
Modular Differential Evolution
Diederick Vermetten

Leiden Institute for Advanced Computer Science
Leiden, The Netherlands

d.l.vermetten@liacs.leidenuniv.nl

Fabio Caraffini
Swansea University

Swansea, United Kingdom
fabio.caraffini@swansea.ac.uk

Anna V. Kononova
Leiden Institute for Advanced Computer Science

Leiden, The Netherlands
a.kononova@liacs.leidenuniv.nl

Thomas Bäck
Leiden Institute for Advanced Computer Science

Leiden, The Netherlands
t.h.w.back@liacs.leidenuniv.nl

ABSTRACT
New contributions in the field of iterative optimisation heuristics
are often made in an iterative manner. Novel algorithmic ideas are
not proposed in isolation, but usually as extensions of a preexisting
algorithm. Although these contributions are often compared to
the base algorithm, it is challenging to make fair comparisons be-
tween larger sets of algorithm variants. This happens because even
small changes in the experimental setup, parameter settings, or
implementation details can cause results to become incomparable.
Modular algorithms offer a way to overcome these challenges. By
implementing the algorithmic modifications into a common frame-
work, many algorithm variants can be compared, while ensuring
that implementation details match in all versions.

In this work, we propose a version of a modular framework for
the popular Differential Evolution (DE) algorithm. We show that
this modular approach not only aids in comparison but also allows
for a much more detailed exploration of the space of possible DE
variants. This is illustrated by showing that tuning the settings of
modular DE vastly outperforms a set of commonly used DE versions
which have been recreated in our framework. We then investigate
these tuned algorithms in detail, highlighting the relation between
modules and performance on particular problems.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; Bio-inspired optimization.

KEYWORDS
Differential Evolution, Benchmarking, Modular Algorithms, Algo-
rithm Configuration

ACM Reference Format:
Diederick Vermetten, Fabio Caraffini, Anna V. Kononova, and Thomas
Bäck. 2023. Modular Differential Evolution. In Genetic and Evolutionary
Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3583131.3590417

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590417

1 INTRODUCTION
Science is an iterative process. This is easily seen in action in the
evolutionary computation community. Most of the contributions
made to the state-of-the-art are incremental modifications on a set
of core algorithms. This process of researchers building upon the
work of others is highly beneficial to the community as a whole,
allowing further specialisation of algorithms. However, there are
some obstacles to the integration and comparison of many of these
proposed modifications.

One particular issue is the fact that algorithms can be inherently
challenging to implement. Inconsistencies in the description, ig-
nored edge cases, and even potential bugs can have a significant
impact on the behaviour of an algorithm and the interpretation of
results [1, 6]. Issues such as these have raised questions regarding
the reproducibility of research in computer science as a whole, and
evolutionary computation is no exception [29]. Because of this,
comparing different variants of algorithms can be difficult to do
fairly. Since researchers often implement the underlying algorithm
from scratch, to then add their proposed modification (and in most
cases a selected set of other algorithm variants for comparison),
clear comparisons are often hard to find.

In an ideal setting, the community would maintain standardised
implementations of core algorithms and the proposed modifica-
tions would be compared against the same set of state-of-the-art
algorithm variants. Unfortunately, this might still be an impossible
goal. However, algorithm modifications can still be fairly compared,
as long as they are implemented in one common framework. This
can be achieved through modular algorithms. From one common
core algorithm, the variants are implemented as modules which
can easily be swapped out.

The ideas behind modular algorithms have been around for
decades [7, 31, 32], but although they have been shown to be ex-
tremely useful [17], their adoption in evolutionary computation
has been relatively slow. In recent years, several new modular im-
plementations of popular algorithms have been released, including
the modular CMA-ES [14, 39] and the Particle Swarm Optimisation
framework [8]. These works highlight the benefits of modular algo-
rithms not only for fair comparisons, but also hint at the potential
to study interactions between modules.

In this work, we propose a first step towards a modular version of
Differential Evolution (DE), a heuristic originally introduced in [33,
37] to optimise a single-objective real-valued fitting problem, and
whose design took into consideration elements from evolutionary
algorithms and swarm intelligence optimisation (see [11, 41] for

864

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3583131.3590417
https://doi.org/10.1145/3583131.3590417
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590417&domain=pdf&date_stamp=2023-07-12


GECCO ’23, July 15–19, 2023, Lisbon, Portugal D. Vermetten et al.

some insights on these aspects) and a simple core mechanism based
on computing difference vectors through linear combinations of
candidate solutions. DE has been around for almost 30 years and
its popularity means that a wide variety of modifications have
been proposed over the years [13]. However, when comparing the
benchmark data, the relative benefits of many of thesemodifications
seem to vary widely. Our objective is to provide an initial analysis
of the performance of a set of 14 independent modules. This does
not cover the full space of DE variants, but nonetheless highlights
the potential of modular algorithms to aid in understanding the
contributions made by these algorithmic variations.

2 DIFFERENTIAL EVOLUTION
The original DE framework offers a somewhat modular structure
by design, where DE variants are characterised by the notation
DE/x/y/z-SDIS. Here, we stress the importance of considering
the SDIS (Strategy for Dealing with Infeasible Solutions) as a non-
optional operator of a heuristic algorithm [24]. To understand this
notation and describe the algorithm in a compact way, some DE
jargon described below is needed.

