disease can result in normal growth. The Impression column also has a Maternal 

disease category which contains diseases such as SGA, LGA, FGR, hypertension and other diseases 

except pre-eclampsia. 

Other columns that have categorical data are the Notch columns and Umbilical EDF (end-

diastolic flow). Summary of the Right and Left uterine notch can be seen below. 

In the Notch column, the most values are found in Category 2 which includes the missing 

values. The second category with most values is the no notch seen for both left and right uterine arteries 

and lastly, 1 or notch seen.  

 

Imputation of missing data 

The most important part of data cleaning is data imputation. Data imputation can be performed 

using many methods such as using the mean of the column or using more complex methods such as 

category mean, k-means, KNNI, and XGBoost which have been used here. Table 21 shows that on 

average, over 30% of data is missing for most columns. 

Table 21. Percentage of data missing for most columns with numerical data (after duplicated rows have 

been removed) 

Column Missing (%) 

BPD (mm) 39.6 

HC (mm) 34.2 

AC (mm) 32.3 

Femur (mm) 32.0 

EFW (g) 33.2 

Umbilical PI 26.5 

Umbilical RI 27.6 

Uterine PI (R) 46.2 

Uterine RI (R) 46.2 

Uterine PI (L) 47.1 

Uterine RI (L) 47.0 

The results of the four methods used to impute data for the BDP (bi-parietal diameter) column 

can be seen in Figure 29.  

Uterine Notch (Left)                                       Uterine Notch (Right) 

 
Figure 28. Summary of Uterine Notch columns (Left and Right), 0 – no notch seen, 1 – notch 

seen, 2 – unknown 
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After data imputation, all methods show similar results as the most common values are found 

around BPD = 70 mm. This shows that all methods investigated fail at filling the missing values in a 

distributed way of the original range (it can be seen in the graphs for all methods other than the original 

that the distribution is not normal anymore due to the high frequency of missing values being imputed 

at 70 mm). One reason why it fails in filling the missing values with different distinct values is that the 

main category with most data values is the Normal fetal growth. As such, the category mean method 

will fill the missing values in specific categories with the mean of that category which resulted in the 

high frequency of the value 73 in Figure above (for category mean). This type of imputation was seen 

in the other columns as well. Overall, it can be concluded that these methods show little variation in the 

data that was imputed making these methods unreliable. One option that could improve the imputation 

would be to consider adding noise to each value and thus, increase the variance of the population. 

However, random noise could not be appropriate when dealing with physiological data. 

The formulas used for calculating EFW (estimated fetal weight) (formulas can be found in Chapter 8.2) 

have been compared to assess which one is the best to use for this data. To assess this, the formulas 

were used to estimate the EFW for patients that already had it calculated by the clinicians and then 

using eq. 32 in Chapter 8.3 to calculate error (the actual values are the ones already in the data and the 

estimated values are the ones calculated using the formulas. Then the formulas with the smallest error 

will be chosen to estimate the missing values of EFW). Table 22 shows the results of the different 

formulas: 

Table 22. Number of rows where the error is of above 10% for each method of data imputation 

 Category mean k-means KNN XGDBoost 

Shepard 2381 1591 1591 1591 

Hadlock 1 827 36 34 38 

Hadlock 2 902 40 31 116 

Hadlock 3 863 36 32 77 

Hadlock 4 865 39 32 80 

From Table 22, two conclusions can be drawn. Firstly, Shepard formula generated an error above 10% 

for the majority of the dataset. Secondly, the Category mean method will have an error above 10% in 

more than 800 rows which suggest that this method is not suitable for data imputation of EFW. The 

             Original                         Category mean 

 
      k-means                         KNN                        XGBoost 

 
Figure 29. Summary of data imputation in column BPD (bi-parietal diameter) where original 

shows the distribution before data imputation. The y-axis represents the frequency while the x-axis 

is BPD (mm) 
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other three methods show similar results as Hadlock 1 formula found around 35 values that had an error 

above 10% which is significantly lower compared to Category mean and can be deemed acceptable due 

to the large dataset. The results of the data imputation on EFW column can be seen in Figure 30.  

 

8.5. Conclusion 

During this work, it was possible to show how a large dataset can be cleaned and how data 

imputation can be performed. Although the results of the data imputation are not ideal, the methods 

used here provide a general idea of the process that can be useful in future work.  

