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FIBRANT RESOLUTIONS FOR MOTIVIC THOM SPECTRA

GRIGORY GARKUSHA AND ALEXANDER NESHITOV

ABSTRACT. Using the theory of framed correspondences developed by Voevodsky [32] and the
machinery of framed motives introduced and developed in [13], various explicit fibrant resolu-
tions for a motivic Thom spectrum E are constructed in this paper. It is shown that the bispectrum

ME (X) = (Mg(X).ME(X)(1), Mg (X)(2),..),

each term of which is a twisted E-framed motive of X, introduced in the paper, represents X, A E
in the category of bispectra. As a topological application, it is proved that the E-framed motive
with finite coefficients Mg (pt)(pt)/N, N > 0, of the point pr = Speck evaluated at pr is a quasi-
fibrant model of the topological $2-spectrum Re€ (E) /N whenever the base field k is algebraically
closed of characteristic zero with an embedding € : k — C. Furthermore, the algebraic cobordism
spectrum M GL is computed in terms of Q-correspondences in the sense of [21]. It is also proved
that MGL is represented by a bispectrum each term of which is a sequential colimit of simplicial
smooth quasi-projective varieties.
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1. INTRODUCTION

Voevodsky [32] introduced framed correspondences in order to suggest a new approach to
stable motivic homotopy theory which will be more amenable to explicit computations. In [13]
the machinery of (big) framed motives is developed converting the classical Morel-Voevodsky
stable motivic homotopy theory into a local theory of framed bispectra and yielding a new
model for SH (k) in [14]. A key computation of [13] is to give explicit fibrant resolutions of the
suspension spectra/bispectra of smooth algebraic varieties.

The main results of this paper are concentrated around explicit computations of motivic Thom
spectra, decribed below, which play a central role in stable motivic homotopy theory. We use
computational miracles of Voevodsky’s framed correspondences to extend the machinery of
framed motives that are of crucial importance in [13] to “E-framed motives”, where E is a
motivic Thom T-spectrum.

By definition, E is called a Thom spectrum if every space E, has the form

E,= COlimi En,ia En,i = Vn,i/(vn,i _Zn,i)7

where V,,; — V, i1 is a directed sequence of smooth varieties, Z,, ; — Z, ;11 is a directed system
of smooth closed subschemes in V,, ;. We say that a Thom spectrum E has the bounding constant
d if d is the minimal integer such that codimension of Z, ; in V,, ; is strictly greater than n —d for
all i,n. If E is also symmetric then it is said to be a spectrum with contractible alternating group
action, if for any n and any even permutation 7 € %, there is an A'-homotopy E,, — Hom(A !, E,,)
between the action of T and the identity map. In other words, E neglects the action of even
permutations up to A'-homotopy. The most interesting examples of such symmetric Thom
spectra, all of which have the bounding constant d = 1, are given by the spectra MGL, MSL
or MSp (the latter two are regarded as T2-symmetric spectra for which the above definitions
remain the same). These Thom spectra are of fundamental importance. If we regard E as a
PP!-spectrum, denote by ®(E) the standard stabilization colim, Hom(IP"", E[n]) of E. Taking
the Suslin complex at each level, we get a P!-spectrum C,®*(E).
Our first computation (see Theorem 5.4) is as follows.

1.1. Theorem. Let E be a Thom spectrum with the bounding constant d. Let C.0*(E)/ be a
spectrum obtained from C.®%(E) by taking a level Nisnevich local fibrant replacement. Then
the spectrum C,0(E)/ is motivically fibrant starting from level max(0,d) and is stably equiv-
alent to E.

If E is a symmetric T-spectrum, then there is another natural stabilization functor @3, (E)
(see Definition 6.2). It is different from ®>(E) and involves actions of certain permutations on
E. As above, we can take the Suslin complex at each level and form a P!-spectrum C, O%(E).

Given a Thom T-spectrum E, denote by Frf (X) the space Frf (X) = Hom(P"*, X, AE,) and
Frf (X) := colim, Frf (X) = @ (X, AE)o. By the Voevodsky lemma 2.12 Frf (X) and Frf (X)
have an explicit geometric description. We can similarly define the sheaves Frf (T7), i > 0. Al-
together they form a P'-spectrum Frf (S7) := (Frf (8%), Frf (T),Frf(T?),...). As usual, denote
by C, Frf (S7) the P!-spectrum obtained from Frf (S7) by taking the Suslin complex levelwise.

The next computation (see Theorem 8.1) gives the following fibrant resolutions of E (starting

from some level).



1.2. Theorem. For a symmetric Thom T-spectrum E with the bounding constant d and con-
tractible alternating group action the following P'-spectra are isomorphic to E in SH(k) and
motivically fibrant starting from level max(0,d):

o C.Frf(Sy)f

e C.O(E)/

b C*®;;m (E)fr
where “ f” refers to levelwise Nisnevich local fibrant replacements of the corresponding spectra.

Our next goal is to represent a Thom spectrum E in the category of (S', G/\!)-bispectra and
construct an explicit fibrant resolution for it. To this end, we introduce and study in Section 9
E-framed motives of smooth algebraic varieties Mg (X ), X € Smy. They are defined similarly to
framed motives introduced in [13] and are explicit sheaves of Sl—spectra.

The main result here (see Theorem 9.13) is as follows.

1.3. Theorem. Suppose X € Smy, and E is a symmetric Thom T-spectrum with the bounding
constant d and contractible alternating group action.
(1) Ifd = 1 then the (S',G)\")-bispectrum

ME(X) = (Mp(X) 5,Me(Xe NG £, ME(X AGO) ...

is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra, where
“f” refers to stable local fibrant replacements of S'-spectra.
(2) Ifd < 1 then the (S',G)\")-bispectrum

ME(X) = (Mp(X) r,Me(Xs NG 1, ME(X AGOP) ...

is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra, where
“f” refers to level local fibrant replacements of S'-spectra.
(3) If d > 1 then the (S',G)\")-bispectrum

ngAlml (Mga—1(X) Mg (X AGO) 1, Mpa—1 (X AGp) 7, -0))

is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra, where
“f” refers to stable local fibrant replacements of S'-spectra. Here E[d — 1] stands for the
(d — 1)-th shift of E in the sense of Definition 2.6. Another equivalent model for the T-spectrum
X, AE in the category of bispectra is given by

Qg’d@al ((MT‘J”/\E(X)ﬁMT‘J*IAE(XJr N G}’Anl )f?MT”'*I/\E(X+ A G;ﬁz)f’ . ))

This bispectrum is motivically fibrant and “f” refers to stable local fibrant replacements of
Sl-spectra.

One of the most impressive applications of the theory of framed correspondences and the
machinery of framed motives is that they lead to computing explicit fibrant resolutions of clas-
sical topological objects in terms of algebraic varieties. These computations are far relatives for
the celebrated constructions of Pontrjagin [25] who interpreted homotopy groups of spheres in
terms of smooth manifolds. For example, the classical topological sphere spectrum is computed
in [13] as the framed motive M, (pt)(pt) of the point pt = Speck evaluated at the point when-
ever the base field k is algebraically closed of characteristic zero. We use the preceding theorem



to get a similar topological application in Theorem 10.3. The main example here concerns the
motivic cobordism spectrum M GL whose realization is isomorphic to the topological complex
cobordism spectrum MU.

1.4. Theorem. Let k be an algebraically closed field of characteristic zero with an embedding
€ :k— C. Suppose E is a symmetric Thom T-spectrum with the bounding constant d < 1
and contractible alternating group action. Then for all integers N > 1 and n € Z, the natural
realisation functor Re® : SH (k) — SH in the sense of [23] induces an isomorphism

(Mg (pt)(pt); Z/N) = 7, (Re® (E); Z/N)
between stable homotopy groups with mod N coefficients.

Given a motivic Thom spectrum E and X € Sm/k, we fix any group completion Fr (A2, X)eP
of the space Frf (A, X), which is functorial in X. For instance, one can take Frf (A%, X)& =
QuFrE (A3, X ®S'). Put

72 (X) = 7 (FrF (A7, X))
and call £ (X) the n-th singular algebraic E-homotopy group of X.

The following result on the singular algebraic E-homotopy is an analogue of the celebrated

theorem of Suslin and Voevodsky [30] on the singular algebraic homology (see Theorem 10.5):

1.5. Theorem. Suppose E is a symmetric Thom T -spectrum with the bounding constant d < 1
and contractible alternating group action. The assignment X v ©tf(X) is a generalized ho-
mology theory on Sm/C. Moreover, passing to homotopy groups with finite coefficients, we get
equalities
nE(X;Z/m) = m,(X(C) 1 ARe*(E); Z/m)

for all integers n > 0 and m # 0.

Also, the first part of this theorem is true over any perfect field k. Namely, the assignment
X s wE(X) is a generalized homology theory on the category Sm/k.

We can simplify E-framed motives further by removing a bit of information in the definition
of E-framed correspondences. In this way we arrive at “normally framed motives Mg (X)” (see
Definition 11.24). They play a pivotal role in our analysis and — most importantly — lead to
explicit computations of the algebraic cobordism spectrum MGL (see below).

We prove the following result (see Theorem 11.26) computing E in terms of normally framed
motives.

1.6. Theorem. Suppose X € Smy, and E is a symmetric Thom T-spectrum with the bounding
constant d = 1 and contractible alternating group action. Then we have a (S',G\")-bispectrum

Mg (X) 5 = (Mg(X) 1, Mg (X1 AG) 1, Me(X: AGRY) g, ),

which is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra,
where “f” refers to stable local fibrant replacements of S'-spectra.

The last section is dedicated to further explicit models representing the algebraic cobordism
spectrum MGL in the category of bispectra. We first introduce Nisnevich sheaves Emb(—,X) =
colim, Emb,(—,X), X € Smy, where Emb,(U,X) is the set of couples (Z, f) such that Z is



a closed l.c.i. subscheme in Aj,, finite and flat over U, and f is a regular map f: Z — X.

For U,X € Sm; we also denote by Cor$}(U,X) the groupoid with objects given by the set

Emb,(X,Y) whose morphisms between (Z;, fi) and (Z,, f») are isomorphisms a: Z; — Z

such that 7z, o0 = 7z, and foot = f1, where 7z, denotes the projection 7z, : Z; — A% — X. There

are natural stabilization maps Cory’(—,X) — Cory, | (—,X) induced by the natural inclusions

A}, — A1 Denote by Cor*(—,X) the colimit colim, Cor(—,X).
In Theorem 12.15 we compute My, (X) as follows.

1.7. Theorem. For X € Smy there is a natural levelwise stable local equivalence between
(S1, G -bispectra M, (X) and

m
(C.Emb(X, AS),C.Emb(X, AGMAS),...)
or
(C.NCor* (X, AS),C.NCor*(X, AGA'AS),...).
Here “N” refers to the nerve of isomorphisms. In particular, the (S',G)\")-bispectra

(C.Emb(X; AS)s,C.Emb(X, AG)IAS)p,...)

and
(C.NCor® (X, AS) ,C.NCor* (X, AGL AS)p,...)

are motivically fibrant and represent the T-spectrum X, AN MGL in the category of bispectra,
where “f” refers to stable local fibrant replacements of S'-spectra.

We finish the paper by the following important computation (see Theorem 12.16) of the
algebraic cobordism in terms of smooth quasi-projective varieties. This computation is an ap-
plication of the preceding theorem.

1.8. Theorem. The (S',G))-bispectrum My, (X) is isomorphic in SH(k) to a bispectrum

X4 AS X AGHIAS
(EA7S EAm RS0 )
each term of which is given by a sequential colimit of simplicial smooth quasi-projective vari-
eties EX+\Gi'NS i 5> 0,

Throughout the paper we denote by Smy, the category of smooth separated schemes of finite
type over the base field k. We shall assume that k is perfect for the reason that the main result
of [12] (complemented by [0] in characteristic 2 and by [5, A.27] for finite fields) says that over
such fields for any A!-invariant quasi-stable radditive framed presheaf of Abelian groups .%,
the associated Nisnevich sheaf .%,;; is strictly Al-invariant. By a motivic space we shall mean
a pointed simplicial Nisnevich sheaf on Smy. If € is a category cotensored over the category
of pointed motivic spaces .# , we shall write Hom(A,C) € € for the cotensor object associated
with A € .# and C € € unless it is specified otherwise. We choose the flasque local/motivic
model structures on motivic spaces (respectively S'- or P!-spectra of motivic spaces) in the
sense of [17].



Relations to other works. This paper (first appeared in the archive in April 2018) depends on
a series of papers on framed motives [3, 10, 12, 13]. Computations of motivic Thom spectra
like those of Theorem 9.13 in terms of tangentially framed correspondences as defined in [7]
were later obtained in [8]. Our approach is based on Voevodsky’s framed correspondences [32].
Technique developed in Sections 6 and 7 is crucial for the theory of motivic I'-spaces [15], an
extension of the celebrated Segal machine of I-spaces [28] to the world of motivic homotopy
theory. A systematic study of normally framed correspondences associated with Thom spec-
tra is given in Section 11. This type of correspondences associated with the motivic sphere
spectrum is of great utility in [2, 7]. Normally framed correspondences lead to representabil-
ity of some important motivic Thom spectra like MGL by schemes (see Theorem 12.16). The
representability theorem is also proven in [8].

2. PRELIMINARIES

In this section we collect basic facts about spectra and motivic spaces with framed correspon-
dences.

Spectra of Thom type.

2.1. Definition. For every space X denote by C,X its Suslin complex. It is the diagonal of the
bisimplicial sheaf (n,m) — Hom(A},X,,) where X,, is the sheaf of m-simplices of X.

2.2. Definition. Given two spaces X,Y and maps f,g: X =7,

e a simplicial homotopy between f and g is a map H: X AA[l] — Y such that the com-
position Hip = f and Hi; = g, where io,i;: X — X AA[1], are the face maps;

e an Al-homotopy between f and g is a map H: X — Hom(A!,Y) such that i{H = f and
ifH = g, where ip, i : Hom(A!,Y) — Y are maps induced by zero and unit embeddings
of pt into A,

2.3. Remark. Every A'-homotopy H: X — Hom(A' Y) between f and g gives rise to a sim-
plicial homotopy H': C.X AA[l1]+ — C.Y between f and g.
2.4. Convention. We shall use the following notation:

e Given two motivic spaces B and C, we denote by tw the twist isomorphism C A B =
BAC.
e For brevity, we shall sometimes write (A, B) to denote Hom(A, B), where A and B are
motivic spaces. We shall use the canonical map
(A,B)AC — (A,CAB)
which is adjoint to

(A,B) <4 (CAA,CAB) = (C,(A,CAB).

When C and B are distinct spaces we shall often compose the previous map with the
twist isomorphism tw: CAB — BAC to get the map

(A,B) AC — (A,BAC).



e If there is no likelihood of confusion, we shall use the equality sign P APV = P A
PV for the associativity isomorphism

IP)/\m A ]P)/\n Y, P/\m+” — ]P)/\I’H-m o~ P/\n A ]P)/\m.
e For any m,n we shall identify the spaces (via associativity isomorphisms)
(B, (B, X)) = (B AP, X) = (BM APV X) = (B, (P, X)).

Let T be the pointed Nisnevich sheaf A!/(A! —0). A T-spectrum is a sequence of spaces
E, together with bonding maps, denoted by u. In what follows we work with right spectra, and
so each bonding map is a map u: E, AT — E, ;. Denote by X, the nth symmetric group. A
symmetric T-spectrum is a spectrum E together with a left action of X, on E, such that the
bonding maps satisfy the relevant equivariance properties.

2.5. Definition. Given 7 € ¥, we shall write 7= (7(1),...,7(n)). The reader should not confuse
this notation with cyclic permutations. For any n,m, denote by ¥, ,» € X,1.» the obvious shuffle
permutation X, , = (n+1,...,n+m,1,...,n).

If we denote by Sy the symmetric motivic sphere T-spectrum (S°, T, 72,...), then any sym-
metric T-spectrum is a right module over the monoid St in the category of symmetric se-
quences [ 16, 7.2].

2.6. Definition. Given a symmetric 7-spectrum E and n > 0, denote by u;: T AE, — E, | the
composition

TANEy ™ E,AT % Epy 225 Eppp.

Observe that the maps give a map of symmetric T-spectra u; : T AE — E[1]. Here E[1] is
the shift symmetric spectrum whose spaces are given by E[1], = E|4, with action of X, by
restriction of the ¥ ,-action on E|, along the obvious embedding ¥,, <— X, taking T € £, to
1® 7T € Xi4,. The structure maps of E|[1] are the reindexed structure maps for E. In turn, T A E
is the suspension spectrum of E whose spaces are defined as (T AE), = T AE,. The symmetric
group X, acts on 7' A E, through the given action on E, and trivially on 7. Each structure map
is the composite

(TAE) AT =T AE,AT) 2% (T AE) 1.

2.7. Definition. A symmetric spectrum E is said to be a spectrum with contractible alternating
group action, if for any n and any even permutation T € ¥, there is an A'-homotopy E, —
Hom(A'! E,) between the action of T and the identity map. In other words, E neglects the
action of even permutations up to A'-homotopy.

2.8. Definition. A T-spectrum E is called a Thom spectrum if every space E, has the form
E, = COhmi En,ia En,i = mi/(vmi _Zmi)’

where V,,; — V, ;11 is a directed sequence of smooth varieties, Z, ; — Z, ;11 is a directed system
of smooth closed subschemes in V,, ;.

We shall say that a Thom spectrum E has the bounding constant d if d is the minimal integer
such that codimension of Z,; in V,, ; is strictly greater than n —d for all i, n.



2.9. Example. The suspension spectrum XX, = X, AS7 and the algebraic cobordism spectrum
MGL of [31] (see also [22, 24]) are examples of symmetric Thom spectra with the bounding
constant 1 and contractible alternating group action.

If E is a Thom T-spectrum with the bounding constant d > 0, then its nth shift E[n] (see
Definition 2.6) as well as the spectrum 7" A E, n > 0, is a Thom spectrum with the bounding
constant d —n. In turn, its negative shift E[—n| = (x,...,*,Ep,E],...) having Ej in the nth
entry is a Thom T'-spectrum with the bounding constant n + d. By definition, the trivial Thom
spectrum * = (,,...) has the bounding constant +co.

In practice we also deal with symmetric Thom T2-spectra like MSL or MSp (see [24] for
definitions). We also say that a Thom T2-spectrum E has the bounding constant d if d is the
minimal integer such that codimension of Z,; in V,,; is strictly greater than 2n — d for all i,n.
The Thom T2-spectra MSL and MSp have the bounding constant d = 1.

By construction (see [24]), the action of the symmetric group X, on the spaces MSL,, and
MSp,, factors through the action of SL, and Spy, respectively. Since SL,, and Sp,, are
semisimple simply-connected groups, the sets of k-points SL,,(k) and Sp;,(k) are generated
by the root subgroups Ugy (k) (see [260]). Since every root subgroup Uy is isomorphic to the
affine line A}(, we have that for every element A of G = SL,, or G = Sp», there exists a map
h: Al — G such that h(0) = I,h(1) = A. It follows that MSL and MSp are T>-spectra with
contractible alternating group action as well.