DE is a population-based algorithm where one iteration (i.e. a
generation) is completed by perturbing candidate solutions in the
population one at a time - from the first to the last individual. This
process starts from some initial population and is iterated for mul-
tiple generations depending on the available computational budget.
The order in which individuals are selected to undergo the varia-
tion operators is maintained. In this context, a selected solution is
referred to as the target individual x𝑡 . This individual undergoes
a crossover operator z, which first requires the preparation of a
second individual, called the mutant individual xm, to produce an
offspring x𝑜 called the trial vector. This solution might contain
infeasible components inherited from mutant and therefore must
be fed to a SDIS operator. Immediately after generating a feasible
trial solution, target and trial compete to enter the next pop-
ulation (note that the swap takes place only after the generation
cycle is complete in the original DE framework - i.e., after each
individual has produced a trial solution).

DE mutation operator x/y is executed to obtain a mutant so-
lution. This is the operator that gives the name to the algorithm,
as it is based on the idea of ‘moving’ a point (usually a randomly
chosen solution from the population, i.e. x=rand, or the best so far
individual, i.e. x=best, or a combination of individuals that can
include the target - see [34] and Section 3.2) by adding a number
y of scaled ‘difference’ vectors. This results in a linear combina-
tion of individuals because the difference vectors are obtained by
subtracting two randomly chosen individuals. Note that all solu-
tions involved in x/y must be distinct and feasible individuals or
combinations of individuals. Furthermore, in the case where x is
chosen as a vector originating from one individual to another, for
example rand-to-best or current-to-rand, some recombination
is already present at the mutation level, leaving the option of drop-
ping the crossover operator. To function, this simple algorithmic
structure only requires setting a population size _, a scale factor
𝐹 ∈ [0, 2] for themutation operator, and a crossover rate𝐶𝑅 ∈ (0, 1]
for the crossover. A detailed pseudocode of this framework can be

found in [24] and for more details and examples of DE operators,
we refer to [13].

3 INCLUDED MODULES
Similar to other heuristic optimisers, DE naturally lends itself to
a reformulation as a modular algorithm made up of a number of
connected modules/operators where every independently made
choice for a module is fully compatible with all choices for other
modules. In fact, previous work has shown the usefulness of con-
sidering these operators as independent modules, e.g. to rigorously
analyse the impact of the crossover operator [9]. In this paper, we
use this modularity to create a framework which we call Modular
DE where a full combinatorial range of modules is available for
each algorithm component, see Table 1.

3.1 Initialisation
To create the initial population, we implemented several sampling
strategies (Sampler, see Table 1). The most common is to create
a uniform distribution across the entire domain. Alternatives are
to use other distributions or low-discrepancy sampling methods.
We choose to include the Halton and Sobol sequences to represent
low-discrepancy sampling and a Gaussian distribution (centred
around the origin, with 𝜎 = (𝑈 − 𝐿)/6, where 𝑈 and 𝐿 are the
upper and lower bounds, respectively) to represent other kinds of
distribution. Furthermore, a previous study has proposed using an
oppositional initialisation strategy [36] (Opposition), where each
time we generate an individual for the initial population, we also
generate its mirror image around the origin.

3.2 Mutation
The mutation operator has been the focus of many modifications
of DE, see, e.g. [10, 13, 18, 23, 44]. To capture the most established
mutation variations of the kind x/y (as described in Section 2),
and to give flexibility in adding new variants, we implement the
mutation operator through the combination of 3 modules. The first
two modules, namely Base and Ref, help define the strategy x. Note
that the reference solution Ref can be set to none, while the Base
solution is not optional. In this scenario x = Base. Conversely,
when Ref is one of the admissible reference solutions displayed
in Table 1, a scaled version of the vector directed from target to
the reference point is generated and added to Base, i.e. Base +
F(Ref-target). Therefore, when Ref is not none, one obtains any
of the classic strategies of the kind x = target-Refs, plus new
ones by varying the base vector. The third module, namely Diffs,
is used to set the number y of difference vectors.

In addition to this restructuring of the definition of the mutation
operator, we implement the option of using WeightedF, which
reduces 𝐹 at the beginning of the search and then increases it
towards the end [4].

One more modification makes use of an archive of external solu-
tions, as done, e.g., in [44], where one of the solutions in the archive
is chosen to be part of one of the difference vectors - a scheme
that has been shown to lead to improvements in the past and is
activated via the module Archive.

865



Modular Differential Evolution GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 1: Available modules and parameters, their type (‘c’ for categorical, ‘i’ for integer or ‘r’ for real) and their domain. The
choices shown in bold correspond to the default settings. For the numerical parameters, the default values are added after their
domain. The ‘Shorthand’ column indicates the names used for these modules in the figures throughout this paper.

Operation Module Name Shorthand Type Domain
Initialization Base sampler Sampler c {‘gaussian’, ‘sobol’, ‘halton’, ‘uniform’}
Initialization Oppositional initialisation Opposition c {true, false}
Mutation Base vector Base c {‘rand’, ‘best’, ‘target’}
Mutation Reference vector Ref c {none, ‘pbest’, ‘best’, ‘rand’}
Mutation Number of differences Diffs c {1, 2}
Mutation Use weighted F WeightedF c {true, false}
Mutation Use archive Archive c {true, false}
Crossover Crossover method Crossover c {‘bin’, ‘exp’}
Crossover Eigenvalue transformation EigenX c {true, false}
Bound correction Bound correction SDIS c {none, ’saturate’, ‘unif-resample’, ‘COTN’, ‘toroidal’, ‘mirror’,

‘hvb’, ‘expc-target’, ‘expc-center’, ‘exps’}
Adaptation F adaptation method AdaptF c {none, ‘shade’, ‘shade-modified’, ‘jDE’}
Adaptation CR adaptation method AdaptCR c {none, ‘shade’, ‘jDE’}
Adaptation Population size reduction LPSR c {true, false}
Adaptation Use JSO caps for F and CR Caps c {true, false}
Parameter Population size _ i {4, . . . , 200} (4+⌊(3 log(𝑫))⌋)
Parameter Scale factor 𝐹 r [0, 2] (0.5)
Parameter Crossover rate 𝐶𝑅 r [0, 1] (0.5)

Table 2: Set of 11 commonly used DE variants and the way they are implemented in modular DE. Empty cells indicate default
values are used.