This chapter only shows a portion of the results that were deemed as representative of the data 

cleaning results. The results presented for BPD are similar to the other parameters. Data cleaning is 

necessary for large datasets as the one presented in this chapter and data imputation is an important 

process that can fill missing values. However, the results of the methods shown here do not seem to fill 

the missing values in a nicely distributed manner. One of the reason could be that data imputation was 

constrained by the category (e.g. Normal fetal growth). So, as a next step, imputing the missing values 

regardless of the category could be pursued. Also, it is worth mentioning that only using a simple 

method such as calculating the mean and using only that is not a good choice for a large dataset. This 

will definitely result in a distribution with a value that has a higher frequency than all other as seen in 

the results section for this method.  

Future work needs to be done to improve data imputation as the results presented here show 

only the basic steps of data cleaning. More understanding of the actual physiological values and 

distribution of the parameters is needed. 
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10. Appendix 

The table below shows the full patient data used in section Patient characteristics. 

Table 23. Patient measurement data. U – uncomplicated, C – complicated 

Patient Height 
(cm) 

Weight 
(kg) 

GA 
(Week 

+ days) 

SBP 
(mmHg) 

DBP 
(mmHg) 

HR 
(beat/min) 

CO 
(L/min) 

PWV 
(m/s) 

Birth 

Weight 
(g) 

U1 172 95 24+1 146 96 91 6.6 6.3 2117 

U2 155 50 24+2 107 74 94 3.5 5.8 2052 

U3 169 114 22+2 145 93 88 4.9 7 3260 

U4 166 79 24 122 87 76 5.7 6.7 3370 

U5 155 54 22+3 123 79 74 2.5 6 2420 

U6 157.5 76 23+6 133 95 96 4.4 7.5 - 

U7 166 79 23+1 141 97 83 3.3 8.1 3240 

U8 164 44.2 23+4 129 88 84 4.2 7.5 2300 

U9 167 123 23+2 146 95 117 5.6 12.3 3800 

U10 160 74.1 23+1 155 101 99 3.7 5.9 3369 

U11 156 80 22 124 78 89 3.5 7.3 3670 

U12 165 80 23+6 136 92 108 7.3 6.6 3694 

C13 156 76 28 185 111 81 4.7 12.5 931 

C14 172 79 23+4 148 94 69 6.1 8.1 340 

C15 153 77 22 127 77 79 7.1 7 350 

C16 157 57 28 122 84 79 4.5 7.6 494 

C17 165 65 22+5 148 90 81 7.1 9.3 260 

C18 166 80 25+4 138 105 99 7.3 9.4 550 

C19 176 83 26+4 135 93 71 5.7 7.9 895 

C20 164 85 25+1 134 69 74 4.8 9.1 495 

C21 166 80.2 25+2 131 93 104 7.3 9.4 550 

 

Table 24. Doppler ultrasound scan data. 𝑣𝑠𝑦𝑠  – systolic velocity (cm/s), 𝑣𝑑𝑖𝑎  – diastolic velocity (cm/s), 

L – left, R – right. 

Patient 𝒗𝒔𝒚𝒔 (L) 𝒗𝒅𝒊𝒂 (L) 𝒗𝒔𝒚𝒔 (R) 𝒗𝒅𝒊𝒂  (R) PI 

(L) 

PI 

(R) 

RI 

(L) 

RI 

(R) 

Notch 

U1 37.5 15 30 15 1.11 0.6 0.62 0.42 no 

U2 80 40 75 40 0.79 0.68 0.52 0.47 no 

U3 47 30 70 30 0.62 1.14 0.44 0.64 no 

U4 66 30 62 31 0.88 0.72 0.55 0.49 no 
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U5 110 55 67.5 37.5 0.83 0.86 0.53 0.54 no 

U6 60 30 67.5 27.5 0.72 1.23 0.48 0.62 no 

U7 40 22.5 50 22.5 0.57 1 0.41 0.61 no 

U8 88 30 75 45 1.52 0.69 0.72 0.47 no 

U9 45 17.5 32.5 20 1.2 0.63 0.62 0.45 yes, no for R 

U10 60 25 37.5 22.5 1.13 0.83 0.61 0.54 no 

U11 140 68 130 70 0.8 0.8 0.51 0.46 unsure 

U12 58 30 120 70 0.69 0.69 0.48 0.41 no 

C13 60 15 50 12.5 2.55 3.19 0.87 0.91 yes 

C14 30 10 25 5 1.86 2.49 0.78 0.85 yes for R, 

unsure for L 

C15 80 15 37.5 12.5 2.52 1.91 0.83 0.77 yes 

C16 45 15 45 12 1.64 1.75 0.72 0.74 yes 

C17 37.5 15 37.5 15 0.85 1.06 0.6 0.6 yes  

C18 35 10 35 15 1.82 1.24 0.77 0.69 yes for L, 

unsure for R 

C19 65 15 67.5 15 1.84 1.54 0.76 0.74 yes 

C20 60 35 65 40 0.72 0.72 0.41 0.38 no 

C21 52 16 30 10 1.77 1.77 0.69 0.66 yes 

 