2.10. Lemma. Let X, — GL, (k) be the standard inclusion and let T be an even permutation.
Then there is an A'-curve L: A} — GL, such that L(0) = I is the identity matrix and L(1) = .

Proof. Since 7 is even, its image belongs to SL,(k). Thus it can be written as a product of
elementary matrices:

m
t=[]ei;(A), where 1 <ip,ji<n, A€k, ii # ji.
=1

Here an elementary matrix e; j(A) is a matrix with all its diagonal elements equal to 1, A being
placed in the (i, j)-th entry and zero elsewhere. Then L(t) = []/%, e;, ,(tA;) defines a regular
map A} — GL, (k) with L(0) =7 and L(1) = 7. O

In order to avoid a heavy presentation, from now on we shall deal with Thom T -spectra only.
The interested reader will be able to prove the relevant results for Thom T?-spectra as well.

2.11. Definition. There is a functorial fibrant replacement of motivic spaces X — X/ in the
flasque Nisnevich local model structure (e.g. given by controlled fibrant models in the sense
of [18, Section 1.2]) such that for any P!-, T- or S'-spectrum E = (Ey,Ej,...) the sequence
El = (Eg ,E{ ,...) can be canonically equipped with a structure of a spectrum and E — E/ is a
map of spectra.

The Voevodsky Lemma. One of the key facts in the theory of framed correspondences is the
following lemma of Voevodsky that computes Hom-sets between certain Nisnevich sheaves. Its
proof can be found in [ 13, Section 3].



2.12. Lemma (Voevodsky’s Lemma). For X,Y € Smy and a closed subset X' of X and open
subset V of Y the set

Homgpy, (X/X/7Y/V)
is in a natural bijection with the set of equivalence classes of triples (U,Z,§), where Z is a
closed subset of X disjoint with X', U is an étale neighborhood of Z in X and ¢: U — Y is a
regular map such that ¢~ (Y — V) = Z. By definition, two triples (U,Z, ) and (U',Z',¢") are
equivalent if Z = 7' and ¢, 9’ coincide on some common etale neighbourhood of Z in X.

2.13. Corollary. For any Thom spectrum E there is a natural isomorphism of motivic spaces
Hom(P"" E,) = Hom(P" /P"~! E,).

As a consequence, the ¥,-action on Hom(P\" E,) permuting factors of P""™ can be extended to
an action of GL,, (k) (it naturally acts on P /P"™'), and thus for any even permutation T € ¥,
there is an A'-homotopy between the action of T and the identity map of Hom(P""™ E,) by
Lemma 2.10.

Proof. By Definition 2.8 E, = colim;E,;, where E,; =V, ;/(V,; — Z,;). For any X € Smy
Lemma 2.12 implies both sets Hom (X, AP"" E, ;) and Hom (X, AP" /P! E,, ;) are naturally
isomorphic. They are described up to isomorphism of sets (see [13, Section 3]) as the equiva-
lences classes of triples (U,Z, ), where Z is a closed subset of A¥, finite over X, U is its étale
neighborhood and ¢ : U — V,,; is such that ! (Zpi)="Z. O

2.14. Definition. Following [13] for X,Y € Sm; and an open subscheme U of Y, we set
Fr,(X,Y /U) := Homgyy, (X. AP (Y /U)AT").

Fr,(X,Y /U) is pointed at the empty correspondence or, equivalently, at the zero map. By smash-
ing the elements of Fr,(X,Y /U) with the canonical motivic equivalence ¢ : P"! — T, we get a
map of pointed sets Fr,(X,Y /U) — Fr,1(X,Y /U). Denote by

Fr(X,Y/U) := colim,(--- = Fr,(X,Y /U) — Fr, . (X, Y /U) — ---).

We shall also write C, Fr(Y /U) to denote the Suslin complex associated to the Nisnevich sheaf
X — Fr(X,Y/U) (see Definition 2.1).

More generally, we can define the sets Fr,(X,¥) := Homgpy, (X4 AP G AT"), Fr(X,9)
for every pointed Nisnevich sheaf ¢ as well as the Suslin complex C, Fr(¥¢) associated to the
Nisnevich sheaf X — Fr(X,%¥).

Below we shall often deal with sheaves of the form

Hom(P",Fr,(Y/U)), i,n>0.

By Voevodsky’s Lemma its value at X € Smy consists of the triples (W,Z,¢), where Z is a
closed subset of A}, finite over X, W is its étale neighborhood and ¢: W — Y is such that
o-(Y-U)=2

2.15. Proposition (Additivity Theorem). Suppose X, X' € Smy and Z,Z' are closed subsets of
X and X' respectively. Denote Y =X /(X —Z),Y' =X'/(X" —Z'). Then for every i > 0 the
canonical map

Hom (P C,Fr(Y VY')) — Hom(P",C, Fr(Y)) x Hom(P" ,C,Fr(Y"))



is a schemewise weak equivalence.
Proof. The proof is like that of the Additivity Theorem of [13]. U
2.16. Corollary. Let I'°P be the category of finite pointed sets and pointed maps. Under the

notation of Proposition 2.15 the association
K € T v Hom(P" C,Fr(Y AK))
is a special T-space in the sense of Segal [28]. As a result, the Segal S'-spectrum
Hom(P"Y, My, (¥)) = Hom(P"Y, C. Fr(Y AS))

is sectionwise positively fibrant. Here S = (S°,S',82,...) is the sphere spectrum and M, (Y) :=
C.Fr(Y AS) is the framed motive of Y in the sense of [13].

3. THE FUNCTOR ®” AND THE LAYER FILTRATION

If there is no likelihood of confusion, we shall often regard T-spectra as P!'-spectra by
means of the canonical motivic equivalence ¢ : P! — T. Given a T-spectrum E, denote by
u,: E; — Hom(P"!,E; ) the adjoint to the bonding map. Following Jardine [18, §2], we give
the following definition.

3.1. Definition. Denote by E A T the fake T-suspension spectrum with terms (EAT); = E;A\T
and bonding maps given by
(E,NT)AT Y25 By AT

It is important to note that the bonding maps do not permute two copies of 7" on the left. De-
note by Q(E) the fake loop P'-spectrum with terms Q‘(E); = Hom(P!, E;) and bonding maps
adjoint to

Hom(P"', E;) = Hom(P"', Hom(P"!, E; 1))
We notice again that two copies of P! on the right are not permuted.
3.2. Definition. We denote by E[1] the shifted T-spectrum E[1]; = E;;;. Its bonding maps
u: E;AT — E;i1 induce a map of T-spectrau: EAT — E[1].

3.3. Definition. Denote by ®'(E) = Q(E[1]). By adjointness there is a canonical map of P'-
spectra

E = QYEAT) = QYE[1]) = OYE).
Denote by ©"(E) the n-fold composition ®'(®'...(E)). There are natural stabilization maps
@"(E) — @1 (E) and ®(E) denotes the colimit

®~(E) = colim, ®"(E).

3.4. Remark. We shall need the following explicit description of spaces of the P!-spectrum
®"E and its bonding maps. The jth space equals

©"(E); = Hom(P"",Ej.,).
The bonding maps of ®@"(E) are adjoint to
(B, Enyj) = (P (PN Eny 1)) = (B AP By i) = (PN (P, Eny i)

10



One should note that we do not permute copies of P! here. The stabilization map @"(E )i —
e (E) ; can be described as the composite map

Hom(P"" E; ) —% Hom (P AP Ejy AT) 2 Hom(P""*! Ejy ).
Here the left arrow smashes the simplices of the left space with ¢ : P — T.
3.5. Lemma. For any spectrum E the adjoint of each bonding map
©~(E); — Hom(P"', 0 (E);11)
in the spectrum O%E is an isomorphism.
Proof. For every n and i the adjoint of the bonding map
@ (E); — Hom(P",©"(E);11) = Hom(P'"*!, Eyy 1) = O (E);

coincides with the stabilization map @"(E); — @""!(E);. Thus we get an isomorphism of se-
quences ®"1(E); and Hom(P"', @*(E) . 1). O

3.6. Definition. Given a T-spectrum E, define its n-th layer L,(E) as the T-spectrum
L,.E = (Eo,E,...,Ey,E, NT,E,NT?,. ).
unT=!

The maps of spaces E, AT' = E, AT AT"! 22— E, .| AT"~! induce maps of spectra L,E —
L,+1E and an obvious isomorphism of spectra £ =2 colim,, L,E.

We recall the following lemma from [ 13, Section 13]. It says that ®> converts T-spectra into
framed P'-spectra, i.e. spectra whose spaces are spaces with framed correspondences.

3.7. Lemma. For any T-spectrum E there is a canonical isomorphism of P'-spectra
O7E = colim, ®~(L,E).
Moreover; there is a canonical isomorphism of spaces ®*(L,E); = Hom(P"*,Fr(E, AT")).

Proof. Note that ®"(E) = colim, ®" (L,E) for every m. Thus passing to the colimit over m, we
get the first isomorphism. For the second statement note that the left hand side is the colimit over
m of the sequence (P E, AT™1) — (PNt APMUE, AT™ A T). Thus the identification
(Pt B, AT = (P (P E, AT AT™)) (we do not permute copies of T here) provides
its isomorphism with the sequence (P, Fr,,(E, AT")). O

4. THE MAYER-VIETORIS SEQUENCE

4.1. Definition. Suppose X € Smy and Z is a smooth closed subvariety of codimension d. We
say that the embedding Z — X is trivial if there is an étale map a: X — A" such that Z =
X X gnra A", where A" — A"+ is the standard linear embedding.

4.2. Lemma. For every closed embedding of smooth varieties Z — X of codimension d there is
an open cover of X by X; such that the inclusion X;\Z — X; is trivial.

11



Proof. Let n be the dimension of Z and let x € Z be a closed point. Since the embedding Z — X
is regular, there is an open affine neighborhood X’ of x in X such that Z' = X' N Z is the zero
locus of d regular functions fi,..., f;. These regular functions define a map f: X’ — A that is
flat by [29, Tag O0R4]. Since Z' is smooth, [29, Tag 01V9] implies that f is smooth at x, and
by [29, Tag 054L] there is an affine open neighborhood U of x in X’ such that f: U — A? can
be presented as a composition of an étale map followed by a projection: f: U LN A, — A,
Then UNZ =U X 4a {0} = U X gura A", and so the embedding U NZ — U is trivial. O

4.3. Lemma. IfZ — X is a trivial embedding of codimension d, then there is an isomorphism
of Nisnevich sheaves X /(X —Z) — Z, AT

Proof. Fix an étale map o: X — A" such that Z = X x 4.4 A". Consider the projection
prp: A" 5 A" and the composition pr,oa: X — A". Then X' = Z x p» X is an etale neigh-
borhood of Z in X. Moreover, X’ and X — Z is an elementary Nisnevich cover of X, hence
X'/(X'—Z)— X /(X —Z) is an isomorphism of Nisnevich sheaves. Then the composition

X' =ZxanX > Zxan A" =7 x; A?

is an étale neighborhood of Z = Z x 0 in Z x; A?, and thus it induces an isomorphism X’/ (X’ —
Z) = ZxA)(ZxAY—Zx0)=Z, NTY. O

4.4. Lemma. Suppose G is a strictly homotopy invariant Nisnevich sheaf, then for any bounded
chain complex of presheaves X there is an isomorphism

HOl’I‘lDMr (TOI (C* (X))Ni57 G[I’l]) = HOl’l’lD;/l_S (XNisa G[n])

Proof. Consider the stupid truncation ¢>;X. Then there is a short exact sequence of complexes
of presheaves

0— C*X,'[—i] — TO[(C*(O'>I'X)) — TOZ‘(C*<G>I'+]X)) —0
Note that Homy, ((C.Xi)wis, G[n]) = Homp,- ((Xi)nis, G[n]) by [20, Prop. 12.19], and o>y, X =
0 and o>y, X = X for some Ny, N;. Then the statement follows by induction. U
4.5. Lemma. Suppose F is a bounded complex of ZF,.-presheaves such that Fyis is quasi-

isomorphic to zero and the homology presheaves H;(Tot(C.F)) are quasi-stable. Then the
complex of sheaves (Tot(C.F))yis is locally quasi-isomorphic to zero.

Proof. The presheaves H;(Tot(C.F)) are quasi-stable and homotopy invariant. By [12] the asso-
ciated sheaves H; = H;(Tot(C.F))y;s are strictly homotopy invariant, and hence by Lemma 4.4
there is an isomorphism

HOIIID;“_S ((TOZ(C*F))NI'S,H,' [I’l]) = HomD;/[_S(FNimHi [n]) =0.

The inductive argument as in the proof of [20, 13.12] gives a map (7ot (C,F))nis — H;[i] induc-
ing an isomorphism on homology sheaves. It is zero by the above arguments, hence H; =0. [J

Suppose Z C X is a closed subset of X, and X = X; UX, is a Zariski cover of X. Denote
by Xip =X1NXp,Z1 =X1NZ,Z, =XoNZ,Z;p =X|pNZand Y :X/(X—Z),Yl :Xl/(Xl —
Z21), Y =X/ (Xo —23),Y12 = X12/(X12 — Z12).



4.6. Lemma. The maps Y1, — Y1, Y12 — Y3 are injective and the sheaf Y is the pushout of the
diagram Y| <= Y, — Y.

Proof. For any Henselian local scheme U the map
Yo(U) =X12(U)/ (X12 = Z12) (U) = X, (U) /(X1 = Z1)(U) = 11 (U)

is injective, because (X2 —Z12)(U) = X12(U) N (X1 — Z,)(U). Similarly, the map Y;,(U) —
Y>(U) is injective. Note that Y(U) = X(U)/(X — Z)(U), X(U) = X;(U) Ux,,) X2(U) and
(X —Z)(U) = (X1 —Zl)(U) U(Xlz—Zn)(U) (X2 —Zz)(U). Hence Y(U) =Y (U) Ule(U) Yz(U). U

4.7. Definition. Let F¥"'(U,Y), U € Smy, be the set of x € Hom(P", Fr(Y))(U) such that
the support of x is connected. The free abelian group generated by F PA’(U ,Y) is denoted by
ZF®"(U,Y). Then ZF®" (U,Y) is functorial in U. Moreover, ZF*"' (—,Y) is a Nisnevich sheaf.

The following result gives an explicit computation of homology of the motivic S!'-spectrum
Hom (P My, (Y)).

4.8. Lemma. There are isomorphisms of graded presheaves
7. (ZHom(P, My,(Y))) = H.(C.ZF™" (Y))
foralli> 0.
Proof. The proof repeats the proof in [10, 1.2] word for word. U

4.9. Lemma. For any i > 0, the natural maps Y1, — Y2,Y1o = 11,Y1 = Y, Y, =Y give rise to a
short exact sequence of Nisnevich sheaves

0— ZF"" (Y;,) > ZF®" () @ ZF" (V) — ZF*" (Y) — 0.

Proof. Let U be a local Henselian scheme. There is a coequalizer diagram of pointed sets

FP (U, Y1) = FP' (U, Y) VF (U, Y,) = FF (U, Y).
Thus it gives rise to a right exact sequence

ZF™" (Y1) = ZF®" (V) @ ZF*" (V») — ZF"' (Y) — 0.
It remains to note that the latter sequence is also exact on the left. U
4.10. Corollary. The cone of the morphism of complexes

C.ZF®" (Y15) = C.ZF™" (1)) & C.ZF*" (V)

is locally quasi-isomorphic to the complex C.ZF P (Y)). In particular, we have a triangle in the
derived category of complexes of sheaves

C.ZF" (Y1) = C.ZF*" (V) & C.ZF*" (v,) — C.ZF*" (v).

Proof. Note that homology presheaves of C,ZF lP)N(Y) are quasi-stable. Then by Lemmas 4.9
and 4.5 the totalization of the bicomplex

0— C.ZF"" (Y1) = C.ZF*" (V) & C.ZF*" (Y,) —» C.ZF*" (¥) = 0

is locally quasi-isomorphic to zero. (]



4.11. Proposition (The Mayer—Vietoris sequence). For every i > 0 the square of S'-spectra

Hom(P",My.(Y12)) — Hom(P" M,.(Y1))

l l

Hom(P"', My, (Y2)) —— Hom(P", My (Y))
is a homotopy pushout square in the local stable model structure of S'-spectra.
Proof. The natural map from the cone of the morphism
Hom(P", M, (Y12)) — Hom(P"', My, (Y1) V My,(Y2))

to Hom(P"',M;,(Y)) induces locally an equivalence on homology between connective spectra
by Corollary 4.10. Then it is a local stable equivalence. U

For any space A, there is an obvious map Fr,(A) — Hom(B, Fr, (A A B)) defined by (P A A
T") — (BAPM,ANBAT™). It gives rise to a map of spectra Ms,(A) — Hom(B,My.(AA\B)).

4.12. Lemma. For any X € Smy for j > 1 the map
C.Fr(X; AT/) — Hom(PN C,Fr(X AT/ AT"))
is a local weak equivalence for any i > 0.
Proof. The map in question is obtained as the colimit of the maps
C.Fr,(X, AT/) — Hom(P"N C,Fr, (X, AT/ AT)). (4.13)
Consider the triangle
C.Hom(PN APM X, AT/ ATH") <—— C.Hom(PN APV~ X, AT/ AT AT

|

C.Hom(P" X, AT/ AT™)

14

where the vertical map is the map (4.13), the skew map is the isomorphism given by identi-
fication P\ = PN APV~ and T" = T' AT"', and the horizontal map is induced by the sta-
bilization map (P"',C, Fr,_;(X; AT7)) — (P",C,Fr,(X; AT/)). The composite map of the
triangle differs from the left vertical map by the shuffle permutation action ), ; on PN and
on T'*" respectively. Thus if n is even then the triangle is commutative up to a simplicial
homotopy by Corollary 2.13 and Remark 2.3. Note that the horizontal map induces an iso-
morphism on the colimit over n. Thus the vertical map induces a bijection on the colimits of
sheaves 7. For j > 1 the space Ci(Fr(X, AT/)) is locally connected by [10, 8.1]. The space
Hom(P",C,(Fr(X, AT/ AT?"))) is isomorphic to C,(Fr(X, AT/)) by means of the horizontal
map, and hence it is locally connected as well. We see that the vertical map induces a local weak
equivalence. U

4.14. Lemma. Suppose Z — X is a closed embedding of smooth varieties of codimension d.
Then for i < d the space Hom(P"', (C,Fr(X /X — Z))) is locally connected.