Name/Author Mutation Settings F CR 𝝀 Other Settings
L-SHADE [38] Base : target, Ref : pbest adaptive 18 · 𝐷 LPSR : true, Archive : true, AdaptF : shade, AdaptCR : shade
SHADE Base : target, Ref : pbest adaptive 10 · 𝐷 Archive : true, AdaptF : shade, AdaptCR : shade
DAS1 [12] 0.8 0.9 10 · 𝐷
DAS2 Base : target, Ref : best 0.8 0.9 10 · 𝐷
Qin1

[35]

0.9 0.9 50
Qin2 0.5 0.3 50
Qin3 Ref : best 0.5 0.3 50
Qin4 Ref : best, Diffs : 2 0.5 0.3 50
Gamperle1 [19] Ref : best, Diffs : 2 0.45 0.4 2 · 𝐷
Gamperle2 Ref : best, Diffs : 2 0.6 0.9 2 · 𝐷
jDE [3] adaptive 100 AdaptF : jDE, AdaptCR : jDE

3.3 Crossover
The classical studies inDE generally consider two types of crossover:
binomial (z=bin) and exponential (z=exp) [34], where the names
refer to the distributions used for the probability of exchanging
design variables between target and mutant. Both these types of
crossover are included in this work.

Furthermore, we also include the option of performing the pro-
cedure from [20], by activating the eigenvalues transformation
module EigenX, which allows using the bin or the exp operator
and still maintaining rotational invariant behaviour. This is ob-
tained by producing a covariance matrix from the individuals that
make up the current population and diagonalising it with the Jacobi
method [16] to calculate the eigenvalues and eigenvectors. These
are real-valued and form an orthogonal basis (since the covariance
matrix is symmetric and surely diagonalisable) and are arranged

in a matrix R used to rotate target and mutant before performing
the crossover. Note that the obtained trial has to be transformed
back to the original coordinate system. This is an easy task, as the
conjugate matrix R∗ is equivalent to RT in this scenario. Therefore,
the multiplication between the transposed transformation matrix
RT and the newly generated point returns the desired trial.

3.4 Boundary Correction
There exist several mechanisms for boundary correction in the
literature that allow us to deal with infeasible solutions. The most
used within the DE community can be found in [2, 25]. For the
proposed modular DE framework, we selected a varied set of 10
strategies for box-constrained problems (such as all problems in
the BBOB test suite) which are fully described and analysed in such
articles, and we refer to [40] for implementation details.

866



GECCO ’23, July 15–19, 2023, Lisbon, Portugal D. Vermetten et al.

3.5 Parameter Adaptation
Most state-of-the-art DE variants make use of adaptive parameters.
So, in the proposed modular framework we implement adaptation
methods for the DE core parameters, namely 𝐹 , 𝐶𝑅, and _. The
simplest is LPSR, which linearly reduces the population size over
time [5]. For 𝐹 and 𝐶𝑅, we implement the adaptation mechanisms
of SHADE and jDE [3, 38]. For 𝐹 , we add an additional mechanism
which uses the mean of the memory, instead of generating a dif-
ferent distribution for each individual, in the SHADE’s adaptation
strategy.

One final option to change the adaptation process is to use JSO
caps for 𝐹 and 𝐶𝑅 (Caps), which, once activated, caps the values
of these two parameters with different thresholds depending on
conditions on the used computational budget [4].

4 EXPERIMENTAL SETUP
Experiment 1 In order to analyse the potential of modular im-
plementation of DE, we recreate a set of 11 known versions of DE
within our framework (referred to as common variants). These al-
gorithms are shown in Table 2, where all non-default parameters
are mentioned. In addition to this, we can create a set of 30 single-
module variations: DE versions where all modules are set to their
default value, except for one. As such, each non-default module
option is enabled in exactly one single-module variant. For these
single-module variants, we set 𝐹 = 𝐶𝑅 = 0.7, and _ = 10 · 𝐷 , based
on the recommendations of [27].

To benchmark this portfolio, we use the BBOB suite from the
COCO platform [22]. This suite contains 24 noiseless, single-objec-
tive, continuous optimisation problems, each of which can be in-
stantiated with different transformations. These instances aim to
provide slight deviations from the original function while pre-
serving the properties of the global landscape. For each DE vari-
ant, we collect performance data on all 24 BBOB problems, using
IOHexperimenter [15] for data collection. We perform 50 runs per
function, spread over 10 instances (5 independent runs per instance).
We repeat this for dimensions 𝐷 ∈ {5, 10, 20}, where we give each
run a budget of 50 000 function evaluations.

To evaluate the performance of each algorithm, we opt to use
the Empirical Cumulative Distribution Function (ECDF). In partic-
ular, we use the Area Over the ECDF Curve (AOC) as an anytime
performance measure [21]. Note that we make use of AOC instead
of the more common Area Under the Curve (AUC) to keep the
interpretation of minimizing the performance metric. To calculate
the ECDF and the corresponding AOC, we use a set of 81 targets log-
arithmically scaled between 108 and 10−8. These targets are based
on precision (difference between best-so-far 𝑓 (𝑥) found and the f-
value of the global optimum) to allow aggregation across instances.
As a last step, we normalise the AOC to lie in [0, 1] by dividing the
computed value by the total budget. For interpreting the AOC values,
we should keep in mind that when all targets are hit immediately,
we get a value of 0, which is optimal, while 1 indicates that none of
the selected targets have been hit throughout the optimisation run.