Table 25. Normalised values for the 9 variables used in the Buckingham PI analysis. A – area of the 

aorta, PWV – pulse wave velocity, 𝑅𝑢𝑡 – resistance in the uterine artery, 𝑅𝑝𝑒𝑟𝑖𝑝ℎ - peripheral resistance, 

𝑃𝑠𝑦𝑠𝑡 – systolic blood pressure, 𝛥𝑃𝑝𝑢𝑙𝑠𝑒 – pulse pressure, Compliance – systemic vascular compliance, 

CO – cardiac output, SV – stroke volume 

Patient A PWV 𝑹𝒖𝒕 𝑹𝒑𝒆𝒓𝒊𝒑𝒉 𝑷𝒔𝒚𝒔𝒕 𝜟𝑷𝒑𝒖𝒍𝒔𝒆 Compliance CO SV 

U1 0.325 0.509 0.891 0.339 0.784 0.676 0.801 0.904 0.807 

U2 0.227 0.459 0.176 0.517 0.576 0.452 1.000 0.479 0.414 

U3 0.296 0.565 0.566 0.533 0.781 0.707 0.630 0.671 0.620 

U4 0.483 0.532 0.268 0.465 0.659 0.473 0.741 0.781 0.835 

U5 0.171 0.487 0.105 1.000 0.667 0.614 0.794 0.342 0.376 

U6 0.353 0.606 0.384 0.679 0.723 0.512 0.576 0.603 0.510 

U7 0.302 0.655 0.723 0.919 0.764 0.593 0.457 0.452 0.442 

U8 0.352 0.601 0.266 0.635 0.694 0.554 0.577 0.575 0.556 

U9 0.574 0.918 0.560 0.530 0.788 0.689 0.222 0.767 0.533 

U10 0.184 0.492 0.564 0.610 0.851 0.767 0.745 0.507 0.416 

U11 0.246 0.585 0.089 0.745 0.663 0.630 0.598 0.479 0.438 

U12 0.362 0.540 0.419 0.304 0.741 0.594 0.769 1.000 0.752 

C13 0.504 1.000 0.519 0.799 1.000 1.000 0.207 0.644 0.646 

C14 0.522 0.645 1.000 0.461 0.807 0.727 0.487 0.836 0.984 

C15 0.511 0.574 0.286 0.332 0.693 0.675 0.681 0.973 1.000 

C16 0.450 0.619 0.494 0.550 0.657 0.513 0.569 0.616 0.634 

C17 0.590 0.705 0.647 0.400 0.791 0.782 0.396 0.973 0.975 

C18 1.000 0.751 0.511 0.404 0.754 0.445 0.334 1.000 0.820 

C19 0.535 0.615 0.345 0.495 0.720 0.567 0.526 0.781 0.893 

C20 0.380 0.721 0.378 0.589 0.713 0.886 0.414 0.658 0.722 

C21 0.760 0.709 0.323 0.375 0.705 0.514 0.364 1.000 0.781 
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Further description of methods used for feature selection: 

Minimum Redundancy Maximum Relevance algorithm – the method selects a set of features that are 

highly uncorrelated to each other but they are highly correlated to the output [143]. 

Chi-square tests – Uses the null hypothesis to assume there are no differences between classes. Then, 

for each value, an expected number is found. To find chi-square, the difference between actual and 

expected values squared divided by expected value is used.  

F-test – this method is used when the data has an F-distribution. The f-value is calculated as the division 

between the larger sample variance and smaller sample variance. 

ReliefF algorithm – a common method that is based on the idea that a feature should have similar values 

for observations of the same class and different values for observations of different classes [144]. To 

calculate the feature score, it uses the nearest neighbour pair and if the observation value for same class 

is different, then the score decreases. 

 

Table 26. Summary of ML methods used for the classification models 

Name Abbreviation Description/Settings 

Fine Tree FT Maximum number of splits: 100 

Split criterion: Gini's diversity index 

Surrogate decision splits: Off 

Medium Tree MT Maximum number of splits: 20 

Split criterion: Gini's diversity index 

Surrogate decision splits: Off 

Coarse Tree CT Maximum number of splits: 4 

Split criterion: Gini's diversity index 

Surrogate decision splits: Off 

Linear Discriminant LD Covariance structure: Full 

Quadratic Discriminant QD Covariance structure: Full 

Logistic Regression LR - 

Gaussian Naïve Bayes GNB Distribution name for numeric predictors: Gaussian 

Distribution name for categorical predictors: Not Applicable 

Kernel Naïve Bayes KNB Distribution name for numeric predictors: Kernel 

Distribution name for categorical predictors: Not Applicable 

Kernel type: Gaussian 

Support: Unbounded 

Linear SVM LSVM Kernel function: Linear 

Kernel scale: Automatic 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardize data: true 