14



Proof. If U is a local Henselian scheme, then every correspondence ¢ in Hom(P" Fr(X /X —
Z)) = colim, Hom(P""*" (X /X — Z) AT") can be described by triples ¢ = (S,U, ¢), where the
support S is a closed subset of Aﬁ", finite over U, and ¢ : U — X x A" is a regular map from an
étale neighborhood of S such that S = ¢~ (Z x 0) (see Voevodsky’s Lemma 2.12 and [13, Sec-
tion 3] for details). Since S is finite over Henselian U, it is a disjoint union of local schemes S, fi-
nite over U, for j=1.../. Eachmap S; — Z factors through §; — Z;, where Z; = X;NZ for some
open X; in X and such that Z; — X; is a trivial embedding. Thus the correspondence c lies in
the image of Hom (P, Fr(V;(X;/X;—Z;))) = Hom(P" |Fr(V(Z; AT?))) = Fr(V(Z; AT471)) =
Fr((UZ;)+ AT71), and 7)™ (C, Fr((LWZ;)+ AT4") = x fori < d by [10, A.1]. Since the class of
c € m) (Hom(P", (C. Fr(X /X —Z)))) belongs to the image of 1) (C, Fr((LUZ;) - AT9™7)) = x,
then ¢ equals the class of the basepoint of Hom (P (C,Fr(X/X — Z))). We conclude that
7S (Hom (PN, (C.Fr(X /X — Z)))) = . O
4.15. Lemma. Suppose Z — X is a closed embedding of smooth varieties of codimension d.
Then for i < d the S'-spectrum Hom(P" ,M.(X /X — Z)) is locally an Q-spectrum and the
S'-spectrum Hom (PN ,My.(X /X — Z))y, obtained from Hom(PN My.(X /X — Z)) by taking
a local fibrant replacement levelwise, is motivically fibrant. In particular, the motivic space
Hom(PN C.Fr(X /X — Z)) is motivically fibrant.

Proof. It follows from Additivity Theorem 2.15, Corollary 2.16 and Lemma 4.14 that the I'-
space taking a finite pointed set K to Hom(P" C,Fr((X/X —Z) AK)) is locally very spe-
cial. By the Segal machine [28] Hom(P", My.(X /X — Z)) = Hom(P",C, Fr((X /X — Z) AS))
is locally an Q-spectrum, and hence so is Hom(P", M, (X /X — Z))s. Since all spaces of
Hom(PN My, (X /X —Z)) are locally fibrant, we see that Hom(P", M, (X /X — Z)) is sec-
tionwise an Q-spectrum. Since the sheaves of homotopy groups of Hom(P", M, (X /X —Z))s
are strictly homotopy invariant by [12, 1.1], Hom(P"',My.(X /X — Z)) is motivically fibrant
by [13,7.1]. O

4.16. Corollary. For a Thom spectrum E with the bounding constant d, Hom(P"",C, Fr(E, A
T')) is a motivically fibrant space for i > max(0,d).
4.17. Lemma. Given i,n > 0, the natural map of S'-spectra

M (Xe AT") p — Hom(PY My (X4 AT AT y)

is a levelwise local weak equivalence in positive degrees, where “f” refers to a levelwise local
fibrant replacement. In particular, the map is a stable local weak equivalence. If n > O then this
map is a levelwise local weak equivalence of spectra in all degrees.

Proof. The statement of the lemma can be reformulated as follows for n > 0: the map of S'-
spectra
Mg (X AS'AT™) p — Hom(PN My (X4 AS' AT AT )
is a levelwise local weak equivalence. The spectra M, (X ASTAT™) ¢, M (X ASTAT AT ¢
are both motivically fibrant by [13, 7.5].
The proof of [ 13, 4.1(2)] shows that the map in question is a levelwise local weak equivalence
if so is the map

M (X ASYAT™) ; — Hom (Gl AS', My (X AS' AT AGL NS ),
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where G/ is the mapping cone of pt; — (G,)+ sending pt to 1 € G,, and G, is the ith
smash product of G/\!. Our assertion now follows from the Cancellation Theorem for framed
motives [3]. The same arguments apply to show that the map

My (X1 AT") p — Hom (P My (Xy AT" AT )
is a levelwise local weak equivalence in all degrees for n > 0. O

4.18. Proposition. Suppose Z — X is a closed embedding of smooth varieties of codimension d
and My (X /(X —Z)) is obtained from My.(X /(X — Z)) by taking a level local fibrant replace-
ment. Then
Hom(P",My(X /(X —Z))) — Hom(P", My,(X /(X — Z)))

is a levelwise local weak equivalence of S'-spectra for i < d. In particular, the right spectrum
is a fibrant replacement of the left spectrum in the stable motivic model structure of S'-spectra
whenever i < d. If i = d then the map is a levelwise local weak equivalence in positive degrees.
In particular, the map is a stable local weak equivalence for i = d.

Proof. Suppose i < d. By Lemma 4.2 there is a cover of X by open subsets X; such that X;NZ —
X; is a trivial embedding. We proceed by induction on 7, the number of elements in the cover.
For n = 1 we have X/X —Z = Z, AT by Lemma 4.3. Then the map in question fits into a
commutative square

Hom (P My, (Z ANT9)) — Hom(PN My, (Z ANT9)¢)

A

My (Zy AT M (Z ATy

The left arrow is a levelwise local weak equivalence by Lemma 4.12, and the right arrow is a
levelwise local weak equivalence by Lemma 4.17. Thus the upper map is a levelwise local weak

equivalence.

For the induction step present X as the union of X; and X, such that X; can be covered by
n — 1 trivial open pieces, and ZN X, — X; is a trivial embedding. Then for X, = X; N X,
the embedding Z N Xj, — X2 is trivial. Denote by Y the sheaf X /X — Z and by Y; the sheaf

X;/(X; — (X;NZ)). Consider a commutative diagram of S'-spectra

Hom(P", My, (Y12)) — Hom(P", My, (Y1)) VHom(P" My, (Y2)) — Hom(P" My, (Y))

| | |

Hom(P" My, (Y12) ;) —— Hom (P, My,(Y1) ¢) V Hom (P, My, (Y2) ) — Hom(PN M. (Y) ¢)

The upper row is a homotopy cofiber sequence in the local stable model structure of S'-spectra
by Proposition 4.11. By Lemma 4.15 Mz, (Y12) £, M-(Y1) £, M5 (Y2) §, My, (Y ) ¢ are motivically
fibrant. It follows from Proposition 4.11 that the sequence

My (Yi2)p — My (Y1) gV My (Ya) p — Mpr(Y) 5

is a homotopy cofiber sequence of motivically fibrant spectra in the local stable model structure,
and hence so is the lower sequence of the commutative diagram above, because P’V is a flasque
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cofibrant motivic space. Two left vertical arrows are levelwise local weak equivalences by
induction hypothesis. Hence the right arrow is a stable local weak equivalence factoring as

Hom (P, M,.(Y)) — Hom(P", My, (Y))  — Hom (P, My, (Y) ).

Since the left arrow is a levelwise local equivalence by definition, then the right arrow is a
stable local weak equivalence. But the middle spectrum is motivically fibrant by Lemma 4.15
as well as so is the right spectrum. It remains to observe that a stable local equivalence between
motivically fibrant spectra must be a levelwise local weak equivalence.

If i = d then we replace all framed motives and their levelwise local fibrant replacements
by framed motives smashed with the unit circle S'. Then all spaces of My.(Y AS') become
connected and My,(Y A S D) £ 1s a motivically fibrant § I_spectrum. It is now enough to repeat the
above arguments word for word (Lemma 4.12 is also satisfied for spaces of the form C, Fr(X; A
S') which are automatically sectionwise connected) to show that

Hom(P"! M,(Y AS")) — Hom(P"* My.(Y AS") /)

is a stable local weak equivalence of spectra. By Corollary 2.16 the left spectrum is sectionwise
an Q-spectrum. Since a stable equivalence between Q-spectra is a levelwise weak equivalence,
it follows that the map of spectra is a levelwise local weak equivalence. Therefore, the map

Hom(P"!, My,(Y)) — Hom (P!, My, (¥) )
is a levelwise local weak equivalence in positive degrees. U

4.19. Theorem. Suppose Z — X is a closed embedding of smooth varieties of codimension d.
Then the space Hom (P, C. Fr(X /X — Z)) is motivically fibrant and

Hom(P",C. Fr(X/X — Z)) — Hom (P ,C, Fr(X /X — Z)¢)
is a local weak equivalence for i < d.
Proof. The statement follows from Proposition 4.18. (]

4.20. Corollary. IfE is a Thom spectrum with the bounding constant d, then the motivic space
Hom (P, C,Fr(E, ANT'")¢) is motivically fibrant and

Hom(P"",C, Fr(E, AT")) — Hom(P"",C, Fr(E, AT")¢)
is a local weak equivalence form < n+i—d.

Proof. We have E, AT' = colim;V,, j x A’/ (V,, ; x A —Z, ; x 0), where codimension of Z, ; in
V,.j is strictly greater than n —d. Then codimension of Z, ; x 0 in V,; x A’ is strictly greater
than n+i—d. Then for E, j =V, ;/(Vu; — Zn,;) we get that Hom(P"",C, Fr(E, ; AT')s) is
motivically fibrant and the map Hom(P"",C, Fr(E, ; AT")) — Hom(P"",C.Fr(E, ;AT')s) isa
local weak equivalence for every j by Theorem 4.19. By passing to the colimit and using the fact
that a directed colimit of flasque motivically fibrant spaces (respectively a directed colimit of
local weak equivalences) is flasque motivically fibrant, we get the statement of the lemma. [
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5. FIBRANT REPLACEMENTS OF THOM SPECTRA

In this section we give a model for a fibrant replacement of a Thom spectrum E. First we
need the following

5.1. Lemma. Suppose E is a Thom spectrum with the bounding constant d. Then for i >
max(0,d) and n > 0 the map of spaces Hom(P"' . C,0*(L,E);11) — Hom(]P’M,C*G)“(L,,E)fH)
is a local weak equivalence, where L,E is the n-th layer of E and (L,E ){ 11 Is a local fibrant
replacement of the space (L,E);41.

Proof. By Corollary 4.20 the space Hom(P"",C, Fr(E, A T™*1)/) is motivically fibrant. By
Lemma 3.7 the map in question coincides with the horizontal map of the diagram

Hom(P"', Hom(P"",C, Fr(E, AT**!))) — Hom(P"!, Hom(P"",C, Fr(E, AT "1))/)

——

Hom (P!, Hom(P"",C, Fr(E, A T™*1)/))
(5.2)
The diagram (5.2) is obtained by applying Hom (P!, —) to the diagram

Hom(P"*,C, Fr(E, AT™*!)) —— Hom(P"",C, Fr(E, AT*!))/ (5.3)

L

Hom(P"*,C, Fr(E, AT™1)/)

The slanted arrow exists by the right lifting property for fibrant spaces. The horizontal arrow
of (5.3) is a local weak equivalence, and the vertical arrow of (5.3) is a local weak equivalence
by Corollary 4.20. It follows that the slanted arrow of (5.3) is a local weak equivalence between
fibrant spaces, and hence so is the slanted arrow of (5.2) since P! is a flasque cofibrant space.
The vertical arrow of (5.2) is a local weak equivalence by Corollary 4.20. We see that the
horizontal map of (5.2) is a local weak equivalence. (]

The following theorem says that a fibrant replacement of a Thom spectrum E can be com-
puted (starting at some level depending on its bounding constant) by first applying the ®>-
functor to E, then by taking the Suslin complex of each space of @ (E) and finally by taking
local fibrant replacements for C,0*(E).

5.4. Theorem. Let E be a Thom spectrum with the bounding constant d. Let C.0%(E)/ be a
spectrum obtained from C,® (E) by taking a level local fibrant replacement. Then the spectrum
C.0>(E)/ is motivically fibrant starting from level max(0,d) and is stably equivalent to E.

Proof. Since a directed colimit of flasque locally fibrant spaces is flasque locally fibrant, it

follows that C.®=(E)/ = colim, C.@(L,E)’. Hence it is sufficient to prove that for every
n the spectrum C,®%(L,E)’ is motivically fibrant starting from level d. For i > d the space
C*G)°°(L,1E){ equals Hom(P"",C, Fr(E, A T%))/ by Lemma 3.7. Moreover, it is motivically
fibrant by Corollary 4.16. Thus it remains to prove that each bonding map

C.®(L,E)] — Hom(P"!,C.0"(L.E)/, )
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is a local weak equivalence. It fits into the following commutative diagram:

C.0"(L,E)] — Hom(P"',C.0"(L,E)/, )

| T

C.0%(L,E); —— Hom(P,C,0%(L,E);s1)

where the right vertical arrow is a local weak equivalences by Lemma 5.1 and the lower arrow
is an isomorphism by Lemma 3.5. Since the left vertical arrow is a local weak equivalence, then
S0 is the upper arrow, as required. U

6. THE FUNCTOR O

sym

Whenever a Thom 7'-spectrum E is symmetric, we can also construct further fibrant replace-
ments for it. To this end, we introduce another stabilization functor O, on the level of sym-
metric 7-spectra, which is slightly different from ®*. The spaces of 0, (E) and @~ (E) are in
fact isomorphic, but the bonding maps are different: the bonding maps of @, (E) require the
structure of a symmetric spectrum on E, whereas the bonding maps of ®(E) do not.

Given a T-spectrum E, let T A E be the suspension spectrum of E (see Definition 2.6). The
functor £ — T A E has a right adjoint loop functor E — QrFE, where QrE has the spaces
(QrE); = Hom(T, E;). If there is no likelihood of confusion, we denote by QE the P!-spectrum

with (QE); = Hom(P"!  E;) and the bonding maps are given by
Hom(P"!, E;) AP — Hom(P"!, E; AP"!) & Hom(P" E; AT) & (PME ),
where P! — T is a canonical motivic equivalence.

6.1. Definition. Define the functor @, (E) = Q(E[1]), where E[1] is the shift spectrum (see
Definition 2.6), and

0o

o' (E):=0. (®! (...(E)) (ntimes).

sym sym\ = sym

6.2. Definition. If £ is a symmetric 7-spectrum, then there is a canonical map of T-spectra 7' A
E — E[1] (see Definition 2.6). Notice that this map requires the symmetric spectrum structure
of E. By adjointness we have a map E — Q(T AE) — Q(E[1]) = G)Slym(E). Iterating the latter
map, we get a sequence of maps of spectra

E—0®! (E)y-@2 (E)—---

sym sym
Denote by G);;m(E ) the colimit of this sequence. Then for every symmetric 7-spectrum E there
is a natural map of P!-spectra

e:E—0g,(E).

7

6.3. Remark. We need to describe bonding maps of ®¢,,,(E) and stabilization maps @y, (E) —
Gf;rn} (E) explicitly. One has,
@" (E); =Hom(P"" E,.;).

sym

Each bonding map equals the composition

Hom(P"" E, ;) AP"! = Hom(P"", E,; AP"') & Hom(P"", E,; AT) 5 Hom (P, E,, i1 1)
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and the stabilization map @, (E); — G)’:;“m]( )i equals the composition

Hom(P™,E,;) — (P, Hom(P"!, E,.; AT)) % Hom(P""™ E,yis1) 25 Hom(P" E,140),

where the left arrow is induced by the external smash product with ¢ : P"! — T and Xi1 s
the shuffle permutation in X, ;| permuting the last element with preceding i elements and
preserves the first n elements.

6.4. Lemma. For any symmetric T-spectrum E for any i there is an isomorphism of motivic
spaces ©(E); 5o (E);.

sym

Proof. Define amap f,,: ®"(E); — @}, (E); by the formula

sym

xl?‘l
fn: Hom(P" E; ) =% Hom(P""" E,..;),

where y; , is the shuffle permutation that permutes the last n elements with the first i elements.
Then the following diagram is commutative:

Hom(P"" E;y,) K Hom(P" E, ;)

Hom(PV'*! Eiypy) Rl Hom(P"*1 E,p144).
Here the left vertical arrow is the stabilization map ®"(E); — ©"*!(E); and the right verti-
cal map is the stabilization map O, (E); — — @"t1(E); of Remark 6.3. So the maps f, in-

sym

duce a morphlsm of sequences. Then the maps f, induce the desired isomorphism on colimits

6.5. Lemma. For any symmetric T-spectrum E there are isomorphisms of spaces
O (®Z§m( ))l = ®me( ) i ®n(®vym( ))l = ®sym( )

Proof. Applying Lemma 6.4 to the symmetric spectrum ®”, (E), we have

O (®?;m( ))lr:@sym(Glgzm( )) :®me(E)l
Also,
0" (03, (E)); = Hom(P"", @, (E)isn) = Hom(P"",0%(E);1.) = " (@7 (E)); = ©7(E);,

as required. O

sym

6.6. Lemma. Suppose E is a Thom T-spectrum with the bounding constant d. Then the space
C.®(E); is locally connected for i > max(0,d).

Proof. By Lemma 4.14 the space C.Hom(P"",Fr(E, AT')) = C.0°(L,(E)); is locally con-
nected for every n. Then C,@*(E); = colim, C.®%(L,(E)); is a locally connected space. O

6.7. Proposition. Suppose E is a symmetric Thom T-spectrum with the bounding constant d
and contractible alternating group action. Then the natural maps of spectra

& : C.0g,,(E) — C.0%(0g,,(E))
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and

C.07(¢) : C.O7(E) — C.0%(0,,(E)),

sym
(e}

obtained from the map € : E — Og,, (E) by applying C.® to it, induce local weak equivalences
of spaces starting from level max(0,d). In particular, there is a commutative diagram

n

E C.0"(E)
e la«@‘”(f)
(e} é (e} (e}

C*®sym (E) —C.0 (®sym (E))

of Pl-spectra, in which all arrows are stable motivic equivalences.

Proof. Fix a number i > d. Consider a two-dimensional sequence

Amm = C*@)n(@m (E))l

sym

with horizontal maps A, ,, — A1, induced by ©" — ®"*1 and vertical maps A, — Apmti
induced by ©§,, — G);’;;l . To prove the statement, we need to show that the maps colim,, Ag ,,, —
colim, ,, A, ,, and colim, A, o — colim, , A, ,, are local weak equivalences.

Without loss of generality it is sufficient to prove that for every m,n the maps
colim, Az, 2, — colim, A2y 242 (6.8)

and
colim,, A2, 2, — colim,, A2y 42.2m (6.9

are local weak equivalences.

Note that the spaces C.0%(@y,,(E)); and C.0"(05;,,(E)); are isomorphic to C.0%(E); by
Lemmas 6.5 and 6.4. Hence they are locally connected by Lemma 6.6.

To prove that (6.8) is a local weak equivalence, we apply Lemma 6.10 below for the case
Ap = Az om, By = Agpom+2 and the maps i : Agyom — Azns22ms 15 2 Aonoms2 — Aons2 2m+2s
Jn t A2nom — Adyomyo are given by maps of the two dimensional sequences above. Define a
map gy : Aznom+2 — Aznt2.2m as an identification via associativity isomorphism

Aopomia = C.Hom(P"?" Hom (P2 Eppiominti)) =

= C,Hom(P"*""2 Hom(P"*", Ezysomi2+i)) = A2ni2.2m-

Then g, f, differs from iﬁ by the action of an even permutation on PAZn+2m+2 and an even
permutation on Ep, 242+ Thus g, f, and # are simplicially homotopic by Corollary 2.13 and
our assumption that E is a spectrum with contractible alternating group action as well as the fact
that A'-homotopies become the usual ones after applying Suslins complex C,. Also, f,118n
differs from i® by the action of an even permutation on P"\?"+2"+4 and an even permutation on
E>niom+ya. Therefore f,11g, is simplicially homotopic to if for the same reasons as above. Thus
the map on the colimits is a local weak equivalence by Lemma 6.10. The proof for the map (6.9)
is analogous.