Experiment 2 For our second set of experiments, we use the
algorithm configuration tool irace [30] to tune the performance
of the modular DE on the same set of BBOB problems. Each irace
run uses a budget of 10 000 evaluations, where each evaluation

Ad
ap

tCR
Ad

ap
tF

Sa
mple

r
SD

IS

Cros
sov

er
LPS

R
Base Diffs Re

f

Weig
hte

dF

Opp
osi

tio
n

Arch
ive Cap

s

Module

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

AO
C 

im
pr

ov
em

en
t

dim
5
10
20

Figure 1: Improvement in AOC over the default setting when
selecting the best-performing option for each module.

corresponds to running a DE variant with the selected parameter
setting. We use the f-test version of irace,with a first-test value of
5, with the other parameters set to their default values.

We perform 10 independent runs of irace on each function from
the BBOB suite, for dimensions 𝐷 ∈ {5, 10, 20}, where irace has
access to the first 5 instances of the function. We set the targets for
ECDF to 81 logarithmically spaced values between 108 and 10−8.
We use AOC as the target since it has been shown that the increased
signal it captures relative to measures such as Expected Running
Time (ERT) can lead to overall performance improvements, even
when evaluating the result with a different measure [43]. In addition
to these per-function tuning runs, we also perform 10 tuning runs
where we tune for aggregated performance over all the functions
by setting the irace instance set to the 24 BBOB problems.

The resulting elite configurations for the across-function tuning
are validated using the same settings as the DE variants from the
first experiment: 5 independent runs on 10 instances of each BBOB
problem. For the per-function tuning, we instead perform 5 inde-
pendent runs on 50 instances of the problem on which the tuning
was performed.

Reproducibility: To ensure the reproducibility of our results,
the complete set of scripts used for these experiments have been
uploaded to a Zenodo repository [40]. This repository also contains
the resulting irace logs, table with elite configurations, and verifica-
tion runs in IOHanalyzer format. The notebooks used for analysis
and visualisation are also provided. A set of additional figures that
could not be included in this paper has been added to Figshare [40].

5 SINGLE-MODULE AND COMMON DE
VARIANTS

First, we investigate the single-module DE variants, which can be
used to illustrate the impact of each module in isolation. We achieve
this by comparing the performance of the default DE (all modules
at their default value as seen in Table 1) to the variant with the
identified best options enabled for each module. The resulting dis-
tribution of improvements is shown in Figure 1.

From Figure 1, we can see that some modules have relatively
minor impact when the optimal option is selected independently
from any other modules. This is the case for e.g. the number of

867



Modular Differential Evolution GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Ad
ap

tCR
Ad

ap
tF

Sa
mple

r
SD

IS

Cros
sov

er
LPS

R
Base Diffs Re

f

Weig
hte

dF

Opp
osi

tio
n

Arch
ive Cap

s

Module

−0.4

−0.3

−0.2

−0.1

0.0

AO
C 

im
pr

ov
em

en
t

dim
5
10
20

Figure 2: Reduction in AOC over the default setting when
selecting the worst-performing option for each module.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

AdaptCR

AdaptF

Sampler

SDIS

Crossover

LPSR

Base

Diffs

Ref

WeightedF

Opposition

Archive

Caps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 3: Importance of each module to the AOC on each of
the 24 BBOB functions, aggregated over the used dimensions.
Importance is calculated as the sum of absolute values from
Figures 1 and 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.2

0.4

0.6

0.8

AO
C

Type
Single Module
Common Variant

Figure 4: Performance distribution (AOC) of the 30 single-
module DE variants and the 11 common DE variants from
Table 2, for the 10-dimensional BBOB problems.

difference components (Diffs) and the use of an archive popu-
lation (Archive). In fact, if we instead consider the performance
deterioration when making the worst choice for each module, these
ones show a significant change over the default setting, as can be

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AO
C

Type
Specialist
Generalist

Figure 5: Performance distribution (AOC) of the configura-
tions tuned for an individual function (specialist) and the
configurations tuned for the full BBOB suite (generalist), for
the 10-dimensional BBOB problems. The green line shows
the best DE version from the union of single-module DE and
common DE variants from Table 2.

seen in Figure 2. The combination of these two figures gives an
overall importance of each module, in the sense that if only one
module can be modified, some modules will likely have a much
larger impact on the overall performance of the algorithm than
others. The aggregation of maximum improvements and deterio-
rations for the selection of different module options is visualized
in Figure 3. This figure shows the way in which these module
importances are distributed across functions. For some functions,
all single-module configurations perform similarly poorly, e.g. for
F24, so no differences are detected. For most others, differences
are present, with a clear impact on the choice of the base vector
used for mutation (Base). In general, the mutation modules have
relatively more impact than most others. Somewhat surprisingly,
the impact of the adaptation methods for F, CR and population size
is rather small. This might indicate that these settings work best
when combined with other modules or more specific parameter
settings. Also worth noting is that boundary correction is usually
not impactful, with the exception of F5 (linear slope). For this func-
tion, the optimum lies directly on the boundary, so the boundary
correction will be triggered often when close to the optimum, and
thus have a large impact on the algorithm’s performance [25]. All
other BBOB functions are known not to have optima in the relative
vicinity of domain boundaries [28].

To get insight into how hand-crafted DE versions, such as L-
SHADE, compare to the single-module ones, we look at the perfor-
mance distributions on the 24 BBOB problems. This is visualised
in Figure 4. From this figure, we see that there is a fairly wide dis-
tribution of performance in both groups. Overall, the common DE
variants seem to contain better configurations, although the set of
configurations is relatively much smaller.