Quadratic SVM QSVM Kernel function: Quadratic 

Kernel scale: Automatic 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardize data: true 

Cubic SVM CSVM Kernel function: Cubic 

Kernel scale: Automatic 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardize data: true 

Fine Gaussian SVM FGSVM Kernel function: Gaussian 

Kernel scale: 0.25 

Box constraint level: 1 
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Multiclass method: One-vs-One 

Standardize data: true 

Medium Gaussian SVM MGSVM Kernel function: Gaussian 

Kernel scale: 1 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardize data: true 

Coarse Gaussian SVM CGSVM Kernel function: Gaussian 

Kernel scale: 4 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardize data: true 

Fine KNN FKNN Number of neighbours: 1 

Distance metric: Euclidean 

Distance weight: Equal 

Standardize data: true 

Medium KNN MKNN Number of neighbours: 10 

Distance metric: Euclidean 

Distance weight: Equal 

Standardize data: true 

Cosine KNN CosKNN Number of neighbours: 100 

Distance metric: Euclidean 

Distance weight: Equal 

Standardize data: true 

Cubic KNN CubKNN Number of neighbours: 10 

Distance metric: Minkowski (cubic) 

Distance weight: Equal 

Standardize data: true 

Weighted KNN WKNN Number of neighbours: 10 

Distance metric: Euclidean 

Distance weight: Squared inverse 

Standardize data: true 

Bagged Trees BagT Ensemble method: Bag 

Learner type: Decision tree 

Maximum number of splits: 18 

Number of learners: 30 

Subspace Discriminant SubD Ensemble method: Subspace 

Learner type: Discriminant 

Number of learners: 30 

Subspace dimension: 1 

Subspace KNN SubKNN Ensemble method: Subspace 

Learner type: Nearest neighbours 

Number of learners: 30 

Subspace dimension: 1 

RUSBoosted Trees RUSBT Ensemble method: RUSBoost 

Learner type: Decision tree 

Maximum number of splits: 20 

Number of learners: 30 

Learning rate: 0.1 

Narrow Neural Network NNN Number of fully connected layers: 1 

First layer size: 10 

Activation: ReLU 

Iteration limit: 1000 

Regularization strength (Lambda): 0 

Standardize data: Yes 
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Medium Neural Network MNN Number of fully connected layers: 1 

First layer size: 25 

Activation: ReLU 

Iteration limit: 1000 

Regularization strength (Lambda): 0 

Standardize data: Yes 

Wide Neural Network WNN Number of fully connected layers: 1 

First layer size: 100 

Activation: ReLU 

Iteration limit: 1000 

Regularization strength (Lambda): 0 

Standardize data: Yes 

Bilayered Neural Network BNN Number of fully connected layers: 2 

First layer size: 10 

Second layer size: 10 

Activation: ReLU 

Iteration limit: 1000 

Regularization strength (Lambda): 0 

Standardize data: Yes 

Trilayered Neural Network TNN Number of fully connected layers: 3 

First layer size: 10 

Second layer size: 10 

Third layer size: 10 

Activation: ReLU 

Iteration limit: 1000 

Regularization strength (Lambda): 0 

Standardize data: Yes 

 

Monte Carlo simulations additional results: 

 

 

Figure 31. Variance of Pressure (Left) and Velocity (Right) for different outlet vessels when varying  

parameter 𝐴𝑢𝑡 
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Figure 32. Variance of Pressure (Left) and Velocity (Right) for different outlet vessels when varying  

parameter 𝐴𝑟𝑎𝑑 

 

 

 

Figure 33. Pressure (Top) and Velocity (Bottom) changes of varying 𝐴𝑢𝑡 
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Figure 34. Pressure (Top) and Velocity (Bottom) changes of varying 𝐴𝑟𝑎𝑑 

 

 

 

Figure 35. Pressure (Top) and Velocity (Bottom) changes of varying 𝑄𝑎𝑜,𝑖𝑛 
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Figure 36. Variance of Pressure (Left) and Velocity (Right) for different outlet vessels when varying  

parameter C 

 

 

 

Figure 37. Pressure (Top) and Velocity (Bottom) changes of varying 𝑄𝑎𝑜,𝑖𝑛 

 

 

Figure 38. Boxplots UP and CP for PI (L/R) and RI (L/R), the values are not normalised 

 