Finally, the map 1 of the commutative square of the proposition is a stable motivic equiv-
alence by [16, 4.11], because the flasque motivic model structure on spaces is almost finitely
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generated in the sense of [16]. By the first part of the proof &,C.®%(¢g) are stable motivic
equivalences, and hence so is € by the two-out-of-three property for weak equivalences. (]

6.10. Lemma. Suppose i2: A, — A1, i8: B, — B, are directed systems of spaces, and
fu: Ay — B, is a map of directed sequences. Suppose that there are maps g,: B, — Aut1
such that g, f, is simplicially homotopic to i and f,1g, is simplicially homotopic to i5. Also,
suppose that the spaces A = colimA,, and B = colimB,, are locally connected. Then the map
f=colimf,: A— Bis alocal weak equivalence.

Proof. Given a local Henselian scheme U, the map 7;(f)(U): m(A(U)) — m(B(U)) equals
the colimit of the system ;(f,)(U). Note that the maps 7;(g,)(U) form a map of sequences
7;(By(U)) — mi(An+1(U)), which are inverse to m;(f,)(U). Therefore the colimit ;(f)(U) =
colimm;(f,,)(U) is bijective, and hence the map f(U) induces a weak equivalence of connected
simplicial sets A(U) — B(U). O

7. THE SPECTRUM C, Frf (S7)

The purpose of this section is to introduce another spectrum C, Frf(S7) associated with a
symmetric T-spectrum E. We show that it is stably equivalent to the spectrum C.®%, (E)

sym
whenever E is a Thom spectrum with the bounding constant d and contractible alternating group
action (see Proposition 7.7).

7.1. Definition. Given a T-spectrum E and X € Smy, denote by FrZ (X) the space " (X, AE)o:
Fr,/ (X) = Hom(P"", X AE,)
and Frf (X) := colim,, Frf (X) = @ (X AE)o.
7.2. Definition. For any symmetric 7T-spectrum E and any m,n > 0, define a pairing
Fr,(X,Y) x Frf(Y,2) = Fif,, (X,Z)

as follows. Let a € Fr,(X,Y) be given by a map a: Xy AP" — Y, AT" and let b € Frf (Y,Z)
be given by b: Y, AP — Z, AE,,. Define boa as the composition

Am n
Xy AP AP LBy AT AP 2y AP AT P 7 N, AT

—ZAT"NEpw 5 Zo. NEpsm,
where u; is the map of Definition 2.6.

Note that if E = S7, this definition coincides with the definition of the composition of framed
correspondences defined in [32, 13].

7.3. Lemma. The pairing above endows Frf (X) with a structure of a presheaf with framed
correspondences.

Proof. This is straightforward. U

7.4. Definition. Given a T-spectrum E and X € Smy, denote by Frf (X, A S7) the T-spectrum
with the spaces

Frf (X, AS7)i i= Frf (X, ATY) = Frl M (X).
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The bonding maps Frf (X, AT) AT — Frf (X, AT'!) are defined as the composite maps
Hom(P"", X, AT' AE,) AT — Hom(P"", X, AT' AE, AT) % Hom(P"", X, AT' AT NE,).
In what follows we normally regard Frf (X, A S7) as a P!-spectrum. The stabilization maps

Fri (X; AT") — Fr | (X AT'), given by the compositions
Hom (P, X, AT AE,) =2% Hom(PM AP, X, AT' AE,AT) 2% Hom(P"+ ! X AT AE, 1),
define a map of P!-spectra Fr% (X, AS7) — Frf, | (X4 A S7). Denote by
Frf (X, AS7) := colim, Frf (X, AS7).

If E = Sy the spectrum Fr¥ (X, A St) coincides with the spectrum Frpi 7(X) defined in [13].

Note that for X € Smy, the spectrum Frf (X, A S7) is isomorphic to the spectrum Fr¥+ £ (S7).
If E is a symmetric Thom spectrum with the bounding constant d, then so is X, A E. Thus we
shall consider spectra of the form Fr® (S7) in what follows.

For any n > 0 and any symmetric T-spectrum E, construct a map of P'-spectra f,,: Frf (S7) —
©%,,,(E) as the composition at each level i > 0
fui: Hom(P™", T'AE,) LN Hom(P"" E, AT') % Hom(P""", E,,;),
where the first map is induced by twist T AE, — E, AT".
7.5. Lemma. Each map f,, n = 0, is a morphism of spectra commuting with stabilization maps
Frf (S7) — Frt, (St) and ©1,,(E) = @41 (E). In particular, they induce a map of spectra
f: FE(Sr) — 02,,(E).

sym

Proof. The following diagram commutes:

Hom(P"", T' AE,) AT — > Hom(P"", E, AT) AT —~— Hom (P, E,.;)AT

| | |

Hom(P"*, T AE,) — > Hom(P"", E, ATH) —“—~ Hom (P, Epit1),

where the left vertical arrow is the ith bonding map of the spectrum FrZ(S7), and the right
vertical map is the ith bonding map of ©,)"(E). We see that each map f, is a morphism of
spectra. Consider a commutative diagram

tw u

Hom(P"", T' ANE,,) Hom(P"" E, AT') Hom (P, E,1;)

i l |

Hom (P T/ AE, ;1) —~> Hom(P""*! E, | AT') —“— Hom(P""*! E,.1.)),

in which the left vertical map is the stabilization Frf (Sy); — FrE_, (S7); from Definition 7.4,
and the right vertical map is the stabilization map @7, (E); — ©%!(E); (see Remark 6.3). The
middle vertical arrow equals the composite map

Hom(P", E,, A Ti) Zho, Hom(IP’A”Jrl JE, N THI) ﬂ) Hom(P/\”“,En A TIH) L, Horn(IP’N’H,E,,H A Ti),
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where (i 1)+ is induced by the shuffle map x;; : T*! — T+ For commutativity of the right
square we also use here the fact that the diagram

E,NTH 2 s B AT —“—>E, i1

id/\xi.l \L \L 169%1‘,1

i u 7 u
E AT e By AT > By,

is commutative because the compositions of horizontal maps are X, X ¥;;-equivariant maps.
Thus the maps f,; are compatible with stabilization. O

7.6. Corollary. If E = X, A\ St then the map f of Lemma 7.5 gives an isomorphism of spectra
Frpi p(X) = Fi"E(S7) = O3, (X AST).

sym
Proof. It suffices to note that the bonding maps of X, A St are isomorphisms. (]
7.7. Proposition. For a symmetric Thom T-spectrum E with the bounding constant d and
contractible alternating group action, the map f induces a local weak equivalence for any
i > max(0,d):
fi: C.Fr5(Sp)i — C.05,(E):.

Proof. The map f,;: Frf(T") — @, (E); fits into the following commutative diagram

n sym
Fef (T) & % (E);
xi‘nT
@ (T AE)y —— ©"(Eli])g =—— O"(E);

where J; , is the map of Lemma 6.4 and u; is the left bonding map from Definition 2.6. Note
that the maps of the diagram are compatible with stabilization maps, and hence we can pass to
the colimit over n. Thus our assertion follows from Lemma 7.9 below. (]

7.8. Lemma. The natural map of T-spectra u: E NT' — E[i] induces a levelwise isomorphism
of spaces @ (E NT") = e (E[i]) for any T-spectrum E.

Proof. For any m the map Hom(P"",E,,,, AT") % Hom(P"",E, ;) commutes with stabi-
lization by n and induces an isomorphism on colimits @ (E AT"),, — @ (E[i])m. O

7.9. Lemma. For a symmetric Thom T-spectrum E with the bounding constant d and con-
tractible alternating group action, the map of spectra u;: T' NE — E[i] induces a local weak
equivalence of spaces

C.O”(T'NE)y — C.O%(E[i])o
for any i > max(0,d).
Proof. For i > max(0,d) the space C.®%(E); is locally connected by Lemma 6.6. We apply
Lemma 7.10 below to spaces

A, =C.O0"(T'NE)g = C,Hom(P""*", T' N Ey,),
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B, = C.0*(E ATy = C.Hom(P"*" E5, AT'),
where the maps i and i® from that lemma are induced by stabilization maps @** — @>"+2
and C = C,0"(E[i])o. Define f,: A, — B, to be the map induced by the twist tw: T A Ey, —
E>, AT'. Then the composition f;,+ o iﬁ‘ coincides with the composition

fur10i4: C.Hom(P"?", T' AEy,) — C,Hom(P"*""2 B>, AT? AT") — C,Hom(P"?"*2 Es, n AT).

It differs from the composition i8 o f, by the permutation Ey, A T2 AT ™% Epy AT A T2 “2°
E», ANT?> AT'. Since it is an even permutation and E is a spectrum with contractible alternating
group action, we have that f, 1 0 and i® o f, are simplicially homotopic. Similarly, in the
triangle

Co (P2, TV N Ey) —— Co(P2", Enyyi) — C.O0%(Eli])o

ltw /
C.(P"" Ep, NTY)

the composition u o tw differs from u; by the action of the shuffle permutation x5, ; on Ey,,,
which is an even permutation. Thus the triangle commutes up to simplicial homotopy, be-
cause E is a spectrum with contractible alternating group action. Then for any i > d the space
C.®>(E[i])o is connected and our statement follows from Lemmas 7.10 and 7.8. ]
7.10. Lemma. Suppose i: A, — A,y 1,i8: B, — B,y are directed sequences of spaces, C is a
locally connected space and there are maps of sequences A, — C and B, — C. Suppose that for
any n there is a local weak equivalence f,: A, — B, such that the diagrams

An *>An+] and An —C
lfn J{fm J{f/
Bn EE—— Bn+1 Bn

commute up to a simplicial homotopy. Let A = colimA,,, B = colimB,,. Then the map B — C is
a local weak equivalence if and only if so is the map A — C.

Proof. Given local Henselian scheme U and i > 0, the maps 7;(f,(U)) form a map of sequences
mi(fu(U)): mi(A,(U)) = mi(B,(U)), and the map colim, m;(f,(U)) fits into the commutative
diagram

m(A(U)) — m(C(V))

colim ni(f,,)l /

m(B(U))
Every m;(f,(U)) is a bijection, and hence so is colim;(f,(U)). If the map B — C is a local
weak equivalence, then B(U) is connected and all maps m;(B(U)) — m;(C(U)) are bijective.
Then A(U) is connected, and all the maps m;(A(U)) — m;(C(U)) are bijective. Therefore the

map A — C is a local weak equivalence. Similarly, if A — C is a local weak equivalence, then
sois B—C. (]
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8. FIBRANT RESOLUTIONS OF SYMMETRIC THOM SPECTRA

We have discussed three types of spectra associated with a symmetric Thom 7T -spectrum
E each of which is obtained from E by a certain stabilization and taking the Suslin complex
at each level: C.Frf(Sy), C.0”(E) and C.05,,(E). Moreover, by Propositions 6.7 and 7.7
they are isomorphic to each other in SH (k) under certain reasonable assumptions on E. The
next theorem says that if we take local fibrant replacements at each level in these spectra, they
become motivically fibrant starting from some level d onwards. More precisely, the following
result is true:

8.1. Theorem. For a symmetric Thom T-spectrum E with the bounding constant d and con-
tractible alternating group action the following P'-spectra are isomorphic to E in SH(k) and
motivically fibrant starting from level max(0,d):

o C.Frf(Sy)f
e C.O”(E)/
b C*G);;m(E)f’
where “f” refers to levelwise local fibrant replacements of the corresponding spectra.

Proof. By Propositions 6.7 and 7.7 we have the following levelwise local weak equivalences of
IP!-spectra starting from level d:

C.Ff(S7) — C.0%

sym

(E) — C.0(0%, (E)) + C,0%(E).

sym

Since the canonical map E — C,@(E) is a stable motivic equivalence by Theorem 5.4, we see
that E is isomorphic in SH (k) to each of the spectrum of the theorem.

Sublemma. Suppose a map of P'-spectra f: E — E' is a levelwise local weak equivalence and
all spaces E; E], i > 0, are fibrant in the flasque local model structure. Then E is motivically
fibrant if and only if so is E'.

Proof. Since each map fi: E; — E!, i > 0, is a local weak equivalence between locally fibrant
spaces, it is a sectionwise weak equivalence. Therefore if E; is motivically fibrant, then E/
is Al-invariant, and hence motivically fibrant as well. Since E;,E] are flasque fibrant by as-
sumption, then the map M(PAl JEiy1) — Hoim(IP’Al , E,/ +1) is a sectionwise weak equivalence,
because P! is flasque cofibrant. Hence the adjoint to the bonding map E; — Hom (P!, E; 1) is
a sectionwise weak equivalence if and only if so is the map E] — Hom (P E]_ ). O

Since the spectrum C,0*(E)/ is motivically fibrant starting from level d by Theorem 5.4,
then so are C*G);’;m(E)f and Q@)‘”(@);‘;m(E))f by Proposition 6.7 and the sublemma above.

Likewise, C, Frf(S7)/ is motivically fibrant starting from level d by Proposition 7.7 and the
sublemma above. This completes the proof of the theorem. (]

The spectrum C, Frf (S7)/, which is isomorphic to E in SH (k) by Theorem 8.1, is of particu-
lar interest, because it will lead to an equivalent model of E in the category of (S!, G/\!)-bispectra
(see Theorem 9.13).
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9. E-FRAMED MOTIVES AND BISPECTRA

Following Definition 7.1, for any space 2" and any T-spectrum E denote by Frf(2) =
Hom(P"", 2" AE,), n > 0. Also, set Frf (2") = colim,(Hom(P"*, 2" AE,)) = ©(Z AE)y.
If 2" =X,,X € Smy, then we shall write Fr® (X) dropping + from notation.

9.1. Lemma. FrE(Q%V) is functorial in X and E. If E is a directed colimit of T-spectra
colimy Ey, then Frf(.2") = colim Frf*(.2"). In particular, Frf (2") = colim; Fr'+E (2, where
LiyE is the k-th layer of E.

9.2. Definition. Given a T-spectrum E, the assignment K — C,Frf (2 AK) is plainly a I'-
space. The E-framed motive Mg (2") of 2 is the Segal symmetric S'-spectrum C, Frf (2" AS).
If E = Sy then Mg (2") is the framed motive M, (Z") of 2" in the sense of [13].

Lemma 9.1 implies the following

9.3. Corollary. Mg(Z") is functorial in 2 and E. If E is a directed colimit of T-spectra
colimy Ey, then Mg(Z") = colimy Mg, (Z"). In particular, Mg(Z") = colimy My, g (Z), where
LiE is the k-th layer of E.

The next statement is straightforward.
9.4. Lemma. M, (%) =Hom(P"* M, (2 AEy)) for any k > 0.

9.5. Definition. Given a Thom 7-spectrum E, U € Smy and Y = X /(X — Z), where X € Smy
and Z is a closed subset in X, denote by ZFE(U,Y) the free Abelian group generated by the
elements of Frf (U,Y) = Hom(P"",Y A E,) with connected support (recall that the elements of
Fr£(U,Y) have an explicit geometric description using Voevodsky’s Lemma 2.12). We also set
ZFE(U,Y) := colim, ZEE (U,Y), where the colimit maps are defined in the same fashion with
those of Frf (U,Y).

The assignment K — C,ZFE(U,Y AK) is plainly a I-space. The linear E-framed motive
LMEg(Y) of Y is the Segal symmetric S!-spectrum C,ZFE(Y AS). If E = Sy then LMg(Y)
is the linear framed motive LM¢,(Y) of Y in the sense of [13]. Note that the presheaves of
stable homotopy groups m,.(LMg(Y)) are computed as the presheaves of homology groups of
the complex C,ZFE (Y) (we freely use the Dold—Kan correspondence here).

As above we have the following
9.6. Lemma. LMp(Y) = colim LMy, £ (Y) and LMy, p(Y) = LM, (Y A Ey), where LM}, (Y A
Ey) is Segal’s spectrum associated with the I'-space K — C.ZF L (U,Y AK) (see Definition 4.7).
The following lemma says that LMy (Y) computes homology of the E-framed motive of Y.

9.7. Lemma. Given a Thom T-spectrum E and Y as above, there is an isomorphism of graded
presheaves m.(ZMg(Y)) = m.(LMg(Y)).
Proof. We have that m.(ZMg(Y)) = colimy 70, (ZM, £ (Y)) = colimy 7, (Z(Hom (P"*, M, (Y A

Ey)))) = colimy n*(LM?;Ak (Y NEy)) = m.(LMEg(Y)). We have used here Corollary 9.3, Lem-
mas 4.8, 9.4 and 9.6. U
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Following notation of [10], denote by A!//G,, the mapping cone of the natural embedding
(Gp)+ = AL. Itis represented by a simplicial scheme from Fro (k).

9.8. Lemma. For a Thom T-spectrum E with the bounding constant d, the natural map
Mg(TEA (A /G = Mg(TEATY,  £:=max(0,d — 1),

is a local stable weak equivalence for any i > 0.

Proof. By Corollary 9.3 and Lemma 9.4 Mg(T* A (A!//G,,)") = colim, Hom(P"", My, (E, N

TN (A')/Gy)N)) and Mg (TY AT?) = colim, Hom(P"", My, (E, AT* AT)). Since a directed

colimit of stable local weak equivalences is a stable local weak equivalence, it is sufficient to
check that the natural map

Hom (P, M, (E, AT A (A')/G,,)N)) — Hom(P"", My, (E, AT NT"))

is a local stable weak equivalence of spectra. By definition of the bounding constant d, the space
E, AT' is a colimit of spaces of the form X /X — Z where Z has codimension greater than or
equal to n. Consider a commutative diagram

Hom (P M (E, AT A (A /G,)M)) Hom(P"* My, (E, ANT* ATY))

| |

I—IOJ(IPAYL7Mfr(En /\Tg/\ (Al//Gm)/\i)f> I M(P/\n7Mfr(En ATE/\Ti)f)?

where “f” refers to a level local fibrant replacement. Then by Proposition 4.18 the vertical
arrows are local stable weak equivalences, and the bottom arrow is a stable weak equivalence
between motivically fibrant S!-spectra by [10, 1.1; A.1]. By the two-out-of-three-property the
upper arrow is a local stable weak equivalence. U

9.9. Proposition. Let E be a Thom T -spectrum with the bounding constant d and ¢ = max(0,d —
1). Then for everyi > 0 the S'-spectra Mg (T* A (A ) /G ,)N) 5, Mg(TEAT?) p and Mg(TE A (ST A
GHOHN) f» Where “f” refers to a level local fibrant replacement, are motivically fibrant.