6 PERFORMANCE OF TUNED DE
Next, we compare the hand-crafted and single-module DE versions
to those resulting from tuning the modular DE using irace. The
resulting performance on the 10D BBOB problems is visualized in
Figure 5. From this figure, we can see that generally, both of the

868



GECCO ’23, July 15–19, 2023, Lisbon, Portugal D. Vermetten et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.2

0.4

0.6

AU
C 

Im
pr

ov
em

en
t o

ve
r D

ef
au

lt Type
Single Module
Common
Specialist
Generalist

Figure 6: Relative improvement in AOC value between the best configuration of each type and the default setting, in 20D.

tuned DE settings outperform the hand-crafted ones. As expected,
tuning for a particular function improves the performance on that
function rather significantly.

Next, we aim to understand the impact of tuning relative to
picking the best configuration from the set of common variants.
To investigate this, we look at the relative gain in AOC over the
default, for each set of configurations (common variants, single-
module variants, specialists and generalists). For each type, we look
at the performance of the best configuration of that type on each
function and take the improvement it makes over the default setting.
These improvements, for the 20D BBOB functions, are visualized
in Figure 6. From this figure, we can see that the default setting
performs particularly poorly on most of the unimodal problems,
as even the best single-module configuration can outperform it
significantly. However, this also shows the additional benefit which
can be gained from tuning, which is particularly noticeable e.g. F3
and F4. We should also note that the performance gains shown
here are slightly larger than those seen in Figure 5, which in turn
are slightly larger than those achieved on the 5D version of these
problems. The figures for these other settings can be found on our
Figshare repository [40].

One more important note from Figure 5 is the wide distribution
of AOC values. For the generalist configurations, this is natural, as
configurations with different strengths can achieve similar perfor-
mance when aggregated over the whole BBOB suite, resulting in a
large per-function variance when grouped together. However, for
the configurations tuned on a single function, the variance on some
functions is still clearly visible. This might be caused by the inher-
ent stochasticity of DE which potentially misleads the algorithm
configurator when limited samples are available [42].

This might also explain why for F21 one of the hand-crafted
DE variants outperforms almost all configurations which were
tuned on that function. When considering Figure 4, we see that
the performance might be considered an outlier, which performs
much better than the remaining common variants. This observation
might indicate that using the common DE variants to initialize irace
might be able to provide some additional benefits over the current
random sampling.

Since the variance in performance between generalist configura-
tions is large, it would be worthwhile to investigate the correlation
between functions, based on the performance of the elite configu-
rations. This is visualised in Figure 7. From this figure, we see that
several groups of problems seem to appear. This grouping might

indicate that several of these functions could be removed from
the tuning set. Since the algorithm configuration process works
on the basis of ranking, testing on multiple instances where the
ranking of configurations is almost equivalent might not be very
beneficial. Removing some functions from the training set would
allow for a better representation of the function space to be used
in each individual race, resulting in potentially improved generalist
configurations.

7 ANALYSIS OF ELITE CONFIGURATIONS
Since multiple repetitions of irace are performed for each problem,
we have a set of between 10 and 50 elite configurations for each
setting. By analysing the commonalities between these elites, we
can get an overview of the benefit of different parameter settings.
This can be done on a global level by aggregating the activations
of certain module options across runs and dimensions.

In Figure 8, we show how the population size changes with
respect to functions and dimensionality. In particular, we observe
that for the more simple problems, such as the sphere (F1) and
ellipsoid (F2), lower population sizes are preferred. In contrast, the
highly multimodal problems with medium or low global structure
(F15-F24) use a comparatively much higher population size. As
would be expected, for most functions, the used population size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 −1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Kendall Tau correlation between the 24 functions
of the BBOB suite, measured based on the performance of
the set of elites which were tuned on the full BBOB suite in
10D.

869



Modular Differential Evolution GECCO ’23, July 15–19, 2023, Lisbon, Portugal

increases as dimensionality grows. For some functions, this trend is
not maintained, which might indicate that the selected limit (200)
was too low. This shows that the default population size in Table 1
is indeed not ideal, and higher values should be considered instead.

Next to the parameter values, we can also consider patterns in the
modules themselves. For the binary modules, this analysis results
in Figure 9, where we show the fraction of times a given module
was activated in the elite configuration for each BBOB function.
While values close to 0.5 do not provide much direct insight, the
more extreme values are interesting to consider. In particular, we
notice that the capping mechanism for mutation as used in JSO
(Caps) is rarely enabled, indicating that it appears to be detrimental
to performance in most problems.

In addition to these binary modules, we can also analyse the
other modules. This can be done by considering the standard devia-
tion in the activation frequencies for each module. A low deviation
corresponds to no changes from the mean, indicating that all mod-
ules are selected equally often, while high values (0.5 as maximum)
indicate that one module is selected every time. These deviations,
aggregated across dimensions, are visualised in Figure 10. From this
figure, we see that the bound correction (SDIS) is distributed rela-
tively uniformly, with the only exception being F5. This matches
our previous observations in Figure 3, indicating that irace correctly
identified the importance of this module during tuning. Further-
more, the mutation base (Base) seems to be a critical module, with
large deviations from the initial uniform distribution.