Proof. Without loss of generality we assume d < 1. Indeed, if d > 1 we replace E by T4~ ! AE,
which has the bounding constant 1, observing that Mg (T4 ' A —) = Mya-1,(—). It suffices
to prove the statement for the spectrum Mg ((A!//G,,)") s, because our arguments will be the
same for the other two spectra.

By Corollary 9.3 and Lemma 9.4 one has Mg((A'//G,,)"') = colim, Hom(P"", My, (E, A
(A'//G,))). Since flasque motivically fibrant spectra are closed under filtered colimits, it is
enough to show that each spectrum Hom(P"", M, (E, A (A!//G,,)")) ¢ is motivically fibrant.
But this can shown similarly to Lemma 4.15 if we note that the space C, Fr(X, A (A!//G,,)"),
X € Smy, is locally connected by [10, A.1] and if we apply the proof of Lemma 4.14 to show
that the space Hom(P"",C, Fr(E, A (A'//G,,)")) is locally connected. O

9.10. Lemma. Under the assumptions of Proposition 9.9 the map Mg(T* A (A1) /G,)N) ; —
Mg (TE A (ST AGH)N) 1 is a sectionwise level equivalence for £ = max(0,d —1).
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Proof. The proof of Proposition 9.9 shows that it suffices to prove the assertion for d < 1 and
that the map of Hom(P"*, My, (E, A (A!//G,,)N)) — Hom (P, My, (E, A (ST AGLHN) is a
local stable weak equivalence for any n 2> 0. Since a map of locally connected spectra is a stable
local equivalence if and only if so is the map on homology, then using Lemma 4.8 our assertion
reduces to showing that the map of complexes C,ZF*" (E, A (A'//G)") — C.ZF®" (E, A
(S' AGH1MN) is locally a quasi-isomorphism. The latter fact is proved similar to [13, 8.2]. [

We shall need the following fact which was proven in [ 13, Section 12].

9.11. Lemma. Let 2 be an A'-local motivic S'-spectrum whose presheaves of stable homo-
topy groups are homotopy invariant quasi-stable radditive presheaves with framed correspon-
dences. Suppose 21 is a local stable fibrant replacement of 2. Then the map of spectra
Hom(G)!, 2) — Hom(G\', 277) is a local stable equivalence.

m

9.12. Proposition. The following statements are true:
(1) Suppose Z — X is a closed embedding of smooth varieties of codimension d. Then the
natural map

o : Hom(P" My, (X /X — Z)) — Hom(PN NGO, My, (X /X —Z) AGL))

is a stable local weak equivalence of S'-spectra for all i < d.
(2) If E is a Thom T-spectrum with the bounding constant d < 1, then the natural map

B : Mg (X) — Hom(GM' Mg (X, AGLY)), X € Smy,
is a stable local weak equivalence of S'-spectra.

(3) If E is a Thom T -spectrum with the bounding constant d < 1 and Mg (X) is a stable local
fibrant replacement of Mg(X), X € Smy, then Mg (X) ¢ is a motivically fibrant S Lspectrum.

Proof. (1). First suppose i = 0. Without loss of generality we assume that X /X —Z = Z, AT,
because we can apply the Mayer—Vietoris sequence of Proposition 4.11 to reduce the gen-
eral case to this particular one. Indeed, My (X/X — Z) and My, (X /X —Z) AG))) are ho-
motopy pushouts (=homotopy pullbacks) of framed motives of the form My.(Z, A T%) and
My (Zy ANT? AG)Y) respectively. Using Lemma 9.11 the functor Hom(G)!, —) respects ho-
motopy pullbacks (=pushouts) for framed motives in question. Therefore our assertion reduces
to showing that the natural map of S'-spectra

Mg (Zy AT?) — Hom(G) My (Z AT ANG)))

is a stable local weak equivalence. It fits into a commutative diagram

M (Zy ATY) Hom(G), M (Z. ATEAG)L))
My (Zy A (A1) /Gp)") —— Hom(G),', My, (Z1 A (A /Gn) M AGL))

in which the lower arrow is a stable local weak equivalence by the Cancellation Theorem for
framed motives of [3]. The vertical arrows are stable local weak equivalences by [10, 1.1] and
Lemma 9.11. We see that the upper arrow is a stable local weak equivalence, as required.
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Suppose now i < d. Consider a commutative diagram of S'-spectra

Hom(P" My (X /X —Z)) — Hom(PM AG)Y My, (X /X —Z) AGLY))

| |

Hom (PN M, (X /X —Z) ;) — Hom(PN AG)! My, (X /X —Z) NGV f)

m

where “f” refers to a level local fibrant replacement. By Proposition 4.18 the left vertical map
is a levelwise local weak equivalence in positive degrees, and hence a stable local weak equiva-
lence. Since My, (X /X —Z) r,M¢-((X /X —Z) AGJ!) s are motivically fibrant spectra in positive
degrees, the lower arrow is a sectionwise weak equivalence in positive degrees by the first asser-
tion and Proposition 4.18, and hence a sectionwise stable weak equivalence. The right vertical
map is a levelwise local weak equivalence in positive degrees by Lemma 9.11 and Proposi-
tion 4.18, hence it is a stable local weak equivalence. We see that the upper arrow is a stable
local weak equivalence.
(2). If E is a Thom T -spectrum with the bounding constant d < 1, then the natural map

B : Mp(X) — Hom(G,,', M(X+ A Gy,))
is isomorphic to the sequential colimit of maps
Bi: My, (X) — Hom(G)' My g(X+ AG))).
Every such map is isomorphic to
Hom (P, My, (X4 AEy)) — Hom(P™ AG My, (X4 AERAGY)).

It follows from assertion (1) that each By is a stable local weak equivalence of S'-spectra, and
hence so is 8 as a sequential colimit of stable local weak equivalences of S'-spectra.

(3). We can compute a stable local fibrant replacement Mg (X) s of Mg (X) as the spectrum
colimMpe(X)r = colimkM(PAk,M (X4 NEg)) s (we use Lemma 9.4 here), because a se-
quential colimit of fibrant spectra is fibrant in the flasque local stable model model structure of
S'-spectra. So it suffices to show that each spectrum Hom(P"*, M, (X, A Ey)) s is Al-invariant.
By the Mayer—Vietoris sequence of Proposition 4.11 this reduces to showing that every spec-
trum of the form Hom(P"¥, My, (X A TX))s is Al-invariant. But the latter is obvious because
Hom(P" My, (X AT¥)) p 2 My, (X) s and My, (X) 7 is Al-invariant by [13, 7.1]. O

In what follows by bispectra we shall mean (S',G)\!)-bispectra in the category of motivic
spaces. We are now in a position to prove the main result of the section. It gives an explicit
fibrant resolution of a symmetric Thom spectrum in the category of bispectra.

9.13. Theorem. Suppose X € Smy and E is a symmetric Thom T-spectrum with the bounding
constant d and contractible alternating group action.
(1) If d = 1 then the (S',G)\!)-bispectrum

Mg (X) g = (Mg (X) 5, Mg (X1 AG) 1, Me (X4 AGRY) g, )

is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra, where
“f” refers to stable local fibrant replacements of S'-spectra.
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(2) Ifd < 1 then the (S',G)\!)-bispectrum
Mg (X)g := (Mp(X) 5, Mg(Xy NG, ME(Xy AGR) )

is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra, where
“f” refers to level local fibrant replacements of S'-spectra.
(3) Ifd > 1 then the (S',G)\!)-bispectrum

le_/\l(;;\nl ((Mgiq—1(X) £, MEg—1)(X+ A Ggl)f,ME[d—l] Xy AG)y,--0)

is motivically fibrant and represents the T-spectrum X, N\ E in the category of bispectra, where
“f” refers to stable local fibrant replacements of S'-spectra. Here E[d — 1] stands for the
(d — 1)-th shift of E in the sense of Definition 2.6. Another equivalent model for the T-spectrum
X+ AE in the category of bispectra is given by

le_/\l%n (Mypa-ipg (X) p,Mpa- g (Xe AGRY) My (X AGP) 7, ))-

This bispectrum is motivically fibrant and “f” refers to stable local fibrant replacements of
Sl-spectra.

Proof. (1). The fact that the bispectrum ME’ (X) s is motivically fibrant follows from Proposi-
tion 9.12 and Lemma 9.11. It remains to show that it represent E in the category of bispectra.
Without loss of generality we may assume X = pt, because we can replace E with X A
E. Tt follows from Theorem 8.1 that E is isomorphic in SHr (k) to C,Frf(S7)/. The latter
is a T-spectrum (see Definition 7.4). It is positively fibrant by Theorem 8.1. The motivic
equivalence T := A'//G,, — T induces an equivalence of categories SHr (k) — SHz(k). 1t

takes E to a f—spectrun_l isomorphic to C, Frf(S7)/. By Lemma 9.8 and Proposition 9.9 the
natural map C, Fr® (S7)/ — C,Frf(Sr)/ is a sectionwise weak equivalence in positive degrees,
where S5 = (8°,7,7"2,...). By the sublemma on p. 26 C, FrE(S;T)f is a motivically fibrant

f—spectrum in positive degrees (notice that each space C, Fr® (87);s( is motivically fibrant by

>
Proposition 9.9). We see that C, Frf (Sf)f is a positively fibrant f-spectrum representing E
in SHz(k). Consider now the canonical motivic weak equivalence T — S'A GA!. For the
same reasons C, Frf (S e )/ is a positively fibrant T-spectrum which is sectionwise weakly
equivalent to C; Fr® (S7)/. We use here Lemma 9.10 as well. It follows that C, Fr (Sq AGA! ) is

a positively fibrant S' A G/!-spectrum representing E in SHg: AGA! (k). It remains to observe that
this spectrum is equivalent to the diagonal spectrum for the bispectrum

ME(X) == (Mg(X),Mg(X: AGA), Mg (X, AGL?),...).

(2). This immediately follows from (1) if we observe that a levelwise local fibrant replace-
ment of each weighted E-framed motive Mg(Xy+ AG)") s, n > 0, is a motivically fibrant S'-
spectrum. To see the latter, we repeat the proof of Proposition 9.12(3) and apply Lemma 4.15.

(3). This follows from (1) if we observe that E[d — 1] and T¢~! A E are symmetric Thom
T-spectra with the bounding constant d = 1. U

We finish the section by proving the following useful result.
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9.14. Theorem. Suppose E is a symmetric Thom T -spectrum with the bounding constant d < 1
and contractible alternating group action.
(1) For every elementary Nisnevich square

U,HX/
U——X

the square of S'-spectra
Mg(U') — Mg(X')

.
Mg(U) —— Mg(X)

is homotopy cartesian locally in the Nisnevich topology.
e natural map Mg (X X — Mg is a stable local weak equivalence of S -spectra.
(2) Th Imap Mg (X x A') — Mg(X) i ble local weak equival f St-sp
The same is also true for linear E-framed motives.

Proof. (1). The square of motivic T-spectra
U_/,_ NE —— X_Q_ NE
U+ NE —— X+ NE

is homotopy cartesian in the stable motivic model structure. By Theorem 9.13 it induces a
homotopy cartesian square of motivically fibrant bispectra

ME(U')p —= Mg (X'); .
Mg (U) s — ME(X)y

Here ‘ f* refers to local replacements in each weight (see Theorem 9.13). Passing to weight zero
motivic S'-spectra, one gets a homotopy cartesian square of motivically fibrant S'-spectra

Mp(U")y —— Mg(X')¢
Mg(U)y —— Mg(X)s

Our statement now follows.

(2). It is proven similarly to (1) if we start with the stable motivic equivalence of T-spectra
(X x A" AE =X, AE.

The same statements for linear E-framed motives follow from (1), (2) and Lemma 9.7. [
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10. TOPOLOGICAL THOM SPECTRA WITH FINITE COEFFICIENTS

In this section we give a topological application of Theorem 9.13. Namely, many important
topological Thom spectra like MU can be obtained as the the realization of their motivic coun-
terparts if the base field is C. We shall prove below that the stable homotopy groups of such
topological Thom spectra with finite coefficients can be computed by means of the stable ho-
motopy groups with finite coefficients of weight zero of the associated E-framed motive, which
is an explicit positively fibrant S'-spectrum by the very construction. We first need a couple of
useful lemmas.

By fo(SH (k)) we shall mean the full triangulated subcategory of effective T-spectra, i.e., the
subcategory which is compactly generated by the suspension 7'-spectra of the smooth algebraic
varieties. We shall also write f;(SH(k)), £ € Z, to denote fo(SH (k)) AT".

10.1. Lemma. Suppose Z — X is a closed embedding of smooth varieties of codimension X.
Then the suspension T-spectrum X5 (X /X —Z) of the sheaf X /X — Z belongs to f;(SH (k)).

Proof. I X /X —Z =Z. AT" then our assertion is trivial. By using induction, we can cover X by
open subsets X, X, such that Z, = ZN X, — X5 is a trivial embedding and X; is covered by n — 1
open trivial pieces. Then for X, = X; N X, the embedding Z, := ZN X — X7 is trivial. Denote
by Y :=X/X —ZandbyY; :=X;/X; —Z;. Then X7Y12,X7Y, € fy(SH (k)) and 7Y, € f;(SH (k))
by induction hypothesis. By Lemma 4.6 Y is a pushout of sheaves embeddings Y] <= Y1, < Y.
Therefore we have a triangle in SH (k)

Z?le — E(?Yl @E?Yz — Z?Y i)
in which the left two entries belong to f;(SH (k)). It follows that £3Y € f;(SH (k)). O

10.2. Lemma. Let E be a Thom T-spectrum with the bounding constant d. Then E belongs to
fi—a(SH(k)). In particular, E is an effective T-spectrum if d < 1.

Proof. Since f;(SH(k)) = fo(SH(k)) AT? for any integer d, we may assume d = 1 and show
that E is an effective T-spectrum in this case.

We have E = colimy L E, where each layer has stable homotopy type of Q% ((Z7E;)/). Here
(Z3E;)/ stands for a stable motivic fibrant replacement of L2 E;. Then E is isomorphic in SH (k)
to hocolim Q& ((Z3Ex)”).

Each E; = colim (Vi j/Vi,j — Zk,j), where codimension of Z ; in V,; is larger than or equal to
k. By Lemma 10.1 the flasque cofibrant T-spectrum X3 (Vi j/Vi j — Zi ;) is in fi.(SH(k)). Since
YT Ey is isomorphic in SH (k) to hocolim (X7 (Vi j/Vk,j — Zk,;)) and fi(SH(k)) is closed under
homotopy colimits, it follows that Z2E; € fi(SH(k)), and hence Q% ((Z3Ex)/) € fo(SH(k)).
The isomorphism E 22 hocolim Q% ((£5E;)”) in SH (k) now implies E € fo(SH (k)). O

Suppose that the base field k£ has an embedding € : k — C. Following Panin—Pimenov—
Rondigs [23, §A4] there is a natural realization functor

Re® : SH(k) — SH,

where SH is the homotopy category of the stable model category of classical S>-spectra of
topological spaces (it is canonically equivalent to the homotopy category of the stable model
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category of classical S!-spectra as well). Re is an extension of the functor
An : Smy; — Top
sending a k-smooth variety X to X" := X (C) with the classical topology.

Following Levine’s indexing [19], denote by nﬁ; (E), where E € SH (k), the Nisnevich sheaf
on Smy, associated to the presheaf U +— Homgy ) <Z§‘Z%Q' U, ,E). For E € SH (k) (respectively
E € SH) and a positive integer N, we let E/N denote an object of SH (k) (respectively E /N €
SH) that fits into a triangle E % E — E /N — E[1]. By definition, 7, (E: Z/N) := n, (E/N)
(respectively m,(E;Z/N) := m,(E/N)).

We are now in a position to prove the main result of the section.

10.3. Theorem. Let k be an algebraically closed field of characteristic zero with an embedding
€ :k— C. Suppose E is a symmetric Thom T-spectrum with the bounding constant d < 1 and
contractible alternating group action. Then for all integers N > 1 and n € Z, the realization
functor Re® induces an isomorphism
7 (Mg (pt)(pt): Z/N) = 7, (Re®(E); Z/N)
between stable homotopy groups with mod N coefficients.
Proof. By Lemma 10.2 E is an effective T-spectrum. It follows from [19, 7.1] that the map
1
o (EsZ/N)(pt) — Tu(Re“(E); Z/N)

is an isomorphism for all n € Z. Theorem 9.13 implies that ﬂr‘s(l)(E ;Z/N) is computed as the
sheaf 7)Y (Mg (pt) £;Z/N). It remains to observe that

7y (Mg (p1) i Z/N) (pt) = (Mg (pt): Z/N) (pt) = mu(ME (p1) (p1); Z/N),
what completes the proof. U

As the realization of MGL is isomorphic to MU in SH, the complex cobordism S2-spectrum,
and, by Quillen’s Theorem [27], 7, (MU) is isomorphic to the Lazard ring Laz = Z[x1,x2,.. ],
deg(x;) = 2i, the preceding theorem implies the following

10.4. Corollary. Let k be an algebraically closed field of characteristic zero with an embed-
ding € .k — C. Foralln> 1 and i € Z, there is an isomorphism mt;(Mycr(pt)(pt);Z/n) =
Laz;/nLaz;, where My (pt) is the MGL-motive of the point pt = Spec(k).

We finish the section by the following result about the singular algebraic £E-homotopy defined
in the introduction. It is an analogue of the celebrated theorem of Suslin and Voevodsky [30] on
singular algebraic homology.

10.5. Theorem. Let k be an algebraically closed field of characteristic zero with an embedding
€:k— C. Suppose E is a symmetric Thom T-spectrum with the bounding constant d < 1
and contractible alternating group action and X € Sm/k. There are canonical isomorphisms of
Abelian groups

nE(X;Z/m) = m,(X(C) 1 ARe*(E); Z/m)
for all integers n > 0 and m # (.

34



Moreover, if k is any perfect field, then the assignment
X = 1l (X) = m(Fro (A, X))
is a generalized homology theory on Sm/k.

Proof. Since Mg(X) can be identified with Mx, rg(pt) and X(C); ARe®(E) = Re®(X; ANE)
by [23, A.23], Theorem 10.3 implies

7t,(Mg(X)(pt); Z/m) =2 m,(X(C)y ARe®(E);Z/m), n>0.
We have that
frn(ME(X)(pt);Z/m)%nn(QlerE(A,:,X@)SI);Z/m)%Jrn(FrE(A,:,X)gp;Z/m):n,f(X;Z/m).
Now the fact that the assignment
X = 7E (X) = m.(Frf (A}, X))

is a generalized homology theory on Sm/k with k perfect immediately follows from Theo-
rem 9.14 (verifying the excision property and the homotopy invariance property for homology
theories). U

11. NORMALLY E-FRAMED MOTIVES

Suppose E is a symmetric Thom 7 -spectrum with contractible alternating group action and
the bounding constant d = 1. In Theorem 9.13 we have constructed an explicit fibrant bispec-
trum representing E in terms of E-framed motives. We can simplify E-framed motives further
by forgetting a bit of information and construct, up to a local equivalence of S'-spectra, an equiv-
alent model for them, called normally E-framed motives. Then we construct in Theorem 11.26
an explicit fibrant bispectrum representing £ whose entries are expressed in terms of weighted
normally E-framed motives. Another advantage of normally E-framed motives is that they lead
to representability of important Thom spectra like MGL by schemes (this material is treated in
the next section in details).

11.1. Convention. From now on we shall assume that a symmetric Thom spectrum E with the
bounding constant d = 1 and contractible alternating group action is of the form:
e forany n >0, E, = Th(V,) with V, — Z, a ¥,-equivariant vector bundle of rank n over
Z, € Smy;
e The bonding maps E, AT™ — E,,, are induced by closed embeddings i, : Z, — Z1m
such that we have a Cartesian square

I, n.m

Vi X A" —— Vi

|

Zn > Ln+m

and iy, O inm = inmsr. Applying the shuffle permutation Y, ,, € X4, define the left
inclusion maps zﬁlm = Xnm © Inm. We require the left inclusion maps zfqm to fit into
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Cartesian squares
1

ln.m

A" XV e Vo

| L

n,m
Zn > Zm+n

. .. t In,m Xnm
where I,ﬂ_m is the composition A™ x V,, 2y, x Am 2 Viem — Vingn. Observe that

the maps I,lm induce the left bonding maps u;: 7" A E, — E,;+,, in the sense of Defini-
tion 2.6.

11.2. Remark. The spectrum 7X_ satisfies conditions of 11.1 with Z, = X,V,, = X x A". The
spectrum MGL is a directed colimit of spectra of the form 11.1. Indeed, for any i > O there
is a spectrum E (i), where E,(Li) = Th(Vn(i)) and Vn(i) = .7 GL,, »; is the tautological vector bundle
over the Grassmannian Z,g’) = Gr(n,ni). Then the spectra E(¥) satisfy conditions of 11.1 and
MGL = colim; EV) [22, §2.1].
When E is a symmetric Thom Tz—spectrum with the bounding constant d = 1 and contractible
alternating group action, we impose analogous conditions:
e E,=Th(V,), where V,, — Z, is a £,-equivariant vector bundle of rank 2n over Z, € Smy
for any n > 0;
e The bonding maps E, A T2m E, ., are induced by closed embeddings iy ,,: Z, —
Zn+m such that we have a Cartesian square

In‘m

2
VnXAm > Vat+m

L

n,m
Zn > Zn+m

and ipqn, Oy m = inm+r- Applying the shuffle permutation x,, ,, € X4, one sets iiz,m =
Xnm ©inm. The maps iﬁ,.m are required to fit into Cartesian squares

1
In‘m

A XV, e,

L

n,m
Zy ——— Zm+n
. .. t Iy,
w.m 18 the composition A" xV, v, x Am 2 Viem — Vian. Observe that

the maps I,’w induce the left bonding maps u; : T?" NE, — E,+n in the sense of Defi-
nition 2.6.

An,
where I el

11.3. Remark. The T2-spectra MSL and MSp are directed colimits of spectra that satisfy the
above assumptions. Namely, MSL = colim E () where E,Sl) = Th(Vn(l)), Vn(') = I SLy i is the tau-
tological special bundle over the special Grassmannian zi = SGr(n,ni) [24, §4]. The spectrum
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MSp = colimE") where E{) = Th(Vn(i)), vi =27 Spnni is the tautological symplectic bundle
over the symplectic Grassmannian zZV = H Gr(n,ni) [24, §6].

As in the previous sections we shall only consider the case of a T-spectrum E. The interested
reader will easily do the same constructions for 72-spectra in a similar fashion.

11.4. Definition. (Cf. [9, B.7.1]) Suppose X — Y is a closed embedding. We call X a locally
complete intersection (l.c.i.) subscheme of Y if for every point of X there is an affine neighbor-
hood in Y such that ideal of definition of X is generated by a regular sequence.

11.5. Remark. ([!, Corollary 4.5]) If Y is regular and X is a closed subscheme of codimension
d, then X is an l.c.i. subscheme if and only if the ideal of definition of X is locally generated by
d elements.

11.6. Lemma. For X,Y € Smy, there is a natural bijection between the set FtE(X,Y) and the
set of equivalence classes of quadruples (U,Z, @, f), where

e Zisaclosed l.c.i. subscheme of A%, finite and flat over X ;

e U is an étale neighborhood of Z in A%;

o ¢: U —V, is aregular map, called a framing, such that Z =U Xy, Z,;

o f: U —Y is aregular map.
Two quadruples (U,Z,¢,f) and (U',Z',¢', ') are equivalent if Z = Z' and there is an open
neighborhood Uy of Z in U x g, U’ such that the framings ¢,¢" as well as regular maps f, f'
coincide on Uy.

Proof. By Voevodsky’s Lemma 2.12, the elements of FrZ(X,Y) can be described as the sets
of equivalence classes of quadruples (U,Z, ¢, f), where Z is a closed subset of A%, finite over
X, U is its étale neighborhood, and ¢: U — V, is a regular map such that Z = ¢~'(Z,), and
f: U —Y is a regular map. Two quadruples (U,Z, ¢, f) and (U,Z',¢’, f') are equivalent if
Z = 7' and there is an open neighbourhood of Z in U x 4 U’, where ¢ coincides with ¢, and f
coincides with f”.

For any such quadruple the framing ¢ : U — E,, defines a closed subscheme Z' = U xy, Z,.
Then (Z'),.¢ = Z, hence Z has codimension n in U, and is locally defined by n equations. Then
itis an l.c.i. subscheme of U by Remark 11.5. Since (Z'),.q = Z is finite over X, Z is finite over
X as well, and the composition Z' — U — A, is a closed embedding by [29, Tag 04X V]. Since
U — A} is étale, it induces an isomorphism between conormal sheaves of Z’ in U and Z' in
A% by [29, Tag 0635]. Then by Nakayama’s lemma Z’ locally is defined in A% by n equations.
Thus Z' is an l.c.i. subscheme in A%, finite over X. It is flat over X by [29, Tag O0R3]. Then the
assignment (U,Z, ¢, f) + (U,Z', ¢, f) defines the desired bijection between FrZ (X,Y) and the
set of the statement of the lemma. U

11.7. Definition. For X,Y € Smy, the set of normally framed correspondences FNrf (X,Y) is the
set of equivalence classes of quintuples (U,Z, ¢, y, f), where
e Zisan l.c.i. subscheme of AY, finite and flat over X;
e U is an étale neighborhood of Z in A%;
o y: U — Z, is a regular map and ¢: Nz/pn = (yi)*V, is an isomorphism of vector
bundles, where i is the inclusion i: Z — U;
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e f:Z —Y is aregular map.

Two quintuples (U,Z, ¢, v, f) and (U',Z',¢’, ¢/, ) are equivalent if Z = Z' as subschemes of
A% and there is an open neighborhood U" of Z in U x p» U’ such that y =y’ on U", ¢ = ¢/,
and f = f.

11.8. Definition. For an affine scheme X = SpecA and its closed subscheme Z = SpecA/I of
X denote by X" := SpecA”, where (A" I") is the Henselian pair associated to (A,I)[29, Tag
09XD]. We call X" the Henselization of X in Z. If (A,I) is a Henselian pair, we will call
(X,Z) = (SpecA,SpecA/I) a Henselian pair of schemes.

11.9. Remark. Suppose i: Z — U is a closed l.c.i. subscheme and ¢ : U — V,, is a regular map
such that ¢*J C I, where [ is the sheaf of ideals defining Z in U and J is the sheaf of ideals
defining Z, in V,,. Then it defines a morphism of vector bundles

N(@): Nzjy — (29i)"Va, (11.10)
where 7 is the projection 7: V,, — Z,, which is dual to the morphism of sheaves
I @0, O7 —1/1%.

11.11. Lemma. In the notation of Remark 11.9 one has:
(1) if¢: U — Vy is a framing of Z, then N(@) is an isomorphism;
(2) if U is affine, (Z,U) is a Henselian pair, and the morphism N(§) is an isomorphism,
then ¢ is a framing of Z in U.

Proof. (1). Note that when ¢ is a framing, I is generated by the image of J. Hence the map
J|? ®g, Oz — 1 /I? induced by ¢ is is a surjection of locally free sheaves of rank 7, and so it
is an isomorphism. Thus N(¢) is an isomorphism.

(2). Let U = SpecR and let I’ C I denote the ideal generated by the image of J. Since N(¢)
is an isomorphism, the dual map J/J? ®g, Oz — 1 /I? is surjective, hence I = I' 4 I?. Since
I C Jac(R), then I =I' by Nakayama’s lemma. We see that / is generated by the image of J, and
hence ¢ is a framing. U

There is a forgetful map
fog: FE(X.Y) > Fr, (X.Y), (U.Z.6.f) = (U,Z,N(6), 79, ).
There is also a stabilization map
By (X,Y) = P,y (XY), (U290, ) = (U x AL Zx 0,y/,9'.f),
where V' is the composition ¥': U x A! - U % Z, — Z,1 and ¢’ is the composition

931 o -
0"t Nyoppnnt =Nzjag &1 — (yi)" (Va ® 1) = (V1) (Vy1)-

~ [ ~ [
Denote by Fr (—,Y) the colimit of the presheaves Fr, (—,Y) with respect to the stabilization

maps
IErE(—,Y) = colimnlgrf(—,Y).
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11.12. Lemma. The presheaf F~rE(—7 Y) admits framed transfers and the forgetful map induces
amap fog: Frf(—,Y) — F~rE(—, Y) of presheaves with framed transfers.

Proof. We shall construct a pairing

~ ~ [
Fr,(X,Y) x Fr,,(Y,W) — Fr

n—+m

(X,W),(b,a) — b*(a)

as follows. If a = (U,Z,¢, vy, f) € F~rf1(Y,W) andb= (U',Z',¢', f') € Fr,(X,Y), define b*(a) =
Ww".z",¢" " f"), where U" =U' xy U,Z" =Z' xy Z, " is the composition

m,n

1
14
VU xyU—U—Zy =5 Zyim.
Since the canonical map 7 : (Nz )|z © (Nzjy )|z — Nz»jy» is a surjection of vector bundles
of the same rank, it is an isomorphism. Define the isomorphism ¢” as the composition

! N(9")o9 . N
9" Ngvjun == (Nzjur)|z0 & (Nzy)lzr ——= 1" (i¥) Viu = (W) Vism,

where N(¢) stands for the isomorphism of formula (11.10) for E = Sr. The function f” is, by
definition, the composition U” — U — W. This pairing is plainly compatible with stabilization
by m and endows B (—,Y) with the structure of a framed presheaf such that the forgetful map
Frf(—Y) — l;rE(—, Y) is a morphism of framed presheaves. O

11.13. Remark. If X is an affine smooth variety, the set FrZ (X,Y) (respectively Igrf (X,Y))isin
bijective correspondence with the set of triples (Z, ¢, f), where Z is an l.c.i. closed subscheme
in A%, finite and flat over X, ¢: (A%)" — V,, such that Z = (A%)" xy, Z,, and f: (A%)" =Y
(respectively with the set of quadruples (Z,¢,y, f), where Z is an l.c.i. closed subscheme in
A%, finite and flat over X, y: (A%)" — Z,, and ¢ : Nz/an S (yi)V,, f: (AL = 1).

11.14. Lemma. Suppose there is an étale map Y — A%. Then the forgetful map of presheaves
fog: Fr(—Y) — ﬁrf(—, Y) is locally surjective in the Nisnevich topology.

~F
Proof. Suppose X is a local Henselian scheme and (Z,¢, v, f) € Fr, (X,Y). Then Z is semi-
local Henselian and the map y: U — Z,, where U is the Henselization of Z in AY, factors

as U % 7% C Z,, where Z° is an open subset of Z, such that the fiber V,, over Z¥ is a trivial
vector bundle. Let i denote the inclusion Z < U. Fix a trivialization V,,| 2= 70 x A", Tt gives a
trivialization of (yi)*V,,. Composing the latter trivialization with ¢, one gets a trivialization (]; of
the bundle Nz, 5r = Nz;y. The trivialization ¢ provides a basis of the k[Z]-module I/I?, where
1 is the ideal of definition of Z in U. The basis of I/I? lifts to a set of generators y = (¥,...,7,)
of I. They define a map ¢’ = (V,7): U — Z° x A" — V,, such that ¢ = N(¢’) in the sense of
formula (11.10).

Now let us extend the regular map f: Z — Y to f': U — Y. By assumption, there is an étale
map g: ¥ — A?. There is also a map h: U — A? that extends the composition gf: Z — A,
Then W = U x .Y will give an étale neighbourhood of Z in U, hence there is a section U — W.
Then the composition f’: U — W — Y extends f. We see that the triple (Z,¢’, f') € Frf(X,Y)

is a preimage of (Z,9, v, f) eﬁf(X,Y). O
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11.15. Definition. For Y € Smy, define a presheaf of S!-spectra IE}E(Y ®S) associated to the
presheaf of I'-spaces K +— F~rE(Y ®K) (cf. [13, Section 5])

Fr (Y ©S) = (B (Y),F (Y& S),F (Y®S52),...).
The normally E-framed motive of Y is the presheaf of S'-spectra
Me(Y) =C.F (Y ®S) = (CF (Y),CE (Y ©5'),CF (Y®52),...).

~E ~
It follows from Lemma 11.12 that both Fr (Y ®S) and Mg (Y) are presheaves of S'-spectra with
framed transfers.

11.16. Lemma. The presheaves of stable homotopy groups 7[,-(F~rE(Y ®S)) have ZF,-transfers

and the presheaves of stable homotopy groups m;(Mg(Y)) are Al-invariant stable Z.F,-pre-
sheaves.

~F ~E ~E

Proof. For X;,X, there is a natural bijection Fr, (X; UX5,Y) — Fr, (X;,Y) x Fr, (X2,Y), hence
~E ~E ~E

there is an isomorphism Fr (X; UX,,Y ® S) — Fr, (X1,Y ®S) x Fr, (X2,Y ®S) of S!-spectra.

~F
Then the presheaves m;(Fr (Y ®S)) are radditive with framed transfers, and hence these are
ZF,-presheaves.
Recall that ox € Fr;(X,X) uniquely corresponds to the canonical motivic equivalence X A

~E
PM — X, AT and is given by the quadruple (X x 0,X x A, pra1, prx). Then o : Fr, (X,Y) —
~F ~F ~F
Fr,.,(X,Y) differs from the stabilization map Fr, (X,Y) — Fr,,(X,Y) by the action of the
shuffle permutation x; , on A;“ and on the vector bundle V,,, ;. As usual, when 7 is even, they

differ by an A'-homotopy, hence induce homotopic maps C*F~rf (X,Y)— C*F~rf +1(X,Y). Thus
oy induces the identity map on presheaves of homotopy groups. U

11.17. Definition. For a map of simplicial presheaves f: X — ¥ denote by C (f) the diagonal
of the Cech bisimplicial presheaf with n-simplices given by simplicial presheaf

C(fln=Xxyx...xyX (n+1 times)
with the usual face and degeneracy maps. Then f factors as a composition

x & 2y

where d(f) is the diagonal map
d(f)n: Xp — X Xy, X ... Xy, Xy

and p(f) is the projection
P(f)n: Xn Xy, X ... Xy, Xy = Y,

Note that if X(U) — Y (U) is surjective for U € Smy, then p(f): C(f)(U) — Y (U) is a weak
equivalence of simplicial sets.
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11.18. Definition. For every simplicial presheaf X denote by C.X the diagonal of the bisimpli-
cial presheaf n — X (A7}). Then there is a canonical inclusion map co: X — C,(X), and for every
U € Smy, the map

Ci(co): CX(U) = C.C.X(U)

is a weak equivalence of simplicial sets.

11.19. Lemma. Suppose there is an étale map g: Y — A¢ and fogy: Frf(Y) — ﬁrf(Y) is the
forgetful map. Then there exists a map of simplicial presheaves Hy : C(fogy) — C.FrE(Y) on
the category of smooth affine varieties, compatible with stabilization by n, and that fits into the
commutative diagram

FrE (Y) @ C.FrE () (11.20)

d(fog)l y iC*(fogy)
coop(fog)

C(fogr) —=2% ¢, (Fr, (¥)).

Moreover, the map Hy is functorial in' Y in the following sense: if g: Y — A% is étale, g': V' —
A is étale, and q: Y — Y' is a map such that g'q = g, then the diagram

C(fogy) — CFE(Y) (11.21)

| |

v Hy/
C(fogyr) — C.Fr (Y')
is commutative. Here the vertical arrows are induced by q.

Proof. For brevity we sometimes write fog instead of fogy. For an affine smooth X the set of m
simplices C(fog)m(X) consists of (m + 1)-triples of correspondences (Z, ¢o, fo); - - - » (Z, O, fin)
in Frf(X,Y) such that the maps 7oy, ..., 7, : U — Z, are equal, isomorphisms on normal
bundles N(¢;): Nz/ar, — (¢;i)*V, are equal for i =0,...,m, and the regular maps f;: U =Y
coincide on Z. Here U denotes the Henselization of Z in A} and we use Remark 11.13 here.

The addition map V,, Xz, V,, = V,, and scalar multiplication map Al xV, -V, give rise to the
linear combination map

Vixz Vax...xz Vux A" v,
((v0y- vy Vm)s (F0y -y tm)) > ToVO + « o . Vi

For a (m+ 1)-tuple (Z, @0, fo),- .- (Z, Om, fn) in C(fog)m(X) the maps @y, ..., P, coincide
after composing them with 7: V,, — Z,, hence they define amap ¢: U =V, Xz X... Xz V,.
Taking composition with the linear combination map, we get a map

D=1+ ...+1u0n: UXAkm—>Vn,

where 1o, ...,t, denote the barycentric coordinates on A}". Let J denote the sheaf of ideals
defining Z, in V,,. For every ¢; we have that ¢ (J) lies inside the ideal I defining Z in U. Then
®*(J) lies inside the ideal ] @y k[A™] C k[U]| @i k[A™] which defines Z x A" inside U x A}

Let " : (U x A")" — V,, denote the map on Henselization induced by ®. Since ®*(J) C
1 ® k[A™], then (®")*(J) C (I @ k[A™])", where the latter denotes the corresponding ideal in
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the Henselization ring k(U x A™)". The normal bundles Ny, Ay Uy and Nz am g pamyn are

canonically isomorphic. We denote them by Nz a» for brevity. By 11.9 ®" defines a morphism
of vector bundles

N(@"): Nzwap — (md"ip)*Vy,
where ix: Z x Al' = (U x Akm)h denotes the inclusion. Let i: Z — U denote the inclusion, and
p: Z x A" — Z denote the projection. Then ndhiy =n¢ ip forevery j=0,...,m. In particular,
n®"in = noip. The normal bundle Ny, ar is canonically isomorphic to the pullback p*Nzy.
By construction, the morphism of bundles N(®") equals the sum

N(®") =top*N(¢o) + ... +1up*N(dp): P*Nzjy — p*(moi)* V.
Since N(¢;) = N(¢p) for all i = 0,...,m, then N(®") = p*N(¢y) is an isomorphism, because so
is N(¢9). Then ®”" is a framing of Z x A" in (U x A")" by Lemma 11.11(2).
The maps fo, ..., fm: U —Y coincide on Z. Consider the map
t08fo+ ... Ftmgfm: U XAl — A?.