While Figure 10 gives an overview of the distribution of modules,
it does not show which options of these modules are selected more
often. For this, we can instead consider the module activations of
a single function and visualise them as a parallel coordinate plot.
Figure 11 shows this for Function 19 in 5D. In this figure, we see
that all elite configurations make use of a Gaussian sampler for
initialisation (Sampler). This makes sense when we consider the
properties of F19 in more detail. In particular, we should note that
for this function, the location of the optimum is not uniformly dis-
tributed in [−4, 4]𝐷 as for most BBOB problems, but it is instead
limited to the shell of the hypersphere of radius 1, centred at the
origin [28]. Because of this, a Gaussian initialisation will signifi-
cantly outperform any uniform or low-discrepancy initialisation
strategy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

4

10

50

100

200

Po
pu

la
tio

n 
Si

ze

Dimension
5
10
20

Figure 8: Distribution of population size per dimension in
elite configurations (specialist).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

WeightedF
Archive
EigenX

Caps
Opposition

LPSR
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Fraction of elite configurations in which the speci-
fied binary module is on (aggregated across dimensions).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

SDIS
Sampler

Base
Ref

Crossover
AdaptF

AdaptCR
0.1

0.2

0.3

0.4

0.5

Figure 10: Standard deviation of module frequencies for se-
lected modules.

In Figure 11 we also observe that all configurations, except one,
make use of the SHADE-based adaptation for F (AdaptF), with ‘tar-
get’ based mutation mechanism (Base). This suggests that, unlike
the common belief of adding many components in the mutation
operator to deal with such problems, adaptation systems based on
the history of successful control parameter values are beneficial
for multimodal problems similar to F19, especially when combined
with ‘target’-based mutations and Diffs= 1.

We can compare these observations with those in Figure 12,
where we show the same visualisation for F2 in 10D. One significant
difference between these two settings is the spread of performance.
For F19, the differences between the best and worst configurations
are greater than 0.1, while for F2 these differences are at most
0.005. This is partly explained by considering that F2 is a unimodal
problem and, as such, the performance variability on this function
is inherently lower than the one for multimodal F19.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced a modular framework for Differential
Evolution and illustrate how it can help us gain insight into the dif-
ferences between the many variations of DE proposed throughout
the years. We show the flexibility of this framework by recreating a
set of 11 common versions of DE. Although these hand-crafted ver-
sions seem to outperform the default settings and other variations
we create by changing only a single module, we see that the wide
range of available options provides a wide potential to improve
overall performance.

By utilising irace to tune the modules and parameters of this
modular DE, we find consistent improvements over a set of common
DE variants.When addingmoremodules, we can repeat this process
to gain an understanding of the newly created interaction with
existing modules [14]. We illustrated that the results from such a
tuning process also help to gain further insight into the benefits of
using different versions of DE for different problems.

870



GECCO ’23, July 15–19, 2023, Lisbon, Portugal D. Vermetten et al.

None

SDIS

'expc_target'

'hvb'

'expc_center'

'exps'

'unif_resample'

'COTN'

'toroidal'

'gaussian'

Sampler

'target'

Base

'rand'

'best'

Ref

'pbest'

None

1

Diffs

true

WeightedF

false

false

Archive

true

'bin'

Crossover

'exp'

true

EigenX

false

'shade'

AdaptF

'shade_modified'

None

AdaptCR

'shade'

'jDE'

false

Caps

true

true

Opposition

false

true

LPSR

false
0.415

0.42

0.425

0.43

0.435

0.44

0.445

0.45

AOC

Figure 11: Parallel coordinate plot showing the modules activated in the elite configuration found across 10 runs of irace, on
F19 in 5D. Configurations are colored based on normalized AOC.

'mirror'

SDIS

None

'unif_resample'

'expc_target'

'exps'

'COTN'

'expc_center'

'hvb'

'saturate'

'gaussian'

Sampler

'uniform'

'halton'

'sobol'

'best'

Base

'rand'

'rand'

Ref

'best'

'pbest'

1

Diffs

2

false

WeightedF

true

true

Archive

'exp'

Crossover

'bin'

false

EigenX

'jDE'

AdaptF

'shade_modified'

'shade'

None

None

AdaptCR

'shade'

'jDE'

false

Caps

true

true

Opposition

false

false

LPSR

true

0.02

0.03

0.04

0.05

0.06

0.07

0.08

AOC

Figure 12: Parallel coordinate plot showing the modules activated in the elite configuration found across 10 runs of irace, on F2
in 10D. Configurations are coloured based on normalized AOC.

While the set of common DE variants we used here by no means
covers the full spectrum of hand-crafted DE versions that have
been published, it shows another potential application of the pro-
posed modular framework. If we can recreate an even larger set
of previously benchmarked DE variants, we can take a large step
towards a fair comparison of their individual contributions to the
state-of-the-art. A large-scale benchmarking study using a modular
framework would remove many aspects of inconsistency, resulting
in a potentially more unbiased comparison. Such a study could
show to what extent the published results in DE depend on factors
such as the implementation and choice of the benchmark set-up.

The modular DE we propose here is clearly not a complete frame-
work that encapsulates all variations of DE. It might be a lofty goal
to create one framework which covers this wide range of options,
but striving towards coverage of more algorithm variants seems to
be worthwhile. Although more modules increase the complexity
of finding good configurations, the modular structure provides op-
portunities to use techniques such as knowledge graph embedding
to create models that can effectively predict the performance of
previously unused module combinations [26].

REFERENCES
[1] Rafał Biedrzycki. 2021. Comparison with State-of-the-Art: Traps and Pitfalls. In

2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 863–870.

[2] Rafał Biedrzycki, Jarosław Arabas, and Dariusz Jagodziński. 2019. Bound con-
straints handling in Differential Evolution: An experimental study. Swarm and
Evolutionary Computation 50 (2019), 100453. https://doi.org/10.1016/j.swevo.
2018.10.004

[3] Janez Brest, Sao Greiner, Borko Boskovic, Marjan Mernik, and Viljem Zumer.
2006. Self-Adapting Control Parameters in Differential Evolution: A Comparative
Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary
Computation 10, 6 (2006), 646–657. https://doi.org/10.1109/TEVC.2006.872133

[4] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. 2017. Single objective
real-parameter optimization: Algorithm jSO. In 2017 IEEE congress on evolutionary
computation (CEC). IEEE, 1311–1318.

[5] Janez Brest and Mirjam Sepesy Maučec. 2008. Population size reduction for the
differential evolution algorithm. Applied Intelligence 29, 3 (2008), 228–247.

[6] Dimo Brockhoff. 2015. A Bug in the Multiobjective Optimizer IBEA: Salutary
Lessons for Code Release and a Performance Re-Assessment. In Evolutionary
Multi-Criterion Optimization - 8th International Conference, EMO 2015, Guimarães,
Portugal, March 29 -April 1, 2015. Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 9018), António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos
A. Coello Coello (Eds.). Springer, 187–201. https://doi.org/10.1007/978-3-319-
15934-8_13

[7] Sébastien Cahon, Nordine Melab, and E-G Talbi. 2004. Paradiseo: A framework
for the reusable design of parallel and distributed metaheuristics. Journal of
heuristics 10, 3 (2004), 357–380.

[8] Christian L Camacho-Villalón, Marco Dorigo, and Thomas Stützle. 2021. PSO-
X: A component-based framework for the automatic design of particle swarm
optimization algorithms. IEEE Transactions on Evolutionary Computation 26, 3
(2021), 402–416.

[9] Felipe Campelo and Moisés Botelho. 2016. Experimental investigation of recom-
bination operators for differential evolution. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016. 221–228.

[10] Guogang Cao, Cong Cao, Qing Zhang, and Wenju Li. 2018. Differential Evolution
Improved with Intelligent Mutation Operator Based on Proximity and Ranking.
In 2018 11th International Symposium on Computational Intelligence and Design

871

https://doi.org/10.1016/j.swevo.2018.10.004
https://doi.org/10.1016/j.swevo.2018.10.004
https://doi.org/10.1109/TEVC.2006.872133
https://doi.org/10.1007/978-3-319-15934-8_13
https://doi.org/10.1007/978-3-319-15934-8_13


Modular Differential Evolution GECCO ’23, July 15–19, 2023, Lisbon, Portugal

(ISCID), Vol. 02. 196–201. https://doi.org/10.1109/ISCID.2018.10146
[11] Fabio Caraffini, Anna V. Kononova, and David Corne. 2019. Infeasibility and

structural bias in differential evolution. Inf. Sci. 496 (2019), 161–179. https:
//doi.org/10.1016/j.ins.2019.05.019

[12] Swagatam Das, Ajith Abraham, Uday K Chakraborty, and Amit Konar. 2009.
Differential evolution using a neighborhood-based mutation operator. IEEE
transactions on evolutionary computation 13, 3 (2009), 526–553.

[13] S. Das, Sankha Subhra Mullick, and P.N. Suganthan. 2016. Recent advances in
differential evolution – An updated survey. Swarm and Evolutionary Computation
27 (2016), 1 – 30. https://doi.org/10.1016/j.swevo.2016.01.004

[14] Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas
Bäck. 2021. Tuning as a means of assessing the benefits of new ideas in interplay
with existing algorithmic modules. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. 1375–1384.

[15] Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, and
Thomas Bäck. 2021. IOHexperimenter: Benchmarking Platform for Iterative
Optimization Heuristics. arXiv preprint arXiv:2111.04077 (2021).

[16] James Demmel and Krešimir Veselić. 1992. Jacobi’s Method is More Accurate
than QR. SIAM J. Matrix Anal. Appl. 13, 4 (1992), 1204–1245.

[17] Johann Dreo, Arnaud Liefooghe, Sébastien Verel, Marc Schoenauer, Juan J Merelo,
Alexandre Quemy, Benjamin Bouvier, and Jan Gmys. 2021. Paradiseo: from a
modular framework for evolutionary computation to the automated design of
metaheuristics: 22 years of Paradiseo. In Proceedings of the Genetic and Evolution-
ary Computation Conference Companion. 1522–1530.

[18] Michael G. Epitropakis, Dimitris K. Tasoulis, Nicos G. Pavlidis, Vassilis P. Pla-
gianakos, and Michael N. Vrahatis. 2011. Enhancing Differential Evolution Uti-
lizing Proximity-Based Mutation Operators. IEEE Transactions on Evolutionary
Computation 15, 1 (2011), 99–119. https://doi.org/10.1109/TEVC.2010.2083670

[19] Roger Gämperle, Sibylle D Müller, and Petros Koumoutsakos. 2002. A parameter
study for differential evolution. Advances in intelligent systems, fuzzy systems,
evolutionary computation 10, 10 (2002), 293–298.

[20] S. M. Guo and C. C. Yang. 2015. Enhancing Differential Evolution Utilizing
Eigenvector-Based Crossover Operator. IEEE Transactions on Evolutionary Com-
putation 19, 1 (Feb 2015), 31–49.

[21] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, and Tea Tušar. 2022. Any-
time Performance Assessment in Blackbox Optimization Benchmarking. IEEE
Transactions on Evolutionary Computation 26, 6 (2022), 1293–1305.

[22] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and
Dimo Brockhoff. 2020. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software (2020), 1–31.