Then the fiber product U’ = (U x A}") X4 Y is an étale neighborhood of Z x A" in U x A},
hence there is a unique section s: (U x A?")" — U’, where (U x A?")" is the Henselization of
Z x A" inU x A}'. Denote by 0 fo + ...+t fn the composition

(Ux AN S U - .
Then for every m > 0 one gets a map H,,: C(fog), — C,Frf (Y) defined as

Hy: (Z,00,f0)s- - (Z, Oy fn) > (Z X AL, @" tofo+ ...+t fon)

in the notation of Remark 11.13. Clearly, the maps H,, are compatible with the face and degen-
eracy maps and yield the desired morphism of simplicial presheaves Hy : C(fogy) — C.FrZ (Y)
on the category of smooth affine varieties.

If am-tuple ((Z, 90, o) - - - (Z, Qs fn)) in C(fog)m is in the image of d(fog), then (Z, ¢, f;) =
(Z, 90, fo) fori=0,...m. Thus (Z x A", D" 1o fo+ ...+ twfu) = (ZX AL, @0 pr, fyo pr), where
pr: U x A" — U is the projection. Then the left triangle in the diagram (11.20) is commutative.

As we have already proved, if ® = to@ + ... + t,,9,, then N(®") = p*N(¢y). It follows that
the right triangle in the diagram (11.20) is commutative as well.

To see that the diagram (11.21) commutes when ¢g: ¥ — Y’ is a map over A“, we note that
the following maps coincide:

108fo+ -+ tm@fm = 108'qfo+ ...+ tmg qfn: U x A — A%,
Then the diagram
(U XA —— (U X AJ') X pa ¥ ——Y

~

(UXAP) xpa Y —Y'
is commutative. Thus we get that

Q(t0f0+ s +tmfm) = tO‘]fO"‘ cee +thIfm: (U X Azl)h — Yla
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and hence (11.21) commutes. O

11.22. Lemma. Suppose there is an étale map g: Y — A?. Then the natural map fog: Frf(Y) —
~E ~ ~
Fr (Y) induces a local stable weak equivalence of S'-spectra Mg(Y) — Mg(Y).

~
Proof. For every n > 0 the map fog: Frf(Y) — Fr, (Y) is locally surjective by Lemma 11.14,

It follows that the induced map C(fog) — ﬁf(Y ) is a local weak equivalence. Let C(fog ®S)
denote the presheaf of Segal S'-spectra associated to the presheaf of I'-spaces K — C (fog®K),

where fog ® K is the forgetful map fog: Frf(Y @ K) — FNrf(Y ® K). Then the induced map
. ~E
C(fog®S) — Fr, (Y ®YS)

is a levelwise local weak equivalence of S'-spectra.

For any finite pointed set K we have that Y ® K is étale over A? via the natural composition
Y®K — Y 2 Ad and for any map K — K’ of pointed sets the induced map Y @ K — Y ® K’ is
a map of varieties over A?. Then the maps Hyq of Lemma 11.19 induces a map of presheaves
of S'-spectra H: C(fog®S) — C,Frf (Y ®S). Applying C, we get a commutative diagram

C.Ff (Y ®S) —— C.C.Frf (Y ®S)

C*d(fog)l y \LC*C* (fog)

C.C(fog®S) —— C*C*FNrf(Y®S)

The horizontal arrows in the diagram are motivic stable weak equivalences. Then C,H has both
a left and a right inverse in SHgi (k). So C.H is a motivic stable weak equivalence as well, and
hence so are the vertical arrows. Since C; is an idempotent operation up to motivic equivalence
and sequential colimits preserve stable motivic equivalences, it follows that C.(fog) : Mg(Y) —
1\7IE (Y) is a motivic stable weak equivalence. It follows from Lemmas 9.12(3), 11.16, [13,
7.17 and [12, 1.1] that local stable fibrant replacements Mg(Y) s,Mg (Y ) s of Mg(Y),Mg(Y) are
motivically fibrant S!-spectra. Therefore the induced map C.(fog)s: Mg(Y)s — Mg(Y) risa
sectionwise level weak equivalence of spectra, and hence C,(fog) : Mg(Y) — Mg(Y) is a stable
local weak equivalence, as required. (]

11.23. Lemma. Suppose Y € Smy, equals the union of two open subschemes Y| and Y,. Let
Yio =Y1NY,. Then

Mg(Yp) — Mg(Y7) Mg (Y12) — Mg (Y1)
Mg (Y2) —— Mg(Y) Mg(Y2) — Mg(Y)

are homotopy pushout squares in the local stable model structure of S'-spectra.

Proof. Similarly to [13, Definition 8.3] one can introduce the presheaves of abelian groups

—E ~
ZF (Y) imposing the additivity relation on supports in ZFr (Y). The same reasons as in [10,
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Theorem 1.2] show that homology of the complex C,ZF (Y)(X) computes homology of the
S'-spectrum Mg (Y)(X) for any X € Sm;. Repeating Lemma 4.9, Corollary 4.10 and Proposi-
tion 4.11 literally, one gets that the sequence

0 — ZF (Y12) = ZF (Y1) ® ZF (Ys) — ZF(Y) = 0
is locally exact, hence there is a triangle in the derived category

C.ZF (Y1) — C,ZF () ® C.ZF (Y,) — C,ZF (Y)
of complexes of sheaves. So the first square in the statement of the lemma is homotopy pushout.
The same proof applies to showing that the second square is homotopy pushout. U
11.24. Definition. Suppose E is a directed colimit of spectra E() satisfying Condition 11.1.
Define the presheaf B (Y) as the directed colimit

_ gl
B (Y) = colim; B (Y),
and the normally E-framed motive Mg (Y ) as the directed colimit M (Y) = colim; My (Y ).

11.25. Proposition. Suppose Y € Smy and E is a directed colimit of spectra EW) satisfying
~F

Condition 11.1. Then the natural forgetful map fog: Frf(Y) — Fr (Y) induces a local stable

weak equivalence of S'-spectra Mg (Y) = Mg (Y).

Proof. Every smooth variety Y of dimension d has a Zariski cover by varieties ¥; that admit étale

maps ¥; — A?. Then the statement follows by induction on the number of varieties in the cover
of Y if we apply Lemmas 11.22 and 11.23 as well as the fact that Mg (Y) = colim; My, (Y). O

Similarly to framed correspondences there is a natural action of the category Fro(k) on Nis-
nevich sheaves FNrE(—,X ) that takes U € Fry(k) to the sheaf FTrE(— x U,X x U). The action
gives rise to maps of S'-spectra

an : Mg(X: AGN") — Hom(GA!, Mg (X, AGL™ 1Y), n>0,
literally repeating the construction of the same maps for weighted K-motives in [ 1, Section 3].

We finish the section by the following computation.

11.26. Theorem. Suppose X € Smy and E is a symmetric Thom T -spectrum with the bounding
constant d = 1 and contractible alternating group action. Then the (S',G/\")-bispectrum

Mg (X) 5 := (Me(X) 5, Mg (X1 NG ) 1, Mg (X AGRY), )
with bonding maps induced by ay,-s above is motivically fibrant and represents the T -spectrum

X+ NE in the category of bispectra, where “f” refers to stable local fibrant replacements of
Sl-spectra.

Proof. By Lemma 11.16 the sheaves of stable homotopy groups of each S'-spectrum in Mg (X)¢
are Al-invariant, stable with framed transfers. It follows from [12] that they are strictly A'-
invariant. By [13, 7.1] all S'-spectra of the bispectrum are motivically fibrant. Observe that the
natural map of bispectra
G Ve
Mg (X)r — Mg (X)y,
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induced by the forgetful map, is a level equivalence by Proposition 11.25. It follows from
Theorem 9.13 that Mg’ (X) s is motivically fibrant and represents the 7-spectrum X, A E in the
category of bispectra. ([

12. COMPUTING THE ALGEBRAIC COBORDISM SPECTRUM MGL

In this section we give another description of the bispectrum ME’ (X) for the case E = MGL
in terms of Hilbert schemes and Q-correspondences.

12.1. Definition. Given a ring R, we call a submodule M of RN admissible if the quotient RN /M
is projective. If M is admissible, then it is also projective. We say that a map f: M — R" is an
admissible embedding if f is injective and f(M) is an admissible submodule of RV .

12.2. Definition. Given aring R, denote by R[A"] = R]ty,...t,]/(to+ ...+, — 1) the coordinate
ring on A}. Also, R[JA"] := R[A"]/(tot; ...t,) and for every 0 < i < n, R[J;,A"] := R[A"]/t;
denotes the ring of functions on the i-th face. We also set R[d;;A"] := R[A"]/(t;,t;).

For every R[A"]-module M denote by M = M Qp(pn R[OA"], M = M Qp(pn R[DA"], 9;;M =
M®R[An] R[c?,-jA"].
12.3. Lemma. For any affine X there is a bijection between F~r2/IGL (X,Y) and the set of quadru-
ples (Z, 9,y f), where Z is a closed l.c.i. subscheme of A%, finite and flat over X, R is
the Henselization ring of Z in A%, i: Z — SpecR is the embedding, y: SpecR — Gr(n),
¢: Nzyan — (Wi)* 1, is an isomorphism of k|Z]-modules, and f: Z — Y is a regular map.

Proof. This follows from Remark 11.13, Definition 11.24 and the fact that Gr(n)(R) equals
colimGr(n,N)(R) for any k-algebra R. O

12.4. Definition. For X,Y € Sm; denote by Emb,(X,Y) the set of couples (Z, f), where Z is a
closed L.c.i. subscheme in AY, finite and flat over X, and f is a regular map f: Z — Y. Note that
Emb, (X,Y) is pointed at the couple (0,0 — Y).

We need the following intermediate object:

12.5. Definition. For X,Y € Sm; denote by B, (X,Y) the set of quadruples (Z, 9, y, ), where
Z is a closed L.c.i. subscheme of AY, finite and flat over X, y: Z — Gr(n), §: Nzjny = YTy is
an isomorphism of vector bundles over Z, and f: Z — Y is a regular map.

12.6. Remark. The motivic space Gr(n) = colimy Gr(n,N) is a directed colimit of closed em-
beddings of smooth varieties. For a k-scheme Z by a regular map y: Z — Gr(n) we mean an
element of colimy Hom(Z, Gr(n,N)). Then every regular map y: Z — Gr(n) induces a vector
bundle y*7(n) over Z. Note that for a k-algebra R the set Gr(n,N)(R) is in bijective correspon-
dence with the set of rank n admissible submodules of RV (see [29, Tag 089R]).

Note that B,(—,Y),Emb,(—,Y) are presheaves on Smy. There are natural forgetful maps
FNri/[GL(—,Y) — By(—,Y) — Emb,(—,Y). We shall prove that for any smooth affine X these
maps induce weak equivalences of simplicial sets

~ MG
C.Fr *Y(X,Y) — CuBy(X,Y) — C, Emby (X, Y).
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12.7. Lemma. For every affine smooth X the map C*ﬁrilGL (X,Y) — C.By(X,Y) is a trivial Kan
fibration of simplicial sets.

Proof. The map on zero simplices ﬁri/lGL (X,Y) — B,(X,Y) is surjective by Lemma A.5. Sup-
pose 0: Alm| — C.(B,(X,Y)) is a m-simplex and there is a lift of the boundary y: dA[m| —
C*FNrnMGL (X,Y). Then 7 is represented by a collection ¥;: d;A[m] — C*FNryGL(X ,Y), such that y;
and 7; agree on the intersection d;A[m| N d;A[m].

Suppose o is represented by a quadruple (Z,¢, vy, f) € B,(AY,Y). Let JAY be the variety
Speck[A¥]/(tot1 .. .t), Where fo, . .., 1, are the barycentric coordinates of the algebraic simplex
A¥. Let dZ = Z x ap dAY denote the fiber of Z over JAY.

Let R denote the Henselization ring of Z inside A" x AY. Note that by [29, Tag09XK] the
ring R' = R ®yay) k[0AY], is the Henselization ring of dZ, and R} = R ®y(ap k[dAY] is the
Henselization of d,Z, and R} ®g R;. is the Henselization of d,ZNd;Z.

Then each ¥; is represented by a quadruple (9,Z, |57, V¥, f|57) as in Lemma 12.3, where
V;: SpecR; — Gr(n) extends the map y|;z: 6;Z — Gr(n). For any i, j the maps y; and v/
agree on Spec R; ®g R’;. Then they descend to a map y': SpecR' — Gr(n).

Then by Lemma A.5 there exists a map y”: SpecR — Gr(n) that extends y’ and y. Clearly,

the quadruple (Z,y”, ¢, f) in lgrz/[GL(A)’?, Y) is the desired lift of o that extends 7. O

12.8. Lemma. For any n and any affine smooth X the forgetful map f: B,(—,Y) — Emb,(—,Y)
induces a trivial Kan fibration of simplicial sets C.f: C.B,(X,Y) — C,Emb,(X,Y).

Proof. Suppose m > 0, 6: Ajm] — C,Emb,(X,Y) is a m-simplex and y: dA[m] — C.B,(X,Y)
is a lift of its boundary. Let us prove that there is a m-simplex 6’: A[m] — C.B,(X,Y) making
the diagram

IA[m] —— C.B,(X,Y)

o -7
_ - Cif
-
-

Alm] —— C,Emb,(X,Y)

commutative.

Suppose o is given by a couple (Z, f) € Emb,(A¥,Y). The map y is given by a collection of
quadruples ¥; = (diZ, i, Wi, fla.z) € B.(diA%,Y) as in Definition 12.5, where d;A¥ denotes the i-
th face of the algebraic simplex A} and 9;Z is the fiber of Z over d;A. The elements ¥; coincide
on the intersections d;Ay N d;A¥, and hence the regular maps y;: d,Z — Gr(n) coincide on the
intersections d;;Z. So they descend to a regular map y: dZ — Gr(n,N) for some number N by
Remark 12.6. The map y defines an admissible submodule j: P = y*t(n,N) C k[0Z]". The
isomorphisms ¢;: N, — ;P coincide on intersections Nj,z, and then by Lemma A.06 there is a
unique isomorphism ¢ : Ny; — P that extends ¢;.

Then jo¢: Ny; — k[0Z]V is an admissible embedding. By Lemma A.8 it can be extended to
an admissible embedding ®: Nz — k[Z]N @ k[Z]? such that dP equals the composition of jo ¢
and the standard embedding k[dZ]N — k[0Z]Y © k[dZ]¢. Tt follows that the image ®(Nz) C
k[Z)N+4 is a rank n admissible submodule, and so it corresponds to a regular map ¥': Z —
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Gr(n,N+d) — Gr(n) by Remark 12.6 such that the composition d;,Z — Z % Gr(n) equals y;
for any i = 0,...,n. Abusing notation, denote by @ the isomorphism ®: Nz/n — P(Nz/a1).
Then the quadruple (Z,®,¥, f) € B,(AY,Y) provides the desired m-simplex o”. O

12.9. Pr0p0s1t10n ForY € Smy the sheaf Emb,(—,Y) is representable by a countable disjoint
union E} =], En7 4 0f smooth quasi-projective varzetles.

Proof. Denote by Emb,,(U,Y ), the set of couples (Z, f) where Z is a closed 1.c.i. subscheme of
A}, finite of degree d and flat over U. Then Emb,,(—,Y), is a subpresheaf of Emb,,(—,Y), and
Emb, (U,Y) is the disjoint union of Emb,(U,Y),, d > 0, for any connected U € Smy.

By [7, Lemma 5.1.3] the presheaf Emb,(—,k), is represented by a smooth quasi-projective
scheme Hilb'¢'(A"). There is the universal finite flat map W, — Hilb!s'(A™). Then the Weil
restriction functor Ry, , Hilblei (An) (W; % Y) coincides with Emb, (—,Y ), and is represented by a

quasi-projective smooth scheme EZ 4 over k by [4,7.6.4-7.6.5]. (]

The natural inclusions of affine spaces A” — A™*! induce stabilization maps of pointed
sheaves Emb,(—,Y) — Emb,,;(—,Y). Denote by Emb(—,Y) the pointed sheaf Emb(—,Y) =

~ MGL
colim, Emb,(—,Y). Note that forgetful maps Fr, (—,Y) — Emb,(—,Y) are consistent with
the stabilization maps.

12.10. Corollary. The sheaf Emb(—,Y) is isomorphic to a sequential colimit EY of smooth
quasi-projective varieties.

Proof. This follows from Proposition 12.9 and the fact that |_|d>0 n.d 18 colimy=o(EY a4y

E,{dk). Hence Emb(—,Y) is isomorphic to E¥ := colimy >0 (E, , U---UE, 4) O

n,

We shall give an alternative description of the space C, Emb(—,Y) in terms of Q-correspon-
dences studied in [21].

12.11. Definition. For X,Y € Sm; denote by Cor®(X,Y) the groupoid with objects given by
the set Emb, (X,Y) whose morphisms between (Z;, fl) and (Z,, f») are isomorphisms a: Z; —

Z, such that mz,o0 = 7z, and f>or = f1, where 7z denotes the projection 7z,: Z; — A — X.
The assignment X +— Cor$*(X,Y) defines a presheaf of groupoids on Smy. There are natural
stabilization maps Corst(—,Y) — Cor x ,(=,Y) induced by the natural inclusions A% — A%,
Denote by Cor*(X,Y) the cohmlt Cor®(X,Y) = colim, Cor}(X,Y).

12.12. Lemma. Suppose f: X — Y is al.c.i. embedding, g: X — W is any regular map and W
is regular. Then the map (f,g): X — Y x W is an Lc.i. embedding.

Proof. The map (f,g) is the composition X —> X xW M) Y xW. The map f x id is a l.c.i.
embedding. The graph inclusion I'y: X — X x W fits into the pullback diagram
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where the right arrow is the diagonal embedding. Since W is regular, the diagonal map W —
W x W is al.c.i. embedding, so the ideal defining X in X x W is locally generated by n elements,
where n = dimW. Then I';: X — X x W is a l.c.i. embedding by Remark 11.5. Then the
composition of I'y and f X id is an l.c.i. embedding by [9, B.7.4]. (]

12.13. Lemma. Let NCor®(X,Y) be the nerve of the groupoid Cor®*(X,Y). Then for a smooth
affine X and Y € Smy, the natural map f: Emb(X,Y) — NCor*(X,Y) induces a weak equiva-
lence of simplicial sets

C.f: C,Emb(X,Y) — C.NCor*(X,Y).
Proof. Note that C,NCor*(X,Y ) is a bisimplicial set with m-simplices given by C,N,,Cor*(X,Y).

Thus it is sufficient to prove that for any m the map

C.f: C,Emb(X,Y) — C,N,,Cor*(X,Y)
is a weak equivalence of simplicial sets. Note that the map of presheaves f: Emb,(—,Y) —
N,,Cori*(—,Y) is an inclusion admitting a retraction

p: NuCor(—,Y) — Emb,(—,Y)

that sends ((Zo,fo) ﬂ) (Zl,fl) — e m (Zm,fm>) S NmCOI”,?(X,Y) to (Z(),f()) c Embn(X,Y).

For every smooth affine X and ((Zo, fo) — (Z1, /1) — -+ = (Zms f)) € NuCor2(X,Y)
consider the map

rit Zi XA] _>A;l( XXASI( XA]? (th) = ((1 _I)Z+tﬁi(z)at(t_ I)ZJ)‘

Here 7 denotes the coordinate on A!' and Bi: Z; — Zy is the isomorphism of X-schemes f; =
aalo...oaiill.

Note that r; is a map of schemes over X x A!. The map r;, restricted to the fiber over X x
(A! —{0,1}), fits into the diagram

Zi x (A" —{0,1}) = A7 xx A% x (A" —{0,1})

\ l(x,y,[)'—)(x.,t(tyw,l)

A xx Ay x (A1 ={0,1}),

where . (z,¢) — ((1 —1)z+1Pi(z),z,7) is a l.c.i. embedding by Lemma 12.12. The fiber of r;
over X x 0 and X x 1is al.c.i. embedding. Then the map r; is al.c.i. embedding by Lemma A.9.
Let us denote by Z, the image of r;. Note that the composition Z; x A! ™5 Z] C A% xx A% x Al —
X x A! coincides with 7 x id,1, where 7 is the projection 7 : Z; C A% — X. Therefore Z! is
finite and flat over X x Al
We construct an A'-homotopy
H: N,Cor(—,Y) — NyCorsh (Al x —,¥)

as follows. We set

H: (Zo.fo) 2 (Z1, 1) 2 - (Zns fon)) = (20, 1) 2 (20, 1) L - (20 £)),
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where each isomorphism 7; is given by the composition

—1 .
o T 1 oixid 1 Titl
Yii:Zi — Zix AN —— Zi  x AN —Z; 4,

and each map f/: Z] — Y is given by the composition

—1 -
iz iz Al oz Ly,

Then Hy: Ny, Corit(—,Y) — NyCorsk (—,Y) is the stabilization map and H : N,,Cors}(—,Y) —
N,,,Cor%(—, Y') equals the composition

stab

Hi: NyCor®(—,Y) 2 Emby(—,Y) L NpuCor®(—,Y) % N,,Corl (—,Y),

where the last arrow is the stabilization map. The A'-homotopy H gives rise to a simplicial
homotopy

H: C.N,,Cor}(—,Y) x A[1] = C.N,,Cors:(—,Y).
By construction, for any X we have H(C.Emb,(X,Y) x A[1]) C C,Emb,,(X,Y). Then by
Lemma 12.14 the map f: C,Emb(X,Y) — C.N,,Cor*(X,Y) is a weak equivalence. O

12.14. Lemma. Suppose X, C X, 11 is a directed system of inclusions of simplicial sets, Y, C
Y,+1 is a directed system of simplicial subsets Y, C X, and p,: X,, — Y, is a sequence of re-
tractions that agree with inclusions X, C X,+1 and Y,y C Y, 1. Assume that for every n there is a
homotopy H(n): X, x A[1] = Xa, such that H(n)o: X, — Xon is the inclusion map, H(n)(Y, X
A[l]) C Ya,, and the map H(n): X, — Xon equals the composition

X, 25 Y, C Yy, C X,

Then the inclusion Y — X is a weak equivalence, where Y = colim, Y,,X = colim, X,,.

Proof. Consider a point y € ¥,,. The inclusion map j: X,, — X, and the composition f: X, LN

Y, C X, are homotopic by means of the free homotopy H (n). Then the two induced maps

ﬂz(])ﬂﬂl(f) ni(me) — n-i(Xany)

differ by the action [y]. of the class [y] € 7;1(X2,,y) on 7;(X2,,y), Where y: A[l] — Ya,, ¥(t) =
H(n)(y,t) is the loop given by the image of the base point y under the homotopy H(n). Since
the loop v lies inside Y, the action of [y] on 7;(Y2,,y) preserves the image of m;(Y,,y) under the
inclusion map Y, — Xy,. Then the image

5(7) (7 (X, ¥)) = (V)70 () (1( X, )

lies inside the image of m;(Y,,y). Then m;(Y,y) — m;(X,y) is surjective for any point y € Y.
The existence of retractions p, implies that the map m;(Y,y) — m;(X,y) is also injective and for
every point x € X,, the map 7 — H(n)(x,t) gives a path between x and the point of ¥,. We see
that mo(Y) — mo(X) is surjective, and hence ¥ — X is a weak equivalence. O

Note that for any pointed finite set K the assignment

K+ Emb(X, AK)
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defines a sheaf of I'-spaces. Denote by Emb(X, AS) the corresponding S'-spectrum. For any
W € Smy there is a canonical map

Emb(—,X) — Emb(— x W, X x W),
functorial in W € Fro(k). These two constructions give rise to a (S', G)\!)-bispectrum
(C.Emb(X, AS),C.Emb(X; ASAGA,...).

Its structure maps literally repeat the construction of the structure maps for K-motives [11,
Section 3]. We also define a (S', G/\!)-bispectrum

(C.NCor®(X, AS),C.NCor*(X, AGAIAS),...)
in a similar fashion.

The following theorem computes M}‘(,‘}GL (X) as the above two bispectra.

12.15. Theorem. For X € Smy, there is a natural levelwise stable local equivalence between
(S1, G\ -bispectra M, (X) and
(C.Emb(X, AS),C.Emb(X; AGLIAS),...)
or
(C.NCor* (X, AS),C.,NCor*(X,. AGL'AS),...).
In particular; the (S',G)\)-bispectra
(C.Emb(X; AS)s,C.Emb(X;. AGLIAS)y,...)

and

(C.NCor®* (X, AS) ,C.NCor*(X; AGL AS)p,...)
are motivically fibrant and represent the T-spectrum X, AN MGL in the category of bispectra,

where “f” refers to stable local fibrant replacements of S'-spectra.

Proof. The first claim follows from Proposition 11.25 and Lemmas 12.3,12.7,12.8,12.13. The
proof of Theorem 11.26 shows that the bispectra

(C.Emb(X; AS)s,C.Emb(X;: AGLAS)y,...)

and

(C.NCor®* (X, AS) ,C.NCor*(X; AGL AS)g,...)
are motivically fibrant and represent the T-spectrum X, A MGL in the category of bispectra. [

We already know from Corollary 12.10 that the sheaf Emb(—,Y) is isomorphic to a sequential

colimit EY of smooth quasi-projective varieties. Thus the (S!, G/\!)-bispectrum

(Emb(X, AS),Emb(X; AGAIAS),...), X €Smy,
can be presented as the (S',GA!)-bispectrum (EX+"S EX+AG)'AS ) By construction, the

(i, j)-th term of the latter bispectrum is a sequential colimit of simplicial smooth quasi-projective
varieties EX+/\Gn' S,

By using the preceding theorem, we therefore get the following result:
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12.16. Theorem. The (S',G)!)-bispectrum My, (X) is isomorphic in SH (k) to the bispectrum

(EXMS, EX+/\Gny NS .), each term of which is given by a sequential colimit of simplicial smooth

. . . .. Ni i
quasi-projective varieties EX+"\6nS' /i j > 0.

APPENDIX A. TECHNICAL LEMMAS

In this section we recall standard facts about projective modules over Henselian pairs. Through-
out this section R denotes a Noetherian k-algebra. By 12.6 the set Gr(n,N)(R) equals the set of
rank 7 admissible submodules of RV. If R — S is a map of k-algebras, by P ®g S we shall mean
the image of P in SV. It gives an element of Gr(n,N)(S). It is important to recall from [29, Tag
089R] that Gr(n,N)(R) is functorial in R.

A.1. Lemma. Suppose (R,I) is a Henselian pair, and J is an ideal in R. Suppose B is an integral
R-algebra, and € € B/IB, " € B/JB are two idempotents that coincide in B/(I+J)B. Then
there is an idempotent e € B such that e+ 1B = ¢ and e+JB = ¢".

Proof. By [29, Tag 09XI] there is a bijections between idempotents in B and B/IB as well as
there is a bijection between idempotents in B/J and B/(I +J)B. If e is an idempotent in B such
thate+IB=¢',thene+JB =¢". O

Denote by Idemp,(R) the set of idempotents of the matrix ring M, (R).
A.2. Lemma. Suppose (R,1) is a Henselian pair, J is an ideal in R. Consider a diagram of sets:
Idemp,(R) — Idemp,(R/I) x Idemp,(R/J) = Idemp,(R/(I+J)).

Suppose (X', x"") € Idemp,,(R/I) x Idemp,(R/J) and the images of X', x" coincide in Idemp,(R/(I+
J)). Then there is x € Idemp,(R) such that the image of x in Idemp,(R/I) equals x', and the
image of x in Idemp(R/J) equals x".

Proof. There is a right exact sequence of R-modules
M,(R) — M,(R/T)®M,(R/J) — M,(R/(I+J)) — 0.

Take a matrix y € M,(R) to be a preimage of (x',x”). Let f(¢) € R[t] be the characteristic
polynomial of the matrix y. Denote by B = R[t]/f(¢). We follow the proof of [29, Tag07M5].
Note that B is integral over R and there is a ring map g: B — M, (R) that sends ¢ to y. For
any prime ideal p containing J the image of f(¢) in k(p)[t] is the characteristic polynomial of
an idempotent matrix, hence it divides #*(t — 1)". Then ¢"(1 —¢)" € 1/JB and there exists a
constant Ny such that for any N > N, the element ¥ + (1 —¢) is invertible in B/JB. It follows

that ¢’ := m in B/JB is an idempotent and a preimage of x” in M, (R/J). Likewise there
is a constant N; such that for any N > N; the element ¢’ = m in B/IB is an idempotent

and a preimage of x’ in M, (R/I). Then for N > max(Np,N;) the images of ¢’ and ¢” coincide
in B/(I+J)B and by the previous lemma there is an idempotent e in B lifting ¢’ and ¢”. Then
x = g(e) is an idempotent matrix in M, (R) such that the image of x in M,,(R/I) equals x" and the
image of x in M,,(R/J) equals x”. O
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A.3. Lemma. Suppose (R,I) is a Henselian pair, i: P C R" is an admissible submodule. Then
' PQrR/I C (R/I)" is an admissible submodule of (R/I)". Assume that there is projection
n': (R/I)" — P®gR/I such that n'i" = id. Then there is a projection m: R" — P such that
mi=idand TQR/I =T

Proof. Let e;, i = 1,...,n, denote the standard basis of R" and let ¢; be the standard basis of
(R/I)". Take a map p: R" — P sending ¢; to some preimage of '(¢;). Then poi is an endo-
morphism of P such that (poi) ®g R/I is the identity endomorphism of P®g R/I. Then poi is
invertible by Nakayama’s lemma. It follows that 7 = (poi)~!p: R" — P is a projection onto P
lifting 7’ and woi = id. O

A.4. Lemma. Suppose (R,1) is a Henselian pair, J is an ideal in R. Suppose P, € Gr(n,N)(R/I)
and P, € Gr(n,N)(R/J) are such that Py @ (R/I+J) = Py®p/; (R/I+J) in Gr(n,N)(R/(I+
J)). Then there is P € Gr(n,N)(R) such that P@gR/I = Py in Gr(n,N)(R/I) and PQrR/J = P,
in Gr(n,N)(R/J).

Proof. Choose a projection pi: (R/I)¥ — Pi. Then p; @/ R/(I+J) is a projection onto
Py ®g/R/(I+J) = P, ®g/;R/(I+J). The pair (R/J,I/INJ) is Henselian by [29, Tag 09XK],
then by Lemma A.3 there is a projection py: (R/J)N — P, that lifts p; ®g/; R/(I+J). Then
A; =i1p; and A, = ipp, are idempotents that coincide in Idempy(R/(I+J)). By Lemma A.2
there is an idempotent A € Idempy(R) such that A ®g R/I = A and A® R/J = A,. Then
P = A(R") is an element of Gr(n,N)(R) such that PQ R/I = P, and PQR/J = P;. O

A.5. Lemma. Suppose (R,I) is a Henselian pair and J is an ideal in R. Suppose fi: SpecR/I —
Gr(n) and f>: SpecR/J — Gr(n) coincide on SpecR/(I+J). Then thereis f: SpecR — Gr(n)
that extends f and f>.

Proof. This follows from the previous lemma and the fact that Gr(n)(R) = colimy Gr(n,N)(R).
(]

In the ring R[A"] denote by 7 the product t =1 ...t, of barycentric coordinates in R[A"]. For
any R[A"]-module we denote by M; the localization M; = M Qg R[A"][1/1].

A.6. Lemma. Suppose 0B is a finite flat R[0A"]-algebra, M is a finitely generated projective
dB-module, P C (dB)YN is an admissible submodule, and for every i = 0,...,n there is an iso-
morphism fi: ;M — 9;P, and for every i, j the maps f; @9, 9;;B and f; ®4.p 9;B coincide on
0ijM (see Definition 12.2). Then there is an isomorphism f: M — P such that f ® 0;B = f;.

Proof. There is a left exact sequence of R[JA"]-modules
0— R[&A”] — @?:OR[&I'A”] — @j<jR[aijAn].

Tensoring it with dB over R[JA"|, we get a left exact sequence for every projective d B-module.
The maps f; induce a commutative square in the following diagram

00— M — §;oM —— @Kja,jM

F

0O——P—— @iaiP — EBKJ-&U-P.
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Since dB is flat R[dA"], both M and P are flat as R[dA"|-modules, then the rows in the diagram
are exact, as they are obtained by tensoring with the left exact sequence above. Then there is a
unique isomorphism f: M — P that makes the diagram commutative. (]

A.7. Lemma. Suppose M is a finitely generated projective R[A"|-module. A map

f: M — RA"N
is an admissible embedding if and only if its restriction to the boundary

fOR[OA"): M @gipn RIOA"] — R[OA"Y

is an admissible embedding and the localized map

fo: My — RIAMY
is an admissible embedding.
Proof. Let K and C denote the kernel and cokernel of f respectively. We need to check that
K =0 and C is projective. Note that K is a submodule of a free finite rank R[A"]-module. Since ¢
is not a zero divisor in R[A"], then the localization map K — K; is injective and K; = ker(f;) =0,
hence K = 0. Let r denote the rank of M. For every maximal ideal m of R[A"] if t ¢ m then
C is a localization of C;, hence it is a free module of rank N —r. If ¢t € m, then C/mC is a
free module of rank N — . By Nakayama’s lemma there is a surjection g: R[A"]N " — C,, of
modules over the local ring R[A"],,. Then localization (C,), is a localization of the projective
module C; of rank N — r. Then (C,,), is projective of rank N — r. Since g, is a surjective map
between projective modules of the same rank, then it is an isomorphism, and so Ker(g); = 0.

Then Ker(g) = 0, since Ker(g) is a submodule of the free module R[A"]N=", and 7 is not a zero
divisor of R[A"]. O

A.8. Lemma. Suppose M is a finitely generated projective R|A"|-module. Assume that there is
an admissible embedding f': M ®@gian ROA"] — R[OA"|N. Then there is a number d and an

admissible embedding f: M — R[A"]N ® R|A"|? such that the map
f@OR[OA"]: M @gp R[OA"] — R[OA"]N & R[9A™)¢
equals the composition of f' and the standard embedding R[OA"]N — R[OA"]N © R[OA"].

Proof. Consider some admissible embedding j: M — R[A"]¢ and some projection p: R[A"]¢ —
M such that po j = idy. Let ey,...,eq denote the standard basis of R[A"]? and let &1, ...,&, be
the standard basis of R[@A"]¢. Consider the composition
R[OA"? 22, M pp RIOA"] L5 RIOA™Y.
Fori=1,...,d take x; € R[A"]" to be any preimage of f'((p ®id)(&;)) € R[OA"]N. Then there
is a homomorphism
F: R[A? = RIA"N ®RIA"Y, e (xi, (tot1 .. .1,)e;),

where 1, ... ,, denote the coordinates in the ring R[A"]. Take f: M — R|A"]N @ R[A"]? to be the
composition f = F o j. Let us check that f is an admissible embedding.
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Note that f @gian R[OA"] is the composition of f” and the standard embedding R[JA"]Y —
R[OA"]N & R[OA™“. In particular, f ®g|a R[OA"] is an admissible embedding.

The localization f; : M, — R[A”]ﬁv +4 is the composition of F; o j, and F; fits into a commutative
triangle

id
R[AMZ £25 RIAMY & R[AMd

\ Tz‘d@iid
F,

RA"]Y & R[A]{

where g: R[A"]? — R|A"N is the map that sends e; to x;. The right arrow of the triangle is an
isomorphism and g & id is an admissible embedding. Then F; is an admissible embedding, and
hence so is f;. By Lemma A.7 f is an admissible embedding. U

A.9. Lemma. Suppose X is an affine variety over k, A and Y are equidimensional flat affine X -
schemes, A — X is finite, Y is Cohen—Macaulay, and f: A — Y is a morphism over X. Suppose
Z is a closed subset of X and the map on the fiber products f7: AxxZ —Y xXxZ and A xx (X —
Z) =Y xx (X —Z) are Lc.i. embeddings. Then f is an Lc.i. embedding.

Proof. Denote by n = dimY — dimA and let Az (resp. Yz, Ax_z, Yx—z) be the fiber product
A xx Z (respectively Y xx Z, A xx (X —Z), Y xx (X —Z)). Let us check that k[Y] — k[A]
is surjective. For every point x € X if x € X — Z, then the localization map k[Y], — k[A] is
surjective. If x € Z, then the map k[Y] ®y(x) k(x) — k[A] ®y(x) k(x) is surjective. It follows from
Nakayama’s lemma that the map on localizations k[Y], — k[A], is surjective. Then k[Y] — k[A]
is surjective, hence A — Y is a closed embedding. Let I denote the kernel of k[Y] — k[A]. For
every pointy € Y if yis in Yx_z, then I, is generated by a regular sequence of length n. If y is in
Yz, the sequence
0 — Iy Qyx) k[Z] — k[Yz]y — k[Az]y, — 0

is exact, because k[A] is flat over k[X]. Then I, ®(x) k[Z] is generated by n elements over k[Yz],,
hence I, @), k(y) is generated by n elements. By Nakayama’s lemma I, is generated by n
elements. Since A has codimension # in Y, these elements form a regular sequence [, I11.4.5].
Then A is an l.c.i. subscheme in Y. (]
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