[23] Sk. Minhazul Islam, Swagatam Das, Saurav Ghosh, Subhrajit Roy, and Ponnuthu-
rai Nagaratnam Suganthan. 2012. An Adaptive Differential Evolution Algorithm
With Novel Mutation and Crossover Strategies for Global Numerical Optimiza-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42,
2 (2012), 482–500. https://doi.org/10.1109/TSMCB.2011.2167966

[24] Anna V Kononova, Fabio Caraffini, and Thomas Bäck. 2021. Differential evolution
outside the box. Information Sciences 581 (2021), 587–604.

[25] Anna V Kononova, Diederick Vermetten, Fabio Caraffini, Madalina-A Mitran, and
Daniela Zaharie. 2022. The importance of being constrained: dealing with infeasi-
ble solutions in Differential Evolution and beyond. arXiv preprint arXiv:2203.03512
(2022).

[26] Ana Kostovska, Diederick Vermetten, Sašo Džeroski, Panče Panov, Tome Eftimov,
and Carola Doerr. 2023. Using Knowledge Graphs for Performance Prediction of
Modular Optimization Algorithms. arXiv preprint arXiv:2301.09876 (2023).

[27] J. Liu and J. Lampinen. 2005. A Fuzzy Adaptive Differential Evolution Algorithm.
Soft Computing 9, 6 (01 Jun 2005), 448–462. https://doi.org/10.1007/s00500-004-
0363-x

[28] Fu Xing Long, Diederick Vermetten, Bas van Stein, and Anna V Kononova. 2022.
BBOB Instance Analysis: Landscape Properties and Algorithm Performance
across Problem Instances. arXiv preprint arXiv:2211.16318 (2022).

[29] Manuel López-Ibáñez, Juergen Branke, and Luís Paquete. 2021. Reproducibility
in evolutionary computation. ACM Transactions on Evolutionary Learning and
Optimization 1, 4 (2021), 1–21.

[30] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birat-
tari, and Thomas Stützle. 2016. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives 3 (2016), 43 – 58.
https://doi.org/10.1016/j.orp.2016.09.002

[31] Manuel Lopez-Ibanez and Thomas Stutzle. 2012. The automatic design of multi-
objective ant colony optimization algorithms. IEEE Transactions on Evolutionary
Computation 16, 6 (2012), 861–875.

[32] Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich. 2011. Opt4J:
a modular framework for meta-heuristic optimization. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation. 1723–1730.

[33] K. Price and R. Storn. 1997. Differential evolution: A simple evolution strategy
for fast optimization. Dr. Dobb’s J. Software Tools 22, 4 (1997), 18–24.

[34] Kenneth V. Price, Rainer Storn, and Jouni Lampinen. 2005. Differential Evolution:
A Practical Approach to Global Optimization. Springer. https://doi.org/10.1007/3-
540-31306-0

[35] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. 2008. Differential
evolution algorithm with strategy adaptation for global numerical optimization.
IEEE transactions on Evolutionary Computation 13, 2 (2008), 398–417.

[36] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama. 2008. Opposition-Based
Differential Evolution. IEEE Transactions on Evolutionary Computation 12, 1
(2008), 64–79.

[37] R. Storn and K. Price. 1995. Differential Evolution - a Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-
012. ICSI.

[38] Ryoji Tanabe and Alex Fukunaga. 2013. Success-history based parameter adapta-
tion for Differential Evolution. In 2013 IEEE Congress on Evolutionary Computation.
71–78. https://doi.org/10.1109/CEC.2013.6557555

[39] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016.
Evolving the structure of Evolution Strategies. In SSCI. 1–8. https://doi.org/10.
1109/SSCI.2016.7850138

[40] Diederick Vermetten, Fabio Caraffini, Anna V. Kononova, and Thomas Bäck.
2023. Reproducibility files and additional figures. (Feb. 2023). Code and
data repository: https://doi.org/10.5281/zenodo.7624677 Figure repository: https:
//figshare.com/s/2885a458ec5270d9c0ce.

[41] Diederick Vermetten, Bas van Stein, Anna V Kononova, and Fabio Caraffini. 2022.
Analysis of structural bias in differential evolution configurations. In Differential
Evolution: From Theory to Practice. Springer, 1–22.

[42] Diederick Vermetten, Hao Wang, Manuel López-Ibañez, Carola Doerr, and
Thomas Bäck. 2022. Analyzing the impact of undersampling on the bench-
marking and configuration of evolutionary algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference. 867–875.

[43] Furong Ye, Carola Doerr, HaoWang, and Thomas Bäck. 2022. Automated configu-
ration of genetic algorithms by tuning for anytime performance. IEEE Transactions
on Evolutionary Computation 26, 6 (2022), 1526–1538.

[44] Jingqiao Zhang and Arthur C Sanderson. 2009. JADE: adaptive differential
evolution with optional external archive. 13, 5 (2009), 945–958.

872

https://doi.org/10.1109/ISCID.2018.10146
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1109/TEVC.2010.2083670
https://doi.org/10.1109/TSMCB.2011.2167966
https://doi.org/10.1007/s00500-004-0363-x
https://doi.org/10.1007/s00500-004-0363-x
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1109/CEC.2013.6557555
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.5281/zenodo.7624677
https://figshare.com/s/2885a458ec5270d9c0ce
https://figshare.com/s/2885a458ec5270d9c0ce

	Abstract
	1 Introduction
	2 Differential Evolution
	3 Included Modules
	3.1 Initialisation
	3.2 Mutation
	3.3 Crossover
	3.4 Boundary Correction
	3.5 Parameter Adaptation

	4 Experimental Setup
	5 Single-Module and Common DE Variants
	6 Performance of Tuned DE
	7 Analysis of Elite Configurations
	8 Conclusions and Future Work
	References

